

GitHub®

GitHub®

2nd Edition

by Sarah Guthals, PhD

GitHub® For Dummies®, 2nd Edition
Published by: John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, www.wiley.com

Copyright © 2023 by John Wiley & Sons, Inc., Hoboken, New Jersey

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections
107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the Publisher. Requests to
the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River
Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, Dummies.com, Making Everything Easier, and related
trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and may not be used without written
permission. All other trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not
associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: WHILE THE PUBLISHER AND AUTHORS HAVE USED THEIR
BEST EFFORTS IN PREPARING THIS WORK, THEY MAKE NO REPRESENTATIONS OR WARRANTIES WITH RESPECT
TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL
WARRANTIES, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES
REPRESENTATIVES, WRITTEN SALES MATERIALS OR PROMOTIONAL STATEMENTS FOR THIS WORK. THE FACT
THAT AN ORGANIZATION, WEBSITE, OR PRODUCT IS REFERRED TO IN THIS WORK AS A CITATION AND/OR
POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE PUBLISHER AND AUTHORS
ENDORSE THE INFORMATION OR SERVICES THE ORGANIZATION, WEBSITE, OR PRODUCT MAY PROVIDE OR
RECOMMENDATIONS IT MAY MAKE. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS
NOT ENGAGED IN RENDERING PROFESSIONAL SERVICES. THE ADVICE AND STRATEGIES CONTAINED HEREIN
MAY NOT BE SUITABLE FOR YOUR SITUATION. YOU SHOULD CONSULT WITH A SPECIALIST WHERE APPROPRIATE.
FURTHER, READERS SHOULD BE AWARE THAT WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR
DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ. NEITHER THE PUBLISHER
NOR AUTHORS SHALL BE LIABLE FOR ANY LOSS OF PROFIT OR ANY OTHER COMMERCIAL DAMAGES, INCLUDING
BUT NOT LIMITED TO SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR OTHER DAMAGES.

For general information on our other products and services, please contact our Customer Care Department within
the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002. For technical support, please visit
https://hub.wiley.com/community/support/dummies.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with
standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to
media such as a CD or DVD that is not included in the version you purchased, you may download this material at
http://booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2023930259

ISBN: 978-1-394-15916-1 (pbk); ISBN: 978-1-394-15917-8 (ebk); ISBN: 978-1-394-15918-5 (ebk)

http://www.wiley.com
http://www.wiley.com/go/permissions
https://hub.wiley.com/community/support/dummies
http://booksupport.wiley.com
http://www.wiley.com
http://Dummies.com

Contents at a Glance
Introduction. . 1

Part 1: Getting Started with GitHub.com. . 5
CHAPTER 1:	 Understanding the Git in GitHub. . 7
CHAPTER 2:	 Setting Up Your Collaborative Coding Environment. 25

Part 2: Starting Your First Solo Project. . 35
CHAPTER 3:	 Introducing GitHub Repositories. . 37
CHAPTER 4:	 Setting Up a GitHub Website Repo . . 57
CHAPTER 5:	 Creating a Website with GitHub Pages. . 73

Part 3: Contributing to Your First Project . . 91
CHAPTER 6:	 Forking GitHub Repositories. . 93
CHAPTER 7:	 Writing and Committing Code . . 109
CHAPTER 8:	 Working with Pull Requests. . 129

Part 4: Managing and Contributing to Large Projects. 149
CHAPTER 9:	 Exploring and Contributing to OSS . . 151
CHAPTER 10:	Starting Your Own OSS . . 165
CHAPTER 11:	Inner-Source Your Code on GitHub. . 185

Part 5: Making GitHub Work for You. . 203
CHAPTER 12:	Collaborating Outside of GitHub. . 205
CHAPTER 13:	GitHub Workflow Integrations. . 219
CHAPTER 14:	Personalizing GitHub. . 233

Part 6: The GitHub Ecosystem. . 247
CHAPTER 15:	Exploring the GitHub Marketplace. . 249
CHAPTER 16:	GitHub and You. . 259
CHAPTER 17:	Attending Events. . 267

Part 7: The Part of Tens. . 277
CHAPTER 18:	Ten Ways to Level Up on GitHub. . 279
CHAPTER 19:	Ten Ways to Improve Your Development Workflow 291
CHAPTER 20:	Ten Tips for Being an Effective Community Member. 299

Index. . 307

Table of Contents vii

Table of Contents
INTRODUCTION . . 1

About This Book. . 1
Foolish Assumptions. . 2
Icons Used in This Book. . 2
Beyond the Book. . 3
Where to Go from Here . . 3

PART 1: GETTING STARTED WITH GITHUB.COM. 5

CHAPTER 1:	 Understanding the Git in GitHub. . 7
Introducing GitHub. . 7
Understanding Version Control. . 8
Git Version Control . . 8

Try simple Git on the terminal. . 9
Git branching by collaborator. . 14
Git branching by feature. . 15
Git branching for experimentation. . 16

Git’s Place on GitHub. .16
Signing Up for GitHub.com . . 17
Personalizing Your GitHub.com Account. . 18

Account. . 18
Appearance . . 19
Accessibility . . 19
Notifications. . 19
Billing and plans. . 19
Emails . . 20
Passwords and authentication . . 20
SSH and GPG keys. . 20
Organizations. . 21
Moderation. . 21
Repositories. . 21
Packages. . 22
GitHub Copilot. . 22
Pages. . 22
Saved replies . . 22
Code security and analysis. . 22
Applications . . 22
Scheduled reminders. . 23
Security log. . 23
Sponsorship log. . 23
Developer settings. . 23

Discovering Helpful Resources . . 24

viii GitHub For Dummies

CHAPTER 2:	 Setting Up Your Collaborative
Coding Environment. . 25
Exploring GitHub.com. . 25
Understanding Your Profile. . 29
Getting to Know GitHub Desktop. . 30
Setting Up GitHub Desktop . . 31
Introducing Visual Studio Code. . 33

PART 2: STARTING YOUR FIRST SOLO PROJECT 35

CHAPTER 3:	 Introducing GitHub Repositories . . 37
Setting Up a Repository . . 37
Exploring Your Repository. . 41

Top information. . 41
Tabs. . 41
Code tab. . 43

Modifying README.md. . 44
Merging a Pull Request. . 48
Using Issues and Project Boards. . 51

Creating a project board and an issue. . 52
Closing an issue. . 54

CHAPTER 4:	 Setting Up a GitHub Website Repo 57
Introducing GitHub Pages . . 58
Turning a Project Repo into a Website. . 58
Setting Up a Personal Website Repo . . 61
Creating Issues for Your Website . . 64
Setting Up Your Local Environment . . 66

Cloning a repo in GitHub Desktop . . 66
Touring GitHub Desktop. . 67
Opening your repo in Visual Studio Code . . 69
Touring VS Code . . 69

Finding Resources for GitHub Pages . . 70

CHAPTER 5:	 Creating a Website with GitHub Pages 73
Jumping into an Existing GitHub Project . . 73

Accessing the GitHub.com repo . . 74
Verifying your permissions for the repo . . 75
Orienting yourself with the project. . 76

Preparing Your Contribution. . 79
Creating a branch for your contribution . . 79
Confirming your branch is published. . 82

Building Your Personal Website . . 87

Table of Contents ix

Modifying the title and tagline. . 87
Adding sections to your website. . 87
Creating a blog. . 88
Linking project repos . . 89

PART 3: CONTRIBUTING TO YOUR FIRST PROJECT 91

CHAPTER 6:	 Forking GitHub Repositories. . 93
Introducing Forking. . 93
Cloning, Forking, and Duplicating. . 94
Cloning a Repository. . 95
Forking a Repository. . 96

Fetching changes from upstream. . 98
Contributing changes to upstream. . 99
Getting unstuck when cloning without forking. 102

CHAPTER 7:	 Writing and Committing Code. . 109
Creating a Repository. . 109
Writing Code. . 110
Creating a Commit . . 112

Staging changes. . 113
Committing a file. . 114
Committing multiple files. . 114

Writing a Good Commit Message. . 116
Committing Code with GitHub Desktop. . 118

Tracking a repository in Desktop . . 118
Publishing a repository in Desktop. . 119
Committing in Desktop. . 121

Using GitHub Conventions in Commit Messages. 124
Emojis . . 124
Issue references. . 125
Giving credit to coauthors . . 125

Committing Code from Your Editor . . 127

CHAPTER 8:	 Working with Pull Requests . . 129
Understanding a Pull Request. . 129
Pushing Code to GitHub. . 130
Opening a Pull Request . . 131

Describing the pull request . . 134
Adding reviewers. . 134
Specifying assignees. . 135
Specifying labels . . 135
Specifying projects and milestones . . 136

x GitHub For Dummies

Writing a Great Pull Request. . 136
Knowing your audience . . 136
Making the purpose clear. .136
Keeping it focused. . 137
Explaining the why . . 137
A picture is worth a thousand words. . 138
Including a call to action. . 139

Reviewing a Pull Request. . 140
Reviewing the Conversation tab. . 140
Reviewing the changed files. . 141
Commenting on code. . 142
Suggesting changes. . 144
Finishing the review . . 145

Reading More about Pull Requests. . 147

PART 4: MANAGING AND CONTRIBUTING
TO LARGE PROJECTS. . 149

CHAPTER 9:	 Exploring and Contributing to OSS. 151
Exploring GitHub. . 152

Exploring topics. . 152
Trending repositories. . 154
Exploring collections. . 155
Exploring events . . 155
Exploring GitHub Sponsors . . 156
Getting by with help from your friends . . 156

Finding Places to Contribute. . 157
Surveying a Project for Contribution . . 159

Reading the contributing guide. . 159
Reading the contributing code guide. . 159
Reading the code of conduct. . 160

Setting Contributor Expectations . . 161
They won’t fix every issue. . 161
They won’t merge every pull request. . 161
They don’t owe you anything. . 162

Keeping Tabs on a Project. . 162

CHAPTER 10:	Starting Your Own OSS . . 165
Creating an Open Source Repository. . 165

Adding a license. . 166
Adding contributor guidelines. . 168
Adding a code of conduct. . 168

Making a Repository Public . . 169
Enforcing a Code of Conduct. . 170

Table of Contents xi

Responding with kindness. . 170
Leveraging the ban hammer. . 171
Blocking users . . 172

Writing a README.md File. . 173
Writing Good Documentation. . 174
Managing Issues . . 175

Labeling issues. . 175
Triaging issues. . 176
Issue templates. . 177
Saved replies . . 179

Ending Your Project. . 181
Archiving a project. . 181
Transferring ownership . . 182

CHAPTER 11:	Inner-Source Your Code on GitHub. 185
Why Code in Private? . . 185
Using GitHub Organizations . . 186

Creating a GitHub organization. . 186
Inviting members to your GitHub organization 187
Viewing repositories for your organization. 188
Managing members of your organization. 189
Creating teams within your organization. . 191
Setting organization settings. . 191

Making the Most of Your Teams. . 193
Creating parent/child teams . . 193
Discussing teams. . 194
Assigning code owners. . 195

Best Practices for Inner-Sourcing. . 197
Repository insights . . 197
Milestones for larger projects. . 200

PART 5: MAKING GITHUB WORK FOR YOU. 203

CHAPTER 12:	Collaborating Outside of GitHub. . 205
Chatting It Up. . 206

Installing the GitHub app for Slack. . 206
Subscribing to a repository in a Slack channel. 208
Trying out the GitHub Slack integration. . 209

Getting Trello and GitHub Integrated. . 211
Installing the GitHub power-up. . 211
Using the GitHub power-up. . 213

Managing Notifications with Octobox . . 216

xii GitHub For Dummies

CHAPTER 13:	GitHub Workflow Integrations. . 219
Using GitHub for Visual Studio Code . . 219

Interacting with pull requests in VS Code 220
Following the GitHub for VS Code pull requests extension 222

Using GitHub for Visual Studio . . 223
Viewing, creating, and reviewing pull requests
in Visual Studio. .223
Following the GitHub for Visual Studio extension 226

Using GitHub for XCode. . 226
Using GitHub for IntelliJ . . 228

CHAPTER 14:	Personalizing GitHub. . 233
Using Browser Extensions. . 233

Refining GitHub. . 234
Taking a GitHub selfie. . 235

GitHub Apps and Probot . . 236
Introducing Probot . . 237
Hosting the app. . 237
Introducing Glitch . . 238
Creating a Probot app. . 238
Pushing the Probot app to GitHub. . 241
Hosting your Probot app on Glitch. . 242

Taking Action with GitHub Actions. . 243

PART 6: THE GITHUB ECOSYSTEM. . 247

CHAPTER 15:	Exploring the GitHub Marketplace. 249
Introducing the GitHub Marketplace. . 249

Billing made easy. . 250
The Marketplace vetting process . . 250

Listing Your App on the Marketplace. . 252
Considering Common Apps to Install. . 254

Continuous integration. . 255
Code quality. . 255
Localization. . 256
Monitoring . . 256
Dependency management. . 256
Testing. . 257
Learning . . 257

CHAPTER 16:	GitHub and You. . 259
Understanding Your GitHub Profile. . 259

Profile picture. . 260
Status message . . 261

Table of Contents xiii

Personal info and bio . . 261
Pinned repositories. . 262
Contribution graph. . 263
Contribution activity. . 265

Starring Repositories. .265
Following Users. . 266

CHAPTER 17:	Attending Events . . 267
Exploring Types of Events . . 268

Meet-ups and user groups. . 268
Regional conferences. . 268
Hackathons. . 269
Major conferences. . 270

Knowing What to Expect at Events. . 270
Keynotes. . 271
Conference session tracks. . 271
Hallway tracks . . 272
After-hour conference events. . 272
A respectful professional environment. . 272

Becoming Familiar with GitHub Events . . 273
GitHub Universe . . 273
GitHub Satellite . . 273
GitHub Constellation. . 273
Git Merge . . 274

Speaking at Events . . 274
Everyone has a story to tell . . 274
Benefits of being a speaker. . 274

Finding Funding for Events . . 275

PART 7: THE PART OF TENS. . 277

CHAPTER 18:	Ten Ways to Level Up on GitHub. . 279
Trial and Error . . 279
GitHub Help Docs . . 280
GitHub Skills. . 281
GitHub In-Person Training. . 283
Project-Specific Documentation . . 284
External Community Places. . 285
Online Coding Tutorials . . 286
Online Courses and Tutorials . . 286
Blogs, YouTube, Twitter, TikTok, and Other Social Media. 287
Community Forum . . 288

xiv GitHub For Dummies

CHAPTER 19:	Ten Ways to Improve Your Development
Workflow. . 291
Drafting Pull Requests . . 291
Git Aliases. . 292
Run Tests Automatically. . 293
Take Breaks . . 294
Prototype User Interfaces . . 295
Scaffold Apps with Yeoman. . 295
Chrome Web Developer Tools. . 296
StackOverflow . . 297
Code Analysis Tools. . 297
Project Boards. . 298

CHAPTER 20:	Ten Tips for Being an Effective Community
Member . . 299
Be Respectful and Kind. . 299
Report Bad Behavior. . 300
Write Good Bug Reports. . 300
Be Responsive . . 302
Submit Pull Requests to Correct Documentation. 302
Document Your Own Code . . 303
Give Credit Where It’s Due. . 303
Help Get the Word Out. . 304
Be Proactive and Mentor Others. . 304
Contribute Outside of GitHub. . 305

INDEX. . 307

Introduction 1

Introduction

Welcome to the world of collaborative coding! Whether you’re just
starting your coding journey, building fairly complex programs, or
building with a team of people, this book guides you in using one of the

most used tools for collaborative code-writing: GitHub.com. With more than
83 million users and over 130 million repositories (projects) hosted, GitHub.com is
the No. 1 place to build and collaborate on code.

About This Book
Though you spend many hours sitting at your computer, alone, debugging and
writing code, the ideal coding team includes more than just you. Hundreds of
developers spent more than four years building World of Warcraft before its first
release in 2004. Although occasionally you can build a big hit like Wordle alone in
a couple of days, the norm for software development is that you will work with
other coders, designers, testers, user experience experts, product managers, and
sometimes hardware engineers to bring something to the hands of users.

When you’re first starting out on complex coding projects, understanding effec-
tive ways to collaborate can be daunting. This book introduces you to the world of
open source development (the epitome of collaboration), as well as effective ways
to work with one other person — or even yourself over the course of many years!
(I don’t know about you, but Sarah from three years ago knows stuff that Sarah
from today can’t remember, and Sarah from today has more experience than
Sarah from three years ago.)

GitHub For Dummies is written as a reference guide. Each part introduces you to a
different aspect of collaborative coding. So if you’re experienced in using GitHub,
but you’re new to the open source community, you can jump to Part 5 and skip
some of the GitHub basics.

As you explore each part of this book, keep the following points in mind:

»» Words that are being defined appear in italic.

»» Code and URLs (web addresses) are shown in monofont.

2 GitHub For Dummies

»» Command sequences using onscreen menus use the command arrow.
For example, when working in Scratch, you can open a new project as
follows: From the menu bar, choose File ➪   New.

»» The figures you see in this book use Mac and Chrome. I provide some tips
when what you see on a Windows PC may be different, but you should see
the same things, regardless of which Internet browser you use.

Foolish Assumptions
In this book, I make some assumptions that very well may be foolish, about you,
your coding experience, and your goals.

»» You’re interested in and have had some experience with coding. You don’t
have to be an expert coder, but you have made a Hello World application
(or the equivalent) in at least one programming language.

»» You have patience and determination and are resourceful. When you’re
presented with a challenge, you can find a solution. This book guides you
through GitHub.com as it exists at the time of writing it, but new features and
workflows are being created, and part of your collaborative coding journey is
to discover how to use those new features as they become available.

»» You have experience with a keyboard and mouse on either Mac or Windows
PC and have access to one of those machines.

»» You’re capable of using an Internet browser, such as Safari, Chrome, or
Firefox, and you can type a URL to access a website, such as GitHub.com.

»» You know how to install applications on your computer. Although I guide
you through anything that is unique to the setup, you should know how to
download and install an application without step-by-step guidance.

Icons Used in This Book
Throughout the margin of this book are small images, known as icons. These icons
mark important tidbits of information:

Introduction 3

The Tip icon identifies places where I offer additional tips for making this journey
more interesting or clear. Tips can start you on a rabbit hole down another work-
flow, not covered in this book, or cover some neat shortcuts that you may not have
known about.

The Remember icon bookmarks important ideas to help you work more effectively
throughout this book.

The Warning icon helps protect you from common errors and may even give you
tips to undo your mistakes.

Beyond the Book
In addition to what you’re reading right now, this product also comes with a free
access-anywhere Cheat Sheet that covers common commands and GitHub actions.
To get this Cheat Sheet, simply go to www.dummies.com and search for GitHub For
Dummies Cheat Sheet.

GitHub also offers Skills, which are free, guided tutorials that can be installed and
found at https://skills.github.com/.

Where to Go from Here
GitHub is a tool used by millions of developers. The workflows that you discover in
this book are just the beginning. As you become a more experienced coder, begin
to collaborate on more elaborate projects, or join different companies and teams,
you may encounter new workflows that use these tools in different ways. You
should feel empowered to explore! Visit https://help.github.com or https://
guides.github.com for guidance and don’t forget to follow the blog at https://
blog.github.com/ to stay up to date with all the new features!

http://www.dummies.com
https://skills.github.com/
https://help.github.com/
https://guides.github.com/
https://guides.github.com/
https://blog.github.com/
https://blog.github.com/

1Getting Started
with GitHub.com

IN THIS PART . . .

Discover how to use Git on your local computer to
track changes in your project.

Sign up for a free GitHub.com account.

Explore GitHub.com resources and features.

Install GitHub Desktop to manage the link between
your local and remote projects.

Install the Visual Studio Code editor as a lightweight
option for coding.

Prepare for creating your own projects and
contributing to others.

CHAPTER 1 Understanding the Git in GitHub 7

Chapter 1
Understanding
the Git in GitHub

Whether you’re an experienced coder or a newbie starting out, learning
how to work with others on code is critical to succeeding in the soft-
ware industry. Millions of people around the world work together to

build software, and GitHub is one of the largest tools to support a collaborative
workflow. This chapter introduces you to the core tools you need to write code
with other people.

Introducing GitHub
GitHub creates an environment that allows you to store your code on a remote
server, gives you the ability to share your code with other people, and makes it
easy for more than one person to add, modify, or delete code to the same file and
project, while keeping one source of truth for that file (phew!). So what does that
all actually mean? One of my favorite ways of explaining GitHub.com to folks who
are new to the tool is to compare it to Google Docs — a place online where you
can write code with other people and not have to email different versions back
and forth.

What makes GitHub work behind the scenes is Git.

IN THIS CHAPTER

»» Getting familiar with GitHub

»» Discovering Git

»» Signing up with GitHub.com

»» Exploring helpful resources

8 PART 1 Getting Started with GitHub.com

Understanding Version Control
Version control systems (also known as source control management, or SCM) are
software that keep track of each version of each file in a coding project, a time-
stamp for when that version was created, and the author of those changes.

Writing code is an iterative process. For example, when you’re building a website,
you first may want to get some basic structure up before adding all your content.
The best thing to do is to create a version of your website each time you have
something that works. That way, as you experiment with the next piece, if some-
thing breaks, you can just go back to your previous version and start over.

SCMs enable coders to make mistakes without worrying that they’ll have to com-
pletely start over. Think of it like being able to click Undo, but instead of undoing
each key press, you can undo an entire piece of the project if you decide you don’t
like it or it doesn’t work.

The basic workflow of coding with version control system support is as follows:

1.	 Create a project, typically in a folder on your computer.

2.	 Tell your version control system of choice to track the changes of your
project/folder.

3.	 Each time your project is in a working state, or you’re going to walk
away from it, tell your version control system of choice to save it as
the next version.

4.	 If you ever need to go back to a previous version, you can ask your
version control system to revert to whichever previous version you need.

You can use a version control system if you’re working alone on your own
computer, but it gets even more interesting when you begin working with other
people. (For more on working with other people, see the section “Git Version
Control,” coming up next in this chapter).

For more information about version control, visit https://git-scm.com/book/
en/v2/Getting-Started-About-Version-Control.

Git Version Control
GitHub, as the name would suggest, is built on Git. Git is a type of version control
system, and it’s free and open source, which means that anyone can use it, build
on top of it, and even add to it.

https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control
https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control

CHAPTER 1 Understanding the Git in GitHub 9

GitHub products make using Git easy, but if you’re curious, you can also use Git to
track your solo projects on your computer. You can find a brief introduction to
local Git commands for solo projects in the next section.

Try simple Git on the terminal
With the help of Git for Windows, using the terminal on Mac, Windows, or Linux
computers is exactly the same. A terminal is an application that enables you to
interact with your computer in a text-based way — in other words, instead of
double-clicking and dragging, you type commands to navigate your computer.

If you’re on Mac or Linux, a terminal is already installed on your computer. If
you’re using a Windows computer, you have a couple options:

»» You can use the Windows Terminal and install the Windows Subsystem for
Linux (WSL) and you can follow the same instructions as a Mac or
Linux terminal.

»» You can install Git for Windows. Just go to https://gitforwindows.org
and click Download to gain access to Git Bash, an emulator that allows you
to interact with Git just like you would on a Linux or Mac terminal. You also
get Git GUI, which gives you a user interface for almost all Git commands you
might type into Git Bash, and shell integration so that you can quickly open
Git Bash or Git GUI from any folder.

Many developers on Windows prefer to use PowerShell as their terminal environ-
ment. You can use Git within PowerShell, but setting that up properly is outside
the scope of this book. However, you can find a handy guide to setting this up at
https://haacked.com/archive/2011/12/13/better-git-with-powershell.
aspx.

The Windows Subsytem for Linux (WSL) lets developers run a GNU/Linux envi-
ronment directly from Windows. You can learn more about it on the Microsoft
docs page https://learn.microsoft.com/windows/wsl/.

First, find the Terminal application:

»» On Mac, click the magnifying glass at the top right of your desktop, type
Terminal, select the terminal from the list of applications, and press Enter
or click it.

»» On Linux, press Ctrl-Alt-T at the same time, and the terminal window opens.

https://gitforwindows.org
https://haacked.com/archive/2011/12/13/better-git-with-powershell.aspx
https://haacked.com/archive/2011/12/13/better-git-with-powershell.aspx
https://learn.microsoft.com/windows/wsl/

10 PART 1 Getting Started with GitHub.com

»» On Windows, click the Windows menu in the bottom right of your desktop,
search Windows Terminal or Git Bash, select the application from the list of
search results, and press Enter or click it.

When the application opens, type git --version in the terminal. If you have Git
installed, you should see a version number, as shown in the following code (the $
is a common indicator that the terminal is ready for input and is often already on
the line; when you see that throughout this book, you should not type it). Other-
wise, you can follow the instructions on https://git-scm.com/book/en/v2/
Getting-Started-Installing-Git.

When using the command line, you have to be very careful about exactly what
you’re typing. In the following code, the first instruction is for you to type
git --version. You should note that a space appears between git and the rest of
the instruction but no other spaces. You should also note the two dashes before
the word version. They can be easy to miss, so be careful!

For Mac or WSL/Linux, you should see something like this:

$ git --version
git version 2.37.2
$

For Windows, you should see something like this:

$ git --version
git version 2.37.2.windows.2
$

Next, using the terminal, go to your desktop and create a new folder called git-
practice. To do this, you should type the following commands:

$ cd ~/Desktop
$ mkdir git-practice
$ cd git-practice
$

For Mac or WSL/Linux if you type pwd, you should see that you are now in the
folder git-practice, which is on your desktop. It might look something like this:

$ pwd
$ /Users/drguthals/Desktop/git-practice
$

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

CHAPTER 1 Understanding the Git in GitHub 11

If you’re using the command prompt in Windows instead of Git Bash or WSL, you
should use cd to print the current directory instead of pwd.

In 2020, GitHub heard the developer community and began a massive renaming
project to stop using “master” as the default name for the primary branch of a
respository and to use “main” instead. This change has proliferated to Git as well.
When you initialize your local folder to use Git, you might be prompted to update
your default primary branch name to “main.” Whether you are prompted or not,
you can update all Git repositories to use “main” as the primary branch name
with this command:

$ git config --global init.defaultBranch main

I recommend that you run this config command before you initialize your Git
repository so that your primary branch is called main.

Now, you can tell Git to track this folder using the init command.

$ git init
Initialized empty Git repository in /Users/drguthals/Desktop/

git-practice
$

Then make sure that you have a clean folder. You can check with the status
command:

$ git status
On branch main
No commits yet
nothing to commit (create/copy files and use "git add" to track)
$

Then, you can create a file to have Git start tracking and confirm the file is in the
folder:

$ echo "practicing git" > file.txt
$ ls
file.txt
$

On Mac, you can open this folder in a Finder window with the open <path>
command:

$ open .
$

12 PART 1 Getting Started with GitHub.com

On Linux, you can open this folder with the nautilus <path> command:

$ nautilus .
$

On Windows, you can open this folder with the explorer <path> command:

$ explorer .
$

This puts . as the <path> for each command. The period (.) tells the terminal to
open the current folder. You could also use a different path with these commands
to open other folders.

After the folder is open, double-click the file called file.txt, and the file opens
with TextEdit on Mac, gedit on Linux, and Notepad on Windows. You can see that
the words “practicing git” are actually there.

Close the file. Now, you can tell Git that you want to save this as a particular
version. Back in the terminal:

$ git add file.txt

$ git commit -m "Adding my file to this version"

[main (root-commit) 8d28a21] Adding my file to this version

1 file changed, 1 insertion(+)
Create mode 100644 file.txt

$ git status

On branch main

nothing to commit, working tree clean

$

You can make a change to your file in the text file. Open the file again, change the
text to say “Hi! I’m practicing git today!” and then choose File ➪    Save and close
the text application.

When you go back to the Terminal to check the status of your project again, you
should see that Git has noticed that the file has changed:

$ git status

On branch main

Changed not staged for commit:

(use "git add <file..." to update what will be committed)

{use "git checkout -- <file>..." to discard changed in working directory)

CHAPTER 1 Understanding the Git in GitHub 13

modified: file.txt

no changed added to commit (use "git add" and/or "git commit -a")

$

Commit this version of your file again and notice that Git recognizes that every-
thing has been saved to a new version:

$ git add file.txt

$ git commit -m "I changed the text"

[main 6d80a2a] I changed the text

1 file changed, 1 insertion(+), 1 deletion(-)
$ git status

On branch main

nothing to commit, working tree clean

$

If your terminal starts to get too cluttered, you can type clear to clear some space
and make it more visually appealing. Don’t worry; you can always scroll up and
see everything you typed earlier!

Say that you actually want to see the original change, when you added “practicing
git”. First, get the log of all the commits you have made:

$ git log

commit 6d80a2ab7382c4d308de74c25669f16d1407372d (HEAD -> main)

Author: drguthals <sarah@guthals.com>
Date: Sun Aug 7 08:54:11 2022 -0800

I changed the text

commit 8d28a21f71ec5657a2f5421e03faad307d9eec6f

Author: drguthals <sarah@guthals.com>
Date: Sun Aug 7 08:48:01 2022 -0800

Adding my file to this version

$

Then ask Git to show you the first commit you made (the bottom most one). Make
sure that you’re typing your unique commit hash. In this book, the hash starts
with 8d28a2. Make sure you type the entire hash that appears in your Git log.

Instead of typing the entire hash (and possibly having a typo), you can highlight
the hash with your mouse, right-click and choose Copy, and then after git
checkout, you can right-click and choose Paste. Using the keyboard shortcuts
Ctrl+C or ⌘  -C doesn’t work.

$ git show 8d28a21f71ec5657a2f5421e03faad307d9eec6f

commit 8d28a21f71ec6567a2f5421e03faad307d9eec6f

mailto:sarah@guthals.com
mailto:sarah@guthals.com

14 PART 1 Getting Started with GitHub.com

Author: drguthals <sarah@guthals.com>
Date: Sun Aug 7 08:48:01 2022 -0800

Adding my file to this version

diff --git a/file.txt b/file.txt

new file mode 100644

index 0000000..849a4c7

--- /dev/null

+++ b/file.txt

@@ -0,0 +1 @@
+practicing git
$

You can see that practicing git was added to the file in that original commit.

For more information on how to use Git on the command line, check out the
following resources:

»» The GitHub Git Cheat Sheet at https://education.github.com/git-cheat-
sheet-education.pdf

»» The Visual Git Cheat Sheet at http://ndpsoftware.com/git-cheatsheet.
html

»» The Git Docs page at https://git-scm.com/doc

Another resource for learning and understanding Git is https://learngit
branching.js.org. This is a good self-guided set of exercises.

Git branching by collaborator
Git is different from other version control systems because it has fast branching,
shown in Figure 1-1. Branching is a Git function that essentially copies code (each
branch is a copy of the code), allows you to make changes on a specific copy, and
then merges your changes back into the primary (main) branch.

When you’re writing code, you will add files and commit changes to your main
branch. Figure 1-1 outlines a specific workflow where two people are collaborating
on the same file. Person 1 creates a new branch called MyBranch and makes some
changes to the file. Person 2 also creates a new branch called YourBranch and
makes some changes to the same file. You can see this change in box #1.

You can see the difference (called diff) between the main branch and MyBranch
in Figure 1-1 in box #2.

mailto:sarah@guthals.com
https://education.github.com/git-cheat-sheet-education.pdf
https://education.github.com/git-cheat-sheet-education.pdf
http://ndpsoftware.com/git-cheatsheet.html
http://ndpsoftware.com/git-cheatsheet.html
https://git-scm.com/doc
https://learngitbranching.js.org
https://learngitbranching.js.org

CHAPTER 1 Understanding the Git in GitHub 15

Then, Person 1 merges their changes with the main branch, as you can see in
box #3.

Person 2 has made their own changes, but before merging, they will make sure
they have the most updated version of the main branch, which now has the
changes from Person 1. The diff can be seen in box #4. Notice what text is in
both files.

Finally, Person 2 acknowledges that their changes will overwrite Person 1’s
changes and merges their changes with main branch, making the final version
have the changes from Person 2. Box #5 shows this final merge, with the main
branch having the final changes.

Figure 1-1 shows just one workflow that can exist when more than one person is
working on code and is meant to describe branching. You can get a more in-depth
overview on Git and branching at https://git-scm.com.

Git branching by feature
Another common way to use branching is to have each feature that you develop
be on a different branch, regardless of the collaborator building the feature.

You can extend the idea of branching by feature to also have one branch that is
your production branch. This branch is what your users will see. Then you can
have a development branch, which is one that you can merge features into with-
out changing what your users see.

This type of branching allows you to build a lot of different features, merge them
each into the development branch, make sure they all work the way you want, and

FIGURE 1-1:
Example

workflow for Git
branches.

https://git-scm.com/

16 PART 1 Getting Started with GitHub.com

then merge the development branch into the production branch when you know
it’s ready for your users.

Git branching for experimentation
You can also create branches to test to see whether something works and then
completely throw the branch away.

This type of branching can be useful if you want to try a completely new layout of
a website, for example. You can create three different branches, each with a dif-
ferent layout. After you decide which layout you like best, you can simply delete
the other two branches and merge the branch with your favorite layout into main.

Git’s Place on GitHub
GitHub is a host for Git repositories. At some point, it’s helpful to place your Git
repository in a shared location as both a backup and a place where others can col-
laborate with you on your code. As a Git host, GitHub provides all the features of
Git in addition to a few extra useful services.

On GitHub.com, projects, or repositories, are stored on remote GitHub servers. If
you save all your code on GitHub.com and your computer crashes, you can still
access it.

Here is a list of some core Git features that GitHub supports:

»» Repository: Each repository contains all the files and folders related to your
project and gives you control of permissions and collaborators’ interaction
with your code.

»» Clone: When you want to make changes to your code, you will often want to
create a copy, or clone, of the project on your local computer. The cloned
project is still tightly connected with the version on GitHub.com; it’s just your
local copy.

»» Fork: Forking a project is when you create your own copy of the entire project.
When you fork a project, GitHub.com creates a new repository with your
copy of all the files. You can still suggest changes back to the original copy,
but you can also take your version and go in a new direction.

CHAPTER 1 Understanding the Git in GitHub 17

»» Branches: GitHub.com supports branching and even provides a useful
tool — pull requests — to compare the diff between branches and merge
branches.

»» Commits: GitHub.com tracks all the commits that you push to its servers and
gives you an easy interface for browsing the code at different branches and
different commits.

Signing Up for GitHub.com
GitHub.com offers unlimited free public and private repositories for individuals.
Free private accounts are limited to three collaborators. You can sign up for a paid
account to have unlimited collaborators and some Pro features.

Public means that anyone can see your code, clone your code, and therefore use
your code. GitHub is a huge supporter of open source software (OSS) and therefore
encourages public, shared code. Open source software is more than just public,
shared code (see Part 5). Because every line of code can be traced to an author, you
still get credit for what you’ve written, but the goal is to keep the code available
for anyone to use, extend, and explore.

The following steps guide you through signing up for a free, individual GitHub.
com account:

1.	 Go to GitHub.com and click Sign Up.

2.	 Complete the Sign Up form.

This form helps GitHub understand who is using the software and helps them
support workflows specific to their users. It also helps them suggest the best
plan for what you need.

3.	 Choose the plan you want.

For the purpose of this book, you can use the Free plan. You can always
upgrade to a paid plan later if you decide you want to have more than three
collaborators for your private repository and other Pro GitHub features.

You’re now at the home page, shown in Figure 1-2.

18 PART 1 Getting Started with GitHub.com

Personalizing Your GitHub.com Account
As you become a more experienced coder, you may want to reference your GitHub.
com profile on your resume and job applications. More and more companies care
more about your portfolio than a list of degrees or awards. For example, GitHub
doesn’t require you to provide information on your education as part of the hiring
process and instead asks for a link to your GitHub.com profile and/or portfolio.

To complete your GitHub.com profile:

1.	 Click the avatar icon in the top-right corner and choose Settings.

2.	 Fill out the form on the Public Profile Settings page.

3.	 Click Update Profile when you’re finished.

On the Personal Settings page, you can also adjust a number of different settings
to continue personalizing your account.

Account
In Account settings, you can change your username, export your repositories and
profile metadata, assign a successor to transfer your account to them in the event
of your death, or delete your account.

FIGURE 1-2:
The GitHub.com

home page when
you’re logged in.

CHAPTER 1 Understanding the Git in GitHub 19

Changing your username may cause unintended side effects, so it typically isn’t
recommended. Just make sure that after you change your username that anything
that you need to continue working still does. Follow links, test code, and run your
applications again.

Appearance
Developers often have strong preferences between “light mode” and “dark mode.”
On the Appearance settings page, you can specify between them, and even specify
secondary colors. If you want to make sure GitHub.com is synced with your sys-
tem preferences, you can even do that. Additionally, you can specify the skin tone
of the emojis you use, tab sizes, and whether you want to use monospace for
editors within GitHub.com that support markdown (for example, Issue and Pull
Request descriptions).

Accessibility
GitHub now supports a growing set of accessibility features including keyboard
shortcuts and motion settings. At the time of publication of this version, motion
settings are focused on whether gifs are autoplayed.

Notifications
Notifications can get really overwhelming. Though you can choose your level of
granularity for receiving notifications per repository, this page displays your
default preferences for notifications.

I recommend not automatically watching repositories because any kind of activity
that happens on any repository that you interact with will start to show up in your
inbox, which turns out to not be helpful as you begin collaborating more.

Click the Things You’re Watching link at the top of the notifications settings page
to check to see what you’re watching and therefore what notifications you may get
from them.

Billing and plans
You can upgrade your plan at any time to include Pro features, such as unlimited
collaborators and advanced code review tools. You can make this upgrade happen
on the Billing settings page. In addition to upgrading your plan, you can also pur-
chase add-ons such as GitHub Co-pilot, Git LFS data, and other Marketplace Apps.

20 PART 1 Getting Started with GitHub.com

This page also contains any open source projects you’re sponsoring through
the GitHub Sponsors program. You can learn more about GitHub Sponsors at
https://github.com/sponsors.

Git LFS stands for Git Large File Storage. Some software development requires
large files, such as game scenes in video game development, to be stored. Without
Git LFS, you can upload files as large as 100MB. Anything larger requires Git LFS,
which supports files up to 2GB.

Emails
GitHub allows you to link multiple email addresses to your account. Notice that
you can add email addresses, keep your email address private, and even block Git
commands that may expose your email address.

Passwords and authentication
On this settings page you can update your password, add or update your two-
factor authentication, and view a list of every computer address, city, and country
where you’re logged in or connecting to GitHub.com. Two-factor authentication
means that when you type the correct password, you’re asked to further verify
that it is you who is attempting to log in through an app or SMS.

This page also includes a list of mobile devices where you have the GitHub app
installed and you’re logged in; this is a great way to quickly authenticate on
GitHub.com on a new device.

SSH and GPG keys
At some point, you may want to create an SSH or GPG key to encrypt your com-
munication with GitHub and ensure a secure environment. You can do this in your
settings.

SSH keys enable you to connect to GitHub from your local machine without hav-
ing to put in your username and password each time. GPG keys mark tags and
commits that you make as verified, meaning that other people know that it was
actually you who pushed the changes.

Another way to tell Git to remember your credentials is to use a credential
helper. GitHub tends to recommend this over using SSH, especially for Windows
users. For more information on how to set up this feature, visit https://help.
github.com/articles/caching-your-github-password-in-git.

https://github.com/sponsors
https://help.github.com/articles/caching-your-github-password-in-git
https://help.github.com/articles/caching-your-github-password-in-git

CHAPTER 1 Understanding the Git in GitHub 21

Organizations
Organizations enable you to put GitHub users and repositories under similar
settings. For example, you can grant admin rights to all repositories in an organi-
zation to the entire organization, instead of having to individually add each person
to each repository. Although Organizations is out of the scope of this book, you
can read about them on the GitHub Help page at https://help.github.com/
articles/about-organizations.

Moderation
Moderation settings are split into three categories: users, repository interactions,
and code reviews. These settings are specifically added to keep you safe from
harassment and abuse. You learn more about building safe communities on GitHub
from the Community section on the GitHub Docs, https://docs.github.com/
communities.

Blocked users
In the Blocked users settings, you can block users from all your repositories.

Interaction limits
You can limit interactions on all of your repositories at once to only existing
GitHub users, existing contributors on each repository, or existing collaborators
on each repository. You can use this setting to force a “cooling off” period and is
particularly useful if you’re involoved in heated discussions a GitHub user, and
not just a specific repository. Interaction limit settings within your user settings
override any existing interactive limits you may have on individual, public
repositories.

Code review limits
You can also limit who can approve or request changes on pull requests across
your repositories. Like with interaction limits, any code review limits set within
your user settings will override existing code review limits you may have on indi-
vidual, public repositories.

Repositories
The Repositories section lists all the repositories that you have created or been
invited to as a collaborator. You also can leave repositories from this page. This
section is where you can set your default name for primary branches on new
repositories that you create. The default for GitHub is “main.”

https://help.github.com/articles/about-organizations/
https://help.github.com/articles/about-organizations/
https://docs.github.com/communities
https://docs.github.com/communities

22 PART 1 Getting Started with GitHub.com

Packages
The Packages section contains any packages that you created and deleted. You
have up to 30 days to restore a deleted package, and then it’s deleted
permanently.

GitHub Copilot
GitHub Copilot is a feature that was released in 2022 that uses artificial intelli-
gence to suggest code (even entire functions) in real-time from within your
editor. At the time of writing this version of the book, the cost for GitHub Copilot
is $10 a month or $100 a year. You can learn more on the feature page at https://
github.com/features/copilot/.

Pages
Chapter 5 walks you through creating a web page through the GitHub Pages fea-
ture. The Pages settings page is where all the verified domains that you own and
have connected to GitHub are listed. Each of these can be used within your
individual repositories.

Saved replies
Saved replies can be extremely useful for popular OSS. For example, if you’re
building an extension to an application, a lot of folks may report problems with
the application, not with your extension. You can write a saved reply to point folks
to where they can provide feedback on the application when they find an error.

Code security and analysis
One of the easiest ways to introduce security vulnerabilities into your applications
is through libraries and packages that you depend on. In the Code security and
analysis settings, you’ll find the option to turn on dependency graphs, dependabot
alerts, and dependabot security updates for each new repository.

Applications
You can connect three kinds of applications with your GitHub.com account:

»» Installed GitHub apps: GitHub applications that you are using with your
account. One example is GitHub Learning Labs.

https://github.com/features/copilot/
https://github.com/features/copilot/

CHAPTER 1 Understanding the Git in GitHub 23

»» Authorized GitHub apps: Applications that you have authorized to access
your account. One example is Slack.

»» Authorized OAuth apps: Applications that you have authenticated with using
GitHub credentials. One example is GitHub Desktop.

Scheduled reminders
You can set up reminders to help prioritize your most important tasks first.
Reminders will be sent to you via a Slack message, but require you to link your
Slack workspace with your GitHub account.

Security log
This section in your settings lists recent events related to your GitHub account,
such as sign-ins, with information such as the IP address of the computer where
the action was performed, when the event happened, and a physical location of
the computer. This is helpful for monitoring access to your account to ensure your
security.

Sponsorship log
The Sponsorship log contains recent activity on your own sponsorships. You are
notified here if you receive new sponsorships, someone changes their sponsor-
ship, or someone cancels their sponsorship.

Developer settings
The last section on the settings page is Developer settings, which you use only if
you’re building an application that accesses the GitHub API, which means the
application needs to access GitHub data in some way.

Three settings appear in this section:

»» OAuth apps: Applications you have registered to use the GitHub API.

»» GitHub apps: Applications that integrate with and extend GitHub.

»» Personal access tokens: Similar to SSH keys, tokens allow you to access the
GitHub API without requiring authentication.

24 PART 1 Getting Started with GitHub.com

Discovering Helpful Resources
The GitHub.com help page (https://help.github.com) has an extensive list of
documents for every feature on GitHub.com. From the top-right avatar menu, you
can click the Help link. From there, clicking Contact a Human takes you to the
GitHub contact page (https://support.github.com/), where you can find the
following resources:

»» A FAQ

»» Links to the help documentation

»» Links to developer documentation for help on the GitHub API (https://
docs.github.com/)

»» The GitHub Skills for guided GitHub exercises (https://skills.github.com/)

»» The GitHub Community Forum, where you can ask questions and get answers
from folks who work at GitHub and other community members (https://
github.community)

»» A slew of other resources about your experiences on GitHub.com

https://help.github.com/
https://support.github.com/
https://docs.github.com/
https://docs.github.com/
https://skills.github.com/
https://github.community/
https://github.community/

CHAPTER 2 Setting Up Your Collaborative Coding Environment 25

Chapter 2
Setting Up Your
Collaborative
Coding Environment

GitHub has a lot of features to offer new and returning coders. A good way
to get acquainted with all those features is to explore the GitHub.com
website. This chapter not only gives you that overview, but also guides you

in setting up your local machine so that you can start building.

Exploring GitHub.com
The home page of GitHub.com, shown in Figure 2-1, is a great starting point for
many tasks, including starting your own project, learning about a topic, or explor-
ing existing repositories.

The top menu bar, shown in Figure 2-2, is always available to you and is a direct
link to the most important functions you need to perform.

IN THIS CHAPTER

»» Touring GitHub.com

»» Installing GitHub Desktop

»» Installing Visual Studio Code

26 PART 1 Getting Started with GitHub.com

»» GitHub home page: If you click the GitHub logo in the top left of the browser,
you return to the home page. Check out the sidebar “Mona Lisa Octocat” for
more information on the logo.

»» Search bar: The search bar on the top menu is pretty snazzy. Not only can
you search all of GitHub, but as you start to use the site, it offers suggestions
based on your most recent activity. These suggestions make it fast and easy
to find the repository you were working on yesterday.

»» Pull requests: The link to pull requests takes you to a list of all pull requests
that you created, were assigned to complete, were mentioned in, or were
asked to review. A pull request is a proposed change to the code of a reposi-
tory. When first starting, you normally don’t have anything in this section, but
as you start interacting with collaborative repositories, you get an overview
of any tasks you may want to attend to. For more on pull requests, see
Chapter 3.

If you click the Pull Requests link, you might notice a ProTip, shown
in Figure 2-3. The search bar for pull requests gives you several ways to
specify a search to get exactly what you’re looking for. In fact, an entire
page (https://help.github.com/articles/searching-issues-and-
pull-requests) is dedicated to effective searching. You can find ProTips
throughout GitHub.com, so be sure to look out for them.

FIGURE 2-1:
The home page
of GitHub.com.

FIGURE 2-2:
The top menu bar

of GitHub.com.

https://help.github.com/articles/searching-issues-and-pull-requests
https://help.github.com/articles/searching-issues-and-pull-requests

CHAPTER 2 Setting Up Your Collaborative Coding Environment 27

»» Issues: The list of issues is almost the same as the list of pull requests. The
main difference between an issue and a pull request is that an issue is a
report of a bug or a feature request. An issue doesn’t contain a proposed
code change like a pull request does and therefore doesn’t require a reviewer.

»» Marketplace: The marketplace on GitHub is a great place to find applications
and tools that can help your collaborative coding workflow. For example,
I have used AppVeyor, a continuous integration application, on projects.
When you connect AppVeyor to one of your repositories, it continuously
runs tests and deploys apps to make sure that every bit of code you’re
adding won’t break what you’ve already built.

»» Explore: The Explore link takes you to a list of things you may be interested in
(see Figure 2-4). You may find events and opportunities that GitHub hosts or
supports. For example, GitHub released “The State of the Octoverse,” which
presents a lot of interesting analytics about code on GitHub — for example,
94 million developers on GitHub made 413 million contributions in 2022!

»» Notifications: The bell icon leads you to a list of your notifications. See
Chapter 1 for how to change your notification settings.

»» Quick pick: The add-sign icon provides you with a list of quick actions you can
take at any time: create a new repository (coding project), import a repository
from another SCM, create a gist (a quick way to share code, notes, and
snippets), or create a new organization.

»» Account menu: The account menu appears when you click your avatar. Here,
you can get to your profile, repositories, anything you’ve starred, gists you’ve
created, the help documents, settings, and sign out.

FIGURE 2-3:
ProTip found

on the pull
request page.

28 PART 1 Getting Started with GitHub.com

FIGURE 2-4:
Curated list of

repositories on
GitHub.com.

MONA LISA OCTOCAT
The GitHub logo is a 2D rendition of an octocat — a cat with five octopus-like arms.
The logo was found on iStock, a website where royalty-free digital images can be
purchased. Simon Oxley, the original designer, is also known as the designer for the
Twitter bird logo. Cameron McEfee then led the effort around creating an entire
Octodex of Octocats, which you can see at https://octodex.github.com.

One of the most popular things Mona has released is the “Build Your Own Octocat” app,
which you can find at https://myoctocat.com/build-your-octocat. I created one
and found my inner super woman!

To discover the full history of the Octocat, visit http://cameronmcefee.com/work/
the-octocat.

https://octodex.github.com/
https://myoctocat.com/build-your-octocat/
http://cameronmcefee.com/work/the-octocat
http://cameronmcefee.com/work/the-octocat

CHAPTER 2 Setting Up Your Collaborative Coding Environment 29

Understanding Your Profile
Your profile is a public view of, essentially, your portfolio. To view your profile,
click your avatar and then choose Your Profile from the menu that appears. You
can see my profile in Figure 2-5.

The top menu bar of your profile offers quick links to your repositories, things
you’ve starred, your followers, and anyone who you follow. Below that are reposi-
tories that you’re often visiting and your contribution graph. The contribution
graph tracks how much code you’ve written per day. You can choose to include
contributions to private repositories and an activity overview, which is a new
feature.

The amount and frequency at which you write code is not the bar by which soft-
ware development is measured. It’s true that the more you practice, the better
you will be, but the practice you do must be deliberate. Making random code
changes every single day without challenging yourself, or giving yourself time to
think, design, and plan the code you want to write, is much worse than missing a
white square.

FIGURE 2-5:
My profile.

30 PART 1 Getting Started with GitHub.com

Getting to Know GitHub Desktop
GitHub Desktop is a free, open source application that makes it easier for Mac and
Windows users alike to manage repositories and GitHub connections on their local
computer.

The fact that Desktop is open source means that you can follow the development
of new features, connect with the developers right on the actual repository where
the application is being built, and even choose to add features you’re interested
in having.

You can find the repository at https://github.com/desktop/desktop.

To install GitHub Desktop on your computer:

1.	 Go to https://desktop.github.com and click Download for the platform
you’re using.

This book is written with examples using Google Chrome and a Mac. GitHub
Desktop works on a Windows PC as well because it’s built using Electron, which
allows it to work on both operating systems. Double-check that you download
the right version for your operating system and browser.

2.	 After the download finishes, click the file that was downloaded.

The file automatically unzips.

On Mac, the GitHub Desktop application appears in your Downloads folder,
next to the zip file. On Windows, the application immediately opens after you
unzip the file. If you run into any issues, you can visit the GitHub Desktop Docs
pages at https://docs.github.com/desktop.

3.	 On Mac, drag the purple GitHub Desktop application into your
Applications folder.

4.	 On Mac, go to your Applications folder and double-click the GitHub
Desktop icon.

The application opens, shown in Figure 2-6.

You may get an alert that you ’re trying to open an application that was down-
loaded from the Internet. Click Open if this alert appears.

https://github.com/desktop/desktop
https://desktop.github.com/
https://docs.github.com/desktop

CHAPTER 2 Setting Up Your Collaborative Coding Environment 31

Setting Up GitHub Desktop
Before you can use GitHub Desktop effectively, you have to do a few things to
connect it to your GitHub.com account. If you do not yet have a GitHub.com
account, go to Chapter 1. If you already have a GitHub.com account and have
already downloaded GitHub Desktop, you can set up GitHub Desktop with the
following steps:

1.	 Open the GitHub Desktop application.

2.	 Sign in to your GitHub or GitHub Enterprise account.

GitHub Enterprise accounts are typically used for companies that choose
to host GitHub separate from the rest of GitHub.com.

3.	 Specify your name and email that will be associated with your
git commits.

If you decide to skip signing into GitHub now, you can always sign in later
following these steps:

1.	 Choose GitHub Desktop ➪   Preferences.

2.	 On the Accounts tab, click Sign In on the GitHub.com row.

The Sign In dialog box, shown in Figure 2-7, appears.

FIGURE 2-6:
The GitHub

Desktop
application

default view.

32 PART 1 Getting Started with GitHub.com

3.	 Type your username and password and click the Sign In button or click Sign
In using your browser.

When you click Sign In, all the dialog boxes close.

4.	 Repeat Step 1 to reopen the preferences.

Your account with your avatar, name, and GitHub username appears under
the GitHub.com row, confirming that you have successfully logged in.

5.	 Click the Git tab.

The information has been autofilled for you and matches what you specified
when you first set up GitHub Desktop.

6.	 On the Appearance tab, choose Light or Dark.

Screenshots in this book are in Light mode.

7.	 Set other preferences, such as the Editor and usage data, on the
Advanced tab.

This book uses Visual Studio Code as the example editor, but you can select
whichever editor you prefer.

I recommend agreeing to send usage data, which is checked by default. By
leaving it checked, you help the GitHub Desktop development team under-
stand how all users use the application and therefore make it better.

If you do not have a GitHub repository on your computer yet, you can stop the
setup here. If you do have a repository, see Chapter 4.

While a team of folks at GitHub predominately does the development of GitHub
Desktop, a part of their role is to support community members who want to con-
tribute to the project. Don’t hesitate to reach out to the team on its repository at
https://github.com/desktop/desktop.

FIGURE 2-7:
The Sign In dialog

box for the
GitHub Desktop

application.

https://github.com/desktop/desktop

CHAPTER 2 Setting Up Your Collaborative Coding Environment 33

Introducing Visual Studio Code
Visual Studio Code, also referred to as VS Code or even sometimes just Code, is a
free, open source editor. Just like GitHub Desktop, VS Code is built on Electron,
making it work on Mac or Windows PC. VS Code is extensible, meaning you can add
your own features to it.

You can take a look at what the VS Code team at Microsoft is working on by visit-
ing the repository: https://github.com/microsoft/vscode.

VS Code is a lightweight editor that shouldn’t take long to install. To install it, go
to https://code.visualstudio.com/ and click Download.

Just like with GitHub Desktop in the previous section, when VS Code finishes
downloading, click to unzip the file. On Mac, the VS Code application appears in
your Downloads folder. Drag the VS Code application into your applications folder.
On Windows or Mac, double-click the application to open it. When you do, you
should see what is shown in Figure 2-8.

FIGURE 2-8:
The VS Code

application
default view.

https://github.com/microsoft/vscode
https://code.visualstudio.com/

34 PART 1 Getting Started with GitHub.com

You may get an alert that you’re trying to open an application that was down-
loaded from the Internet. Click Open if this alert appears.

Here are a few things that you should know about VS Code:

»» Updates: Each time you start VS Code, make sure you check the bottom- left
corner to see whether any updates need to happen so that you keep your
software as current as possible.

»» Accounts: At the bottom, left, above the settings cog icon, you find an
Accounts icon where you can sign into your Microsoft or GitHub acocunts and
sync your settings across computers all using a signed-in version of VS Code.

You may notice that some menu items throughout VS Code have keyboard
bindings. Keyboard bindings are combinations of keys you can press on your
keyboard to make something happen in a specific application. You probably
already know some of these. For example, when you’re browsing the Internet,
you can press ⌘  -T on a Mac or Ctrl+T on Windows to open a new tab. Finding
ways to become more efficient in your coding, such as by using keyboard
bindings, can be an effective strategy for you as you become more expert in
your coding journey.

»» Preferences: You can specify a lot of preferences for VS Code. I don’t explain
each one in this book, but I encourage you to browse them and really set up
VS Code to make it exactly right for you. You can find the preferences by
choosing Atom ➪   Preferences.

»» Command Palette: Open the command palette in VS Code by pressing
⌘  -Shift-P on a Mac and Ctrl+Shift+P on Windows. The command palette
allows you to search for actions you can perform in VS Code, and suggests
actions you likely want to take based on what you’re currently doing in
your editor.

»» Extensions: You can install more than 10,000 VS Code extensions to make
VS Code most effective for you. You can find them under extensions or at
https://marketplace.visualstudio.com/VSCode. Going through each
of these extensions is beyond the scope of this book, but I encourage you to
explore some and search them if you’re ever feeling limited by your VS Code
experience.

If you’re looking for resources outside of this book, check out the VS Code docu-
mentation at https://code.visualstudio.com/docs. If the docs don’t help you
resolve your issue, you can reach out to the developers who work on VS Code by
visiting the open source repository at https://github.com/microsoft/vscode.

https://marketplace.visualstudio.com/VSCode
https://code.visualstudio.com/docs
https://github.com/microsoft/vscode

2Starting Your
First Solo Project

IN THIS PART . . .

Create a GitHub repository to store code.

Explore GitHub issues, pull requests, and project
boards to manage your code.

Sync your remote GitHub project with your local
coding environment.

Create a GitHub repository specifically for creating
a personal website.

Add a blog to a GitHub pages website.

CHAPTER 3 Introducing GitHub Repositories 37

Chapter 3
Introducing GitHub
Repositories

A

lmost everything on GitHub.com revolves around a repository.

In this chapter, you find out how you can set up a repository, interact with it, and
create project boards and issues. The repository that you set up in this chapter is
a special kind of repository. The functionality of the repository is the same, except
that this repository is named the same as your GitHub username, which makes it
automatically appear on your GitHub public profile, such as mine at https://
github.com/drguthals. Adding information to your public profile acts as a cover
page for your software profile, gives you control over how people understand who
you are and what you do, and helps enable trust when you are contributing to open
source projects.

Setting Up a Repository
A GitHub repository (or repo) is a folder with all the files needed for your project,
including the files that track all the versions of your project so that you can revert
any mistakes you make. A repository on GitHub also tracks who can collaborate
and how.

IN THIS CHAPTER

»» Touring a repository

»» Creating a Hello World repository

»» Exploring repository issues, pull
requests, and project boards

https://github.com/drguthals
https://github.com/drguthals

38 PART 2 Starting Your First Solo Project

To get a better understanding of what a repository is and how it’s structured, you
need to create your first GitHub repo:

1.	 Go to the home page of GitHub.com; if you’re already on GitHub, click the
Octocat to get to the home page.

A list of your repositories appears on the bottom-left side of the screen.

2.	 Click the green New Repository button.

The Create a New Repository page, shown in Figure 3-1, opens.

3.	 Type the name of your repository in the Repository Name text box.

Make sure you name this repository the same as your GitHub username,
including casing and any other characters. In my case, I named my repository
dra-sarah.

4.	 Select the Public radio button.

This repository needs to be public so that it can be viewed on your public
GitHub profile page.

FIGURE 3-1:
The page to

create a new
repository.

CHAPTER 3 Introducing GitHub Repositories 39

5.	 Under the Initialize This Repository With section, click the Add a README
file check box.

You do not need to add a .gitignore file. This is used to make sure you
do not add local files (such as cache files) to your repository, but because this
repository is only a README file, you do not need a .gitignore.

6.	 Choose a license from the Add a License drop-down list.

If you’re interested in finding out more information about licenses, see the
nearby “Software licenses” sidebar.

7.	 Click Create Repository.

The home page of your repository appears. It should look similar to the
one I created, which is shown in Figure 3-2. Notice that a Markdown file —
README.md — is already in the repository. Markdown is a lightweight
markup language used to style the words that you write with a plain text
syntax. You can make words bold, turn them into headers, and even create
a table for data.

Now you can head back to your profile page, for example the one I just
created would be at https://github.com/dra-sarah, and see your
README displayed at the top.

In Chapters 4 and 5, you can create a website for yourself. This website can link
back to your repository.

FIGURE 3-2:
The home page

of my profile
repository.

https://github.com/dra-sarah

40 PART 2 Starting Your First Solo Project

SOFTWARE LICENSES
Software licenses are a really important part to collaborative coding. Whether you’re
putting your code up on GitHub.com to share with the world, or contributing to
someone else’s code, you should know what is allowed and what isn’t. When you first
create a new repo, you’re given the option to attach a license to it (refer to Figure 3-1).
If you click on the question mark, you will be taken to https://choosealicense.
com/, which explains the top three most common software license types, and shown
in the following figure.

The two main license types used for collaborative, public software are the MIT License
and the GNU General Public License v3.0 License. The MIT License allows people to do
almost anything with the code they find in your project. This includes being able to take
a copy, make changes (or not), and distribute it as a closed source version. That means
that they can distribute the software as an application without giving their users access
to the code. The GNU General Public License v3.0 License also gives folks access to copy,
modify, and contribute to your project, but if they want to distribute their version, it
must be public and open. The repositories in this book use the MIT License, but you
can choose what you want to do with your projects.

https://choosealicense.com/
https://choosealicense.com/

CHAPTER 3 Introducing GitHub Repositories 41

Exploring Your Repository
A repository has a lot going on, even when it’s as simple as the one one that
I created in the preceding section (refer to Figure 3-2). The following sections
walk you through an overview of everything on the repository.

Top information
At the top of the repository is the username of the author and title of the reposi-
tory. When you fork a repository, you see the original author underneath for a
quick link. To fork a repository is to make a copy of it, where the changes you make
to your copy can be suggested to the original author. See Chapter 6 for a deep dive
into forking a repository.

To the right of your username are three buttons:

»» Watch: You can choose what kind of notifications you want to receive based
on the type of activity happening on this repo.

»» Fork: If you’re not the author of the repository, then you have the option to
fork it. Chapter 6 goes into more detail on forks.

»» Star: Starring can help you quickly navigate to certain repositories, as well as
give GitHub insight into things you’re interested in so that recommendations
are more accurate for you. To access your starred repositories, just click your
avatar on the top right of GitHub.com and choose Your Stars.

When choosing to watch a repository, I highly recommend choosing either Ignore
or Participating and @mentions for the majority of repositories so that you only
get notifications when you’re specifically mentioned or actively participating in a
discussion on an issue or a pull request. Otherwise, your inbox fills with emails
about every single action taken on the repository, which can get out of hand very
quickly. If you notice this happening, go to https://github.com/watching and
unwatch all or some of the repositories you’re watching with a quick click.

Tabs
Nine tabs appear across the top of your repo. Each tab provides different features
for the repo:

»» Code: The Code tab is where you can find all your code and browse folders
and files. You can click a file to view its contents or click the pencil icon to

https://github.com/watching

42 PART 2 Starting Your First Solo Project

modify the file, right in your Internet browser. (See the upcoming “Code tab”
section for more details.)

»» Issues: Issues are a really neat feature for repos. Issues can help you track
things you want to still make, problems you’re having, or suggestions for other
people. You discover how to create issues in the upcoming section “Using
Issues and Project Boards.”

»» Pull requests: Pull requests, also referred to as PRs, are similar to issues in
that they have a title and a description, but they also have code changes that
you’re requesting to be pulled into the main branch. The safest way to
contribute code is to create a new branch, make your code changes on that
branch, and then request for that branch to be merged with the main branch.
A PR gives you an interface for merging the two branches, showing you the
diff (list of changes or differences) between the files you modified and the
ones that are on the main branch and giving you a place to have a conversa-
tion with collaborators on whether the code should be merged or changes
should be made first. For more information on branching, see Chapter 1.

»» Actions: GitHub Actions is an integrated way to introduce automation with
your repository. Actions are often used to build, test, and deploy your code
directly from your repository. You can create a number or automations;
learn more at https://github.com/features/actions.

»» Projects: You may already be familiar with project boards like Trello or
Kanboard. GitHub has project boards linked directly with your repo. The
best part is that the cards on a GitHub project board can be directly related
to issues or PRs and can automatically move when something happens. For
more on project boards, see the section “Using Issues and Project Boards,”
later in this chapter.

»» Wiki: Wikis are a great place to store documentation, project status, and
roadmaps for your project. It’s a great go-to place for collaborators to see
what is going on and where they can jump in to help!

»» Security: The Security tab gives you an overview of how others should report
security vulnerabilities on your repository, a place for you to list security
vulnerabilities you’re aware of, dependabot alerts, and automated code
scanning alerts.

»» Insights: The Insights tab, shown in Figure 3-3, gives you an overview of all
collaborators and actions happening on the repo. It’s really neat to see this
tab on popular open source projects. For example, TensorFlow has had
249 contributors in the last month!

»» Settings: The Settings tab is visible only if you have the right permissions on
the repository. In this tab, you can decide who has access to what and how
collaborators should collaborate. You can also integrate apps that tell you
how much of your code is covered with tests.

https://github.com/features/actions

CHAPTER 3 Introducing GitHub Repositories 43

Code tab
The Code tab has a lot of additional important metadata about your repo that will
come in useful in future development:

»» Description and topics: At the top-right of the Code tab is a description and a
place where you can put in topics to make your repository more discoverable.
Adding topics is particularly important if you want to attract other coders to
help you build your software.

»» Metadata: On the right under the description of the Code tab you find
information and links to licenses, number of stars, people watching, and forks.
At the top of the Code tab you find additional information to the number of
branches, and number of tags on the repository.

»» Action buttons: On the top of the Code tab is a drop-down menu where you
can change which branch you’re looking at or browse the files for a particular
branch. The New Pull Request button appears if there is a branch that is out
of sync with the main branch and allows you to quickly create a pull request.
The best way to create a pull request is to switch to another branch, make
some changes, and then click New Pull Request. You might find other
information just above your list of files, for example a suggestion to protect
your main branch if you haven’t already. On the right side are three buttons
related to files: Go to File, Add File, and Code. Clicking Go to File takes you
to a new page where you can search for a specific file within the repository.
Clicking Add File gives you two options: Create New Fle, Upload Files. Finally,
you can click the green Code drop-down list to clone or download the code
to your local machine (see Chapter 4). Here you also have a tabbed option
to open the code in a Codespaces instance.

»» Code: At the bottom of the Code tab is a list of all the code in this repo. If a
README.md file appears in this list, then the file shows up below the list. For
any file, you can click the filename to go to a page where you can see the file
and edit it if you want.

FIGURE 3-3:
The Insights tab.

44 PART 2 Starting Your First Solo Project

Modifying README.md
I highly recommend that every project, whether public or private, have a README.md
file at the top level. This file is often the starting point for anyone who wants to
contribute to the code.

The README.md file often has the following sections:

»» Project title and description

»» Prerequisites for getting the project running on your local machine

»» Instructions on installing the project (and any dependencies)

»» Instructions on running tests to make sure that you haven’t broken anything

»» Instructions on deploying the project

»» An overview of dependencies

»» A link to the guide on how to contribute to the project, including a code
of conduct

»» The main authors or maintainers of the project

»» A link to the license

»» Any additional acknowledgements

PurpleBooth on GitHub has created a great template for a README.md file at
https://gist.github.com/PurpleBooth/109311bb0361f32d87a2.

GitHub promotes a culture of sharing and open software development. In the
sharing, it’s important that each person acknowledge where they drew inspiration
and what pieces went into helping them create what they have created. Software
development rarely happens alone and, at this point, is always built on someone
else’s work. Though you don’t have to specifically acknowledge the work that
Grace Hopper, a well-known computer scientist who created the first compiler
and English programming language, did to promote high-level programming
languages so that you’re not all writing in assembly anymore, you should always
recognize that it’s a large, timeless community working toward building, creat-
ing, and pushing the boundaries of what you think is possible today.

For simpler projects, a README.md file can also be the front page to your project.

For this special type of repository, the README.md file is what’s displayed on your
GitHub profile page, so it’s a little different than a typical repository. Good news
is, modifying the README.md file is the same for this and all repositories.

https://gist.github.com/PurpleBooth/109311bb0361f32d87a2

CHAPTER 3 Introducing GitHub Repositories 45

Before you jump into creating your README.md for your public profile, check out
some examples of what other people do:

»» My profile has links to other content channels and an overview of my career:
https://github.com/drguthals.

»» Phil Haack has a fun gif, links to social media, and his GitHub stats: https://
github.com/haacked.

»» Brian Douglas, a developer advocate at GitHub, has re-created the MySpace
“Top 8,” including Tom: https://github.com/bdougie.

»» April Speight, a developer advocate at Microsoft, has amazing cover art, links
to her publications, and ways to connect with her: https://github.com/
aprilspeight.

»» Jordan Harband, an avid open source maintainer, has a list of projects he
maintains, standards he contributes to, and GitHub stats: https://github.
com/ljharb.

Even if you don’t know exactly how you want to have your profile README.md yet,
you can follow these steps to modify it with a bit about how you got started:

1.	 Start by creating a new branch to work off of by clicking the branch
drop-down menu shown in Figure 3-4 and typing the name of a new
branch.

I named my new branch initial-profile-readme.

FIGURE 3-4:
The branch

drop-down menu
on a GitHub

repository.

https://github.com/drguthals
https://github.com/haacked
https://github.com/haacked
https://github.com/bdougie
https://github.com/aprilspeight
https://github.com/aprilspeight
https://github.com/ljharb
https://github.com/ljharb

46 PART 2 Starting Your First Solo Project

2.	 Click Create branch:yournewbranch-readme from ’main’.

The branch for your repository is now listed in the drop-down menu and
selected. You can move between this branch and the main branch through
this menu.

This step allows you to see your project as it looks in that branch. The changes
you make are added to that branch as you make them. This is particularly
handy when you’re intending on making changes to more than one file.

3.	 At the top right of your README file, click the little pencil so that you can
change what the README says.

If it exists, a README.md file always appears below the list of files.

4.	 Using Markdown, write a little about yourself, including your career
passions and some hobbies you enjoy.

Remember, you can be creative here. In fact, GitHub suggests checking out the
Emoji Cheat Sheet: https://www.webfx.com/tools/emoji-cheat-sheet/
because you can put emojies in by using their code :tada:.

When you begin to edit the README there is a Markdown comment that isn’t
displayed in the published version of the README, but gives you an idea of
where to start. Figure 3-5 shows this Markdown comment in the GitHub editor.
Notice that if you click the Preview Changes tab above the text, the text within
the comment brackets (<!-- -->) is not displayed.

5.	 When you’re satisfied with your README, scroll to the bottom of the
file editor, add a title to the commit (grouping of modified, created,
and deleted files), and commit the changes to the same branch you
just created.

You see your README.md file in its final state.

FIGURE 3-5:
The README

Markdown file
in the GitHub

editor with
the suggested

changes
comment.

https://www.webfx.com/tools/emoji-cheat-sheet/

CHAPTER 3 Introducing GitHub Repositories 47

6.	 Click the repository link at the top where it says YOUR_USERNAME/
README.md to return to your code tab.

Notice the suggestion to compare the changes on this branch with the main
branch, and to create a pull request, shown in Figure 3-6.

This time is perfect to open a pull request, a request to save the changes you
have made to the branch you’re targeting. You can always make additional
changes before you merge the pull request, but creating the pull request now
helps you track the changes easier.

7.	 Click the Compare and Pull Request button.

In the screen shown in Figure 3-7, you can create a pull request. While
this initial pull request is fairly simple, it’s always a good idea to include a
description. I’ll add the following as mine:

Initial README for my [profile](https://github.com/dra-sarah) that links

to my GitHub For Dummies book, my actual GitHub profile, and includes

some facts about me.

8.	 Under the pull request description box, click Create Pull Request.

Once the pull request is created, if you make edits on the same branch (in this
example, the initial-profile-readme branch), those edits are automatically
included in this pull request.

You have now made changes to your project. The only problem is these changes
are still on their own branch, and not on the main branch. To find out how to
merge your changes into the main branch, see the next section.

FIGURE 3-6:
GitHub’s

suggestion to
open a new pull
request when a

new branch is
created.

https://github.com/dra-sarah

48 PART 2 Starting Your First Solo Project

Merging a Pull Request
After you have all your changes in a pull request (see the preceding section), you
can merge those changes into the main branch by following these steps:

1.	 On the home page, click the Pull Requests tab, and then select the pull
request you want to merge, in this case #1, to get to your pull request
details.

Figure 3-8 shows the Pull Request List page while Figure 3-9 shows the open
pull request.

FIGURE 3-8:
My pull

request page.

FIGURE 3-7:
A pull request

edit view.

CHAPTER 3 Introducing GitHub Repositories 49

2.	 Click the Files Changed tab to see all the changes made to this repo, as
shown in Figure 3-10.

Files and lines that appear in red will be deleted, while the files and lines in
green will be added.

3.	 (Optional) To change the way you see the diff, click the Diff View drop-
down menu and then click Split, and then click Apply and Reload.

If you split the view, your screen changes (see Figure 3-11).

4.	 In the Conversation tab, scroll to the bottom of the pull request and click
the big green Merge Pull Request button, as shown in Figure 3-12.

FIGURE 3-9:
The Pull

Request Details
page for a single

pull request.

FIGURE 3-10:
The diff shown

on the Files
Changed tab.

50 PART 2 Starting Your First Solo Project

The Confirm Merge section, shown in Figure 3-13, replaces the section with the
Merge button.

5.	 Click Confirm Merge.

You see a message that your pull request merge was successful, with an option
to delete the branch (see Figure 3-14).

6.	 Click Delete Branch.

Your pull request is merged, and the branch is deleted. Don’t worry, if you
need that branch back for some reason, you can restore it. It’s nice to keep
things tidy within the repository.

7.	 Click the Code tab to go to your code.

You see the main branch with your picture and the changed README.md file.

FIGURE 3-12:
The Open Pull
Request page

with the Merge
Pull Request

button at the
bottom.

FIGURE 3-11:
The diff in
split view.

CHAPTER 3 Introducing GitHub Repositories 51

Using Issues and Project Boards
Issues on a GitHub repo are a great way to track the things you need to fix, add, or
change. When you combine issues with project boards, you get insights into your
project that would otherwise be hard to track. In this section, you create issues
and project boards and change your README.md.

FIGURE 3-14:
The merge

confirmation for
a pull request.

FIGURE 3-13:
Confirm the

merge of the
pull request.

52 PART 2 Starting Your First Solo Project

Creating a project board and an issue
To get started on issues and project boards, go to your repo home page and then
follow these steps:

1.	 Click the Projects tab and then click Add a Project.

Project boards used to be restricted to individual repositories, but GitHub has
released an update to allow issues and pull requests from across repositories
be added to single projects. That’s why clicking Add a Project offers to create a
new project on your profile. From here, you can click the New Project button,
as shown in Figure 3-15.

2.	 From the preloaded Template options shown in Figure 3-16, select a
project template and click the Create button.

In this example, I chose Board as my project template.

A project board appears with three columns: Todo, In Progress, and Done.
You can learn more about GitHub projects at https://docs.github.com/
issues/planning-and-tracking-with-projects/learning-about-
projects/about-projects.

3.	 Click the + button at the bottom of the Todo column.

Here you can either type an issue number to add an existing issue from your
repository to the Todo column in this project, or you can create a draft issue by
typing a short sentence to describe a new task you want to keep track of in this
project. A draft issue can be converted to an actual issue tracked on your
repository after you create the draft issue card on the project. Create a new
draft as shown in Figure 3-17.

FIGURE 3-15:
The page to

create a new
project.

https://docs.github.com/issues/planning-and-tracking-with-projects/learning-about-projects/about-projects
https://docs.github.com/issues/planning-and-tracking-with-projects/learning-about-projects/about-projects
https://docs.github.com/issues/planning-and-tracking-with-projects/learning-about-projects/about-projects

CHAPTER 3 Introducing GitHub Repositories 53

4.	 Click into the draft card and choose Convert to Issue, as shown in
Figure 3-18.

Once you choose which repository you want to create the issue in, the draft
view refreshes and a preview of the issue replaces it, as shown in Figure 3-19.
You can click the Open button to see the issue in the repository’s Issues list.

FIGURE 3-16:
The project

template options
with the board

option selected.

FIGURE 3-17:
A drafted issue
being added to

the Todo board.

54 PART 2 Starting Your First Solo Project

Closing an issue
The best way to close an issue is to create a pull request with changes to address
what was written in the issue. Understanding the relationship between issues and
pull requests can help you on your own projects and open source projects.

To close out the issue, follow these steps:

1.	 From the Code tab on your repo, click the pencil icon for the README.md
file to edit the file.

2.	 Add an image at the top of the README.md file with your favorite animal.

To do this, drag an image into the editor. The image is uploaded to GitHub and
the following line of code is added to the README (though your exact user
content is different):

FIGURE 3-19:
The view

that shows the
issue in the

project board.

FIGURE 3-18:
The view that

shows the
drafted issue.

CHAPTER 3 Introducing GitHub Repositories 55

![axolotl](https://user-images.githubusercontent.com/110885554/186362310-
d5c6e677-5b67-49b2-bf77-e0f41e5b1949.png)

3.	Scroll to the bottom of the page and add a title to the commit.

4.	Choose Create a New Branch for this commit and start a pull request.

5.	Click Commit Changes.

6.	Add a description to the pull request.

Specifically, make sure that you write closes #2 on its own line. When you
type #, GitHub suggests any issue or pull request that you have in this repo
to autofill.

7.	Click Create Pull Request.

At the bottom right of your pull request is a Development section that
references the issue you reference in the pull request description.

8.	Click through to open this issue, and then click into the project board
that the issue is a part of to view the issue in the Todo column.

9.	Click the Back button on your browser twice to get back to the pull
request.

10.	If you’re happy with the changes, click the Conversation tab, click Merge
Pull Request button, click Confirm Merge button, and then click the
Delete Branch button.

You can revisit the section “Merging a Pull Request,” earlier in this chapter,
for more details on how to complete this step if you get stuck.

11.	Click the Issues tab to find the issue now marked as closed.

12.	Click the Closed tab on the Issue page and click the issue that was closed.
Navigate to the project board where this issue was in the Todo column
and notice it has automatically moved to the Done column.

https://user-images.githubusercontent.com/110885554/186362310-d5c6e677-5b67-49b2-bf77-e0f41e5b1949.png
https://user-images.githubusercontent.com/110885554/186362310-d5c6e677-5b67-49b2-bf77-e0f41e5b1949.png

CHAPTER 4 Setting Up a GitHub Website Repo 57

Chapter 4
Setting Up a GitHub
Website Repo

One technology that truly pushed the boundaries of society and software
development was the Internet. As the Internet became more embedded in
everyday life, it brought new meaning, career opportunities, and ways to

connect for millions of people. A more recent phenomenon enabled by the Internet
is a set of sites categorized as social media. Social media profiles provide a way for
people to express who they are, what their interests are, and how to connect with
them. But social media creates new challenges.

Personally, I have accounts on Twitter, Instagram, TikTok, Polywork, and
LinkedIn. I don’t feel comfortable sharing personal accomplishments (like having
a baby) on my LinkedIn, but also rarely share minor professional accomplish-
ments (like starting a new project) on my Instagram. For me, having a website
gives me a place to point people to all of me, not just the version of me that fits
the community of the particular platform I’m using. That way, if folks want to
learn more about the new project I’m working on, they will head to my website
where they may also stumble upon the fact that I have a podcast with Chloe
Condon about movies and shows from the ’90s. This interaction improves my
bonds and connections with people from all aspects of my life.

IN THIS CHAPTER

»» Getting acquainted with GitHub
Pages

»» Creating a project website

»» Preparing a website repo

»» Preparing your local computer

»» Discovering resources for building
your website on GitHub.com and
Codespaces

58 PART 2 Starting Your First Solo Project

Others may use a custom website to still focus on a particular part of who they are,
but they like having the control over what they share and how they do it. This
chapter, along with Chapter 5, guides you through turning any project repo that
you own into a website and creating your own website on GitHub.com. In a matter
of minutes, you can have a website up and running without having to pay for
additional services.

A repo, or repository, is a coding project contained in a single folder where modifi-
cations to files is tracked. While you can have a local repository that only exists on
your local computer, this book is typically referring to the hosted repository on
GitHub.com, unless otherwise stated.

Introducing GitHub Pages
GitHub Pages is a fast and easy way to make a website that is hosted on GitHub.
com. The code in your repo will be the code running the website. Even better is
that it’s much easier to style your websites with Jekyll, a free, open source site
generator that takes Markdown files and creates websites with support for themes.

You can discover more about Jekyll at https://jekyllrb.com or even check out
what it’s up to on its GitHub repo (https://github.com/jekyll/jekyll).

With GitHub Pages, you can create a website using Markdown or HTML/
JavaScript/CSS.

If you need help remembering what you can do with Markdown, visit the
Markdown GitHub Docs at https://guides.github.com/features/mastering-
markdown.

Turning a Project Repo into a Website
GitHub Pages is a great tool that is integrated into GitHub.com. GitHub Pages
looks for a README.md file on your main branch and use it as the landing page for
your website, meaning you don’t have to do much to get it up and running! Just
follow these steps:

1.	 Open a repository on GitHub.com.

For this example, I created a simple HelloWorld repo that has a basic README
and a very simple solution for a sum function written in Python. You can see this
repository at https://github.com/dra-sarah/HelloWorld.

https://jekyllrb.com
https://github.com/jekyll/jekyll
https://guides.github.com/features/mastering-markdown/
https://guides.github.com/features/mastering-markdown/
https://github.com/dra-sarah/HelloWorld

CHAPTER 4 Setting Up a GitHub Website Repo 59

2.	 On the home page for the repo, click the Settings tab on the top right to
open the Settings page.

3.	 Scroll down on the left menu and click the Pages option, shown in
Figure 4-1.

4.	 From the Source drop-down menu, change the source for GitHub Pages to
Deploy from a Branch. From the Branch drop-down menu, change the
branch to deploy from None to main and then click Save.

5.	 Choose a theme for your website.

Under the specified deployment branch you should see a link to choose a
theme, shown in Figure 4-1. The Jekyll theme docs page opens, where you can
browse supported themes at https://pages.github.com/themes/.

6.	 After you choose a theme for your website, go back to the Code tab on
your repository to add the config file.

Click the Add File drop-down menu and select Create New File, as shown in
Figure 4-2. Name the file _config.yml.

FIGURE 4-1:
The GitHub

Pages section
under repository

settings.

FIGURE 4-2:
The GitHub add a
new page option
in the repository.

https://pages.github.com/themes/

60 PART 2 Starting Your First Solo Project

7.	 Add the theme you chose to the config file, shown in Figure 4-3. Then
commit the changes to the main branch by clicking the Commit Changes
button at the bottom of the editor.

The config file should really only have one line of code; in this example, I have
chosen the theme time-machine:

remote_theme: pages-themes/modernist@v0.2.0
plugins:

- jekyll-remote-theme

8.	 On the Code tab, click the the Environments option on the left menu, as
shown in Figure 4-4.

9.	 Click the active GitHub Pages environment, and then click the View
Deployment button on the right-hand side.

Now you see a web page that says Hello World, just like is written in the
README file for your repository.

FIGURE 4-3:
The single line

of code you have
to add to a

single file to
update the title.

FIGURE 4-4:
The GitHub Pages

website theme
chooser.

CHAPTER 4 Setting Up a GitHub Website Repo 61

Setting Up a Personal Website Repo
To create a new repo that houses your own personal website, you need to set up
your repo:

1.	 Create a new repository and name it username.github.io, where
username is replaced with your actual GitHub username.

For example, the name of my repository is dra-sarah.github.io. If you’re
unsure how to create a new repository, see Chapter 3.

2.	 Make the repository public, initialize it with a README, choose a license,
if you want, and then click Create Repository.

If you’re unsure whether you want a license, see Chapter 3, which describes
the benefits of choosing a license.

The page refreshes to the home page of your new repository.

3.	 Create a new project that is the board style.

If you don’t know how to create a project, see Chapter 3 for guidance.

4.	 Once you have created the project, head back to the project page of your
repository, click the Add Project drop-down menu, and choose the project
you just created, as shown in Figure 4-5.

Now this project has a spot in the Quick Access section, shown in Figure 4-6.

5.	 At the top of your repo again, click the Settings tab and scroll down until
you see the GitHub Pages section.

FIGURE 4-5:
Adding a project

to a GitHub
repository for

quick access via
the Projects tab.

62 PART 2 Starting Your First Solo Project

Notice that it says your site is ready to be published at a certain URL (mine is
https://dra-sarah.github.io/). If you go to this URL, you see a simple
barebones web page with the contents of your README.md file. If you get a 404,
just wait a moment and refresh the page. It can take a few seconds for GitHub
Pages to build your site.

6.	 In the GitHub Pages section, click Choose a Theme and then click
Select Theme.

If you don’t know how to do this, review the previous section in this chapter,
“Turning a Project Repo into a Website.”

7.	 Edit and commit your README.md file.

Back on the Code tab of your repository, click the pencil icon in the top-right
of your README.md file and add some information about you. Commit those
changes to a new branch and open a pull request. The page refreshes with a
new pull request ready to be created. You can merge your pull request. Then
you can navigate back to your code, and you see the _config.yml file and the
changes to your page.

8.	 Create a pull request with a more descriptive title.

For instructions on creating a pull request, see Chapter 3.

Change the title of the pull request to describe everything you want to do for
this iteration of your website and add a description. For example, I added the
following list:

To create a basic website:

- [] Add a short personal bio
- [] Add links to my social media channels

FIGURE 4-6:
A GitHub pages

project linked to a
specific

repository.

https://dra-sarah.github.io/

CHAPTER 4 Setting Up a GitHub Website Repo 63

9.	Link this pull request to the project and update the status of this item.

To ensure your project board automatically tracks the progress of your
website, choose the project created in Step 3 on the right side of the pull
request from the Projects section. Then update the status of this item to “In
Progress,” shown in Figure 4-7.

10.	Update the pull request when appropriate.

The description of a pull request is not static. When you first create a pull
request, you may have a list of things you want to do before merging the code
into the main branch. You may also end up making changes throughout. Make
sure to always revisit the description and make sure it is accurate. For example,
if you’re following these steps exactly, you have already added some informa-
tion about yourself and maybe even links to your other social media channels,
so you can likely check off those two boxes.

11.	Verify the project board automation.

Go back to the project board by clicking the Projects tab at the top of your repo
and notice that a new card is in the In progress column. If you click into the
card, you’re redirected to the pull request.

12.	Switch to the pull request branch.

Go back to the Code tab of your repo and switch to the branch that is associ-
ated with your pull request. Mine is readme-init.

If you don’t know how to switch to a different branch on GitHub.com, see
Chapter 3.

13.	Create an index.md file.

On the top right of your code file list, click Create New File. Name the file
index.md and add a header that says “Hello World!”:

Hello World!

Commit that file to the same branch you’ve been working on, with a title and
commit message.

FIGURE 4-7:
A GitHub pull

request linked to
a specific project

with a status of
“In Progress.”

64 PART 2 Starting Your First Solo Project

14.	Update and merge the pull request.

Go back to the pull request and add a new item to your checklist “create an
index.md landing page,” and then check it off. Because everything that you
wanted to do for this pull request has been completed, the pull request can be
merged. Click Merge Pull Request, Confirm Merge, and then Delete Branch.

15.	Verify the project board automation.

The pull request shows in the conversation that it has been moved from the In
Progress column to the Done column. You can also go back to the project
board. Notice that the card has moved to the Done column, and both checklist
items have been completed.

16.	Verify the website was published.

Go back to your URL (mine is https://dra-sarah.github.io/). You have a
working website with the theme you chose.

If you don’t see the changes you’ve made to your website, like the Hello World
message or the theme that you chose, try refreshing your web page. You now have
a website that you can continue building and customizing as you do more and
have more to share with the world.

Creating Issues for Your Website
After you have a GitHub.com website repository (see preceding section), you can
think through the sections you want to have on your website. Creating issues for
everything you want to add or change about your website can help you plan and
remember all the little things you want to change.

Say that someone gives you a great suggestion. You don’t want to pull out your
computer and make the change right then and there, but you can quickly jump on
GitHub.com and create an issue to remind you to add it later. Creating an issue can
also be useful if you are working on your website, and you’ve found something
that is bothering you that you want to change. Instead of derailing what you’re
already working on with a new task, you can just make a quick issue and get to
it later.

To get started with this planning phase, go to the Issues tab on your repo and click
New Issue. Create an issue for all the things you want to add to your website.

https://dra-sarah.github.io/

CHAPTER 4 Setting Up a GitHub Website Repo 65

In this book, I created two issues to use in my example:

»» Change the title and tagline. The title and tagline of your website is currently
something auto-generated. You probably want to change it to your name and
some tagline that represents you. Create an issue, assigning yourself to it and
linking it to your project board:

Issue Title: Change the title and tagline

Issue Description: Make the title and tagline something
unique to me.

»» Add sections to the website. Without even having to leave an issue you
created, you can click New Issue and create another issue to add in sections to
your website, assign yourself to the issue, and link it to your project board. In
my example, I’ve chosen to add three sections:

Issue Title: Add a couple of section]s to the website
Issue Description: Add three sections to the website:
- [] About Me
- [] Contact Information

- [] Current Focus

Two issues now appear under the Issues tab of my website repo, as shown in
Figure 4-8. They also appear on my project board in the Todo column (see
Figure 4-9).

FIGURE 4-8:
The issue list for

the website
repository.

66 PART 2 Starting Your First Solo Project

Setting Up Your Local Environment
This section assumes you already set up GitHub Desktop and Visual Studio Code.
If you haven’t, Chapter 2 can help guide you through this process.

In this section, you get your website working so that you can modify files on your
local computer instead of on GitHub.com.

Modifying files on your local computer can be useful if you need to work on a
project when you won’t have Internet access or if you need to browse a lot of files
while editing files.

Cloning a repo in GitHub Desktop
The first step in modifying files on your local computer is to get your website repo
onto your computer:

1.	 Open GitHub Desktop and choose File ➪   Clone a Repository on the
menu bar.

You see a dialog box with three tabs: GitHub.com, Enterprise, and URL.

A nice alternative approach to cloning a repository when you have GitHub
Desktop is to click the Clone or Download button on the home page of every
repository. When you click the button, you see a flyout menu that includes an
Open in Desktop button. Click that button to launch GitHub Desktop (if it’s not
already running) and clone the repository to your local machine.

2.	 On the GitHub.com tab of the Clone dialog box, your repositories autofill
for you from GitHub.com.

FIGURE 4-9:
The project board

for the website
repository.

CHAPTER 4 Setting Up a GitHub Website Repo 67

If your GitHub.com repositories don’t autofill in the Clone dialog box, it
probably means you’re no longer signed in to GitHub.com in GitHub Desktop.
You can log in by choosing GitHub Desktop ➪   Preferences from the top menu
bar. Click the Accounts tab and sign in. If it appears you’re logged in but your
repos are still not showing up, try signing out and signing back in.

3.	 Choose your personal website repository and choose where you want it
to be stored on your local machine.

I chose the default path as the place to store the repository on my local machine.

4.	 Click Clone.

GitHub Desktop refreshes with your repo information included.

Touring GitHub Desktop
GitHub Desktop offers a variety of features to help you with your development
and interactions with GitHub.com. You can check out the GitHub Desktop User
Guides at https://help.github.com/desktop if you need additional support
beyond this book. Figure 4-10 highlights the top six features:

»» Repository list: As you clone more repositories to your local computer,
clicking the Current Repository drop-down menu reveals all the repositories
that you have on your local computer, enables you to quickly switch between
them, and gives you a button to quickly add a new one.

»» Branch list: The branch list gives you a quick overview of all the branches that
you have checked out on your local computer, as well as a button to quickly
create a new branch.

»» Pull request list: One the same drop-down list as the branch list, you see a
second tab that lists all the pull requests that are open on this repo.

»» Sync Project button: As you start to make changes and/or changes are made
on the repo outside of what you’re doing on your local machine, you need to
sync. Because Desktop hasn’t detected any changes made on GitHub.com or
your local computer, the option presents itself as a fetch to start. If you start
to make changes on your local machine, you can choose to push your local
changes to GitHub.com. If you start to make changes on GitHub.com, you can
choose to pull those changes to your local machine. If you create a reposi-
tory on your local machine and it isn’t on GitHub.com yet, you can choose to
publish your project to GitHub.com.

If you do not push your changes to GitHub.com, they won’t be available for
other people and if your computer were to crash, you would lose all your
work. I highly recommend that you push your code often.

https://help.github.com/desktop

68 PART 2 Starting Your First Solo Project

»» Changes list: As you start to make changes to your code, the files that you’ve
added, deleted, or modified show up in this changes list. You can click each
file to see the diff to the right. When you’re ready to commit to those changes,
you can add a Summary and Description and click the Commit to Main button.
At that point, you can push your changes to the branch that you’re on clicking
the Sync Project button.

You should always double check which branch you’re on before you commit
and push your changes. You can undo commits and pushes, but avoiding it is
best because the process can get hairy really quickly.

»» History list: Next to the changes you find the history of this repo. The history
includes activity from your local machine that has been synced with GitHub.
com and activity from GitHub.com that you may have never done on your
local machine. When you click one of the events, you see a list of activity that
happened.

FIGURE 4-10:
An overview of

GitHub Desktop.

CHAPTER 4 Setting Up a GitHub Website Repo 69

Opening your repo in Visual Studio Code
To edit your files on your local computer, you can use a number of applications,
including Visual Studio Code or even TextEdit. In this book, I use Visual Studio
Code (VS Code).

To open your repo in VS Code:

1.	 Open VS Code.

You see a blank window.

2.	 Choose File ➪   Open from the top menu bar.

A file finder dialog box appears.

3.	 From the file chooser, open the folder for your repo and click Open.

Your project is now open in VS Code.

Touring VS Code
VS Code is primarily a code editor, but it also has features that make coding on
GitHub repos much easier. If this section doesn’t offer enough detail for every-
thing you can do with VS Code, make sure that you check out the docs (https://
code.visualstudio.com/docs). In particular, the VS Code repository is always
updated to reflect the newest features and what the team is working on. The Issue
page of the repository typically has a monthly iteration plan for even more detail
(https://github.com/microsoft/vscode/issues). Figure 4-11 shows the top
six features:

»» File list: On the left side of VS Code is a list of all the files that you have in your
repo. If you click a file, it opens in the center code editing area.

»» Code editor: To the right of the file list is the code editor where you can write
or modify code.

»» Branch list: At the bottom left corner of VS Code is a branch chooser. Right
now, you are on the main branch of your repo. If you click the branch, a menu
opens, allowing you to choose between branches or create a new one.

»» Sync Project button: VS Code supports syncing your project with what is on
GitHub.com.

»» Source Control pane: If you open the Source Control pane you see a list of
modified, added, and deleted files available to stage and commit to the
branch you’re currently on.

https://code.visualstudio.com/docs
https://code.visualstudio.com/docs
https://github.com/microsoft/vscode/issues

70 PART 2 Starting Your First Solo Project

»» Extensions pane: If you open the Extensions pane, you can install any useful
extensions for your project, I recommend installing the GitHub Pull Request
extension because then you can automatically track, check out, and update
pull requests for your repository.

Finding Resources for GitHub Pages
Some amazing folks over at GitHub have dedicated all their time to supporting
GitHub users in discovering and learning about all the features that GitHub
offers. Beyond the static documentation, the GitHub Training Team offers guides,

FIGURE 4-11:
An overview of

Visual Studio
Code.

CHAPTER 4 Setting Up a GitHub Website Repo 71

quickstarts, and feature updates directly from the GitHub pages docs site
(https://docs.github.com/pages). You can even learn more through GitHub
Skills (https://github.com/skills/github-pages).

GitHub Skills are a self-guided, automated tutorial that use repository templates to
enable you to do the actions on GitHub.com and not just watching a video or
reading a tutorial. You can find great ones for GitHub Pages, all GitHub funda-
mentals, Markdown, HTML, and even running your own Open Source Community.
Head over to https://skills.github.com/, authenticate with your GitHub
credentials, to try building some of these skills.

https://docs.github.com/pages
https://github.com/skills/github-pages
https://skills.github.com/

CHAPTER 5 Creating a Website with GitHub Pages 73

Chapter 5
Creating a Website
with GitHub Pages

In this chapter, you can find effective strategies for reorienting yourself with an
existing project, as well as specifics on building a website with GitHub Pages.
The examples shown in this chapter assume that you have an existing GitHub

Pages repository. If you don’t and want guidance in setting one up, see Chapter 4.

You can follow along in this chapter to build a simple website on GitHub Pages or
jump around to the various sections to find out how to do a specific task.

Jumping into an Existing GitHub Project
Whether you’re revisiting a project that you started yesterday, one you worked on
last year, or finding a new project that you’ve never worked on, there are quick
and easy ways to get oriented with a GitHub project. In this section, you see exam-
ples of reorienting with the GitHub Pages website repo. (If you still need to set one
up, see Chapter 4.)

IN THIS CHAPTER

»» Reorienting yourself with an existing
project

»» Getting ready to contribute to an
existing project

»» Adding headers and sections to
a website

»» Creating a blog using GitHub Pages

74 PART 2 Starting Your First Solo Project

To get started, make sure that you’ve opened your browser to GitHub.com and
have signed in. If you need to create a GitHub.com account, you can read about
how to do so in Chapter 1.

Accessing the GitHub.com repo
On the left side of the GitHub.com home page is the list of repositories that you
have recently opened, contributed to, or created. Directly above the list is a search
bar for searching repositories. This search bar becomes more useful as you inter-
act with more GitHub repositories because the list of repositories can grow large,
especially if you belong to a big organization.

At the top of the home page is another search bar that you can use to search for
repositories, project boards, and teams (a feature of organizations beyond the
scope of this book). By default, this top search bar is scoped to your current con-
text. If you’re on GitHub’s home page, it searches all of GitHub. If you navigate to
a repository on GitHub.com, the top search bar searches within that repository.

The search bar always gives you the option to search all of GitHub.com no matter
where you are. Figure 5-1 shows the three ways to find a specific repository you
may be looking for and two places to find new repositories.

FIGURE 5-1:
Places to find

GitHub repos on
the GitHub.com

home page.

CHAPTER 5 Creating a Website with GitHub Pages 75

After you find the repository you want to start collaborating with, click it. The
repository’s home page appears.

This chapter gives specific examples about contributing to the GitHub Pages
website repo that you’re the owner of, so if you want to follow specifically for that,
choose the repo titled your-username.github.io. The repo I use in this example
is dra-sarah.github.io.

Verifying your permissions for the repo
If you’re the owner or admin of a repository, you see a Settings tab at the top of
the repository’s home page. You have complete control over the repository,
including the ability to

»» Invite collaborators.

»» Change the visibility of a repository from public to private or from private
to public.

»» Delete the repository.

»» Archive the repository.

If you don’t see the Settings tab, you’re not the owner/admin, but you may have
write permissions. To determine whether you do, you can attempt to make a
change to a file by navigating to the file and clicking the pencil icon. If you’re able
to make a change and are presented with a Commit Changes box similar to the one
shown in Figure 5-2, you have write permissions and were added as a collaborator
for the project.

If you attempt to make a change but see the warning and commit box shown in
Figure 5-3, you do not have write permissions and are not a collaborator. You can
still create issues and propose file changes to the repo, but you have to get approval

FIGURE 5-2:
The Commit

Changes box
when you have

write permissions
on a repo.

76 PART 2 Starting Your First Solo Project

from someone with more permissions than you. If you’re interested in how to
contribute to projects that you don’t have write access to, see Chapter 6.

Orienting yourself with the project
Whether you’re the owner, a contributor, or a new visitor to a repo, you need to
orient yourself with the project before you start working in case additional issues,
pull requests, or updates have been made since your last visit. If you’re the only
author on a private repo, review what needs to be done before you start so that you
can begin something of the appropriate scope given the time you have to work on
the project. You don’t want to start building an entire new feature set if you only
have a couple of hours; exploring a bug or making some minor updates may be
better options.

To get oriented, or re-oriented, with a project, you should review four places on
the repo:

»» Read the README.md, CONTRIBUTING.md, and CODE_OF_CONDUCT.md
files. Unless you’re working on your own project, you should always read
through these three files at least to make sure that you understand how to

FIGURE 5-3:
Warning and
commit box

when you have
read-only

permissions
on a repo.

CHAPTER 5 Creating a Website with GitHub Pages 77

set up the project on your computer, contribute effectively to the project, and
interact with other contributors. Not every project have all these files, but if
they exist, you should read through them to ensure that you’re a positive
member of the project’s community. You can find a good example of these
documents on the GitHub Desktop open source project at https://github.
com/desktop/desktop.

»» Survey project boards. If the project uses project boards, look at those
boards. Click the Projects tab at the top of the repo and choose a project
board. Each project board usually has a column of things in progress or that
need to be done. If the project board has automation, then any changes to
issues or pull requests (including new ones) appear on the project board.

»» Read through issues. Especially on active projects, folks are likely to have
opened new issues. Click the Issues tab at the top of the repo to see the list of
open issues. You can sort the issues by most recently updated to see whether
folks have commented on existing issues. The default sorting is by newest
(meaning the issues that were most recently opened). If you’re the repository
owner, triage any new or updated issues. Triaging is when you sort and order
items. (See the sidebar called “Triaging issues” for more information about
how and why to triage.)

»» Review pull requests. Both passively and actively reviewing pull requests is
a good idea before starting to work on a project because they represent the
new, removed, or changed code that aren’t yet a part of the main branch.
Passively reviewing pull requests means to read through the most recently
opened and modified pull requests and see what kinds of contributions to the
project are in the pipeline. This review helps to make sure that you don’t start
working on something that someone else is either already working on or that
may break or contradict something that someone else is already working on.
If you detect a problem, you can add a comment to the discussion on the
pull request.

You can also actively review pull requests if you have the proper permissions for
the project (and, more importantly, if you’re confident that you can evaluate
whether the changes should be merged). You can start the review process
by opening a pull request, clicking the Files Changed tab, and then clicking
the Review Changes button at the top right of the pull request, shown in
Figure 5-4. In the example for this book, no pull requests are open for the
website, but I’ve closed one (the initial website template that I added).

»» Review discussions. When you see a Discussion tab at the top of the menu
bar, Discussions have been enabled for this repository. Clicking it takes you
to a typical discussion board with categories, a Code of Conduct, and other
useful information. You can see a good example of a GitHub Dicsussion board
on the Sentry JavaScript repository (https://github.com/getsentry/
sentry-javascript/discussions).

https://github.com/desktop/desktop
https://github.com/getsentry/sentry-javascript/discussions
https://github.com/getsentry/sentry-javascript/discussions

78 PART 2 Starting Your First Solo Project

TRIAGING ISSUES
Just like with an emergency room full of patients, triaging issues is the process of
sorting and classifying issues on your repo. Okay, triaging issues may not be just like an
emergency room because the issues are hopefully not life-threatening, but they’re often
critical for your project. If you’re the owner of a repo on GitHub, I recommend spending
the first 30 minutes of your day on a project triaging anything that may have come in
since the last time you visited the repo. In the triage process, you should include at least

•	Apply labels. Issues and pull requests can have labels associated with them. A few
must-have labels are

•	 bug: An issue that reports something that appears to be broken and should be
addressed quickly

•	 good first issue: An issue that a new contributor could start with

•	 help wanted: An issue where the code owner is specifically asking for help from
the community

•	 needs investigation: An issue with questions that need to be answered before a
solution is known

•	 feature/enhancement: An issue that requests a new feature or change to the
project

Some labels are added to a repo by default, including bug, duplicate, enhancement,
good first issue, help wanted, invalid, question, and wontfix. You can delete labels
you don’t want to use and add other labels that you need repository needs.

•	Respond to comments. Some issues may have new comments since the last time
you were on the repo. For example, if someone opened an issue and you applied
the label needs investigation and asked for additional information from the
person who opened the issue, you may want to check to see whether they provided
you with any additional information first. Issues should remain active. If an issue
goes stale (as in folks stop commenting or making progress on it), it should
probably just be closed.

•	Close stale issues. Any issues that have gone stale should be closed. One example
of when closing an issue is appropriate is when it’s been a few weeks since the
person who opened the issue last provided information or you know for a fact that
you don’t want to add a requested feature. Always comment on the issue before
closing and let folks know why it was closed. These comments are also useful for
your future self to remember why you closed an issue.

CHAPTER 5 Creating a Website with GitHub Pages 79

Chapter 8 covers the pull request review experience. However, if you want to have
an interactive experience where you get to review a pull request on your own project
before doing it on someone else’s project, you can visit https://github.com/
skills/review-pull-requests, click Use This Template, and follow the course
described in the README written by the great folks at GitHub. You can also prac-
tice reviewing a pull request on a repo designed specifically for this book, which
you can find at https://github.com/thewecanzone/GitHubForDummiesReaders/
pull/2.

Preparing Your Contribution
After you orient yourself with your project, you need to decide what you’re going
to work on for your contribution. For the example in this book, I chose issue
#2 in the Todo column of the project board: Change the title and tagline.

Other good candidates are any issues that were opened with the label bug, help
wanted, or good first issue because these issues are typically urgent for owners
or good entry points for contributors.

This section assumes you already have a repo cloned onto your machine. The
examples in this section use GitHub Desktop and VS Code to resolve the issues. If
you need guidance in cloning a repo or getting the project set up in GitHub Desktop
or VS Code, see Chapter 4.

Creating a branch for your contribution
Before you modify or add code to any project, whether a private solo project you
own or a large open source project, I highly recommend creating a specific branch

FIGURE 5-4:
The place to start

a review of a
pull request.

https://github.com/skills/review-pull-requests
https://github.com/skills/review-pull-requests
https://github.com/thewecanzone/GitHubForDummiesReaders/pull/2
https://github.com/thewecanzone/GitHubForDummiesReaders/pull/2

80 PART 2 Starting Your First Solo Project

to contain all the code you write. Branching is a Git function that essentially copies
code (each branch is a copy of the code), allowing you to make changes on a spe-
cific copy, and then merging your changes back into the main branch.

When you create a branch, Git doesn’t actually copy all the code, which would be
time consuming and inefficient. Git does something way smarter, but the specifics
of what it does aren’t important to day-to-day usage of Git, which is why I say
Git creates a copy of the code. It’s not technically correct, but it’s conceptually
correct. It’s a useful mental model for branches.

Creating a branch for your changes gives you a safe space to try out solutions and
make mistakes without threatening your project’s integrity. If your solution is
taking you down a wrong path, you can simply delete the branch, create a new
one, and start over. Creating a branch helps your main branch remain in an always
working state because you only merge your code into the main branch when you’re
confident it doesn’t introduce any new problems and/or accurately solves the
problem you were targeting.

Different projects and people use different nomenclatures for their branches. In
this book, I use a short description of the code modifications to name branches.
Another branch naming convention is to put the initials of the developer in front
of each branch before a short description. Before creating a branch on a public
repo, check out how other contributors have been naming their branches or see
whether the CONTRIBUTING.md file contains any guidelines.

This book uses GitHub Desktop to manage projects on your local machine and VS
Code as the primary text editor. If you need to set up these two applications, see
Chapter 4. You could also use VS Code directly, but I want to take this opportunity
to show two useful dev tools.

To create the branch for your contribution, follow these steps:

1.	 Verify the repo you cloned.

Open the GitHub Desktop application and verify that the top left drop-down
menu has your website repo selected. Figure 5-5 shows the repo correctly
selected.

2.	 Start a new branch.

Click the branch drop-down list in the top center of GitHub Desktop and click
the New Branch button (see Figure 5-5). When you click the New Branch
button, a dialog box appears.

3.	 Give your branch a name.

Type a name for your branch. I use new-title-and-tagline because that is
the change I plan to make.

CHAPTER 5 Creating a Website with GitHub Pages 81

4.	 Click Create Branch.

The dialog box closes, and you switch to the new branch. Figure 5-6 shows
the current branch as new-title-and-tagline, but the main branch is still
available within the drop-down menu. The button at the top right of GitHub
Desktop also changes from Fetch Origin to Publish Branch.

5.	 Publish your branch.

Before making any changes to your branch, I recommend publishing your
branch to GitHub.com. That way, as you start to modify or add code and push
it to your branch, you won’t lose any of your work. Click the Publish Branch
button on the top right of GitHub Desktop. When the branch has been
successfully published, this button goes back to the Fetch Origin button.

6.	 Open your project in VS Code.

Open the VS Code application and verify that your project folder is open.
A tree-view of your project appears in the lefthand Explorer pane. Notice
that the branch selector at the bottom of the VS Code application window
now shows the branch name. Figure 5-6 shows the correct branch checked
out in VS Code.

FIGURE 5-5:
The button to
create a new

branch in GitHub
Desktop for a
specific repo.

82 PART 2 Starting Your First Solo Project

If you click the branch selector in VS Code and change the branch, the branch in
GitHub Desktop correctly changes to the same branch, and vice versa!

Confirming your branch is published
Before writing code that you want to keep, confirm that you correctly published
your branch and are able to push to the branch. If you’re working on the same
project, on the same computer, then you most likely are still properly set up. But
if you’re contributing to a project for the first time or you have just set up a new
computer, you should consider confirming you’re able to contribute.

This section shows you examples of contributing to the GitHub website repo
https://github.com/dra-sarah/dra-sarah.github.io using GitHub Desktop
and VS Code. You should have your username.github.io repository cloned.

FIGURE 5-6:
The branch

selector in VS
Code showing

that the correct
branch is

checked out.

https://github.com/dra-sarah/dra-sarah.github.io

CHAPTER 5 Creating a Website with GitHub Pages 83

To get started, follow these six steps:

1.	 Click a file in the file tree in VS Code.

The file opens in the editor. Figure 5-6 shows index.md open.

2.	 Modify the file.

Don’t make a lot of changes at this stage because the goal is to confirm you’re
able to push changes to the branch that you published.

3.	 Save the file.

Choose File ➪   Save to save your changes. When you click Save, the color of the
file in the file tree changes, and the Source Control button changes to indicate
that a change occurred (see Figure 5-7).

FIGURE 5-7:
VS Code after a

modification has
been made to the
index.md file, but
the change hasn’t
been committed.

84 PART 2 Starting Your First Solo Project

4.	 Open the Source Control pane by clicking the Source Control button.

You see the changes in the changes list.

The first time you’re using VS Code to stage, commit, and push changes to a
GitHub repo, if you try to commit changes that haven’t been staged yet, you’re
asked whether you want to set all unstaged changes to be staged when you
click the Commit button. For more information, you can check out the VS Code
docs on Git support at https://code.visualstudio.com/docs/editor/
versioncontrol#_git-support.

5.	 Stage and commit the changes.

Write a commit message. Then click Commit. Figure 5-8 shows how VS Code
represents code that has been committed, but not yet pushed.

FIGURE 5-8:
VS Code after a

commit has
been made and
before the local

repository has
been pushed.

https://code.visualstudio.com/docs/editor/versioncontrol#_git-support
https://code.visualstudio.com/docs/editor/versioncontrol#_git-support

CHAPTER 5 Creating a Website with GitHub Pages 85

6.	 Push and merge the changes.

The Sync button that replaces the Commit button in Step 5, or the bottom bar to
the right of the branch name updates to show one commit is ready to be pushed
to the remote branch. Click the Sync button to push your changes to GitHub. Then
open GitHub.com and go to the repository. In this example, the repository is
https://github.com/dra-sarah/dra-sarah.github.io. You now see a
suggestion to open a new pull request (see Figure 5-9). If you don’t, you can click
the Pull Request tab, click Create New Pull Request, and create the pull request.

Create and merge the pull request. Chapter 3 gives a brief introduction to how
to merge a pull request, and Chapter 8 gives an in-depth view of what you can
do with pull requests if you need additional guidance.

FIGURE 5-9:
GitHub.com

indicates when a
branch is ready to

be merged.

(continued)

RESOLVING SIMPLE MERGE CONFLICTS
Sometimes your branch can get into a state where GitHub.com can’t determine how
to properly merge the code. This conflict can sometimes happen when a complex
sequence of events happens. First, you create a branch from the main branch. As you
make changes to your branch, someone else makes changes to the main branch. You
then stage, commit, and push your changes to your branch, without pulling the changes
made on the main branch into your branch first. The changes that you made may
conflict with the changes that were made on the main branch — for example, you
changed the same line, but started from a different place. For example, say that when
you create your branch, the line is

Hello World!!!

and you changed it to

https://github.com/dra-sarah/dra-sarah.github.io

86 PART 2 Starting Your First Solo Project

Sarah's Website

But someone else changed the line on the main branch to

Hello Friend!

When you create the pull request, GitHub gets confused. The commit shows that you
changed code from Hello World!! to Sarah's Website, but the code that you’re trying
to merge says Hello Friend!, so it’s unclear what should actually change. Rather than
making a change for you that you don’t intend to make, GitHub asks you what you want to
do. When you create the pull request, instead of a button allowing you to merge the pull
request, you’re prompted with a button to resolve the conflicts. Clicking this button takes
you to a new page that presents you with the line of code with two options (see the figure):

•	Code in your branch (on top)

•	Code in the main branch (on bottom)

You can edit the code by deleting the delimiter lines and choosing the line you want to
keep. In this example, the final code looks like

Sarah's Website

Then, you can click Mark as Resolved and commit the changes to your branch.

(continued)

CHAPTER 5 Creating a Website with GitHub Pages 87

Sometimes, pull requests can create merge conflicts. See the sidebar “Resolving
simple merge conflicts” for insight on how to resolve them.

Building Your Personal Website
This section is following the example website repo that is created in Chapter 4
to show some basics on how to build a website. However, the tips shown in this
section can be used for any website you build using GitHub Pages.

Modifying the title and tagline
To modify the title and tagline of your website, open the _config.yml file in VS
Code. Add two lines above the only line that is in the file, indicating the theme.
Your code should look like this:

title: <Your Name>
description: <Your Description>
theme: jekyll-theme-cayman

Adding sections to your website
Adding sections to your website is made easy with Jekyll and GitHub Pages because
you can use Markdown and HTML. First, include some social media usernames.
Open your _config.yml file and add as many social media usernames as you want.
In this example, I add a Twitter and GitHub username:

title: Your Name
description: Your Description
twitter_username: Your Twitter username
github_username: Your GitHub username
theme: jekyll-theme-cayman

Then, open the index.md file and change the code to include sections. For exam-
ple, my code looks like this:

My Projects
Here is a list of projects that I am working on:
My Interests
I'm interested in teaching novice coders about computer science!
My Blog

88 PART 2 Starting Your First Solo Project

I'm really excited to blog my journey on GitHub.com.
Get in Touch

<a href="https://twitter.com/{{ site.twitter_username

}}">Twitter
<a href="https://github.com/{{ site.github_username

}}">GitHub

Save, stage, commit, and push your changes to your branch and then create and
merge the pull request into the main branch. After a couple of minutes, refresh the
website page to see your changes.

Creating a blog
Having a blog on your site is a great way for you to share your GitHub journey with
others. As you start to discover and create, you can share what you learn and build
with a community of people with similar interests. This section guides you through
creating the blog posts and linking them from your index.md file.

First, create a new folder called _layouts and create a file within that folder called
post.html. The _layout/post.html file should contain the following code to
create a blog-style:

layout: default
<h1>{{ page.title }}</h1><p>{{ page.date | date_to_string }} –

{{ page.author }}</p>
{{ content }}

Make sure that you correctly name the folder _layouts. Jekyll searches for the
_layouts folder for any custom layouts. Otherwise, it uses the defaults for that
theme. You can change the name of the specific layout — for example, post.md —
but it should match the layout metadata, as shown in the following code snippet.

Using layouts and specific naming, Jekyll can extrapolate the title, date, and
author to display that both on the blog post page and on the home page.

Then, create a new folder called _posts and a file inside with the date and a title.
Typically, blog posts are made with YEAR-MONTH-DAY-TITLE.md. For example, this
code is in a file called _posts/2019-01-01-new-year.md:

layout: post

CHAPTER 5 Creating a Website with GitHub Pages 89

author: sguthals

Write your blog post here.

Finally, in your index.md file, add the following code below the My Blog section:

{% for post in site.posts %}

{{ post.title }}

{% endfor %}

Save, stage, commit, and push your changes to your branch and then create and
merge the pull request into the main branch. After a couple of minutes, refresh the
website page to see your changes.

Linking project repos
You can link GitHub project repos to your website in the same way you link social
media, described in the section “Adding sections to your website,” earlier in this
chapter. Putting a link directly to a repo can be efficient. However, you can also
create web pages for project repos as well, as described in Chapter 4.

Open the index.md file and add the following code, replacing the URLs with links
to projects you’re the author of. This code shows linking to a project repo web
page and directly to a project repo:

Hello

World Project
<a href="https://github.com/thewecanzone/GitHubForDummies

Readers">GitHub For Dummies Repo

Out of scope for this book are a vast number of ways you can customize your
GitHub Pages website. Jekyll and GitHub come together to offer a unique experi-
ence that requires some coding, but handles a lot of the setup. To find out how to
do something specific, start by visiting GitHub Help at https://docs.github.
com/pages/setting-up-a-github-pages-site-with-jekyll.

https://docs.github.com/pages/setting-up-a-github-pages-site-with-jekyll
https://docs.github.com/pages/setting-up-a-github-pages-site-with-jekyll

3Contributing
to Your First
Project

IN THIS PART . . .

Fork your first GitHub repository so that you can
contribute your own code.

Get unstuck when you’ve cloned and changed code
before forking.

Create effective commit messages to communicate
the changes you’ve made.

Create a pull request to start the process of your code
being merged in.

Explore effective pull request workflows.

Review a pull request.

CHAPTER 6 Forking GitHub Repositories 93

Chapter 6
Forking GitHub
Repositories

More than likely, you will want to work on some repositories where you are
not the owner or collaborator. In situations where you aren’t the owner
or collaborator, you will have to fork the repo if you want to do anything

other than browse the files.

In this chapter, I explain what forking is, show you how to fork a repository, and
compare forking to cloning and duplicating. I also discuss contributing code via a
fork. This chapter also demonstrates how to get the code you want to contribute
into a fork if you’ve already made some changes to a clone before forking.

Introducing Forking
A fork of a repository is essentially just a copy of the repository. In the spirit of
open source, forking is a way to share with and learn from other developers.
Developers can have many motivations for forking a repository, but three of the
most common reasons are to

IN THIS CHAPTER

»» Understanding forking

»» Forking a repository

»» Getting unstuck with forking and
cloning

»» Contributing code via a fork

94 PART 3 Contributing to Your First Project

»» Contribute to someone else’s project

»» Use someone else’s project as a starting point

»» Experiment with someone else’s code without making changes to their project

If you aren’t the owner or a collaborator on a project, you’ll have to fork the repo
if you want to do anything other browse the files. If you plan on making any
changes to a repo where you aren’t an author or collaborator, fork the repo first so
that you’re in the correct state as you start to explore and modify the code. Don’t
worry, though, if you forget to fork — see the section “Getting unstuck when
cloning without forking,” later in this chapter, for help.

Prior to GitHub, a fork of an open source project tended to have a negative conno-
tation. It wasn’t just a copy of the source code, but a split in the community. A fork
implies a fork in the road, where one group takes the project in a new direction.
For example, Joomla is a fork of the Mambo project by a group of people who felt
like a company had too much control. In practice, forks tend to be good for the
overall ecosystem because they introduce new ideas. In some cases, the best ideas
in the fork make their way back into the original project, such as when EGCS,
which forked from GCC, had its changes merged back into the GCC project. On
GitHub, forks tend to be more like short-lived branches that are either merged
back into the main code or deleted.

Cloning, Forking, and Duplicating
When you clone a GitHub repo, you’re creating a local copy of the project on your
computer. Forking a GitHub repo creates a copy of the repo on your GitHub.com
account, and from there, you can clone the repo. A link between the original repo
and the one you forked remains, allowing you to pull changes made on the
original repo into your copy and push changes that you make on your copy to the
original copy.

Duplicating a repo is when you make a copy that no longer has a link to the original
copy. Duplication isn’t a usual part of an open source workflow because it makes
it more difficult to push changes back into the original repository. Even so, dupli-
cating a repo can be useful sometimes, such as when the original project is no
longer active and you plan to keep the project alive with your fork.

CHAPTER 6 Forking GitHub Repositories 95

Cloning a Repository
Any public repo can be cloned, and you can run the code on your computer and
make changes to the code. But you won’t be able to push those changes back to the
remote repo if you don’t have push permissions to the repo. Chapter 4 describes
how to clone a repository in GitHub Desktop when you’re the owner. The process
is the same whether you’re an owner, collaborator, or visitor.

Before you clone a repository, you should verify that you’re able to push changes
to it. The easiest way to verify this ability is to go to the repository home page. If
you see a Settings tab on the right side of the home page, then you likely have
push rights. If you don’t, you likely have to fork the repo first. Alternatively,
you can try to edit a file on GitHub.com, and if you get the message shown in
Figure 6-1, then you don’t have permission to directly contribute to the project.

If you do end up cloning a repository where you don’t have permission to contrib-
ute to it, you can end up making changes and not being able to push them. The
section “Getting unstuck when cloning without forking,” later in this chapter,
gives steps for how to get out of this state.

After you have a repository cloned on your local computer, you can view and
modify metadata about it in your terminal. Open the terminal and go to a directory
where you have a GitHub repository. If you need an example, clone https://
github.com/thewecanzone/GitHubForDummiesReaders by typing

$ git clone https://github.com/thewecanzone/
GitHubForDummiesReaders

Cloning into 'GitHubForDummiesReaders'...
remote: Enumerating objects: 15, done.
remote: Counting objects: 100% (15/15), done.

FIGURE 6-1:
GitHub.com error

message if you
don’t have edit

permissions
on a repo.

https://github.com/thewecanzone/GitHubForDummiesReaders
https://github.com/thewecanzone/GitHubForDummiesReaders

96 PART 3 Contributing to Your First Project

remote: Compressing objects: 100% (15/15), done.
remote: Total 15 (delta 4), reused 0 (delta 0), pack-reused 0
Unpacking objects: 100% (15/15), done.
$ cd GitHubForDummiesReaders

You can verify where the remote/target repo is with the following command:

$ git remote -v
originhttps://github.com/thewecanzone/GitHubForDummiesReaders.

git (fetch)
originhttps://github.com/thewecanzone/GitHubForDummiesReaders.

git (push)

If you cloned the same repo as I did, you see the exact same origin URLs for fetch
and push. You should see that the remote repo is one owned by thewecanzone and
not dra-sarah. Alternatively, if you run the same command on a repo that you
own, you should see your username. For example, if I run the command in the
directory where I cloned my website repo that I created in Chapter 4, I would see

$ git remote -v
originhttps://github.com/dra-sarah/dra-sarah.github.io.git (fetch)
originhttps://github.com/dra-sarah/dra-sarah.github.io.git (push)

If you try using the command on a Git repo that doesn’t have a remote origin
(meaning it isn’t hosted on GitHub.com or any other remote place), you simply
won’t get any information back. For example, in Chapter 1, I created a simple Git
repo called git-practice. Running the command in that directory gives you
nothing back:

$ git remote -v

Forking a Repository
The goal of open source is to encourage collaboration among software developers
around the world, so being able to contribute code to repositories where you aren’t
the owner or an explicit collaborator is an important part of the GitHub workflow
and mission. To become a collaborator of an open source project, you can reach
out to the owner of the repo and request to be a collaborator. However, if the
owner doesn’t know who you are, they probably won’t add you as a collaborator
because that would give you push rights to the repository. You’ll have to gain their
trust first.

CHAPTER 6 Forking GitHub Repositories 97

You don’t need the owner’s permission to fork their repository. You can make
your contributions and share them with the owner to show how you can be an
asset to the project.

To fork a repo, go to the repo home page and click the Fork button at the top
right. If you’d like, you can use https://github.com/thewecanzone/GitHubFor
DummiesReaders to practice forking and contributing to a public repo.

After you click the Fork button, the web page refreshes, and you see a slightly
modified version of the repo, as shown in Figure 6-2. At the top of the repo, you
see that the repo is attached to your account, but it still has a reference to the
original repo.

If you’re part of multiple GitHub organizations, you’re asked to choose which
organization you want to fork the repository to after you click the Fork button and
before the web page refreshes.

After you have your own, forked version of the repo, you can clone it on your local
machine to start making changes. Chapter 7 goes over writing code and creating
commits, which is the same process whether you’re on a forked repo or a regular
repo. If you clone the repo using GitHub Desktop, your local Git repository
knows about your forked version (remote origin) and the original repo (remote
upstream).

The concept of a remote can be confusing to those new to distributed version con-
trol systems like Git. When you clone a GitHub repository, you have a full copy of
the repository on your local machine. You may be tempted to think the copy of the
repository on GitHub is the canonical copy. However, there is no concept of
canonical in Git. The canonical copy is whatever the people working on the project

FIGURE 6-2:
A forked repo on

GitHub.com.

https://github.com/thewecanzone/GitHubForDummiesReaders
https://github.com/thewecanzone/GitHubForDummiesReaders

98 PART 3 Contributing to Your First Project

decide it is by consensus. Git does have the concept of a remote, which is a pointer
to a copy of the same Git repository hosted elsewhere. Typically, a remote is a URL
to a Git-hosting platform like GitHub, but it’s possible to be a path to a directory
with a copy of the repository. When you clone a repository, Git adds a remote
named origin with the location (usually a URL) from where you cloned it. But it’s
possible to add multiple remotes to a Git repository to indicate other locations
where you may want to push and pull changes from. For example, if you clone a
fork of a repository, you may want to have a remote named upstream that points
to the original repository.

If you clone the repo using the command line, you may want to set the upstream
remote, which I explain in the section “Getting unstuck when cloning without
forking,” later in this chapter. You can see both the forked remote origin and
original remote upstream if you run the git remote -v command in the directory
where you cloned the repo:

$ git remote -v
originhttps://github.com/dra-sarah/GitHubForDummiesReaders.git

(fetch)
originhttps://github.com/dra-sarah/GitHubForDummiesReaders.git

(push)
upstreamhttps://github.com/thewecanzone/GitHubForDummiesReaders.

git (fetch)
upstreamhttps://github.com/thewecanzone/GitHubForDummiesReaders.

git (push)

The origin, which is your fork of the repository where you typically fetch/pull
changes from and push changes to, has your username (dra-sarah in this
example). The upstream, which is where the original code is located, and where
you eventually want to contribute the code you write back to, has the original
author’s username (thewecanzone in this example). While you can push changes
to and pull changes from any remote (origin or upstream), it is good practice to
work on your fork of the repositoy, represented typically as origin.

Fetching changes from upstream
Having the upstream repo linked to your forked repo is important. As you start
making changes, you want to be able to fetch/pull any changes that are being
made on the original code into your code to make sure that you have the most
up-to-date version.

For example, suppose that you forked and cloned a website project a week ago
with plans to change the website’s About page. While you were working on those

CHAPTER 6 Forking GitHub Repositories 99

changes, someone else made a change to the About page. Their changes may
conflict with your changes, or they may introduce something new that you want
to use in your changes. Pulling those changes into your local repository before you
submit your changes back to the original repository makes sense. It reduces the
chance that your changes conflict with the changes others are making to the About
page and makes it more likely the owner can accept them.

If you find yourself in a situation where you need to get the change from the
upstream, original repo, you can go to the directory where your forked repo is
and type

$ git fetch upstream
remote: Enumerating objects: 5, done.
remote: Counting objects: 100% (5/5), done.
remote: Compressing objects: 100% (3/3), done.
remote: Total 3 (delta 1), reused 0 (delta 0), pack-reused 0
Unpacking objects: 100% (3/3), done.
From https://github.com/thewecanzone/GitHubForDummiesReaders
8404f3b..e02a4d2 master -> upstream/master
$ git checkout -b new-branch
Switched to a new branch 'new-branch'
$ git merge upstream/master
Updating 8404f3b..e02a4d2
Fast-forward
README.md | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)

These three commands fetch the changes from the upstream repo, ensure that
you’re on your local, forked repo on a new branch, and then merges the changes
from the upstream repo into your forked repo.

Contributing changes to upstream
After you make changes and publish them to a new branch in your forked reposi-
tory, you’re ready to suggest your changes to the original owner. If you go to the
original, upstream repo on GitHub.com, your branch shows up on the home page,
and GitHub asks whether you want to open a pull request to merge the changes
with the original repo (see Figure 6-3).

On your forked repo on GitHub.com, your branch shows up, and GitHub asks
whether you want to create a pull request for it (see Figure 6-4).

100 PART 3 Contributing to Your First Project

Click the Compare & Pull Request button, and a pull request creation page gives
you the option to request to merge your changes with the upstream repo or your
forked repo (see Figure 6-5). Choose the upstream repo, add a comment, and click
the Create Pull Request button.

FIGURE 6-3:
Original,

upstream repo
detecting a new

branch from a
forked repo.

FIGURE 6-4:
Forked repo

detecting a
new branch.

CHAPTER 6 Forking GitHub Repositories 101

You see that the branch can be merged, but you have no way to personally merge
the pull request because you aren’t the owner of the target branch (upstream,
original repo); only the owner (or a specified collaborator) has permission to
merge code. Figure 6-6 shows the pull request on your repo without the option
to merge.

As the owner of the upstream, original pull request, I can see the pull request and
have the option to merge it (see Figure 6-7). If you’re creating a pull request on
this repo, I will continually merge pull requests so that I can keep an up-to-date
table of all the GitHub For Dummies readers!

If you have a lot of changes that you want to add to your fork before requesting
that they get merged into the upstream, original repo, then you can first create the
pull request to target your forked repo instead of the upstream repo. This is a
change in what is shown in Figure 6-5. When you’re ready to merge your changes
into upstream, you can create a new pull request to request the target of the merge
be the upstream repo.

FIGURE 6-5:
Forked repo

detecting a new
pull request

with the option
for upstream

or forked.

102 PART 3 Contributing to Your First Project

Getting unstuck when cloning
without forking
One common problem people run into is they forget to fork a repository before
they try to contribute to it. The following scenario describes one example of
getting into this situation.

Here’s the scenario: You clone a repository onto your local computer, modify the
code, commit changes to main, and are ready to push your changes. But then
you get a scary-looking error message. You may get the message in VS Code (see
Figure 6-8), GitHub Desktop (see Figure 6-9), or in the terminal:

FIGURE 6-6:
Pull request
without the

option to merge.

CHAPTER 6 Forking GitHub Repositories 103

$ git push origin main
remote: Permission to thewecanzone/GitHubForDummiesReaders.git

denied to dra-sarah.
fatal: unable to access 'https://github.com/thewecanzone/

GitHubForDummiesReaders.git/': The requested URL returned
error: 403

The error message tells you that you don’t have permission to push to this repos-
itory. You should have forked the repository first. You also made the mistake of
committing directly to the development branch. As I recommend elsewhere in the
book, it’s a good practice to make all your changes in a temporary branch; this
applies to any protected branches such as main or development.

FIGURE 6-7:
Pull request

with the option
to merge.

104 PART 3 Contributing to Your First Project

FIGURE 6-8:
Push permission

error message
in VS Code.

FIGURE 6-9:
Push permission
error message in
GitHub Desktop.

CHAPTER 6 Forking GitHub Repositories 105

To fix this mistake, you need to move your changes to a new branch, fork the repo,
change the remote URLs for your local repository to point to your fork, and push
your changes. This process can get tricky, but if you don’t follow the VS Code
prompts, these steps can help you out of this predicament from the terminal:

1.	 Migrate your changes to a new branch.

Right when you discover you’re targeting the incorrect remote repository, you
should move your changes to a new branch. You don’t want to accidentally pull
in changes from the upstream, original branch onto all the hard work you just
finished. This step can get tricky, but luckily there’s a Git alias to help. See the
nearby sidebar “Creating a Git Alias” for help. After you have the git migrate
alias, go to the directory where your repo is in your terminal and type

$ git migrate new-branch
Switched to a new branch 'new-branch'
Branch 'main' set up to track remote branch 'main' from

'origin'.

Current branch new-branch is up to date.

Confirm that the new branch has been created:

$ git status
On branch new-branch

nothing to commit, working tree clean

You can also confirm that your commits are only in this new branch and
no longer in the old branch by running a log command to compare the
two branches:

$ git log main..new-branch --oneline

This lists the commits in new-branch that are not in main. The --oneline flag
prints each commit on a single line, which is useful when you just need a
summary of commits and not the full details.

2.	 Set the upstream remote to be the original GitHubForDummiesReaders
repo.

To add an upstream remote to your repo, go to the terminal and type

$ git remote add upstream https://github.com/thewecanzone/
GitHubForDummiesReaders.git

106 PART 3 Contributing to Your First Project

Confirm that the upstream remote was added correctly:

$ git remote -v
originhttps://github.com/thewecanzone/

GitHubForDummiesReaders.git (fetch)
originhttps://github.com/thewecanzone/

GitHubForDummiesReaders.git (push)
upstreamhttps://github.com/thewecanzone/

GitHubForDummiesReaders.git (fetch)

upstreamhttps://github.com/thewecanzone/
GitHubForDummiesReaders.git (push)

3.	 Fork the repo.

Back on GitHub.com, go to the original repo and click Fork at the top right of
the repo home page. The page refreshes, and you see your own version of the
repo, referencing the original repo (refer to Figure 6-2).

4.	 Set the origin remote to be your forked repo.

After you have your own fork of the repo, you can change your remote origin
to be your version:

$ git remote set-url origin https://github.com/dra-sarah/
GitHubForDummiesReaders.git

You can also confirm that all your remote URLs are correctly set:

$ git remote -v
originhttps://github.com/dra-sarah/GitHubForDummiesReaders.

git (fetch)
originhttps://github.com/dra-sarah/GitHubForDummiesReaders.

git (push)
upstreamhttps://github.com/dra-sarah/GitHubForDummiesReaders.

git (fetch)

upstreamhttps://github.com/dra-sarah/GitHubForDummiesReaders.
git (push)

5.	 Push your branch to your forked version.

You’re now in the same state that you would be in had you forked the repo
before cloning. Back in VS Code, you can publish your branch.

6.	 Create a pull request.

Your forked repo detects a new branch and offers to have you create a pull
request (refer to Figure 6-4).

CHAPTER 6 Forking GitHub Repositories 107

CREATING A GIT ALIAS
A Git alias is an easy way to automate and extend Git commands. If you’re doing a lot
of Git commands on the terminal, creating Git aliases can make your software develop-
ment more efficient. For example, in your terminal you can type

$ git config --global alias.st status

Now, instead of typing git status, you can type git st, and Git returns the current
status of your repository. Getting rid of just four letters may seem a little silly, but it can
end up making your Git command experience a lot more efficient over time.

A Git alias is a lot more powerful than just reducing the number of keys you have to
press. You can read about a tricky scenario at https://haacked.com/archive/
2015/06/29/git-migrate where you have to migrate the commits you’ve made
on a branch to another branch. This migration is critical if you get stuck in the position
where you’ve started working on a clone of a repository where you don’t have write
permissions, as I discuss in the section “Getting unstuck when cloning without forking,”
earlier in this chapter.

The Git alias to migrate commits from one branch to another is complex. It’s a few
complicated steps all rolled into one simple git migrate command. To make this
command accessible for you to use when you get stuck on an unforked clone, follow
these steps in your terminal:

$ open ~/.gitconfig
$

Your .gitconfig file opens in your default editor. Add the following code to the bot-
tom of your .gitconfig file:

[alias]
migrate = "!f(){ CURRENT=$(git symbolic-ref --short HEAD); git

checkout -b $1 && git branch --force $CURRENT ${3-$CURRENT@
{u}} && git rebase --onto ${2-master} $CURRENT; }; f"

If your .gitconfig file already has an [alias] section, don’t retype that line. Save and
close the .gitconfig file.

Now you can use the git migrate command to migrate commits from one branch to
another branch! This Git command has one required parameter and two optional
parameters:

git migrate <new-branch-name> <target-branch> <commit-range>

(continued)

https://haacked.com/archive/2015/06/29/git-migrate
https://haacked.com/archive/2015/06/29/git-migrate

108 PART 3 Contributing to Your First Project

The parameter <new-branch-name> is required. This branch is where you move the
commits to. If you don’t specify anything else, then the migrate command moves all
commits from the main branch to this new branch.

The parameters <target-branch> and <commit-range> are optional. <target-
branch> allows you to move commits from a branch other than the main branch to the
<new-branch-name> that you specify in the first parameter. <commit-range> allows
you to specify which commits you want to move over. This parameter can be useful if
you accidentally made one commit on the wrong branch, and you just want to move
that one commit over to <new-branch-name>.

(continued)

CHAPTER 7 Writing and Committing Code 109

Chapter 7
Writing and
Committing Code

In this chapter, you write and commit code. The first part, writing code, is a very
broad topic — too broad to be covered in this (or any single) book. The code
I write in this chapter sets the stage for covering how to create good commits.

Most of this chapter focuses on committing code. No matter what kind of code you
write, the act of committing that code remains the same.

The code example I use throughout this chapter may seem contrived and overly
simplistic. That’s because it is contrived and simple. Don’t let the simplicity,
though, distract you because the information in this chapter also applies to large
code bases.

Creating a Repository
A commit is the smallest unit of work with Git. It represents a small logical group
of related changes to the repository. A commit additionally represents a snapshot
in time — the state of the entire repository can be represented by referencing a
single commit.

IN THIS CHAPTER

»» Committing code in a terminal

»» Creating a good commit

»» Writing a commit message

»» Committing other tools

110 PART 3 Contributing to Your First Project

Before writing code, you need to create a local repository to store the code. In the
following examples, I create a repository in a directory named best-example. Feel
free to change best-example to a directory of your choice. Fortunately, this
process is quick and painless:

1.	 Open the terminal on your computer.

If you don’t know how to do so, see Chapter 1 for guidance.

2.	 Go to the directory where you want your project folder to be stored and
type the following commands:

$ git init best-example
$ cd best-example

The first command creates an empty Git repository in the specified directory,
best-example. Because the best-example directory doesn’t already exist,
Git creates it. The second command changes the current directory to this new
directory.

Nearly every Git tutorial I’ve seen that covers initializing a Git repository does it
in the current directory by calling git init with no parameters or git init .
where the . represents the current directory. People can be forgiven for not real-
izing you can both create the repository directory and initialize it in one step by
passing in the path to the new repository like I do here. In fact, you can combine
both of these commands into a single command: git init best-example && cd
best-example. This tip can help you gain the admiration and adulation of your
less efficient peers!

Writing Code
After you’re in a Git repository directory, you can start adding files. (If you aren’t
in a directory, see the previous section, “Creating a Repository” where I created
the best-example directory.)

For this example, you create three files by typing the following code:

$ touch README.md
$ touch index.html
$ mkdir js
$ touch js/script.js

CHAPTER 7 Writing and Committing Code 111

Note that one of the files you create is a README.md file. To find out why every
repository should have a README.md file, see Chapter 10.

After running these commands, you have three files:

»» README.md

»» index.html

»» script.js

script.js is in a subdirectory named js. You guessed it — you’re making a
simple website!

You can flesh out the README.md file first. In this example, I use VS Code to open
and edit the files in the current directory. (If you need any guidance setting up VS
Code, see Chapter 2.)

Make sure you have installed VS Code on your PATH. If you need help, you can
follow the getting started guides at https://code.visualstudio.com/docs/
setup/setup-overview.

You can add some simple Markdown text to the README.md document. Markdown
is language that offers a simple way to format and style your text. You can check
out a guide on Markdown on the GitHub guides https://guides.github.com/
features/mastering-markdown.

Open the README.md in the editor by clicking in the file tree in VS Code. Then add
some Markdown relevant to your project. In this example, add the following text:

The Best Example Ever
Which will be a part of the best commit ever.

Then add the following code to index.html.

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>It is the cod3z</title>
 <script src="js/script.js"></script>
 </head>
 <body>
 <h1>The Best Cod3z!</h1>
 </body>
</html>

https://code.visualstudio.com/docs/setup/setup-overview
https://code.visualstudio.com/docs/setup/setup-overview
https://guides.github.com/features/mastering-markdown/
https://guides.github.com/features/mastering-markdown/

112 PART 3 Contributing to Your First Project

This HTML file references script.js. Open script.js in VS Code and add the
following code.

document.addEventListener(
 "DOMContentLoaded",
 function(event) {
 alert('The page is loaded and the script ran!')
 }
);

Make sure to save your changes to each file. Now test the code by opening index.
html in your browser from the terminal.

$ open index.html

The page loads in your default browser, and the alert message, shown in Figure 7-1,
appears.

Creating a Commit
This section assumes you have code that you've changed on your local computer
and that the code is in a working state. If you need an example of working code,
see the previous section in this chapter to get to this state.

After you have running code, you can commit it to the repository. To create a com-
mit is a two-step process:

1.	 Stage the changes you want to commit.

2.	 Create the commit with a commit message.

FIGURE 7-1:
An alert

message from my
running code.

CHAPTER 7 Writing and Committing Code 113

Staging changes
Staging changes can be confusing to the Git beginner. In concept, it’s similar to a
staging environment for a website. Staging changes is an intermediate place
where you can see the changes you’re about to commit before you commit them.

Why would you want to stage changes before committing them? In Git, a commit
should contain a group of related changes. In fact, Git encourages this setup.

Suppose that you’ve been working for a few hours and now have a large set of
unrelated changes that aren’t committed to the Git repository.

You may be tempted to just commit everything with some generic commit message
like “A bunch of changes.” In fact, an XKCD comic makes light of this phenomena
at https://xkcd.com/1296.

Committing a bunch of unrelated changes is generally a bad idea. The commit
history of a repository tells the story of how a project changes over time. Each
commit should represent a distinct cohesive set of changes. This approach to
commits isn’t just about being fastidious and organized. Having a clean Git history
has concrete benefits.

One benefit of a clean Git history is that a command like git bisect is way more
useful when each commit is a logical unit of work. The git bisect command is
an advanced command, and full coverage of what it does is beyond the scope of
this book. In short, though, git bisect provides a way to conduct a binary search
through your Git history to find the specific commit that introduces a particular
behavior, such as a bug. If every commit contains a large group of unrelated
changes, finding the specific commit that introduces a bug isn't as useful as it
would be if every commit contains a single logical unit of change.

In the example for this chapter, I can probably stand to create two commits:

»» One that just contains the README.md file

»» Another that contains the index.html and script.js files

Because the index.html file references the script.js file, checking in one with-
out the other doesn't make sense at this point.

Start by staging the README.md file:

$ git add README.md

https://xkcd.com/1296/

114 PART 3 Contributing to Your First Project

The README.md file is added to the Git index. The Git index is the staging area for
creating commits to the repository. You can check the status of the repository to
see that the file has been added to the index:

$ git status
On branch main
No commits yet
Changes to be committed:
(use "git rm --cached <file>..." to unstage)
 new file: README.md
Untracked files:
(use "git add <file>..." to include in what will be committed)
 index.html
 js/

As you can see, the README.md file is staged for commit. Meanwhile, the index.
html and js/ directory aren't yet tracked by this repository.

Why isn’t script.js listed in the untracked files section? Git is taking a shortcut
here. It notices that no files within the js/ directory are tracked, so it can simply
list the directory rather than list every file in the directory. In a larger code base,
you'll be glad Git isn’t listing every file in every subdirectory.

Committing a file
After you stage changes (see preceding section), you can create a commit. In this
example, I use the -m flag with the git commit command to specify a short com-
mit message. The following commands demonstrate how to create a commit and
specify the commit message in one step:

$ git commit -m "Add a descriptive README file"
[main (root-commit) 8436866] Add a descriptive README file
1 file changed, 3 insertions(+), 0 deletions(-)
create mode 100644 README.md

The file is committed. If you run the git status command again, you see that you
still have untracked files. The git commit command commits only the changes
that are staged.

Committing multiple files
After you commit the first file, you're ready to stage the rest of the files for a
commit.

CHAPTER 7 Writing and Committing Code 115

$ git add -A
$ git status
On branch main
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)
 new file: index.html
 new file: js/scripts.js

The -A flag indicates that you want to add all changes in the working directory to
the Git index. When you run the git status command, you can see that you've
staged two files.

When the js directory is untracked, git status lists only the js directory and none
of the files in the directory. Now that you're trying to stage the js directory, Git
lists the file in the js directory. Why the discrepancy? Git doesn't actually track
directories. It tracks only files. Therefore, when you add a directory to a Git repos-
itory, it needs to add each file to the index.

Sometimes you need to write a more detailed commit message. In this example,
I didn’t specify a commit message when I run the commit command because
I plan to write a more detailed commit message:

$ git commit

If you don’t specify a commit message using the -m flag, Git launches an editor to
create a commit message. If you haven’t configured an editor with Git, it uses the
system default editor, typically VI or VIM.

There are legions of jokes about how difficult it is to exit VIM, so I won’t rehash
them all here. I’ll simply take a moment of silence in remembrance for friends
still stuck in the VIM editor.

For the record, to exit VIM, press the ESC key to exit the edit mode and type :wq to
exit and save or :q! to exit without saving.

To change the default editor to something like VS Code, run the following com-
mand in the terminal:

git config --global core.editor "code --wait"

The editor opens a temporary file named COMMIT_EDITMSG, which contains some
instructions that are commented out:

Please enter the commit message for your changes. Lines starting

116 PART 3 Contributing to Your First Project

with '#' will be ignored, and an empty message aborts the commit.
#
On branch main
#
Initial commit
#
Changes to be committed:
# new file: README.md
#
Untracked files:
# index.html
# js/
#

You enter your commit message in the file that gets opened. You can write your
message before all the comments or simply replace everything in the file with
your own commit message.

In this case, I replaced everything in that file with

Add index.html and script.js
This adds index.html to the project. This file is the
default page when visiting the website.
This file references js/script.js, which is also added
in this commit.

After you save the commit message and close the file or editor, Git creates a com-
mit with the message you wrote.

Writing a Good Commit Message
What should you write in a commit message? What makes a good commit message?

A Git commit should contain a logical and cohesive change or set of changes. The
message should describe that change in clear terms so that anyone who reads the
message later understands what changed in the commit.

The audience for the commit message are current and future collaborators on the
project. Those collaborators may include yourself in the future. Someday you may
be tracking down a bug and want to understand why you made some change.
You'll thank past-you for writing a well-written commit message that answers
that question. So write clear commit messages and be nice to future-you.

CHAPTER 7 Writing and Committing Code 117

If you find that you have trouble describing a commit, it may be that the commit
contains too many changes. In writing code, well written functions do one thing
and do it well. Similarly, a commit should represent one change to the system. The
commit message describes the change and why it’s being made.

A good commit message should also follow a specific structure. In general, a com-
mit message has two parts:

»» The summary should be short (50 characters or less) and in the impera-
tive present tense. For example, instead of writing “I added a method to
Frobnicate widgets,” write “Add method that Frobnicates widgets.”

»» The description provides detailed explanatory text, if needed. Not every
change requires explanatory text. For example, if you rename a function,
a commit message with just a summary of “Rename Frobnicate to Bublecate”
may suffice. You should wrap the description text at 72 characters. This
ensures it looks good when displayed in the terminal as part of the output
from the git log command.

By convention, a new line character separates the summary from the description.

Here’s an example commit message in an open source project https://git.io/
fhZ5a:

Avoid potential race condition
In theory, if "ClearFormCache" is called after we
check `contains` but before we execute the `return`
line, we could get an exception here.
If we're concerned about performance here, we could
consider switching to the ConcurrentDictionary.

There are a few conventions you can use within a Git commit message that Git will
ignore, but GitHub will recognize. For example, you can specify that a commit
resolves a specific issue with something like “fixes #123” where 123 is the issue
number. When a commit with this pattern is pushed to GitHub, the issue number
is linked to the issue. And when the branch that contains that commit is merged
into the default branch of the repository (typically main), GitHub closes the refer-
enced issue. That's pretty handy!

You can also use emojis in a commit message. For example, one pattern some
teams use is to indicate that a commit contains only cosmetic changes by prefac-
ing it with :art:. When that commit is rendered on GitHub.com, GitHub renders
the emoji. You can see this in action in Figure 7-2, which shows a list of commits
from the GitHub for Visual Studio open source project https://git.io/fhnDu.

https://git.io/fhZ5a
https://git.io/fhZ5a
https://git.io/fhnDu

118 PART 3 Contributing to Your First Project

The “Using GitHub Conventions in Commit Messages” section also outlines many
helpful things you can include in your messages.

Committing Code with GitHub Desktop
Even though committing from the terminal is pretty straightforward, many
people prefer to use a Graphical User Interface (GUI) application to commit code.
Using a GUI has these benefits:

»» A GUI can provide guidance on conventions with commit messages, such as
keeping the summary to 50 characters and separating it from the description
by new lines. A GUI can simply present two fields: summary and description.

»» A GUI can provide support for GitHub specific conventions, such as the one
where you can specify that a commit resolves an issue.

GitHub Desktop is a GUI created by GitHub that is great for committing code.

Tracking a repository in Desktop
Choose a repository that you have never opened in Desktop, but that you have
locally on your computer. (See Chapter 2 if you haven’t worked with Desktop yet.)
If you need an example, use the best-example repository that you can create in
the section “Creating a Repository,” earlier in this chapter. When you launch
Desktop, the best-example repository isn't listed in the list of repositories.
Desktop doesn’t scan your computer for Git repositories to manage. Instead, you
have to tell Desktop about each repository you want to manage.

As expected, if you use Desktop to clone or create the repository, it’s already
tracking it. But sometimes you have a repository that you cloned or created out-
side of Desktop — for example, I created best-example using the terminal. Now
you need to tell Desktop to track the repository you have chosen. Fortunately, this
task is easy from the terminal.

FIGURE 7-2:
A list of commit

messages, some
with emojis in
the summary.

CHAPTER 7 Writing and Committing Code 119

The Desktop command line tool allows you to launch Desktop from your terminal,
which allows you to easily integrate Desktop as much or as little as you want into
your existing terminal-based Git workflow.

On Windows, you don’t need to install the command line tool; it’s done automati-
cally. On the Mac, you have to take a separate step.

To install the command line tool on a Mac:

1.	 Make sure Desktop is the active application and then, in the application
menu bar, choose GitHub Desktop ➪   Install Command Line Tool.

2.	 From the terminal, make sure that you’re in the repository you want
Desktop to track.

For this example, I’m in the best-example.

3.	 Run the following command:

$ github .

The . in the command represents the current directory. It could, instead, be a
fully qualified path to a directory. GitHub Desktop launches (if it's not already
running) and opens the specified directory. Because the current directory is
already a Git repository, Desktop adds it to the list of repositories that it tracks.
It then sets this repository as the current repository so that you can browse the
repository’s history, switch branches, and create commits, as shown in
Figure 7-3.

If the current directory wasn’t a repository, Desktop prompts you to create a Git
repository in that directory. How convenient!

Publishing a repository in Desktop
To experience the full power of Desktop’s integration with GitHub, you need to
publish this repository to GitHub:

1.	 Clicking the Publish repository button.

A dialog box to publish the repository appears (see Figure 7-4).

2.	 Fill in the details and click the Publish Repository button.

The repository is created on your GitHub.com account.

120 PART 3 Contributing to Your First Project

Desktop provides a keyboard shortcut to open the browser to the repository:
⌘  -Shift-G (Ctrl+Shift+G on Windows).

If you want, you can create a few issues in the repository. (See Chapter 3 to find
out how to create issues.) For this example, I created five issues:

»» Provide more details on the README.

FIGURE 7-4:
The Publish

dialog box used
to publish a

repository to
GitHub.com.

FIGURE 7-3:
GitHub Desktop

opened to the
best-example

repository.

CHAPTER 7 Writing and Committing Code 121

»» Mention in the README that this is a collaborative effort.

»» Add a contribution section to README.

»» Do not use an alert message.

»» Set up website alerts.

You can also see these issues at this repo: https://github.com/FakeHaacked/
best-example/issues.

Committing in Desktop
Desktop is used only for Git operations. To edit the files in the repository, you still
need to use your editor of choice.

Make some changes so you have something to commit. In the example for this
chapter, you can make some changes to index.html shown in bold.

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>The Best Example</title>
 <script src="js/script.js"></script>
 </head>
 <body>
 <h1>The Best Cod3z!</h1>
 <div id="message"></div>
 </body>
</html>

Update script.js to populate the new DIV element, like civilized people would,
rather than use an alert message. Changes are in bold:

document.addEventListener(
 "DOMContentLoaded",
 function(event) {
 var message = document.getElementById('message')
 message.innerText = 'The script ran!'
 }
);

Switch back to Desktop and click the Changes tab, shown in Figure 7-5.

https://github.com/FakeHaacked/best-example/issues
https://github.com/FakeHaacked/best-example/issues

122 PART 3 Contributing to Your First Project

The left pane lists the set of changed files. If you select a file, you can see the

specific changes to that file in the right pane, which is called the diff view.

You can commit all the changes as a single commit, but sometimes you might
have unrelated changes. In this example, I have two unrelated changes:

»» The change to the title in index.html

»» The message changes to both index.html and script.js

Each of these changes should be in their own commit. How do you do that when
index.html contains two unrelated changes? Fortunately, Desktop provides a
nice way to commit a portion of the changes in a file. This process is known as
a partial commit:

1.	 Deselect all changes.

In the left pane, uncheck the check box next to the label 2 changed files to
deselect all changes.

2.	 Select index.html in the left pane.

FIGURE 7-5:
The Changes

View showing the
uncommitted

changes.

CHAPTER 7 Writing and Committing Code 123

Click the filename in the left pane to display the changes for index.html.

3.	 Select the title changes.

In the diff view, click the line numbers in the gutter to select the changes you
want to keep. To select a whole code block, click the thin line just to the right of
the line number. Select the code block next to line 5 by clicking the thin line
next to line 5. After you select the code block, both lines labeled line 5 should
be selected (selected lines show up as blue), as shown in Figure 7-6.

You may be confused about why two lines are labeled 5 in the diff view. The
numbers on the left represent what the file was originally named before you
made the changes. The lines on the right represent the lines of the changed
lines. Because I changed line 5, it's listed twice. Line 10 is a new line that didn’t
exist before, so it is listed only on the right.

4.	 With those lines selected, enter a commit message and then click the
Commit to Main button.

As you can see in the bottom left portion of Figure 7-6, Desktop provides two
fields for commit messages. Go ahead and enter Change the title into the
summary and click the Commit to Main button.

Notice that the diff view updates to have the change only on line 10 (see
Figure 7-7). That’s because I committed the change on line 5.

FIGURE 7-6:
The diff view

with one change
selected.

124 PART 3 Contributing to Your First Project

If you’re following the example in this chapter, make sure all the remaining
changes are selected by clicking the check box next to the label 2 changed files
until the check box is selected.

Using GitHub Conventions
in Commit Messages

You can enhance your commit messages with GitHub-specific features, such as
emojis, issue references, and coauthor credits.

Emojis
Emojis are little images or icons that convey an emotion or concept. Widely used
on GitHub.com, emojis can bring a bit of levity and whimsy to an otherwise serious
occupation.

In the commit summary box, you can initiate the emoji picker by typing the :
character. If you keep typing, you can list all emojis that start with the letters you
type. For example, Figure 7-8 lists all emojis that start with ar as the result of
typing :ar.

FIGURE 7-7:
The Changes

tab after a
partial commit.

CHAPTER 7 Writing and Committing Code 125

You can select the one you want with the arrow keys and then press Tab to com-
plete it. Desktop then fills in the full text of the emoji, which in this case is :art:.

Issue references
GitHub also lets you reference an issue in a commit message with the format #123
where 123 is the issue number. Desktop has support for looking up an issue when
writing a commit message. To try this out, create an issue ahead of time so that
you can reference the issue in a commit message. As an example, I created an
issue that describes the need to test the greeting created by a GitHub Action for
new contributors to this repository. I reference that issue in this commit message.

To reference an issue in a commit message:

1.	 In the commit description field, type Fixes #.

A few recent issues appear. If you don't see the issue you want to reference
and you don’t remember the issue number, you can start typing a word that’s
in the issue that you remember. For example, when I type # greetings an issue
pops up (see Figure 7-9).

2.	 Select the issue you want to reference and press Tab.

In this example, I selected issue 15. Desktop replaces #greetings with #15.

Giving credit to coauthors
Git doesn't support multiple authors directly. However, the Git community created
a convention for specifying multiple coauthors in a commit that is now supported
by GitHub.

FIGURE 7-8:
The emoji picker

listing emojis.

126 PART 3 Contributing to Your First Project

To give credit to coauthors:

1.	 With the Desktop open, in the commit box with the Description
label, click the little icon with a person and a plus sign in the
bottom-left corner.

Desktop adds a textbox to enter a coauthor’s GitHub username.

2.	 Click the @ symbol to see a list of potential users, as shown in Figure 7-10.

GitHub lists only users who have access to the repository — for example,
collaborators and org members (if the repository belongs to an organization).

Just like the issue selector, you can also search by first name, last name, or
username by appending a bit after the @. Press Tab, and Desktop replaces
whatever you typed so far with the selected user’s full username.

3.	 To create the commit, click the Commit to Main button.

To see your commit, click the History tab and click the commit you just created
(see Figure 7-11).

FIGURE 7-10:
A list of potential

coauthors.

FIGURE 7-9:
A list of issues
with the word
“greetings” in

them, in this case
there is only one.

CHAPTER 7 Writing and Committing Code 127

You can see in the commit message in the right pane that my username was
replaced by the line

Co-Authored-By: Sarah Guthals <1314285+drguthals@users.noreply.github.com>

That’s the actual convention for specifying coauthors in Git commit messages. By
using Desktop, you don’t have to remember the exact format. You can just specify
a username and let Desktop handle the rest.

Committing Code from Your Editor
Many editors have built-in support for committing code. Built-in support allows
you commit code without having to switch to another application. The downside
is that different editors have different levels of support for the various conven-
tions you can use in a commit message.

But for quick and dirty commits, built-in support is very useful. Covering how
every editor supports Git commits is out of the scope of this book, but you can see
this in action with VS Code in Chapter 5. For other editors, refer to their specific
documentation.

FIGURE 7-11:
The newly

created commit.

mailto:drguthals@users.noreply.github.com

128 PART 3 Contributing to Your First Project

FOR MORE READING
A lot of great guidance is out there for writing good commits. For example, the Git
documentation at https://git-scm.com/book/en/v2/Distributed-Git-
Contributing-to-a-Project has a section on contributing to a project and
includes some Commit Guidelines.

I’m also a fan of a blog post by Chris Beams entitled “How to Write a Git Commit
Message,” which you can read at https://chris.beams.io/posts/git-commit/.

https://git-scm.com/book/en/v2/Distributed-Git-Contributing-to-a-Project
https://git-scm.com/book/en/v2/Distributed-Git-Contributing-to-a-Project
https://chris.beams.io/posts/git-commit/

CHAPTER 8 Working with Pull Requests 129

Chapter 8
Working with Pull
Requests

I
n Chapter 7, I note that a commit is the smallest unit of work with Git. On
GitHub, the pull request is the main unit of work.

In this chapter, I explain exactly what a pull request is and how it pushes code to
GitHub. I also describe the processes for opening, writing, and reviewing a pull
request.

Understanding a Pull Request
The name pull request is confusing to some folks. “What exactly am I requesting
to be pulled?” Good question. A pull request is a request to the maintainer of a
repository to pull in some code.

When you write some code that you want to contribute to a repository, you create
and submit a pull request. Your code contains some proposed changes to the target
repository. A pull request is your way of offering these changes to the maintainer
of the repository. It gives the repository maintainers an opportunity to review the
changes and either accept them, reject them, or ask for more changes to be made.

IN THIS CHAPTER

»» Creating a pull request

»» Writing a great pull request

»» Reviewing a pull request

»» Exploring pull request workflows

130 PART 3 Contributing to Your First Project

Pushing Code to GitHub
To push code to GitHub, you need a repository. Open the repository of your choice.
If you don’t have a repository yet, Chapter 7 walks through creating a repository
that you can use.

If you’d like to follow along with my example but you haven’t completed the steps
in Chapter 7, fork the repository https://github.com/dra-sarah/best-example
and then clone your fork to your local machine. If that last instruction sounds like
gobbledygook to you, you may want to review Chapter 6, which covers forking and
cloning.

The first thing to do is create a new branch. Creating a new branch before writing
new code is standard operating procedure with Git. I have a confession to make.
I neglected to mention that in the example in Chapter 7. The example directs you
to commit code directly to the main branch. That was a shortcut I suggested to
keep things simple.

In this chapter, you do things the right way and work in a new branch. There’s an
important reason for this. A pull request doesn’t consist of an arbitrary set of
changes or commits. A pull request is always associated with a branch. In other
words, a pull request is a request to merge one branch into another.

While it’s true that a pull request can target any branch (except itself), the most
common scenario is to target the main branch of a repository, typically named
main.

This relationship between pull requests and branches is why you should create a
new branch when starting new work. I name the branch new-work for this exam-
ple, but feel free to name it whatever you want by replacing new-work with your
own branch name in the following command:

$ git checkout -b new-work

Now that you have a branch, you need to create a commit in that branch. For this
example, the specific contents of the commit are not important. You can choose
any file and make some edits to the file, such as adding some text to the end. Or if
you’re following along with the repository I created in Chapter 7, manually edit
the README.md file or run the following command to append some text to the end
of the file:

$ echo "\n## Installation" >> README.md

https://github.com/dra-sarah/best-example

CHAPTER 8 Working with Pull Requests 131

Now that you have a file with some changes, commit those changes. You can use
the following command, for example, to commit all your changes. The commit
message is not important here. The important thing is to have a commit in a
branch to work with that is not in the main branch.

$ git add -A
$ git commit -m "Add text to the README"

Now push this new branch to GitHub.com (replace new-work with your branch
name):

$ git push -u origin new-work

The git push command tells Git to push local commits to a remote repository.
The -u flag specifies where to push it — in this case, to a branch also named new-
work on the remote named origin.

The -u flag is only needed the first time you push a new branch to the server. From
that point on, the new-work branch on your local machine is associated with the
new-work branch on GitHub.com and any subsequent pushes to that branch do not
need the flag.

Opening a Pull Request
Before you can open a pull request, your GitHub.com repository must have at least
one branch other than the default branch. If you follow the steps in the earlier
section “Pushing Code to GitHub,” you have a branch that is not yet merged into
main. In my case, the branch is named new-work branch, but you may have named
yours something else. Visit the repository on GitHub.com to open a pull request.

GIT ALIAS FOR OPENING GITHUB.COM
FROM THE TERMINAL
Often when working with a repository in the terminal, you need to jump to the reposi-
tory on GitHub.com. I have an alias just for this purpose. Chapter 6 covers aliases in
more details and how to add them. You can run the following in the terminal to add a
new git browse alias.

(continued)

132 PART 3 Contributing to Your First Project

When you visit the repository on GitHub.com, you see a new message in the at the
top of the Code tab, as shown in Figure 8-1.

Click the Compare & Pull Request button to navigate to the Open a Pull Request
page, as shown in Figure 8-2. The target branch (the branch you want to pull your
changes into) is the default branch for the repo. Your branch is listed next to the
target branch, and a status of whether your branch can be merged into the target
branch is next to that. The pull request title is the same as the most recent commit
message — in this example Add text to README — and your description is blank.
Figure 8-2 shows an example description.

Click the Create Pull Request button, and you go to the repository with the new
pull request open. Here you can see that the account dra-sarah, or any accounts
who have been added as collaborators to this repository, can assign review-
ers, assign assignees, apply labels, connect to a project, or add to a milestone.
Figure 8-3 shows the pull request opened on the dra-sarah repository.

FIGURE 8-1:
Repository

home page with
recently pushed
branches listed.

$ git config --global alias.browse '!open `git config remote.origin.url`'

To use the alias, just run the following in the terminal from within your repository
directory.

$ git browse

This code launches your default browser and navigates to your repository’s origin
URL. This alias assumes you’re using https for your git remotes and not SSH.

(continued)

CHAPTER 8 Working with Pull Requests 133

You can change the default branch by choosing the Settings ➪   Branches section of
your repository.

FIGURE 8-3:
The pull request

opened on the
dra-sarah/

best-example
repository.

FIGURE 8-2:
The Open a Pull

Request page.

134 PART 3 Contributing to Your First Project

Describing the pull request
From the Open a Pull Request page, you can enter a summary and description.
Chapter 7 covers some GitHub conventions for commit messages. Most of those
conventions are also supported in a pull request — for example, mentioning
people using the @USERNAME format. In Figure 8-2, I mention @dra-sarah. When
I create the pull request, @dra-sarah receives a notification.

You can reference issues and other pull requests using the #ISSUEID format. And,
of course, you can add emojis, such as :sparkles:.

There’s a lot that goes into a good pull request. Once the pull request is opened,
you find a set of options for the pull request to the right of the pull request title
and description fields (refer to Figure 8-2).

Adding reviewers
The first field, Reviewers, lets the repository owner or contributors specify one or
more people to review your pull request. To add reviewers if you are the owner or
a contributor on a repository:

1.	 Click Reviewers to see a list of people you can mention.

For repositories with a large number of users, you can start typing to filter the
set of users.

GIT ALIAS FOR OPENING THE BRANCH
COMPARE WEB PAGE
If, for some reason, the branch for which you want to create a pull request isn’t listed in
the recently pushed branches section, you can navigate to the Compare page for your
branch, which has the format https://gitub.com/{owner}/{repo}/compare/
{BRANCH}. As luck would have it, I have an alias for that:

$ git config --global alias.pr '!f(){ URL=$(git config remote.origin.url);

open ${URL%.git}/compare/$(git rev-parse --abbrev-ref HEAD); }; f'

$ git pr

Just as with the git browse alias earlier in the sidebar “Git alias for opening GitHub.com
from the terminal”, this alias assumes you use HTTPS URLs for your remotes and
not SSH.

https://gitub.com/%7bowner%7d/%7brepo%7d/compare/%7bBRANCH%7d
https://gitub.com/%7bowner%7d/%7brepo%7d/compare/%7bBRANCH%7d

CHAPTER 8 Working with Pull Requests 135

2.	 Click each user to add them to the list of reviewers.

When you add a reviewer, they’re immediately notified when you finish
creating the pull request.

If you aren’t ready to have reviewers start looking at your changes, you can convert
your pull request to a draft. This allows you to continue pushing changes, easily
view the diff, but not get comments or critiques of your work in progress. You can
learn more on the GitHub pull request docs at https://docs.github.com/
pull-requests.

Specifying assignees
The next option after Reviewers is an option to specify assignees. An assignee is
the person who should take action on the pull request. Often, a pull request rep-
resents a work in progress and not the final result of some work. If more work
needs to be done on a pull request, you’d assign the pull request to the person that
should do the work.

To specify assignees:

1.	 Click Assignees to see a list of assignees.

The assignee dialog box works just like the reviewers dialog box, described in
the preceding section. It allows you to select one or more assignees.

2.	 Click each user to add them to the list of assignees.

In most cases, it’s best to just assign one person who will be responsible for the
next step. Assigning one person reduces the chances that multiple assignees all
think the other assignees are responsible for the work.

Specifying labels
Labels provide convenient grouping and context to help you decide what to work
on next or what to review next.

The set of labels you can use on issues and pull requests are the same, but some
labels make more sense for issues than pull requests and vice versa. For example,
many repositories have a “ready for review” label specifically for pull requests.

https://docs.github.com/pull-requests
https://docs.github.com/pull-requests

136 PART 3 Contributing to Your First Project

Specifying projects and milestones
The last two options allow you to specify the project board and milestone that
this pull request belongs to. Chapter 3 covers projects, and Chapter 11 covers
milestones.

Writing a Great Pull Request
Writing a great pull request is a bit of an art. For an open source project, much of
the project’s communication with people occurs within pull requests.

If you’re contributing to a project, your pull request is your chance to make a
strong case for why your code should be pulled into the main branch. Make sure to
put your best foot forward.

Knowing your audience
Before you write a single word, understanding your audience is helpful so that you
can focus your words on what is most useful. A pull request may serve many audi-
ences. Keeping all your audiences in mind is important, but your primary focus is
on the folks who will review and make a decision on whether your pull request will
be merged. You want to make their lives easier as they tend to be very busy.

Even though the project maintainers are your primary audience, you should never
forget that many others may read the pull request. For an open source project,
that audience may be the entire world. So keep your language respectful, friendly,
and inclusive.

It’s pretty common to have someone write a pull request in a fit of anger and later
regret the words they use. So if you happen to be rage coding, take a moment to
cool down and gather your thoughts before creating the pull request.

Making the purpose clear
Make sure to be concise and informative. For example, the summary should make
the purpose of the pull request clear. The summary is the only part shown on the
page that lists pull requests. It needs to be scannable.

CHAPTER 8 Working with Pull Requests 137

Here are some examples of good pull request summaries:

»» Adds the About page to the website

»» Minimizes boilerplate setup code for JavaScript libraries

»» Extracts and isolates error handling from GitStore internals

Here are some bad examples taken from my own repositories:

»» Teams are forever

»» Typo

»» Small changes

The description should provide a bit more explanation about the purpose of
the pull request. Don’t write a book, but do make it clear what the pull request
attempts to accomplish.

Keeping it focused
Much like a commit, a pull request should not contain a bunch of unrelated
changes. A pull request may consist of multiple commits, but they should all be
related to the task at hand.

You can often tell that a pull request is doing too much when writing a concise
description of what the pull request accomplishes is difficult.

Even if the pull request is focused on a single major change, keep the pull request
to a manageable size. Reviewing a very large pull request is difficult.

If the pull request addresses a very large task, break down the task into smaller
steps and submit pull requests for each step.

Explaining the why
The previous section, “Keeping it focused,” focuses on what the pull request
does. You also need to explain why you’re taking on this work. The pull request
description is an opportunity to provide links to other documents that provide
more context. You can’t assume everyone will be familiar with the history.

138 PART 3 Contributing to Your First Project

If you have a lot of context to share, you can provide a brief summary followed by
more details within a <details> tag. For example, if you add a pull request com-
ment with the following text:

The reason we're embarking on this work is due to compliance reasons.

<details>

More Details

I don't want to bore everyone with all the nitty gritty details, but for those

who are interested, keep on reading...

</details>

GitHub displays the details section collapsed by default, as shown in Figure 8-4.

Click the details label to expand the details section, as shown in Figure 8-5.

A picture is worth a thousand words
GitHub supports adding images to a pull request description by dragging and
dropping an image. When you drag and then drop the image on the text field,
GitHub uploads the image and replaces it with the Markdown for rendering an
image. Figure 8-6 shows an upload in progress after I dragged an image into a
pull request comment field.

FIGURE 8-5:
Details section

expanded.

FIGURE 8-4:
Details section

collapsed.

CHAPTER 8 Working with Pull Requests 139

Visit https://github.com/dra-sarah/best-example/pull/1-issuecomment-
1244931357 to see this comment. It’s very meta as it’s a screenshot of the same
repository it’s a comment on.

If an image is worth a thousand words, an animated gif is worth even more. If you
can create an animated gif that demonstrates the behavior change introduced by
the pull request, adding that gif to the pull request is usually very appreciated by
those who review it.

Including a call to action
You need to be very clear about what feedback you want from others on the pull
request. For example, if the pull request is a work in progress, make that clear
from the start so that people don’t waste time reviewing a pull request that isn’t
ready for review.

To make that clear, follow the conventions of the repository. You can find out the
conventions by orienting yourself with the repository as described in Chapter 5.

Following the conventions is important so that others know what is expected of
them with respect to your pull request.

FIGURE 8-6:
Uploading an

image to a
pull request.

WRITING A PERFECT PULL REQUEST
The previous suggestions describe writing a great pull request. It’s not comprehensive.
For more suggestions, check out a blog post on the GitHub blog entitled “How to write
the perfect pull request” at https://blog.github.com/2015-01-21-how-to-write-
the-perfect-pull-request/.

https://github.com/dra-sarah/best-example/pull/1#issuecomment-1244931357
https://github.com/dra-sarah/best-example/pull/1#issuecomment-1244931357
https://blog.github.com/2015-01-21-how-to-write-the-perfect-pull-request/
https://blog.github.com/2015-01-21-how-to-write-the-perfect-pull-request/

140 PART 3 Contributing to Your First Project

Reviewing a Pull Request
Pull requests have two parties involved: the person who writes and opens the pull
request, and the person (or people) who reviews it. In this section, you put your-
self in the position of a reviewer of a pull request.

Reviewing a pull request is a very active activity. It takes a lot of focus and atten-
tion to do it well. It doesn’t serve the folks submitting pull requests if you just take
a cursory look at it, comment LGTM (Looks Good To Me), and don’t provide qual-
ity feedback.

Sometimes, a cursory look is all you have time for. In that case, make it clear what
you did and didn’t review and suggest that someone else provide a more detailed
review.

When someone adds you as a reviewer, you’ll receive a notification about
the request, typically via email or on your notification bell at the top right of
GitHub.com. If you visit the pull request, you see a banner message, as shown in
Figure 8-7.

Don’t click the Add Your Review button just yet. That takes you to a dialog box
to write a write-up of your review. Only do that when you’re ready to complete
your review.

Reviewing the Conversation tab
When you review a pull request, the first thing to do is read through the contents
of the Conversation tab for the pull request. Make sure that you understand the
purpose of the pull request and why it’s necessary.

FIGURE 8-7:
Message

requesting your
review on this

pull request.

CHAPTER 8 Working with Pull Requests 141

At the bottom of the conversation is a section that displays the checks that GitHub
runs against the repository if there are any. If no checks are set up, you see the
message Continuous integration has not been set up. The status of these
checks is the next thing you should check. Many repositories have several checks,
such as does the code compile, did all the tests pass, and so on.

If any of these tests fail, you shouldn’t spend any more time reviewing the code.
The person submitting the pull request can see that their pull request doesn’t pass
all the checks, and it’s up to them to fix it.

Even though the person submitting a pull request should be able to see that the
checks have failed, sometimes they don’t stick around long enough after creating
the pull request to see that. You may want to add a gentle note that mentions the
person submitting the pull request and informs them that the checks have failed
and they should try fixing the problems and push their changes to the pull request
branch again.

Figure 8-8 shows an example from the GitHub Desktop open source project of a
pull request that fails the continuous integration (CI) builds.

Reviewing the changed files
Assuming you’re happy with the contents of the Conversation tab and all the
checks pass, it’s time to get into nitty gritty and review all the file changes. Click
the Files Changed tab to see all the changes in the pull request.

FIGURE 8-8:
Pull request with

failed checks.

142 PART 3 Contributing to Your First Project

At this point, you should review the code for things like

»» Clarity: Is the code easy to read and understand? Could it be made more
clear? Are there appropriate comments throughout the code? Obtuse,
hard-to-understand code becomes a maintenance nightmare down the road.

»» Correctness: Does the code do what the pull request says it does? Are
there any glaring bugs? Are there any errors of omission? Are there any
tests missing?

»» Security: Related to the previous item, a security review requires a specific
mindset. Ideally, you work with security experts who can help review the code
for security. The idea here is to think about all the ways a bad actor could
attempt to attack the code. There are many frameworks for doing security
review, such as STRIDE. You should also think about how bad actors can use
the code to harm other users. Does the code protect users privacy? Does it
ask for consent to take actions on behalf of users?

»» Conventions and idioms: Just because code is correct, it doesn’t mean it’s
necessarily idiomatic. A code review is a good place to teach and learn
conventions and idioms specific to a project.

In the last section, I mention conventions. By conventions, I mean common
approaches to accomplishing a task. For example, if your project has a certain
approach to querying the database, make sure the code follows that approach.

One thing to note is I don’t cover code style issues in the list of things to review.
A code review should not cover nitpicks such as whether a curly brace goes on its
own line. An overly pedantic nitpicky code review does not set a friendly and col-
laborative tone. Depending on the context, you can just fix these things yourself
or better yet, use automated tools, such as a linter or prettifier, to do it. You’ll save
everyone a lot of time and headaches.

Commenting on code
When reviewing changed files, you can add comments to specific lines of code to
indicate a problem with the code, add a suggestion to make it better, or celebrate
someone’s awesome code writing skills with a :sparkle:.

Positive and encouraging comments set for a welcoming and collaborative tone.
Maintainers often forget how daunting it can be to contribute code to a project for
the first time. Don’t be stingy with the :sparkle: emojis!

CHAPTER 8 Working with Pull Requests 143

To comment on code:

1.	 Hover your mouse over the line of code.

A blue square with a plus sign appears next to the line number.

2.	 Click the square to reveal a comment form for that specific line of code,
as shown in Figure 8-9.

The comment form supports the same things issues and pull requests do, such
as mentions, Markdown, and, of course, emojis.

At this point, you can choose to click Add Single Comment or Start a Review.

Clicking Add Single Comment immediately adds your comment to the pull
request and sends any notifications. This can be useful when making a quick
one-off comment. In most cases, I recommend against this approach as it
doesn’t lead to well considered and thoughtful code reviews.

3.	 Click Start a Review instead to create a review and add the comment as a
pending comment to the review, as shown in Figure 8-10.

The pending label indicates that you’re the only one who can see the comment
so far. By starting a review in this manner, you can continue to add (and edit)
pending comments as you review the code and only publish them when you’re
completely satisfied with the review.

The reason I recommend starting a review as opposed to adding single comments
as you go leads to a more coherent and helpful code review. A common
occurrence when reviewing code is that something you read later in the review
makes you realize a comment you made earlier should be updated or even deleted.

FIGURE 8-9:
Pull Request

Comment form
for a line of code.

144 PART 3 Contributing to Your First Project

A review lets you make those adjustments before you send anything to the author.
This option gives you an opportunity to review your review before publishing it.

Suggesting changes
Sometimes as you review code, you come across a section of code where you
feel like it’d be faster to just fix the code than try to explain in words what should
be fixed.

Or perhaps you run into a lot of small errors, such as typos, where commenting on
each one produces more noise than just fixing them. For these situations, GitHub
supports suggesting a change via a pull request comment that the author can
apply with a click.

To suggest a change:

1.	 Opening the comment form for the line of code you want to change.

When you bring up the comment form, you see an icon with a + and - symbol.
When you hover over the symbol, the tooltip describes the purpose of this
button (see Figure 8-11). The tooltip also describes a keyboard shortcut you
can use to suggest a change, CMD-G.

2.	 Click the Suggest Changes button.

GitHub adds a suggestion block into the body of your comment with the
current contents of the line you want to change.

3.	 Change the contents of the block to suggest what the final result
should be.

Figure 8-12 shows an example where I suggest a change to add the word
“Instructions” to the line.

FIGURE 8-10:
Pending

comment in a pull
request review.

CHAPTER 8 Working with Pull Requests 145

4.	 Click the Add Review Comment button to save your comment to this
review.

Anything you write outside of the suggestion block in the comment is not included
in the suggested change. This lets you provide a reason for the suggested change.
Except for truly simple or self-explanatory suggestions, I recommend always
providing this extra context.

After you create a comment with a suggested change, GitHub displays the change
as a small diff within the comment. If the person viewing the suggestion has com-
mit access, they see an option to commit the suggested change (see Figure 8-13).
They will also thank you for saving them time!

Finishing the review
After you have made all your suggestions, you can finish the review so the author
receives all your valuable feedback and can start to address it. To finalize the
review, click the Finish Your Review button at the bottom of any pending com-
ment (refer to Figure 8-10).

FIGURE 8-11:
Comment form

with the Suggest
changes button.

FIGURE 8-12:
Comment with a

suggested
change.

146 PART 3 Contributing to Your First Project

You see a form where you can write your overall summary about the pull request.
This form is an opportunity to bring up any review comments that are not specific
to any lines of code. It is also a good opportunity to offer some general praise,
raise broad concerns, suggest follow-up actions, and so on.

After you type your comment, check one of the options to indicate your position
on the pull request. Figure 8-14 shows the comment form with the review options.

If you’re reviewing your own pull request, the only option available is to Comment
on the pull request.

Your choice may determine whether this pull request can be merged into the
default branch. Whether your choice blocks a merge depends on how the branch
protection rules in place for the repository. For example, some repositories may

FIGURE 8-14:
Comment with

a suggested
change.

FIGURE 8-13:
Comment with

a suggested
change.

CHAPTER 8 Working with Pull Requests 147

require a certain number of approved reviews before the pull request can be
merged. Choose Settings ➪   Branches to manage branch protection rules.

Reading More about Pull Requests
Pull requests and code reviews are a very important part of the software develop-
ment lifecycle. As such, a lot of great advice is out there for doing these things
well — more advice than I can offer in a single chapter. Here are two articles
to read to help you get the most out of pull requests and code review.

»» Building an Inclusive Code Review Culture: How you review code is a
reflection of your overall culture. This article describes an approach that is
inclusive and collaborative.

https://blog.plaid.com/building-an-inclusive-code-review-culture/

»» Code Review Like You Mean It: This article is a brief write-up about the
efficacy of code review along with some tips on how to do them well.

https://haacked.com/archive/2013/10/28/code-review-like-you-mean-it.aspx/

https://blog.plaid.com/building-an-inclusive-code-review-culture/
https://haacked.com/archive/2013/10/28/code-review-like-you-mean-it.aspx/

4Managing and
Contributing to
Large Projects

IN THIS PART . . .

Find open source software (OSS) projects on
GitHub.com.

Discover effective strategies for contributing to
OSS projects.

Read and understand contributing guidelines for large
projects.

Set up a repository so that it’s ready for an OSS project.

Discover strategies from OSS that are useful for large,
private projects.

Create a team on GitHub to better manage your
inner-source projects.

CHAPTER 9 Exploring and Contributing to OSS 151

Chapter 9
Exploring and
Contributing to OSS

For developers, GitHub is the greatest source of treasure ever created, if you
know where to look. An open source repository exists for every possible need
out there. This cornucopia of choice can be overwhelming at first.

Going beyond just making use of open source software (OSS), contributing to open
source is a fantastic way to continue your development as a software developer. It
gives you the opportunity to work with technologies that you may not otherwise
work with in your day job. It connects you with a large community of developers
working on a diverse array of challenges. Many of these developers are happy to
share their knowledge with folks looking to learn something new.

In this chapter, I look at ways to explore the range of open source software GitHub
has to offer. I not only look at ways of discovering repositories you may want to
use in your own projects, but also provide tips for finding repositories you may
want to contribute to.

IN THIS CHAPTER

»» Exploring OSS projects on GitHub

»» Contributing to OSS

»» Contributing guidelines

152 PART 4 Managing and Contributing to Large Projects

Exploring GitHub
The Explore page on GitHub, located at https://github.com/explore, is a great
starting point to discover repositories, topics, collections, and OSS projects that
may align with your interests. It contains a mix of human and algorithmically
curated content. The Explore page displays a selection of repositories based on
your interests. This selection is an algorithmically curated page of recommenda-
tions specific to you. Figure 9-1 shows a portion of the Explore page.

GitHub employs machine learning techniques to generate a list of recommenda-
tions based on repositories you’ve starred, contributed to, and viewed. The rec-
ommendations also factor in the people you follow on GitHub.

To improve the recommendations, be mindful of the repositories you star and the
people you follow.

In the next several sections, I describe each section of the Explore page and its
significance. Where it makes sense, I cover what you need to do to make your
repository a candidate for inclusion in the section.

Exploring topics
The Popular Topics section lists the most popular topics on GitHub. A topic is a
user-applied category for a repository. A topic gives people more information
about what a repository is about. A repository owner can specify multiple topics
for a repository. The concept is very similar to tags or issue labels.

Figure 9-2 shows the list of topics for the thewecanzone/GitHubForDummies
Readers repository. Admins for the repository see a Manage Topics icon that lets
them add or remove topics for the repository.

FIGURE 9-1:
The Explore page

on GitHub.

https://github.com/explore

CHAPTER 9 Exploring and Contributing to OSS 153

When you add topics, you type a portion of a topic name, and GitHub offers sug-
gestions based on the topics that others use within GitHub. Figure 9-3 shows an
example where I typed novice, and GitHub suggests other topics with the word
novice in them.

Visit the Topics page at https://github.com/topics to see the most used topics
on GitHub.

FIGURE 9-2:
List of topics for

a repository.

FIGURE 9-3:
A list of

suggested topics.

https://github.com/topics

154 PART 4 Managing and Contributing to Large Projects

Clicking a specific topic is a great way to explore repositories related to a subject
that you’re interested in. For example, if you’re interested in exploring Node.js
repositories, you can navigate to https://github.com/topics/nodejs.

Topics are open-ended in that people can apply any topic they want to a reposi-
tory. However, popular topics are often curated. For example, the Node.js topic
page has a description and logo (see Figure 9-4). Figure 9-4 also shows the many
options for sorting the topic’s repositories via the expanded Sort button.

The topic descriptions and logo are themselves specified in an open source
repository. Anyone can suggest edits for an existing topic description. Anyone can
propose a topic description and logo for a new topic.

The descriptions and logos are located in the https://github.com/github/
explore repository. For example, the topic logo and description for the node.js
repository is located at https://github.com/github/explore/tree/main/
topics/nodejs.

Trending repositories
The next section on the Explore page includes a list of the top 25 trending reposi-
tories. Click the heading to visit https://github.com/trending, a page where
you can discover repositories and people that are trending across GitHub.

FIGURE 9-4:
Topic page for

Node.js.

https://github.com/topics/nodejs
https://github.com/github/explore/
https://github.com/github/explore/
https://github.com/github/explore/tree/main/topics/nodejs
https://github.com/github/explore/tree/main/topics/nodejs
https://github.com/trending

CHAPTER 9 Exploring and Contributing to OSS 155

Why only 25 trending repositories? To have more than 25 trending repositories
would dilute what it means to be trending. Also, it takes a lot to compute trending
repositories, so limiting it keeps the cost low.

This page lets you filter trending repositories based on the primary language of
the repository. If you’re interested in the trending JavaScript libraries, click the
Other Languages button and select JavaScript.

The Trending button at the top of the page defaults to today, but you can click it
to see what’s been trending for the week and month.

To determine what’s trending, GitHub looks at a variety of data points, such as
stars, forks, commits, follows, and pageviews. GitHub weighs these data points
appropriately and factors in how recent the events were, not just total numbers.

Exploring collections
The next three sections are curated collections. At the time of writing, they are
currently Pixel Art Tools, Game Engineers, and Made in Brazil.

Each collection is fully curated by a human. A collection may contain a list of web
pages and repositories. The goal is to be a great starting point for learning a par-
ticular subject in depth by listing websites for further reading and repositories
with related code.

For example, to edit The Learn to Code collection, suggest an edit to this file in the
github/explore repository:

https://github.com/github/explore/blob/main/collections/learn-
to-code/index.md

Exploring events
The Events section lists a selection of upcoming GitHub affiliated events, such as
GitHub Universe (GitHub’s yearly flagship conference), GitHub Satellite (smaller
GitHub community events hosted around the world), and All Things Open (an
event promoting open source).

Check this page often to find out about future events, which can be a great way to
connect with the larger GitHub community.

https://github.com/github/explore/blob/main/collections/learn-to-code/index.md
https://github.com/github/explore/blob/main/collections/learn-to-code/index.md

156 PART 4 Managing and Contributing to Large Projects

Exploring GitHub Sponsors
The GitHub Sponsors section takes you to https://github.com/sponsors/
explore where you can find a list of all of the open source projects and maintain-
ers that create dependencies you have in your repositories. This is a great way to
monetarily give back to the projects and people that make what you do possible.

Getting by with help from your friends
Exploring what others on GitHub are up to is a great way to discover interesting
new repositories. Whether it’s your friends or other people you admire, be sure to
pay attention to what they’re up to on GitHub. One way to do so is through stars.

As you explore repositories on GitHub, be sure to star the ones that pique your
interest. To see your starred repositories, go to https://github.com/stars.
Starring a repository not only is a good way to bookmark a repository for later
exploration, but it also is a nice way to show a repository some recognition.

On the right of the stars page is a grid of avatars for your friends on GitHub. Click
a friend to see the repositories they’ve starred. Starred repositories often surfaces
interesting repositories you may not have otherwise noticed.

You can also visit the profile page for your friends or other developers who you
admire and look at their pinned repositories. Pinned repositories are repositories
that a person explicitly chooses to feature. Figure 9-5 shows the pinned reposito-
ries for a GitHub user.

FIGURE 9-5:
A profile page.

https://github.com/sponsors/explore
https://github.com/sponsors/explore
https://github.com/stars

CHAPTER 9 Exploring and Contributing to OSS 157

Finding Places to Contribute
Some of you may be ready to move beyond just using open source code and are
ready to hone your skills by contributing back to open source. How do you find a
project to contribute to?

Exploring interesting repositories on GitHub comes into play when looking for a
place to contribute. The only difference is that you’ll have to narrow your explo-
ration down even more when looking for a place to contribute.

The first thing to ask yourself is what type of repository do you want to contribute
to. Answering this question can help narrow and guide your search.

There are many valid reasons for contributing to open source. One or more of the
following may apply:

»» I want to get involved in OSS in general and learn how to contribute.

»» I want to help improve a project that I use in my day-to-day work.

»» I want to support a project that does good in the world.

»» I want to expand my skills by working in a technology I don’t normally get to.

»» I’m just bored and want to contribute to something cool.

No matter your reason for contributing to open source, a good place to start when
approaching a new repository is to look for low-hanging fruit. Many repositories
have some manner to indicate issues that would be great for first-time contribu-
tors. Often, they apply a label, such as help-wanted or up-for-grabs.

In fact, some websites scour issues labeled as such and make them searchable to
those looking to get started with open source. The Up For Grabs website at
https://up-for-grabs.net is one example.

The site has a search tool for filtering issues by project, label, and tag. Figure 9-6
shows an example where I’m looking at all projects that are tagged with
javascript.

Several repository results are displayed along with the label that matched the
filter. Click the label for the repository result to see the specific issues for that
repository with that label. Filtering issues is a good way to find a concrete issue to
work on as a beginner.

https://up-for-grabs.net/

158 PART 4 Managing and Contributing to Large Projects

A GitHub topic named help-wanted, which is at page https://github.com/
topics/help-wanted, lists repositories that are looking for help. When you visit a
project that needs help, visit the Issues page to look for potential issues you can
help with.

For example, Figure 9-7 shows the issue tracker for the Visual Studio Code
open source project. Figure 9-7 shows the issues filtered by the good first
issue label.

FIGURE 9-6:
Up for

grabs filter.

FIGURE 9-7:
Visual Studio
Code issues

filtered by the
good first

issue label.

https://github.com/topics/help-wanted
https://github.com/topics/help-wanted

CHAPTER 9 Exploring and Contributing to OSS 159

Surveying a Project for Contribution
Suppose that you decided that you want to contribute to a particular project. What
are the next steps? For this example, I look at the Visual Studio Code repository at
https://github.com/microsoft/vscode.

Reading the contributing guide
Before you embark on contributing to an open source project, you should always
read through the contributing guidelines first.

The contributing guidelines message is controlled by a convention. Add a file
named CONTRIBUTING.md to the root of the repository, a folder named docs, or a
folder named .github to specify contributing guidelines for a repository.

Visual Studio Code’s contributing guidelines are located at https://github.com/
Microsoft/vscode/blob/main/CONTRIBUTING.md.

Like many contributing guides, the guide provides a high-level overview of how
to make contributions to the project. It notes that contribution is more than just
writing code. To emphasize that philosophy, the guide starts by letting you know
where to ask questions about the project. The guide addresses the key topics:

»» Where to ask questions

»» Where to provide feedback

»» Where and how to report issues

»» Details about their automated issue management

»» A link to a guide on how to contribute code

This format is pretty common for contributing guides. Sometimes, a smaller proj-
ect also includes how to contribute code in the main document, but for larger or
more complex projects, contributing code is a big topic.

Reading the contributing code guide
The VS Code project keeps its code contribution guide in a wiki located at https://
github.com/Microsoft/vscode/wiki/How-to-Contribute.

If you plan to contribute code, read through this guide carefully.

https://github.com/microsoft/vscode
https://github.com/Microsoft/vscode/blob/main/CONTRIBUTING.md
https://github.com/Microsoft/vscode/blob/main/CONTRIBUTING.md
https://github.com/Microsoft/vscode/wiki/How-to-Contribute
https://github.com/Microsoft/vscode/wiki/How-to-Contribute

160 PART 4 Managing and Contributing to Large Projects

The guide has the key information you need to code on the project and is struc-
tured in a fashion pretty common among open source projects:

»» Building the code

»» Running the code

»» Debugging the code

»» Running the automated tests

»» Running automated code analysis, such as linting

The next section covers the code contribution workflow:

»» Following the branching strategy

»» Creating pull requests

»» Packaging code for distribution

Reading the code of conduct
The contributing guide focuses on the mechanics of making a contribution. Many
projects now also include a CODE_OF_CONDUCT.md file. This file lays out expecta-
tions for those who participate in the project. It sets the behavioral norms for the
project and a resolution process in cases where violations of the norm occur.

VS Code uses the Microsoft Open Source Code of Conduct located at https://
opensource.microsoft.com/codeofconduct.

Adding a code of conduct to your own repository is easy. If you add a new file on
GitHub using the browser and name the file CODE_OF_CONDUCT.md, GitHub dis-
plays a code of conduct selection drop-down list with two choices: the Contributor
Covenant and the Citizen Code of Conduct.

You can also visit the community page for any public repository to add a code of
conduct. Go to the community page by appending /community to the end of the
repository URL. For example, type https://github.com/microsoft/vscode/
community to see whether the project has a code of conduct. If it doesn’t, the page
gives you the opportunity to propose one.

https://opensource.microsoft.com/codeofconduct/
https://opensource.microsoft.com/codeofconduct/
https://github.com/microsoft/vscode/community
https://github.com/microsoft/vscode/community

CHAPTER 9 Exploring and Contributing to OSS 161

Setting Contributor Expectations
After you’ve read the code of conduct and contribution guides, you’re ready to dive
in and make some contributions. Now’s a good time to make sure that you have
clear expectations for how the process will work.

These general guidelines for contributors may not be spelled out in a contributing
guide, but are more the result of collective wisdom gathered from working in open
source for a long time.

They won’t fix every issue
Many, if not most, projects have limited resources, and their priorities may not
align with your priorities. It’s important to keep all that in mind when you file
an issue. On the one hand, opening a good issue takes time and energy. A well-
written issue that thoroughly describes a problem with clear steps to reproduce
the issue is very valuable to a project, so it’s understandable that people who write
issues feel invested in them.

On the other hand, the fact that an issue may not be fixed is why I say that writing
an issue is a contribution. It’s not an exchange of one thing for another, but it’s a
gift. And as such, you can’t expect much in return. Good project maintainers thank
you for filing an issue and note whether they know of any workarounds at mini-
mum, but they do not owe you a fix. Do not take it personally if an issue you file is
labeled as won't fix.

They won’t merge every pull request
Submitting a pull request is the culmination of a lot of work. To submit a proper
pull request, a developer had to spend the time to get the code working on their
own machine, understand the code well enough to make a change, write the
change, and then submit it.

Being disappointed when the repository maintainers then reject the pull request
is understandable. Remember, though, they’re under no obligation to accept your
pull request. Yes, you put a lot of time into the pull request, but they’ll have to own
the code change for the lifetime of the project.

Having a pull request rejected should be a very rare occurrence. You and the
project maintainers can do a lot beforehand to avoid a rejected pull request. The
first step starts with communication. Before you start work to resolve an issue,
comment on the issue with your intentions. Indicate your general plan of attack.

162 PART 4 Managing and Contributing to Large Projects

Make sure that someone related to the project responds and agrees with your
general approach. This communication reduces the likelihood that you go off and
work on something in a matter completely contrary to the project.

Don’t stop your communication there, though. Keep it going. As soon as you have
a commit or two, push it to a pull request and make sure the pull request is clearly
marked as a work in progress. Marking the pull request as a work in progress lets
you continue to get feedback as you go and ensure that you’re on the right path. It
minimizes the time spent going down the wrong path.

Finally, make sure that you’re following all their contribution guidelines, style
guidelines, and so on. This is their project, and they will own the code if they
choose to merge your pull request in. This is not the time and place to try to advo-
cate for your way of working or your personal code style.

They don’t owe you anything
One of the biggest challenges of being a maintainer of a popular open source proj-
ect is the sense of entitlement expressed by many people who use the software.

In most cases, the maintainers are all volunteers working on the project on the
side. This isn’t always the case. Sometimes, they’re paid employees working on an
open source project. But chances are, you are not the one paying them. They don’t
owe you a feature. They don’t owe you a bug fix. They don’t owe you anything.
And you should treat them accordingly.

Of course, the maintainers of a well-run project try to go out of their way to
accommodate people who participate in a project. It’s only natural that they want
most people involved to be happy. Open source projects benefit from mind share
and more contributors, so it’s often in their best interests to not take a hard line
and try to get you that feature if it fits their roadmap and priorities and isn’t too
much trouble. So it’s not wrong to ask for things. It’s not wrong to make a strong
case for things you want. But at the end of the day, you don’t pay them, and they
don’t owe you a thing.

Keeping Tabs on a Project
When you’re a contributor to a project, it’s good to keep tabs on how the project is
doing. One way is through GitHub notifications. Chapter 1 covers how to manage
notification settings. GitHub can send notifications for new issues, new comments
on pull requests, and so on. It’s important to manage your notification settings
based on your interest level in the project.

CHAPTER 9 Exploring and Contributing to OSS 163

While GitHub may be the hub of open source, a lot goes on outside of GitHub
related to an open source project. You may want to look at the places where a proj-
ect lives outside of GitHub. For example, many projects have a Twitter account you
can follow. Some projects have a public Slack instance where you can chat with the
maintainers and others who use the project. You also may want to read the blogs
of the maintainers of those projects to keep on top of the latest developments.
Many projects and project maintainers still publish RSS feeds, an ancient technol-
ogy that makes it possible to keep up with a site.

CHAPTER 10 Starting Your Own OSS 165

Chapter 10
Starting Your Own OSS

There comes a point in many developers lives when they have their own code
to share with the world. Many different approaches and motivations may
drive a person to share code. In some cases, a person may write some code

they think others will find interesting and just “toss it over the wall” without any
intent to take contributions back. On the other end is the case where someone
wants to start a real movement with large numbers of contributors.

Whatever your motivation, the only requirement for open source software (OSS) is
to choose a license that complies with the Open Source Definition (OSD). You can
find the definition at https://opensource.org/osd. The Open Source Initiative
(OSI) has a process for approving licenses, and its site lists a plethora of licenses.

But for the life of most open source software, choosing a license is just a starting
point. A lot more goes with managing an open source project. In this chapter,
I cover what it means to start an open source project on GitHub, maintain it, and
if it comes to it, sunset it.

Creating an Open Source Repository
When you create a repository with the intent to make it open source, it’s
common to make the repository public and select a license during the repository
creation process.

IN THIS CHAPTER

»» Setting up a repository for OSS

»» Managing OSS workflows

»» Ending an OSS project

https://opensource.org/osd

166 PART 4 Managing and Contributing to Large Projects

Sometimes you want to defer those choices to later. Perhaps you want to set up
your repository right before you make it public to the world. Or you may want to
spend more time thinking about the license. The following sections focus on the
scenario of turning an existing private repository into an open source one.
I assume that you’ve already created a repository with a README.md file, but
didn’t make the repository public nor did you choose a license. (If you haven’t, see
Chapter 3.)

Adding a license
The only requirement that software has to be considered open source is to have an
open source license. GitHub makes adding a license to an existing project easy.

Figure 10-1 shows the home page for a private repository without a license. To add
a license:

1.	 Click the Create New File button.

After you click the button, GitHub prompts you to name the file.

2.	 Type your filename.

For this example, I named mine LICENSE. GitHub notices you’re attempting to
create a license file and helpfully adds a button to the right labeled Choose a
License Template, as shown in Figure 10-2.

FIGURE 10-1:
Home page for
my soon-to-be

open source
repository.

CHAPTER 10 Starting Your Own OSS 167

3.	 Click the Choose a License Template button to see a list of license
templates.

The three most common licenses used on GitHub are listed first in bold, as
shown in Figure 10-3. Chapter 3 provides a brief guide on choosing a license,
but this page has a link to a more detailed guide to help you pick which license
best fits your project.

4.	 After you know which license you want, click the license to view informa-
tion about the license.

This page includes a high-level summary with bullet points about the key traits
of the license. This overview helps you gain an understanding of the license
without having to wade through all the legalese.

Of course, the page also presents the full text of the license for those who
relish legalese. On the right are fields required by the license.

5.	 Enter your information in the fields to customize the license to your
situation.

You can see an example of this page in Figure 10-4.

FIGURE 10-2:
Choose a

License Template
button magically

appears.

FIGURE 10-3:
The license

chooser page.

168 PART 4 Managing and Contributing to Large Projects

6.	 After you’re satisfied with everything, click the Review and Submit
button.

You return to the file creation page with the text of the license filled in.

7.	 Scroll down to enter your commit message and click Commit New File to
create the license file.

Adding contributor guidelines
Another useful document to include in your repository is a file named
CONTRIBUTING.md. This file provides information on how to contribute to your
project. It should include information such as where people should ask questions
and where to provide feedback.

Chapter 9 provides more details on what a contributor can expect to find in a
CONTRIBUTING.md document. That chapter is a good place to start for your own
project’s contribution guidelines.

A robust CONTRIBUTING.md document saves you and your future contributors a lot
of headache and time. Be sure to revisit it from time to time to make sure it’s up
to date.

Adding a code of conduct
A code of conduct makes behavioral expectations clear for everyone who partici-
pates with your project, whether they contribute code, comment on an issue, or

FIGURE 10-4:
The license

information page.

CHAPTER 10 Starting Your Own OSS 169

otherwise interact with others on your repository. A code of conduct sets the tone
for the type of open and welcoming environment you want to foster for your
project.

To add a code of conduct, follow the same process as you do when adding a license,
but name the file CODE_OF_CONDUCT.md. (See the “Adding a license” section, ear-
lier in this chapter.) This process is covered in Chapter 9 as well.

Making a Repository Public
At this point, your repository has the basic items it needs to go public. To change
a repository from private to public:

1.	 Visit the Settings page for your repository.

2.	 Scroll to the bottom of the Settings page to reach the Danger Zone, as
shown in Figure 10-5.

3.	 Click the Make Public button to initiate making a repository public.

This step is a potentially dangerous operation because you may inadvertently
expose information to the world you’d rather keep private. So make sure you
really are ready to make this repository public. If you created it with the
intention of making it public from the beginning, the repository shouldn’t
contain any secrets.

FIGURE 10-5:
Danger zone:

where you can
make a private

repo public.

170 PART 4 Managing and Contributing to Large Projects

GitHub displays a confirmation dialog after you click the Make Public button
asking you to type the name of the repository to confirm this change, as shown
in Figure 10-6.

4.	 Type the repository name and then click the I Understand, Make This
Repository Public button to make the repository public.

The Settings page now has a section that comes in handy as you manage your
new open source project.

Enforcing a Code of Conduct
A code of conduct is a great way to communicate behavioral expectations for a com-
munity. But a code of conduct isn’t enough to create a healthy community on its
own; you have to enforce it.

It would be wonderful if you never had to enforce your code of conduct. Most
people who participate in your project will be helpful and kind. However, as your
project grows and more people get involved, it’s almost inevitable that you’ll have
to step in.

Responding with kindness
Keep in mind that even when someone acts in a matter that doesn’t fit in the spirit
of your code of conduct, they may not necessarily be malicious or a bad actor.
Maybe they’re having a bad day, and they took it out on your repository. That
doesn’t excuse their behavior, but it is relatable. We’ve all done it.

FIGURE 10-6:
Confirmation to

convert a private
repo to public.

CHAPTER 10 Starting Your Own OSS 171

If someone makes an off color or angry comment in an issue in your repository
that goes against the type of community you want to foster, it’s often disarming
to reply back with a kind response that expresses empathy for their situation, but
is clear that the comment doesn’t meet community guidelines. Be specific in how
it does not meet the guidelines and if you can, suggest an alternative approach
they could have taken.

For example, if someone comments on the repository that the maintainer must
hate other people because they haven’t fixed a particular bug, you can respond
with something like “Personal attacks are not welcome in this repository. We are
all volunteers trying to work on this in our spare time. I understand that you are
frustrated. Instead of a personal attack, perhaps write about how the bug affects
you and why that is frustrating to you.”

But always remember, you don’t owe anybody anything. You’re not there to be a
punching bag for people. If they’re abusive or if you’re simply tired of a thousand
paper cuts of negative comments, rather than respond while angry, take a break.
Walk away. Ask for help. Your own mental well-being comes first.

Leveraging the ban hammer
It would be nice if a kind admonishment worked in every situation (see preceding
section), but sometimes tempers flare. We’re all human, and sometimes we lose
our temper. So will people who participate in your repository. This situation is
where temporary interaction limits come in handy.

At the very bottom of the Settings page for your public repository (this setting
doesn’t exist for a private repository) is a moderation section with a link to Inter-
action Limits. Click this link to see the set of limits available. Figure 10-7 shows
this page after enabling the Limit to Prior Contributors option for 1 week.

These limits are not permanent bans. They are cool-down periods. While interac-
tion limits across your repository remain in effect until you disable them, an indi-
vidual restriction is intended to be a limit and not a ban. This tool is great to use
when a discussion or an issue gets a bit too heated. It gives everyone time to cool
down and prevents the discussion from running even further out of control. If a
user who is not authorized to make changes to the repository attempts to make a
change, they are met with a message. For example, if someone who hasn’t con-
tributed to a repository yet tries to open a pull request on a repository that has a
limit to prior contributors, they see a message that states: “An owner of this
repository has limited the ability to open a pull request to users who have
contributed to this repository in the past.”.

172 PART 4 Managing and Contributing to Large Projects

Blocking users
Every once in a while, you may encounter a truly abusive person in your project.
You’ve tried to kill them with kindness. You’ve tried the 24-hour cool-down
periods, but they persist in being rude or antagonistic. It’s time to block or report
the user.

To block or report the user:

1.	 Click the user’s name next to their comment to visit their profile page.

Underneath their profile picture is a link to block or report the user, as shown
in Figure 10-8.

2.	 Click the link to block or report the user.

A dialog box with two options appears: Block User or Report Abuse, as shown
in Figure 10-9.

3.	 Click Block User to immediately block the user.

Blocking a user denies a user from accessing your activity and repositories.
It also prevents them from sending you notifications, such as when they @
mention your username. They pretty much no longer exist as far as you are
concerned, and vice versa. For more details on what happens when you block
a user, visit https://docs.github.com/communities/maintaining-your-
safety-on-github/blocking-a-user-from-your-personal-account.

FIGURE 10-7:
The set of

interaction limits.

https://docs.github.com/communities/maintaining-your-safety-on-github/blocking-a-user-from-your-personal-account
https://docs.github.com/communities/maintaining-your-safety-on-github/blocking-a-user-from-your-personal-account

CHAPTER 10 Starting Your Own OSS 173

You can also block users, see a list of users you currently have blocked, and unblock
users from your account Settings page by going to https://github.com/
settings/blocked_users.

Writing a README.md File
The README.md file holds a special significance on GitHub. When you visit a
repository’s home page, GitHub displays the contents of the README.md rendered
as Markdown on the home page. The README.md contents is what visitors to your
repository expect to see to learn more about your project.

FIGURE 10-8:
Profile page with

link to block or
report user.

FIGURE 10-9:
Dialog box with
Block User and

Report Abuse
buttons.

https://github.com/settings/blocked_users
https://github.com/settings/blocked_users

174 PART 4 Managing and Contributing to Large Projects

Chapter 3 includes information about what should be included in a README.md file.
It should also include links to your CONTRIBUTING.md and your CODE_OF_CONDUCT.
md files. After reading this file, a person should understand what your project
does, how to get involved, and where to go to find out more information.

Writing Good Documentation
One of the most neglected aspects of open source is documentation. Writing good
docs is a great way to distinguish your project from the rest. Also, documentation
provides a nice way for others to dip their toes into open source.

GitHub supports a wiki feature, but I recommend using a relatively unknown fea-
ture, serving a documentation site from the docs folder in the main branch of your
repository. This feature has many benefits, but one of the big ones is the ability to
version your documentation along with the code that it documents.

Chapter 4 walks through building a GitHub Pages site. Serving your documenta-
tion from the docs folder is very similar to that process. The following steps
assume that you have a repository that is not a GitHub Pages website. Chapter 3
walks through creating a regular repository if you need a refresher.

Make sure to commit a file named index.html to the docs folder in the main
branch of your repository. This feature requires that there’s already a docs folder
before you can enable it. If you’re unclear about how to do that, Chapter 7 covers
writing and committing code in detail.

Navigate to your repository settings and then scroll down to the GitHub Pages
section. By default, the Source is set to None. Click the button and select the main
branch and then specify the /docs folder as shown in Figure 10-10 and then click
the Save button.

You can now visit your documentation site at https://{USERNAME}.github.io/
{REPO-NAME}/. To see an example of this in action, visit https://dra-sarah.
github.io/best-example/.

As I cover in Chapter 4, you can select a theme and add a custom domain name if
needed.

Don’t forget to add a link to the docs site to your README file so that people can
find it.

https://dra-sarah.github.io/best-example/
https://dra-sarah.github.io/best-example/

CHAPTER 10 Starting Your Own OSS 175

Alternatively, you can deploy GitHub pages using a GitHub Action. Select GitHub
Actions instead of Branch under Source, and choose one of the templates for Jekyll
or static HTML.

If you want to still deploy only your docs subfolder, make sure you change the
GitHub Action to point to docs` as the the path instead of ..

Managing Issues
As the word gets out about your open source project, people will start to try it out.
And at some point, people will open issues. Congratulations! When an issue is
opened, it means someone out there cared enough to report a bug, ask a question,
or make a feature request. This interest is a good thing for an open source project.

But if your project becomes very successful, the influx of new issues can start to
get overwhelming. In the following sections, I cover some tips on managing
incoming issues.

Labeling issues
GitHub provides a default set of issue labels when you create a website.

»» bug

»» duplicate

»» enhancement

FIGURE 10-10:
Serving a GitHub

Pages site from
the docs folder.

176 PART 4 Managing and Contributing to Large Projects

»» good first issue

»» help wanted

»» invalid

»» question

»» ready for review

»» won’t fix

You can manage these labels by going to the Issues tab and clicking the Labels
button. Make sure the set of labels makes sense for your project. Assigning labels
helps you manage issues as they come in.

Triaging issues
As new issues are created, it’s important to triage issues. The word triage comes
from the medical field. Merriam-Webster defines triage as “the sorting of patients
(as in an emergency room) according to the urgency of their need for care.”

Triaging issues is similar to triaging in a hospital. Triage, when applied to issues,
is the process of reviewing new issues and assigning labels to indicate what type
of issue are they (bug report, feature request, and so on), determining their prior-
ity, and assigning issues to people. In some cases, you may close issues you don’t
plan to address during triage.

Every triaged issue should have some label applied. If necessary, you can even
create a triaged label for this purpose. Assigning a triaged label to issues that
you’ve triaged makes it possible to see all issues that haven’t yet been triaged by
using the unlabeled filter, as shown in Figure 10-11.

FIGURE 10-11:
Unlabeled

issues filter.

CHAPTER 10 Starting Your Own OSS 177

To maintain a sense of sanity, it often makes sense to schedule triage on a regular
cadence as opposed to doing it all the time as people create new issues.

Issue templates
It would be great if everyone who submits an issue understood how to write a
proper bug report or if they understood what makes for a good feature request.
A bug report that just says “Your stuff is broken” is not too helpful to the reposi-
tory maintainer.

To help foster good issues, you can set up issue templates that guide people filing
issues on your repository to supply the information you need.

In the Settings page for your repository, in the Issues section in the main pane, is
a big green button labeled Set Up Templates. Clicking that button takes you to a
templates setup page where you can choose from a set of pre-existing issue
templates or create your own, as shown in Figure 10-12.

From the templates setup page, follow these steps:

1.	 Select both the Bug Report template and then select the Feature Request
template.

You should see them listed on the page. Note they’re not yet active. They still
need to be committed to the repository. You can click the Preview and Edit
button for each template if you want to change anything.

2.	 Click the Propose Changes button to enter a commit message for these
templates, as shown in Figure 10-13.

FIGURE 10-12:
Choosing an issue

template.

178 PART 4 Managing and Contributing to Large Projects

3.	 Click the Commit Changes button to commit these templates to the
repository.

They are stored in a special .github/ISSUE_TEMPLATE folder. If you navigate
to that folder, you should see two files, bug_report.md and feature_
request.md. Take a look at the contents of those files to understand the
structure of an issue template.

You can create new templates by going through the previous steps or by manually
adding a file to the .github/ISSUE_TEMPLATE directory with the same basic struc-
ture as the existing issue template files.

Now, when someone creates an issue on your repository, they first see a set of
issue templates, as shown in Figure 10-14.

FIGURE 10-13:
Choosing an issue

template.

FIGURE 10-14:
Choose an issue

template to
create an issue.

CHAPTER 10 Starting Your Own OSS 179

Clicking the Get Started button on one of the templates then displays the issue
creation form, but with the contents prepopulated with the template information.
Figure 10-15 shows an issue prepopulated with the default Bug Report template.

The contents of the issue walks the issue creator through all the information
expected of them. Of course, the person creating the issue can always choose to
ignore the template and put anything they want in the issue.

Saved replies
Often, as your repository grows in popularity and the issues start to flow in, you’ll
find yourself repeating responses over and over again. For example, if someone
reports a bug, you may need them to supply a log file. If every bug report should
include a log file, then you should mention that in an issue template.

But even if you do, many folks will forget to include it. This situation is where a
saved reply can come in handy. A saved reply is a canned response you can use over
and over again.

As of this writing, canned responses apply only to a user and are not specific to a
repository. So you can create your own saved replies, but they aren’t immediately
available to other members of your repository.

Go to https://github.com/settings/replies to manage your list of saved
replies. To create a new saved reply, fill in the form at the bottom, as shown in
Figure 10-16.

FIGURE 10-15:
A new issue with

the Bug Report
template filled in.

https://github.com/settings/replies

180 PART 4 Managing and Contributing to Large Projects

To access the saved replies when responding to an issue or a pull request com-
ment, click the arrow in the top-right corner of the comment box, as shown in
Figure 10-17. That brings up a list of your saved replies. Click the one you want to
use to fill the comment box with that reply.

FIGURE 10-16:
Creating a new

saved reply.

FIGURE 10-17:
Selecting a saved

reply in a
comment box.

CHAPTER 10 Starting Your Own OSS 181

Ending Your Project
At some point in the life of a repository, you may want to step away from it. This
break may happen for many reasons. Perhaps the project is no longer useful, hav-
ing been supplanted by other better projects. Perhaps the project is a runaway
success, but you don’t have the time to give it the attention it deserves.

Whatever the reason, it’s important to handle the end of your involvement with
the repository with the same care you showed in starting it.

Archiving a project
Archiving a project is a good option when a project is no longer all that useful to
others. Or even if it’s still useful, but mostly complete, archiving could be a good
option. Archiving a project indicates that the project is no longer actively main-
tained. The code is still available to the world, and people can fork and star your
project, but nobody can create new issues, pull requests, or push code to an
archived repository.

To archive a repository, go to the repository settings page:

1.	 Scroll all the way down to the Danger Zone and click Archive This
Repository, as shown in Figure 10-18.

Clicking this button displays a detailed confirmation box that describes what
will happen if you archive the repository, as shown in Figure 10-19.

2.	 Type the name of the repository and click I Understand the
Consequences, Archive This Repository to archive it.

Your repository is archived.

FIGURE 10-18:
The button to

archive a
repository.

182 PART 4 Managing and Contributing to Large Projects

Transferring ownership
If your project is popular with a robust set of maintainers, you may want to trans-
fer ownership to another account rather than archive the project. Transferring
ownerships lets the new owner have full rights to the repository and continue to
maintain it.

To transfer ownership:

1.	 Go to your repository’s Settings page and scroll down to the Danger Zone.

2.	 Click the Transfer button to bring up the transfer dialog box, shown in
Figure 10-20.

3.	 Confirm the current repository’s name and type the new owner’s
username or organization name.

The URL to the repository changes, but GitHub redirects the old URL to the
new URL when anyone tries to visit the repository.

4.	 Type the name of the repository and click I Understand, Transfer This
Repository.

FIGURE 10-19:
Finish archiving a

repository.

CHAPTER 10 Starting Your Own OSS 183

Once you transfer the repository, you see a message at the top of the repository
that says “Repository transfer to <username> requested,” where <username> is
the GitHub user or organization that you transferred the repository to.

The user you want to transfer the repository to then gets an email and can com-
plete the transfer by clicking a link; if they do not accept the transfer in one day,
the request expires. After clicking the link, they’re taken to GitHub where they
find a message at the top of the GitHub home page that says “Moving repository
to <repository-name>. This may take a few minutes.” Once the transfer is com-
plete, the repository is removed from your account and added to the account of
the person you transferred it to.

FIGURE 10-20:
The transfer

repository
dialog box.

CHAPTER 11 Inner-Source Your Code on GitHub 185

Chapter 11
Inner-Source Your Code
on GitHub

Chapters 9 and 10 talk about the open source community and best practices
on GitHub.com. But if you want to keep your code private, GitHub offers
unlimited private repositories for free, personal plans to support your pri-

vate software development.

In this chapter, you discover some situations where you may want to code in pri-
vate. You also get the inside scoop on inner-sourcing your code.

Why Code in Private?
If you’re appropriately representing the open source community, you may be
inclined to do everything in the public. But what if you work at a company on pro-
prietary code? What if you’re starting a new company where you plan on selling
software? Or, what if you’re a student, and you’re working on a group coding
assignment? These are examples of when it may be appropriate to work in a private,
collaborative environment, when it may be appropriate to inner-source your code.

Inner-sourcing is really just a play on words with open source. It implies that you
use the same (or similar) strategies to collaborative code writing as open source,
but you do it on private repositories.

IN THIS CHAPTER

»» Creating a GitHub organization

»» Setting up teams

»» Understanding inner-source best
practices

186 PART 4 Managing and Contributing to Large Projects

Using GitHub Organizations
Depending on whom you’re working with and the scope of the project, you may
want to have access to certain GitHub features. If you’re working on proprietary
code for a company (or code that may be a product for a future company you’re
hoping to start), then the investment of GitHub Teams may be suitable, giving you
private repos as part of an organization. But if you’re working with other students
at your university on a semester-long project, then just creating a private repo
may be good enough.

Creating a GitHub organization
GitHub organizations allow you to give a group of users access to a set of reposito-
ries all at once. With features such as teams, you can also have subgroups of users
who have different access rights to different repositories. This setup also makes
communicating across GitHub easier because you can tag an organization (or
team) instead of an individual person. If you’re running a large project that has
more than one repository, organizations may be a good option for you.

You can start an organization in one of three tiers:

»» Free: In this tier, you get unlimited public and private repositories, unlimited
collaborators, issues and bug tracking, and project management. Essentially,
this tier allows a core group of people who are working on an open source
project to work together easier. If you don’t need advanced features such as
GitHub Codespaces or workflow features on private repositories such as code
owners or protected branches associated with the organization, this tier is a
great option.

»» Team: In this tier, you get everything from the previous tier, plus 32 GB of
GitHub Codespaces, advanced code workflow features on private repositories,
pages and wikis on private repositories, and advanced insights into all your
repositories.

Two-factor authentication is available on all organizational tiers and is when
you’re required to enter your password plus perform an additional security
measure to ensure it is really you logging in to the website. Because pass-
words can sometimes be hacked, organizations often require that you use a
mobile app (such as Duo Mobile or Google Authenticator), text-message
confirmation, or a physical YubiKey to verify that it is you.

»» Enterprise: In this tier, you get everything from the previous two tiers, plus
more CI/CD minutes per month, more package storage, and GitHub Connect,
which allows you to share features and workflows between your GitHub
Enterprise Server instance and GitHub Enterprise Cloud.

CHAPTER 11 Inner-Source Your Code on GitHub 187

Continuous Integration/Continous Deployment CI/CD is a category of developer
tools that use automation to consistently merge small changes into your main
branch (integration) and consistently deploy changes from the main branch to
production (deployment).

You can find the tiers by clicking the plus symbol at the top right of GitHub.com
(when you’re logged in) and choosing New Organization. You see a new page
where you can choose the organization’s name, specify a billing email address,
and choose a tier.

Don’t worry: If you choose the free tier, you aren’t billed anything; you won’t even
be asked for a credit card.

Inviting members to your GitHub
organization
During the organization setup process, you’re asked if you want to invite others to
join your organization. Using their GitHub.com alias, you can search for them in
the provided box and send them an invite. If you forget to invite someone or want
to invite them later, you can still do so by going to the People tab on the organiza-
tion’s home page and clicking Invite Member. You can choose the permission level
for the person you invite to your organization, shown in Figure 11-1. You can
change the permission level later, if you need to.

FIGURE 11-1:
Inviting someone

to join your
organization.

188 PART 4 Managing and Contributing to Large Projects

If you’re on the free tier, you have unlimited seats, but if you’re on the paid tier,
then you have only the number of seats you’re paying for.

The Teams tier has a minimum of five seats at a set price. If you want to add more
seats, you can, but you always start with five.

After you invite someone to your organization, they receive an email notification
with a link to accept the invitation, or they can go to the organization’s GitHub
home page to accept the invitation. For example, in Figure 11-1, I invited Sarah to
be a part of the Guthals organization because it’s my primary account. When
I visited https://github.com/Guthals while logged in to my primary GitHub
account, I saw a banner and View Invitation button at the top of the page. Clicking
the View Invitation button, I was taken to a new page, shown in Figure 11-2, where
I was able to first see what kind of access the owners of the Guthals organization
would have to my primary GitHub account information if I were to join.

Viewing repositories for your organization
Repositories is the default tab on your organization home page. This page shows
you all the repositories associated with this organization. For example, if you go
to the Microsoft organization home page on GitHub (https://github.com/
microsoft), you find more than 5,000 repositories and more than 4,000 people
involved in open source projects for Microsoft (see Figure 11-3).

FIGURE 11-2:
Invitation

request from
the invitee’s

account.

https://github.com/Guthals
https://github.com/microsoft
https://github.com/microsoft

CHAPTER 11 Inner-Source Your Code on GitHub 189

The Overview page has a README.md file at the top that describes how to get
involved with open source projects maintained by the Microsoft organization.
Pinned repositories appear just under the organization’s README.md. Pinned
repositories are the ones that the Microsoft organization owners think are
the most relevant to folks interested in what Microsoft is doing in the open
source space. For example, the VS Code repository has more than 140,000 stars
and more than 24,300 forks. As one of the most popular editors and most popular
open source projects, Microsoft wants to make sure this repository is front and
center for visitors to their open source organization home page.

Managing members of your organization
You will always have at least one member of your organization — you! But this
section is more interesting if you have more than one member, so if you haven’t
invited other members yet, go to the earlier section “Inviting members to your
GitHub organization” and invite someone else.

To see all your organization’s members, from your organization home page, click
the People tab. You should see all the members of your organization on this tab,
as shown in Figure 11-4.

On the right of each member is a small cog drop-down menu. This menu gives you
quick options for managing your organization members. You can also get all these
options and more information about a specific member by choosing Manage from
that drop-down menu. You then see an overview of an organization member, as
shown in Figure 11-5.

FIGURE 11-3:
The overview
page for the

Microsoft
organization on

GitHub.com.

190 PART 4 Managing and Contributing to Large Projects

Figure 11-5 gives you the following information about the person:

»» Role: The person’s role in the organization with the ability to change it to a
different role from this page.

»» Repository access: The number of repositories this person has access to
within the organization, as well as a list of all the repositories and what
permissions they have for each one. Each repository has a button that allows
you to quickly navigate to the settings for that person for that repository.

»» Number of teams: The number of teams the person is a part of within the
organization.

»» Activity: Information on whether the person is sharing their activity on
projects within this organization on their public profile.

»» Two-factor authentication: Whether this person has two-factor authentica-
tion enabled for their account. Two-factor authentication can be a require-
ment of your organization, which you can change in the settings for your
organization. (See the upcoming section “Setting organization settings.”)

FIGURE 11-5:
An overview of a

member of an
organization.

FIGURE 11-4:
A list of

members of an
organization.

CHAPTER 11 Inner-Source Your Code on GitHub 191

»» Convert to outside collaborator: A button to convert someone to an outside
collaborator. This feature is useful for short-term or very scoped projects.
Instead of having a person be a part of the entire organization, you can make
them a part of a single team that has access to certain repositories, making
their privileges easier to manage.

»» Remove from organization: As straightforward as it sounds. This setting
removes the person from the organization.

Creating teams within your organization
As your organization begins to grow, it may make sense for you to create teams
within your organization. The benefit of teams is that you can quickly give access
to a repository to an entire team, without having to remember every single person
that is on that team. To create a team, click the Teams tab on your organization
home page and click New Team. A new page appears where you can choose a team
name, add a description, choose a parent team (if you’ve created other teams
already), and set the team’s visibility within the organization.

Choosing a team name is an important part to consider carefully. The team name
is how folks within your organization can tag everyone in the team all at once. For
example, if you have a security-vulnerabilities team that manages all security
vulnerabilities for your website and a security bug is found, you can tag the
security-vulnerabilities team, and each person on that team will get a notification.
This will help make sure that you get the fastest response time, accounting for dif-
ferent time zones, working hours, shifts, and schedules. You want the name to be
representative of the team because if you had named the team something like
powerpuffgirls, it would be pretty confusing to see an issue comment that says

@powerpuffgirls, please review this security vulnerability asap

Creating teams has a lot more benefits than the ability to mention them all using
one alias. If you’re interested, read the section “Making the Most of Your Teams,”
later in this chapter.

Setting organization settings
Organizations have a few more settings than typical individual GitHub accounts.
On the right-most Settings tab on the organization home page a Settings page
that is similar to the one I describe in Chapter 1, but with some key differences:

»» General is where you can change the organization’s name, avatar, and
primary contact email address or even delete the organization. You can also

192 PART 4 Managing and Contributing to Large Projects

choose to join the GitHub Developers Program (you can read about at
https://developer.github.com/program). If your organization is repre-
senting a corporation, you can even sign the corporate terms of service,
which helps protect your IP even on public repositories.

»» Access is where you can specify what level of access your members and
repositories have. Here you find the billing and plans, repository roles,
member privileges, team discussion settings, functionality to import and
export data, and options for moderation.

Under the billing and plans setting, you can add billing managers to your
organization; this can be really useful for folks within your company who need
to have access to billing information, but may not be savvy or interested in the
code aspect.

»» Code, planning, and automation is where you can specify settings across
your repositories, manage your Actions, webhooks, discussions, packages,
pages, and projects.

»» Security is the area where you can require that all members of your organiza-
tion have two-factor authentication, set up SSH certificates, create IP allow lists,
manage code security, and verify a domain that you own so that you can verify
your organization’s identity on GitHub.

»» Third-party access is all third-party applications that you have given access to
your repositories.

»» Integrations has the integrations with your organization; you can connect a
Slack organization to your GitHub organizations to get started.

»» Archives has the log of all activity done to the organization (not the individual
repositories part of the organization), and a list of deleted repositories.

»» Developer Settings has two settings — OAuth Apps and GitHub Apps — and
a place to specify management of the organization (under GitHub Apps).

Moderation settings, under the Access menu, is where you can block users from
your organization or enact temporary (24-hour) limitations on what activity can
happen on any repository within the organization. Figure 11-6 shows that you can
block users for short periods of time or forever. These moderation settings are
often most useful in open source project organizations because each member is
less likely to have a common driving force, such as a paycheck, to behave with
respect. However, moderation settings can also be useful with inner-source
projects if things simply start to get heated within the organization.

https://developer.github.com/program

CHAPTER 11 Inner-Source Your Code on GitHub 193

Making the Most of Your Teams
Having an organization with members grouped into various teams can be useful
simply for understanding who is doing what, but GitHub provides you with tools
that make your workflow even more effective when you group organization mem-
bers into teams.

Creating parent/child teams
You can add a team as a parent team to a new team that you’re creating (see the
section “Creating teams within your organization,” earlier in this chapter).
Essentially, teams can have hierarchies. The permissions of the parent teams are
passed down to all child teams, but not vice versa. Hierarchies can become
extremely useful when you want to ensure that everyone within an organization
has access to exactly what they need and no more, no less.

As an example, you may have a team named Employees at the top of your
hierarchy. As part of that team, you may have three other teams: Human
Resources, Marketing, and Engineering. Under the Human Resources team, you
may have some private project boards or private repositories that only the Human
Resources team members should be able to see (such as employee personal
information). Under the Marketing team, you may have customer data that
shouldn’t be shared publicly within the organization (such as billing account
information). By assigning all the employees to respective child teams within the
organization, you can ensure that everyone has access to the employee handbook,
while only the folks in Human Resources have access to Social Security numbers.

FIGURE 11-6:
Options for
blocking an

individual.

194 PART 4 Managing and Contributing to Large Projects

Discussing teams
GitHub offers the feature of team discussions when you have an organization with
teams. Figure 11-7 shows this team discussion home page, which you can find at
https://github.com/orgs/ORGNAME/teams/TEAMNAME where ORGNAME and
TEAMNAME are replaced with the actual names of the organization and team,
respectively.

From the team discussion home page, you find

»» Organization breadcrumbs: On the top left, the hierarchy of this team, all
the way up to the organization in a clickable breadcrumb-like fashion for easy
navigation.

»» Team-specific actions: On the top right, similar menu items that are found
on repositories and the organization itself, but all are specific to this team.

»» Team discussion: In the center right, a place to add new posts to the team
discussion page. Below this area, you can find previous posts, and you can
even pin specific posts to stay at the top (useful for important announcements
or onboarding information).

FIGURE 11-7:
Discussions on a

Team page.

https://github.com/orgs/ORGNAME/teams/TEAMNAME

CHAPTER 11 Inner-Source Your Code on GitHub 195

»» Team alias: The team alias appears below the team avatar and name on the
left-hand column. You can use this alias to notify everyone in the team about
something that may be of interest to them, as seen in the team post.

»» Team members: A list of all team members, a count of how many also belong
to child teams, and a button for adding additional members to the team.

»» Personal notification settings: On the left-hand column, a place to quickly
change your notification settings for this team.

»» Child teams: A list of all child teams to this team that are linked for quick
navigation, located on the bottom of the left column.

Assigning code owners
A really neat feature that GitHub has that is enhanced with the use of teams is the
CODEOWNERS file. Code owners is a way to specify certain people who may have
the most experience and knowledge on a piece of code. They’re the people who,
when you’re looking for someone to review your code, you most likely want to
take a look. They probably have the most history with the code or are the most
expert in that domain. By creating teams within your organization, you can assign
multiple people to be code owners of certain code, without having to assign each
person or keep the list up to date.

To get code owners working on one of your repositories, first make sure that you
have a team setup that includes members of the organization who should be held
responsible for ensuring all code that gets added to that repository is correct. In
my example, I have a team called GitHub For Dummies. On that team page, make
sure that you’ve linked the repository that you want this team to be code owners
of and make sure that this team has at least Write access to that repository.
Figure 11-8 shows that my team has two repositories that I have Write access to:
the public one that you can access as a part of this book, and a private one that I’m
using to track the progress of writing this book. I’m using code owners for the
public repository.

FIGURE 11-8:
Repository

access for a
specific team.

196 PART 4 Managing and Contributing to Large Projects

If you give the team only Read access to the repository, then they can’t approve or
merge a pull request because that is technically writing to the repository. Code
owners (whether individuals or teams) must have either Write or Admin access to
be effective.

In the repository where you want the code owners to be automatically added as a
reviewer for all pull requests, add a file on the main branch .github/CODEOWNERS
with the following code:

These owners will be the default owners for everything in
the repo. Unless a later match takes precedence,
@thewecanzone/github-for-dummies will be requested for
review when someone opens a pull request.
* @thewecanzone/github-for-dummies

Make sure under the Settings for that repository, you’ve added a branch protec-
tion to ensure that every time someone tries to make changes to the main branch
using a pull request, they have to get their code reviewed and approved by at least
one person and that each pull request requires a code owner to review and approve
it. You can set up these requirements in the Branches area of the Settings for the
repository, as shown in Figure 11-9.

Now, when you try to add code by opening a pull request, the team
@thewecanzone/github-for-dummies is automatically added to every single pull
request, as shown in Figure 11-10.

FIGURE 11-9:
Requiring at least

one approving
review from a

code owner.

CHAPTER 11 Inner-Source Your Code on GitHub 197

You can also add specific people or more teams to the CODEOWNERS file by
appending them to the same line. And you can even specify what type of files
you want to assign to which code owners. For a detailed explanation on all of
the nuances, you can visit https://help.github.com/articles/about-code-
owners.

Best Practices for Inner-Sourcing
In Chapters 9 and 10, I describe best practices for both contributing and creating
your own open source project. Here is the secret: Those best practices all apply to
inner-sourcing as well. Even if you’re working on your code in private on a small
team, it’s still important to document, follow style guidelines, communicate
effectively through issues and pull requests, provide applicable feedback through
thorough code reviews, and be a positive team member.

When in doubt, pretend the world can see you.

In addition to following best practices for open source on your private projects,
you can also leverage additional GitHub resources because your projects are within
a private organization.

Repository insights
When you’re a part of a company, evaluating an engineer on their contributions to
the team can get tricky. Either as an individual trying to make sure you’re making
good progress or as a manager trying to write end-of-year reviews and perfor-
mance ratings, you want to avoid using information to qualify someone’s overall
contributions and performance.

FIGURE 11-10:
Code owners are

automatically
added to a pull

request.

https://help.github.com/articles/about-code-owners
https://help.github.com/articles/about-code-owners

198 PART 4 Managing and Contributing to Large Projects

That being said, you can get some information to help guide conversations to
more effectively evaluate yourself or another individual. On a repository, you can
click the Insights tab at the top right. You see a list of insights about your reposi-
tory and the people that contribute to it:

»» Pulse is a snapshot of your repository for a specific time period (defaulted to
one week). For example, in the month of October 2022, the Microsoft/VSCode
project had the following pulse summary:

Excluding merges, 36 authors have pushed 208 commits to main
and 319 commits to all branches. On main, 481 files have
changed and there have been 10,619 additions and 7,883
deletions.

»» Contributors shows an overall contribution graph for the repository, as well
as individual contribution graphs for each contributor with a summary of the
number commits, lines added, and lines removed.

Tracking contributions to a project simply by lines of code modified or
number of commits isn’t an effective way to evaluate someone if nothing else
is taken into account. For example, Shawn could commit every 15 minutes for
fear of losing work, and Sam could always focus his energies on refactoring,
making the number of lines of code they change substantial. Comparing these
two to Sandra, who had only a few commits and not as many lines of modified
code but found and fixed a security vulnerability that could have taken down
the application for good, isn’t a fair comparison.

»» Community/Traffic: On public repositories, the community profile on a
repository helps maintainers understand where they can improve their
repository to better support their community. You can find out more at
https://help.github.com/articles/about-community-profiles-for-
public-repositories. On private repositories, the Traffic section gives you
insight into who is coming to this repository, where they’re coming from, and
what files they’re interacting with.

»» Commits: This simple commit graph can give you insights into problems
your repository may have or trends with the lives of your contributors. For
example, if contributions drop off every year around May, maybe a computer
science student contributes to your repository as a part of the course they are
taking. And if you typically have 300 commits a week but suddenly you start
getting only 50 commits, maybe folks are running into a problem where they
can’t get their code working well enough to commit.

»» Code frequency: Similar to commits, code frequency shows the frequency
at which lines of code are added and lines of code are deleted. Identifying
patterns here can help you understand the health of your code as well as the
profile of your contributors.

https://help.github.com/articles/about-community-profiles-for-public-repositories
https://help.github.com/articles/about-community-profiles-for-public-repositories

CHAPTER 11 Inner-Source Your Code on GitHub 199

»» Dependency graph: The dependency graph lists all dependencies (and
dependents) of this repository and the version it depends on.

If you want GitHub to create a dependency graph for your private project
and therefore be able to warn you if you have any dependency security
vulnerabilities, you have to grant GitHub read-only access to your private
repo (see Figure 11-11). (For more on dependency security vulnerabilities,
read https://github.blog/2018-07-12-security-vulnerability-
alerts-for-python/for the announcement on security vulnerability alerts
for Python.)

»» Alerts: On a private repository, you have an Alerts section. If you’ve enabled
read-only access to GitHub either via allowing it through the dependency
graph setting shown in Figure 11-11 or in the Settings tab for the repository in
the Options category under Data Services, as shown in Figure 11-12, you see
security alerts here.

»» Network: The network graph shows all the people who have branched
and forked the repository and any branches of branches or forks of forks.
Essentially, it shows all the possible states of your repository in the world
today. Figure 11-13 shows the network graph for Visual Studio Code.

»» Forks: The Forks tab lists links to all forks of your repository.

FIGURE 11-11:
GitHub must

have read
access to your

repository to give
security alerts.

https://github.blog/2018-07-12-security-vulnerability-alerts-for-python/
https://github.blog/2018-07-12-security-vulnerability-alerts-for-python/

200 PART 4 Managing and Contributing to Large Projects

Milestones for larger projects
Project boards are an effective way to track the progress you’re making through
the issues and pull requests, but when you’re working as part of a larger organi-
zation, you often have larger milestones that you’re trying to reach. GitHub
provides support for milestones that can be linked to issues and pull requests.

FIGURE 11-12:
Allow GitHub

read access to
your repository

for various
data services.

FIGURE 11-13:
The network

graph for the
Visual Studio

Code open
source project.

CHAPTER 11 Inner-Source Your Code on GitHub 201

To create a milestone:

1.	 Go to the Issues tab of your repository and click the Milestones button.

If you don’t have a milestone yet, you can click the big, green New milestone
button on the top right or the big, green Create a Milestone button in the center.

2.	 Add a title and optional due date and optional description.

3.	 Click Create Milestone.

You see a list of milestones.

In your list of milestones, to the right of the one you just created, is a progress bar
with a status of the percentage of issues and pull requests completed, the total
number of issues and pull requests still open, and the total number of issues and
pull requests already closed. This information can give you a quick snapshot of
how close you are (or, in most cases, aren’t) to meeting your deadline.

On your Issues or Pull Requests tabs, you can add the milestone to any issue or
pull request, and the status icon on the milestone list updates automatically.
Clicking the milestone gives you a list of all the issues and pull requests associated
with that particular milestone.

5Making GitHub
Work for You

IN THIS PART . . .

Explore ways to keep informed of GitHub repository
activity outside of GitHub.

Install popular GitHub integrations into Slack
and Trello.

Set up Octobox to manage GitHub notifications.

Enhance your editor with GitHub extensions to
support your collaborative workflow.

Create a Probot app to personalize your GitHub.com
experience.

Discover GitHub Actions to customize your GitHub.
com workflow.

CHAPTER 12 Collaborating Outside of GitHub 205

Chapter 12
Collaborating Outside
of GitHub

While GitHub may be the hub of a software development project (it hosts
the key deliverable, the source code), it’s not the only place where
collaboration occurs. Software development teams use a variety of tools

to communicate and coordinate their software efforts. Many people who are not
developers also work on a software project and need to be kept apprised of the
progress of a project in the tools they use.

For example, a lot of day-to-day collaboration occurs in chat rooms, such as Slack.
Others may use a Trello board to manage tasks for a team. Still others may use
Octobox to keep on top of their GitHub notifications.

In this chapter, I explore the various integrations that bring GitHub information
into other collaboration tools. This chapter is in contrast to Chapter 13 where
I cover integrations that bring information from other tools into GitHub to
improve the software development workflow.

IN THIS CHAPTER

»» Setting up GitHub integration in Slack

»» Setting up GitHub integrations in
Trello

»» Installing Octobox to manage
notifications

206 PART 5 Making GitHub Work for You

Chatting It Up
For many teams, especially distributed teams, chat is a powerful way for members
of the team to collaborate and coordinate their efforts. Chat in this context does
not refer to sipping tea on a porch talking about how their day went. Chat refers to
text-based tools, such as Slack, used by teams to communicate both synchro-
nously and asynchronously.

Many teams find it helpful to have GitHub post important notifications into a chat
room so teams are kept apprised of what’s going on with a repository. In this
section, I set up a GitHub integration with one popular chat software, Slack.

Before you install the integration, you need to be the admin of a Slack workspace.
You can create a free Slack workspace at https://slack.com.

After you set up your Slack workspace, installing the GitHub for Slack integration
requires two key steps:

1.	 Install the GitHub app for Slack in the Slack workspace.

2.	 Add the Slack App for GitHub to your GitHub account.

The following sections cover these steps in detail.

Installing the GitHub app for Slack
To install the GitHub app for Slack:

1.	 Go to https://slack.github.com and click the Add to Slack button in the
center of the browser window.

If you’re not logged into your Slack workspace in the browser, clicking the
Add to Slack button prompts you to sign into your slack workspace. Likewise,
if you’re not logged into GitHub, the site prompts you to log into GitHub.
When you’re authenticated to both, you see a Slack confirmation screen with
information on what permissions the GitHub app has to your Slack workspace.
Figure 12-1 shows the confirmation screen with every section expanded
(they’re collapsed by default), so you can see everything the integration can do.

Be sure you’re adding the GitHub app to the correct Slack workspace. If the
wrong workspace is shown, you can change it by clicking the workspace
drop-down list on the top right of this screen. Here, you can choose to change
which Slack workplace you want to install the integration into. If the workspace
isn’t listed there, you can click Add Another Workspace.

https://slack.com/
https://slack.github.com/

CHAPTER 12 Collaborating Outside of GitHub 207

2.	 Click Allow, shown in Figure 12-1, to be taken to Slack to authenticate
with GitHub.

As shown in Figure 12-2, this DM prompts you to sign in with GitHub.

3.	 Click Connect to GitHub Account, and then enter the post authentication
code.

4.	 Check out the instructions for how use the GitHub Slack integration.

As shown in Figure 12-3, you can subscribe specific Slack channels to specific
repositories, create issues, and manage notifications from inside Slack.

If you have the Slack desktop application, clicking the Install button attempts to
launch the application and take you to the workspace where you installed the app.
If you haven’t yet added the workspace to the desktop application, you’ll just be in
the last workspace you used. This can be a bit confusing as it may seem like the
installation didn’t work. Don’t worry; it probably did work. Just add the workspace
to your desktop application and continue.

FIGURE 12-1:
Confirmation
page for the
GitHub app.

208 PART 5 Making GitHub Work for You

Subscribing to a repository
in a Slack channel
After you install the GitHub app for Slack, you can subscribe to notifications for a
GitHub repository from within a Slack channel, by typing

/github subscribe owner/repository

FIGURE 12-2:
Authenticate
with GitHub
from Slack.

FIGURE 12-3:
GitHub Slack

direct message
with instructions

on how to use
the integration.

CHAPTER 12 Collaborating Outside of GitHub 209

For example, to subscribe to the repository I created for the readers of this book,
https://github.com/thewecanzone/GitHubForDummiesReaders, you would type
the following in a Slack channel:

/github subscribe TheWecanZone/GitHubForDummiesReaders

When you’ve successfully subscribed to a specific repository, you see the confir-
mation message shown in Figure 12-4.

If you want to know more about how GitHub works with Slack, click the Learn
More link or go to https://github.com/integrations/slack#configuration to
check out the open source repository for the GitHub Slack integration.

Trying out the GitHub Slack integration
With the installation complete, you can now subscribe to GitHub repositories in
your Slack channels. To see the full list of Slack commands, type the following:

/github help

The output of this command is the same output you get when you first install the
integration (refer to Figure 12-3).

To test the GitHub app and open a new issue:

1.	 Run the following command:

/github open TheWeCanZone/GitHubForDummiesReaders

A Slack dialog box appears. You can use this dialog box to create a new issue,
as shown in Figure 12-5.

2.	 Fill in the dialog box and click the Open button.

Clicking the Open button creates the issue on GitHub. And because I’m
subscribed to that repository, I get a Slack message in the channel that the
issue was created, as shown in Figure 12-6.

FIGURE 12-4:
A message from
GitHub in Slack

confirming
subscription to a

repository.

https://github.com/thewecanzone/GitHubForDummiesReaders
https://github.com/integrations/slack#configuration

210 PART 5 Making GitHub Work for You

If you find a bug with the GitHub integration or have an idea for a way it could be
better, good news! It’s open source on, of course, GitHub! You can log issues or
even contribute at https://github.com/integrations/slack.

The /github subscribe command by default subscribes a channel to notifica-
tions for the following features of a repository:

»» issues: Opened or closed issues

»» pulls: New or merged pull requests

»» commits: New commits on the default branch (usually main)

»» releases: Published releases

FIGURE 12-5:
Slack dialog to

create an issue
on GitHub.

FIGURE 12-6:
Slack message

with information
about a newly

created
GitHub issue.

https://github.com/integrations/slack

CHAPTER 12 Collaborating Outside of GitHub 211

»» deployments: Updated status on deployments

»» reviews: New reviews completed on pull requests

You can remove a single feature by using the /github unsubscribe owner/repo
[feature] command. For example, to remove commit notifications on the default
branch, run the following command.

/github unsubscribe TheWeCanZone/GitHubForDummiesReaders commits

Getting Trello and GitHub Integrated
Trello is a collaboration tool used to organize projects into boards, lists, and cards.
It’s inspired by the Kanban scheduling system popularized by Toyota. Kanban is
Japanese for signboard. The idea is to have a board that provides a view of a
project’s status and progress at a glance.

Often, a tool like Trello is combined with GitHub to manage a project. A project
team may use Trello to manage the entire project, but use GitHub to host the code
and assign specific code issues to developers. A card in Trello might correspond to
multiple GitHub issues.

GitHub project boards are essentially Trello with GitHub already integrated into it.
However, project boards within GitHub aren’t always the right fit for your team.
Some teams have nondeveloper folks who don’t want to have to learn GitHub and
may already be using Trello. Typically, it’s best to have all your project manage-
ment in one place, so if that should be outside of GitHub, in Trello for example,
you can still make it a part of your developer workflow with this integration.

A GitHub integration (what Trello calls a power-up) for Trello connects cards to
GitHub issues, pull requests, and branches. In the next section, I walk through
setting up the GitHub power-up.

Installing the GitHub power-up
The following installation instructions assume that you’ve already signed up for
https://trello.com and created a project board:

If you’ve never used Trello, you can visit its guides at https://trello.com/guide.
It is similar to GitHub project boards (see Chapter 3). For specific help on creating
a board and cards, visit https://trello.com/guide/create-a-board.html.

https://trello.com
https://trello.com/
https://trello.com/guide/create-a-board.html

212 PART 5 Making GitHub Work for You

1.	 With a board open, make sure the menu is open.

If not, click in the top right to show the menu.

2.	 Click the Power-Ups section of the menu, as shown in Figure 12-7.

Clicking the Power-Ups button brings up a search dialog box for power-ups.

3.	 Search for GitHub to find GitHub related power-ups.

4.	 Click the Add button for the GitHub power-up to enable it.

Just like for any application, Trello may have GitHub power-ups (extensions/
integrations) that are built by GitHub and some that are built by other folks.
Because GitHub’s API is public, folks can often create power-ups/extensions
of their own. Be sure you’re always aware of the author of the power-up/
extension when you’re installing it. You may very well want to install from a
third-party developer instead of GitHub itself because the features might be
different. Regardless, you should make sure you’re aware of that choice. Don’t
assume anything with “GitHub” in the title is made by GitHub the company.

5.	 After you enable the power-up, click the settings button to configure it.

You see a menu with the option to authorize or disable the power-up.

6.	 Click Authorize Account.

An option to link your GitHub account appears.

7.	 Click Link Your GitHub Account.

GitHub.com launches in your browser and prompts you to Authorize Trello, as
shown in Figure 12-8.

FIGURE 12-7:
The power-ups

section of
the menu.

CHAPTER 12 Collaborating Outside of GitHub 213

8.	 Click the Grant button next to any organizations that you want to
connect with Trello.

In my case, I granted Trello access to the guthals organization.

9.	 Click the Authorize Trello button to make the power-up active.

Using the GitHub power-up
The GitHub power-up is accessed via the power-up button on the back of any
Trello card. If you haven’t already, go ahead and create a couple of cards.

To use the GitHub power-up on your Trello board, follow these steps:

1.	 Click the card to access the back of the card.

Figure 12-9 shows a card that I created. The GitHub power-up shows up in the
bottom-right corner.

2.	 Click the GitHub Power-Up button.

Four menu options appear:

•	 Attach Branch

•	 Attach Commit

FIGURE 12-8:
Authorize Trello

on GitHub.

214 PART 5 Making GitHub Work for You

•	 Attach Issue

•	 Attach Pull Request

3.	 Click Attach Issue to open a repository search dialog box.

4.	 Find the repository that contains the issue you want to attach to
the card.

After you select the repository, you see a list of issues, as shown in
Figure 12-10. You can also search for issues.

5.	 Select the issue from the drop-down list and it attaches to the Trello card.

After you attach the issue, the issue is displayed on the back of the Trello card.

A Trello card may be attached to multiple GitHub items. For example, repeat the
previous steps, but choose Attach Pull Request instead of Attach Issue to attach a
pull request to an issue. When you are done, you see both an issue and a pull
request attached to the Trello card, as shown in Figure 12-11.

The front of the card shows a couple icons that indicate that this card is attached
to GitHub. It shows an Octocat icon with a count of GitHub items attached to the
card. It also shows pull request icon with a count to indicate the number of pull
requests attached, as shown in Figure 12-12.

FIGURE 12-9:
Trello card with a

GitHub power-up.

CHAPTER 12 Collaborating Outside of GitHub 215

When you visit the issue or pull request on GitHub.com, you can see that the
attachment is bidirectional. The GitHub issue now has a link to the Trello board,
as shown in Figure 12-13.

FIGURE 12-10:
Selecting the

issue to attach.

FIGURE 12-11:
Trello card with

an issue and pull
request attached.

216 PART 5 Making GitHub Work for You

Managing Notifications with Octobox
Earlier in this chapter, I cover a couple of integrations that bring GitHub informa-
tion into other collaboration tools. GitHub integrations help teams work together.

In this section, I cover a GitHub app that’s a little different. It’s a tool to help indi-
viduals manage the flow of GitHub notifications. As you participate in more and
more GitHub repositories, the number of notifications can start to get overwhelm-
ing. Octobox provides an email client style view of your notifications.

Installing Octobox is pretty straightforward:

1.	 Go to https://octobox.io and scroll down to the button labeled Install
the GitHub App.

Some pricing options appear, as shown in Figure 12-14. Octobox is free for
open source projects.

2.	 Click Install the GitHub App to continue with the installation process.

3.	 Authorize the application the same way you authorized Slack and Trello,
earlier in this chapter.

FIGURE 12-12:
Front of a card

with an issue and
pull request

attached.

FIGURE 12-13:
GitHub issue

with a link to the
Trello board.

https://octobox.io/

CHAPTER 12 Collaborating Outside of GitHub 217

After the installation and authorization steps are complete, you’re taken to your
Octobox inbox. The first time it runs, it takes a moment to synchronize your noti-
fications. When it’s done, you should see something like Figure 12-15.

FIGURE 12-14:
GitHub app

download button
and pricing
options for

Octobox.

FIGURE 12-15:
Octobox inbox.

218 PART 5 Making GitHub Work for You

After Octobox is installed and synchronized, you can use it to manage your
notifications. It allows you to search and filter your notifications by repository,
organization, type, action, status, and so on. You can set Octobox to automatically
synchronize on an interval in its Settings page. As the status for issues and pull
requests change on GitHub, synchronizing Octobox displays those changes in
Octobox. Octobox also provides archiving and muting for notifications, which is a
nice way of staying on top of notifications, especially if you work on multiple
active projects on GitHub.

CHAPTER 13 GitHub Workflow Integrations 219

Chapter 13
GitHub Workflow
Integrations

In Chapter 12, I show you some ways that you can get information about GitHub
repos in other applications. Using applications like Slack and Trello, integrated
with GitHub, can especially help you with project management. In this chapter,

I show you some ways you can integrate GitHub into your existing development
workflow.

A lot of the integrations that I show you in this chapter are open source, which
means you can track the development of new features, easily report bugs through
GitHub, or even contribute to the project. It also means that each is rapidly chang-
ing, so some details may be outdated by the time you read it. What is important is
that you know how to find updates and navigate each integration.

Using GitHub for Visual Studio Code
One of the fastest growing editors is Visual Studio Code (VS Code for short). With
more than 2.6 million users in the first 12 months in 2017 and over 14 million
users today, you have probably either used it or at least heard about it. VS Code is
open source, which means you can see the development of new editor features at

IN THIS CHAPTER

»» Exploring GitHub Integrations

»» Using GitHub Integrations

»» Keeping informed about GitHub
Integrations

220 PART 5 Making GitHub Work for You

https://github.com/microsoft/vscode. In 2018, Microsoft and GitHub teamed
up to build an open source GitHub editor extension that provides an in-editor pull
request experience.

After you install VS Code, you can install this extension by going to the extension
marketplace, searching for GitHub, and clicking the blue Install button for the
GitHub Pull Requests and Issues extension, as shown in Figure 13-1.

After you install the extension, you can sign in to GitHub by clicking the GitHub
extension icon on the side panel and then clicking the Sign In button, as shown in
Figure 13-2.

The sign-in process opens a web browser where you can authorize VS Code to
access your GitHub repositories. Click through the prompts, and it redirects you
back to VS Code. After you’re back in VS Code, you get a pop-up notification asking
whether you trust the URL; click Yes.

Interacting with pull requests in VS Code
After you’re signed in, when you go to the Source Control tab on the left side of VS
Code, you should see all the pull requests associated with this repo. Pull requests
are grouped into five different sections:

»» Local Pull Request Branches: Ones that you currently have checked out on
your machine

FIGURE 13-1:
GitHub extension
for VS Code in the

extension
marketplace.

https://github.com/microsoft/vscode

CHAPTER 13 GitHub Workflow Integrations 221

»» Waiting for My Review: Ones where you are marked as a reviewer

»» Assigned to Me: Ones that you’re assigned to

»» Created by Me: Ones that you created

»» All Open: A list of all pull requests that are open for the repository

When you unroll a specific pull request, you see the description of the pull request,
along with all the modified, added, or deleted files.

Clicking the description of the pull request displays the description as you would
see it on GitHub, as shown in Figure 13-3. From this page, you can check out or
refresh the pull request; leave a comment; modify reviewers, assignees, labels, or
milestones; merge or update the pull request; or complete a review. You have the
entire pull request experience right inside of VS Code!

Another feature of this extension is the ability to add inline comments to the diff.
Clicking a specific modified file shows you the side-by-side diff, just as it would
look on GitHub.com. From here, you can add a comment to any of the modified
lines, as shown in Figure 13-4. All these actions are reflected on GitHub.com.

FIGURE 13-2:
Initiate the

GitHub sign-in
process.

222 PART 5 Making GitHub Work for You

Following the GitHub for VS Code pull
requests extension
Because this extension is also open source, you can follow the development,
report issues, or even contribute to it on GitHub.com. Go to https://github.com/

FIGURE 13-3:
Interacting with
pull requests in

VS Code.

FIGURE 13-4:
Adding an inline

comment in
VS Code.

https://github.com/Microsoft/vscode-pull-request-github

CHAPTER 13 GitHub Workflow Integrations 223

Microsoft/vscode-pull-request-github to find the latest features and docu-
mentation for how to use this extension to improve your development workflow.

Using GitHub for Visual Studio
Visual Studio is different from Visual Studio Code. Visual Studio is an integrated
deveopment environment (IDE) and is a full-featured application to support
developers in writing code, while VS Code is an editor that has an extensive list of
extensions that a developer can add to create the experience they need. Visual
Studio 2015, 2017, and 2019 have a specific GitHub integration, while Visual Studio
2022 has Git and GitHub integrated out of the box. It is recommend that you
install and use Visual Studio 2022; however, if you have to use an older version,
this section shows you how to integrate GitHub with Visual Studio 2017.

If you do install Visual Studio 2022, you can use GitHub very similarly to how to
use it in VS Code. Head to https://visualstudio.microsoft.com/vs/github/
for guided instructions on the newest version control features of Visual Studio
2022.

After you install Visual Studio, choose Tool ➪   Extensions and Updates. A pop-up
window appears with all the extensions you currently have installed, plus the
marketplace of additional extensions. If you click Online, the top choice is the
GitHub Extension for Visual Studio extension, as shown in Figure 13-5.

Click the Download button and close Visual Studio. When Visual Studio closes, the
VSIX Installer starts and ask whether it can modify Visual Studio. Click Yes and
Modify, and the extension begins to install. After it installs, click the Connect
link in the Team Explorer tab and connect to your GitHub account, as shown in
Figure 13-6. When you click the Connect link, a pop-up window asks you to sign
in to GitHub. If you have two-factor authentication set up, you’re also asked for
your 2FA code.

Once connected, you can clone a repo, create a new repo, or sign out from GitHub,
all from the Connect page on the Team Explorer pane.

Viewing, creating, and reviewing pull
requests in Visual Studio
When you have the project open in Visual Studio that is connected to a GitHub
repo, you see additional project options on the home page of the Team Explorer
pane, as shown in Figure 13-7.

https://github.com/Microsoft/vscode-pull-request-github
https://visualstudio.microsoft.com/vs/github/

224 PART 5 Making GitHub Work for You

Clicking Pull Requests opens the GitHub pane where all the pull requests on this
repo are listed, as shown in Figure 13-8. At the top of the list, you can choose to
see all the open pull requests, closed pull requests, or just all pull requests. You
can also sort by author.

FIGURE 13-6:
The Team

Explorer pane
with the GitHub

Connect section.

FIGURE 13-5:
The GitHub for

Visual Studio
extension in the

Visual Studio
Marketplace.

CHAPTER 13 GitHub Workflow Integrations 225

If you double-click one of the pull requests, the details open. From here, you can
see the description, the target and base branch, the current state, the list of
reviews, and the list of files changed. You can also click the View on GitHub link
to open a browser window to view this pull request on github.com. Click the
Checkout <branch-name> button to check out the branch associated with this pull
request. Click the Add Your Review link to add your own review with inline and
overall comments. When you add a review, you can mark it as comment only,
approve it, or request changes. If you double-click one of the changed files, the
diff opens in the editor area. If you hover over one of the changed lines, you
can add an inline comment, very similar to how it is done in VS Code (refer to
Figure 13-4). You can see all of this in Figure 13-9.

FIGURE 13-7:
The Team

Explorer pane
with additional
GitHub project

options.

FIGURE 13-8:
A list of pull

requests on the
GitHub pane.

226 PART 5 Making GitHub Work for You

Following the GitHub for Visual
Studio extension
The GitHub for Visual Studio extension is open source, so while it is highly recom-
mended that you install and use the integrated Git experience for Visual Studio
2022, if you want to make improvements on the 2015, 2017, 2019 GitHub integra-
tion, you still can! Go to https://github.com/github/visualstudio to find doc-
umentation for how to use the GitHub for Visual Studio extension to improve your
development workflow.

Using GitHub for XCode
Apple has developed an integration for GitHub in XCode. After you install XCode,
you can sign in with GitHub by clicking the Clone from Existing Git Repository
button, clicking the arrow next to the message to sign in to an account, and then
opening the Accounts menu. Click the + button and choose GitHub, and click
Continue, as shown in Figure 13-10. Follow the prompts to sign in to your GitHub
account. If you have two-factor authentication set up, you are asked for your
2FA code.

You need to have a personal access token to sign in to GitHub. You can create one
at https://github.com/settings/tokens.

FIGURE 13-9:
Interacting with a

pull request in
Visual Studio.

https://github.com/github/visualstudio
https://github.com/settings/tokens

CHAPTER 13 GitHub Workflow Integrations 227

Now when you choose Source Control ➪   Clone, your GitHub repos load below the
box where you can insert a URL to clone. When you click one, you get information,
such as the primary language used, the number of forks and starts for this repo,
and a link to the README file, as shown in Figure 13-11.

FIGURE 13-10:
Signing in to

GitHub inside
of XCode.

FIGURE 13-11:
List of GitHub

repositories you
have access to

clone from
inside XCode.

228 PART 5 Making GitHub Work for You

If you have a file open in XCode, the Source Control menu displays additional
actions you can perform, such as Commit, Push, Pull, and Fetch and Refresh
Status.

This extension isn’t open source, so it’s best to keep up with the latest Apple
developer news to know what new features may be available. You can read about
all the source control integrations that Apple releases at https://developer.
apple.com/documentation/xcode/source-control-management.

Using GitHub for IntelliJ
The IntelliJ IDE from JetBrains has GitHub pull request support for any GitHub
repo you have open. After you install IntelliJ, you can choose to clone a project
from the Start menu, as shown in Figure 13-12.

A new window asks for a URL. On the left side panel of this window, click
the GitHub button, and then click the Log In via GitHub button, as shown in
Figure 13-13. You’re asked to authorize GitHub in the browser, similar to signing
in with Visual Studio Code. After you have successfully logged in, all the GitHub

FIGURE 13-12:
Clone from a

version control
system to

get started
integrating

GitHub
into IntelliJ.

https://developer.apple.com/documentation/xcode/source-control-management
https://developer.apple.com/documentation/xcode/source-control-management

CHAPTER 13 GitHub Workflow Integrations 229

repositories that you have access to appear in the clone list, as shown in
Figure 13-14.

After you choose a repository and click Clone, an IntelliJ project window opens
with your project. When the project is open in IntelliJ, you can open the GitHub
pull request preview by clicking the Pull Requests button on the left pane. A new
section opens in the IntelliJ window with a list of the open pull requests, as shown
in Figure 13-15. If you click one, the description and list of changed files opens. If
you double-click one of the changed files, a diff of that file opens in a new window
(see Figure 13-16).

Lastly, you can create a pull request from inside of IntelliJ as well. If you’re on a
new branch and have already made some changes and committed them to your
branch, you can click the + above the list of pull requests, from the same Pull
Request button on the left side of your project window shown in Figure 13-15. In
the panel, shown in Figure 13-17, specify the title and description of your pull
request, and add reviewers, assignees, or labels if you want to.

This GitHub pull request feature is embedded in the IntelliJ IDE, so it’s best to
follow the IntelliJ blog and documentation for up-to-date information on its
development.

FIGURE 13-13:
The GitHub

log-in window
inside IntelliJ.

230 PART 5 Making GitHub Work for You

FIGURE 13-15:
A list of open pull

requests from
inside of IntelliJ.

FIGURE 13-14:
List of GitHub

repositories you
have access to

clone from
inside IntelliJ.

CHAPTER 13 GitHub Workflow Integrations 231

FIGURE 13-16:
Viewing a pull
request from

inside of IntelliJ.

FIGURE 13-17:
Creating a pull

request from
inside of IntelliJ.

CHAPTER 14 Personalizing GitHub 233

Chapter 14
Personalizing GitHub

Developers have a lot of opinions about how they work and invest a lot of
time personalizing their tools to work just the way they want. GitHub
offers an extensive API that lets developers write tools to interact with

GitHub data in a myriad of ways. Also, because GitHub.com runs in a browser,
anyone can build browser extensions to customize the experience of using GitHub.

In this chapter, I look at some of the available ways to personalize your use
of GitHub.

Using Browser Extensions
Browser extensions can completely customize the experience of using a browser.
You can find extensions for every possible scenario you can think of.

In this section, I look at a few useful extensions that work with GitHub. Some of
these extensions are available for multiple browsers, but I focus on Google Chrome
extensions for brevity.

For a more comprehensive list of browser extensions that work with GitHub,
check out this list of awesome browser extensions for GitHub repository made by
Stefan Buck at https://github.com/stefanbuck/awesome-browser-extensions-
for-github.

IN THIS CHAPTER

»» Using Chrome Extensions to extend
GitHub

»» Setting up Probot to personalize
GitHub

»» Using GitHub Actions to customize
GitHub

https://github.com/stefanbuck/awesome-browser-extensions-for-github
https://github.com/stefanbuck/awesome-browser-extensions-for-github

234 PART 5 Making GitHub Work for You

Refining GitHub
The Refined GitHub extension is an open source extension that simplifies the
GitHub interface and adds some useful features to GitHub.com. The extension is
available for the Chrome, Firefox, and Opera browsers.

You can find the source code at https://github.com/sindresorhus/refined-
github. The README has a link to install the extension. Note that when you
install the extension, you grant it the ability to read and change your data on
api.github.com, gist.github.com, and github.com. It can also modify data you
copy and paste.

After you install the extension, you should see an Octocat icon to the right of the
address bar. This icon provides some light customization options. One option lets
you define some custom CSS specific to GitHub.com. In Figure 14-1, you can see
I added some custom CSS to make the repository name larger and dark red. Note
that after you change the CSS, you have to refresh the page to see your changes
in effect.

Changing the CSS is just a parlor trick compared to the many other enhancements
Refined GitHub brings with it.

Browser extensions work by manipulating the generated HTML of a website. It
often looks for known landmarks in the pages (such as an HTML element with a
known ID) and then adds its own UI elements, removes elements, or changes ele-
ments. However, it does this all outside of the code running on the server that
actually generates the HTML. What this means is that if a website such as GitHub.
com changes its HTML markup, an extension feature could stop working tempo-
rarily until the authors update their extension to adapt to the new change. So if
any of these features stop working, try again later after the extension is updated.

FIGURE 14-1:
Configuring the
Refined GitHub

extension.

https://github.com/sindresorhus/refined-github
https://github.com/sindresorhus/refined-github

CHAPTER 14 Personalizing GitHub 235

The following is a small sampling of enhancements that are on as a default when
you have this extension installed:

»» Mark issues and pull requests as unread. This enhancement adds a Mark
as Unread button to the Notifications section of an issue or pull request. Click
it to mark the issue or pull request unread, which puts it back in your notifica-
tions list.

»» Stop the page jumps from recently pushed branches. Normally, when you
push a new branch, the home page of a repository displays a list of recently
pushed branches in a yellow bar above the list of code files. The sudden
appearance of this list can cause the rest of the page to jump down to make
room for the bar. Refined GitHub displays the list of recently pushed branches
in the top right overlaying the location where the Fork button may be. By
displaying the branches in an overlay, Refined GitHub ensures that the page
doesn’t jump down.

»» Adds option to wait for successful checks. If you have continuous integra-
tion (CI) set up for a repository, it can take a while after someone pushes a
pull request before all the checks are completed. The CI might be running
static analysis or a linter, unit tests, integration tests, and so on. It can be
annoying to wait for all those processes to complete after you’ve reviewed
some code and are ready to merge the pull request. Refined GitHub adds a
check box that lets you indicate that it should go ahead and merge the pull
request after the checks are complete and successful.

»» Reaction avatars show who reacted to a comment. Typically a reaction
comment shows only the reaction and the count for that reaction. With
Refined GitHub, you can see who all gave a specific reaction.

Refined GitHub contains many more enhancements big and small. The list here is
just the tip of the iceberg. In Figure 14-1, notice that there is also a place to disable
features that are a part of the extension, as well as a place to put your GitHub
personal access token so that the extension can work on private repos as well.

Taking a GitHub selfie
As an open source project maintainer, I am ecstatic when someone comes along
and submits a pull request for a project. I’m happy when someone opens an issue
that identifies a problem I didn’t know about. I feel gratitude for the folks who
take time out of their day to help out my project.

And sure, I could use words to communicate my gratitude, but they always seem
to fall short of my true feelings. If the old saying that a picture is worth a thousand
words is true, how many words is an animated gif worth?

236 PART 5 Making GitHub Work for You

GitHub Selfie is an open source browser extension (https://github.com/
thieman/github-selfies) that adds a Selfie button to the comment field that lets
you take a selfie using your computer’s camera. You can choose to take a still pic-
ture, but where’s the fun in that? It also provides an option to take an animated gif.

Figure 14-2 shows a ridiculous self-portrait.

Adding a selfie to express your gratitude is a small detail, but adds a nice warm
personal touch when you’re working with people from all over the world.

GitHub Apps and Probot
Chapter 12 covers a few integrations that connect GitHub to other applications,
such as Slack and Trello. What those integrations have in common is they were
implemented as GitHub apps.

Apps on GitHub let you extend GitHub in powerful ways. GitHub apps are web
applications that can respond to events on GitHub. These event subscriptions are
called web hooks. When an event occurs on GitHub that the app is interested in,

FIGURE 14-2:
Taking a short

video with
GitHub Selfie.

https://github.com/thieman/github-selfies
https://github.com/thieman/github-selfies

CHAPTER 14 Personalizing GitHub 237

GitHub makes an HTTP request to the app with information about the event. The
app can then respond to that event in some manner, often resulting in a call back
to GitHub via the GitHub API.

In this section, I walk you through building a simple GitHub app that brings a bit
of levity to your issue discussions. There’s an old meme in the form of an ani-
mated gif with a little girl who asks the question, “Why don’t we have both?” The
typical application of this meme is in response to a question that presents a false
dichotomy. In other words, when someone presents a question with two choices,
someone might respond with this image.

In this section, you create a GitHub application that will automatically do this as a
fun exercise.

Introducing Probot
GitHub apps are web applications that need to listen to HTTP requests. You have a
lot of important details to get just right when building an HTTP request, such as
what is the format of the data posted to the app? All these details can be confusing
and time consuming to get correct when building a GitHub app from scratch.
Knowing where to start is difficult.

GitHub’s Probot framework comes in handy when getting started with a GitHub
app. Probot handles much of the boilerplate and nitpicky details of building a
GitHub app. It’s a framework for building GitHub apps using Node.js. It provides
many convenience methods for listening to GitHub events and for calling into the
GitHub API.

Probot makes it easy to build a GitHub app, but it doesn’t solve the problem of
where to host the app.

Hosting the app
A GitHub app can take many forms. It could be a Node.js app running in Heroku,
a serverless function in GitHub Actions, or any other cloud provider — it doesn’t
matter. It just needs to be persistent and available via the public Internet so that
GitHub can reach it with event payloads.

Setting all that up can be time consuming, so for my purposes, I developed the
simple Probot app locally using the command line interface (CLI) and then used
Glitch to deploy.

238 PART 5 Making GitHub Work for You

Introducing Glitch
Glitch (https://glitch.com) is a hosting platform for web applications that
removes a lot of the friction with getting a web app up and running. Any app you
create in Glitch is live on the web from the beginning. You don’t have to think
about how you plan to deploy the code because any change you make is auto-saved
and automatically deployed.

Glitch focuses on the community aspect of building apps. Every file can be edited
by multiple people in real-time, in the same way you might edit a document in
Google Docs. And every project can be remixed by clicking a button. This encour-
ages a lot of sharing of code and learning from each other, which comes in handy
when we build our own GitHub app.

Before you continue, make sure to create an account on Glitch if you don’t have
one already.

Creating a Probot app
Follow these steps to get started:

1.	 Create a local Probot app by opening a command line and typing:

npx create-probot-app why-not-both

2.	 Type y to create the Probot app locally, and then answer the questions in
the command line.

For example:

? App name: why-not-both
? Description of app: A probot app to reply to issues
? Author's full name: drguthals

? Which template would you like to use? basic-js => Comment
on new issues

3.	 Once the files are created, open the folder in Visual Studio Code (or your
editor of choice) and edit the index.js file with the following code:

/**
 * This is the main entrypoint to your Probot app
 * @param {import('probot').Probot} app
 */
module.exports = (app) => {
 // Your code here
 app.log.info("Yay, the app was loaded!");

https://glitch.com

CHAPTER 14 Personalizing GitHub 239

 app.on("issues.opened", async (context) => {
 const message = context.payload.issue.body;
 if (message.indexOf(‘ or ‘) > -1) {
 const issueComment = context.issue({
 body: "![The why not both girl](https://media3.

giphy.com/media/3o85xIO33l7RlmLR4I/giphy.gif)",
 });
 return context.octokit.issues.

createComment(issueComment);
 }
 });

 // For more information on building apps:
 // https://probot.github.io/docs/

 // To get your app running against GitHub, see:
 // https://probot.github.io/docs/development/

};

This code listens to new issue comments, looks for the word or surrounded by
spaces, and if it finds it, creates a new comment with a markdown image.

This approach is not very smart. You can find a slightly better approach at
https://git.io/fhHST. It would be even better if I could employ artificial
intelligence (AI) in the form of natural language processing (NLP). But that’s
beyond my skillset and out of the scope for this book.

4.	 Save the file, and back in your terminal, start the server with the
following command:

npm run start

5.	 Once the server starts, open a browser and point it to localhost:3000.

The Register GitHub App button is now part of the interface, as shown in
Figure 14-3.

6.	 Click the button and follow the instructions to register the app to your
GitHub account and whatever repositories you want to associate it with.

7.	 After registering, shut down the local server by pressing ⌘  -C or
Control+C.

8.	 Open the .env file and notice that GitHub set critical environment variables:

•	 WEBHOOK_PROXY_URL

•	 APP_ID

https://git.io/fhHST

240 PART 5 Making GitHub Work for You

•	 PRIVATE_KEY

•	 WEBHOOK_SECRET

•	 GITHUB_CLIENT_ID

•	 GITHUB_CLIENT_SECRET

9.	Test your Probot app by restarting the npm server with the following
command:

npm run start

10.	Go to the one of the repositories that you authorized and create a new
comment with the word or in it.

Watch the Probot app automatically responds with a gif of the “Why not both”
meme, as shown in Figure 14-4.

Make sure you shut down your npm server by pressing ⌘  -C or Control+C in
your terminal.

FIGURE 14-3:
The Probot app
with a button to
register the app

with GitHub.

CHAPTER 14 Personalizing GitHub 241

Pushing the Probot app to GitHub
Now that you have verified the Probot app works, it’s time to get it hosted in the
cloud. To get started, you need to push your code to GitHub. In your Probot root
folder, initialize a Git repository with the following command:

git init -b main

Next, stage your initial commits with the following command:

git add . && git commit -m "initial commit"

Finally, push your repository to GitHub. To do this, type the following command
into your terminal:

gh repo create

This kicks off the GitHub repository creation flow:

1.	 Using your arrow keys, choose Push an Existing Local Repository to
GitHub.

2.	 Press Enter to choose . as the location for the repository (this means the
current folder).

3.	 Press Enter to choose the name of the folder as your repository name, or
type a new repository name.

4.	 Add a short description, such as “A simple Probot app”.

FIGURE 14-4:
The Probot app

responding to
a new issue
that has the

word or in it.

242 PART 5 Making GitHub Work for You

5.	 Using your arrow keys, choose Public, Private, or Internal for the reposi-
tory visibility.

6.	 Type Y to create a remote to the GitHub repository with your local
repository.

7.	 Press Enter to choose origin as the name of the remote.

8.	 Press Enter to choose Yes to commit your local changes to the remote
GitHub repository.

You can now navigate to your repository on GitHub and your code should be there.
You can see mine at https://github.com/drguthals/why-not-both.

Hosting your Probot app on Glitch
Now that you have confirmed your Probot app works when it is locally hosted and
you have published your code to GitHub, you can easily use Glitch to host your
Probot app. Go to https://glitch.com, sign in, and choose New Project ➪   Import
from GitHub.

Type your repository name to the text field, making sure to include .git at
the end. For example, for my Probot app I would type https://github.com/
drguthals/why-not-both.git.

Once Glitch loads your code in the online Glitch editor, you should see all the
files from your repo have been imported into Glitch and the README.md file is open
in the code editor.

You now have to register this new Probot app with GitHub. To do this, follow
these steps:

1.	 Click Preview, found at the bottom of the Glitch editor.

2.	 Choose Preview in a New Window.

3.	 Click the Register GitHub App button.

4.	 Name your GitHub app.

5.	 Choose which organizations, accounts, and repositories to install your
app on.

6.	 Click Install.

Head to your repository and make sure the Glitch-hosted Probot app works by
opening a new issue. You should get a response, as shown in Figure 14-5.

https://github.com/drguthals/why-not-both
https://glitch.com
https://github.com/drguthals/why-not-both.git
https://github.com/drguthals/why-not-both.git

CHAPTER 14 Personalizing GitHub 243

Taking Action with GitHub Actions
In the previous section, I walk through personalizing GitHub by creating a GitHub
app. This required that you host your app outside of GitHub. It turns out GitHub
has a feature that removes the need to host your app outside of GitHub, which can
reduce the number of moving parts when extending GitHub. This feature is called
GitHub Actions.

GitHub Actions makes it possible to create custom workflows on GitHub. It lets
you implement custom logic to respond to events on GitHub. In the previous sec-
tion, you wrote a GitHub app to do that. With GitHub Actions, you don’t need to
build a custom app. You can build workflows using existing actions that others
have written, or you can write your own actions that run in a Docker container.

FIGURE 14-5:
The same Probot

app in action on a
GitHub issue,

but this one is
hosted on Glitch.

EXPLORING GitHub ACTIONS
There are pre-written GitHub Actions — some really useful and complex — for
almost every part of your developer workflow on GitHub. You can find a list of them
at https://github.com/marketplace?type=actions. You can also follow some
tech folks who write and open source more specific GitHub Actions.

You can also write custom Actions. How to do that is beyond the scope of this book, but
you can look at the Actions docs at https://docs.github.com/actions.

https://github.com/marketplace?type=actions
https://docs.github.com/actions

244 PART 5 Making GitHub Work for You

To demonstrate GitHub Actions, consider the following scenario. You’re main-
taining an open source repository, but aren’t able to be respond to every single
new issue notification from new contributors. You can create a very similar
GitHub Action to the Probot you created earlier in this chapter using the pre-
written First Interaction Action at https://github.com/marketplace/actions/
first-interaction.

The following steps guide you through setting up a GitHub Action:

1.	 Click Actions at the top of your repository.

2.	 Click the New Workflow button.

You’re taken to a page to choose a workflow or create one from scratch, as
shown in Figure 14-6.

3.	 Search for the Greetings Action and click Configure.

This creates a greetings.yml file in your .github/workflow folder, as shown
in Figure 14-7.

4.	 Click Start Commit and commit the new greetings.yml file to the
main branch.

5.	 Invite a friend to open a new issue on your repository for the first time.

Right when the issue is created, if you head back to the Actions tab you can see
the workflow running, as shown in Figure 14-8. When it completes, a comment
is added to the new issue, as shown in Figure 14-9.

FIGURE 14-6:
Options for
choosing a
workflow.

https://github.com/marketplace/actions/first-interaction
https://github.com/marketplace/actions/first-interaction

CHAPTER 14 Personalizing GitHub 245

FIGURE 14-7:
Create a

greetings.yml file
to install the

GitHub Action.

FIGURE 14-8:
The GitHub

Action running.

FIGURE 14-9:
The comment

added to a new
issue by the

GitHub Action.

6The GitHub
Ecosystem

IN THIS PART . . .

Review the GitHub Marketplace for apps to enhance
your project.

Install apps for continuous integration, code quality,
localization, and more.

List your app on the GitHub Marketplace.

Explore the community on GitHub.com through
people and repositories.

Find events where you can discover community
beyond GitHub.com.

Discover strategies for speaking at your first event.

CHAPTER 15 Exploring the GitHub Marketplace 249

Chapter 15
Exploring the GitHub
Marketplace

In the three chapters of Part 6, I look at multiple different ways of extending
GitHub and customizing the GitHub experience. Many tools extend or integrate
with GitHub. A good way to find tools to use with GitHub is the GitHub

Marketplace.

Introducing the GitHub Marketplace
The GitHub Marketplace (https://github.com/marketplace) is a directory of
tools and apps grouped in the following categories:

»» API (application programming interface) management

»» Chat

»» Code quality

»» Code review

»» Continuous integration

»» Dependency management

IN THIS CHAPTER

»» Introducing the GitHub Marketplace

»» Finding apps in the Marketplace

»» Installing apps from the Marketplace

https://github.com/marketplace

250 PART 6 The GitHub Ecosystem

»» Deployment

»» IDEs (integrated development environments)

»» Learning

»» Localization

»» Mobile

»» Monitoring

»» Project management

»» Publishing

»» Recently added

»» Security

»» Support

»» Testing

»» Utilities

The Marketplace is a great way to find an app for every situation on GitHub. Pur-
chasing or installing apps through the Marketplace has two key benefits: ease of
billing and installation and the vetting process.

Billing made easy
For apps in the GitHub Marketplace that require payment, installing the app
through the Marketplace is a streamlined flow because you can use your GitHub
payment info. That way, you’re not dealing with five different payment providers
when purchasing five different apps to use with GitHub.

If you have a free GitHub account, you may not have set up your payment infor-
mation in GitHub. To set up a payment method, click your avatar in the top-right
corner of GitHub.com and click Settings. From this page, click Billing and Plans
from the list on the left side. Here you can click the Add Payment method, as
shown in Figure 15-1.

The Marketplace vetting process
One of the benefits of installing an application from the Marketplace is that these
apps must meet certain requirements before GitHub lists them in the Marketplace.
The requirements help ensure a higher standard of quality and security with
the apps, helping ensure that these apps are useful (no Fart apps) and are secure.

CHAPTER 15 Exploring the GitHub Marketplace 251

At the moment, a GitHub Action doesn’t require any review to be listed in the
GitHub Marketplace, which means installing an Action from someone you don’t
know may be a bit riskier.

An app must meet four main categories of requirements before being listed in the
Marketplace (https://developer.github.com/marketplace/getting-started/
requirements-for-listing-an-app-on-github-marketplace):

»» User experience: This brief set of nine requirements includes things like the
app must have a certain number of users and installs already. It also includes
some requirements around the behavior of the app, such as the app must
include links to documentation, it can’t actively persuade users away from
GitHub, and it must provide value to customers.

»» Brand and listing: This set of guidelines and recommendations center
around the branding of your app and your app’s listing. Every app must
include its own logo. If the app makes use of GitHub’s logo, it must follow
GitHub’s Logos and Usages guidelines. The brand and listing section on the
Requirements page has links to further logo and description guidelines.
As you can see, GitHub takes listing apps in the Marketplace seriously.

»» Security: GitHub conducts a security review of apps before listing them in
the marketplace. A separate document with security best practices and more

FIGURE 15-1:
Your Settings

page on GitHub.
com where you

can add payment
information.

https://developer.github.com/marketplace/getting-started/requirements-for-listing-an-app-on-github-marketplace
https://developer.github.com/marketplace/getting-started/requirements-for-listing-an-app-on-github-marketplace

252 PART 6 The GitHub Ecosystem

details on the security review is at https://developer.github.com/
marketplace/getting-started/security-review-process.

»» Billing flows: Every app in the Marketplace must integrate billing flows using
the GitHub Marketplace webhook event. This requirement ensures that
people can purchase a subscription to your app and cancel that subscription
with the payment info they already have on file with GitHub. It also ensures
that any changes made through GitHub are reflected immediately on the
app’s own website.

Listing Your App on the Marketplace
Getting your own app listed in the Marketplace may increase the potential
audience for your application. However, listing your app requires that it meets
GitHub’s requirements and receives approval. Chapter 14 guides you through
creating your own app.

To start the process of listing an app, click the Submit Your Tool for Review link
at the bottom of the Marketplace landing page or navigate to https://github.
com/marketplace/new in your browser.

This page lists your applications that you can turn into Marketplace listings,
as shown in Figure 15-2. Notice the Why Not Both app I created in Chapter 14 is
listed here.

FIGURE 15-2:
Your applications
that you can turn
into Marketplace

listings.

https://developer.github.com/marketplace/getting-started/security-review-process/
https://developer.github.com/marketplace/getting-started/security-review-process/
https://github.com/marketplace/new
https://github.com/marketplace/new

CHAPTER 15 Exploring the GitHub Marketplace 253

Click the Create Draft Listing button next to the app you want to list on the
Marketplace to start the process. This takes you to a page where you can enter a
name for the listing and choose one of the marketplace categories for your app
listed earlier in the chapter, as shown in Figure 15-3.

If you save the draft of your listing but happen to close your browser, you can get
back to your listing by going to https://github.com/marketplace/manage in
your browser.

After you fill in these details, click the Save and Add More Details button to
save a draft of your listing and move on to the next set of steps, as shown in
Figure 15-4.

These steps include

1.	 Add your contact info.

This info is a set of three email addresses: Technical lead, marketing lead, and
finance lead.

2.	 Fill out your listing description.

This area is where you fill out more details, such as a product description, logo,
and screenshots. The information here will be displayed on the Marketplace
page for your application.

3.	 Set up plans and pricing.

This is where you can set up one or more pricing plans, including the option to
create a free plan, a monthly plan, or a monthly per user plan. You can also
specify whether a plan includes a 14-day free trial.

FIGURE 15-3:
Filling out a form

to list an app.

https://github.com/marketplace/manage

254 PART 6 The GitHub Ecosystem

4.	 Set up webhook.

This step allows you to specify a URL where Marketplace events will be sent via
an HTTP POST request. The webhook will send you information about events,
such as purchases, cancellations, and changes such as upgrades and
downgrades.

5.	 Accept the Marketplace Developer Agreement.

To list your app in the marketplace, you have to accept the Marketplace
Developer Agreement.

6.	 Click the Submit for Review button.

GitHub employees review your submission to make sure it meets the
requirements to be listed in the Marketplace. The result of the review of your
submission will be emailed to you.

Considering Common Apps to Install
In the section “Introducing the GitHub Marketplace” at the beginning of this
chapter, I list the categories of apps that are available on the Marketplace. In this
section, I describe some of the most common and useful apps that you may want
to consider installing.

FIGURE 15-4:
Steps to fill out a

Marketplace
submission.

CHAPTER 15 Exploring the GitHub Marketplace 255

Continuous integration
Continuous integration (CI) apps automatically build and test your code every
time you push it to GitHub. If you have a CI app, such as AppVeyor, installed on
your repository, you see the status of the check at the bottom of each pull request,
as shown in Figure 15-5.

If you’re the owner of the repository, you can also specify whether checks have to
pass before the branch can be merged into the main branch. Just head into the
Settings tab. If you have any rules on the main branch already, click Edit; other-
wise, click Add Rule. From there, you can scroll down and select Require Status
Checks to Pass before merging.

Code quality
Code quality apps automatically review your code with style, quality, security, and
test-coverages checks. These apps can be really useful for ensuring your code is
kept to a high standard. With well-styled and quality code, you’re less likely to
introduce or miss bugs. For example, if you require that all curly braces are on new
lines and indented with one tab per nested brace, you’re likely to be able to spot
when something is incorrect. For example, Rubocop checks the style of your Ruby
code while it’s building and provides you with style feedback, such as casing for
method names.

Another useful type of code quality apps is the code coverage apps, such as
Codecov. Shown in Figure 15-6, Codecov and apps like it comment on pull requests
with how much of the code is covered by test scenarios, helping to ensure your
code remains well tested.

FIGURE 15-5:
AppVeyor CI app
example on the

GitHub for Visual
Studio repository.

256 PART 6 The GitHub Ecosystem

Localization
Localization apps can make publishing your app in many languages easier.
For example, the Crowdin app links your repository to a Crowdin account where
people from around the world can help you translate your documentation and any
written words in your software (for example, on buttons or in menus). With more
than 20,000 people contributing to translations, the Crowdin app automatically
opens a pull request on your repository with new translations when it’s reached a
threshold of accuracy, still giving you a chance to review and merge. For open
source projects, Crowdin is free!

Monitoring
Monitoring apps help measure performance, track errors, and track dependen-
cies in your code. For example, Greenkeeper is a real-time notification app that
gives you updates and changes for JavaScript dependencies. Figure 15-7 shows
Greenkeeper in action, opening a pull request to update eslint to the latest version.

Dependency management
Modern app development today is heavily dependent on public package managers
for pulling in and managing dependencies. A typical app may have dozens, if not
hundreds, of dependencies. Tracking which of these dependencies are up-to-date
can be difficult. GitHub apps such as Dependabot check to make sure your depen-
dencies are up-to-date and submit pull requests to update the ones that are not.

FIGURE 15-6:
Codecov app

example on the
GitHub package
for the codecov

example-python
repository.

CHAPTER 15 Exploring the GitHub Marketplace 257

Sometimes you don’t want all your dependencies on a public package registry. For
example, if you work in an enterprise, you may have internal packages that should
remain private. A private package registry tool, such as MyGet, is useful in this
case. MyGet works with NuGet packages and lets you set up a policy where pushes
to a particular branch initiate a build and deploys the branch to a custom NuGet
feed hosted on MyGet.

Testing
Testing software is an important part of the software development lifecycle. Good
testers develop test plans to ensure that testers do a good job of testing each
release. Managing test plans and keeping track of the status of test runs is an
important part of quality assurance. The TestQuality app integrates with GitHub
to helping developers and testers create, run, coordinate, and monitor software
testing tasks.

Learning
A great way to learn GitHub is to install the GitHub Learning Lab from the
Marketplace. Learning Lab installs a bot that walks you through interactive les-
sons on how to use GitHub through a set of tasks that you complete. The lab is free
and lets you take as many courses as you like at your own pace.

FIGURE 15-7:
Greenkeeper app

example on the
GitHub package

for VS Code
repository.

CHAPTER 16 GitHub and You 259

Chapter 16
GitHub and You

GitHub is often described as a social network for developers. Throughout
this book, I show you that GitHub is much more than a social network. It’s
an essential set of tools for working on code together. Even so, the social

network aspect is still an important part of GitHub. It may well be a key reason for
its success. When GitHub was created, there were existing source control hosts.
Pretty much all these hosts were focused around projects. GitHub turned this
project-focus approach on its head and made people the focus. You can see it in
the URL structure where every repository has the name of the user or organization
before the repository name.

In this chapter, I dig into the social network aspect of GitHub. I look at how you
represent yourself in this network and how you can get involved in the online
community.

Understanding Your GitHub Profile
Every user on GitHub has a profile page. Figure 16-1 shows my profile at https://
github.com/drguthals.

Your profile page represents you on GitHub. When you open an issue or submit a
pull request to a new repository, the maintainers are likely to take a look at your
profile to get a sense of you.

IN THIS CHAPTER

»» Making the most of your profile

»» Understanding your contribution
graph

»» Following people and starring
repositories

https://github.com/drguthals
https://github.com/drguthals

260 PART 6 The GitHub Ecosystem

You can create a profile description by creating a repository with the same name
as your username, as described in Chapter 2.

Not only that, your GitHub profile can serve as a portfolio of your development
work. It provides some insight into your interests, experience, and ability as a
software developer, as shown in Figure 16-2. Many companies who are hiring will
take a look at your GitHub profile.

Many companies give heavy weight to applicants who have a GitHub profile.
However, this biases against people who don’t have the benefit of working at a
company that uses GitHub. It also biases against those who don’t have free time
to work on open source. GitHub, Inc. itself doesn’t require a strong GitHub profile
to apply for a job. More and more companies are taking an approach where they’ll
look at your GitHub profile if you have one, but won’t hold it against you if
you don’t.

Profile picture
The first thing people visiting your profile will notice is your profile picture. This
pic is associated with all your activity on GitHub. When you create an issue or a
pull request or leave a comment, your profile pic is right there next to it.

Your photo is an important part of your GitHub identity so make it reflect your
personality, whether it’s a picture of you smiling warmly, a photo of a cartoon
character, or a landscape photo.

FIGURE 16-1:
The profile page

for drguthals.

CHAPTER 16 GitHub and You 261

Status message
To the right of your profile pic is a status message you can use to communicate
something about yourself to the entire community. In Figure 16-1 you can see that
my status was set to an emoji of a smiley with a bowtie. When you hover over the
status emoji, the status message pops up if there is one. For some, it’s an outlet to
say something funny or meaningful. But for others, it’s used for practical pur-
poses. For example, if you’re a maintainer of a popular project, you may want to
let the world know that you’re busy if you plan to be away from GitHub for a while.
That sets the expectation that you may be slow to respond to new issues. Click
your status message to bring up the option to change it. Figure 16-3 shows the
status message dialog box with a busy message specified.

Personal info and bio
GitHub displays your bio and information that you choose to show the world under
the status message. Click the Edit button to change your bio, company name,
location, and URL. This area is a good opportunity to tell the world a bit more
about yourself and link to your personal blog or website.

FIGURE 16-2:
Scrolling down on

the profile page
for drguthals

shows a list of
repositories
and activity.

262 PART 6 The GitHub Ecosystem

All this information is completely optional. By entering it, you give GitHub per-
mission to display this information wherever your user profile appears. You can
delete the information at any time by editing your profile.

In this section, you also sometimes find badges that GitHub adds to users’ profile.
For example, if you visit the drguthals profile, you can see that I have the Pro
badge. I’m definitely a pro GitHub user, but that’s not what that badge means.
A Pro badge on a GitHub profile just means that that user pays for the individual
Pro subscription. (You can see different pricing models at https://github.com/
pricing.)

Pinned repositories
By default, GitHub shows a selection of your most popular repositories on your
profile page, but those repositories may not represent what’s important to you.
Click Customize Your Pinned Repositories to select up to six repositories to pin to
your profile page.

Pinned repositories can be useful from three perspectives:

»» You: Pinned repositories are useful to you because they’re direct links to the
repositories you care about most. Pinning repositories can make it quick and
easy for you to get there, instead of having to create bookmarks for
each of them.

»» Other GitHub users: When other people visit your profile on GitHub, the first
introduction to the kind of work you do is the set of your pinned repositories.
This gives folks a sense of what you’re interested in. It also highlights the areas
where you have experience. Listing areas of experience can be important if
you’re just starting to contribute to a new open source project because
maintainers will often visit your profile page to get a sense of who you are.

FIGURE 16-3:
Changing your

status message.

https://github.com/pricing
https://github.com/pricing

CHAPTER 16 GitHub and You 263

»» Companies: Hiring managers and recruiters may look at your profile when
you apply to a job to get a sense of your experience. Pinning some projects
that you have most contributed to or are most proud of to the top of your
profile can help them to get an accurate picture of you.

You can also always change up your pinned repositories based on what you’re
doing. For example, if you’re applying for a new position, you may want to refresh
what is pinned to be more specific to the role you’re applying to. And if you’re
trying to learn something new, you may want to pin repositories that you’re cur-
rently engaged with. Think of your entire profile page as a living document — one
that should be updated as your goals and interests change.

Contribution graph
The contribution graph is a grid of squares 7 squares high and 52 squares in length
representing each day of the past year. Each square is filled in with a color that
represents your contribution level on that day. If you didn’t make any contribu-
tions, the square remains gray. If you made some contributions, the square ranges
from light green to dark green, depending on how many contributions you made.

Issues and pull requests count as contributions on standalone repositories.
Commits to a standalone repository’s default branch (typically main) or to its
GitHub pages branch (typically gh-pages) count toward your contribution graph.

If you fork a repository, an Issues tab won’t appear at the top of the repo because,
typically, the goal of a forked repository is to contribute back to the original open
source project. You fork the repository, make your changes, and open a pull
request that targets the original repository. If you really want to have issues in a
forked repository, you can turn them on in the Settings tab, though I don’t recom-
mend it as you should be tracking your progress on an issue in the original repos-
itory. Because the intended behavior of a fork is to contribute back to the original
repository, issues on the forked repository and pull requests that do not target the
original repository do not count toward your contribution graph. The thought
here is that you haven’t yet contributed to the main project; the fork is kind of just
like your own private branch and the true contribution is made after you’ve added
thoughts to an issue or merged code in on the original repository.

The contribution graph is one of GitHub’s more controversial features. Two com-
mon concerns are raised. The first is that it promotes unhealthy behavior in that
many people attempt to keep long streaks of activity going. Many people take
pride in having activity on every single day of their graph, even weekends. Though
you may be working on something that makes you happy on the weekends,
which is okay, it’s also very important to recognize that it’s not — and shouldn’t

264 PART 6 The GitHub Ecosystem

be — expected that you are coding every single day of your life. Some of the most
important aha! moments have come from taking a break and gaining a new
perspective.

The other concern is that other people draw bad conclusions about a person’s
ability as a developer based on the activity graph. For example, someone may look
at a developer’s contribution graph, see very little activity, and conclude that
they’re not very productive.

Drawing any conclusions from other people’s contribution graphs doesn’t make
sense. A contribution graph should be useful only to yourself as a fun way to see
your history of activity. For one thing, the contribution graph is easily gamed. In
fact, a repository provides code for doing pixel art using your contribution graph
at https://github.com/nikhilweee/github-activity-art. It’d be easy to use
that tool to make your contribution graph completely dark green. The contribu-
tion graph isn’t meant to be used as a definitive productivity metric.

Also, contributions to private repositories may not be showing up in a contribu-
tion graph. Click Contribution Settings to change that setting. Figure 16-4 shows
an example of both enabling the display of private contributions as well as an
activity graph. Unlike the contribution graph, which shows how much activity you
have, the activity graph shows where your activity occurs.

FIGURE 16-4:
Displaying private
contributions and
the activity graph.

https://github.com/nikhilweee/github-activity-art

CHAPTER 16 GitHub and You 265

Contribution activity
Underneath the contribution graph is the contribution activity timeline. This
timeline of your activity on GitHub goes all the way back to your first commit. It
can be nostalgic to go back to the beginning of your activity.

In some cases, you may have activity in your timeline that shows up before you
joined GitHub. You may even have activity that occurred before GitHub was cre-
ated! How is that possible? The activity timeline includes Git activity in your
repositories based on the timestamp of the Git commits. It’s possible to import a
repository into GitHub that was created before GitHub existed, which would cause
you to have activity prior to GitHub’s creation.

Starring Repositories
When you visit a useful repository, you can star it by clicking the star in the top-
right corner of the repository page. A star is not only a compliment to the reposi-
tory owner, but also serves as a bookmark of sorts for the repository.

On your profile page, click the Stars tab to see a list of all the repositories that
you’ve starred. This list is viewable by others who happen upon your profile page.
Exploring the repositories others have starred is a great way of discovering
interesting new projects.

If you’re curious about which repositories have the most stars on GitHub, use
GitHub search (https://git.io/fhdkx) to sort users by follower count. This
shortened URL shows the top starred repositories on GitHub.

You may be curious about which of your repositories have the most stars.
Right now, you can’t list your repositories in order of stars. However, https://
profile-summary-for-github.com/user/haacked provides a nice visualization
of your profile and includes which of your repositories have the most stars (see
Figure 16-5). Just replace the username haacked with your own to see your profile.

https://git.io/fhdkx
https://profile-summary-for-github.com/user/haacked
https://profile-summary-for-github.com/user/haacked

266 PART 6 The GitHub Ecosystem

Following Users
When you visit the GitHub profile of another user, a big Follow button appears
underneath the profile picture. Click the Follow button to subscribe to notifica-
tions about the user’s activity in your dashboard at https://github.com. Who
you follow also feeds into GitHub’s recommendation system. For example, if
someone you follow stars a public repository, that repository may show up in the
Discover Repositories section of your dashboard as a recommendation.

You can see all the users you follow by clicking the following link on the left of
your profile page. You can see all the people who follow you by clicking the follow-
ers link.

If you’re curious about who are the most followed people on GitHub, you can use
GitHub search (https://git.io/fh7P7) to sort users by follower count. This
shortened URL shows the top followed people on GitHub. It may come as no sur-
prise that Linus Torvalds, the creator of Linux and Git, is the most followed person
on GitHub.

FIGURE 16-5:
Profile

visualization.

https://github.com/
https://git.io/fh7P7

CHAPTER 17 Attending Events 267

Chapter 17
Attending Events

Starting a career as a software developer is very challenging, especially if you
do it on your own. This is one reason why GitHub is such an essential tool
for software developers. As the biggest source code host in the world, it’s

also the biggest software developer community. By participating in GitHub, you
become connected to the world’s experts and best teachers for any technology you
may be interested in.

Most people who use GitHub barely scratch the surface of what GitHub offers. By
reading this book, you’re a step ahead of many other developers. The knowledge
of how to use GitHub will serve you well. But writing code on GitHub only scratches
the surface of a rewarding career as a developer.

In this chapter, I look at how to get two steps ahead in your career by encouraging
you to step away from the keyboard for a moment and meet with other developers
in-person. Attending events is a great way make connections that will benefit you
during your entire career. And speaking at events is a great way to grow in your
career even more. It may feel daunting, but everyone has something to offer
others, even those just starting out.

IN THIS CHAPTER

»» Growing your career through events

»» Finding an event in your area

»» Speaking at events

268 PART 6 The GitHub Ecosystem

Exploring Types of Events
Many kinds of events focus on software developers. They range from the informal
meet-up or user group to the structured multiday international software confer-
ence. In this section, I cover the most common types of events and what to expect
at each.

Meet-ups and user groups
A meet-up or user group is an informal gathering of developers to cover a topic.
Many are scheduled monthly and hosted by a local company or software interest
group.

These events tend to be a great way to dip your toe into software developer events.
They tend to be small gatherings of people in your area. Each month features a
local speaker who talks about a topic relevant to the group. (Some user groups and
meet-ups bring in speakers from outside on occasion, but typically they focus on
highlighting local speakers.)

Meetup.com is a great way to find a meet-up relevant to your interests. For a list
of JavaScript meet-ups in Seattle Washington, go to https://www.meetup.com/
topics/javascript/us/wa/seattle. You can search for meet-ups by location on
meetups.com.

A few examples of local meet-ups include

»» Brooklyn JS: http://brooklynjs.com in Brooklyn, New York

»» .NET São Paulo: www.meetup.com/dotnet-Sao-Paulo in São Paulo, Brazil

»» SD Ruby: www.sdruby.org in San Diego, California

Regional conferences
A regional conference is a relatively small conference where speakers and attendees
outside of the local area are welcome, but the focus of the conference is to provide
a venue for local developers and speakers to connect and present their work.

Often these conferences are one or two days. Many have a single track of talks, or
two at most. They’re a step up in size and structure from a meet-up and typically
occur once a year, as opposed to monthly.

https://www.meetup.com/topics/javascript/us/wa/seattle/
https://www.meetup.com/topics/javascript/us/wa/seattle/
http://brooklynjs.com
http://www.meetup.com/dotnet-Sao-Paulo
http://www.sdruby.org

CHAPTER 17 Attending Events 269

Some of them often offer workshops either before or after the conference. These
workshops usually cost extra, but offer more in-depth training for a specific skill-
set or technology. For example, you can often find a full-day workshop dedicated
to improving your Git skills. If you can afford it and find one that teaches a skill
you want to improve, workshops are often worth the investment.

Some great examples of local conferences include

»» Caribbean Developers Conference: https://cdc.dev/ in the
Caribbean each year

»» JSConf Chile: https://jsconf.cl/ in Santiago, Chile

»» London Tech Week: https://londontechweek.com/ in London, UK

Hackathons
A hackathon is very different from a conference. While conferences focus more
on having speakers teach a topic through a talk, hackathons focus on building.
A hackathon is an event that may last several days where groups of people form
teams to work together to collaboratively write code to solve some sort of problem.

The usual format is some sort of problem is presented and teams are tasked with
building a solution. The technology stack they may use is often dependent on the
focus of a hackathon. For example, a mobile development hackathon requires that
attendees build a mobile app to solve the problem.

Hackathon is a portmanteau of the words hack and marathon. Many take the mar-
athon aspect to the extreme by having teams work around the clock with very
little sleep. Others try to create a balance of working hours and sleeping hours by
forcing contestants to leave the workspace.

Hackathons are often very inclusive of beginners. You don’t always have to have a
team when you sign up for a hackathon. Often, you can find one when you get
there. It’s best to check out the FAQ for the specific hackathon to learn more
about the details.

One of the largest, worldwide hackathons is targeted to college students. It’s the
Microsoft Imagine Cup (https://imaginecup.microsoft.com/). Winners of the
Imagine Cup can win mentorship from Satya Nadella (Microsoft CEO), travel to
the world championship, and receive Azure grants and $100,000.

Attending hackathons can be a great way to be introduced to a new technology.
The goal isn’t to design and implement a final product, but rather to hack together

https://cdc.dev/
https://jsconf.cl/
https://londontechweek.com/
https://imaginecup.microsoft.com/

270 PART 6 The GitHub Ecosystem

bits and pieces to make progress on an idea that you have. The end product should
look more like a prototype than a polished application. Often times, hackathons
have mentors who know a particular technology that you can learn from. Think of
a hackathon as a dedicated time and place to experiment and learn.

Though attending a formal hackathon provides you with mentors, a space, and
sometimes prizes, you can also always get together with friends to do one on your
own, too! Just pick a time, place, and goal and try to hack together a prototype of
an idea you have! It doesn’t hurt to give it a shot!

Major conferences
A major conference tends to be large and draw attendees from all over the country,
if not the world. Attendee counts tend to be in the thousands. Attending one of
these conferences requires a bit more up-front planning. It’s not just arranging
your flight and hotel. These conferences tend to have many tracks, so for any
given time slot, you may have to choose which talk you want to see.

Like a regional conference, major conferences often offer an array of workshop
offerings before or after the conference. In addition to workshops, many also
include hands on labs during the conference. Labs are usually included in the price
of the conference and offer a great chance to actually try out the technologies
you’re hearing about at the conference.

Many of these conferences are thrown by large technology companies, such as
Microsoft’s Build conference and Apple’s WWDC.

A few examples include

»» All Things Open: https://allthingsopen.org/ (location changes
each year)

»» Build: https://mybuild.microsoft.com/ in Seattle, Washington

»» WWDC: https://developer.apple.com/wwdc22/ in San Francisco, California

Knowing What to Expect at Events
Events can vary widely in terms of what to expect, but they all have a few com-
monalities. The most obvious thing to expect is that other developers will be there.
Not everyone has the benefit of living in a tech hub. If you live outside of a tech

https://allthingsopen.org/
https://mybuild.microsoft.com/
https://developer.apple.com/wwdc22/

CHAPTER 17 Attending Events 271

hub, being a developer can feel solitary. If you work at a company that is not pri-
marily focused on software, it can feel lonely. A software event is an opportunity
to meet likeminded individuals — people who really care about the craft of soft-
ware and improving themselves. Events are a good chance to make connections.

Keynotes
Many conferences, especially the larger ones, will include a keynote talk. Some
include more than one. A keynote talk sets the tone for a conference and is usually
related to the theme of a conference. For a multitrack conference, no other talks
are usually scheduled during the keynote.

For a major conference held by a large software company such as Microsoft or
Apple, the keynote is where they’ll often make major announcements of new
products and features.

Conference session tracks
The primary draw of conferences are the session tracks. A track is a set of talks,
typically organized around a theme. Smaller conferences may have only a single
track, while larger conferences may have a large number of tracks. A user group
meeting or a meet-up may only have a single talk.

Depending on a conference, a session can range from 30 minutes to 75 minutes.
Many of them end with some time for audience questions and answers (Q&A).

If you participate in a Q&A, it’s considered rude to simply use that time to make a
statement. Make sure that your question actually ends with a question mark.

Sometimes presenters ask to follow up with you after the talk to have a more in-
depth conversation. Don’t assume that it’s because they don’t want to answer in
a public forum. Typically, Q&A lasts only 5 to 15 minutes, and there isn’t always
enough time to fully understand a question and formulate an effective answer.
You can meet up with presenters directly after the talk (though you should let
them at least get their laptop and things off the stage) or ask when they may be
able to grab a cup of coffee during the conference if it’s a multiday conference. You
can also ask whether there is an asynchronous way to follow up with them that
they would prefer.

Conference presenters are typically attending the conference to learn something
as well; they aren’t only there to present, so be respectful of their time as well.

272 PART 6 The GitHub Ecosystem

Hallway tracks
At most conferences, the sessions are very valuable if it’s a topic you want to learn
about, but just as valuable is what’s known as the hallway track. The hallway track
isn’t one you typically find on the conference schedule. It’s a term that people
coined to refer to the informal conversations you have in the hallway in between
sessions, during lunch, or when you skip a session.

Sometimes you’ll come across a world expert in a topic having a casual conversa-
tion with a few attendees, and you’ll be welcomed to join in. These hallway tracks
can often be even more educational than attending a talk because you can engage
in a conversation instead of just listening. They also may lead to lifelong friend-
ships and interesting collaborations.

Meeting new people at a conference can be intimidating, especially if you’re an
introvert. It may help to know that most people feel this way. If you draw up the
courage to introduce yourself to someone you don’t know who is alone, they may
feel relieved. If you’re an extrovert, look for opportunities to draw people who are
alone into a conversation in a low-pressure manner.

After-hour conference events
Many conferences include after-hour events. Some of these events can be quite
lavish depending on the size of the conference.

Often, these events include loud music and alcohol, so be aware if that’s not
your thing.

Many conferences try to be more creative and inclusive with their attendee events.
For example, one conference rented a table tennis place with a large number
of tables.

A respectful professional environment
At most events, you can expect a respectful, inclusive, and professional environ-
ment. This environment is conducive to networking, socializing, and learning.

Occasionally, conferences fail to live up to that expectation. Because of that, many
conferences adopt and enforce a code of conduct. A code of conduct outlines behav-
ioral expectations of the participants in a conference. More importantly, it com-
municates to folks who are often the targets of harassment that the conference
takes harassment seriously and is not welcome at the event.

CHAPTER 17 Attending Events 273

Becoming Familiar with GitHub Events
Given that this book is about GitHub, I’d be remiss not to include some informa-
tion about GitHub’s own events. GitHub hosts and sponsors events throughout
the year.

GitHub Universe
GitHub Universe (https://githubuniverse.com/) is the flagship conference for
GitHub. It’s held yearly in the city where GitHub’s main headquarters resides: San
Francisco, California. The conference is usually held in the fall around October or
November.

As GitHub describes it,

GitHub Universe is a conference for the builders, planners, and leaders
defining the future of software.

This conference is where GitHub typically makes its biggest announcements of
the year during the keynotes. It attracts well-known speakers from prominent
software companies.

In 2022, the conference was held hybrid, with sessions, booths, and demos in
person, and the main session track also streamed live.

GitHub Satellite
The GitHub Satellite conferences (https://githubsatellite.com/) are an off-
shoot of GitHub Universe. They bring a GitHub universe-style conference to
locations around the world.

Held once a year, past Satellites have been held in places such as Berlin, Tokyo,
and London.

GitHub Constellation
GitHub Constellation (https://githubconstellation.com/) is a series of small
community events held multiple times a year around the world. These events
focus on the local community and often feature speakers local to the area. They
are typically free and occur over one or two evenings. They’re not all-day confer-
ences like Satellite and Universe.

https://githubuniverse.com/
https://githubsatellite.com/
https://githubconstellation.com/

274 PART 6 The GitHub Ecosystem

Git Merge
Git Merge (https://git-merge.com/) is a conference sponsored by GitHub but
focused on the Git version control tool and the people who use it every day. As
GitHub puts it,

Through technical sessions and hands-on workshops, developers and teams of
all experience levels will find new ways to use, build on, and scale Git.

The conference features a preconference hands-on day of workshops focused on a
range of Git topics. This conference is a great one to learn more about Git and to
improve your Git skills.

Speaking at Events
A lot of developers have the misconception that speaking at conferences is only for
experts who have been in the industry for years or that only big extroverted per-
sonalities speak at conferences. I’m here to tell you this is not true.

Everyone has a story to tell
Whether you realize it, somewhere inside of you, you have an interesting story to
tell — even if you’re relatively new as a software developer. One thing all these
events have in common is they’re better off when they have a diverse set of speak-
ers with diverse viewpoints. For example, it’s common for experienced developers
to lose their “beginner’s mind” when working with a technology for so long.
A talk by a beginner about their struggle to learn a particular technology is often
eye-opening and just the kick in the pants experienced developers need to make
it better.

Benefits of being a speaker
Being a speaker offers a lot of benefits. The main one is that it’s a forcing function
to spend time deeply learning a topic. If you plan to give a talk on a subject, it’s a
good idea to research it beyond what you already know. And teaching a topic to
others is a great way to solidify your own understanding.

Not only that, it’s a great way to receive feedback on your ideas. Often, after giving
a talk, someone will have a unique insight to share that improves upon your ideas.
You wouldn’t have received that feedback without putting your ideas out there.

https://git-merge.com/

CHAPTER 17 Attending Events 275

Another benefit is the exposure and networking opportunities that being a speaker
entails. Because your badge will have the word SPEAKER on it, people are more
likely to want to meet you and talk to you. When you’ve spoken at a few confer-
ences, it gets your name known. When you apply for a new job, people may give
you more opportunities because they’ve heard you speak.

And a few perks come with being a speaker. Often, conferences have special
speaker-only events where you can get to know other speakers. This event often
leads to great networking opportunities and friendships because it’s easier to
remember people in a smaller setting. Also, as you speak at more and more con-
ferences, you may see some speakers at multiple conferences and even become
friends. It helps when you go to a conference to already know some of the other
people there because you’ve spoken together before.

Finding Funding for Events
Some of these events and conferences can get expensive. Jamstsack can cost
upwards of $1,000 — not to mention the transportation and parking to get to the
conference and the hotel and flight costs if you don’t live near the venue.

Many software companies pay to have employees attend a conference if the con-
ference is a valuable learning opportunity. If you work for a software company, it
doesn’t hurt to ask. To make your case stronger, explain how the things you learn
at the conference will improve your performance at work.

Larger software companies may also be sponsoring events and need volunteers to
attend and help run the booth. Some companies even offer a stipend for attending
conferences as a perk and part of your compensation package.

Another way to fund your trip is to apply for a scholarship. The Grace Hopper Cel-
ebration is a large conference with more than 18,000 attendees and celebrates
women in computing. With technical tracks as well as tracks focused on diversity
and inclusion, this conference is typically held over three days and moves around
the United States for the venue. The Anita Borg institute that puts on the confer-
ence also offers scholarships that you can find at https://ghc.anitab.org/
attend/scholarships/. These scholarships typically include airfare, hotel, trans-
portation costs, meals, and a ticket to attend. They focus on students and faculty
for this particular scholarship.

Most conferences waive the price of the conference ticket for speakers. Many con-
ferences also cover hotel and travel to the conference. And some conferences even
offer an honorarium on top of expenses. These benefits completely depend on the

https://ghc.anitab.org/attend/scholarships/
https://ghc.anitab.org/attend/scholarships/

276 PART 6 The GitHub Ecosystem

conference. As you improve your technical speaking skills and speak at more con-
ferences, you can also turn this part of technical expertise into a career. Whether
you decide to become a developer advocate (which often includes giving talks,
making videos, live streaming, and educating developers on new tools or con-
cepts) or you remain an engineer but commit to sharing your expertise like Kelsey
Hightower (https://twitter.com/kelseyhightower), leveling up your speaking
skills can bring a lot of perks and respect amongst the technical community.

Furthermore, some conferences ask for volunteers to help run the conference,
which also tends to come with some perks such as a free ticket so that you can
enjoy the rest of the conference when you’re not working one of your shifts. The
Grace Hopper Celebration calls it the Hopper Program, which you can find at
https://ghc.anitab.org/get-involved/volunteer/hoppers/.

If you’ve found an event you’re particularly excited to attend, before you shell out
the thousands of dollars from your own pocket, ask around! Ask your network
whether anyone knows of any scholarships, apply to be a speaker or volunteer,
and ask your company or school what resources are available to you!

https://twitter.com/kelseyhightower
https://ghc.anitab.org/get-involved/volunteer/hoppers/

7The Part of Tens

IN THIS PART . . .

Find resources on GitHub.com to support your
growth.

Discover how to keep up-to-date with GitHub
Integrations.

Explore external resources for learning more about
collaborative coding.

Understand techniques to improve your workflow
on GitHub.com.

Find tools that will help improve your workflow.

Become an effective community member with
guided tips.

CHAPTER 18 Ten Ways to Level Up on GitHub 279

Chapter 18
Ten Ways to Level
Up on GitHub

Becoming an expert on GitHub is not a quick task. First, you need to master
a lot of specific features of GitHub. Knowing how to create a pull request or
link issues to a project board with automation for effective project manage-

ment is one aspect of this expertise.

It’s also important to begin to master specific areas in software engineering
as a whole to be able to effectively contribute to projects in meaningful ways.
Furthermore, becoming an effective community member is another way to become
a GitHub expert.

This chapter briefly describes ten ways you can level up in each of these areas so
that you can be successful on GitHub.

Trial and Error
One the best ways to learn anything is to just try. When you try, you always learn.
If you try and fail, you learn what not to do and gain insight into how something
works. When you succeed, you learn what to do next time! Learning how to use

IN THIS CHAPTER

»» Finding resources on GitHub.com

»» Exploring online resources in the
broader web

»» Keeping informed about GitHub
integrations

280 PART 7 The Part of Tens

GitHub and how to code is no different. In fact, learning by trial and error in the
tech field is even easier.

GitHub provides you with unlimited public and private repositories, which means
you can try all kinds of things without ever spending a dollar! I highly recommend
getting onto GitHub.com and creating a new repository. From there, make a
README.md file that you can easily modify and work with. This is the “Hello World”
app of a GitHub repo. You can create issues and pull requests that modify the
README.md file just to see how they work.

To learn more about collaboration on GitHub, invite your friends to be collabora-
tors on your repo or make your repo public and send them the link to it. Ask them
to comment on issues and create and review pull requests. Ask your friends to
make their own public and private repo where you’re a collaborator so that you
can try all the GitHub features from the perspective of a contributor. There is no
harm in trying things.

After you finish exploring, you can always delete the repositories, if you want.
Keeping some around may be useful for the inevitable time when GitHub releases
new features that you want to try on a dummy repo.

GitHub Help Docs
The GitHub help docs are extensive and detailed. You can find them by going to
https://support.github.com. The help docs can be extremely useful if you know
exactly what you want to get done. With 38 categories that each have anywhere
from 1 to 70 docs, hundreds of pages describe every single feature of GitHub with
images and cross-referenced links.

At the top of the GitHub Help page (where all the docs are located) is a search bar
where you can type a query, and docs related to that query appear. In fact, just like
with Google, results appear as soon as you start typing. If you press Enter or click
the magnifying glass button, a page with search results appears. On this page is a
notation next to the doc title with the category that it’s a part of. I recommend
paying attention to that notation because it will help you better navigate docs in
the future. If you understand how GitHub categorizes the docs, you may be able to
find what you’re looking for faster next time.

If you click a specific doc, you see the documentation page. On the right side of
this page is a list of Article versions. The documentation defaults to GitHub.com
documentation, but GitHub also offers a slightly different version to enterprise

https://support.github.com

CHAPTER 18 Ten Ways to Level Up on GitHub 281

users. Clicking the different article versions displays the docs specific to that
version of GitHub, ensuring that you have the most accurate information.

Extremely security conscious companies are more likely to use GitHub Enterprise,
as it allows them to have the interface and functionality of GitHub while keeping
their code and data secure on their own servers. This ability can be important if
you have proprietary code that you don’t want anyone, not even GitHub, to have
access to. If you’re planning on open sourcing your code (which a lot of large
companies, such as Microsoft, do a lot of) or you just want your code to be private,
storing on GitHub.com is typically good enough.

At the bottom of each documentation page you typically find a section called
Further Reading. This section lists documentation pages that may be relevant to
what you’re trying to do. Below this section is a Contact a Human button. If the
documentation isn’t helping you resolve your issue, click this button to go to a
page where you can contact GitHub. The Contact page has an extensive list of all
the ways you can try to help yourself first, but then provides a quick and easy
message section for you to ask a question. On the left side of the contact page you
can also find other reasons for contacting GitHub, such as reporting abuse, report-
ing content that isn’t appropriate, reporting copyright infringement, privacy con-
cerns, and portals for both premium and enterprise support, if you’ve purchased
those plans. You can also directly access this page at https://support.github.
com/request.

This Request page is not where you should submit a question or concern about a
specific repository unless you’re reporting abuse, content, or copyright infringe-
ment. If you have a problem getting code to run or have a question about a specific
repository, you should ask in an issue directly on that repository home page on
GitHub.

Docs are your friend. There is a lot to learn and software changes quickly; expert
programmers are experts not just because they know a lot, but mostly because
they know how to figure something out — and that often means knowing how to
find information.

GitHub Skills
GitHub has invested in a team of folks dedicated to helping novices learn how to
use GitHub. And though documentation can help when you know exactly what
you’re looking for, sometimes it can be hard to follow still images. That’s why
GitHub brings you Skills, which are absolutely incredible. Skills are step-by-step,
guided tutorials where you actually create a real repository on GitHub and perform

https://support.github.com/request
https://support.github.com/request

282 PART 7 The Part of Tens

real actions that you would normally. The friendly GitHub Skills Bot guides you
through the tutorial, creating pull requests for you to review or issues for you to
close out.

To get started with Skills, go to https://skills.github.com and browse a num-
ber of courses that may be useful for you to get an in-depth introduction into
everything GitHub.

On the Courses section, on https://skills.github.com, you can find 14 (maybe
more by the time you read this book) courses categorized into topics such as First
day on GitHub, Automate Workflows with GitHub Actions, and Code Security and
Analysis. With some of the most commonly used features on GitHub being high-
lighted, you can learn to review pull requests, manage merge conflicts, and make
your open source project stand out among the millions of projects on GitHub.com.

Clicking a course takes you to a detailed page where you can learn more about that
course and join it. Often times, Skills wants to create a public repository on your
account. Don’t worry; you can always delete it after you’ve finished the course,
but there is also nothing wrong with showing the world that you take learning
seriously. When you start a Skills course, you’re taken to a Template repository.
Clicking Use This Template, as shown in Figure 18-1, to clone the repository in
your own account and the GitHub Actions automates the course experience for you.

A typical Skills course has the bot open an issue in the repo that it created with a
description of what you should do. All you have to do is read through the issue and
follow the instructions!

Open the repo in a new tab so that you can refer to the instructions without losing
your place in what you’re trying to accomplish.

FIGURE 18-1:
Using the GitHub

Skills template
repository.

https://skills.github.com
https://skills.github.com

CHAPTER 18 Ten Ways to Level Up on GitHub 283

When you’re just starting to get introduced to GitHub, Skills is a great way to
experiment with features and learn specific workflows. It’s essentially trial and
error, but with a helpful guide.

GitHub In-Person Training
GitHub is tool for more than 30 million developers and over 2 million organiza-
tions. From novice coders just learning to create their first GitHub Pages website
in Markdown to Microsoft bringing you VS Code, GitHub’s goal is to support more
people building more software. As such, GitHub offers trainings where a GitHub
expert helps better equip your team to use GitHub.

With eight different focus areas, plus a customized training in case you need
something different for your team, GitHub not only guides you through the details
on how to use GitHub, but engages everyone in the fundamental workflows and
techniques to using it effectively. The focus areas are

»» Workflow consultation

»» Implementation

»» Admin mentoring

»» Train-the-Trainer

»» Migration

»» API consultation

»» InnerSource

»» Services account engineering

For a full description of each of these areas, as well as what you can get with a
customized course, visit https://services.github.com. This service is not free.
You can submit an inquiry and a GitHub representative will reach out with more
information about costs.

If you’re a novice, you may not need the full-force of a GitHub trainer. However,
it may be something for you to suggest to your company if you need to start using
GitHub as part of your job. In-person training can also be useful if you start a
company and want everyone on your team to not only use the tool, but to use it
effectively.

https://services.github.com

284 PART 7 The Part of Tens

Project-Specific Documentation
One of the best ways to learn about a specific open source community and a spe-
cific technology is to reach the project-specific documentation. When you are both
new to GitHub and new to a technology, it can be effective to read through the
documentation most relevant to your interest and to explore the behaviors of
other members of the community by reading through issues and pull requests.

The VS Code project is a good example of a project with good documentation and
enough community engagement to understand behaviors. If you go to https://
github.com/microsoft/vscode, you can find a well-written README with links to
where you can submit bugs and feature requests, how to contribute to the project,
and where to engage with the core developers.

When you’re first starting to learn, following the How to Contribute documenta-
tion (for example, VS Code has a wiki page for it at https://github.com/
Microsoft/vscode/wiki/How-to-Contribute) can help you get your code up and
running on your local machine. Even if you don’t end up contributing directly to
the project, following this documentation can be a good learning exercise.

Some projects are strict on their style and contributing guidelines. For example,
the VS Code project has guidelines on style found at https://github.com/
Microsoft/vscode/wiki/Coding-Guidelines. Having code that is consistent in
style means that errors are less likely to occur. For example, if you always use
PascalCase for type names and camelCase for function names, you can quickly
identify when someone accidentally referred to a type instead of a function in
their code.

It is also important to know the requirements for contributing code to the open
source project. For example, on VS Code, you must first sign a Contributor License
Agreement before you open a pull request on the repository.

Looking through open and closed pull requests can also be good practice when
you’re trying to learn about the specific community. Understanding what kinds of
errors are common in the particular code base or what kinds of changes the core
team typically requests can help you learn about the technology as well as the
specific project. Successful open source projects have pull request reviews with
substantial information. For example, on one of the pull requests for the VS Code
project, you can see user ramya-rao-a not only lets user grunxen know that alerts
shouldn’t happen, but also provides a suggestion on how to fix this bit of code, as
shown in Figure 18-2.

https://github.com/microsoft/vscode
https://github.com/microsoft/vscode
https://github.com/Microsoft/vscode/wiki/How-to-Contribute
https://github.com/Microsoft/vscode/wiki/How-to-Contribute
https://github.com/Microsoft/vscode/wiki/Coding-Guidelines
https://github.com/Microsoft/vscode/wiki/Coding-Guidelines

CHAPTER 18 Ten Ways to Level Up on GitHub 285

External Community Places
Some open source projects have places other than GitHub where more general
conversations can happen. These places can be a really great way to learn without
having to explicitly open an issue or pull request. You can find these extended
communities many places online, some with a more interactive community while
others are more feedback-driven.

The VS Code project, for example, calls out the StackOverflow questions that are
tagged with visual-studio-code. If you have questions about VS Code, it’s best
that you first search the questions already asked. If yours is unique, make sure you
use the appropriate tag when writing it.

This project also suggests giving feedback on Twitter, asking questions, or directly
giving feedback to the @code alias. Giving feedback is also a good way to get
updates on the project.

The Sentry (application monitoring) open source project, on the other hand,
uses the GitHub Discussion Forums, found at https://github.com/getsentry/
sentry-javascript/discussions. This forum is a great place to search for
answers to your question or ask a unique one, if it hasn’t been asked. As you
become more expert in using Sentry, you can start contributing answers.

Sentry also has a public Discord that you can join. Just visit https://discord.gg/
sentry and you will be invited to join the public Discord server where you can ask
questions and generally follow the discussion around Sentry, any of its specific
integrations or SDKs, or just general chat “around the water cooler.” This resource
is great if you’re learning on your own. A Discord server can be a virtual office

FIGURE 18-2:
Effective pull

request review
feedback on the

VS Code open
source project.

https://github.com/getsentry/sentry-javascript/discussions
https://github.com/getsentry/sentry-javascript/discussions
https://discord.gg/sentry
https://discord.gg/sentry

286 PART 7 The Part of Tens

where you have colleagues and peers that you can ask questions to in a lightweight
manner (for example, not open an issue on GitHub).

Online Coding Tutorials
Depending on what you’re trying to learn and contribute to on GitHub, an online
coding tutorial may be right for you. Now, you can probably find thousands of
coding tutorials online from a random person posting a blog to a YouTube video
showing you exactly how to do something, but some coding tutorials also offer
you an in-browser sandbox where you actually get to try the code it’s trying to
teach you about.

If you ever want to create a GitHub app or integration, it may behoove you to know
a bit about Ruby because GitHub is built using Ruby. The online tutorial https://
try.ruby-lang.org/ gives you a step-by-step guide with an editor and an output
window right in your browser.

While the Ruby tutorial gives you a handy Copy button so that you don’t have to
type all the example code every time, it can be useful to go through the motions
of typing to slow down and better learn what you’re reading. I recommend typing
the code, even if it seems simple enough, so that you get more practice.

If you’re making a web application, you may want to get some practice with
JavaScript, HTML, and CSS. https://jsfiddle.net is a great place to start, giv-
ing you an editor for each language along with an output window. It has also been
enhanced to have boilerplate starter code for commonly used languages, such as
React, TypeScript, and CoffeeScript.

Another interactive sandbox tutorial website I particularly like is the Try .NET site
at https://dotnet.microsoft.com/platform/try-dotnet. Before diving in to
the intricacies of the .NET Framework, you can get your hands dirty in a safe envi-
ronment right in your web browser. With snippets that you can try, tutorials you
can follow, or simply an open playground to experiment, this site can offer you
support at any stage in your career.

Online Courses and Tutorials
Online courses are becoming more popular with the development of better tools
for engaging with learners. Two of the largest platforms for online courses are
Coursera and EdX. These platforms partner with universities and large companies
to provide in-depth education and sometimes certification or even degrees.

https://try.ruby-lang.org/
https://try.ruby-lang.org/
https://jsfiddle.net
https://dotnet.microsoft.com/platform/try-dotnet

CHAPTER 18 Ten Ways to Level Up on GitHub 287

Both Coursera and EdX offer specializations with multiple courses. For example,
there is a Ruby on Rails Web Development Specialization on Coursera that was
created by Johns Hopkins University. Meanwhile, Microsoft offers a professional
certificate in Introduction to Computer Science, which has three courses.

Furthermore, some universities offer degrees, such as the University of London
and its bachelor of science in computer science degree on Coursera or University
of California, San Diego’s MicroMasters in data science on EdX. These programs
often require an application and admission into the specific program — not just
anyone can join.

For more lightweight options, sites like Udemy and Pluralsight offer more than
100,000 online courses at low prices or sometimes even free. These courses tend
to be more focused on video lectures and tutorials rather than extensive course-
work, but they’re really great options for when you’re first getting started and just
want to get an introduction into something.

Khan Academy is another great place to find always free courses. Khan Academy
supports learners as young as 2 on its Khan Academy Kids app (https://www.
khanacademy.org/kids?from=lohp) to adults looking to learn something new
from computing to studying for the LSAT to entrepreneurship and growth
mindset! This great resource offers curated courses that are more lightweight
than Coursera or EdX.

It is also important to not forget the power of YouTube. Though videos on YouTube
aren’t curated and aren’t held to any standards, you can find a lot of really amazing
content. For example, The LearnCode.academy channel has a GitHub Tutorial for
Beginners video with almost two million views. Siraj Raval is also a great channel
to follow as he gives tutorials, but also explains the history of certain technologies
and how they actually affect our world.

Blogs, YouTube, Twitter, TikTok,
and Other Social Media

If you’re looking for updates on certain technologies or products or a quick
answer to something, it can often be fruitful to follow the right people on
Twitter, YouTube, Mastodon, Twitch, TikTok, or whatever social media platform
you’re into and subscribe to the right blogs. I can’t tell you who the right people
are for you to follow, because each person reading this book may have different
interests when it comes to learning and contributing on GitHub, but I can give
you some tips!

https://www.khanacademy.org/kids?from=lohp
https://www.khanacademy.org/kids?from=lohp

288 PART 7 The Part of Tens

First, recognize that people who post on social media and who blog are usually
only representing their own ideas and are not representing a company or being
held to any company standards. This means that you should take what they say
with a grain of salt and recognize that they are just people, saying what is on their
mind, and probably also still learning and developing (as we all are always learn-
ing and developing).

When searching for Twitter accounts to follow, you can start with accounts repre-
senting the technology you’re interested in learning about. For example, follow-
ing @GitHub may be a good idea because this account not only posts updates to
GitHub, but also often highlights other tech, people, or events related that may be
of interest to you. This start to give you ideas on other people to follow. For exam-
ple, GitHub recently tagged Finn Pauls (@finnpauls), who is an engineer and
product designer who shared some open source projects, so he might be a good
resource of information.

Advice on which blogs to follow is similar to the advice on Twitter. I recommend
starting with some of the blogs that may have the most relevant information —
for example, the GitHub blog at https://github.blog gives you up-to-date
information about GitHub features. Another great resource is Dev.to, where you
can search any keyword and get a number of different perspectives and pieces on
it. For example, https://dev.to/search?q=github results in a lot of lists of
things you can do on GitHub that you may not have known about. It can be a great
start to then look into the GitHub docs for more in-depth information. Finally,
you can also just enter a keyword in your favorite search engine, and various
blogs, tutorials, and videos are likely to pop up.

Community Forum
I also recommend the GitHub Community Discussions. especially for getting help
about GitHub. Found at https://github.community, this forum tends to have
hundreds of people actively online at any given time. The GitHub community is
worldwide, and people from all different technological backgrounds are typically
eager and willing to help.

Many threads contain topics specific to GitHub, such as how to use Git and GitHub,
GitHub Pages, and the GitHub API. But this community forum offers even more
than GitHub-specific information. As the number one place for developers, GitHub
also provides a space for the community to learn from each other in general
programming concepts and projects overall.

https://github.blog
https://dev.to/search?q=github
https://github.community

CHAPTER 18 Ten Ways to Level Up on GitHub 289

You might also be interested in the GitHub Education community forum found at
https://education.github.community focused on how to use GitHub in the
classroom. This resource is great if you’re a student and you’d like to convince
your teacher to use GitHub or if you’re a teacher looking to teach your students.

The GitHub Community Discussions is a great place to ask your generic questions
that wouldn’t be appropriate to ask on a specific repository. The GitHub commu-
nity is vast as it is a large portion of the developer community. Almost anywhere
you go in the developer community, you are sure to find someone who can help
you or at least point you in the right direction. The most important thing for you
to remember is to ask questions, be respectful, and remember to give back with
your knowledge as you begin to learn.

https://education.github.community

CHAPTER 19 Ten Ways to Improve Your Development Workflow 291

Chapter 19
Ten Ways to Improve
Your Development
Workflow

Working on software is tedious at times. Writing code is laborious and
requires a ton of steps and intense concentration. On top of that, a lot
of tasks have to occur during the coding process, such as running tests,

creating mock-ups, and tracking progress.

Any tools and techniques you can use to help streamline and improve your devel-
opment workflow not only saves you time, but can improve the quality of your
work. It’s always worth spending time periodically looking at ways to improve
your development workflow. In this chapter, I cover ten ways you can improve
your development workflow.

Drafting Pull Requests
Chapter 8 discusses creating pull requests when you’re ready to have code reviewed
and merged into the main branch of a repository. But that’s not the only way to
use pull requests. In fact, GitHub employees have long stated that creating a pull

IN THIS CHAPTER

»» Discovering software tools that
improve your development workflow

»» Finding out how StackOverflow helps
get your questions answered

»» Realizing that some workflow
improvements are techniques, not
tools

292 PART 7 The Part of Tens

request is the beginning of a collaborative conversation. Sometimes it may be
appropriate to create a pull request even before you’ve pushed code. It’s possible
to do by creating a branch on GitHub and then creating a pull request from that
empty branch.

Or maybe you do have some code to push, but you know it’s incomplete. You just
want to gather some feedback on your progress without alerting code reviewers
that they should give your pull request their full attention with a detailed code
review. This is where draft pull requests come in handy. To draft a pull request,
click the Create Draft PR button, as shown in Figure 19-1.

This creates a pull request in draft mode. If you have a CODEOWNERS file (which
I cover in Chapter 11) in your repository, a draft pull request doesn’t notify those
reviewers until the pull request is marked as ready for review by clicking on the
Ready for Review button, as shown in Figure 19-2.

Git Aliases
Chapter 6 introduces the concept of Git aliases. Git aliases are short shell scripts
that extend Git and automate common tasks. Chapter 6 includes a Git alias for
moving commits from one branch to another.

FIGURE 19-1:
Drafting a

pull request.

FIGURE 19-2:
The Ready for

Review button.

CHAPTER 19 Ten Ways to Improve Your Development Workflow 293

Git aliases can automate tedious clean-up tasks. For example, the following alias
deletes all branches that have already been merged into the target branch. If no
target branch is specified, then it assumes the main branch.

[alias]
bclean = "!�f() { git branch --merged ${1-main} | grep -v "

${1-main}$" | xargs git branch -d; }; f"

Aliases can be combined together. For example, before you clean up branches, you
may want to switch to the target branch and update that branch from the remote
server first.

[alias]
bdone = "!�f() { git checkout ${1-main} && git pull --rebase &&

git bclean ${1-main}; }; f"

Note how the bdone alias makes use of the bclean alias. You might use the bdone
alias right after you push a branch that then gets merged by someone on GitHub.
com. After the branch is merged, you can run git bdone, and the alias switches
you back to main, runs a git pull, and then runs the bclean alias.

Adding aliases you find from elsewhere can be a pain, though. This post describes
a quick way to include a bunch of aliases into your Git config file: https://
haacked.com/archive/2019/02/14/including-git-aliases/.

Run Tests Automatically
Writing automated tests for code, such as unit tests, is an essential skill for pro-
fessional software developers. It helps improve the design of code and provides a
safety net when making changes to code.

When working with a code base with a lot of tests, it’s not uncommon to forget to
run tests often. And even if you do run tests often, it’s a distinct step: Make some
changes and then run a command to run your tests.

A great way to improve your development workflow is to automate the test runs.
Many tools automatically run tests when your code changes. Here’s a short list of
tools for various platforms:

»» NCrunch for .NET

»» Guard-test for Ruby

https://haacked.com/archive/2019/02/14/including-git-aliases/
https://haacked.com/archive/2019/02/14/including-git-aliases/

294 PART 7 The Part of Tens

»» Tsc-watch for TypeScript

»» Cargo-testify for Rust

»» Wallaby.js for JavaScript

Many of these tools are smart about only running the tests affected by the changed
code. That way, every change doesn’t end up running the entire test suite.

Take Breaks
One simple effective method for improving your workflow, albeit one that is
neglected by many developers, is to take regular breaks. Writing code may feel like
a sedentary task, but any activity done over an extended period of time can put a
lot of stress on the body. The human head is pretty heavy (some heavier than
others). Holding it upright can put a lot of stress on the back and neck. According
to DataHand, a maker of ergonomic keyboards:

At the end of an average eight-hour workday, the fingers have walked
16 miles over the keys and have expended energy equal to the lifting of
1 1/4 tons.

Taking regular breaks to stretch your hands, arms, and back can help you remain
healthy and thus more productive.

However, that’s not the only benefit of taking breaks. Many people are fans of the
Pomodoro Technique developed by Francesco Cirillo in the late 1980s. This tech-
nique breaks work down into intervals, traditionally 25 minutes, with a short
break of around 3 to 5 minutes in between. Each interval is known as a Pomodoro,
Italian for tomato. Why a tomato? Apparently, Cirillo used a tomato-shape timer
in college.

After four pomodoros, you take a longer break (15 to 30 minutes). The benefit of
this technique is not only to enforce that you rest your body, but it has the added
benefit of helping you maintain focus. The general idea is that during a pomodoro,
you are intently focused on work. You generally close all other distractions. You
can use some of the longer breaks to do things like check emails and browse the
web, if you need to. But during the 25-minute pomodoro, you should be intently
focused on work. Practitioners swear by the increased focus and flow the tech-
nique encourages. You can find many examples of pomodoro timer applications
on the web.

CHAPTER 19 Ten Ways to Improve Your Development Workflow 295

Prototype User Interfaces
Whether it’s a web or desktop application, building a user interface can be very
time-consuming. And it’s difficult to know how usable an interface will be until
you put a human in front of it to try it out.

One tool that saves a lot of time when building an interface is a rapid prototyp-
ing tool, such as Balsamiq or Invision. This is by no means an exhaustive list of
such tools.

The benefit of these tools is they make it possible to build mock-ups of a graphical
user interface (GUI) in a short amount of time. Some tools even make it possible
to add a bit of interactivity so that you can put the interface in front of a person
and run some informal usability tests. You can get a lot of valuable feedback by
simply asking people questions like “How would you accomplish a task on this
screen? What would you click next?”

Making changes to the interface to respond to such feedback is much faster than
if you had written a bunch of code. Once you’ve run through a few iterations with
the mock-ups, you can build the actual GUI with more confidence that you’re on
the right track.

Scaffold Apps with Yeoman
Starting a new application from scratch can be time-consuming. A lot of boiler-
plate code goes into setting up a real production application, and the boilerplate is
different depending on the type of app and what the app does.

Yeoman is a tool for scaffolding modern web apps. To install it, run the following
command:

$ npm install -g yo

This command adds the yo command to your machine. Yeoman works with gen-
erators, which are essentially plugins to the yo command, that add support for a
given project type. A huge ecosystem of generators is out there.

For example, suppose that you want to build an extension for Visual Studio Code
(VS Code). You would start by installing the generator for VS Code:

$ npm install -g yo generator-code

296 PART 7 The Part of Tens

To run the generator, you run the yo command with the generator name:

$ yo code

The generator prompts you to answer some questions about the project to gener-
ate, such as specifying a project name. At the end, the generator takes your
answers and scaffolds a project folder with a working VS Code extension.

Chrome Web Developer Tools
If you develop browser-based applications for the web or for the desktop via
Electron, no tool is probably more useful than the Chrome Web Developer Tools.
To launch these tools, press ⌘  -Option-I on the Mac or Ctrl+Shift+I on Windows.

You can also launch the developer tools by right-clicking an element of any web
page and choosing the Inspect Menu option. When the developer tools open, select
that element in the Elements tab.

The Elements tab of the developer tools allows you to explore and manipulate the
DOM. You can also manipulate the CSS. This provides a nice way to debug CSS
problems because it gives you instant feedback on your CSS changes.

The Console tab lets you run JavaScript commands in the context of the current
web page.

The Sources tab lists all the scripts that are loaded in the context of the page. This
list can be eye-opening when you go to a website you use often and look at this
tab. A given web page can have a large number of scripts running.

The Network tab shows all the network requests that were made to render the
page, the size of the requests, how long they took, and when they happened in
relation to each other. This information is useful for debugging issues where a
large request is causing delays in rendering a page.

The Performance and Memory tabs are useful for profiling execution time and
memory usage of a page.

CHAPTER 19 Ten Ways to Improve Your Development Workflow 297

StackOverflow
StackOverflow.com is a question and answer website for developers. Since its
creation in 2008, it’s had a huge impact on the developer community. A big part
of its popularity is due to the gamification techniques it employs to maintain
high-quality questions and answers.

For example, questions and answers can be up voted and down voted. Answers
that receive the most up votes are displayed directly under the question so that
people who find the question later don’t have to wade through a ton of answers to
find the best answer. If the poster of a question accepts an answer, that answer
floats to the top (unless the poster also answered the question), regardless of the
number of up votes. This setup sometimes causes a situation where a better answer
with more up votes is displayed before the accepted answer.

Asking questions, answering them, and having questions or answers voted up all
contribute to your reputation points. As your reputation points increase, you gain
more privileges on StackOverflow, such as being able to edit questions and answers
to collectively improve them like a wiki.

If you’re stuck on a programming task, StackOverflow is often a good place to
start searching for an answer to your question.

Code Analysis Tools
A wide range of tools can analyze code for potential problems and potential
improvements. When used properly, these tools can save you a lot of time and
headache.

Linters are a class of tools named after a Unix utility named Lint that analyzes
C code to flag bugs, style errors, and potential problems without having to run
the code. While Lint is the original tool, many linting tools exist for different
programming languages, such as JSLint for JavaScript and ruby-lint for Ruby.

Static analysis tools are similar to linters but work against statically typed lan-
guages. These tools take advantage of type information in the source code to find
issues in the code that aren’t syntax errors (which the compiler would already
catch) but may cause problems down the road. For example, static analysis tools
can flag code that may exhibit poor performance in certain situations. Examples
of static analysis tools include FxCop for .NET and Coverity for Java.

298 PART 7 The Part of Tens

Some tools surface metrics about your code that may be correlated to quality, such
as measuring cyclometric complexity. Cyclometric complexity refers to the num-
ber of different execution paths through a piece of code. A method with a very
large cyclometric complexity can be hard to understand and prone to bugs.

Some tools, such as Code Climate Quality, are available in the GitHub Marketplace
and can perform automated code reviews looking for common problems in
code. This tool can identify files and sections of code that are changed fre-
quently. Frequent changes often indicates that the code may have quality issues.
Understanding where your code churns often helps you focus your attention on
changes to that code.

Project Boards
Project boards are a useful way to visualize the progress and tasks for a project.
Chapters 3 and 4 walk through setting up a project board along with project
automation for a repository. For a given repository, a project board serves as a
common source of truth. Everyone can look at a project board and have a good idea
of the overall progress at a glance.

However, you may consider using individual project boards that are not associated
with a single repository as a means of managing your overall set of tasks on
GitHub. You can go to https://github.com/dra-sarah?tab=projects to create a
new personal project board.

Project boards come with a limited set of automations. To really customize your
workflow, you may want to create a GitHub Action (see Chapter 14). With GitHub
Actions and the GitHub API, it’s possible to create project board automations for
nearly any workflow you can think of.

GitHub project boards are not the only option for a Kanban-style board that works
with GitHub. Trello (see Chapter 14) is another option. A few other options with
deeper integration with GitHub include ZenHub, waffle.io, and HuBoard.

Regardless of the one you pick, a good project board is a helpful addition to any
software developer’s workflow.

https://github.com/dra-sarah?tab=projects

CHAPTER 20 Ten Tips for Being an Effective Community Member 299

Chapter 20
Ten Tips for Being an
Effective Community
Member

As of June 2022, more than 83 million people are on GitHub. That’s a lot of
people. It can be difficult to stand out among such a large sea of people.
But the truth is, most people starting out on GitHub don’t really under-

stand how to be effective. They don’t understand the rules of the road to being a
great member of the community.

In this chapter, I compile ten tips that will help you be a wonderful community
member — the type of person that every maintainer is excited to have involved
with their repositories.

Be Respectful and Kind
Maintaining a repository can be a frustrating affair — especially when it’s a
popular repository and you’re volunteering your free time to an open source
project and you’re about to answer the same question for the hundredth time.

IN THIS CHAPTER

»» Discovering how to be a participant
that OSS maintainers value

»» Fostering a community that brings
the best out of contributors

»» Encouraging an overall community of
respect and collaboration that is
welcoming

300 PART 7 The Part of Tens

It’s understandable that you may be very curt to the next person who asks the
same question. It’s a waste of your time, and they didn’t do their due diligence to
search to see whether the question was already answered.

Resist the temptation to lash out. For that person, it may be the first time they’ve
ever created an issue. They may not have read this chapter yet and learned how to
be effective on GitHub. Your response sets the tone for their experience of your
project and, perhaps, of GitHub as a whole.

Be respectful and kind, and you may win over someone who will become a lifelong
contributor. And even in the face of rudeness, remember that we all have bad days.
You’ve probably done the same in the past yourself. The Internet can be very
impersonal when communicating in writing. Sometimes a little kindness at the
right moment reminds people that a human is on the other side and there’s no
need to be rude.

But to be clear, killing them with kindness is fine for the occasional rude behavior,
but you should not have to tolerate abusive behavior.

Report Bad Behavior
Whether bad behavior is directed at you or others, it’s important to the health of
a community that you remain vigilant and report it. If you encounter or witness
abuse on GitHub, report it at https://github.com/contact/report-abuse.

It can be difficult to know the difference between someone just being slightly rude
and someone being abusive. GitHub’s Terms of Service help spell it out. If you’re
unsure, know that GitHub’s support people are well trained to draw this distinc-
tion and will not react in a knee-jerk fashion to your report.

Abuse isn’t the only type of issue you may want to report to GitHub. You can
report harmful content, privacy concerns, and copyright claims from GitHub’s
contact page at https://support.github.com/tickets.

Write Good Bug Reports
For a repository maintainer, few things are more frustrating than an issue that
looks something like this:

The thagomizer isn’t working, fix it! I tried it out, and it doesn’t work.

https://github.com/contact/report-abuse
https://support.github.com/tickets

CHAPTER 20 Ten Tips for Being an Effective Community Member 301

This example may seem extreme, but vague bug reports that are not actionable are
unfortunately quite common. It doesn’t take too much effort to write a bug report
that is helpful.

When you come across a bug report where you have some expertise, don’t respond
with “Works on my machine” with no other follow-up. Confirming that it works
on your machine is actually beneficial, but it is more helpful to offer suggestions
for what may be different between your machine and the person’s who filed the bug
report. For example, you may want to let the person know which version of the
software you have installed or if you have any other setup that may affect the
situation.

Sometimes, the best bug report is the one that isn’t written. Before you create an
issue, search the issue tracker to see whether someone else already reported the
bug. If they did, you may want to add further details to the issue if you see any-
thing missing.

Assuming you didn’t find the issue, it’s time to create a new issue. If the reposi-
tory has an issue template, you should follow the template as closely as possible.

If is the repository has no template, the following is a good format to follow:

1.	 Describe the observed behavior.

Try to be objective and communicate facts, not opinions.

2.	 Describe what you expected to happen.

How did the observed behavior differ from your expectations?

3.	 Describe detailed repro steps.

This step is the most important part of the bug report. Describe step by step
how someone else can reproduce the problem. Try to make the repro steps
as minimal as possible. When you encountered the bug, you may have taken
ten steps to get there. But it may be possible to reproduce the bug in only
five steps. Spending a little time to make sure that you remove any extraneous
steps goes a long way into making a good bug report.

4.	 Describe the repro environment.

This step is where you describe the environment where you reproduced the
bug, such as the operating system and browser. While it’s not necessary to try
to reproduce the bug in other environments, repository owners are very
appreciative if you do and report on the results.

302 PART 7 The Part of Tens

Be Responsive
No matter how good your issue write-up is or your pull request code is, chances
are the repository maintainers will have some follow-up questions. It’s particu-
larly frustrating for a maintainer to ask for more information only to be greeted
by crickets. If you submit an issue, don’t ghost on it. Make sure you make time to
follow up and respond to questions from the maintainers.

And the shoe fits both ways. If you are a maintainer, try and be responsive to
people who submit issues and pull requests. In some cases, using an automated
response to an new issue or pull-request is appropriate if your repository is par-
ticularly busy. For example, you could use a Probot app to automatically respond
to new issues and pull requests with a note letting them know you plan to look at
it but that it may take some time.

Being responsive doesn’t necessarily mean you take care of everything right away.
It means that you set expectations right away. On either side of the comment,
whether you’re a contributor or a maintainer, the only way for the other person to
know when to expect changes is if you tell them. Working on remote, asynchro-
nous projects depends heavily on communication. When you’re in an office you
can see whether someone doesn’t come in to work for a while and know they are
probably on vacation; on GitHub, you don’t have that contextual awareness.

As an added form of communication, keep your profile status up to date if you do
plan on going on vacation. For more detail, see Chapter 16.

Submit Pull Requests
to Correct Documentation

The campsite rule states that one should leave a campsite in better condition than
they found it. It’s a good rule to follow not only with campsites, but also with
documentation.

Good documentation is often the weak point with open source projects. Many
OSS projects have very few volunteers, and much of their time is taken working on
the actual code. This lack of support makes repository maintainers especially
appreciative when someone comes along and contributes to the documentation.

Getting involved with improving a repository’s documentation is also a great way
to dip your toe into OSS. If you happen to find an error or something missing in a

CHAPTER 20 Ten Tips for Being an Effective Community Member 303

project’s documentation, consider submitting a pull request to the project fix-
ing the error. This contribution leaves the overall OSS ecosystem better off than it
was before.

One of the most challenging pieces of documentation to keep up to date is the
Getting Started docs that contributors are meant to follow to first get the project
set up on their machine. It’s challenging because the maintainers rarely set up the
project brand new, unless they get a new machine. As you’re following the steps,
don’t be afraid to open a pull request on this documentation if you had to do
something different. It can be especially helpful if instructions are different on
Mac versus Windows versus Linux and you’re on a machine that the project
doesn’t have documentation for yet.

Document Your Own Code
Documenting your own code goes a long way toward making it more accessible
to others. Trying to use unfamiliar code can be challenging and time consuming.
Good documentation can save people a lot of time and get them up and running
with your code quickly. If only 12 people use your code and you save each one
two hours of hassle, that’s a full day saved!

Depending on the platform, many tools generate documentation from comments
in code. Javadoc is a famous example for Java code. It requires that you comment
public methods and classes with a standard format. By following the format,
you can use the Javadoc tool to generate HTML files. JSDoc is another one for
JavaScript.

In addition to code documentation, consider other documentation such as the
ones I cover in Chapter 9. For example, every repository should have a README.md
file that describes what the repository does. It should also have a CONTRIBUTING.
md file that describes how to contribute.

Give Credit Where It’s Due
Most open source licenses require proper attribution if you make use of the code
in your own project. If you use some source code from an open source project,
giving credit where it’s due is a legal matter and required by the license.

304 PART 7 The Part of Tens

But to be an effective community member, credit doesn’t end with attribution to
comply with a license. In many situations, giving credit demonstrates that you are
a classy person.

For example, if someone contributes a feature or bug fix, mentioning the person
who fixed it in your release notes is a good idea. For example, GitHub Desktop
makes a point to thank people using its GitHub handles and links to the pull
request that contributed to a fix in its release notes at https://desktop.github.
com/release-notes/.

Another great way to give credit is to mention the person who opened an issue
that you may have fixed with a pull request. The pull request description will most
likely link to the issue, but calling out the person who found the issue in the
description is a great way to encourage others to continue to help find bugs.

Help Get the Word Out
Many open source projects are small and relatively unknown. If you find a project
useful, help get the word out. It not only benefits the project that may get an
influx of new users and contributors, but it benefits the people you tell who may
need that very tool.

You don’t need a huge platform to help people get the word out. Maybe your
Twitter follower count is relatively small. Don’t let that stop you. The power of
network effects can sometimes help a message really take off.

If you write blog posts or publish YouTube videos, you can also mention different
projects, your impressions, and maybe even a tutorial on them on these mediums.
The goal here is to help people and projects meet.

Be Proactive and Mentor Others
GitHub’s community is growing rapidly. New developers are being minted every
single day. What this means is a lot of beginners will be on the site. Over time, you
will start to accumulate experience that would be very valuable to one of these
beginners. Be proactive and offer to mentor others.

For example, if you maintain an open source repository and see that someone is
struggling to make a contribution, offer to walk them through the process. Point

https://desktop.github.com/release-notes/
https://desktop.github.com/release-notes/

CHAPTER 20 Ten Tips for Being an Effective Community Member 305

them to resources and help them along. If you help two people become proficient
contributors and community members and they each help two people down the
road and so on, you could end up having a huge impact on the community.

Sometimes it can even be effective to jump on a video chat and help someone
debug their code in real time! If you’re comfortable with this approach, it can be a
great way to meet new people and see for yourself how someone new approaches
your project. It may provide insight into how to improve your documentation.

Contribute Outside of GitHub
Many open source projects have a lot of activity outside of GitHub. Contributing to
the community can go beyond creating issues and opening pull requests. For
example, as you gain expertise in a topic, consider heading over to StackOverflow.
com and answering questions on that topic. Many open source projects have chat
rooms associated with the project in Slack or Gitter. It’s a benefit to others if you
head over there and offer your ideas.

Talk to maintainers about other ways you can support their work. As you grow in
your career as a software developer, you will pick up skills that are valuable to an
OSS project. For example, you may help them figure out how to sign a package
using Let’s Encrypt. You may help them register a domain name and pay for it.
You may help them navigate setting up a Docker container so that others can try
out their project with less setup fuss.

Whatever it is, don’t be shy in offering your skills in support of open source proj-
ects, especially those that you benefit from.

Index 307

Index
Unspecified
. (period), 12
.git, 242
.gitconfig file, 107
.github folder, 159
.github/ISSUE_TEMPLATE folder, 178
.gitignore file, 39
.NET Framework, 286, 293, 297
.NET São Paulo, 268
/github subscribe command, 210
/github subscribe owner/repository, 208
/github unsubscribe owner/repo [feature]

command, 211
:, 124
:art:, 117
:q! 115
:sparkle:, 142
:wq, 115
_config.yml file, 87
_layout/post.html file, 88
-A flag, 115
-m flag, 114
--oneline flag, 105
-u flag, 131

Symbols
#greetings, 125–126
#ISSUEID format, 134
$, 10
$ git browse, 132, 134
$ github ., 119
$ open index.html, 112
* (asterisk), 83
@ (at symbol), 126
<commit-range> parameter, 107–108
<details> tag, 138

<new-branch-name> parameter, 107–108
<target-branch> parameter, 107–108

Numbers
404 error, 62

A
About page, 137
abuse, reporting, 172–173, 281
access, repository, 190, 192
accessibility, 19
accounts

VS Code, 34
menu, 27
personalizing, 18–19

action buttons, Code tab, 43
Actions tab, repository, 42
actively reviewing pull requests, 77
admin mentoring, 283
after-hour conference events, 272
AI (artificial intelligence), 22, 239
Alerts insight, 199
aliases, 107–108, 131, 134, 292–293
All Things Open, 155, 270
animated gif, 139, 235
Anita Borg institute, 275
Apache License 2.0, 167
API consultation, 283
APP_ID, 239
appearance, 19
Apple

WWDC, 270
XCode, 226–228

apps, 236–243, 254–257
code quality apps, 255–256

308 GitHub For Dummies

apps (continued)
continuous integration (CI) apps, 255
creating Probot app, 238–241
dependency management, 256–257
hosting on Glitch, 242–243
Learning Lab, 257
listing on Marketplace, 252–254
localization apps, 256
monitoring apps, 256
personalizing, 22–23
scaffold apps with Yeoman, 295–296
testing software, 257

AppVeyor, 27, 255
archiving projects, 181–182, 192
artificial intelligence (AI), 22, 239
assignees, 133, 135
asterisk (*), 83
at symbol (@), 126
attribution, 125–127, 303–304
audience, 136
authentication

with GitHub from Slack, 207–208
personalizing, 20

autofill, 66–67
automating testing, 293–294
avatars, 156, 191, 235
Azure grants, 269

B
badges, 262
bans, 171–172
bclean alias, 293
bdone alias, 293
Beams, Chris, 128
billing, 192

Marketplace, 250, 252
personalizing, 19–20

binary search, 113
bio, 261–262
blocking users, 21, 172–173, 192–193
blogs, 287–288

creating, 88–89
IntelliJ, 229

boards, Trello, 211–212
boilerplate code, 137, 295
branch list, GitHub Desktop, 67
branch list, VS Code, 69
branching, 17

adding protection for, 196
by collaborator, 14–15
contributions

confirming branch is published, 82–87
creating for, 79–82

for experimentation, 16
by feature, 15–16
new branch

moving changes to, 105–106
for pull requests, 130

brand, 251
breadcrumbs, 194
Brooklyn JS, 268
browser extensions, 233–236

GitHub Selfie, 235–236
Refined GitHub extension, 234–235

Buck, Stefan, 233
bug label, 78, 175
Bug Report template, 177–179
bug reports, 300–301
bug_report.md file, 178
Build conference, 270
“Building an Inclusive Code Review Culture,” 147
built-in support, 127

C
call to action, 139
canonical copy, 97–98
cards, Trello, 213
Cargo-testify, 294
Caribbean Developers Conference, 269
cd, 11
changes list, 68
Changes tab, GitHub Desktop, 121–122, 124

Index 309

channels, Slack, 208–209
chat, 206–211

installing GitHub app for Slack, 206–208
subscribing to repository in Slack channel,

208–209
trying out, 209–211

cheat sheet, 3
checks, 141, 235
child teams, 193, 195
Chrome extensions, 233, 234
Chrome Web Developer Tools, 296
CI (continuous integration), 141, 235, 255
CI/CD (Continuous Integration/Continous

Deployment), 186–187
Cirillo, Francesco, 294
Citizen Code of Conduct, 160
clarity, 142
clean-up tasks, 293
cloning

defined, 16
forking vs. duplicating vs., 94
in GitHub Desktop, 66–67
overview, 95–96
without forking, 102–106
XCode, 227

closing issues
overview, 54–55
stale issues, 78

coauthors, 125–127
code, 109–128

analysis tools, 297–298
assigning code owners, 195–197
commenting on, 142–144
committing code from editor, 127
committing code with GitHub Desktop, 118–124

committing in Desktop, 121–124
publishing repository in Desktop, 119–120
tracking repository in Desktop, 118–119

creating commit, 112–116
commiting file, 114
commiting multiple files, 114–116
staging changes, 113–114

creating repository, 109–110
pull requests, 129–147

helpful resources, 147
opening, 131–136
overview, 129
pushing code to GitHub, 130–131
reviewing, 21, 140–147
writing, 136–139

reading contributing code guide, 159–160
security and analysis, 22
using GitHub conventions in commit messages,

124–127
emojis, 124–125
giving credit to coauthors, 125–127
issue references, 125

writing, 110–112
writing commit message, 116–118

Code (VS Code), 33–34, 219–223
branch selector in, 81–82
building extension for, 295–296
documentation, 284
filtering issues, 158
interacting with pull requests in, 220–222
opening repository in, 69
pull requests extension, 222–223
push permission error, 104
touring, 69–70

Code Climate Quality, 298
code editor, VS Code, 69
Code frequency insight, 198
code of conduct

adding, 168–169
for conferences, 272
discussions, 77
enforcing, 170–173

bans and limits, 171–172
blocking users, 172–173
responding with kindness, 170–171

reading before contributing, 160
code quality apps, 255–256
“Code Review Like You Mean It,” 147
code review limits, 21

310 GitHub For Dummies

Code tab, repository, 41–42, 43
CODE_OF_CONDUCT.md file, 76–77, 160, 169
Codecov app, 255–256
CODEOWNERS file, 195, 197, 292
coding

inner-sourcing, reasons for, 185
online coding tutorials, 286
with version control system, 8

collaboration, 205–218
branching by, 14–15
as commit message audience, 116
Octobox, 216–218
Slack integration, 206–211

installing GitHub app for, 206–208
subscribing to repository in channel, 208–209
trying out, 209–211

Trello, 211–216
installing GitHub power-up, 211–213
using GitHub power-up, 213–216

collections, 155
command line, 10, 119
command palette, 34
comments

responding to, 78
reviewing pull requests, 142–144

commit hash, 13
COMMIT_EDITMSG file, 115
commits, 17
Commits insight, 198
committing code, 112–116

commiting file, 114
commiting multiple files, 114–116
contribution graph, 263
from editor, 127
with GitHub Desktop, 118–124

committing in Desktop, 121–124
publishing repository in Desktop, 119–120
tracking repository in Desktop, 118–119

notifications from Slack, 210
staging changes, 113–114
using GitHub conventions, 124–127

emojis, 124–125

giving credit to coauthors, 125–127
issue references, 125

writing commit message, 116–118
communities, 21, 299–305

being positive member of, 77
being proactive and mentoring others, 304–305
being respectful and kind, 299–300
being responsive, 302
code of conduct, 160
contributing outside of GitHub, 305
documenting own code, 303
external community places, 285–286
forum, 288–289
fostering kindness in, 171
giving credit, 303–304
Glitch, 238
help getting word out, 304
reporting bad behavior, 300
submitting pull requests to correct

documentation, 302–303
writing good bug reports, 300–301

Community Discussions, 288–289
Community insight, 198
companies, 263
config command, 11
continuous integration (CI), 141, 235, 255
Continuous Integration/Continous

Deployment (CI/CD), 186–187
CONTRIBUTING.md file

adding, 168
existing project orientation with, 76–77
naming branches and, 80
reading before contributing, 159

contribution activity timeline, 265
contribution graph, 29, 263–264
contributions, 79–87, 157–160

changes to upstream, 99–102
confirming branch is published, 82–87
creating branch for, 79–82
finding places to, 157–158
outside of GitHub, 305
reading code of conduct, 160

Index 311

reading contributing code guide, 159–160
reading contributing guidelines, 159
setting contributor expectations, 161–162

sense of entitlement, 162
submitting pull request, 161–162

Contributor Covenant, 160
Contributors insight, 198
conventions, 142, 159
Conversation tab, pull requests, 140–141
converting to outside collaborator, 191
cool-down periods, 21, 171
copyright claims, 300
corporations, 192
correctness, 142
Coursera, 286–287
courses

online, 286–287
Skills, 282

Coverity, 297
Crowdin app, 256
CSS, 234, 296
cyclometric complexity, 298

D
Danger Zone

archiving projects, 181
making repository public, 169
transferring ownership, 182–183

dark mode, 19
data services, 200
Dependabot app, 256
Dependency graph insight, 199
dependency management, 256–257
deployments, 211
description

app listing, 253
commit message, 117, 118
pull request, 134
in topic pages, 154

Desktop, 30–32
cloning repository in, 66–67

committing code with, 118–124
committing in Desktop, 121–124
publishing repository in Desktop,

119–120
tracking repository in Desktop,

118–119
installing, 30–31
push permission error, 104
setting up, 31–32
touring, 67–68

details section, 138
developer documentation, 24
developer settings, 23, 192
development branch, 15–16, 103
development workflow, 291–298

Chrome Web Developer Tools, 296
code analysis tools, 297–298
drafting pull requests, 291–292
Git alias, 292–293
project boards, 298
prototype user interfaces, 295
running tests automatically, 293–294
scaffold apps with Yeoman, 295–296
StackOverflow, 297
taking breaks, 294

Dev.to, 288
diff view

inline comments, 221
overview, 122–123

Discord, 285
discussions

reviewing, 77
teams, 194–195

docs folder, 174
documentation, 174–175

correcting by pull requests, 302–303
help docs, 281
own code, 303
project-specific documentation,

284–285
double-clicking files, 225
Douglas, Brian, 45

312 GitHub For Dummies

drafts
app listing, 253
issues, 52–54
pull requests, 135, 291–292

Duo Mobile, 186
duplicate label, 78, 175
duplicating, 94

E
edit permissions, 95
editor

changing default, 115
committing code from, 127

Education community forum, 289
EdX, 286–287
EGCS, 94
Electron, 30, 33
emails, 20
Emoji Cheat Sheet, 46
emojis, 117, 124–125, 261
ending project, 181–183

archiving, 181–182
transferring ownership, 182–183

enhancement label, 78, 175
enhancements, 235
enterprise tier, 186
entitlement, 162
error messages

404 error, 62
push permission error, 103–104

events, 267–276
exploring, 155
funding for, 275–276
GitHub events, 273–274

Git Merge, 274
GitHub Constellation, 273
GitHub Satellite, 273
GitHub Universe, 273

speaking at, 274–275
benefits of, 274–275
diversity of speakers, 274

types of, 268–270
hackathons, 269–270
major conferences, 270
meet-ups and user groups, 268
regional conferences, 268–269

web hooks, 236–237
what to expect at, 270–272

after-hour conference events, 272
hallway tracks, 272
keynotes, 271
professional environment, 272
session tracks, 271

existing projects, 73–79
accessing repository, 74–75
getting oriented with, 76–79
preparing contribution, 79–87

confirming branch is published, 82–87
creating branch for, 79–82

verifying permissions, 75–76
experimentation, 16, 94
Explore link, 27
Explore page, 152–156

collections, 155
events, 155
GitHub Sponsors, 156
starred repositories, 156
topics, 152–154
trending repositories, 154–155

extensibility, 33
extensions, 34

browser extensions, 233–236
GitHub Selfie, 235–236
Refined GitHub extension, 234–235

VS Code, 220, 222–223
Visual Studio, 226

Extensions pane, VS Code, 70

F
failed checks, 141
feature, branching by, 15–16
feature label, 78

Index 313

feature_ request.md file, 178
fetching changes, 98–99
file list, VS Code, 69
files

commiting multiple, 114–116
committing, 114

Files Changed tab, pull requests, 141–142
filtering issues, 157–158
finishing pull request review, 145–147
Firefox browser, 234
focus areas, 283
folder _layouts, 88
following users, 266
forking, 16, 41, 93–108

cloning repositories, 95–96
cloning vs. duplicating vs., 94
contribution graph, 263
network graph, 199
overview, 93–94
repositories, 96–108

contributing changes to upstream, 99–102
creating Git alias, 107–108
fetching changes from upstream, 98–99
getting unstuck when cloning without forking,

102–106
Forks insight, 199
forum, community, 288–289
404 error, 62
free tier, 186, 250
friends, 156
funding, for events, 275–276
FxCop, 297

G
Game Engineers collection, 155
GCC project, 94
gif, 139
gist, 27
Git

features supported by GitHub, 16–17
version control system, 8–16

branching by collaborator, 14–15
branching by feature, 15–16
branching for experimentation, 16
trying on terminal, 9–14

Git Bash, 9
git bdone, 293
git bisect command, 113
git commit, 114
git commit command, 114
Git for Windows, 9
Git GUI, 9
git init ., 110
git init, 110
git init -b main, 241
Git LFS (Large File Storage), 20
Git Merge, 274
git migrate alias, 105
git migrate command, 107
git push command, 131
git remote -v command, 98
git st, 107
git status command, 114–115
git --version, 10
GitHub, 7–34, 205–218, 233–245

apps, 236–243
browser extensions, 233–236

GitHub Selfie, 235–236
Refined GitHub extension, 234–235

conventions in commit messages, 124–127
emojis, 124–125
giving credit to coauthors, 125–127
issue references, 125

events, 273–274
Git Merge, 274
GitHub Constellation, 273
GitHub Satellite, 273
GitHub Universe, 273

expert, becoming, 279–289
community forum, 288–289
external community places, 285–286
help docs, 280–281
learning by trial and error, 279–280

314 GitHub For Dummies

GitHub (continued)
online coding tutorials, 286
online courses and tutorials, 286–287
in-person training, 283
project-specific documentation,

284–285
Skills, 281–283
social media, 287–288

exploring, 25–28
general discussion of, 7
Git features supported by, 16–17
Git version control system, 8–16

branching by collaborator, 14–15
branching by feature, 15–16
branching for experimentation, 16
trying on terminal, 9–14

GitHub Actions, 243–245
GitHub Desktop, 30–32

overview, 30–31
setting up, 31–32

helpful resources, 24
Octobox, 216–218
personalizing, 18–23

accessibility, 19
account, 18–19
appearance, 19
applications, 22–23
billing and plans, 19–20
code security and analysis, 22
developer settings, 23
emails, 20
GitHub Copilot, 22
moderation, 21
notifications, 19
organizations, 21
packages, 22
pages, 22
passwords and authentication, 20
repositories, 21
saved replies, 22
scheduled reminders, 23
security log, 23

sponsorship log, 23
SSH and GPG keys, 20

Probot app, 236–243
creating app, 238–241
Glitch, 238
hosting, 237
hosting on Glitch, 242–243
pushing to GitHub, 241–242

profile, 29, 259–265
pushing code to, 130–131
signing up for, 17–18
Slack integration, 206–211

installing GitHub app for, 206–208
subscribing to repository in channel,

208–209
trying out, 209–211

social network aspect of, 259–266
following users, 266
profile, 259–265
starred repositories, 265–266

Trello integration, 211–216
installing GitHub power-up, 211–213
using GitHub power-up, 213–216

version control system, 8
Visual Studio Code, 33–34

GitHub Actions, 175, 243–245
GitHub API, 24
GitHub Apps, 192
GitHub Codespaces, 186
GitHub Community Forum, 24
GitHub Connect, 186
GitHub Constellation, 273
GitHub Copilot, 22
GitHub Desktop, 30–32

cloning repository in, 66–67
committing code with, 118–124

committing in Desktop, 121–124
publishing repository in Desktop, 119–120
tracking repository in Desktop, 118–119

installing, 30–31
push permission error, 104
setting up, 31–32

Index 315

touring, 67–68
GitHub Developers Program, 192
GitHub Enterprise, 31, 281
GitHub Enterprise Cloud, 186
GitHub Enterprise Server, 186
GitHub Marketplace. See Marketplace
GitHub organizations, 186–193

creating, 186–187
creating teams within, 191
inviting members to, 187–188
managing members of, 189–191
settings, 191–193
viewing repositories for, 188–189

GitHub Pages, 73–89
building personal website, 87–89

adding sections, 87–88
creating blog, 88–89
linking project repositories, 89
modifying title and tagline, 87

existing projects, 73–79
accessing repository, 74–75
getting oriented with, 76–79
preparing contribution, 79–87
verifying permissions, 75–76

finding resources for, 70–71
general discussion of, 58
writing documentation, 174–175

GitHub Satellite, 155, 273
GitHub search, 265
GitHub Selfie, 235–236
GitHub Skills, 24, 71
GitHub Sponsors, 20, 156
GitHub Universe, 155, 273
GITHUB_CLIENT_ID, 240
GITHUB_CLIENT_SECRET, 240
GitStore, 137
Glitch

hosting on, 242–243
overview, 238

GNU General Public License v3.0 License,
40, 167

good first issue label, 78, 158, 176

Google Authenticator, 186
Google Chrome extensions, 233
GPG keys, 20
Grace Hopper Celebration, 275–276
Greenkeeper app, 256, 257
greetings.yml file, 244
Guard-test, 293
GUI (Graphical User Interface), 118, 295
guides

contributing code, 159–160
contributor guidelines

adding to project, 168
reading before contributing, 159

H
Haack, Phil, 45, 156
hackathons, 269–270
hallway tracks, 272
Harband, Jordan, 45
harmful content, 300
hash, 13
HelloWorld repository, 58–60, 280
help docs, 280–281
help page, 24, 280
help wanted label, 78, 176
helpful resources

GitHub, 24
GitHub Pages, 70–71
pull requests, 147

help-wanted label, 157–158
Heroku, 237
hierarchies, 193
Hightower, Kelsey, 276
hiring managers, 263
history list, 68, 113
home page, 26
Hopper, Grace, 44
Hopper Program, 276
hosting

apps, 237
on Glitch, 242–243
platforms, 238

316 GitHub For Dummies

“How to Write a Git Commit Message” (Beams), 128
“How to write the perfect pull request,” 139
HTML, 234
HTTP POST request, 254
HTTP requests, 237
HuBoard, 298

I
IDE (integrated development environment), 223
idioms, 142
images, 138–139
imperative present tense, 117
implementation, 283
index, 114
index.html file, 121–122, 174–175
index.md file, 63

including sections with, 87–88
linking project repositories, 89

in-editor pull request, 220
init command, 11
inline comments, 221, 225
InnerSource, 283
inner-sourcing, 185–201

best practices for, 197–201
milestones, 200–201
repository insights, 197–200

coding in private, reasons for, 185
GitHub organizations, 186–193

creating, 186–187
creating teams within, 191
inviting members to, 187–188
managing members of, 189–191
settings, 191–193
viewing repositories for, 188–189

teams, 193–197
assigning code owners, 195–197
creating hierarchies, 193
discussions, 194–195

in-person training, 283
Insights tab, repository, 42, 197–200
installing

apps, 254–257

code quality apps, 255–256
continuous integration (CI) apps, 255
dependency management, 256–257
Learning Lab, 257
localization apps, 256
monitoring apps, 256
testing software, 257

command line tool, 119
GitHub app for Slack, 206–208
GitHub Desktop, 30
Octobox, 216–218
power-up, 211–213

integrated development environment (IDE), 223
integrations, 192, 205–231

VS Code, 219–223
interacting with pull requests in, 220–222
pull requests extension, 222–223

IntelliJ, 228–231
Octobox, 216–218
Slack, 206–211

installing GitHub app for, 206–208
subscribing to repository in channel, 208–209
trying out, 209–211

Trello, 211–216
installing GitHub power-up, 211–213
using GitHub power-up, 213–216

Visual Studio, 223–226
pull requests in, 223–226
Visual Studio extension, 226

XCode, 226–228
IntelliJ, 228–231
interaction limits

enforcing code of conduct, 171
overview, 21

Internet
development of, 57
local environment and, 66

invalid label, 78, 176
inviting members, 187–188
issues, 27, 51–55

closing, 54–55
counting as contributions, 263

Index 317

creating, 120–121
overview, 52–54
permissions and, 75

creating for website, 64–66
existing project orientation with, 77
marking with extensions, 235
open source software (OSS), 175–180

issue templates, 177–179
labeling issues, 175–176
saved replies, 179–180
triaging, 176–177

referencing in commit messages, 117, 125
Slack

creating from, 209–210
notifications from, 210

Trello, 214
Issues tab, repository, 42

J
Jamstsack, 275
Javadoc tool, 303
JavaScript

JSLint, 297
libraries, 155
Wallaby.js, 294

Jekyll, 58
adding sections, 87
creating blogs, 88–89

JetBrains, 228
Johns Hopkins University, 287
Joomla, 94
JSConf Chile, 269
JSDoc, 303
JSFiddle website, 286
JSLint, 297

K
Kanban scheduling system, 211
keyboard bindings, 34
keyboard shortcuts, 13, 120
keynotes, 271

Khan Academy, 287
kindness, 170–171, 299–300

L
labels

for first-time contributors, 157
for issues, 175–176
overview, 78
specifying pull requests, 135

labs, 270
landing pages, 58
landmarks, 234
languages, 155
Large File Storage (Git LFS), 20
layouts, 88
Learning Lab, 257
Let’s Encrypt, 305
libraries, 22
license, 166–168
light mode, 19
limits, 171–172
linking project repositories, 89
linters, 142, 297
Linux computers, 9–14
listing apps, 251, 252–254
local environment, 66–70

VS Code
opening repository in, 69
touring, 69–70

GitHub Desktop
cloning repository in, 66–67
touring, 67–68

localization apps, 256
log files, 179
logos, 154
London Tech Week, 269

M
Mac computers

installing command line tool, 119
terminals on, 9–14

318 GitHub For Dummies

machine learning, 152
Made in Brazil collection, 155
main branch, 174

branch protection, 196
creating branches helping, 80
differences with MyBranch and, 14–15
as landing page for website, 58–60
resolving merge conflicts, 85–86
writing pull requests for, 136

major conferences, 270
Mambo project, 94
Markdown, 39, 46

adding to README.md file, 111
rendering images, 138
using Jekyll with, 58

Marketplace, 27, 249–257
billing, 250
considering apps to install, 254–257

code quality apps, 255–256
continuous integration (CI) apps, 255
dependency management, 256–257
Learning Lab, 257
localization apps, 256
monitoring apps, 256
testing software, 257

listing app on, 252–254
overview, 249–250
requirements, 250–252

Marketplace Developer Agreement, 254
mastering GitHub, 279–289

community forum, 288–289
external community places, 285–286
help docs, 280–281
learning by trial and error, 279–280
online coding tutorials, 286
online courses and tutorials, 286–287
in-person training, 283
project-specific documentation,

284–285
Skills, 281–283
social media, 287–288

McEfee, Cameron, 28

Meetup.com, 268
meet-ups, 268
members, GitHub organization

inviting, 187–188
managing, 189–191

mentoring, 304–305
merging

owner with permission for, 101
pull requests, 48–51
resolving conflicts with, 85–86

metadata, 43
MicroMasters, 287
Microsoft, 159–160

VS Code, 33
organization home page, 188–189

Microsoft Imagine Cup, 269
migrating commits, 107
migration focus area, 283
milestones

for organizations, 200–201
specifying, 136

MIT License, 40, 167
moderation

enforcing code of conduct, 170–173
bans and limits, 171–172
blocking users, 172–173
responding with kindness, 170–171

for organizations, 192–193
settings, 21

blocked users, 21
code review limits, 21
interaction limits, 21

Mona octocat, 28
monitoring apps, 256
MyGet tool, 257

N
Nadella, Satya, 269
naming

branches, 80
teams, 191

Index 319

natural language processing (NLP), 239
NCrunch, 293
needs investigation label, 78
network graph, 199, 200
Network insight, 199
new-branch --oneline, 105
NLP (natural language processing), 239
Node.js, 237
Node.js topic page, 154
notifications, 27

following users, 266
keeping tabs on projects, 162–163
managing with Octobox, 216–218
personalizing, 19
for reviewing pull requests, 140
for teams, 195

npm run start, 239
NuGet packages, 257

O
OAuth apps, 23, 192
Octobox, 216–218
octocat, 28, 234
Octodex of Octocats, 28
online coding tutorials, 286
online courses, 286–287
online resources

activity art, 264
aliases, 293
Anita Borg institute, 275–276
blocking users, 172
branching, 15
browser extensions, 233
caching password, 20
cheat sheet, 3
VS Code, 84, 111, 284
code reviews, 147
community profiles for public

repositories, 198
custom actions, 243
dependency security vulnerabilities, 199

Emoji Cheat Sheet, 46
Git for Windows, 9
Git Merge, 274
GitHub app for Slack, 206
GitHub Constellation, 273
GitHub Desktop User Guides, 67
GitHub Satellite conferences, 273
GitHub Universe, 273
Glitch, 238
help docs, 280
Hopper Program, 276
JavaScript meet-ups, 268
Jekyll, 58
Markdown, 58
Marketplace app requirements, 251
organizations, 21
PowerShell, 9
pre-written GitHub Actions, 243
pricing models, 262
pull requests

practicing review, 79
writing, 139

README.md file template, 44
Refined GitHub extension, 234
reporting abuse, 300
security review, 252
Skills, 3, 282
tokens, 226
top starred repositories, 265
Trello guide, 211
Up For Grabs website, 157
using Git on command line, 14
version control, 8
Visual Studio 2022, 223
Visual Studio extension, 226
Windows Subsystem for Linux

(WSL), 9
writing good commits, 128
XCode, 228

Open in Desktop button, 66
Open Source Definition (OSD), 165
Open Source Initiative (OSI), 165

320 GitHub For Dummies

open source software (OSS), 8, 17, 151–183
contributing, 157–160

finding places to, 157–158
reading code of conduct, 160
reading contributing code guide, 159–160
reading contributing guidelines, 159

creating open source repository, 165–169
adding code of conduct, 168–169
adding contributor guidelines, 168
adding license, 166–168

ending project, 181–183
archiving, 181–182
transferring ownership, 182–183

enforcing code of conduct, 170–173
bans and limits, 171–172
blocking users, 172–173
responding with kindness, 170–171

Explore page on GitHub, 152–156
collections, 155
events, 155
GitHub Sponsors, 156
starred repositories, 156
topics, 152–154
trending repositories, 154–155

forking, 93–94, 96
inner-sourcing, 185–201

best practices for, 197–201
coding in private, reasons for, 185
GitHub organizations, 186–193
teams, 193–197

keeping tabs on projects, 162–163
making repository public, 169–170
managing issues, 175–180

issue templates, 177–179
labeling issues, 175–176
saved replies, 179–180
triaging, 176–177

setting contributor expectations, 161–162
sense of entitlement, 162
submitting pull request, 161–162

writing documentation, 174–175
writing README.md file, 173–174

opening pull requests, 131–136
adding reviewers, 134–135
describing pull request, 134
specifying assignees, 135
specifying labels, 135
specifying projects and milestones, 136

Opera browser, 234
organizations, 186–193

creating, 186–187
creating teams within, 191
forking and, 97
inviting members to, 187–188
managing members of, 189–191
personalizing, 21
settings, 191–193
viewing repositories for, 188–189

origin, 97–98
OSD (Open Source Definition), 165
OSI (Open Source Initiative), 165
OSS (open source software), 8, 17, 151–183

contributing, 157–160
finding places to, 157–158
reading code of conduct, 160
reading contributing code guide, 159–160
reading contributing guidelines, 159

creating open source repository, 165–169
adding code of conduct, 168–169
adding contributor guidelines, 168
adding license, 166–168

ending project, 181–183
archiving, 181–182
transferring ownership, 182–183

enforcing code of conduct, 170–173
bans and limits, 171–172
blocking users, 172–173
responding with kindness, 170–171

Explore page on GitHub, 152–156
collections, 155
events, 155
GitHub Sponsors, 156
starred repositories, 156
topics, 152–154

Index 321

trending repositories, 154–155
forking, 93–94, 96
inner-sourcing, 185–201

best practices for, 197–201
coding in private, reasons for, 185
GitHub organizations, 186–193
teams, 193–197

keeping tabs on projects, 162–163
making repository public, 169–170
managing issues, 175–180

issue templates, 177–179
labeling issues, 175–176
saved replies, 179–180
triaging, 176–177

setting contributor expectations,
161–162

sense of entitlement, 162
submitting pull request, 161–162

writing documentation, 174–175
writing README.md file, 173–174

outside collaborators, 191
Overview page, 189
ownership

assigning code owners, 195–197
transferring, 182–183

Oxley, Simon, 28

P
packages

personalizing, 22
security vulnerabilities, 22

page jumps, 235
pages, 22
parent teams, 193
passively reviewing pull requests, 77
passwords

personalizing, 20
two-factor authentication, 186

Pauls, Finn, 288
payment method, 250
People tab, 189–190
period (.), 12

permissions
inviting members and, 187
verifying, 75–76

personal access tokens, 226
personal info, 261–262
personal website, 87–89

adding sections, 87–88
creating blog, 88–89
creating repository for, 61–64
linking project repositories, 89
modifying title and tagline, 87

personalizing, 18–23, 233–245
accessibility, 19
account, 18–19
appearance, 19
applications, 22–23
apps, 236–243
billing and plans, 19–20
browser extensions, 233–236

GitHub Selfie, 235–236
Refined GitHub extension, 234–235

VS Code, 34
code security and analysis, 22
developer settings, 23
emails, 20
GitHub Actions, 243–245
GitHub Copilot, 22
moderation, 21

blocked users, 21
code review limits, 21
interaction limits, 21

notifications, 19
organizations, 21
packages, 22
pages, 22
passwords and authentication, 20
Probot app, 236–243

creating app, 238–241
Glitch, 238
hosting, 237
hosting on Glitch, 242–243
pushing to GitHub, 241–242

322 GitHub For Dummies

personalizing (continued)
repositories, 21
saved replies, 22
scheduled reminders, 23
security log, 23
sponsorship log, 23
SSH and GPG keys, 20

picture, profile, 260
pinned repositories, 156, 189, 262–263
pixel art, 264
Pixel Art Tools collection, 155
plans, 192

app listing, 253
personalizing, 19–20

Pluralsight, 287
Pomodoro Technique, 294
Popular topics section, 152
portfolio, 18, 260
PowerShell, 9
power-up

installing, 211–213
using, 213–216

prettifier, 142
privacy, 142, 300
private repositories, 17, 264
PRIVATE_KEY, 240
Pro badge, 262
proactive, 304–305
Probot app, 236–243

creating app, 238–241
Glitch, 238
hosting, 237
hosting on Glitch, 242–243
pushing to GitHub, 241–242

production branch, 15–16
professional environment, 272
profile, 259–265

contribution activity timeline, 265
contribution graph, 263–264
as cover page, 37
overview, 29
personal info and bio, 261–262

pinned repositories, 262–263
profile picture, 260
status message, 261
visiting friend profiles, 156

project boards, 51–55
closing issues, 54–55
creating, 52–54
development workflow, 298
keeping tabs on, 162–163
specifying pull requests, 136
surveying, 77
turning into website, 58–60

Projects tab, repository, 42
project-specific documentation,

284–285
ProTip, 26–27
prototype user interfaces, 295
public repositories

accounts and, 17
changing from private to, 169–170
setting up personal website, 61

Publish dialog box, 120
publishing

branches, 81, 82–87
repositories in Desktop, 119–120

pull requests, 17, 129–147
closing issues by, 54–55
contributing changes to upstream,

99–102
counting as contributions, 263
helpful resources, 147
on home page, 26–27
integrations with GitHub

VS Code, 220–222
IntelliJ, 229–231
Slack, 210
Trello, 214
Visual Studio, 223–226

limit to prior contributors, 171–172
marking as unread, 235
merging, 48–51
opening, 131–136

Index 323

adding reviewers, 134–135
describing pull request, 134
specifying assignees, 135
specifying labels, 135
specifying projects and milestones, 136

overview, 129
personalizing personal website, 62–64
pushing code to GitHub, 130–131
read-only permissions and, 196
resolving merge conflicts, 85–86
reviewing, 77, 140–147

commenting on code, 142–144
Conversation tab, 140–141
Files Changed tab, 141–142
finishing, 145–147
suggesting changes, 144–145

submitting to correct documentation,
302–303

submitting, 161–162
suggestion to open, 47
writing, 136–139

adding images, 138–139
explaining context, 137–138
including call to action, 139
keeping it focused, 137
knowing audience, 136
making purpose clear, 136–137

pull requests, 21
Pull requests tab, repository, 42
Pulse insight, 198
PurpleBooth, 44
pushing changes

GitHub Desktop, 67
verifying ability to, 95

pwd, 10
Python, 199

Q
question label, 78, 176
questions and answers (Q&A), 271
Quick pick icon, 27

R
Raval, Siraj, 287
reaction avatars, 235
README.md file, 44–48

adding image to, 54
creating, 110–111
existing project orientation with, 76–77
modifying, 45–48
overview, 44–45
setting up personal website with, 61–62
staging for commit, 113–114
turning project repository into website, 58
writing, 173–174

read-only permissions, 75–76, 196
ready for review label, 176
recommendations, 152
recruiters, 263
Refined GitHub extension, 234–235
regional conferences, 268–269
rejected pull request, 161–162
release notes, 304
releases, 210
remote origin, 97
remote repositories, 96–98
remote upstream, 97
removing from organization, 191
replying

with kindness, 170–171
saved replies, 22, 179–180

reporting
abuse, 172–173
bad behavior, 300

repositories, 16, 37–55
contribution graph, 263
creating to store code, 109–110
ending project, 181–183

archiving, 181–182
transferring ownership, 182–183

existing projects, 73–79
accessing repository, 74–75
getting oriented with, 76–79

324 GitHub For Dummies

repositories (continued)
preparing contribution, 79–87
verifying permissions, 75–76

exploring, 41–43
Code tab, 43
tabs, 41–43
top information, 41

forking, 96–108
contributing changes to upstream, 99–102
creating Git alias, 107–108
fetching changes from upstream, 98–99
getting unstuck when cloning without

forking, 102–106
Insights tab, 197–200
issues and project boards, 51–55

closing issues, 54–55
creating, 52–54

linking, 89
merging pull requests, 48–51
open source repository, 165–169

adding code of conduct, 168–169
adding contributor guidelines, 168
adding license, 166–168

personalizing, 21
publishing in Desktop, 119–120
pushing code to GitHub, 130–131
README.md file, 44–48

modifying, 45–48
overview, 44–45

setting up, 37–40
starred, 41, 156
subscribing in Slack channel to, 208–209
tracking in Desktop, 118–119
trending, 154–155
turning into website, 57–71

creating issues for website, 64–66
finding resources for GitHub Pages, 70–71
GitHub Pages, 58
local environment, 66–70
personal website, 61–64, 87–89
steps for, 58–60

viewing for organization, 188–189

Request page, 281
respect, 299–300
responsiveness, 302
reviewing pull requests, 21, 79,

140–147
adding reviewers, 134–135
commenting on code, 142–144
Conversation tab, 140–141
effective feedback, 284–285
Files Changed tab, 141–142
finishing, 145–147
notifications from Slack, 211
suggesting changes, 144–145
in Visual Studio, 223–226

role, 190
RSS feeds, 163
Rubocop app, 255
Ruby, 286, 293
ruby-lint, 297
Rust, 294

S
saved replies

personalizing, 22
for projects, 179–180

scaffold apps, 295–296
scheduled reminders, 23
scholarships, 275
SCM (source control management).

See version control systems
SD Ruby, 268
search bar, 26, 74, 280
sections, 65, 87–88
security

dependency graphs for, 199
Marketplace apps, 250–251
organizations, 192
personalizing security log, 23
review of apps, 251–252
reviewing, 142

Security tab, repository, 42
Sentry JavaScript repository, 77

Index 325

Sentry open source project, 285
Services account engineering, 283
session tracks, 271
Settings tab, repository, 42, 75, 95
signing in, 67
signing up, 17–18
Skills, 3, 281–283
Slack, 23, 206–211

installing GitHub app for, 206–208
subscribing to repository in channel, 208–209
trying out, 209–211

social media, 57, 287–288
social networking, 259–266

following users, 266
profile, 259–265

contribution activity timeline, 265
contribution graph, 263–264
personal info and bio, 261–262
pinned repositories, 262–263
profile picture, 260
status message, 261

starred repositories, 265–266
software licenses, 40
software testing apps, 257
source control management (SCM).

See version control systems
Source Control pane, VS Code, 69, 84
speakers, event, 274–275

benefits of, 274–275
diversity of speakers, 274
expenses of, 275–276

Speight, April, 45
sponsors, 156
sponsorship log, 23
SSH keys, 20
StackOverflow, 297, 305
StackOverflow questions, 285
staging changes, 113–114
stale issues, 78
starred repositories

exploring, 156
overview, 41
social networking, 265–266

static analysis tools, 297
status command, 11
status message, 261
STRIDE framework, 142
style guidelines, 284
style issues, 142
subscribing

following users, 266
Slack channel, 208–209

suggesting changes, 144–145
summary, 117, 118, 136–138
syncing projects

VS Code, 69, 85
GitHub Desktop, 67

T
tabs, repository, 41–43
taglines

creating issues for, 65
modifying, 87

target branch, 132
target repositories, 96, 133
team alias, 195
Team Explorer pane, Visual Studio,

224–225
teams, 190, 193–197

assigning code owners, 195–197
creating, 191
creating hierarchies, 193
discussions, 194–195

Teams tier, 186, 188
templates

GitHub Skills, 71
issue, 177–179
licenses, 166–167
projects, 52–53
README.md file, 44

temporary branch, 103
terminal

aliases for, 131
modifying metadata in, 95–96
trying Git on, 9–14

326 GitHub For Dummies

testing
running automatically, 293–294
software apps, 257

TestQuality app, 257
TextEdit, 69
text-message confirmation, 186
themes, 59
third-party access, 192
TikTok, 287–288
timeline, contribution activity, 265
titles

creating issues for, 65
modifying, 87

tokens, 23, 226
topics

exploring, 152–154
location of, 43

Torvalds, Linus, 266
tracking

issues, 158
repositories, 118–119

tracks
hallway tracks, 272
session tracks, 271

Traffic insight, 198
training, in-person, 283
Train-the-Trainer, 283
transferring ownership, 182–183
Trello, 211–216

installing GitHub power-up, 211–213
using GitHub power-up, 213–216

trending repositories, 154–155
triaging

overview, 78
own projects, 176–177
reading through issues, 77

trial and error learning, 279–280
Try .NET site, 286
Tsc-watch, 294
tutorials, 286–287
Twitter, 287–288

two-factor authentication, 20, 223, 226
of members on organization, 190
on tiers, 186

TypeScript, 294

U
Udemy, 287
unblocking users, 173
University of California, 287
University of London, 287
unlabeled filter, 176
Up For Grabs website, 157
updates, VS Code, 34
up-for-grabs label, 157
upstream

contributing changes to, 99–102
fetching changes from, 98–99

user experience, 251
user groups, 268
username

adding sections with, 87
changing, 18–19
forks having, 98
mentioning in pull requests, 134
setting up personal website with, 59

V
version control system

Visual Studio, 223
XCode, 228

version control systems
Git, 8–16

branching by collaborator, 14–15
branching by feature, 15–16
branching for experimentation, 16
trying on terminal, 9–14

GitHub, 8
VI editor, 115
VIM editor, 115
Visual Studio, 223–226

Index 327

pull requests in, 223–226
Visual Studio extension, 226

volunteers, 276
VS Code, 33–34, 219–223

branch selector in, 81–82
building extension for, 295–296
documentation, 284
filtering issues, 158
interacting with pull requests in, 220–222
opening repository in, 69
pull requests extension, 222–223
push permission error, 104
touring, 69–70

VSIX Installer, 223

W
waffle.io, 298
Wallaby.js, 294
watching repositories, 41
web hooks, 236, 252, 254
WEBHOOK_PROXY_URL, 239
WEBHOOK_SECRET, 240
websites, 57–71, 73–89

creating issues for, 64–66
existing GitHub projects, 73–79

accessing repository, 74–75
getting oriented with, 76–79
preparing contribution, 79–87
verifying permissions, 75–76

GitHub Pages
finding resources for, 70–71
general discussion of, 58

personal website, 87–89
adding sections, 87–88
creating blog, 88–89
linking project repositories, 89
modifying title and tagline, 87
setting up, 61–64

setting up local environment, 66–70
cloning repository in GitHub Desktop, 66–67
opening repository in VS Code, 69

touring GitHub Desktop, 67–68
touring VS Code, 69–70

turning project repository into, 58–60
wiki feature, 174
Wiki tab, repository, 42
Windows, terminal options, 9
Windows Subsystem for Linux (WSL), 9
wontfix label, 78, 161, 176
work in progress, 162
workflows, 291–298

Chrome Web Developer Tools, 296
code analysis tools, 297–298
coding with version control system, 8
consultation, 283
drafting pull requests, 291–292
Git alias, 292–293
project boards, 298
prototype user interfaces, 295
running tests automatically, 293–294
scaffold apps with Yeoman, 295–296
StackOverflow, 297
taking breaks, 294

workshops, 269
workspaces, Slack, 206
wrapping text, 117
write permissions, 75, 195
writing

code, 110–112
commit message, 116–118
documentation, 174–175
good bug reports, 300–301
pull requests, 136–139

adding images, 138–139
explaining context, 137–138
including call to action, 139
keeping it focused, 137
knowing audience, 136
making purpose clear, 136–137

README.md file, 173–174
WSL (Windows Subsystem for Linux), 9
WWDC, 270

328 GitHub For Dummies

X
XCode, 226–228
XKCD comic, 113

Y
Yeoman, 295–296
yo command, 295–296

YouTube, 287–288
YubiKey, 186

Z
ZenHub, 298

About the Author
Sarah Guthals, PhD, is a former engineering manager at GitHub and director-level
of developer advocate at Microsoft and Sentry. She is coauthor of Helping Kids with
Coding For Dummies.

Dedication
This book is dedicated to my daughter Ayla. Through one of the hardest years of
my life, she has been a treasure and constant source of inspiration and resilience.
I’d also like to dedicate this book to my close friends, family, and colleagues who
have supported me in becoming who I am today, which has led to the opportunity
to bring this updated book to you all today.

Author’s Acknowledgements
I would like to acknowledge all of the hard work that went into making GitHub, all
of the open source developers who share their passions on GitHub, all of the
folks who build apps that integrate with GitHub, and every programming lan-
guage, coding application, and effort to improve the collaborative nature of
programming — without these, coding would not be as inspiring and fun. I would
also like to acknowledge Phil Haack for originally co-authoring this book with me
(his experience and wisdom is definitely a key feature) and Cecil for stepping in
last minute to edit this book for technical accuracy. Finally, I want to give a huge
thanks to Steve, Rebecca, and all the folks at Wiley for being understanding
through intense challenges in my personal life and still making writing this book
a great experience.

Publisher’s Acknowledgments

Associate Editor: Elizabeth Stilwell

Development Editor: Rebecca Senninger

Technical Editor: Cecil Phillip

Proofreader: Debbye Butler

Production Editor: Mohammed Zafar Ali

Cover Image: © MandriaPix/Shutterstock

Take dummies with you
everywhere you go!
Whether you are excited about e-books, want more

from the web, must have your mobile apps, or are swept
up in social media, dummies makes everything easier.

dummies.com

Find us online!

http://dummies.com

Leverage the power
Dummies is the global leader in the reference category and one
of the most trusted and highly regarded brands in the world. No
longer just focused on books, customers now have access to the
dummies content they need in the format they want. Together
we’ll craft a solution that engages your customers, stands out
from the competition, and helps you meet your goals.

Connect with an engaged audience on a powerful multimedia site,
and position your message alongside expert how-to content.
Dummies.com is a one-stop shop for free, online information
and know-how curated by a team of experts.

• Targeted ads
• Video
• Email Marketing

• Microsites
• Sweepstakes

sponsorship

Advertising & Sponsorships

MILLION
PAGE VIEWS

M IL L I O N

NEWSLETTER

300,000 UNIQUE INDIVIDUALS
EVERY WEEK

UNIQUE

SUBSCRIPTIONS

EVERY SINGLE MONTH

15

700,000

20

43%
OF ALL VISITORS
ACCESS THE SITE
VIA THEIR MOBILE DEVICES

VISITORS PER MONTH

TO THE INBOXES OF

http://Dummies.com

of dummies

you from competitors, amplify your message, and encourage customers to make a
buying decision.

Leverage the strength of the world’s most popular reference brand to reach new
audiences and channels of distribution.

For more information, visit dummies.com/biz

• Apps
• Books

• eBooks
• Video

• Audio
• Webinars

Custom Publishing

Brand Licensing & Content

http://dummies.com/biz

9781119187790
USA $26.00
CAN $31.99
UK £19.99

9781119179030
USA $21.99
CAN $25.99
UK £16.99

9781119293354
USA $24.99
CAN $29.99
UK £17.99

9781119293347
USA $22.99
CAN $27.99
UK £16.99

9781119310068
USA $22.99
CAN $27.99
UK £16.99

9781119235606
USA $24.99
CAN $29.99
UK £17.99

9781119251163
USA $24.99
CAN $29.99
UK £17.99

9781119235491
USA $26.99
CAN $31.99
UK £19.99

9781119279952
USA $24.99
CAN $29.99
UK £17.99

9781119283133
USA $24.99
CAN $29.99
UK £17.99

9781119287117
USA $24.99
CAN $29.99
UK £16.99

9781119130246
USA $22.99
CAN $27.99
UK £16.99

PERSONAL ENRICHMENT

9781119311041
USA $24.99
CAN $29.99
UK £17.99

9781119255796
USA $39.99
CAN $47.99
UK £27.99

9781119293439
USA $26.99
CAN $31.99
UK £19.99

9781119281467
USA $26.99
CAN $31.99
UK £19.99

9781119280651
USA $29.99
CAN $35.99
UK £21.99

9781119251132
USA $24.99
CAN $29.99
UK £17.99

9781119310563
USA $34.00
CAN $41.99
UK £24.99

9781119181705
USA $29.99
CAN $35.99
UK £21.99

9781119263593
USA $26.99
CAN $31.99
UK £19.99

9781119257769
USA $29.99
CAN $35.99
UK £21.99

9781119293477
USA $26.99
CAN $31.99
UK £19.99

9781119265313
USA $24.99
CAN $29.99
UK £17.99

9781119239314
USA $29.99
CAN $35.99
UK £21.99

9781119293323
USA $29.99
CAN $35.99
UK £21.99

PROFESSIONAL DEVELOPMENT

dummies.com

http://dummies.com

Available Everywhere Books Are Sold

Learning Made Easy

9781119293576
USA $19.99
CAN $23.99
UK £15.99

9781119293637
USA $19.99
CAN $23.99
UK £15.99

9781119293491
USA $19.99
CAN $23.99
UK £15.99

9781119293460
USA $19.99
CAN $23.99
UK £15.99

9781119293590
USA $19.99
CAN $23.99
UK £15.99

ACADEMIC

9781119215844
USA $26.99
CAN $31.99
UK £19.99

 9781119293378
USA $22.99
CAN $27.99
UK £16.99

9781119293521
USA $19.99
CAN $23.99
UK £15.99

9781119239178
USA $18.99
CAN $22.99
UK £14.99

9781119263883
USA $26.99
CAN $31.99
UK £19.99

dummies.com

http://dummies.com

Unleash Their Creativity

Small books for big
imaginations

9781119177173
USA $9.99
CAN $9.99
UK £8.99

9781119177272
USA $9.99
CAN $9.99
UK £8.99

9781119177241
USA $9.99
CAN $9.99
UK £8.99

9781119177210
USA $9.99
CAN $9.99
UK £8.99

9781119262657
USA $9.99
CAN $9.99
UK £6.99

9781119291336
USA $9.99
CAN $9.99
UK £6.99

9781119233527
USA $9.99
CAN $9.99
UK £6.99

9781119291220
USA $9.99
CAN $9.99
UK £6.99

9781119177302
USA $9.99
CAN $9.99
UK £8.99

dummies.com

http://dummies.com

WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Title Page
	Copyright Page
	Table of Contents
	Introduction
	About This Book
	Foolish Assumptions
	Icons Used in This Book
	Beyond the Book
	Where to Go from Here

	Part 1 Getting Started with GitHub.com
	Chapter 1 Understanding the Git in GitHub
	Introducing GitHub
	Understanding Version Control
	Git Version Control
	Try simple Git on the terminal
	Git branching by collaborator
	Git branching by feature
	Git branching for experimentation

	Git’s Place on GitHub
	Signing Up for GitHub.com
	Personalizing Your GitHub.com Account
	Account
	Appearance
	Accessibility
	Notifications
	Billing and plans
	Emails
	Passwords and authentication
	SSH and GPG keys
	Organizations
	Moderation
	Blocked users
	Interaction limits
	Code review limits

	Repositories
	Packages
	GitHub Copilot
	Pages
	Saved replies
	Code security and analysis
	Applications
	Scheduled reminders
	Security log
	Sponsorship log
	Developer settings

	Discovering Helpful Resources

	Chapter 2 Setting Up Your Collaborative Coding Environment
	Exploring GitHub.com
	Understanding Your Profile
	Getting to Know GitHub Desktop
	Setting Up GitHub Desktop
	Introducing Visual Studio Code

	Part 2 Starting Your First Solo Project
	Chapter 3 Introducing GitHub Repositories
	Setting Up a Repository
	Exploring Your Repository
	Top information
	Tabs
	Code tab

	Modifying README.md
	Merging a Pull Request
	Using Issues and Project Boards
	Creating a project board and an issue
	Closing an issue

	Chapter 4 Setting Up a GitHub Website Repo
	Introducing GitHub Pages
	Turning a Project Repo into a Website
	Setting Up a Personal Website Repo
	Creating Issues for Your Website
	Setting Up Your Local Environment
	Cloning a repo in GitHub Desktop
	Touring GitHub Desktop
	Opening your repo in Visual Studio Code
	Touring VS Code

	Finding Resources for GitHub Pages

	Chapter 5 Creating a Website with GitHub Pages
	Jumping into an Existing GitHub Project
	Accessing the GitHub.com repo
	Verifying your permissions for the repo
	Orienting yourself with the project

	Preparing Your Contribution
	Creating a branch for your contribution
	Confirming your branch is published

	Building Your Personal Website
	Modifying the title and tagline
	Adding sections to your website
	Creating a blog
	Linking project repos

	Part 3 Contributing to Your First Project
	Chapter 6 Forking GitHub Repositories
	Introducing Forking
	Cloning, Forking, and Duplicating
	Cloning a Repository
	Forking a Repository
	Fetching changes from upstream
	Contributing changes to upstream
	Getting unstuck when cloning without forking

	Chapter 7 Writing and Committing Code
	Creating a Repository
	Writing Code
	Creating a Commit
	Staging changes
	Committing a file
	Committing multiple files

	Writing a Good Commit Message
	Committing Code with GitHub Desktop
	Tracking a repository in Desktop
	Publishing a repository in Desktop
	Committing in Desktop

	Using GitHub Conventions in Commit Messages
	Emojis
	Issue references
	Giving credit to coauthors

	Committing Code from Your Editor

	Chapter 8 Working with Pull Requests
	Understanding a Pull Request
	Pushing Code to GitHub
	Opening a Pull Request
	Describing the pull request
	Adding reviewers
	Specifying assignees
	Specifying labels
	Specifying projects and milestones

	Writing a Great Pull Request
	Knowing your audience
	Making the purpose clear
	Keeping it focused
	Explaining the why
	A picture is worth a thousand words
	Including a call to action

	Reviewing a Pull Request
	Reviewing the Conversation tab
	Reviewing the changed files
	Commenting on code
	Suggesting changes
	Finishing the review

	Reading More about Pull Requests

	Part 4 Managing and Contributing to Large Projects
	Chapter 9 Exploring and Contributing to OSS
	Exploring GitHub
	Exploring topics
	Trending repositories
	Exploring collections
	Exploring events
	Exploring GitHub Sponsors
	Getting by with help from your friends

	Finding Places to Contribute
	Surveying a Project for Contribution
	Reading the contributing guide
	Reading the contributing code guide
	Reading the code of conduct

	Setting Contributor Expectations
	They won’t fix every issue
	They won’t merge every pull request
	They don’t owe you anything

	Keeping Tabs on a Project

	Chapter 10 Starting Your Own OSS
	Creating an Open Source Repository
	Adding a license
	Adding contributor guidelines
	Adding a code of conduct

	Making a Repository Public
	Enforcing a Code of Conduct
	Responding with kindness
	Leveraging the ban hammer
	Blocking users

	Writing a README.md File
	Writing Good Documentation
	Managing Issues
	Labeling issues
	Triaging issues
	Issue templates
	Saved replies

	Ending Your Project
	Archiving a project
	Transferring ownership

	Chapter 11 Inner-Source Your Code on GitHub
	Why Code in Private?
	Using GitHub Organizations
	Creating a GitHub organization
	Inviting members to your GitHub organization
	Viewing repositories for your organization
	Managing members of your organization
	Creating teams within your organization
	Setting organization settings

	Making the Most of Your Teams
	Creating parent/child teams
	Discussing teams
	Assigning code owners

	Best Practices for Inner-Sourcing
	Repository insights
	Milestones for larger projects

	Part 5 Making GitHub Work for You
	Chapter 12 Collaborating Outside of GitHub
	Chatting It Up
	Installing the GitHub app for Slack
	Subscribing to a repository in a Slack channel
	Trying out the GitHub Slack integration

	Getting Trello and GitHub Integrated
	Installing the GitHub power-up
	Using the GitHub power-up

	Managing Notifications with Octobox

	Chapter 13 GitHub Workflow Integrations
	Using GitHub for Visual Studio Code
	Interacting with pull requests in VS Code
	Following the GitHub for VS Code pull requests extension

	Using GitHub for Visual Studio
	Viewing, creating, and reviewing pull requests in Visual Studio
	Following the GitHub for Visual Studio extension

	Using GitHub for XCode
	Using GitHub for IntelliJ

	Chapter 14 Personalizing GitHub
	Using Browser Extensions
	Refining GitHub
	Taking a GitHub selfie

	GitHub Apps and Probot
	Introducing Probot
	Hosting the app
	Introducing Glitch
	Creating a Probot app
	Pushing the Probot app to GitHub
	Hosting your Probot app on Glitch

	Taking Action with GitHub Actions

	Part 6 The GitHub Ecosystem
	Chapter 15 Exploring the GitHub Marketplace
	Introducing the GitHub Marketplace
	Billing made easy
	The Marketplace vetting process

	Listing Your App on the Marketplace
	Considering Common Apps to Install
	Continuous integration
	Code quality
	Localization
	Monitoring
	Dependency management
	Testing
	Learning

	Chapter 16 GitHub and You
	Understanding Your GitHub Profile
	Profile picture
	Status message
	Personal info and bio
	Pinned repositories
	Contribution graph
	Contribution activity

	Starring Repositories
	Following Users

	Chapter 17 Attending Events
	Exploring Types of Events
	Meet-ups and user groups
	Regional conferences
	Hackathons
	Major conferences

	Knowing What to Expect at Events
	Keynotes
	Conference session tracks
	Hallway tracks
	After-hour conference events
	A respectful professional environment

	Becoming Familiar with GitHub Events
	GitHub Universe
	GitHub Satellite
	GitHub Constellation
	Git Merge

	Speaking at Events
	Everyone has a story to tell
	Benefits of being a speaker

	Finding Funding for Events

	Part 7 The Part of Tens
	Chapter 18 Ten Ways to Level Up on GitHub
	Trial and Error
	GitHub Help Docs
	GitHub Skills
	GitHub In-Person Training
	Project-Specific Documentation
	External Community Places
	Online Coding Tutorials
	Online Courses and Tutorials
	Blogs, YouTube, Twitter, TikTok, and Other Social Media
	Community Forum

	Chapter 19 Ten Ways to Improve Your Development Workflow
	Drafting Pull Requests
	Git Aliases
	Run Tests Automatically
	Take Breaks
	Prototype User Interfaces
	Scaffold Apps with Yeoman
	Chrome Web Developer Tools
	StackOverflow
	Code Analysis Tools
	Project Boards

	Chapter 20 Ten Tips for Being an Effective Community Member
	Be Respectful and Kind
	Report Bad Behavior
	Write Good Bug Reports
	Be Responsive
	Submit Pull Requests to Correct Documentation
	Document Your Own Code
	Give Credit Where It’s Due
	Help Get the Word Out
	Be Proactive and Mentor Others
	Contribute Outside of GitHub

	Index
	EULA

