

Deep
Learning

by John Paul Mueller
and Luca Massaron

Deep Learning For Dummies®

Published by: John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, www.wiley.com

Copyright © 2019 by John Wiley & Sons, Inc., Hoboken, New Jersey

Media and software compilation copyright © 2019 by John Wiley & Sons, Inc. All rights reserved.

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections
107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the Publisher. Requests to
the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River
Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, Dummies.com, Making Everything Easier, and related
trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and may not be used without written
permission. All other trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not
associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS
OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION WARRANTIES
OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES OR
PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR
EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED
IN RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS
REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE
PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN
ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF
FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION
THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS
SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED
BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care Department within
the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002. For technical support, please visit
https://hub.wiley.com/community/support/dummies.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with
standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to
media such as a CD or DVD that is not included in the version you purchased, you may download this material at
http://booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number is available from the publisher: 2019937505

ISBN 978-1-119-54304-6 (pbk); ISBN 978-1-119-54303-9 (ebk); ISBN ePDF 978-1-119-54302-2 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

http://www.wiley.com
http://www.wiley.com/go/permissions
https://hub.wiley.com/community/support/dummies
http://booksupport.wiley.com
http://www.wiley.com

Contents at a Glance
Introduction . 1

Part 1: Discovering Deep Learning . 7
CHAPTER 1: Introducing Deep Learning . 9
CHAPTER 2: Introducing the Machine Learning Principles . 25
CHAPTER 3: Getting and Using Python . 45
CHAPTER 4: Leveraging a Deep Learning Framework . 73

Part 2: Considering Deep Learning Basics . 91
CHAPTER 5: Reviewing Matrix Math and Optimization . 93
CHAPTER 6: Laying Linear Regression Foundations . 111
CHAPTER 7: Introducing Neural Networks . 131
CHAPTER 8: Building a Basic Neural Network . 149
CHAPTER 9: Moving to Deep Learning . 163
CHAPTER 10: Explaining Convolutional Neural Networks . 179
CHAPTER 11: Introducing Recurrent Neural Networks . 201

Part 3: Interacting with Deep Learning . 215
CHAPTER 12:	Performing	Image	Classification . 217
CHAPTER 13: Learning Advanced CNNs . 233
CHAPTER 14: Working on Language Processing . 251
CHAPTER 15:	Generating	Music	and Visual	Art . 269
CHAPTER 16: Building Generative Adversarial Networks . 279
CHAPTER 17: Playing with Deep Reinforcement Learning . 293

Part 4: The Part of Tens . 307
CHAPTER 18: Ten Applications that Require Deep Learning . 309
CHAPTER 19: Ten Must-Have Deep Learning Tools . 317
CHAPTER 20: Ten Types of Occupations that Use Deep Learning 327

Index . 335

Deep Learning

Table of Contents v

Table of Contents
INTRODUCTION . 1

About This Book .1
Foolish Assumptions .2
Icons Used in This Book .3
Beyond the Book .4
Where to Go from Here .5

PART 1: DISCOVERING DEEP LEARNING . 7

CHAPTER 1: Introducing Deep Learning . 9
Defining	What	Deep	Learning	Means .10

Starting	from	Artificial	Intelligence .10
Considering the role of AI .12
Focusing on machine learning .15
Moving from machine learning to deep learning 16

Using Deep Learning in the Real World .18
Understanding the concept of learning .18
Performing deep learning tasks .19
Employing deep learning in applications .19

Considering the Deep Learning Programming Environment 19
Overcoming Deep Learning Hype .22

Discovering the start-up ecosystem .22
Knowing when not to use deep learning .22

CHAPTER 2: Introducing the Machine Learning Principles 25
Defining	Machine	Learning .26

Understanding	how	machine	learning works 26
Understanding that it’s pure math .27
Learning	by	different	strategies .28
Training, validating, and testing data .30
Looking for generalization .31
Getting to know the limits of bias .32
Keeping model complexity in mind .33

Considering	the	Many	Different	Roads	to	Learning 33
Understanding there is no free lunch .34
Discovering	the	five	main	approaches .34
Delving	into	some	different	approaches .36
Awaiting the next breakthrough .40

Pondering the True Uses of Machine Learning .40
Understanding	machine	learning	benefits .41
Discovering machine learning limits .43

vi Deep Learning For Dummies

CHAPTER 3: Getting and Using Python . 45
Working with Python in this Book .46
Obtaining Your Copy of Anaconda .46

Getting Continuum Analytics Anaconda .47
Installing Anaconda on Linux .47
Installing Anaconda on MacOS .48
Installing Anaconda on Windows .49

Downloading	the	Datasets	and Example	Code .54
Using Jupyter Notebook .54
Defining	the	code	repository .56
Getting and using datasets .61

Creating the Application .62
Understanding cells . .62
Adding documentation cells .63
Using other cell types .64

Understanding the Use of Indentation .65
Adding Comments .66

Understanding comments .67
Using	comments	to	leave	yourself reminders 68
Using comments to keep code from executing 69

Getting Help with the Python Language .69
Working in the Cloud .70

Using the Kaggle datasets and kernels .70
Using the Google Colaboratory .70

CHAPTER 4: Leveraging a Deep Learning Framework 73
Presenting Frameworks .74

Defining	the	differences .74
Explaining the popularity of frameworks .75
Defining	the	deep	learning	framework .77
Choosing a particular framework .78

Working with Low-End Frameworks .79
Caffe2 .79
Chainer .80
PyTorch .80
MXNet .81
Microsoft Cognitive Toolkit/CNTK .82

Understanding TensorFlow .82
Grasping why TensorFlow is so good .82
Making TensorFlow easier by using TFLearn 84
Using	Keras	as	the	best	simplifier .85
Getting your copy of TensorFlow and Keras 86
Fixing the C++ build tools error in Windows 88
Accessing your new environment in Notebook 89

Table of Contents vii

PART 2: CONSIDERING DEEP LEARNING BASICS 91

CHAPTER 5: Reviewing Matrix Math and Optimization 93
Revealing the Math You Really Need .94

Working with data .94
Creating and operating with a matrix .95

Understanding	Scalar,	Vector,	and	Matrix	Operations 96
Creating a matrix .97
Performing matrix multiplication .99
Executing advanced matrix operations .100
Extending analysis to tensors .102
Using	vectorization	effectively .104

Interpreting Learning as Optimization .105
Exploring cost functions .105
Descending the error curve .106
Learning the right direction .107
Updating .109

CHAPTER 6: Laying Linear Regression Foundations 111
Combining	Variables .112

Working through simple linear regression 112
Advancing to multiple linear regression .113
Including gradient descent .115
Seeing linear regression in action .116

Mixing	Variable	Types .117
Modeling the responses .117
Modeling the features .118
Dealing with complex relations .119

Switching to Probabilities .121
Specifying a binary response .121
Transforming numeric estimates into probabilities 122

Guessing the Right Features .124
Defining	the	outcome	of	incompatible	features 124
Solving	overfitting	using	selection	and	regularization 125

Learning One Example at a Time .127
Using gradient descent .127
Understanding	how	SGD	is	different .127

CHAPTER 7: Introducing Neural Networks . 131
Discovering the Incredible Perceptron .132

Understanding perceptron functionality .132
Touching the nonseparability limit .134

Hitting Complexity with Neural Networks .136
Considering the neuron .136
Pushing data with feed-forward .138

viii Deep Learning For Dummies

Going even deeper into the rabbit hole .140
Using backpropagation to adjust learning .143

Struggling	with	Overfitting .146
Understanding the problem .146
Opening the black box .146

CHAPTER 8: Building a Basic Neural Network . 149
Understanding Neural Networks .150

Defining	the	basic	architecture .151
Documenting the essential modules .153
Solving a simple problem .155

Looking	Under	the	Hood	of	Neural Networks 158
Choosing the right activation function .158
Relying on a smart optimizer .160
Setting a working learning rate .161

CHAPTER 9: Moving to Deep Learning . 163
Seeing Data Everywhere .164

Considering	the	effects	of	structure .164
Understanding Moore’s implications .165
Considering what Moore’s Law changes .166

Discovering	the	Benefits	of	Additional	Data .167
Defining	the	ramifications	of	data .168
Considering data timeliness and quality .168

Improving Processing Speed .169
Leveraging powerful hardware .170
Making other investments .170

Explaining	Deep	Learning	Differences	from	Other	Forms	of	AI 171
Adding more layers .172
Changing the activations .174
Adding regularization by dropout .175

Finding Even Smarter Solutions .176
Using online learning .176
Transferring learning .177
Learning end to end .177

CHAPTER 10: Explaining Convolutional Neural Networks 179
Beginning the CNN Tour with Character Recognition 180

Understanding image basics .180
Explaining How Convolutions Work .183

Understanding convolutions .183
Simplifying the use of pooling .187
Describing the LeNet architecture .188

Table of Contents ix

Detecting Edges and Shapes from Images .193
Visualizing	convolutions .194
Unveiling successful architectures .196
Discussing transfer learning .197

CHAPTER 11: Introducing Recurrent Neural Networks 201
Introducing Recurrent Networks .202

Modeling sequences using memory .202
Recognizing and translating speech .204
Placing the correct caption on pictures .206

Explaining Long Short-Term Memory .207
Defining	memory	differences .208
Walking through the LSTM architecture .209
Discovering interesting variants .211
Getting the necessary attention .212

PART 3: INTERACTING WITH DEEP LEARNING 215

CHAPTER 12:	Performing	Image	Classification . 217
Using	Image	Classification	Challenges .218

Delving into ImageNet and MS COCO .219
Learning the magic of data augmentation 221

Distinguishing	Traffic	Signs .223
Preparing image data .224
Running	a	classification	task .228

CHAPTER 13: Learning Advanced CNNs . 233
Distinguishing	Classification	Tasks .234

Performing localization .235
Classifying multiple objects .235
Annotating multiple objects in images .237
Segmenting images .237

Perceiving Objects in Their Surroundings .239
Discovering how RetinaNet works .239
Using the Keras-RetinaNet code .241

Overcoming Adversarial Attacks on Deep Learning Applications . . .245
Tricking pixels .246
Hacking with stickers and other artifacts .248

CHAPTER 14: Working on Language Processing 251
Processing Language .252

Defining	understanding	as	tokenization .253
Putting all the documents into a bag .254

Memorizing Sequences that Matter .257
Understanding semantics by word embeddings 257

Using AI for Sentiment Analysis .261

x Deep Learning For Dummies

CHAPTER 15:	Generating	Music	and Visual	Art . 269
Learning to Imitate Art and Life . .270

Transferring an artistic style .271
Reducing the problem to statistics .272
Understanding that deep learning doesn’t create 274

Mimicking an Artist .274
Defining	a	new	piece	based	on	a	single	artist 274
Combining styles to create new art .276
Visualizing	how	neural	networks	dream .276
Using a network to compose music .277

CHAPTER 16: Building Generative Adversarial Networks 279
Making Networks Compete .280

Finding the key in the competition .280
Achieving more realistic results .282

Considering a Growing Field .289
Inventing realistic pictures of celebrities .289
Enhancing details and image translation .290

CHAPTER 17: Playing with Deep Reinforcement Learning 293
Playing a Game with Neural Networks .294

Introducing reinforcement learning .294
Simulating game environments .296
Presenting Q-learning .299

Explaining Alpha-Go .302
Determining if you’re going to win .303
Applying self-learning at scale .305

PART 4: THE PART OF TENS . 307

CHAPTER 18: Ten Applications that Require Deep Learning 309
Restoring	Color	to	Black-and-White	Videos	and	Pictures 310
Approximating Person Poses in Real Time .310
Performing Real-Time Behavior Analysis .311
Translating Languages .312
Estimating Solar Savings Potential .312
Beating People at Computer Games .313
Generating	Voices .314
Predicting Demographics .314
Creating Art from Real-World Pictures .315
Forecasting Natural Catastrophes .316

Table of Contents xi

CHAPTER 19: Ten Must-Have Deep Learning Tools 317
Compiling Math Expressions Using Theano .317
Augmenting TensorFlow Using Keras .318
Dynamically	Computing	Graphs	with Chainer 319
Creating a MATLAB-Like Environment with Torch 319
Performing	Tasks	Dynamically	with PyTorch .320
Accelerating	Deep	Learning	Research Using	CUDA 321
Supporting	Business	Needs	with Deeplearning4j 323
Mining Data Using Neural Designer .323
Training Algorithms Using Microsoft Cognitive Toolkit (CNTK) 324
Exploiting Full GPU Capability Using MXNet .325

CHAPTER 20: Ten Types of Occupations that
Use Deep Learning . 327
Managing People .327
Improving Medicine .328
Developing New Devices .329
Providing Customer Support .329
Seeing Data in New Ways .330
Performing Analysis Faster .331
Creating a Better Work Environment .331
Researching Obscure or Detailed Information 333
Designing Buildings .333
Enhancing Safety .334

INDEX . 335

Introduction 1

Introduction

When you talk to some people about deep learning, they think of some
deep dark mystery, but deep learning really isn’t a mystery at all — you
use it every time you talk to your smartphone, so you have it with you

every day. In fact, you find deep learning used everywhere. For example, you see
it when using many applications online and even when you shop. You are
 surrounded by deep learning and don’t even realize it, which makes learning
about deep learning essential because you can use it to do so much more than you
might think possible.

Other people have another view of deep learning that has no basis in reality. They
think that somehow deep learning will be responsible for some dire apocalypse,
but that really isn’t possible with today’s technology. More likely is that someone
will find a way to use deep learning to create fake people in order to commit
crimes or to bilk the government out of thousands of dollars. However, killer
robots are most definitely not part of the future.

Whether you’re part of the mystified crowd or the killer robot crowd, we hope that
you’ll read Deep Learning For Dummies with the goal of understanding what deep
learning can actually do. This technology can probably do a lot more in the way of
mundane tasks than you think possible, but it also has limits, and you need to
know about both.

About This Book
When you work through Deep Learning For Dummies, you gain access to a lot of
example code that will run on a standard Mac, Linux, or Windows system. You can
also run the code online using something like Google Colab. (We provide pointers
on how to get the information you need to do this.) Special equipment, such as a
GPU, will make the examples run faster. However, the point of this book is that
you can create deep learning code no matter what sort of machine you have as
long as you’re willing to wait for some of it to complete. (We tell you which exam-
ples take a long time to run.)

The first part of this book gives you some starter information so that you don’t get
completely lost before you start. You discover how to install the various products
you need and gain an understanding of some essential math. The beginning
examples are more along the lines of standard regression and machine learning,
but you need this basis to gain a full appreciation of just what deep learning can
do for you.

After you get past these initial bits of information, you start to do some pretty
amazing things. For example, you discover how to generate your own art and per-
form other tasks that you might have assumed to require many of coding and
some special hardware to accomplish. By the end of the book, you’ll be amazed by
what you can do, even if you don’t have an advanced machine learning or deep
learning degree.

To make absorbing the concepts even easier, this book uses the following
conventions:

 » Text that you’re meant to type just as it appears in the book is in bold. The
exception is when you’re working through a step list: Because each step is
bold, the text to type is not bold.

 » When you see words in italics as part of a typing sequence, you need to
replace that value with something that works for you. For example, if you
see “Type Your Name and press Enter,” you need to replace Your Name with
your actual name.

 » Web addresses and programming code appear in monofont. If you’re reading
a digital version of this book on a device connected to the Internet, you can
click or tap the web address to visit that website, like this: http://www.
dummies.com.

 » When you need to type command sequences, you see them separated
by a special arrow, like this: File ➪ New File. In this example, you go to the
File menu first and then select the New File entry on that menu.

Foolish Assumptions
You might find it difficult to believe that we’ve assumed anything about you —
after all, we haven’t even met you yet! Although most assumptions are indeed
foolish, we made these assumptions to provide a starting point for the book.

2 Deep Learning For Dummies

http://www.dummies.com/
http://www.dummies.com/

You need to be familiar with the platform you want to use because the book doesn’t
offer any guidance in this regard. (Chapter 3 does, however, provide Anaconda
installation instructions, and Chapter 4 helps you install the TensorFlow and
Keras frameworks used for this book.) To give you the maximum information
about Python concerning how it applies to deep learning, this book doesn’t
discuss any platform-specific issues. You really do need to know how to install
applications, use applications, and generally work with your chosen platform
before you begin working with this book.

You must know how to work with Python. You can find a wealth of tutorials online
(see https://www.w3schools.com/python/ and https://www.tutorialspoint.
com/python/ as examples).

This book isn’t a math primer. Yes, you see many examples of complex math,
but the emphasis is on helping you use Python to perform deep learning tasks
rather than teaching math theory. We include some examples that also discuss the
use of machine learning as it applies to deep learning. Chapters 1 and 2 give you a
better understanding of precisely what you need to know to use this book
successfully.

This book also assumes that you can access items on the Internet. Sprinkled
throughout are numerous references to online material that will enhance your
learning experience. However, these added sources are useful only if you actually
find and use them.

Icons Used in This Book
As you read this book, you see icons in the margins that indicate material of inter-
est (or not, as the case may be).This section briefly describes each icon in this
book.

Tips are nice because they help you save time or perform some task without a lot
of extra work. The tips in this book are time-saving techniques or pointers to
resources that you should try so that you can get the maximum benefit from
Python or from performing deep learning–related tasks.

We don’t want to sound like angry parents or some kind of maniacs, but you
should avoid doing anything that’s marked with a Warning icon. Otherwise, you
might find that your application fails to work as expected, you get incorrect
answers from seemingly bulletproof algorithms, or (in the worst-case scenario)
you lose data.

Introduction 3

https://www.w3schools.com/python/
https://www.tutorialspoint.com/python/
https://www.tutorialspoint.com/python/

Whenever you see this icon, think advanced tip or technique. You might find these
tidbits of useful information just too boring for words, or they could contain the
solution you need to get a program running. Skip these bits of information when-
ever you like.

If you don’t get anything else out of a particular chapter or section, remember the
material marked by this icon. This text usually contains an essential process or a
bit of information that you must know to work with Python or to perform deep
learning–related tasks successfully.

Beyond the Book
This book isn’t the end of your Python or deep learning experience — it’s really
just the beginning. We provide online content to make this book more flexible and
better able to meet your needs. That way, as we receive e-mail from you, we can
address questions and tell you how updates to either Python or its associated add-
ons affect book content. In fact, you gain access to all these cool additions:

 » Cheat sheet: You remember using crib notes in school to make a better mark
on a test, don’t you? You do? Well, a cheat sheet is sort of like that. It provides
you with some special notes about tasks that you can do with Python, machine
learning, and data science that not every other person knows. You can find the
cheat sheet by going to www.dummies.com, searching this book’s title, and
scrolling down the page that appears. The cheat sheet contains really neat
information such as the most common programming mistakes that cause
people woe when using Python.

 » Updates: Sometimes changes happen. For example, we might not have seen
an upcoming change when we looked into our crystal ball during the writing
of this book. In the past, this possibility simply meant that the book became
outdated and less useful, but you can now find updates to the book by
searching this book’s title at www.dummies.com.

In addition to these updates, check out the blog posts with answers to reader
questions and demonstrations of useful book-related techniques at http://
blog.johnmuellerbooks.com/.

 » Companion files: Hey! Who really wants to type all the code in the book and
reconstruct all those neural networks manually? Most readers would prefer to
spend their time actually working with Python, performing machine learning
or deep learning tasks, and seeing the interesting things they can do, rather

4 Deep Learning For Dummies

http://www.dummies.com
http://www.dummies.com
http://blog.johnmuellerbooks.com/
http://blog.johnmuellerbooks.com/

than typing. Fortunately for you, the examples used in the book are available
for download, so all you need to do is read the book to learn Python for deep
learning usage techniques. You can find these files at www.dummies.com.
Search this book’s title, and on the page that appears, scroll down to the
image of the book cover and click it. Then click the More about This Book
button and on the page that opens, go to the Downloads tab.

Where to Go from Here
It’s time to start your Python for deep learning adventure! If you’re completely
new to Python and its use for deep learning tasks, you should start with Chapter 1
and progress through the book at a pace that allows you to absorb as much of the
material as possible.

If you’re a novice who’s in an absolute rush to get going with Python for deep
learning as quickly as possible, you can skip to Chapter 3 with the understanding
that you may find some topics a bit confusing later. Skipping to Chapter 4 is okay
if you already have Anaconda (the programming product used in the book)
installed, but be sure to at least skim Chapter 3 so that you know what assump-
tions we made when writing this book.

This book relies on a combination of TensorFlow and Keras to perform deep
 learning tasks. Even if you’re an advanced reader, you need to go to Chapter 4 to
discover how to configure the environment used for this book. Failure to configure
the environment according to instructions will almost certainly cause failures
when you try to run the code.

Introduction 5

http://www.dummies.com

1Discovering
Deep Learning

IN THIS PART . . .

Understand how deep learning impacts the world
around us.

Consider the relationship between deep learning and
machine learning.

Create a Python setup of your own.

Define the need for a framework in deep learning.

CHAPTER 1 Introducing Deep Learning 9

Chapter 1
Introducing Deep
Learning

You have probably heard a lot about deep learning. The term appears all over
the place and seems to apply to everything. In reality, deep learning is a sub-
set of machine learning, which in turn is a subset of artificial intelligence (AI).

The first goal of this chapter is to help you understand what deep learning is really
all about and how it applies to the world today. You may be surprised to learn that
deep learning isn’t the only game in town; other methods of analyzing data exist. In
fact, deep learning meets a specific set of needs when it comes to data analysis, so
you might be using other methods and not even know it.

Deep learning is just a subset of AI, but it’s an important subset. You see deep
learning techniques used for a number of tasks, but not every task. In fact, some
people associate deep learning with tasks that it can’t perform. The next step in
discovering deep learning is to understand what it can and can’t do for you.

As part of working with deep learning in this book, you write applications that rely
on deep learning to process data and then produce a desired output. Of course, you
need to know a little about the programming environment before you can do
much. Even though Chapter 3 discusses how to install and configure Python, the
language used to demonstrate deep learning in this book, you first need to know
a little more about the options available to you.

IN THIS CHAPTER

 » Understanding deep learning

 » Working with deep learning

 » Developing deep learning
applications

 » Considering deep learning limitations

10 PART 1 Discovering Deep Learning

The chapter closes with a discussion of why deep learning shouldn’t be the only
data processing technique in your toolkit. Yes, deep learning can perform amazing
tasks when used appropriately, but it can also cause serious problems when applied
to problems that it doesn’t support well. Sometimes you need to look to other tech-
nologies to perform a given task, or figure out which technologies to use with deep
learning to provide a more efficient and elegant solution to specific problems.

Defining What Deep Learning Means
An understanding of deep learning begins with a precise definition of terms.
Otherwise, you have a hard time separating the media hype from the realities of
what deep learning can actually provide. Deep learning is part of both AI and
machine learning, as shown in Figure 1-1. To understand deep learning, you must
begin at the outside — that is, you start with AI, and then work your way through
machine learning, and then finally define deep learning. The following sections
help you through this process.

Starting from Artificial Intelligence
Saying that AI is an artificial intelligence doesn’t really tell you anything mean-
ingful, which is why so many discussions and disagreements arise over this term.
Yes, you can argue that what occurs is artificial, not having come from a natural

FIGURE 1-1:
Deep learning

is a subset
of machine

learning which
is a subset of AI.

CHAPTER 1 Introducing Deep Learning 11

source. However, the intelligence part is, at best, ambiguous. People define intel-
ligence in many different ways. However, you can say that intelligence involves
certain mental exercises composed of the following activities:

 » Learning: Having the ability to obtain and process new information.

 » Reasoning: Being able to manipulate information in various ways.

 » Understanding: Considering the result of information manipulation.

 » Grasping truths: Determining the validity of the manipulated information.

 » Seeing relationships: Divining how validated data interacts with other data.

 » Considering meanings: Applying truths to particular situations in a manner
consistent with their relationship.

 » Separating fact from belief: Determining whether the data is adequately
supported by provable sources that can be demonstrated to be consistently
valid.

The list could easily get quite long, but even this list is relatively prone to interpre-
tation by anyone who accepts it as viable. As you can see from the list, however,
intelligence often follows a process that a computer system can mimic as part of a
simulation:

1. Set a goal based on needs or wants.

2. Assess the value of any currently known information in support of the goal.

3. Gather additional information that could support the goal.

4. Manipulate the data such that it achieves a form consistent with existing
information.

5. Define the relationships and truth values between existing and new
information.

6. Determine whether the goal is achieved.

7. Modify the goal in light of the new data and its effect on the probability of
success.

8. Repeat Steps 2 through 7 as needed until the goal is achieved (found true)
or the possibilities for achieving it are exhausted (found false).

Even though you can create algorithms and provide access to data in support of
this process within a computer, a computer’s capability to achieve intelligence is
severely limited. For example, a computer is incapable of understanding anything
because it relies on machine processes to manipulate data using pure math in a
strictly mechanical fashion. Likewise, computers can’t easily separate truth from

12 PART 1 Discovering Deep Learning

mistruth. In fact, no computer can fully implement any of the mental activities
described in the list that describes intelligence.

When thinking about AI, you must consider the goals of the people who develop
an AI. The goal is to mimic human intelligence, not replicate it. A computer doesn’t
truly think, but it gives the appearance of thinking. However, a computer actually
provides this appearance only in the logical/mathematical form of intelligence.
A computer is moderately successful in mimicking visual-spatial and bodily-
kinesthetic intelligence. A computer has a low, passable capability in interper-
sonal and linguistic intelligence. Unlike humans, however, a computer has no way
to mimic intrapersonal or creative intelligence.

Considering the role of AI
As described in the previous section, the first concept that’s important to
understand is that AI doesn’t really have anything to do with human intelligence.
Yes, some AI is modeled to simulate human intelligence, but that’s what it is: a
simulation. When thinking about AI, notice that an interplay exists between goal
seeking, data processing used to achieve that goal, and data acquisition used to
better understand the goal. AI relies on algorithms to achieve a result that may or
may not have anything to do with human goals or methods of achieving those
goals. With this in mind, you can categorize AI in four ways:

 » Acting humanly: When a computer acts like a human, it best reflects the
Turing test, in which the computer succeeds when differentiation between
the computer and a human isn’t possible (see http://www.turing.org.uk/
scrapbook/test.html for details). This category also reflects what the media
would have you believe that AI is all about. You see it employed for technolo-
gies such as natural language processing, knowledge representation, auto-
mated reasoning, and machine learning (all four of which must be present to
pass the test).

The original Turing Test didn’t include any physical contact. The newer, Total
Turing Test does include physical contact in the form of perceptual ability
interrogation, which means that the computer must also employ both com-
puter vision and robotics to succeed. Modern techniques include the idea of
achieving the goal rather than mimicking humans completely. For example,
the Wright brothers didn’t succeed in creating an airplane by precisely copying
the flight of birds; rather, the birds provided ideas that led to aerodynamics,
which in turn eventually led to human flight. The goal is to fly. Both birds and
humans achieve this goal, but they use different approaches.

 » Thinking humanly: When a computer thinks as a human, it performs tasks
that require intelligence (as contrasted with rote procedures) from a human

http://www.turing.org.uk/scrapbook/test.html
http://www.turing.org.uk/scrapbook/test.html

CHAPTER 1 Introducing Deep Learning 13

to succeed, such as driving a car. To determine whether a program thinks like
a human, you must have some method of determining how humans think,
which the cognitive modeling approach defines. This model relies on three
techniques:

• Introspection: Detecting and documenting the techniques used to achieve
goals by monitoring one’s own thought processes.

• Psychological testing: Observing a person’s behavior and adding it to a
database of similar behaviors from other persons given a similar set of
circumstances, goals, resources, and environmental conditions (among
other things).

• Brain imaging: Monitoring brain activity directly through various mechani-
cal means, such as Computerized Axial Tomography (CAT), Positron
Emission Tomography (PET), Magnetic Resonance Imaging (MRI), and
Magnetoencephalography (MEG).

After creating a model, you can write a program that simulates the model.
Given the amount of variability among human thought processes and the
difficulty of accurately representing these thought processes as part of a
program, the results are experimental at best. This category of thinking
humanly is often used in psychology and other fields in which modeling the
human thought process to create realistic simulations is essential.

 » Thinking rationally: Studying how humans think using some standard
enables the creation of guidelines that describe typical human behaviors.
A person is considered rational when following these behaviors within certain
levels of deviation. A computer that thinks rationally relies on the recorded
behaviors to create a guide as to how to interact with an environment based
on the data at hand. The goal of this approach is to solve problems logically,
when possible. In many cases, this approach would enable the creation of a
baseline technique for solving a problem, which would then be modified to
actually solve the problem. In other words, the solving of a problem in
principle is often different from solving it in practice, but you still need a
starting point.

 » Acting rationally: Studying how humans act in given situations under
specific constraints enables you to determine which techniques are both
efficient and effective. A computer that acts rationally relies on the recorded
actions to interact with an environment based on conditions, environmental
factors, and existing data. As with rational thought, rational acts depend on a
solution in principle, which may not prove useful in practice. However, rational
acts do provide a baseline upon which a computer can begin negotiating the
successful completion of a goal.

14 PART 1 Discovering Deep Learning

You find AI used in a great many applications today. The only problem is that the
technology works so well that you don’t even know it exists. In fact, you might be
surprised to find that many devices in your home already make use of this tech-
nology. The uses for AI number in the millions — all safely out of sight even when
they’re quite dramatic in nature. Here are just a few of the ways in which you
might see AI used:

 » Fraud detection: You get a call from your credit card company asking whether
you made a particular purchase. The credit card company isn’t being nosy; it’s
simply alerting you to the fact that someone else could be making a purchase
using your card. The AI embedded within the credit card company’s code
detected an unfamiliar spending pattern and alerted someone to it.

 » Resource scheduling: Many organizations need to schedule the use of
resources efficiently. For example, a hospital may have to determine where
to put a patient based on the patient’s needs, availability of skilled experts,
and the amount of time the doctor expects the patient to be in the hospital.

 » Complex analysis: Humans often need help with complex analysis because
there are literally too many factors to consider. For example, the same set of
symptoms could indicate more than one problem. A doctor or other expert
might need help making a diagnosis in a timely manner to save a patient’s life.

 » Automation: Any form of automation can benefit from the addition of AI
to handle unexpected changes or events. A problem with some types of
automation today is that an unexpected event, such as an object in the
wrong place, can actually cause the automation to stop. Adding AI to the
automation can allow the automation to handle unexpected events and
continue as though nothing happened.

HUMAN VERSUS RATIONAL PROCESSES
Human processes differ from rational processes in their outcome. A process is rational
if it always does the right thing based on the current information, given an ideal perfor-
mance measure. In short, rational processes go by the book and assume that “the book”
is actually correct. Human processes involve instinct, intuition, and other variables that
don’t necessarily reflect the book and may not even consider the existing data. As an
example, the rational way to drive a car is to always follow the laws. However, traffic
isn’t rational. If you follow the laws precisely, you end up stuck somewhere because
other drivers aren’t following the laws precisely. To be successful, a self-driving car must
therefore act humanly, rather than rationally.

CHAPTER 1 Introducing Deep Learning 15

 » Customer service: The customer service line you call today may not even
have a human behind it. The automation is good enough to follow scripts
and use various resources to handle the vast majority of your questions. With
good voice inflection (provided by AI as well), you may not even be able to tell
that you’re talking with a computer.

 » Safety systems: Many of the safety systems found in machines of various
sorts today rely on AI to take over the vehicle in a time of crisis. For example,
many automatic braking systems rely on AI to stop the car based on all the
inputs that a vehicle can provide, such as the direction of a skid.

 » Machine efficiency: AI can help control a machine in such a manner as to
obtain maximum efficiency. The AI controls the use of resources so that the
system doesn’t overshoot speed or other goals. Every ounce of power is used
precisely as needed to provide the desired services.

Focusing on machine learning
Machine learning is one of a number of subsets of AI and the only one this book
discusses. In machine learning, the goal is to create a simulation of human learn-
ing so that an application can adapt to uncertain or unexpected conditions. To
perform this task, machine learning relies on algorithms to analyze huge datasets.

Currently, machine learning can’t provide the sort of AI that the movies present
(a machine can’t intuitively learn as a human can); it can only simulate specific
kinds of learning, and only in a narrow range at that. Even the best algorithms
can’t think, feel, present any form of self-awareness, or exercise free will.
Characteristics that are basic to humans are frustratingly difficult for machines to
grasp because of these limits in perception. Machines aren’t self-aware.

What machine learning can do is perform predictive analytics far faster than any
human can. As a result, machine learning can help humans work more efficiently.
The current state of AI, then, is one of performing analysis, but humans must still
consider the implications of that analysis: making the required moral and ethical
decisions. The essence of the matter is that machine learning provides just the
learning part of AI, and that part is nowhere near ready to create an AI of the sort
you see in films.

The main point of confusion between learning and intelligence is that people
assume that simply because a machine gets better at its job (it can learn), it’s also
aware (has intelligence). Nothing supports this view of machine learning. The
same phenomenon occurs when people assume that a computer is purposely
causing problems for them. The computer can’t assign emotions and therefore

16 PART 1 Discovering Deep Learning

acts only upon the input provided and the instruction contained within an
application to process that input. A true AI will eventually occur when computers
can finally emulate the clever combination used by nature:

 » Genetics: Slow learning from one generation to the next

 » Teaching: Fast learning from organized sources

 » Exploration: Spontaneous learning through media and interactions with
others

To keep machine learning concepts in line with what the machine can actually do,
you need to consider specific machine learning uses. It’s useful to view uses of
machine learning outside the normal realm of what many consider the domain of AI.
Here are a few uses for machine learning that you might not associate with an AI:

 » Access control: In many cases, access control is a yes-or-no proposition. An
employee smartcard grants access to a resource in much the same way as
people have used keys for centuries. Some locks do offer the capability to set
times and dates that access is allowed, but such coarse-grained control
doesn’t really answer every need. By using machine learning, you can
determine whether an employee should gain access to a resource based on
role and need. For example, an employee can gain access to a training room
when the training reflects an employee role.

 » Animal protection: The ocean might seem large enough to allow animals and
ships to cohabitate without problem. Unfortunately, many animals get hit by
ships each year. A machine learning algorithm could allow ships to avoid animals
by learning the sounds and characteristics of both the animal and the ship. (The
ship would rely on underwater listening gear to track the animals through their
sounds, which you can actually hear a long distance from the ship.)

 » Predicting wait times: Most people don’t like waiting when they have no idea
of how long the wait will be. Machine learning allows an application to
determine waiting times based on staffing levels, staffing load, complexity of
the problems the staff is trying to solve, availability of resources, and so on.

Moving from machine learning
to deep learning
Deep learning is a subset of machine learning, as previously mentioned. In both
cases, algorithms appear to learn by analyzing huge amounts of data (however,
learning can occur even with tiny datasets in some cases). However, deep learning
varies in the depth of its analysis and the kind of automation it provides. You can
summarize the differences between the two like this:

CHAPTER 1 Introducing Deep Learning 17

 » A completely different paradigm: Machine learning is a set of many
different techniques that enable a computer to learn from data and to use
what it learns to provide an answer, often in the form of a prediction. Machine
learning relies on different paradigms such as using statistical analysis, finding
analogies in data, using logic, and working with symbols. Contrast the myriad
techniques used by machine learning with the single technique used by deep
learning, which mimics human brain functionality. It processes data using
computing units, called neurons, arranged into ordered sections, called layers.
The technique at the foundation of deep learning is the neural network.

 » Flexible architectures: Machine learning solutions offer many knobs
(adjustments) called hyperparameters that you tune to optimize algorithm
learning from data. Deep learning solutions use hyperparameters, too, but
they also use multiple user-configured layers (the user specifies number and
type). In fact, depending on the resulting neural network, the number of layers
can be quite large and form unique neural networks capable of specialized
learning: Some can learn to recognize images, while others can detect and
parse voice commands. The point is that the term deep is appropriate; it refers
to the large number of layers potentially used for analysis. The architecture
consists of the ensemble of different neurons and their arrangement in layers
in a deep learning solution.

 » Autonomous feature definition: Machine learning solutions require human
intervention to succeed. To process data correctly, analysts and scientist use a
lot of their own knowledge to develop working algorithms. For instance, in a
machine learning solution that determines the value of a house by relying on
data containing the wall measures of different rooms, the machine learning
algorithm won’t be able to calculate the surface of the house unless the
analyst specifies how to calculate it beforehand. Creating the right information
for a machine learning algorithm is called feature creation, which is a time-
consuming activity. Deep learning doesn’t require humans to perform any
feature-creation activity because, thanks to its many layers, it defines its own
best features. That’s also why deep learning outperforms machine learning in
otherwise very difficult tasks such as recognizing voice and images,
understanding text, or beating a human champion at the Go game (the digital
form of the board game in which you capture your opponent’s territory).

You need to understand a number of issues with regard to deep learning solutions,
the most important of which is that the computer still doesn’t understand
anything and isn’t aware of the solution it has provided. It simply provides a form
of feedback loop and automation conjoined to produce desirable outputs in less
time than a human could manually produce precisely the same result by manipu-
lating a machine learning solution.

18 PART 1 Discovering Deep Learning

The second issue is that some benighted people have insisted that the deep learn-
ing layers are hidden and not accessible to analysis. This isn’t the case. Anything
a computer can build is ultimately traceable by a human. In fact, the General Data
Protection Regulation (GDPR) (https://eugdpr.org/) requires that humans
 perform such analysis (see the article at https://www.pcmag.com/commentary/
361258/how-gdpr-will-impact-the-ai-industry for details). The requirement
to perform this analysis is controversial, but current law says that someone must
do it.

The third issue is that self-adjustment goes only so far. Deep learning doesn’t
always ensure a reliable or correct result. In fact, deep learning solutions can
go horribly wrong (see the article at https://www.theverge.com/2016/3/24/
11297050/tay-microsoft-chatbot-racist for details). Even when the applica-
tion code doesn’t go wrong, the devices used to support the deep learning can (see
the article at https://www.pcmag.com/commentary/361918/learning-from-
alexas-mistakes?source=SectionArticles for details). Even so, with these
problems in mind, you can see deep learning used for a number of extremely
popular applications, as described at https://medium.com/@vratulmittal/top-
15-deep-learning-applications-that-will-rule-the-world-in-2018-and-
beyond-7c6130c43b01.

Using Deep Learning in the Real World
Make no mistake: People do use deep learning in the real world to perform a broad
range of tasks. For example, many automobiles today use a voice interface. The
voice interface can perform basic tasks, even right from the outset. However, the
more you talk to it, the better the voice interface performs. The interface learns as
you talk to it — not only the manner in which you say things, but also your
personal preferences. The following sections give you a little information on how
deep learning works in the real world.

Understanding the concept of learning
When humans learn, they rely on more than just data. Humans have intuition,
along with an uncanny grasp of what will and what won’t work. Part of this inborn
knowledge is instinct, which is passed from generation to generation through
DNA. The way humans interact with input is also different from what a computer
will do. When dealing with a computer, learning is a matter of building a database
consisting of a neural network that has weights and biases built into it to ensure
proper data processing. The neural network then processes data, but not in a
manner that’s even remotely the same as what a human will do.

https://eugdpr.org/
https://www.pcmag.com/commentary/361258/how-gdpr-will-impact-the-ai-industry
https://www.pcmag.com/commentary/361258/how-gdpr-will-impact-the-ai-industry
https://www.theverge.com/2016/3/24/11297050/tay-microsoft-chatbot-racist
https://www.theverge.com/2016/3/24/11297050/tay-microsoft-chatbot-racist
https://www.pcmag.com/commentary/361918/learning-from-alexas-mistakes?source=SectionArticles
https://www.pcmag.com/commentary/361918/learning-from-alexas-mistakes?source=SectionArticles
https://medium.com/@vratulmittal/top-15-deep-learning-applications-that-will-rule-the-world-in-2018-and-beyond-7c6130c43b01
https://medium.com/@vratulmittal/top-15-deep-learning-applications-that-will-rule-the-world-in-2018-and-beyond-7c6130c43b01
https://medium.com/@vratulmittal/top-15-deep-learning-applications-that-will-rule-the-world-in-2018-and-beyond-7c6130c43b01

CHAPTER 1 Introducing Deep Learning 19

Performing deep learning tasks
Humans and computers are best at different tasks. Humans are best at reasoning,
thinking through ethical solutions, and being emotional. A computer is meant to
process data — lots of data — really fast. You commonly use deep learning to solve
problems that require looking for patterns in huge amounts of data — problems
whose solution is nonintuitive and not immediately noticeable. The article at
http://www.yaronhadad.com/deep-learning-most-amazing-applications/
tells you about 30 different ways in which people are currently using deep learning
to perform tasks. In just about every case, you can sum up the problem and its
solution as processing huge amounts of data quickly, looking for patterns, and
then relying on those patterns to discover something new or to create a particular
kind of output.

Employing deep learning in applications
Deep learning can be a stand-alone solution, as illustrated in this book, but it’s
often used as part of a much larger solution and mixed with other technologies. For
example, mixing deep learning with expert systems is not uncommon. The article
at https://www.sciencedirect.com/science/article/pii/0167923694900213
describes this mixture to some degree. However, real applications are more than
just numbers generated from some nebulous source. When working in the real
world, you must also consider various kinds of data sources and understand how
those data sources work. A camera may require a different sort of deep learning
solution to obtain information from it, while a thermometer or proximity detector
may output simple numbers (or analog data that requires some sort of processing
to use). Real-world solutions are messy, so you need to be prepared with more
than one solution to problems in your toolkit.

Considering the Deep Learning
Programming Environment

You may automatically assume that you must jump through a horrid set of hoops
and learn esoteric programming skills to delve into deep learning. It’s true that
you gain flexibility by writing applications using one of the programming languages
that work well for deep learning needs. However, Deep Learning Studio (see the
article at https://towardsdatascience.com/is-deep-learning-without-pro
gramming-possible-be1312df9b4a for details) and other products like it are
enabling people to create deep learning solutions without programming. Essen-
tially, such solutions involve describing what you want as output by defining a

http://www.yaronhadad.com/deep-learning-most-amazing-applications/
https://www.sciencedirect.com/science/article/pii/0167923694900213
https://towardsdatascience.com/is-deep-learning-without-programming-possible-be1312df9b4a
https://towardsdatascience.com/is-deep-learning-without-programming-possible-be1312df9b4a

20 PART 1 Discovering Deep Learning

model graphically. These kinds of solutions work well for straightforward prob-
lems that others have already had to solve, but they lack the flexibility to do some-
thing completely different — a task that requires something more than simple
analysis.

Deep learning solutions in the cloud, such as that provided by Amazon Web
 Services (AWS) (https://aws.amazon.com/deep-learning/), can give you addi-
tional flexibility. These environments also tend to make the development
 environment simpler by providing as much or little support as you want. In fact,
AWS provides support for various kinds of serverless computing (https://aws.
amazon.com/serverless/) in which you don’t worry about any sort of infrastruc-
ture. However, these solutions can become quite expensive. Even though they give
you greater flexibility than using a premade solution, they still aren’t as flexible
as using an actual development environment.

You have other nonprogramming solutions to consider as well. For example, if you
want power and flexibility, but don’t want to program to get it, you could rely on
a product such as MATLAB (https://www.mathworks.com/help/deeplearning/
ug/deep-learning-in-matlab.html), which provide a deep learning toolkit.
MATLAB and certain other environments do focus more on the algorithms you
want to use, but to gain full functionality from them, you need to write scripts as
a minimum, which means that you’re dipping your toe into programming to some
extent. A problem with these environments is that they can also be lacking in the
power department, so some solutions may take longer than you expect.

At some point, no matter how many other solutions you try, serious deep learning
problems will require programming. When reviewing the choices online, you
often see AI, machine learning, and deep learning all lumped together. However,
just as the three technologies work at different levels, so do the programming
languages that you require. A good deep learning solution will require the use of
multiprocessing, preferably using a Graphics Processing Unit (GPU) with lots of
cores. Your language of choice must also support the GPU through a compatible
library or package. So, just choosing a language usually isn’t enough; you need to
investigate further to ensure that the language will actually meet your needs. With
this caution in mind, here are the top languages (in order of popularity, as of this
writing) for deep learning use (as defined at https://www.datasciencecentral.
com/profiles/blogs/which-programming-language-is-considered-to-be-best-
for-machine):

 » Python

 » R

 » MATLAB (the scripting language, not the product)

 » Octave

https://aws.amazon.com/deep-learning/
https://aws.amazon.com/serverless/
https://aws.amazon.com/serverless/
https://www.mathworks.com/help/deeplearning/ug/deep-learning-in-matlab.html
https://www.mathworks.com/help/deeplearning/ug/deep-learning-in-matlab.html
https://www.datasciencecentral.com/profiles/blogs/which-programming-language-is-considered-to-be-best-for-machine
https://www.datasciencecentral.com/profiles/blogs/which-programming-language-is-considered-to-be-best-for-machine
https://www.datasciencecentral.com/profiles/blogs/which-programming-language-is-considered-to-be-best-for-machine

CHAPTER 1 Introducing Deep Learning 21

The only problem with this list is that other developers have other opinions.
Python and R normally appear at the top of everyone’s lists, but after that you can
find all sorts of opinions. The article at https://www.geeksforgeeks.org/top-
5-best-programming-languages-for-artificial-intelligence-field/ gives
you some alternative ideas. When choosing a language, you usually have to
consider these issues:

 » Learning curve: Your experiences have a lot to say about what you find
easiest to learn. Python is probably the best choice for someone who has
programmed for a number of years, but R might be the better choice for
someone who has already experienced functional programming. MATLAB or
Octave might work best for a math professional.

 » Speed: Any sort of deep learning solution will require a lot of processing
power. Many people say that because R is a statistical language, it offers
more in the way of statistical support and usually provides a faster result.
Actually, Python’s support for great parallel programming probably offsets
this advantage when you have the required hardware.

 » Community support: Many forms of community support exist, but the
two that are most important for deep learning are help in defining a
 solution and access to a wealth of premade programming aids. Of the
four, Octave probably provides the least in the way of community support;
Python provides the most.

 » Cost: How much a language costs depends on the kind of solution you
choose and where you run it. For example, MATLAB is a proprietary product
that requires purchase, so you have something invested immediately when
using MATLAB. However, even though the other languages are free at the
outset, you can find hidden costs, such as running your code in the cloud to
gain access to GPU support.

 » DNN Frameworks support: A framework can make working with your
language significantly easier. However, you have to have a framework
that works well with all other parts of your solution. The two most popular
frameworks are TensorFlow and PyTorch. Oddly enough, Python is the only
language that supports both, so it offers you the greatest flexibility. You use
Caffe with MATLAB and TensorFlow with R.

 » Production ready: A language has to support the kind of output needed
for your project. In this regard, Python shines because it’s a general-purpose
language. You can create any sort of application needed with it. However,
the more specific environments provided by the other languages can be
incredibly helpful with some projects, so you need to consider all of them.

https://www.geeksforgeeks.org/top-5-best-programming-languages-for-artificial-intelligence-field/
https://www.geeksforgeeks.org/top-5-best-programming-languages-for-artificial-intelligence-field/

22 PART 1 Discovering Deep Learning

Overcoming Deep Learning Hype
Previous parts of this chapter discuss some issues with the perception of deep
learning, such as some people’s belief that it appears everywhere and does
everything. The problem with deep learning is that it has been a victim of its own
media campaign. Deep learning solves specific sorts of problems. The following
sections help you avoid the hype associated with deep learning.

Discovering the start-up ecosystem
Using a deep learning solution is a lot different from creating a deep learning
solution of your own. The infographic at https://www.analyticsvidhya.com/
blog/2018/08/infographic-complete-deep-learning-path/ gives you some
ideas on how to get started with Python (a process this book simplifies for you).
The educational requirements alone can take a while to fulfill. However, after you
have worked through a few projects on your own, you begin to realize that the
hype surrounding deep learning extends all the way to the start of setup. Deep
learning isn’t a mature technology, so trying to use it is akin to building a village
on the moon or deep diving the Marianas Trench. You’re going to encounter
issues, and the technology will constantly change on you.

Some of the methods used to create deep learning solutions need work, too. The
concept of a computer actually learning anything is false, as is the idea that
computers have any form of sentience at all. The reason that Microsoft, Amazon,
and other vendors have problems with deep learning is that even their engineers
have unrealistic expectations. Deep learning comes down to math and pattern
matching — really fancy math and pattern matching, to be sure, but the idea that
it’s anything else is simply wrong.

Knowing when not to use deep learning
Deep learning is only one way to perform analysis, and it’s not always the best
way. For example, even though expert systems are considered old technology, you
can’t really create a self-driving car without one for the reasons described at
https://aitrends.com/ai-insider/expert-systems-ai-self-driving-cars-
crucial-innovative-techniques/. A deep learning solution turns out to be way
too slow for this particular need. Your car will likely contain a deep learning
solution, but you’re more likely to use it as part of the voice interface.

https://www.analyticsvidhya.com/blog/2018/08/infographic-complete-deep-learning-path/
https://www.analyticsvidhya.com/blog/2018/08/infographic-complete-deep-learning-path/
https://aitrends.com/ai-insider/expert-systems-ai-self-driving-cars-crucial-innovative-techniques/
https://aitrends.com/ai-insider/expert-systems-ai-self-driving-cars-crucial-innovative-techniques/

CHAPTER 1 Introducing Deep Learning 23

AI in general and deep learning in particular can make the headlines when the
technology fails to live up to expectations. For example, the article at https://
www.techrepublic.com/article/top-10-ai-failures-of-2016/ provides a list
of AI failures, some of which relied on deep learning as well. It’s a mistake to think
that deep learning can somehow make ethical decisions or that it will choose
the right course of action based on feelings (which no machine has). Anthropo-
morphizing the use of deep learning will always be a mistake. Some tasks simply
require a human.

Speed and the capability to think like a human are the top issues for deep learning,
but there are many more. For example, you can’t use deep learning if you don’t
have sufficient data to train it. In fact, the article at https://www.sas.com/en_us/
insights/articles/big-data/5-machine-learning-mistakes.html offers a
list of five common mistakes that people make when getting into machine learn-
ing and deep learning environments. If you don’t have the right resources, deep
learning will never work.

https://www.techrepublic.com/article/top-10-ai-failures-of-2016/
https://www.techrepublic.com/article/top-10-ai-failures-of-2016/
https://www.sas.com/en_us/insights/articles/big-data/5-machine-learning-mistakes.html
https://www.sas.com/en_us/insights/articles/big-data/5-machine-learning-mistakes.html

CHAPTER 2 Introducing the Machine Learning Principles 25

Chapter 2
Introducing the Machine
Learning Principles

As discussed in Chapter 1, the concept of learning for a computer is different
from the concept of learning for humans. However, Chapter 1 doesn’t
really describe machine learning, the kind of learning a computer uses, in

any depth. After all, what you’re really looking at is an entirely different sort of
learning that some people would view as a combination of math, pattern matching,
and data storage. This chapter begins by pointing the way to a deeper understanding
of how machine learning works.

However, an explanation of machine learning doesn’t completely help you
understand what’s going on when you work with it. How machine learning works
is also important, which is the subject of the next section of the chapter. In this
section, you discover that no perfect methods exist for performing analysis. You
may have to experiment with your analysis to get the expected output. In addition,
different approaches to machine learning are available, and each has advantages
and disadvantages.

The third part of the chapter takes what you’ve discovered in the previous two
parts and helps you apply it. No matter how you shape your data and perform
analysis on it, machine learning is the wrong approach in some cases and will
never provide you with useful output. Knowing the right uses for machine learning

IN THIS CHAPTER

 » Considering what machine learning
involves

 » Understanding the methods used to
achieve machine learning

 » Using machine learning for the
correct reasons

26 PART 1 Discovering Deep Learning

is essential if you want to receive consistent output that helps you perform
interesting tasks. The whole purpose of machine learning is to learn something
interesting from the data and then to do something interesting with it.

Defining Machine Learning
Here’s a short definition of machine learning: It’s an application of AI that can
automatically learn and improve from experience without being explicitly pro-
grammed to do so. The learning occurs as a result of analyzing ever increasing
amounts of data, so the basic algorithms don’t change, but the code’s internal
weights and biases used to select a particular answer do. Of course, nothing is quite
this simple. The following sections discuss more about what machine learning is
so that you can understand its place within the world of AI and what deep learning
acquires from it.

Data scientists often refer to the technology used to implement machine learning
as algorithms. An algorithm is a series of step-by-step operations, usually
computations, that can solve a defined problem in a finite number of steps. In
machine learning, the algorithms use a series of finite steps to solve the problem
by learning from data.

Understanding how machine
learning works
Machine learning algorithms learn, but it’s often hard to find a precise meaning
for the term learning because different ways exist to extract information from
data, depending on how the machine learning algorithm is built. Generally,
the learning process requires huge amounts of data that provides an expected
response given particular inputs. Each input/response pair represents an example
and more examples make it easier for the algorithm to learn. That’s because each
input/response pair fits within a line, cluster, or other statistical representation
that defines a problem domain. Learning is the act of optimizing a model, which
is a mathematical, summarized representation of data itself, such that it can pre-
dict or otherwise determine an appropriate response even when it receives input
that it hasn’t seen before. The more accurately the model can come up with cor-
rect responses, the better the model has learned from the data inputs provided. An
algorithm fits the model to the data, and this fitting process is training.

Figure 2-1 shows an extremely simple graph that simulates what occurs in
machine learning. In this case, starting with input values of 1, 4, 5, 8, and 10 and
pairing them with their corresponding outputs of 7, 13, 15, 21, and 25, the machine

CHAPTER 2 Introducing the Machine Learning Principles 27

learning algorithm determines that the best way to represent the relationship
between the input and output is the formula 2x + 5. This formula defines the
model used to process the input data — even new, unseen data —to calculate a
corresponding output value. The trend line (the model) shows the pattern formed
by this algorithm, such that a new input of 3 will produce a predicted output of 11.
Even though most machine learning scenarios are much more complicated than
this (and the algorithm can’t create rules that accurately map every input to a pre-
cise output), the example gives provides you a basic idea of what happens. Rather
than have to individually program a response for an input of 3, the model can
compute the correct response based on input/response pairs that it has learned.

Understanding that it’s pure math
The central idea behind machine learning is that you can represent reality by using
a mathematical function that the algorithm doesn’t know in advance, but which it
can guess after seeing some data (always in the form of paired inputs and outputs).
You can express reality and all its challenging complexity in terms of unknown
mathematical functions that machine learning algorithms find and make available
as a modification of their internal mathematical function. That is, every machine
learning algorithm is built around a modifiable math function. The function can be
modified because it has internal parameters or weights for such a purpose. As a
result, the algorithm can tailor the function to specific information taken from
data. This concept is the core idea for all kinds of machine learning algorithms.

Learning in machine learning is purely mathematical, and it ends by associating
certain inputs with certain outputs. It has nothing to do with understanding what

FIGURE 2-1:
Visualizing a basic
machine learning

scenario.

28 PART 1 Discovering Deep Learning

the algorithm has learned. (When humans analyze data, we build an understand-
ing of the data to a certain extent.) The learning process is often described as
training because the algorithm is trained to match the correct answer (the output)
to every question offered (the input). (Machine Learning For Dummies, by John Paul
Mueller and Luca Massaron, [Wiley], describes how this process works in detail.)

In spite of lacking deliberate understanding and of being a mathematical process,
machine learning can prove useful in many tasks. It provides many AI applications
the power to mimic rational thinking given a certain context when learning occurs
by using the right data.

Learning by different strategies
Machine learning offers a number of different ways to learn from data. Depending
on your expected output and on the type of input you provide, you can categorize
algorithms by learning style. The style you choose depends on the sort of data you
have and the result you expect. The four learning styles used to create algorithms are

 » Supervised

 » Unsupervised

 » Self-supervised

 » Reinforcement

The following sections discuss learning styles.

Supervised
When working with supervised algorithms, the input data is labeled and has a
specific expected result. You use training to create a model that an algorithm fits
to the data. As training progresses, the predictions or classifications become more
accurate. Here are some examples of supervised learning algorithms:

 » Linear or Logistic regression

 » Support Vector Machines (SVMs)

 » Naïve Bayes

 » K-Nearest Neighbors (KNN)

You need to distinguish between regression problems, whose target is a numeric
value, and classification problems, whose target is a qualitative variable, such as
a class or tag. A regression task could determine the average prices of houses in

CHAPTER 2 Introducing the Machine Learning Principles 29

the Boston area, while an example of a classification task is distinguishing between
kinds of iris flowers based on their sepal and petal measures. Here are some
examples of supervised learning:

Data Input (X) Data Output (y) Real-World Application

History of customers’
purchases

A list of products that
customers have never
bought

Recommender system

Images A list of boxes labeled with
an object name

Image detection and
recognition

English text in the
form of questions

English text in the form of
answers

Chatbot, a software application
that can converse

English text German text Machine language translation

Audio Text transcript Speech recognition

Image, sensor data Steering, braking, or
accelerating

Behavioral planning for
autonomous driving

Unsupervised
When working with unsupervised algorithms, the input data isn’t labeled and the
results aren’t known. In this case, analysis of structures in the data produces
the required model. The structural analysis can have a number of goals, such as to
reduce redundancy or to group similar data. Examples of unsupervised learning are

 » Clustering

 » Anomaly detection

 » Neural networks

Self-Supervised
You’ll find all sorts of kinds of learning described online, but self-supervised
learning is in a category of its own. Some people describe it as autonomous
supervised learning, which gives you the benefits of supervised learning but
without all the work required to label data.

Theoretically, self-supervised could solve issues with other kinds of learning that
you may currently use. The following list compares self-supervised learning with
other sorts of learning that people use.

 » Supervised learning: The closest form of learning associated with self-
supervised learning is supervised learning because both kinds of learning

30 PART 1 Discovering Deep Learning

rely on pairs of inputs and labeled outputs. In addition, both forms of learning
are associated with regression and classification. However, the difference is
that self-supervised learning doesn’t require a person to label the output.
Instead, it relies on correlations, embedded metadata, or domain knowledge
embedded within the input data to contextually discover the output label.

 » Unsupervised learning: Like unsupervised learning, self-supervised learn-
ing requires no data labeling. However, unsupervised learning focuses on
data structure — that is, patterns within the data. Therefore, you don’t use
self-supervised learning for tasks such as clustering, grouping, dimensionality
reduction, recommendation engines, or the like.

 » Semi-supervised learning: A semi-supervised learning solution works like
an unsupervised learning solution in that it looks for data patterns. However,
semi-supervised learning relies on a mix of labeled and unlabeled data to
perform its tasks faster than is possible using strictly unlabeled data. Self-
supervised learning never requires labels and uses context to perform its
task, so it would actually ignore the labels when supplied.

Reinforcement
You can view reinforcement learning as an extension of self-supervised learning
because both forms use the same approach to learning with unlabeled data to
achieve similar goals. However, reinforcement learning adds a feedback loop to
the mix. When a reinforcement learning solution performs a task correctly, it
receives positive feedback, which strengthens the model in connecting the target
inputs and output. Likewise, it can receive negative feedback for incorrect
solutions. In some respects, the system works much the same as working with a
dog based on a system of rewards.

Training, validating, and testing data
Machine learning is a process, just as everything is a process in the world of
computers. To build a successful machine learning solution, you perform these
tasks as needed, and as often as needed:

 » Training: Machine learning begins when you train a model using a particular
algorithm against specific data. The training data is separate from any other
data, but it must also be representative. If the training data doesn’t truly
represent the problem domain, the resulting model can’t provide useful
results. During the training process, you see how the model responds to the
training data and make changes, as needed, to the algorithms you use and
the manner in which you massage the data prior to input to the algorithm.

CHAPTER 2 Introducing the Machine Learning Principles 31

 » Validating: Many datasets are large enough to split into a training part and
a testing part. You first train the model using the training data, and then
you validate it using the testing data. Of course, the testing data must
again represent the problem domain accurately. It must also be statistically
compatible with the training data. Otherwise, you won’t see results that
reflect how the model will actually work.

 » Testing: After a model is trained and validated, you still need to test it using
real-world data. This step is important because you need to verify that the
model will actually work on a larger dataset that you haven’t used for either
training or testing. As with the training and validation steps, any data you use
during this step must reflect the problem domain you want to interact with
using the machine learning model.

Training provides a machine learning algorithm with all sorts of examples of the
desired inputs and outputs expected from those inputs. The machine learning
algorithm then uses this input to create a math function. In other words, training
is the process whereby the algorithm works out how to tailor a function to the
data. The output of such a function is typically the probability of a certain output
or simply a numeric value as output.

To give an idea of what happens in the training process, imagine a child learning
to distinguish trees from objects, animals, and people. Before the child can do so
in an independent fashion, a teacher presents the child with a certain number of
tree images, complete with all the facts that make a tree distinguishable from
other objects of the world. Such facts could be features, such as the tree’s material
(wood), its parts (trunk, branches, leaves or needles, roots), and location (planted
in the soil). The child builds an understanding of what a tree looks like by con-
trasting the display of tree features with the images of other, different examples,
such as pieces of furniture that are made of wood, but do not share other charac-
teristics with a tree.

A machine learning classifier works the same. A classifier algorithm provides you
with a class as output. For instance, it could tell you that the photo you provide as
an input matches the tree class (and not an animal or a person). To do so, it builds
its cognitive capabilities by creating a mathematical formulation that includes all
the given input features in a way that creates a function that can distinguish one
class from another.

Looking for generalization
To be useful, a machine learning model must represent a general view of the data
provided. If the model doesn’t follow the data closely enough, it’s underfitted —
that is, not fitted enough because of a lack of training. On the other hand, if the

32 PART 1 Discovering Deep Learning

model follows the data too closely, it’s overfitted, following the data points like a
glove because of too much training. Underfitting and overfitting both cause
problems because the model isn’t generalized enough to produce useful results.
Given unknown input data, the resulting predictions or classifications will contain
large error values. Only when the model is correctly fitted to the data will it provide
results within a reasonable error range.

This whole issue of generalization is also important in deciding when to use
machine learning. A machine learning solution always generalizes from specific
examples to general examples of the same sort. How it performs this task depends
on the orientation of the machine learning solution and the algorithms used to
make it work.

The problem for data scientists and others using machine learning and deep
learning techniques is that the computer won’t display a sign telling you that the
model correctly fits the data. Often, it’s a matter of human intuition to decide
when a model is trained enough to provide a good generalized result. In addition,
the solution creator must choose the right algorithm out of the thousands that
exist. Without the right algorithm to fit the model to the data, the results will be
disappointing. To make the selection process work, the data scientist must possess

 » A strong knowledge of the available algorithms

 » Experience dealing with the kind of data in question

 » An understanding of the desired output

 » A desire to experiment with various algorithms

The last requirement is the most important because there are no hard-and-fast
rules that say a particular algorithm will work with every kind of data in every
possible situation. If this were the case, so many algorithms wouldn’t be available.
To find the best algorithm, the data scientist often resorts to experimenting with
a number of algorithms and comparing the results.

Getting to know the limits of bias
Your computer has no bias. It has no goal of world domination or of making your
life difficult. In fact, computers don’t have goals of any kind. The only thing a
computer can provide is output based on inputs and processing technique.
However, bias still gets into the computer and taints the results it provides in a
number of ways:

 » Data: The data itself can contain mistruths or simply misrepresentations. For
example, if a particular value appears twice as often in the data as it does in

CHAPTER 2 Introducing the Machine Learning Principles 33

the real world, the output from a machine learning solution is tainted, even
though the data itself is correct.

 » Algorithm: Using the wrong algorithm will cause the machine learning
solution to fit the model to the data incorrectly.

 » Training: Too much or too little training changes how the model fits the data
and therefore the result.

 » Human interpretation: Even when a machine learning solution outputs a
correct result, the human using that output can misinterpret it. The results
are every bit as bad as, and perhaps worse than, when the machine learn-
ing solution fails to work as anticipated. (The article at https://thenextweb.
com/artificial-intelligence/2018/04/10/human-bias-huge-problem-
ai-heres-going-fix/ offers some insights about this issue.)

You need to consider the effects of bias no matter what sort of machine learning
solution you create. It’s important to know what sorts of limits these biases place
on your solution and whether the solution is reliable enough to provide useful
output.

Keeping model complexity in mind
Simpler is always better when it comes to machine learning. Many different
algorithms may provide you with useful output from your machine learning
solution, but the best algorithm to use is the one that’s easiest to understand and
provides the most straightforward results. Occam’s Razor (http://math.ucr.
edu/home/baez/physics/General/occam.html) is generally recognized as the
best strategy to follow. Basically, Occam’s Razor tells you to use the simplest
solution that will solve a particular problem. As complexity increases, so does the
potential for errors.

Considering the Many Different
Roads to Learning

The learning part of machine learning makes it dynamic — that is, able to change
itself when it receives additional data. The capability to learn makes machine
learning different from other sorts of AI, such as knowledge graphs and expert
systems. It doesn’t make machine learning better than other AI (as described in
Chapter 1), but simply useful for a certain set of problems. Of course, the problem
with quantifying what learning entails is that humans and computers view

https://thenextweb.com/artificial-intelligence/2018/04/10/human-bias-huge-problem-ai-heres-going-fix/
https://thenextweb.com/artificial-intelligence/2018/04/10/human-bias-huge-problem-ai-heres-going-fix/
https://thenextweb.com/artificial-intelligence/2018/04/10/human-bias-huge-problem-ai-heres-going-fix/
http://math.ucr.edu/home/baez/physics/General/occam.html
http://math.ucr.edu/home/baez/physics/General/occam.html

34 PART 1 Discovering Deep Learning

learning differently. In addition, computers use different learning techniques
than humans do and some humans may not see the learning part of machine
learning as learning at all. The following sections discuss the methods that
machine learning algorithms use to learn so that you can better understand that
machine learning and human learning are inherently different.

Understanding there is no free lunch
You may have heard the common myth that you can have everything in the way of
computer output without putting much effort into deriving the solution. Unfortu-
nately, no absolute solution exists to any problem, and better answers are often quite
costly. When working with algorithms, you quickly discover that some algorithms
perform better than others in solving certain problems, but that there also isn’t a
single algorithm that works best on every problem. This is because of the math
behind algorithms. Certain math functions are good at representing some problems
but may hit a wall on certain other problems. Each algorithm has its specialty.

Discovering the five main approaches
Algorithms come in various forms and perform various tasks. One way to
categorize algorithms is by school of thought — the method that a group of
likeminded thinkers believed would solve a particular kind of problem. Of course,
other ways to categorize algorithms exist, but this approach has the advantage of
helping you understand algorithm uses and orientations better. The following
sections provide an overview of the five main algorithmic techniques.

Symbolic reasoning
A group called the symbologists relies on algorithms that use symbolic reasoning
to find a solution to problems. The term inverse deduction commonly appears as
induction. In symbolic reasoning, deduction expands the realm of human
knowledge, while induction raises the level of human knowledge. Induction
commonly opens new fields of exploration, and deduction explores those fields.
However, the most important consideration is that induction is the science portion
of this type of reasoning, while deduction is the engineering. The two strategies
work hand in hand to solve problems by first opening a field of potential exploration
to solve the problem and then exploring that field to determine whether it does, in
fact, solve it.

As an example of this strategy, deduction would say that if a tree is green and that
green trees are alive, the tree must be alive. When thinking about induction, you
would say that the tree is green and that the tree is also alive; therefore, green
trees are alive. Induction provides the answer to what knowledge is missing given
a known input and output.

CHAPTER 2 Introducing the Machine Learning Principles 35

Neural networks
Neural networks are the brainchild of a group called the connectionists. This
group of algorithms strives to reproduce the brain’s functions using silicon instead
of neurons. Essentially, each of the neurons (created as an algorithm that models
the real-world counterpart) solves a small piece of the problem, and the use of
many neurons in parallel solves the problem as a whole.

A neural network can provide a method of correction for errant data, and the most
popular of these methods is backpropagation. (The two-part article at http://www.
breloff.com/no-backprop/ and http://www.breloff.com/no-backprop-part2/
discusses backpropagation alternatives.) The use of backpropagation, or backward
propagation of errors, seeks to determine the conditions under which errors are
removed from networks built to resemble the human neurons by changing the
weights (how much a particular input figures into the result) and biases (which
features are selected) of the network. The goal is to continue changing the weights
and biases until such time as the actual output matches the target output.

At this point, the artificial neuron fires and passes its solution along to the next
neuron in line. The solution created by each individual neuron is only part of the
whole solution. Each neuron continues to pass information to the next neuron in
line until the group of neurons creates a final output.

Evolutionary algorithms
A group called the evolutionaries relies on the principles of evolution to solve
problems. This strategy is based on the survival of the fittest, removing any
solutions that don’t match the desired output. A fitness function determines the
viability of each function in solving a problem.

Using a tree structure, the solution method looks for the best solution based
on function output. The winner of each level of evolution gets to build the next level
of functions. The next level will get closer to solving the problem but may not solve
it completely, which means that another level is needed. This particular algorithmic
type relies heavily on recursion (see https://www.cs.cmu.edu/~adamchik/15-121/
lectures/Recursions/recursions.html for an explanation of recursion) and lan-
guages that strongly support recursion to solve problems. An interesting output of
this strategy has been algorithms that evolve themselves: One generation of algo-
rithms actually builds the next generation.

Bayesian inference
The Bayesians use various statistical methods to solve problems. Given that
statistical methods can create more than one apparently correct solution, the
choice of a function becomes one of determining which function has the highest

http://www.breloff.com/no-backprop/
http://www.breloff.com/no-backprop/
http://www.breloff.com/no-backprop-part2/
https://www.cs.cmu.edu/~adamchik/15-121/lectures/Recursions/recursions.html
https://www.cs.cmu.edu/~adamchik/15-121/lectures/Recursions/recursions.html

36 PART 1 Discovering Deep Learning

probability of succeeding. For example, when using these techniques, you might
accept a set of symptoms as input. An algorithm will compute the probability that
a particular disease will result from the symptoms as output. Given that multiple
diseases have the same symptoms, the probability is important because a user will
see some situations in which a lower probability output is actually the correct
output for a given circumstance.

Ultimately, Bayesian algorithms rely on the idea of never quite trusting any
hypothesis (a result that someone has given you) completely without seeing the
evidence used to make it (the input the other person used to make the hypothesis).
Analyzing the evidence proves or disproves the hypothesis that it supports.
Consequently, you can’t determine which disease someone has until you test all
the symptoms. One of the most recognizable outputs from this group of algorithms
is the spam filter.

Systems that learn by analogy
The analogizers use kernel machines to recognize patterns in data. By recogniz-
ing the pattern of one set of inputs and comparing it to the pattern of a known
output, you can create a problem solution. The goal is to use similarity to deter-
mine the best solution to a problem. It’s the kind of reasoning that determines
that using a particular solution worked in a given circumstance at some previous
time; therefore, using that solution for a similar set of circumstances should also
work. One of the most recognizable outputs from this group of algorithms is rec-
ommender systems. For example, when you get on Amazon and buy a product,
the recommender system comes up with other, related, products that you might
also want to buy.

Delving into some different approaches
It helps to have several views of algorithms so that you understand what they do
and why they do it. The previous section looks at algorithms based on the groups
that created them. However, you have other approaches you can use to categorize
algorithms. The following list categorizes some popular algorithms by similarity:

 » Artificial neural network: Models the structure or function of biological
neural networks (or sometimes it does both). The goal is to perform pattern
matching for regression and classification problems. However, the technique
mimics the approach used by biological organisms rather than strictly relying
on a true math-based approach. Here are examples of artificial neural
network algorithms:

• Perceptron

• Feed-forward Neural Network

CHAPTER 2 Introducing the Machine Learning Principles 37

• Hopfield Network

• Radial Basis Function Network (RBFN)

• Self-Organizing Map (SOM)

 » Association rule: Extracts rules that help explain the relationships between
variables in data. You can use these rules to discover useful associations
within huge datasets that are ordinarily easy to miss. Here are the more
popular association-rule algorithms:

• Apriori algorithm

• Eclat algorithm

 » Bayesian: Applies Bayes’ Theorem to probability problems. This form of
algorithm sees use for classification and regression problems. Here are
examples of Bayesian algorithms:

• Naïve Bayes

• Gaussian Naïve Bayes

• Multinomial Naïve Bayes

• Bayesian Belief Network (BBN)

• Bayesian Network (BN)

 » Clustering: Describes a model for organizing data by class or other criteria.
The results are often centroid or hierarchical in nature. What you see are data
relationships in a way that helps make sense of the data — that is, how the
values affect each other. The following list contains examples of clustering
algorithms:

• K-means

• K-medians

• Expectation Maximisation (EM)

• Hierarchical Clustering

 » Decision tree: Constructs a model of decisions based on the actual values
found in data. The resulting tree structure enables you to perform comparisons
between new data and existing data very quickly. This form of algorithm often
sees use for classification and regression problems. The following list shows
some of the common decision-tree algorithms:

• Classification and Regression Tree (CART)

• Iterative Dichotomiser 3 (ID3)

38 PART 1 Discovering Deep Learning

• C4.5 and C5.0 (different versions of a powerful approach)

• Chi-squared Automatic Interaction Detection (CHAID)

 » Deep learning: Provides an update to artificial neural networks that rely on
multiple layers to exploit even larger datasets and build complex neural
networks. This particular group of algorithms works well with semisupervised
learning problems in which the amount of labeled data is minimal. Here are
some examples of deep learning algorithms:

• Deep Boltzmann Machine (DBM)

• Deep Belief Networks (DBN)

• Convolutional Neural Network (CNN)

• Recurrent Neural Network (RNN)

• Stacked Auto-Encoders

 » Dimensionality reduction: Seeks and exploits similarities in the structure
of data in a manner similar to clustering algorithms, but using unsupervised
methods. The purpose is to summarize or describe data using less information
so that the dataset becomes smaller and easier to manage. In some cases,
people use these algorithms for classification or regression problems. Here
is a list of common dimensionality reduction algorithms:

• Principal Component Analysis (PCA)

• Factor Analysis (FA)

• Multidimensional Scaling (MDS)

• t-Distributed Stochastic Neighbor Embedding (t-SNE)

 » Ensemble: Composes a group of multiple weaker models into a cohesive
whole whose individual predictions are combined in some manner to define
an overall prediction. Using an ensemble can solve certain problems faster,
more efficiently, or with reduced errors. Here are some common ensemble
algorithms:

• Boosting

• Bootstrapped Aggregation (Bagging)

• AdaBoost

• Random Forest

• Gradient Boosting Machines (GBM)

CHAPTER 2 Introducing the Machine Learning Principles 39

 » Instance-based: Defines a model for decision problems in which the training
data consists of examples that are later used for comparison purposes. A
similarity measure helps determine when new examples compare favorably
to existing examples within the database. Some people call these algorithms
winner-take-all or memory-based learning because of the manner in which
they work. The following list provides some common algorithms associated
with this category:

• K-Nearest Neighbors (KNN)

• Learning Vector Quantization (LVQ)

 » Regression: Models the relationship among variables. This relationship is
iteratively refined using an error measure. This category sees heavy use in
statistical machine learning. The following list shows the algorithms normally
associated with this kind of algorithm:

• Ordinary Least Squares Regression (OLSR)

• Logistic Regression

 » Regularization: Regulates other algorithms by penalizing complex solutions
and favoring simpler ones. This kind of algorithm often sees use with
regression methods. The goal is to ensure that the solution doesn’t become
lost in its own complexity and delivers solutions within a given time frame
using the least number of resources. Here are examples of regularization
algorithms:

• Ridge Regression

• Least Absolute Shrinkage and Selection Operator (LASSO)

• Elastic Net

• Least-Angle Regression (LARS)

 » Support Vector Machines (SVM): Supervised learning algorithms that solve
classification and regression problems by separating only a few data examples
(called supports, hence the name of the algorithm) from the rest of the data
using a function. After separating these supports, the prediction becomes easier.
The form of analysis depends on the function type (called a kernel): linear,
polynomial, or radial basis. Here are examples of SVM algorithms.

• Linear Support Vector Machines

• Radial Basis Function Support Vector Machines

• One-Class Support Vector Machines (for unsupervised learning)

40 PART 1 Discovering Deep Learning

 » Other: You have many other algorithms from which to choose. This list
contains major algorithm categories. Some of the categories not found in
this list belong to those used for feature selection, algorithm accuracy,
performance measures, and specialty subfields of machine learning.
For example, whole categories of algorithms are devoted to the topic of
Computer Vision (CV) and Natural Language Processing (NLP). As you
read through this book, you find many other categories of algorithms and
may begin to wonder how a data scientist can make any choice, much less
the right one.

Awaiting the next breakthrough
Breakthroughs require patience because computers are inherently based on math.
You may not see them as such when working with a higher-level language like
Python, but everything that goes on beneath the hood requires an extreme
understanding of math and the data it manipulates. Consequently, you can expect
to see new uses for machine learning and deep learning in the future as scientists
continue to find new ways to process data, create algorithms, and use those
algorithms to define data models.

Unfortunately, working with what is available today isn’t enough to create the
applications of tomorrow (despite what the movies might have you believe). In the
future, you can expect advances in hardware to make applications that aren’t
feasible today quite doable. It’s not just a matter of additional computing power or
larger memories. Tomorrow’s computer will have access to sensors that aren’t
available today; processors that do things that today’s processors can’t; and
methods of viewing how computers think that haven’t been envisioned yet. What
the world needs most now is experience, and experience always takes time to
accumulate.

Pondering the True Uses
of Machine Learning

The fact that you have a number of options to choose from when it comes to AI
means that machine learning isn’t the only technology you should consider to
solve any given problem. Machine learning does excel at helping you solve specific
categories of problems. To determine where machine learning works best, you
must begin by considering how an algorithm learns and then applying that
knowledge to problem classes that you need to solve. Remember that machine

CHAPTER 2 Introducing the Machine Learning Principles 41

learning is about generalization, so it doesn’t work particularly well in these
scenarios:

 » The result must provide a precise answer, such as calculating a trip to Mars.

 » You can solve the problem using generalization but other techniques are
simpler, such as developing software to compute a factorial of a number.

 » You don’t have a good generalization of the problem because the problem is
misunderstood, no specific relationship exists between inputs and results, or
the problem domain is too complex.

The following sections discuss the true uses of machine learning from the
perspective of how it learns and then defines the benefits of machine learning
given specific problem domains.

Understanding machine learning benefits
How you can benefit from machine learning depends partly on your environment
and partly on what you expect from it. For example, if you spend time on Amazon
buying products, you might expect machine learning to make useful
recommendations based on past purchases at some point. These recommendations
are for products that you might not have otherwise known about. Recommending
products that you already use or don’t need isn’t particularly useful, which is
where the machine learning part comes into play. As Amazon builds more data
about your purchasing habits, the recommendations should become more useful,
although not even the best machine learning algorithm will ever guess your needs
correctly every time.

Of course, machine learning benefits you in many other ways. A developer can use
machine learning to add an NLP capability to an application. A researcher could
use it to help find the next cure for cancer. You may already use it for spam
filtering for your e-mail or rely on it when you get into your car as part of a voice
interface. With this in mind, the following benefits likely fit more of a business
perspective for using machine learning effectively, but keep in mind that many
other ways exist as well:

 » Simplify product marketing: One of the issues that any organization faces
is determining what to sell and when, based on customer preferences. Sales
campaigns are expensive, so having one fail usually isn’t an option. In addition,
an organization might find odd bits of information: Customers may like products
in red but not in green. Knowing what the customer wants is incredibly difficult
unless you can analyze huge amounts of buying data, which is something that
machine learning does well.

42 PART 1 Discovering Deep Learning

 » Predict future sales accurately: Being in business can seem a little like
gambling because you can’t be quite sure that your bets will pay off. A
machine learning solution can follow sales minute by minute and track
trends before they become obvious. The capability to perform this kind of
tracking means that you can more accurately tune sales channels to deliver
optimal results and ensure that stores have enough of the right products to
sell. It isn’t precisely like gazing into a crystal ball, but it’s close.

 » Forecast medical and other employee downtime: Oddly enough, some
organizations end up having problems because employees choose the worst
possible times to be absent from work. In some cases, these absences seem
unpredictable, such as medical needs, while in others you could possibly
predict them, such as a sudden need for personal time. By tracking various
trends from easily available data sources, you can track both medical-type and
personal-type absences for your industry as a whole, location as a whole, and
your organization in particular to ensure that you have enough people to get
the job done at any given time.

 » Reduce data entry errors: Some kinds of data entry errors are relatively
easy to avoid by using form features correctly or incorporating a spell checker
into your application. In addition, adding certain kinds of pattern matching
can help reduce capitalization errors or incorrect phone numbers. Machine
learning can take error reduction to another level by correctly identifying
complex patterns that other techniques will miss. For example, a customer
order may need one of part A and two of part B to create a whole unit. The
pattern matching for these kinds of sales can be elusive, but machine learning
can make it possible, reducing errors that are particularly different to find and
eradicate.

 » Improve financial rule and modeling precision: Keeping the finances
straight can prove difficult in an organization of any size. Machine learning
enables you to perform tasks such as portfolio management, algorithmic
trading, loan underwriting, and fraud detection with greater precision.
You can’t eliminate human participating in such cases, but the human and
machine working together can become an incredibly efficient combination
that won’t allow many errors to pass unnoticed.

 » Foresee maintenance needs: Any system that consists of something
physical likely requires maintenance of various sorts. For example, machine
learning can help predict when a system will need cleaning based on past
performance and environmental monitoring. You can also do things like plan
for replacement or repair of certain equipment based on past repairs and
equipment statistics. A machine learning solution can even enable you to
determine whether replacement or repair is the better option.

CHAPTER 2 Introducing the Machine Learning Principles 43

 » Augment customer interaction and improve satisfaction: Customers like
to feel special; in fact, everyone does. However, trying to create a custom plan
for each customer manually would prove impossible. You can find a wealth of
information about customers through online sources, including everything
from recent purchases to consistent buying habits. By combining all this data
with a good machine learning solution and customer support personnel who
have discerning eyes, you can appear to have personally created a special
solution for each customer, even though the time required to do so is minimal.

Discovering machine learning limits
The limits of a technology are often hard to quantify completely because these
limits are often the result of a lack of imagination on the part of the creator or
consumer of that technology. However, machine learning does have some distinct
limits that you need to consider before using this technology to perform any given
task. The following list isn’t complete. In fact, you may not even completely agree
with it, but it does provide a good starting point.

 » Massive amounts of training data are needed: Unlike programmed
solutions of the past, a machine learning solution relies on massive amounts
of data to train it. As problem complexity increases, the number of data points
required to model a particular problem increases, making even more data
necessary. Although humans generate increasingly larger amounts of data in
specific problem domains and the computing power needed to process this
data also increases daily, some problem domains simply lack enough data or
enough processing power to make machine learning effective.

 » Labeling data is tedious and error prone: When using the supervised
learning technique (see the “Learning by different strategies” section, earlier
in this chapter, for details), someone must label the data to provide the output
value. The labeling process for huge amounts of data is both tedious and time
consuming, making machine learning difficult at times. The problem is that a
human can look at any number of examples of something like a stop sign and
know that they’re all stop signs, but a computer must have every stop sign
individually labelled.

 » Machines can’t explain themselves: As machine learning solutions become
more flexible and capable; the amount of hidden functionality becomes greater
as well. In fact, when dealing with deep learning solutions, you find that the
solution contains one or usually more hidden layers that the solution creates
but that humans haven’t taken the time to explore. Consequently, both machine
learning (to some extent) and deep learning (to a greater extent) encounter
issues for which transparency is valued and counter to some laws, such as the

44 PART 1 Discovering Deep Learning

General Data Protection Regulation, or GDPR (https://eugdpr.org/). Because
the process becomes opaque, a human must now analyze a process that is
supposed to be automatic. A potential solution for this problem may come
in the form of new strategies, such as Local Interpretable Model-Agnostic
Explanations (LIME) (see https://homes.cs.washington.edu/~marcotcr/
blog/lime/ for details).

 » Bias makes the results less usable: An algorithm can’t tell when data
contains various mistruths in it (Artificial Intelligence For Dummies, by John
Paul Mueller and Luca Massaron [Wiley], explains this issue in detail).
Consequently, it regards all data as being unbiased and completely truthful.
As a result, any analysis performed by an algorithm trained using this data
is suspect. The problem becomes even greater when the algorithm itself is
biased. You can find countless examples online of algorithms misidentifying
common objects like stop signs because of the combination of data containing
mistruths and biased algorithms.

 » Machine learning solutions can’t cooperate: One of the most impor-
tant advantages of being human is the ability to collaborate with others.
Knowledge potential increases exponentially as each party to a potential
solution submits its piece of knowledge to create a whole that is much
greater than the sum of its parts. A single machine learning solution remains
a single machine learning solution because of it can’t generalize knowledge
and thereby contribute to a comprehensive solution with multiple cooperative
parties.

https://eugdpr.org/
https://homes.cs.washington.edu/~marcotcr/blog/lime/
https://homes.cs.washington.edu/~marcotcr/blog/lime/

CHAPTER 3 Getting and Using Python 45

Chapter 3
Getting and Using
Python

Deep learning requires the use of code, and you have numerous language
choices available to you. However, this book relies on Python because it
works on many different platforms and enjoys significant support in the

developer community. In fact, according to the Tiobe Index (https://www.tiobe.
com/tiobe-index/) available at the time of writing, Python is the fourth-ranked
language in the world and the one that will work best for deep learning, according
to multiple sources (see https://www.analyticsindiamag.com/top-10-pro
gramming-languages-data-scientists-learn-2018/ for details).

Before you can do too much with Python or use it to solve deep problems, you need
a workable installation. You also need access to the datasets and code used for this
book. Downloading the sample code and installing it on your system is the best
way to get a good learning experience from the book. This chapter helps you get
your system set up so that you can easily follow the examples in the remainder of
the book. It also explores potential alternatives, such as Google Colaboratory
(https://colab.research.google.com/notebooks/welcome.ipynb), also called
simply Colab, in case you want to work on an alternative device, such as a tablet.

Using the downloadable source doesn’t prevent you from typing the examples on
your own, following them using a debugger, expanding them, or working with the
code in all sorts of ways. The downloadable source is there to help you get a good
start with your deep learning and Python learning experience. After you see how the

IN THIS CHAPTER

 » Obtaining a copy of Python

 » Interacting with Jupyter Notebook

 » Creating basic Python code

 » Working in the cloud

https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/
https://www.analyticsindiamag.com/top-10-programming-languages-data-scientists-learn-2018/
https://www.analyticsindiamag.com/top-10-programming-languages-data-scientists-learn-2018/
https://colab.research.google.com/notebooks/welcome.ipynb

46 PART 1 Discovering Deep Learning

code works when it’s correctly typed and configured, you can try to create the exam-
ples on your own. If you make a mistake, you can compare what you’ve typed with
the downloadable source and discover precisely where the error exists. You can find
the downloadable source for this chapter in the DL4D_03_Sample.ipynb, DL4D_03_
Dataset_Load.ipynb, DL4D_03_Indentation.ipynb, and DL4D_03_Comments.ipynb
files. (The Introduction tells you where to download the source code for this book.)

Working with Python in this Book
The Python environment changes constantly. As the Python community continues
to improve Python, the language experiences breaking changes —those that create
new behaviors while reducing backward compatibility. These changes might not
be major, but they’re a distraction that will reduce your ability to discover deep
learning programming techniques. Obviously, you want to discover deep learning
with as few distractions as possible, so having the correct environment is essential.
Here is what you need to use Python with this book:

 » Jupyter Notebook version 5.5.0

 » Anaconda 3 environment version 5.2.0

 » Python version 3.6.7

If you don’t have this setup, you may find that the examples don’t work as
intended. The screenshots will most likely differ and the procedures may not work
as planned.

As you go through the book, you need to install various Python packages to make
the code work. Like the Python environment you configure in this chapter, these
packages have specific version numbers. If you use a different version of a package,
the examples may not execute at all. In addition, you may become frustrated
trying to work through error messages that have nothing to do with the book’s
code but instead result from using the wrong version number. Make sure to
exercise care when installing Anaconda, Jupyter Notebook, Python, and all the
packages needed to make your deep learning experience as smooth as possible.

Obtaining Your Copy of Anaconda
Before you can move forward, you need to obtain and install a copy of Anaconda.
Yes, you can obtain and install Jupyter Notebook separately, but then you lack
various other applications that come with Anaconda, such as the Anaconda

CHAPTER 3 Getting and Using Python 47

Prompt, which appears in various parts of the book. The best idea is to install
Anaconda using the instructions that appear in the following sections for your
particular platform (Linux, MacOS, or Windows).

Getting Continuum Analytics Anaconda
The basic Anaconda package is a free download from https://repo.anaconda.
com/archive/ to obtain the 5.2.0 version used in this book. Simply click one of the
Python 3.6 Version links to obtain access to the free product. The filename you
want begins with Anaconda3-5.2.0- followed by the platform and 32-bit or 64-bit
version, such as Anaconda3-5.2.0-Windows-x86_64.exe for the Windows 64-bit
version. Anaconda supports the following platforms:

 » Windows 32-bit and 64-bit (The installer may offer you only the 64-bit or 32-bit
version, depending on which version of Windows it detects.)

 » Linux 32-bit and 64-bit

 » Mac OS X 64-bit

The free product is all you need for this book. However, when you look on the
site, you see that many other add-on products are available. These products can
help you create robust applications. For example, when you add Accelerate to the
mix, you obtain the capability to perform multicore and GPU-enabled operations.
The use of these add-on products is outside the scope of this book, but the
Anaconda site provides details on using them.

Installing Anaconda on Linux
You use the command line to install Anaconda on Linux; no graphical installation
option exists. Before you can perform the install, you must download a copy of the
Linux software from the Continuum Analytics site. You can find the required
download information in the “Getting Continuum Analytics Anaconda” section of
this chapter. The following procedure should work fine on any Linux system,
whether you use the 32-bit or the 64-bit version of Anaconda:

1. Open a copy of Terminal.

The Terminal window appears.

2. Change directories to the downloaded copy of Anaconda on your system.

The name of this file varies, but normally it appears as Anaconda3-5.2.0-
Linux-x86.sh for 32-bit systems and Anaconda3-5.2.0-Linux-x86_64.sh
for 64-bit systems. The version number is embedded as part of the filename.

https://repo.anaconda.com/archive/
https://repo.anaconda.com/archive/

48 PART 1 Discovering Deep Learning

In this case, the filename refers to version 5.2.0, which is the version used for
this book. If you use some other version, you may experience problems with
the source code and need to make adjustments when working with it.

3. Type bash Anaconda3-5.2.0-Linux-x86 (for the 32-bit version) or Anaconda
3-5.2.0-Linux-x86_64.sh (for the 64-bit version) and press Enter.

An installation wizard starts that asks you to accept the licensing terms for
using Anaconda.

4. Read the licensing agreement and accept the terms using the method
required for your version of Linux.

The wizard asks you to provide an installation location for Anaconda. The book
assumes that you use the default location of ~/anaconda. If you choose some
other location, you may have to modify some procedures later in the book to
work with your setup.

5. Provide an installation location (if necessary) and press Enter (or click
Next).

You see the application extraction process begin. After the extraction is
complete, you see a completion message.

6. Add the installation path to your PATH statement using the method
required for your version of Linux.

You’re ready to begin using Anaconda.

Installing Anaconda on MacOS
The Mac OS X installation comes in only one form: 64-bit. Before you can perform
the install, you must download a copy of the Mac software from the Continuum
Analytics site. You can find the required download information in the “Getting
Continuum Analytics Anaconda” section, earlier in this chapter. The following
steps help you install Anaconda 64-bit on a Mac system:

1. Locate the downloaded copy of Anaconda on your system.

The name of this file varies, but normally it appears as Anaconda3-5.2.
0-MacOSX-x86_64.pkg. The version number is embedded as part of the
filename. In this case, the filename refers to version 5.2.0, which is the
version used for this book. If you use some other version, you may experi-
ence problems with the source code and need to make adjustments when
working with it.

2. Double-click the installation file.

You see an introduction dialog box.

CHAPTER 3 Getting and Using Python 49

3. Click Continue.

The wizard asks whether you want to review the Read Me materials. You can
read these materials later. For now, you can safely skip the information.

4. Click Continue.

The wizard displays a licensing agreement. Be sure to read through the
licensing agreement so that you know the terms of usage.

5. Click I Agree if you agree to the licensing agreement.

The wizard asks you to provide a destination for the installation. The
destination controls whether the installation is for an individual user or a
group.

You may see an error message stating that you can’t install Anaconda on the
system. The error message occurs because of a bug in the installer and has
nothing to do with your system. To get rid of the error message, choose the
Install Only for Me option. You can’t install Anaconda for a group of users on a
Mac system.

6. Click Continue.

The installer displays a dialog box containing options for changing the
installation type. Click Change Install Location if you want to modify where
Anaconda is installed on your system. (The book assumes that you use the
default path of ~/anaconda.) Click Customize if you want to modify how the
installer works. For example, you can choose not to add Anaconda to your
PATH statement. However, the book assumes that you have chosen the default
install options, and you don’t have a good reason to change them unless you
have another copy of Python installed somewhere else.

7. Click Install.

You see the installation begin. A progress bar tells you how the installation
process is progressing. When the installation is complete, you see a completion
dialog box.

8. Click Continue.

You’re ready to begin using Anaconda.

Installing Anaconda on Windows
Anaconda comes with a graphical installation application for Windows, so getting
a good install means using a wizard, much as you would for any other installation.
Of course, you need a copy of the installation file before you begin, and you can
find the required download information in the “Getting Continuum Analytics
Anaconda” section, earlier in this chapter. The following procedure should work

50 PART 1 Discovering Deep Learning

fine on any Windows system, whether you use the 32-bit or the 64-bit version of
Anaconda:

1. Locate the downloaded copy of Anaconda on your system.

The name of this file varies, but normally it appears as Anaconda3-5.2.0-
Windows-x86.exe for 32-bit systems and Anaconda3-5.2.0-Windows-
x86_64.exe for 64-bit systems. The version number is embedded as part
of the filename. In this case, the filename refers to version 5.2.0, which is the
version used for this book. If you use some other version, you may experience
problems with the source code and need to make adjustments when working
with it.

2. Double-click the installation file.

(You may see an Open File – Security Warning dialog box that asks whether
you want to run this file. Click Run if you see this dialog box pop up.) You see
an Anaconda 5.2.0 Setup dialog box similar to the one shown in Figure 3-1.
The exact dialog box you see depends on which version of the Anaconda
installation program you download. If you have a 64-bit operating system, it’s
always best to use the 64-bit version of Anaconda so that you obtain the best
possible performance. This first dialog box tells you when you have the 64-bit
version of the product.

3. Click Next.

The wizard displays a licensing agreement. Be sure to read through the
licensing agreement so that you know the terms of usage.

FIGURE 3-1:
The setup

process begins by
telling you

whether you have
the 64-bit version.

CHAPTER 3 Getting and Using Python 51

4. Click I Agree if you agree to the licensing agreement.

You’re asked what sort of installation type to perform, as shown in Figure 3-2.
In most cases, you want to install the product just for yourself. The exception is
if you have multiple people using your system and they all need access to
Anaconda. The selection of Just Me or All Users will affect the installation
destination folder in the next step.

5. Choose one of the installation types and then click Next.

The wizard asks where to install Anaconda on disk, as shown in Figure 3-3. The
book assumes that you use the default location, which will generally install the
product in your C:\Users\<User Name>\Anaconda3 folder. If you choose
some other location, you may have to modify some procedures later in the
book to work with your setup. You may be asked whether you want to create
the destination folder. If so, simply allow the folder creation.

6. Choose an installation location (if necessary) and then click Next.

You see the Advanced Installation Options, shown in Figure 3-4. These options
are selected by default and you have no good reason to change them in most
cases. You might need to change them if Anaconda won’t provide your default
Python 3.6 setup. However, the book assumes that you’ve set up Anaconda
using the default options.

The Add Anaconda to My PATH Environment Variable option is deselected
by default, and you should leave it deselected. Adding it to the PATH environ-
ment variable does offer the ability to locate the Anaconda files when using a
standard command prompt, but if you have multiple versions of Anaconda

FIGURE 3-2:
Tell the wizard
how to install
Anaconda on
your system.

52 PART 1 Discovering Deep Learning

installed, only the first version that you installed is accessible. Opening an
Anaconda Prompt instead is far better so that you gain access to the version
you expect.

7. Change the advanced installation options (if necessary) and then click Install.

You see an Installing dialog box with a progress bar. The installation process
can take a few minutes, so get yourself a cup of coffee and read the comics for
a while. When the installation process is over, you see a Next button enabled.

8. Click Next.

The wizard tells you that the installation is complete.

FIGURE 3-4:
Configure the

advanced
installation

options.

FIGURE 3-3:
Specify an

installation
location.

CHAPTER 3 Getting and Using Python 53

9. Click Next.

Anaconda offers you the chance to integrate Visual Studio code support. You
don’t need this support for this book and adding it might change the way that
the Anaconda tools work. Unless you absolutely need Visual Studio support,
you want to keep the Anaconda environment pure.

10. Click Skip.

You see a completion screen. This screen contains options to discover more
about Anaconda Cloud and to obtain information about starting your first
Anaconda project. Selecting these options (or deselecting them) depends on
what you want to do next, and the options don’t affect your Anaconda setup.

11. Select any required options. Click Finish.

You’re ready to begin using Anaconda.

A WORD ABOUT THE SCREENSHOTS
As you work your way through the book, you’ll use an IDE of your choice to open the
Python and Jupyter Notebook files containing the book’s source code. Every screenshot
that contains IDE-specific information relies on Anaconda because Anaconda runs on all
three platforms supported by the book. The use of Anaconda doesn’t imply that it’s the
best IDE or that the authors are making any sort of recommendation for it — Anaconda
simply works well as a demonstration product.

When you work with Anaconda, the name of the graphical (GUI) environment, Jupyter
Notebook, is precisely the same across all three platforms, and you won’t even see any
significant difference in the presentation. The differences you do see are minor, and
you should ignore them as you work through the book. With this in mind, the book does
rely heavily on Windows 7 screenshots. When working on a Linux, Mac OS X, or other
Windows-version platform, you should expect to see some differences in presentation,
but these differences shouldn’t reduce your ability to work with the examples. This book
doesn’t use Windows 10 because of the serious issues it can present in making Python
installations work as described at http://blog.johnmuellerbooks.com/2015/10/
30/python-and-windows-10/. Some readers do successfully use Windows 10, but for
the best result, continue to rely on Windows 7.

If you’re using Google Colab or another cloud-based product, the screenshots you see
will match a combination of your browser and the cloud environment. The screenshots
you see in the book won’t match what you see on your screen at all. However, the
content should be the same, so look for content rather than a precise GUI presentation.
In addition, because Colab can’t perform some tasks that Notebook does, you may find
that some content is missing or that you see an error message in place of the content.

http://blog.johnmuellerbooks.com/2015/10/30/python-and-windows-10/
http://blog.johnmuellerbooks.com/2015/10/30/python-and-windows-10/

54 PART 1 Discovering Deep Learning

Downloading the Datasets
and Example Code

This book is about using Python to perform deep learning tasks. Of course, you can
spend all your time creating the example code from scratch, debugging it, and
only then discovering how it relates to deep learning, or you can take the easy way
and download the prewritten code so that you can get right to work. Likewise,
creating datasets large enough for deep learning purposes would take quite a
while. Fortunately, you can access standardized, precreated datasets quite easily
using features provided in some of the data science libraries. The following sec-
tions help you download and use the example code and datasets so that you can
save time and get right to work with data science–specific tasks.

Using Jupyter Notebook
To make working with the relatively complex code in this book easier, you use
Jupyter Notebook. This interface lets you easily create Python notebook files that
can contain any number of examples, each of which can run individually. The
program runs in your browser, so which platform you use for development doesn’t
matter; as long as it has a browser, you should be okay.

Starting Jupyter Notebook
Most platforms provide an icon to access Jupyter Notebook. You simply need to
open this icon to access Jupyter Notebook. For example, on a Windows system,
you choose Start ➪ All Programs ➪ Anaconda3 ➪ Jupyter Notebook. Figure 3-5
shows how the interface looks when viewed in a Firefox browser. The precise
appearance on your system depends on the browser you use and the kind of plat-
form you have installed.

If you use a platform that doesn’t offer easy access through an icon, you can use
these steps to access Jupyter Notebook:

1. Open an Anaconda Prompt, Command Prompt, or Terminal Window on
your system.

The window opens so that you can type commands.

2. Change directories to the \Anaconda3\Scripts directory on your
machine.

Most systems let you use the CD command for this task.

3. Type ..\python Jupyter-script.py notebook and press Enter.

The Jupyter Notebook page opens in your browser.

CHAPTER 3 Getting and Using Python 55

THE DIFFERENCE BETWEEN A NOTEBOOK
AND AN IDE
A notebook differs from a text editor in that it focuses on a technique advanced by
Stanford computer scientist Donald Knuth called literate programming, which you use to
create a kind of presentation of code, notes, math equations, and graphics. In short, you
wind up with a scientist’s notebook full of everything needed to understand the code
completely. You commonly see literate programming techniques used in high-priced
packages such as Mathematica and MATLAB. Notebook development excels at

• Demonstration

• Collaboration

• Research

• Teaching objectives

• Presentation

This book uses the Anaconda tool collection because it not only provides you with a
great Python coding experience but also helps you discover the enormous potential of
literate programming techniques. If you spend a lot of time performing scientific tasks,
Anaconda and products like it are essential. In addition, Anaconda is free, so you get
the benefits of the literate programming style without the cost of other packages.

FIGURE 3-5:
Jupyter Notebook
provides an easy
method to create

data science
examples.

56 PART 1 Discovering Deep Learning

Stopping the Jupyter Notebook server
No matter how you start Jupyter Notebook (or just Notebook, as it appears in the
remainder of the book), the system generally opens a command prompt or termi-
nal window to host Notebook. This window contains a server that makes the
application work. After you close the browser window when a session is complete,
select the server window and press Ctrl+C or Ctrl+Break to stop the server.

Defining the code repository
The code you create and use in this book will reside in a repository on your hard
drive. Think of a repository as a kind of filing cabinet where you put your code.
Notebook opens a drawer, takes out the folder, and shows the code to you. You can
modify it, run individual examples within the folder, add new examples, and sim-
ply interact with your code in a natural manner. The following sections get you
started with Notebook so that you can see how this whole repository concept
works.

Defining the book’s folder
You use folders to hold your code files for a particular project. The project for this
book is DL4D (which standa for Deep Learning For Dummies). The following steps
help you create a new folder for this book:

1. Choose New ➪ Folder.

Notebook creates a new folder for you. The name of the folder can vary, but
for Windows users it’s simply listed as Untitled Folder. You may have to scroll
down the list of available folders to find the folder in question.

2. Select the box next to Untitled Folder.

3. Click Rename at the top of the page.

You see the Rename Directory dialog box, shown in Figure 3-6.

4. Type DL4D and press Enter.

Notebook renames the folder for you.

Creating a new notebook
Every new notebook is like a file folder. You can place individual examples within
the file folder, just as you would sheets of paper into a physical file folder. Each
example appears in a cell. You can put other sorts of things in the file folder, too,
but you see how these things work as the book progresses. Use these steps to
create a new notebook:

CHAPTER 3 Getting and Using Python 57

1. Click the DL4D entry on the Home page.

You see the contents of the project folder for this book, which will be blank if
you’re performing this exercise from scratch.

2. Choose New ➪ Python 3.

A new tab opens in the browser with the new notebook, as shown in Figure 3-7.
Notice that the notebook contains a cell and that Notebook has highlighted the
cell so that you can begin typing code in it. The title of the notebook is Untitled
right now. That’s not a particularly helpful title, so you need to change it.

FIGURE 3-6:
Create a folder to

use to hold the
book’s code.

FIGURE 3-7:
A notebook

contains cells that
you use to hold

code.

58 PART 1 Discovering Deep Learning

3. Click Untitled on the page.

Notebook asks what you want to use as a new name, as shown in Figure 3-8.

4. Type DL4D_03_Sample and press Enter.

The new name tells you that this is a file for Deep Learning For Dummies,
Chapter 3, Sample.ipynb. Using this naming convention will make it easy for
you to differentiate these files from other files in your repository.

Exporting a notebook
Creating notebooks and keeping them all to yourself isn’t much fun. At some
point, you want to share them with other people. To perform this task, you must
export your notebook from the repository to a file. You can then send the file to
someone else, who will import it into his or her repository.

The previous section shows how to create a notebook named DL4D_03_Sample.
You can open this notebook by clicking its entry in the repository list. The file
reopens so that you can see your code again. To export this code, choose
File ➪ Download As ➪ Notebook (.ipynb). What you see next depends on your
browser, but you generally see some sort of dialog box for saving the notebook as
a file. Use the same method for saving the Jupyter Notebook file as you use for any
other file you save using your browser.

FIGURE 3-8:
Provide a new
name for your

notebook.

CHAPTER 3 Getting and Using Python 59

Saving a notebook
You eventually want to save your notebook so that you can review the code later
and impress your friends by running it after you ensure that it doesn’t contain any
errors. Notebook periodically saves your notebook for you automatically. How-
ever, to save it manually, you choose File ➪ Save and Checkpoint.

Closing a notebook
You definitely shouldn’t just close the browser window when you finish working
with your notebook. Doing so will likely cause data loss. You must perform an
orderly closing of your file, which includes stopping the kernel used to run the
code in the background. After you save your notebook, you can close it by choosing
File ➪ Close and Halt. You see your notebook entered in the list of notebooks for
your project folder, as shown in Figure 3-9.

Removing a notebook
Sometimes notebooks get outdated or you simply don’t need to work with them
any longer. Rather than allow your repository to get clogged with files you don’t
need, you can remove these unwanted notebooks from the list. Use these steps to
remove the file:

1. Select the check box next to the DL4D_03_Sample.ipynb entry.

2. Click the Delete (trash can) icon.

A Delete notebook warning message appears, like the one shown in Figure 3-10.

FIGURE 3-9:
Your saved
notebooks

appear in a list in
the project folder.

60 PART 1 Discovering Deep Learning

3. Click Delete.

Notebook removes the notebook file from the list.

Importing a notebook
To use the source code from this book, you must import the downloaded files into
your repository. The source code comes in an archive file that you extract to a
location on your hard drive. The archive contains a list of .ipynb (IPython Note-
book) files containing the source code for this book (see the Introduction for
details on downloading the source code). The following steps tell how to import
these files into your repository:

1. Click the Upload on the Notebook DL4D page.

What you see depends on your browser. In most cases, you see some type of
File Upload dialog box that provides access to the files on your hard drive.

2. Navigate to the directory containing the files that you want to import
into Notebook.

3. Highlight one or more files to import and then click the Open (or other,
similar) button to begin the upload process.

You see the file added to an upload list, as shown in Figure 3-11. The file isn’t
part of the repository yet — you’ve simply selected it for upload.

4. Click Upload.

Notebook places the file in the repository so that you can begin using it.

FIGURE 3-10:
Notebook warns

you before
removing any
files from the

repository.

CHAPTER 3 Getting and Using Python 61

Getting and using datasets
This book uses a number of datasets, some of which you download directly from
the web while others appear in Python packages such as the Scikit-learn library.
These datasets demonstrate various ways in which you can interact with data, and
you use them in the examples to perform a variety of tasks. The following list
provides a quick overview of the functions used to import the datasets from Scikit-
learn into your Python code:

 » load_boston(): Regression analysis with the Boston house prices dataset

 » load_iris(): Classification with the Iris dataset

 » load_digits([n_class]): Classification with the digits dataset

 » fetch_20newsgroups(subset=’train’): Data from 20 newsgroups

The technique for loading each of these datasets is the same across examples. The
following example shows how to load the Boston house prices dataset. You can
find the code in the DL4D_03_Dataset_Load.ipynb notebook.

from sklearn.datasets import load_boston

Boston = load_boston()

print(Boston.data.shape)

FIGURE 3-11:
The files you

want to add to
the repository

appear as part of
an upload list.

62 PART 1 Discovering Deep Learning

To see how the code works, click Run Cell. The output from the print call is
(506, 13). You can see the output shown in Figure 3-12. (Be patient; the dataset
load can require a few seconds to complete.)

Creating the Application
The “Creating a new notebook” section shows how to create an empty notebook,
which is nice but not helpful. You want to use the notebook to hold an application
that you can use to discover the inner workings of deep learning. The following
sections show how to work with notebook in a manner that lets you create a sim-
ple application for any purpose you need. However, before you begin, make sure
that you have the DL4D_03_Sample.ipynb file open for use because you need it to
explore Notebook.

Understanding cells
If Notebook were a standard IDE, you wouldn’t have cells. What you’d have is a
document containing a single, contiguous series of statements. To separate vari-
ous coding elements, you need separate files. Cells are different because each cell
is separate. Yes, the results of things you do in previous cells matter, but if a cell
is meant to work alone, you can simply go to that cell and run it. To see how
this works for yourself, type the following code into the first cell of the DL4D_03_
Sample file:

myVar = 3 + 4
print(myVar)

FIGURE 3-12:
The Boston object

contains the
loaded dataset.

CHAPTER 3 Getting and Using Python 63

Now click Run (the right-pointing arrow). The code executes, and you see the out-
put, as shown in Figure 3-13. The output is 7, as expected. However, notice the
In [1]: entry. This entry tells you that this is the first cell executed.

Now place the cursor in the second cell — the one that is currently blank — and
type print("This is myVar: ", myVar). Click Run. The output in Figure 3-14 shows
that the cells have executed individually (because the In [2]: entry shows the
 separate execution), but that myVar is global to the notebook. What you do in other
cells with data affects every other cell, no matter what order the execution takes
place.

Adding documentation cells
Cells come in a number of different forms. This book doesn’t use them all. How-
ever, knowing how to use the documentation cells can come in handy. Select the
first cell (the one currently marked with a 1). Choose Insert ➪ Insert Cell Above.

FIGURE 3-13:
Cells execute

individually in
Notebook.

FIGURE 3-14:
Data changes do

affect every cell
that uses the

modified variable.

64 PART 1 Discovering Deep Learning

You see a new cell added to the notebook. Note the drop-down list that currently
has Code in it. This list allows you to choose the kind of cell to create. Select Mark-
down from the list and type # Creating the Application (to create a level 1 heading).
Click Run (which may seem like an extremely odd thing to do, but give it a try).
You see the heading turn into an actual heading with darker, larger text.

About now, you may be thinking that these special cells act just like HTML pages,
and you’d be right. Choose Insert ➪ Insert Cell Below, select Markdown in the
drop-down list, and then type ## Understanding cells (to create a level 2 head-
ing). Click Run. As you can see in Figure 3-15, the number of hash signs (#) you
add to the text affects the heading level, but the hash signs don’t show up in the
actual heading. (You can find complete Markdown documentation for Notebook at
https://www.ibm.com/support/knowledgecenter/en/SSGNPV_1.1.3/dsx/
markd-jupyter.html, among other places online.)

Using other cell types
This chapter (and book) doesn’t demonstrate all the kinds of cell content that you
can see by using Notebook. However, you can add other items, such as graphics,
to your notebooks as well. When the time comes, you can output (print) your
notebook as a report and use it in presentations of all sorts. The literate program-
ming technique is different from what you may have used in the past, but it has
definite advantages, as you see in upcoming chapters.

FIGURE 3-15:
Using heading
levels provides

emphasis for cell
content.

https://www.ibm.com/support/knowledgecenter/en/SSGNPV_1.1.3/dsx/markd-jupyter.html
https://www.ibm.com/support/knowledgecenter/en/SSGNPV_1.1.3/dsx/markd-jupyter.html

CHAPTER 3 Getting and Using Python 65

Understanding the Use of Indentation
As you work through the examples in this book, you see that certain lines are
indented. In fact, the examples also provide a fair amount of white space (such as
extra lines between lines of code). Python ignores any indentation in your appli-
cation. The main reason to add indentation is to provide visual cues about your
code. In the same way that indentation is used for book outlines, indentation in
code shows the relationships between various code elements.

The various uses of indentation will become more familiar as you work your way
through the examples in the book. However, you should know at the outset why
indentation is used and how it gets put in place. To that end, it’s time for another
example. The following steps help you create a new example that uses indentation
to make the relationship among application elements a lot more apparent and
easier to figure out later.

1. Choose New ➪ Python3.

Jupyter Notebook creates a new notebook for you. The downloadable source
uses the filename DL4D_03_Indentation.ipynb, but you can use any name
desired.

2. Type print(“This is a really long line of text that will ” +.

You see the text displayed normally onscreen, just as you expect. The plus sign
(+) tells Python that there is additional text to display. Adding text from multiple
lines together into a single long piece of text is called concatenation. You learn
more about using this feature later in the book, so you don’t need to worry
about it now.

3. Press Enter.

The insertion point doesn’t go back to the beginning of the line, as you might
expect. Instead, it ends up directly under the first double quote. This feature,
called automatic indention, is one of the features that differentiates a regular
text editor from one designed to write code.

4. Type “appear on multiple lines in the source code file.”) and press Enter.

Notice that the insertion point goes back to the beginning of the line. When
Notebook senses that you have reached the end of the code, it automatically
outdents the text to its original position.

5. Click Run.

You see the output shown in Figure 3-16. Even though the text appears on
multiple lines in the source code file, it appears on just one line in the output.
The line does break because of the size of the window, but it’s actually just
one line.

66 PART 1 Discovering Deep Learning

Adding Comments
People create notes for themselves all the time. When you need to buy groceries,
you look through your cabinets, determine what you need, and write it down on a
list or speak it into an app on your phone. When you get to the store, you review
your list to remember what you need. Using notes comes in handy for all sorts of
needs, such as tracking the course of a conversation between business partners or
remembering the essential points of a lecture. Humans need notes to jog their
memories. Comments in source code are just another form of note. You add them
to the code so that you can remember what task the code performs later. The fol-
lowing sections describe comments in more detail. You can find these examples in
the DL4D_03_Comments.ipynb file in the downloadable source.

FIGURE 3-16:
Concatenation

makes multiple
lines of code text

appear on a
single output line.

HEADINGS VERSUS COMMENTS
You may find headings and comments a bit confusing at first. Headings appear in
separate cells; comments appear with the source code. They serve different purposes.
Headings serve to tell you about an entire code grouping, and individual comments tell
you about individual code steps or even lines of code. Even though you use both of
them for documentation, each serves a unique purpose. Comments are generally more
detailed than headings.

CHAPTER 3 Getting and Using Python 67

Understanding comments
Computers need some special way to determine that the text you’re writing is a
comment, not code to execute. Python provides two methods of defining text as a
comment and not as code. The first method is the single-line comment. It uses
the number sign (#), like this:

This is a comment.
print("Hello from Python!") #This is also a comment.

A single-line comment can appear on a line by itself or after executable code. It
appears on only one line. You typically use a single-line comment for short
descriptive text, such as an explanation of a particular bit of code. Notebook shows
comments in a distinctive color (usually blue) and in italics.

Python doesn’t actually support a multiline comment directly, but you can create
one using a triple-quoted string. A multiline comment both starts and ends with
three double quotes (""") or three single quotes (''') like this:

"""
 Application: Comments.py
 Written by: John
 Purpose: Shows how to use comments.
"""

These lines aren’t executed. Python won’t display an error message when they
appear in your code. However, Notebook treats them differently, as shown in
Figure 3-17. Note that the actual Python comments, those preceded by a hash sign
(#) in cell 1, don’t generate any output. The triple-quote strings, however, do
generate output. In addition, unlike standard comments, triple-quoted text
appears in red (depending on the editor), rather than in blue, and the text isn’t in
italics. If you plan to output your notebook as a report, you need to avoid using
triple-quoted strings. (Some IDEs, such as IDLE, ignore the triple-quoted strings
completely.)

You typically use multiline comments for longer explanations of who created an
application, why it was created, and what tasks it performs. Of course, no hard
rules exist regarding precisely how you use comments. The main goal is to tell the
computer precisely what is and isn’t a comment so that it doesn’t try to interact
with the comment as it would code.

68 PART 1 Discovering Deep Learning

Using comments to leave
yourself reminders
A lot of people don’t really understand comments and don’t quite know what to do
with notes in code. Keep in mind that you might write a piece of code today and
then not look at it for years. You need notes to jog your memory so that you
remember what task the code performs and why you wrote it. In fact, here are
some common reasons to use comments in your code:

 » Remind yourself about what the code does and why you wrote it

 » Tell others how to maintain your code

 » Make your code accessible to other developers

 » List ideas for future updates

 » Provide a list of documentation sources you used to write the code

 » Maintain a list of improvements you’ve made

You can use comments in a lot of other ways, too, but these are the most common
ways. Look at how comments are used in the examples in the book, especially as
you get to later chapters where the code becomes more complex. As your code
becomes more complex, you need to add more comments and make the comments
pertinent to what you need to remember about it.

FIGURE 3-17:
Multiline

comments do
work, but they

also provide
output.

CHAPTER 3 Getting and Using Python 69

Using comments to keep
code from executing
Developers also sometimes use the commenting feature to keep lines of code from
executing (referred to as commenting out). You might need to do this to determine
whether a line of code is causing your application to fail. As with any other
comment, you can use either single-line commenting or multiline commenting.
However, when using multiline commenting, you do see the code that isn’t
executing as part of the output (and it can actually be helpful to see where the code
affects the output).

Getting Help with the Python Language
This book doesn’t teach you the Python language, which would require a whole
book in itself. Of course, you could always use Beginning Programming with Python
For Dummies, by John Paul Mueller (Wiley), to obtain what you need. You have
many other options for getting help with the Python language as well. In fact, so
many options are available that covering them all in this chapter isn’t possible.
Here are the best methods for obtaining help:

 » Choose one of the options on the Help menu of Notebook.

 » Open an Anaconda prompt, start a copy of Python, and use text commands to
search for help.

 » Download the Python documentation from https://docs.python.
org/3.6/download.html.

 » View the online documentation at https://docs.python.org/3.6/.

 » Use any of the following tutorials:

• The official tutorial: https://docs.python.org/3.6/

• TutorialsPoint: https://www.tutorialspoint.com/python/

• W3Schools: https://www.w3schools.com/python/

• learnpython.org: https://www.learnpython.org/

• Codecademy: https://www.codecademy.com/learn/learn-python

The point is that this book assumes that you already know how to program in
Python. This chapter provides you with some tool-related aids to ease your
transition from whatever tools you have used in the past to the tools used in this
book.

https://docs.python.org/3.6/download.html
https://docs.python.org/3.6/download.html
https://docs.python.org/3.6/
https://docs.python.org/3.6/
https://www.tutorialspoint.com/python/
https://www.w3schools.com/python/
https://www.learnpython.org/
https://www.codecademy.com/learn/learn-python

70 PART 1 Discovering Deep Learning

Working in the Cloud
Even though this chapter has presented a local processing approach, you may find
a need to interact with cloud resources to perform certain tasks. The following
sections discuss two cloud-related activities that you may perform while using
this book. The first is to access cloud resources for various needs. The second is to
use Google Colaboratory to work with the examples on your tablet instead of a
desktop system.

Using the Kaggle datasets and kernels
Kaggle (https://www.kaggle.com/) is a huge community of data scientists and
others who need to work with large datasets to obtain the information needed to
meet various goals. You can create new projects on Kaggle, view the work done by
others on completed projects, or participate in one of its ongoing competitions.
However, Kaggle is more than simply a community of really smart people who like
to play with data; it’s also a place where you can obtain resources needed to learn
all about deep learning and to create projects of your own.

The best place to find out how Kaggle can help you discover more about deep
learning is at https://www.kaggle.com/m2skills/datasets-and-tutorial-
kernels-for-beginners. This site lists the various datasets and tutorial kernels
that Kaggle provides. A dataset is simply a kind of database of information used to
perform standardized tests on application code. A tutorial kernel is a kind of project
you use to learn how to analyze data in various ways. For example, you can find a
tutorial kernel about mushroom classification at https://www.kaggle.com/
uciml/mushroom-classification.

Using the Google Colaboratory
Colaboratory (https://colab.research.google.com/notebooks/welcome.ipynb),
or Colab for short, is a Google cloud-based service that replicates Jupyter Notebook in
the cloud. This is a custom implementation, so you may find times when Colab and
Notebook are out of sync — features in one may not always work in the other. You
don’t have to install anything on your system to use it. In most respects, you use
Colab as you would a desktop installation of Jupyter Notebook. The main reason to
learn more about Colab is if you want to use a device other than a standard desktop
setup to work through the examples in this book. If you want a fuller tutorial of
Colab, you can find one in Chapter 4 of Python For Data Science For Dummies,
2nd Edition, by John Paul Mueller and Luca Massaron (Wiley). For now, this section
gives you the basics of using existing files. Figure 3-18 shows the opening Colab
display.

https://www.kaggle.com/
https://www.kaggle.com/m2skills/datasets-and-tutorial-kernels-for-beginners
https://www.kaggle.com/m2skills/datasets-and-tutorial-kernels-for-beginners
https://www.kaggle.com/uciml/mushroom-classification
https://www.kaggle.com/uciml/mushroom-classification
https://colab.research.google.com/notebooks/welcome.ipynb

CHAPTER 3 Getting and Using Python 71

You can open existing notebooks found in local storage, on Google Drive, or on
GitHub. You can also open any of the Colab examples or upload files from sources
that you can access, such as a network drive on your system. In all cases, you
begin by choosing File ➪ Open Notebook. The default view shows all the files
you opened recently, regardless of location. The files appear in alphabetical
order. You can filter the number of items displayed by typing a string into Filter
Notebooks. Across the top are other options for opening notebooks.

Even if you’re not logged in, you can still access the Colab example projects. These
projects help you understand Colab but don’t allow you to do anything with your
own projects. Even so, you can still experiment with Colab without logging into
Google first. Here is a quick list of the ways to use files with Colab:

 » Using Drive for existing notebooks: Google Drive is the default location
for many operations in Colab, and you can always choose it as a destination.
When working with Drive, you see a listing of files. To open a particular file,
you click its link in the dialog box. The file opens in the current tab of
your browser.

 » Using GitHub for existing notebooks: When working with GitHub, you
initially need to provide the location of the source code online. The location
must point to a public project; you can’t use Colab to access your private
projects. After you make the connection to GitHub, you see a list of repositories
(which are containers for code related to a particular project) and branches
(which represent particular implementations of the code). Selecting a reposi-
tory and branch displays a list of notebook files that you can load into Colab.
Simply click the required link and it loads as if you were using Google Drive.

FIGURE 3-18:
Colab makes

using your
Python projects

on a tablet easy.

72 PART 1 Discovering Deep Learning

 » Using local storage for existing notebooks: If you want to use the down-
loadable source for this book, or any local source, for that matter, you select
the Upload tab of the dialog box. In the center, you see a single button called
Choose File. Clicking this button opens the File Open dialog box for your
browser. You locate the file you want to upload, just as you normally would
for any file you want to open. Selecting a file and clicking Open uploads the
file to Google Drive. If you make changes to the file, those changes appear on
Google Drive, not on your local drive.

CHAPTER 4 Leveraging a Deep Learning Framework 73

Chapter 4
Leveraging a Deep
Learning Framework

This chapter looks at deep learning frameworks because using a deep learn-
ing framework can greatly reduce the time, cost, and complexity of devel-
oping a deep learning solution. Of course, you must begin by defining the

term framework, which is an abstraction that provides generic functionality that
your application code modifies. Unlike a library that runs within your application,
when you’re using a framework, your application runs within it. You can’t modify
basic framework functionality, which means that you have a stable environment
in which to work, but most frameworks offer some level of extensibility.
Frameworks are generally specific to a particular need, such as the web frame-
works used to create online applications. Consequently, even though deep learn-
ing frameworks have many characteristics of frameworks in general, they also
provide specific functionality that this chapter explores.

Not everyone uses the same ideas and concepts for running deep learning applica-
tions. In addition, not every organization wants to invest in a complex deep learn-
ing framework when a less expensive and simpler framework will do. Consequently,
you find a lot of deep learning frameworks that can provide you with basic func-
tionality that you can use for experimentation and for simpler applications. This
chapter explores some of these basic frameworks and compares them so that you
have a better idea of what is available.

IN THIS CHAPTER

 » Understanding frameworks

 » Using a basic framework

 » Working with TensorFlow

74 PART 1 Discovering Deep Learning

To provide the best possible learning environment, this book relies on the Tensor-
Flow framework for the examples. TensorFlow works better for the situations
presented in this book than the other solutions covered earlier, and this chapter
explains why. It also tells you precisely why TensorFlow is a good general solution
to many deep learning scenarios.

You don’t have to type the source code for this chapter manually. In fact, it’s a
lot easier if you use the downloadable source. The source code for this chapter
appears in the DL4D_03_Comments.ipynb, DL4D_03_Dataset_Load.ipynb, DL4D_
03_Indentation.ipynb, and DL4D_03_Sample.ipynb source code files (see the
Introduction for details on how to find that source file).

Presenting Frameworks
As mentioned in the introduction, your code runs within a framework. In a
 framework environment, your code makes requests of the framework, which then
fulfills the request for you. Consequently, frameworks provide a kind of structure
for application development. Because of this structure, frameworks are domain
specific, answering specific kinds of application development needs. The follow-
ing sections discuss frameworks both from an overview perspective and in more
detail as a deep learning solution. It’s important to remember that these sections
don’t provide you with complete information on frameworks, but they do help you
understand deep learning frameworks well enough to make good decisions
about them.

Defining the differences
The problem domain–specific nature of frameworks makes it necessary to locate
the right sort of framework for your needs. (A problem domain is a description of
the expertise and resources required to solve a problem. For example, you don’t go
to a doctor to solve your plumbing problems —you go to a plumber instead.) Sim-
ply asking for a general framework won’t do you much good. Here are some
examples of framework types, all of which have specific characteristics to meet
the needs of their problem domain:

 » Application framework (of the sort used to create end-user applications)

 » Artistic (drawing, music, and other creative forms)

 » Cactus framework (high-performance scientific computing)

CHAPTER 4 Leveraging a Deep Learning Framework 75

 » Decision support system

 » Earth system modeling

 » Financial modeling

 » Web framework (including language-specific frameworks for languages like
such as AJAX and JavaScript)

The diversity of software frameworks is amazing, and you’re unlikely to ever need
them all. They do have two important things in common. In each case, the frame-
work defines a series of frozen spots that define the characteristics of the applica-
tion and that the developer can’t change. In addition, the framework defines hot
spots that a developer does use to define the specifics to the target software. For
example, a frozen spot in a web application might define the interface on which a
user relies to make requests, while a hot spot might define how to fulfill that
request. Someone designing a book search application would focus on the specif-
ics of book searches while disregarding the requirements of state management
and request handling.

Explaining the popularity of frameworks
In thinking about software, you can easily see the progression of tools used to
 create it. At one time, developers had to input their code using keypunch cards,
which was extremely time consuming and error prone. Editors make the job easier
because now you can type what you want done. The Integrated Development
Environment (IDE) comes next. Using an IDE allows modeling, compilation, and
testing of the code in a single environment, along with other things. The use
of libraries enables you to create large, complex applications quickly. So, a
framework — which is an environment in which a developer needs to consider
only the specifies of a particular application — is simply the next step in making
developers more productive while also making applications more robust and less
error prone. Hence the popularity of frameworks with developers.

However, a framework is much more than simply a means of creating code faster,
with less effort and fewer errors. A framework lets you create a standardized envi-
ronment in which everyone uses the same libraries, tools, Application Program-
ming Interfaces (APIs), and other programs. The use of a standardized environment
enables you to transfer code between systems without fear of introducing odd appli-
cation issues because of environmental inconsistencies. In addition, team develop-
ment issues are fewer because the collaboration environment is simplified.

76 PART 1 Discovering Deep Learning

Because a framework handles all the low-level details, you must also consider
the makeup of an application team. In the past, the team might need people
who were adept at interacting with the hardware or creating user interface basics.
The use of a framework means that all these tasks are already completed,
so a team is made up of subject-matter experts who can communicate effectively
with each other, making a coherent approach to application development
possible.

The most important reason that frameworks are so popular now relates to how
coding is done today. At one time, developers needed to know how to interact with
the hardware and software at an extremely low level. Today, frameworks make
coding easy in an environment in which:

 » Most applications consist mainly of API calls strung together to achieve a
specific purpose.

 » People need to understand how APIs perform, rather than what they do or
how they do it. A developer needs to consider what data structures the API
accepts and how well it processes data under pressure.

 » The immense installed base of existing software means keeping that code in
place and finding fast, efficient methods to interact with it.

 » The focus is on architecture rather than details. Because most new applica-
tions rely heavily on existing code accessed through libraries or APIs, develop-
ers don’t spend as much time learning the idiosyncrasies of a language; it’s
better to discover which pile of code can do the work without having to write
any of the code yourself.

 » Getting the algorithm correct is what matters most.

 » Tools have become so smart that they often correct minor coding errors and
interpret ambiguities in developer code correctly, so the emphasis is on
getting ideas down rather than writing perfect code.

 » Visual languages, in which you drag and drop objects in a graphical environ-
ment, are becoming more common. At some point, code could actually
disappear (at least, for most application developers).

 » Knowing a single platform isn’t enough. Most applications today must
execute flawlessly on Windows, Linux, OS X, Android, most smartphones,
and myriad other platforms because users want software in a form they
understand.

CHAPTER 4 Leveraging a Deep Learning Framework 77

Defining the deep learning framework
When thinking about a deep learning framework, what you’re really considering
is how the framework manages the frozen spots and the hot spots. In most cases,
a deep learning framework provides frozen spots and hot spots in these areas:

 » Hardware access (such as using a GPU with ease)

 » Standard neural network layer access

 » Deep learning primitive access

 » Computational graph management

 » Model training

 » Model deployment

 » Model testing

CONSIDERING FRAMEWORK NEGATIVES
Depending on whom you talk to, a framework solution isn’t always the panacea that
supporters would make it out to be. One of the bigger issues when using a framework is
that the framework becomes its own application. A development team needs to learn
both the framework and all the tools used to write the application. Consequently, if
most of the team members on a development effort haven’t used the framework
before, they’ll need additional time to overcome the framework’s learning curve.
However, after they learn how to use a framework, they’ll easily gain back part of this
initial investment in time through higher productivity overall.

Another problem with frameworks is their tendency to use resources inefficiently. The
size of a framework application, framework included, is generally larger than an applica-
tion developed using libraries. Of course, monolithic applications are generally the most
efficient because they can use only the resources required for that application. All the
code bloat found in frameworks comes from trying to create a one-size-fits-all solution.

The frameworks discussed in this book are all public offerings. In fact, most of them are
open source as well. However, some proponents of frameworks feel that every enter-
prise should have its own framework that is developed using the common code from
applications in that enterprise. With that approach, the resulting framework has a con-
sistent look and feel that matches the pre-framework applications that the enterprise
has to maintain. However, developing a custom framework for a particular enterprise is
time consuming. Therefore, many people point out that a framework-based solution
isn’t as useful or easy to learn as non-framework solutions.

78 PART 1 Discovering Deep Learning

 » Graph building and presentation

 » Inference (forward propagation)

 » Automatic differentiation (backpropagation)

Frameworks address other issues, and the focus on specific issues determines the
viability of a particular framework for a particular purpose. As with many forms of
software development aid, you need to choose the framework you use carefully.

Choosing a particular framework
The previous sections in this chapter discuss the appeal of frameworks in general
and trace how frameworks can create a significantly better work environment for
developers. Also covered are features that make a deep learning framework spe-
cial. Of course, the amount of automation that a framework supplies and the
number of typical features it supports are the starting point for finding a frame-
work that meets your needs. You also need to consider issues such as learning
curve with regard to the ease of using the framework.

One of the more important considerations when choosing a framework is to
remember that frameworks are domain specific, which means that if you need to
create an application that spans domains, such as a deep learning application that
includes a web interface, you need multiple frameworks. Getting frameworks that
work well with each other can be critical. If you also host your application in the
cloud, you need consider which frameworks work with the cloud vendor’s offer-
ing, too. For example, if you choose to use TensorFlow as your framework, you can
also rely on Amazon Web Services (AWS) to host your application (see https://
aws.amazon.com/tensorflow/ for details).

As another option when using TensorFlow, you can go directly to Google Cloud (see
https://cloud.google.com/tpu/ for details), where you can train your deep
learning solution using GPUs or Tensor Processing Units (TPUs). The TPUs were
developed by Google specifically for neural network machine learning use Tensor-
Flow. TPUs are Application-Specific Integrated Circuits (ASICs) optimized for a par-
ticular use. In this case, they’re for neural network processing using TensorFlow.

Application size and complexity also play a role in deep learning framework choice
because you often need a higher-end framework to interact properly with large
applications. The need to deal with applications of various sorts is offset by the
usual cost and availability concerns. Many of the low-end deep learning frame-
works in this chapter will cost you nothing to try and could provide everything
needed to get started.

https://aws.amazon.com/tensorflow/
https://aws.amazon.com/tensorflow/
https://cloud.google.com/tpu/

CHAPTER 4 Leveraging a Deep Learning Framework 79

Working with Low-End Frameworks
Low-end deep learning frameworks often come with a built-in trade-off. You
must choose between cost and usage complexity, as well as the need to support
large applications in challenging environments. The trade-offs you’re willing to
endure will generally reflect what you can use to complete your project. With this
in mind, the following sections discuss a number of low-end frameworks that are
incredibly useful and work well with small to medium-size projects, but that
come with trade-offs for you to consider as well.

Caffe2
Caffe2 (https://caffe2.ai/) is loosely based on Caffe, which was originally
developed at the University of California, Berkeley. It’s written in C++ with a
Python interface. One of the reasons people really like Caffe2 is that you can train
and deploy a model without actually writing any code. Instead, you choose one of
the prewritten models and add it to a configuration file (which looks amazingly
like JSON code). In fact, a large selection of pretrained models appears as part of
Model Zoo (https://github.com/BVLC/caffe/wiki/Model-Zoo) that you can
rely on for many needs.

The original Caffe had a number of problems that make it less appealing than
Caffe2 to data scientists. The current version of Caffe is still popular, but you
really can’t use it for anything complex. Caffe2 improves on Caffe in the following
ways:

 » Better support for large-scale distributed training

 » Mobile development

 » Added CPU support and support for GPUs through CUDA

MIGRATING CAFFE TO CAFFE2
Even though Caffe (http://caffe.berkeleyvision.org/ and https://github.
com/BVLC/caffe) is still around and many people use it, you might find that Caffe2
is the product you really need. If you have some Caffe applications now, you can
move them to Caffe2 using the techniques found at https://caffe2.ai/docs/
caffe-migration.html, so any investment you made in Caffe is still useful in Caffe2.

https://caffe2.ai/
https://github.com/BVLC/caffe/wiki/Model-Zoo
http://caffe.berkeleyvision.org/
https://github.com/BVLC/caffe
https://github.com/BVLC/caffe
https://caffe2.ai/docs/caffe-migration.html
https://caffe2.ai/docs/caffe-migration.html

80 PART 1 Discovering Deep Learning

You can find other additions in the new version of Caffe. Another reason for
Caffe2’s popularity is that it can process images quite quickly and without signifi-
cant scaling issues. It’s designed to be lightweight and speedy. Note that Caffe2
and PyTorch are set to unite as a single product at some point in the future (see
https://caffe2.ai/blog/2018/05/02/Caffe2_PyTorch_1_0.html for details).

Chainer
Chainer (https://chainer.org/) is a library written purely in Python that relies
on the NumPy (http://www.numpy.org/) and CuPy (https://cupy.chainer.
org/) libraries. Preferred Networks (https://www.preferred-networks.jp/en/)
leads the development of this library, but IBM, Intel, Microsoft, and NVIDIA also
play a role. The main point with this library is that helps you use the CUDA capa-
bilities of your GPU by adding only a few lines of code. In other words, this library
gives you a simple way to greatly enhance the speed of your code when working
with huge datasets.

Many deep learning libraries today, such as Theano (discussed in the “Compiling
Math Expressions Using Theano” section of Chapter 19) and TensorFlow (discussed
later in this chapter), use a static deep learning approach called define and run, in
which you define the math operations and then perform training based on those
operations. Unlike Theano and TensorFlow, Chainer uses a define-by-run
approach, which relies on a dynamic deep learning approach in which the code
defines math operations as the training occurs. Here are the two main advantages
to this approach:

 » Intuitive and flexible approach: A define-by-run approach can rely on
a language’s native capabilities rather than require you to create special
operations to perform analysis.

 » Debugging: Because the define-by-run approach defines the operations
during training, you can rely on the internal debugging features to locate the
source of errors in a dataset or the application code.

TensorFlow 2.0 can also use define-by-run by relying on Chainer to provide eager
execution.

PyTorch
PyTorch (https://pytorch.org/) is the successor to Torch (http://torch.ch/)
written in the Lua (https://www.lua.org/) language. One of the core Torch
libraries (the PyTorch autograd library) started as a fork of Chainer, which is
described in the previous section. Facebook initially developed PyTorch, but many

https://caffe2.ai/blog/2018/05/02/Caffe2_PyTorch_1_0.html
https://chainer.org/
http://www.numpy.org/
https://cupy.chainer.org/
https://cupy.chainer.org/
https://www.preferred-networks.jp/en/
https://pytorch.org/
http://torch.ch/
https://www.lua.org/

CHAPTER 4 Leveraging a Deep Learning Framework 81

other organizations use it today, including Twitter, Salesforce, and the University
of Oxford. Here are the features that make PyTorch special:

 » Extremely user friendly

 » Efficient memory usage

 » Relatively fast

 » Commonly used for research

Some people like PyTorch because it’s easy to read like Keras, but the scientist
doesn’t lose the ability to use complicated neural networks. In addition, PyTorch
supports dynamic computational model graphing directly (see the “Grasping why
TensorFlow is so good” section, later in the chapter, for more details on this
issue), which makes it more flexible than TensorFlow without the addition of
TensorFlow Fold.

MXNet
The biggest reason to use MXNet is speed. It might be hard to figure out whether
MXNet (https://mxnet.apache.org/) or CNTK (https://www.microsoft.com/
en-us/cognitive-toolkit/) is faster, but both products are quite fast and are
often used as a contrast to the slowness that some people experience when work-
ing with TensorFlow. (The whitepaper at https://arxiv.org/pdf/1608.07249v7.
pdf provides some details on benchmarking of deep learning code.)

MXNet is an Apache product that supports a host of languages including Python,
Julia, C++, R, and JavaScript. Numerous large organizations use it, including
Microsoft, Intel, and Amazon Web Services. Here are the aspects that make MXNet
special:

 » Features advanced GPU support

 » Can be run on any device

 » Provides a high-performance imperative API

 » Offers easy model serving

 » Provides high scalability

It may sound like the perfect product for your needs, but MXNet does come with
at least one serious failing — it lacks the level of community support that Tensor-
Flow provides. In addition, most researchers don’t look at MXNet favorably
because it can become complex, and a researcher isn’t dealing with a stable model
in most cases.

https://mxnet.apache.org/
https://www.microsoft.com/en-us/cognitive-toolkit/
https://www.microsoft.com/en-us/cognitive-toolkit/
https://arxiv.org/pdf/1608.07249v7.pdf
https://arxiv.org/pdf/1608.07249v7.pdf

82 PART 1 Discovering Deep Learning

Microsoft Cognitive Toolkit/CNTK
As mentioned in the previous section, its speed is one of the reasons to use the
Microsoft Cognitive Toolkit (CNTK). Microsoft uses CNTK for big datasets — really
big ones. As a product, it supports the Python, C++, C#, and Java programming
languages. Consequently, if you’re a researcher who relies on R, this isn’t the
product for you. Microsoft has used this product in Skype, Xbox and Cortana. This
product’s special features are

 » Great performance

 » High scalability

 » Highly optimized components

 » Apache Spark support

 » Azure Cloud support

As with MXNet, CNTK has a distinct problem in its lack of adequate community
support. In addition, it tends not to provide much in the way of third-party sup-
port, either, so if the package doesn’t contain the features you need, you might
not get them at all.

Understanding TensorFlow
At the moment, TensorFlow is at the top of the heap with regard to deep learning
frameworks (see the chart at https://towardsdatascience.com/deep-learning-
framework-power-scores-2018-23607ddf297a for details). TensorFlow’s success
stems from many reasons, but mainly it comes from providing a robust environ-
ment in a relatively easy-to-use package. The following sections help you under-
stand why this book uses TensorFlow. You discover what makes TensorFlow so
exciting and how add-ons make it even easier to use.

Grasping why TensorFlow is so good
A product has to offer quite a bit in terms of functionality, ease-of-use, and
 reliability to make much of a dent in the market when people have many choices.
Part of the reason for TensorFlow’s success is that it supports a number of the
most popular languages: Python, Java, Go, and JavaScript. In addition, it’s quite
extensible. Each extension is an op (as in operation), which you can read about at
https://www.tensorflow.org/guide/extend/op. The point is that when a prod-
uct has great support for multiple languages and allows for significant extensibil-
ity, the product becomes popular because people can perform tasks in a manner
that best suits them, rather than what the vendor thinks the user needs.

https://towardsdatascience.com/deep-learning-framework-power-scores-2018-23607ddf297a
https://towardsdatascience.com/deep-learning-framework-power-scores-2018-23607ddf297a
https://www.tensorflow.org/guide/extend/op

CHAPTER 4 Leveraging a Deep Learning Framework 83

The manner in which TensorFlow evaluates and executes code is important as
well. Natively, TensorFlow supports only static computational graphs. However,
the TensorFlow Fold extension (https://github.com/tensorflow/fold) sup-
ports dynamic graphs as well. A dynamic graph is one in which the structure of the
computational graph varies as a function of the input data structure and changes
dynamically as the application runs. Using dynamic batching, TensorFlow Fold
can create a static graph from the dynamic graphs, which it can then feed into
TensorFlow. This static graph represents the transformation of one or more
dynamic graphs modeling uncertain data. Of course, you might not even need to
build a computational graph because TensorFlow also supports eager execution
(evaluating operations immediately without building a computational graph) so
that it can evaluate Python code immediately (called dynamic execution). The inclu-
sion of this dynamic functionality makes TensorFlow extremely flexible in the
data it can accommodate.

TENSORFLOW SUPPORT ON COLAB
Many developers today rely on online environments, such as Colab, to perform tasks
because installing and configuring TensorFlow on a desktop machine can prove difficult,
and you must have a GPU that TensorFlow supports (https://developer.nvidia.
com/cuda-gpus) if you want accelerated processing. In addition, you have all sorts of
other issues to consider (https://www.tensorflow.org/install/gpu).

Colab appears to make things easy. To get CPU support, all you do is select a configura-
tion box. To ensure that you have the proper support, you simply run a little extra
Colab-specific code (https://colab.research.google.com/notebooks/gpu.
ipynb). However, reality seldom works the same as theory. For one thing, you have
to reinstall everything every time you start a new Colab session because the library sup-
port isn’t persistent (https://www.kdnuggets.com/2018/02/essential-google-
colaboratory-tips-tricks.html). Of course, you may not have access to a GPU
at all (it’s at Google’s discretion) or the GPU support may have limits (https://stack
overflow.com/questions/48750199/google-colaboratory-misleading-
information-about-its-gpu-only-5-ram-available).

To ensure that you have the best possible learning experience, this book uses an
extremely simplified TensorFlow setup that avoids many of the pitfalls that other envi-
ronments experience. This environment will work for the book, any learning experience
you’re likely to have in school, small experimental projects, and even projects for small
to medium-sized businesses that use small to medium-sized datasets. You could never
use this setup to run a Facebook-type project.

https://github.com/tensorflow/fold
https://developer.nvidia.com/cuda-gpus
https://developer.nvidia.com/cuda-gpus
https://www.tensorflow.org/install/gpu
https://colab.research.google.com/notebooks/gpu.ipynb
https://colab.research.google.com/notebooks/gpu.ipynb
https://www.kdnuggets.com/2018/02/essential-google-colaboratory-tips-tricks.html
https://www.kdnuggets.com/2018/02/essential-google-colaboratory-tips-tricks.html
https://stackoverflow.com/questions/48750199/google-colaboratory-misleading-information-about-its-gpu-only-5-ram-available
https://stackoverflow.com/questions/48750199/google-colaboratory-misleading-information-about-its-gpu-only-5-ram-available
https://stackoverflow.com/questions/48750199/google-colaboratory-misleading-information-about-its-gpu-only-5-ram-available

84 PART 1 Discovering Deep Learning

In addition to various kinds of dynamic support, TensorFlow also enables you to
use a GPU to speed calculations. You can actually use multiple GPUs and spread
the computational model over several machines in a cluster. The capability to
bring so much computing power to solving a problem makes TensorFlow faster
than much of the competition. Speed is important because answers to questions
often have a short life expectancy; getting an answer tomorrow for a question you
have today won’t work in many scenarios. For example, a doctor who relies on the
services of an AI to provide alternatives during a surgery needs answers immedi-
ately or the patient could die.

Computational features only help you obtain a solution to a problem. TensorFlow
also helps you visualize the solution in various ways using the TensorBoard exten-
sion (https://www.tensorflow.org/guide/summaries_and_tensorboard). This
extension helps you to

 » Visualize the computational graph

 » Plot graph execution metrics

 » Show additional data as needed

As with many products that include a lot of functionality, TensorFlow comes with
a steep learning curve. However, it also enjoys considerable community support,
provides access to a wealth of hands-on tutorials, has great third-party support
for online courses, and offers many other aids to reduce the learning curve. You’ll
want to start with the tutorial at https://www.tensorflow.org/tutorials/ and
peruse the guide of offerings at https://www.tensorflow.org/guide/.

Making TensorFlow easier by using TFLearn
One of the major complaints people have about using TensorFlow directly is that
the coding is both low level and difficult at times. The trade-off that you make
with TensorFlow is that you gain additional flexibility and control by writing more
code. However, not everyone needs the depth that TensorFlow can provide, which
is why packages such as TFLearn (http://tflearn.org/), which stands for Ten-
sorFlow Learn, are so important. (You can find a number of packages on the mar-
ket that attempt to reduce the complexity; TFLearn is just one of them.)

TFLearn does make working with TensorFlow easier, but in specific ways:

 » A high-level Application Programming Interface (API) helps you to produce
results with less code.

 » The high-level API reduces the amount of standardized (boilerplate) code
you write.

https://www.tensorflow.org/guide/summaries_and_tensorboard
https://www.tensorflow.org/tutorials/
https://www.tensorflow.org/guide/
http://tflearn.org/

CHAPTER 4 Leveraging a Deep Learning Framework 85

 » Prototyping is faster, akin to the functionality found in Caffe2 (described
earlier in this chapter).

 » Transparency with TensorFlow means that you can see how the functions
work and use them directly without relying on TFLearn.

 » The use of helper functions automates many tasks that you normally need to
perform manually.

 » The use of great visualization helps you see the various aspects of your
application, including the computational model, with greater ease.

You get all this functionality, and more, without giving up the aspects that make
TensorFlow such a great product. For example, you still have full access to Ten-
sorFlow’s capability to use CPUs, GPUs, and even multiple systems to bring more
computing power to task on any problem.

Using Keras as the best simplifier
Keras is less of a framework and more of an API (a set of interface specifications
that you can use with multiple frameworks as backends). It’s generally lumped in
as a deep-learning framework, though, because that’s how people use it. To use
Keras, you must also have a deep learning framework, such as TensorFlow,
 Theano, MXNet, or CNTK. Keras is actually bundled with TensorFlow, which also
makes it the easy solution for reducing TensorFlow complexity.

This book assumes that you use Keras with TensorFlow, but knowing that you can
use Keras with other deep learning frameworks is an advantage. That’s why this
book doesn’t use the Keras version incorporated into TensorFlow, but installs it
separately (see https://medium.com/tensorflow/standardizing-on-keras-
guidance-on-high-level-apis-in-tensorflow-2-0-bad2b04c819a for details).
You can use the same interface with multiple frameworks, enabling you to use the
framework that you need without having to deal with yet another learning curve.
The biggest selling point of Keras is that it puts the process of creating applica-
tions using a deep learning framework into a paradigm that most people can
understand well.

You can’t develop an application of any kind that is both easy to use and able to
handle truly complex situations — all while being flexible as well. So Keras does-
n’t necessarily handle all situations well. For example, it’s a good product to use
when your needs are simple, but not a good choice if you plan to develop a new
kind of neural network.

The strength of Keras is that it lets you perform fast prototyping with little hassle.
The API doesn’t get in your way while it tries to provide flexibility that you might

https://medium.com/tensorflow/standardizing-on-keras-guidance-on-high-level-apis-in-tensorflow-2-0-bad2b04c819a
https://medium.com/tensorflow/standardizing-on-keras-guidance-on-high-level-apis-in-tensorflow-2-0-bad2b04c819a

86 PART 1 Discovering Deep Learning

not need in the current project. In addition, because Keras simplifies how you
 perform tasks, you can’t extend it as you can with other products, which limits
your ability to add functionality to an existing environment.

More than a few people have complained about the sometimes ambiguous error
reporting provided by Keras. However, Keras partially offsets this issue by provid-
ing strong community support. In addition, many of the people complaining
about the error messages are also apparently trying to do something complex.
Keeping the fast prototyping nature of Keras in mind could keep you from trying
projects that might be too much for the product to handle.

Getting your copy of TensorFlow and Keras
Your copy of Python that comes with Anaconda doesn’t include a copy of Tensor-
Flow or Keras; you must install these products separately. To avoid problems with
integrating TensorFlow with the Anaconda tools, don’t follow the instructions
found at https://www.tensorflow.org/install/pip for installing the product
using pip. Likewise, avoid using the Keras installation instructions at https://
keras.io/#installation. To ensure that your copy of TensorFlow and Keras are
available with Notebook, you must open an Anaconda prompt, not a standard
command prompt or a terminal window. Otherwise, you can’t ensure that you
have the appropriate paths set up. The following steps will get you started with
your installation.

1. At the Anaconda prompt, type python — version and press Enter.

You see the currently installed Python version, which should be version 3.6.5
for this book, as shown in Figure 4-1. The path you see in the window is a
function of your operating system, which is Windows in this case, but you may
see a different path when using the Anaconda prompt.

The next step is to create an environment in which to execute code that relies
on TensorFlow and Keras. The advantage of using an environment is that you
maintain a pristine environment for later use with other libraries. You use
conda, rather than another environment product such as virtualenv, to ensure
that the software integrates with the Anaconda tools. If you use a product such
as virtualenv, the resulting installation will work, but you’ll have to perform a lot
of other steps to access it, and these steps don’t appear in the book. The name
of the environment for this book is DL4Denv.

2. Type conda create -n DL4Denv python=3 anaconda=5.3.0 tensorflow=1.11.0
keras=2.2.4 nb_conda and press Enter.

https://www.tensorflow.org/install/pip
https://keras.io/#installation
https://keras.io/#installation

CHAPTER 4 Leveraging a Deep Learning Framework 87

You may see a warning message about the availability of a newer version of
conda. It’s safe to ignore this message (or you can choose to update conda
using the command shown by the warning later, if desired). If necessary, type Y
and press Enter to clear the message so that the creation process will proceed.

This step can require some time to execute because your system will have to
download TensorFlow 1.11.0 and Keras 2.2.4 from an online source. After the
download is complete, the setup needs to create a complete installation for
you. You see the Anaconda prompt return after all of the required steps are
complete. In the meantime, reading a good technical article or getting coffee
will help pass the time.

3. Type conda activate DL4Denv and press Enter.

The prompt changes to show the DL4Denv environment rather than the base
or root environment. Any tasks you perform now will affect the DL4D environ-
ment rather than the original base environment.

4. Type python -m pip install — upgrade pip and press Enter.

This step will require a little time, but not nearly as long as creating the
environment. The purpose of this step is to ensure that you have the most
current version of pip installed so that later commands (some of which appear
in the book’s code) don’t fail.

5. Type conda deactivate and press Enter.

Deactivating an environment returns you to the base environment. You
perform this step to ensure that you always end a session in the base
environment.

FIGURE 4-1:
Be sure to use
the Anaconda

prompt for the
installation and

check the Python
version.

88 PART 1 Discovering Deep Learning

6. Close the Anaconda Prompt.

Your TensorFlow and Keras installations are now ready for use.

Fixing the C++ build tools error in Windows
Many Python features require C++ build tools for compilation because the devel-
opers wrote the code in C++, rather than Python, to obtain the best speed in per-
forming certain kinds of processing. Fortunately, Linux and OS X both come with
C++ build tools installed. So, you don’t have to do anything special to make Python
build commands work.

Windows users, however, need to install a copy of the C++ 14 or higher build tools
if they don’t already have them installed. In fact, the Notebook environment is
actually quite picky — you need Visual C++ 14 or higher, rather than just any ver-
sion of C++ (such as GCC, https://www.gnu.org/software/gcc/). If you recently
installed Visual Studio or another Microsoft development product, you may have
the build tools installed and won’t need to install a second copy.

This book uses the most current tools available as of writing, which is C++ 17. Get-
ting just the build tools won’t cost you anything. The following steps show a short
and easy method for getting your required build tools if you don’t already have C++
14 or above installed:

1. Download the offline build tools installer from https://aka.ms/vs/15/
release/vs_buildtools.exe.

Your download application downloads a copy of vs_buildtools.exe. Trying
to use the online build tools often comes with too many options, and
Microsoft, naturally, wants you to buy its product.

2. Locate the downloaded file on your hard drive and double-click vs_
buildtools.exe.

You see a Visual Studio Installer dialog box. Before you can install the build
tools, you need to tell the installer what you want to install.

3. Click Continue.

The Visual Studio Installer downloads and installs some additional support
files. After this installation is complete, it asks which Workload to install, as
shown in Figure 4-2.

https://www.gnu.org/software/gcc/
https://aka.ms/vs/15/release/vs_buildtools.exe
https://aka.ms/vs/15/release/vs_buildtools.exe

CHAPTER 4 Leveraging a Deep Learning Framework 89

4. Check the Visual C++ Build Tools option and then click Install.

You don’t need to install anything more than the default features. The
Installation Details pane on the right side of the Visual Studio Installer window
contains a confusing array of options that you won’t need for this book. The
download process of approximately 1.1GB begins immediately. You can get a
cup of coffee while you wait. The Visual Studio Installer window displays the
progress of the download and installation. At some point, you see a message
saying that the installation succeeded.

5. Close the Visual Studio Installer window.

Your copy of the Visual C++ Build Tools is ready for use. You may need to
restart your system after performing the installation, especially if you had
Visual Studio installed previously.

Accessing your new environment in
Notebook
When you open Notebook, it automatically selects the base or root environment —
the default environment for the Anaconda tools. However, you need to access the
DL4Denv environment to work with the code in this book. To make this happen,
open Anaconda Navigator, rather than Jupyter Notebook as usual. In the resulting
window, shown in Figure 4-3, you see an Applications On drop-down list. Choose
the DL4Denv option from the drop-down list. You can then click Launch in the
Jupypter Notebook panel to start Notebook using the DL4Denv environment.

FIGURE 4-2:
Choose the Visual

C++ Build Tools
workload to

support your
Python setup.

90 PART 1 Discovering Deep Learning

FIGURE 4-3:
Select an

environment to
use in Anaconda

Navigator.

2Considering
Deep Learning
Basics

IN THIS PART . . .

Perform essential matrix math tasks.

Work with linear regression.

Consider neural network essentials.

Move to deep learning basics.

Work with CNNs and RNNs.

CHAPTER 5 Reviewing Matrix Math and Optimization 93

Chapter 5
Reviewing Matrix Math
and Optimization

Chapter 1 of this book tells you about the basis of deep learning and why it’s
important today. In Chapter 2, you delve a little deeper into the process of
learning something from data through machine learning. A key point from

both those chapters is that your computer doesn’t understand anything, but you
can provide it with data and, in turn, it can help you understand something new
from that data. For example, you can describe a math operation to it that helps you
gain insight or understand your data in a way that you couldn’t otherwise. The
computer becomes a tool for performing truly advanced math far faster than you
could ever do it manually. The basis of these math operations is the use of specific
data structures, including the matrix.

You need to understand scalar, vector, and matrix operations as part of discover-
ing how deep learning can make a significant difference in how you view the data
that describes the world today. Combining data found in specific kinds of struc-
tures with algorithms designed to work with these structures is a basic element of
deep learning. This chapter helps you understand the data, data structures used to
contain it, and the manner in which you can perform simple tasks with those
structures.

So far, you haven’t really seen anything that looks like learning of any kind. Just
having data structures and appropriate operations to interact with them isn’t

IN THIS CHAPTER

 » Defining the math requirements for
simple deep learning

 » Performing scalar, vector, and matrix
math tasks

 » Equating learning with optimization

94 PART 2 Considering Deep Learning Basics

enough to consider the process learning. The final section of this chapter helps
you make the connection between performing these operations and performing
them quickly using optimization. The act of optimizing operations performed on
data is what constitutes learning: The computer is learning to avoid unnecessary
delays in performing the analysis you need to complete your tasks.

You don’t have to type the source code for this chapter manually. Using the down-
loadable source is a lot easier. The source code for this chapter appears in the
DL4D_05_Reviewing_Matrix_Math_and_Optimization.ipynb source code file
(see the Introduction for details on how to find that source file).

Revealing the Math You Really Need
The world is an incredibly complex place, and trying to represent it using data and
math makes this fact very clear. Data expresses the real world as an abstraction
using numeric or other values as the means to quantify the abstraction. For exam-
ple, the color blue may become the value 1. Math is the means by which you manip-
ulate these values to understand them better and to recognize patterns that might
otherwise be unclear. For example, you might find that a larger proportion of
people living in a particular area prefer the color blue to any other color. The fol-
lowing sections help you understand the data and the math from the perspective
of AI, which allows you to interact with the world in an automated fashion (such
as by cleaning your carpet with a robot or asking your car’s navigation system to
provide directions to a place you haven’t been before).

Working with data
Without data, it’s impossible to represent real world entities in a form that a com-
puter can help you understand and manage. The computer doesn’t understand the
data; it simply stores the data and enables you to manipulate the data using math.
The computer doesn’t understand the output, either. The output of the manipula-
tion requires interpretation by a human to have meaning. So data begins and ends
with human interpretation of the real world presented as an abstraction.

When creating data, you must provide some consistent measure of the abstraction
or else communication becomes impossible. For example, if one dataset presents
the color blue as the integer 1, another dataset presents the color blue as the real
number 2.0, and a third presents the color blue as the string blue, you can’t com-
bine the information unless you create another dataset containing the same val-
ues for each blue entry. Because humans are inconsistent, data can be inconsistent
as well (assuming that it’s correct in the first place). The transformation of values

CHAPTER 5 Reviewing Matrix Math and Optimization 95

between datasets doesn’t change the fact that the humans interpreting it still see
the color blue encoded in the abstraction that is data.

After you collect enough data, you can manipulate it in ways that allows a com-
puter to present you with patterns that you may not have seen before. As always,
the computer has no understanding of the data or its interpretation, or even that
it has created a pattern for you. The math defined by incredibly smart scientists
manipulates the data into a pattern using math expressions.

From a deep learning perspective, then, what you have is a human interpreter
providing data abstractions of real-world objects, a computer performing one or
more manipulations of that data, and an output that again requires human inter-
pretation to have any meaning at all. Deep learning, for the purposes of this chapter,
is simply the act of automating the data manipulation process using the same
techniques that a human might use matched with the speed that a computer can
provide. The act of learning means to discover how to perform manipulations suc-
cessfully so that useful patterns appear as part of the output.

Automation isn’t useful unless it’s controlled, and deep learning provides that
control through matrix computations. A matrix computation is a series of multipli-
cations and summations of ordered sets of numbers. You need to understand how
deep learning works mathematically so that you can

 » Dispel any fantasy that deep learning operates in the same way as a
human brain

 » Define the tools needed later to create an example of a deep neural network

Creating and operating with a matrix
Ensuring that all the abstractions used for specific real-world objects are the same
isn’t sufficient to create a meaningful model. Simply deciding that the integer
value 1 represents the color blue doesn’t provide the necessary structure to per-
form math manipulation unless such manipulation is on a single value (a scalar).
A group of related values can appear in a list (a vector), but only if each of the
values represents the same kind of object. For example, you could create a list of
colors, each of which has a specific value. To be truly useful, data must appear in
a form that groups like entries in a form that enhances automated processing.
Generally, the preferred form is a table (a matrix) that has specific object value
types in the column and individual entries in rows.

You see matrixes used a lot in this book because they provide a convenient means
of moving complex entries as a unit. A matrix of properties in Boston might
include all sorts of related information, such as the price, number of rooms,

96 PART 2 Considering Deep Learning Basics

and environmental characteristics for each house. In fact, you can find such a
dataset (a file containing the essential data to present real-world entries) descrip-
tion at https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.
html. Even though you obtain the data in another form, an importing process that
transforms it into a matrix is the first step in using the dataset to see useful pat-
terns by applying deep learning.

The math you need then comes down to these things:

 » The process, including math, used to transform all data elements
into like form

 » The process, including math, used to place the data elements into a structure,
such as a matrix, to aid in automatically processing the data

 » The math needed to manipulate the matrix so that useful patterns appear

 » The methodology, including math, uses to provide output for human interpre-
tation of the patterns

Understanding Scalar, Vector,
and Matrix Operations

To perform useful work with Python, you often need to work with larger amounts
of data that comes in specific forms. These forms have odd-sounding names, but
the names are quite important. The three terms you need to know for this chapter
are as follows:

 » Scalar: A single base data item. For example, the number 2 shown by itself
is a scalar.

 » Vector: A one-dimensional array (essentially a list) of data items. For example,
an array containing the numbers 2, 3, 4, and 5 would be a vector. You access
items in a vector using a zero-based index, a pointer to the item you want. The
item at index 0 is the first item in the vector, which is 2 in this case.

 » Matrix: An array of two or more dimensions (essentially a table) of data items.
For example, an array containing the numbers 2, 3, 4, and 5 in the first row
and 6, 7, 8, and 9 in the second row is a matrix. You access items in a matrix
using a zero-based row-and-column index. The item at row 0, column 0 is the
first item in the matrix, which is 2 in this case.

https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html
https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html

CHAPTER 5 Reviewing Matrix Math and Optimization 97

Deep learning relies on matrices. The data sources you use have a row-and-
column format to describe the attributes of a particular data element. For exam-
ple, to describe a person, the matrix may include attributes such as name, age,
address, and number of a particular item purchased each year. By knowing these
attributes, you can perform an analysis that yields new types of information and
helps you make generalizations about a particular population.

Python provides an interesting assortment of features on its own, but you’d still
need to do a lot of work to perform some tasks. To reduce the amount of work you
do, you can rely on code written by other people and found in libraries. The fol-
lowing sections describe how to use the NumPy library to perform various tasks
on matrixes.

Creating a matrix
Before you can do anything with a matrix, you must create it, which includes fill-
ing it with data. The easiest way to perform this task is to use the NumPy library,
which you import as np using the following code:

import numpy as np

To create a basic matrix, you simply use the NumPy array function as you would
with a vector, but you define additional dimensions. A dimension is a direction in
the matrix. For example, a two-dimensional matrix contains rows (one direction)
and columns (a second direction). The array call myMatrix = np.array([[1,2,3],
[4,5,6], [7,8,9]]) produces a matrix containing three rows and three columns,
like this:

array([[1, 2, 3],
 [4, 5, 6],
 [7, 8, 9]])

Note how you embed three lists within a container list to create the two dimen-
sions. To access a particular array element, you provide a row and column index
value, such as myMatrix[0, 0] to access the first value of 1. You can produce
matrixes with any number of dimensions using a similar technique. For example,
myMatrix = np.array([[[1,2], [3,4]], [[5,6], [7,8]]]) produces a three-
dimensional matrix with x, y, and z axis that looks like this:

array([[[1, 2],
 [3, 4]],

 [[5, 6],
 [7, 8]]])

98 PART 2 Considering Deep Learning Basics

In this case, you embed two lists, within two container lists, within a single con-
tainer list that holds everything together. In this case, you must provide an x, y,
and z index value to access a particular value. For example, myMatrix[0, 1, 1]
accesses the value 4.

In some cases, you need to create a matrix that has certain start values. For exam-
ple, if you need a matrix filled with ones at the outset, you can use the ones func-
tion. The call to myMatrix = np.ones([4,4], dtype=np.int32) produces a
matrix containing four rows and four columns filled with int32 values like this:

array([[1, 1, 1, 1],
 [1, 1, 1, 1],
 [1, 1, 1, 1],
 [1, 1, 1, 1]])

Likewise, a call to myMatrix = np.ones([4,4,4], dtype=np.bool) will create a
three-dimensional array. This time, the matrix will contain Boolean values of
True. Functions are also available for creating a matrix filled with zeros, the
 identity matrix, and for meeting other needs. You can find a full listing of vector
and matrix array-creation functions at https://docs.scipy.org/doc/numpy/
reference/routines.array-creation.html.

The NumPy library supports an actual matrix class. The matrix class supports
special features that make performing matrix-specific tasks easier. You discover
these features later in the chapter. For now, all you really need to know is how to
create a matrix of the matrix data type. The easiest method is to make a call sim-
ilar to the one you use for the array function, but using the mat function instead,
such as myMatrix = np.mat([[1,2,3], [4,5,6], [7,8,9]]), which produces
the following matrix:

matrix([[1, 2, 3],
 [4, 5, 6],
 [7, 8, 9]])

You can also convert an existing array to a matrix using the asmatrix function.
Use the asarray function to convert a matrix object back to an array form.

The only problem with the matrix class is that it works on only two-dimensional
matrixes. If you attempt to convert a three-dimensional matrix to the matrix
class, you see an error message telling you that the shape is too large to be a
matrix.

https://docs.scipy.org/doc/numpy/reference/routines.array-creation.html
https://docs.scipy.org/doc/numpy/reference/routines.array-creation.html

CHAPTER 5 Reviewing Matrix Math and Optimization 99

Performing matrix multiplication
Two common methods of multiplying a matrix are element by element and dot
product. The element-by-element approach is straightforward. The following
code produces an element-by-element multiplication of two matrixes:

a = np.array([[1,2,3],[4,5,6]])
b = np.array([[1,2,3],[4,5,6]])

print(a*b)

What you get in return is an array of the sort shown here:

[[1 4 9]
 [16 25 36]]

Note that a and b are the same shape: two rows and three columns. To perform an
element-by-element multiplication, the two matrixes must be the same shape.
Otherwise, you see an error message telling you that the shapes are wrong. As
with vectors, the multiply function also produces an element-by-element result.

Unfortunately, an element-by-element multiplication can produce incorrect
results when working with algorithms. In many cases, what you really need is a
dot product, which is the sum of the products of two number sequences. The dis-
cussion at https://www.mathsisfun.com/algebra/vectors-dot-product.html
tells you about dot products and helps you understand where they might fit in
with algorithms. You can learn more about the linear algebra manipulation func-
tions for numpy at https://docs.scipy.org/doc/numpy/reference/routines.
linalg.html.

When performing a dot product with a matrix, the number of columns in matrix a
must match the number of rows in matrix b. However, the number of rows in
matrix a can be any number, and the number of columns in matrix b can be any
number as long as you create of dot product of a by b. For example, the following
code produces a correct dot product:

a = np.array([[1,2,3],[4,5,6]])
b = np.array([[1,2,3],[3,4,5],[5,6,7]])

print(a.dot(b))

Here is what you receive as output in this case:

[[22 28 34]
 [49 64 79]]

https://www.mathsisfun.com/algebra/vectors-dot-product.html
https://docs.scipy.org/doc/numpy/reference/routines.linalg.html
https://docs.scipy.org/doc/numpy/reference/routines.linalg.html

100 PART 2 Considering Deep Learning Basics

Note that the output contains the number of rows found in matrix a and the num-
ber of columns found in matrix b. So how does this all work? To obtain the value
found in the output array at index [0,0] of 22, you sum the values of a[0,0]*b[0,0]
(which is 1), a[0,1]*b[1,0] (which is 6), and a[0,2]*b[2,0] (which is 15) to obtain
the value of 22. The other entries work in precisely the same way.

An advantage of using the numpy matrix class is that some tasks become more
straightforward. For example, multiplication works precisely as you expect it
should. The following code produces a dot product using the matrix class:

a = np.mat([[1,2,3],[4,5,6]])
b = np.mat([[1,2,3],[3,4,5],[5,6,7]])

print(a*b)

The output with the * operator is the same as using the dot function with an
array. However, even though the output looks the same as when using the dot
function, it’s not precisely the same. The output of the previous code is an array,
while the output of this code is a matrix. This example also points out that you
must know whether you’re using an array or a matrix object when performing
tasks such as multiplying two matrixes.

To perform an element-by-element multiplication using two matrix objects, you
must use the numpy multiply function.

Executing advanced matrix operations
This book takes you through all sorts of interesting matrix operations, but you use
some of them commonly, which is why they appear in this chapter. When working
with arrays, you sometimes get data in a shape that doesn’t work with the
 algorithm. Fortunately, numpy comes with a special reshape function that lets you
put the data into any shape needed. In fact, you can use it to reshape a vector into
a matrix, as shown in the following code:

changeIt = np.array([1,2,3,4,5,6,7,8])

print(changeIt)

print(changeIt.reshape(2,4))

print(changeIt.reshape(2,2,2))

CHAPTER 5 Reviewing Matrix Math and Optimization 101

This code produces the following outputs, which show the progression of changes
produced by the reshape function:

[1 2 3 4 5 6 7 8]

[[1 2 3 4]
 [5 6 7 8]]

[[[1 2]
 [3 4]]

 [[5 6]
 [7 8]]]

The starting shape of changeIt is a vector, but using the reshape function turns
it into a matrix. In addition, you can shape the matrix into any number of dimen-
sions that work with the data. However, you must provide a shape that fits with
the required number of elements. For example, calling changeIt.reshape(2,3,2)
will fail because there aren’t enough elements to provide a matrix of that size.

You may encounter two important matrix operations in some algorithm formula-
tions. They are the transpose and inverse of a matrix. Transposition occurs when a
matrix of shape n x m is transformed into a matrix m x n by exchanging the rows
with the columns. Most texts indicate this operation by using the superscript T, as
in AT. You see this operation used most often for multiplication in order to obtain
the right dimensions. When working with numpy, you use the transpose function
to perform the required work. For example, when starting with a matrix that has
two rows and four columns, you can transpose it to contain four rows with two
columns each, as shown in this example:

changeIt = np.array([[1, 2, 3, 4], [5, 6, 7, 8]])

print(np.transpose(changeIt))

The output shows the effects of the transposition:

[[1 5]
 [2 6]
 [3 7]
 [4 8]]

You apply matrix inversion to matrixes of shape m x m, which are square matrixes
that have the same number of rows and columns. This operation is quite impor-
tant because it allows the immediate resolution of equations involving matrix

102 PART 2 Considering Deep Learning Basics

multiplication, such as y=bX, where you have to discover the values in the vector b.
Because most scalar numbers (exceptions include zero) have a number whose
multiplication results in a value of 1, the idea is to find a matrix inverse whose
multiplication will result in a special matrix called the identity matrix. To see an
identity matrix in numpy, use the identity function, like this:

print(np.identity(4))

Here’s the output from this function:

[[1. 0. 0. 0.]
 [0. 1. 0. 0.]
 [0. 0. 1. 0.]
 [0. 0. 0. 1.]]

Note that an identity matrix contains all ones on the diagonal. Finding the inverse
of a scalar is quite easy (the scalar number n has an inverse of n–1 that is 1/n). It’s
a different story for a matrix. Matrix inversion involves quite a large number of
computations. The inverse of a matrix A is indicated as A–1. When working with
numpy, you use the linalg.inv function to create an inverse. The following exam-
ple shows how to create an inverse, use it to obtain a dot product, and then com-
pare that dot product to the identity matrix by using the allclose function:

a = np.array([[1,2], [3,4]])
b = np.linalg.inv(a)

print(np.allclose(np.dot(a,b), np.identity(2)))

The output from this code is

True

Sometimes, finding the inverse of a matrix is impossible. When a matrix cannot
be inverted, it is referred to as a singular matrix or a degenerate matrix. Singular
matrixes aren’t the norm; they’re quite rare.

Extending analysis to tensors
A simple way of starting to look at tensors is that they begin as a generalized matrix
that can be any number of dimensions. They can be 0-D (scalar), 1-D (a vector), or
2-D (a matrix). In fact, tensors can have more dimensions than imaginable.
Tensors have the number of dimensions needed to convey the meaning behind
some object using data. Even though most humans view data as a 2-D matrix
having rows containing individual objects and columns that have individual data
elements that define those objects, in many cases a 2-D matrix won’t be enough.

CHAPTER 5 Reviewing Matrix Math and Optimization 103

For instance, you may need to process data that has a time element, creating a 2-D
matrix for every observed instant. All these sequences of 2-D matrixes require a
3-D structure to store because the third dimension is time.

However, tensors are more than simply a fancy sort of matrix. They represent a
mathematical entity that lives in a structure filled with other mathematical enti-
ties. All these entities interact with each other such that transforming the entities
as a whole means that individual tensors must follow a particular transformation
rule. The dynamic nature of tensors distinguishes them from standard matrixes.
Every tensor within a structure responds to changes in every other tensor that
occurs as part of a transformation.

To think about how tensors work with regard to deep learning, consider that an
algorithm could require three inputs to function, as expressed by this vector:

inputs = np.array([5, 10, 15])

These are single values based on a single event. Perhaps they represent a query
about which detergent is best on Amazon. However, before you can feed these
values into the algorithm, you must weight their values based on the training
performed on the model. In other words, given the detergents bought by a large
group of people, the matrix represents which one is actually best given specific
inputs. It’s not that the detergent is best in every situation, just that it represents
the best option given certain inputs.

The act of weighting the values helps reflect what the deep learning application
has learned from analyzing huge datasets. For the sake of argument, you could see
the weights in the matrix that follows as learned values:

weights = np.array([[.5,.2,-1], [.3,.4,.1], [-.2,.1,.3]])

Now that weighting is available for the inputs, you can transform the inputs based
on the learning the algorithm performed in the past:

result = np.dot(inputs, weights)

The output of

[2.5 6.5 0.5]

transforms the original inputs so that they now reflect the effects of learning. The
vector, inputs, is a hidden layer in a neural network and the output, result, is the
next hidden layer in the same neural network. The transformations or other
actions that occur at each layer determine how each hidden layer contributes to
the whole neural network, which was weighting, in this case. Later chapters help

104 PART 2 Considering Deep Learning Basics

you understand the concepts of layers, weighting, and other activities within a
neural network. For now, simply consider that each tensor interacts with the
structure based on the activities of every other tensor.

Using vectorization effectively
Vectorization is a process in which an application processes multiple scalar values
simultaneously, rather than one at a time. The main reason to use vectorization is
to save time. In many cases, a processor will include a special instruction related
to vectorization, such as the SSE instruction in x86 systems (https://docs.
oracle.com/cd/E26502_01/html/E28388/eojde.html). Instead of performing
single instructions within a loop, a vectorization approach will perform them as a
group, making the process considerably faster.

When working with huge amounts of data, vectorization becomes important
because you perform the same operation many different times. Anything you can
do to keep the process out of a loop will make the code as a whole execute faster.
Here is an example of a simple vectorization:

def doAdd(a, b):
 return a + b

vectAdd = np.vectorize(doAdd)

print(vectAdd([1, 2, 3, 4], [1, 2, 3, 4]))

When you execute this code, you get the following output:

[2 4 6 8]

The vectAdd function worked on all the values at one time, in a single call. Con-
sequently, the doAdd function, which allows only two scalar inputs, was extended
to allow four inputs at one time. In general, vectorization offers these benefits:

 » Code that is concise and easier to read

 » Reduced debugging time because of fewer lines of code

 » The means to represent mathematical expressions more closely in code

 » A reduced number of inefficient loops

https://docs.oracle.com/cd/E26502_01/html/E28388/eojde.html
https://docs.oracle.com/cd/E26502_01/html/E28388/eojde.html

CHAPTER 5 Reviewing Matrix Math and Optimization 105

Interpreting Learning as Optimization
So far, the chapter has discussed data as an abstraction, the transformation of
data into useful forms, storage of the data in a matrix, and the basics of manipu-
lating that matrix once constructed. All these things lead toward the ability to
automate data processing so that you can find useful patterns. For example, a set
of pixels, the smallest element of an image, is simply a series of numbers within
a matrix. Locating a specific face within that image requires manipulation of those
numbers to find the specific sequences that equate to a face.

Before long, you realize that finding a pattern and then interpreting it correctly
takes time, even for a computer, to perform with any accuracy. Of course, time is
always a factor. Discovering that a criminal has entered an airport an hour after
the fact isn’t useful — the discovery must occur as soon as possible. To make this
happen, the data manipulation and pattern recognition must occur as quickly as
possible, which means optimizing the process. Optimization simply means to find
ways to perform the task faster without losing much or anything in the way of
accuracy.

Learning, from the perspective of a computer, occurs when an application finds the
means to perform optimization successfully. You have to keep in mind that com-
puter learning is different from human learning in that a computer doesn’t actu-
ally understand anything new when learning takes place. The computer simply
can manipulate data with greater speed and accuracy to locate patterns of interest.
The rest of this book explores the concept of optimization in detail, but the fol-
lowing sections give you a quick overview of what optimizing the manipulation
means.

Exploring cost functions
Humans understand the idea of cost quite well. You go to one store and find that
a product costs a certain amount. However, you know that another store sells pre-
cisely the same product for less. The products are the same in both cases, so you
purchase the item from the store that sells it for less. The same cost principle
applies to computer learning. A computer can provide multiple methods of finding
the patterns you want, but only one of those methods will produce output of the
desired accuracy in the required time frame. The method that performs best, the
one that you’ll ultimately use, has the lowest cost.

For instance, you may need to predict a number or a class to solve a problem. It’s
possible to transform each of these problems into a cost that the deep learning
algorithm can use to determine whether its prediction is correct. This task is done
using the cost function (also called the loss function) that measures the difference

106 PART 2 Considering Deep Learning Basics

between the correct answer and the answer provided by the deep learning algo-
rithm. The output of the cost function is the difference between the correct value
and the predicted value as a number. The cost function is what truly drives the
success of a deep learning, because it determines what the algorithm learns. You
must choose the right cost function for your problem wisely. Here are the cost
functions that you frequently see used with deep learning:

 » Mean squared error: Takes the square of the difference between a correct
value and the value predicted by the algorithm. When the difference is great,
the squared value is even greater, highlighting the algorithm error.

 » Cross entropy or log loss: Evaluates prediction errors employing a logarithm.
Deep learning algorithms use probabilities to provide answers. (They don’t
output the probability, but the output has a certain probability.) Probabilities
are based on their correctness and are transformed into a numeric measure
that represents the error.

Knowing the cost that a deep learning algorithm produces when guessing an out-
put is just one part of the process. Just as humans learn from errors when made
aware of them, deep learning learns through the output of the cost function. Cost
implies finding a method that performs tasks in an optimal manner. The word
optimum is purposely imprecise because what may seem optimal in one situation
may not be optimal in another. The optimal solution is the one that will continue to
locate the required patterns in the minimum time with the specified accuracy over
a large number of data items. Creating a method that works with the data you
know about doesn’t pay. What you want is an optimal method for dealing with the
data that you don’t know about today.

Descending the error curve
When a human makes a mistake and someone sees it, the other person provides
feedback to help the first person understand the nature of the mistake and the
correct resolution for it. A single feedback session may not suffice to help a person
correct the error; therefore, repeating the feedback may be necessary to help a
person gradually correct the mistake. Likewise, the automation provided by deep
learning requires correction by subsequent corrections.

After detecting an error, the automation provides correction to the algorithms
performing the processing. This feedback loop improves the responses given by
the deep learning solution over time, which makes the solution more accurate in
finding the correct patterns. As this process continues the error level measured by
the cost function decreases, thus drawing a descending curve. The cost function

CHAPTER 5 Reviewing Matrix Math and Optimization 107

drives the process just described, but it needs other algorithms, such as optimiza-
tion and the error correction, to make actual changes. The cost function reports
the error level only when a deep learning model outputs a prediction.

For the purposes of this book, different algorithms achieve different kinds of opti-
mization. Gradient Descent, Stochastic Gradient Descent, Momentum, Adagrad,
RMSProp, Adadelta, and Adam are all variants of the same optimization concept
that the book explores later. Error correction relies on a different algorithm called
backpropagation. An error function sends feedback through the neural network in
the form of weights that affect how the solution transforms data inputs to ensure
the correct output.

Learning the right direction
Gradient descent is a widely used approach to determine what corrections are
needed make a deep learning model perform better given a certain error. It always
starts with an initial deep learning network configuration and translates the feed-
back of the cost function into a general correction to distribute to the deep learn-
ing network nodes. This process requires a number of iterations to complete — until
the cost function output is in the desired range.

Figuratively, you can see gradient descent as the captain of a boat that has to nav-
igate a waterway to avoid numerous obstacles, such as rocks or icebergs. As the
captain sees a danger (an error reported by the cost function), it provides a correc-
tion for the ship’s wheel that avoids the collision. Naturally, the captain transmits
the correction to the crew. The crew uses this information to control the ship’s
engines and rudders, the part of the story played by the backpropagation algorithm
(see Chapter 7, which also details the deep learning network internals).

Based on the cost function, the network also requires optimization to minimize
the error. However, optimization occurs only on the training data. Unfortunately,
a perfect training data optimization can lead to overfitting. Recognizing issues
such as overfitting is where the art aspect of deep learning occurs; you have to
optimize using the training data, but not optimize completely (overfitting) to
make the resulting model perform well on test data as well. This balancing act of
finding the right level of optimization is generalization. Fixing a limited number of
optimization iterations or stopping the optimization when you notice that the
model starts to perform poorly on test data that you separate from the training
data (a process called early stopping) are common strategies to achieve deep
learning optimization.

108 PART 2 Considering Deep Learning Basics

One interesting point is that the series of corrections provided by the gradient
descent algorithm may not be optimal in the end. Determining how to correct a
single error successfully is simple; correcting many errors simultaneously may
prove difficult. In many cases, the optimization algorithm gets stuck in a dead end
and can’t find the correct way to improve neural network performance, as shown
in Figure 5-1. This situation is a local minima, in which it the solution appears to
be performing optimally even though it really isn’t because further corrections
could continue to improve performance.

Figure 5-1 shows an example of an optimization process with many local minima
(the minimum points on the curved marked with letters) where the optimization
process may get struck and can’t continue its descent toward the deep minimum
marked with an asterisk. In an optimization process for a deep learning model,
you distinguish between different optimization outcomes. You can have a global
minimum, a good model that outputs predictions with the lowest possible error for
the problem, and many local minima, solutions that seem to provide the best error
correction but actually don’t.

Apart from local minima, saddle points are other problems that you can encounter
during optimization. In saddle points, you don’t have a minimum but your optimi-
zation slows down abruptly, inducing you to believe that the algorithm has
reached a minimum. In reality, saddle points represent only an optimization
pause. By insisting that the algorithm goes in a particular optimization direction,
you ensure that it can easily escape saddle points and proceed with error reduc-
tion. Here are ways to improve your chances of obtaining algorithms that are
optimized and perform well:

FIGURE 5-1:
Optimization

driving toward
the global
minimum.

CHAPTER 5 Reviewing Matrix Math and Optimization 109

 » Prepare the learning data as needed to reflect the problem

 » Choose different optimization variants and set their learning as needed

 » Set other deep learning network key characteristics

Updating
Updating a neural network with weights can take one of two forms: stochastic and
batch. When performing stochastic updates, each input generates a weight adjust-
ment individually. This approach has the advantage of reducing the risk that the
algorithm could get stuck in a local minima. When performing batch updates,
the error accumulates in some manner and the weight adjustment occurs
when the batch is complete. The advantage of this approach is that learning occurs
faster because the impact of the weight adjustments is greater.

The best way for a deep neural network to learn is to try to minimize the errors of
all the examples at one time. This goal is not always possible because the data
could be too large to fit into memory. Batch updates are the best strategy possible
in many cases, with batch sizes being the largest possible for the hardware you are
using.

CHAPTER 6 Laying Linear Regression Foundations 111

Chapter 6
Laying Linear Regression
Foundations

The term linear regression may seem complicated, but it’s not, as you see in
this chapter. A linear regression is essentially a straight line drawn through
a series of x/y coordinates that determine the location of a data point. The

data points may not always lie directly on the line, but the line shows where the
data points would fall in a perfect world of linear coordinates. By using the line,
you can predict a value of y (the criterion variable) given a value of x (the predictor
variable). When you have just one predictor variable, you have a simple linear
regression. As a contrast, when you have many predictors, you have a multiple
linear regression, which doesn’t rely on a line but rather on a plane extending
through multiple dimensions. Deep learning uses data inputs to guess the nonlin-
ear plane that will most correctly go through the middle of a set of data points in
a more sophisticated manner than linear regression. It does share some key char-
acteristics with linear regression, which is the main topic of this chapter: To tell
you about linear regression and provide you with useful ideas that you can later
transfer to deep learning. The first part of this chapter discusses variables and
how you work with them to create a linear regression.

Moving on, say that you’ve created a linear regression model, but that the line is
separating two categories. Data points on one side of the line are one thing and
data points on the other side of the line are another thing. A neural network can
use linear regression to determine the probability of a data point’s being on one

IN THIS CHAPTER

 » Performing various tasks with
variables

 » Dealing with probabilities

 » Considering which features to use

 » Learning by using Stochastic Gradient
Descent (SGD)

112 PART 2 Considering Deep Learning Basics

side of the line or the other. By knowing what sort of object (as expressed by the
data point) you’re dealing with, you can categorize the object — that is, determine
what group of objects that it belongs to.

The essence of performing all this work is to develop a solution to a problem. For
example, you may have a whole list of data points and need to know which group
each data point belongs to, which would be an arduous task without some sort of
automation. However, to create a valid solution to any given problem, you must
have the right data, which means determining the correct inputs, or features, to
use. The third part of this chapter discusses how to select features that will best
answer the questions that you must consider.

Finally, this chapter uses what you’ve discovered so far to solve a simple problem
using stochastic gradient descent (SGD). Putting everything together will make
the use of linear regression in solving problems clear.

Combining Variables
Regression boasts a long history in different domains: statistics, economics, psy-
chology, social sciences, and political sciences. Apart from being capable of a large
range of predictions involving numeric values, binary and multiple classes, prob-
abilities, and count data, linear regression also helps you understand group dif-
ferences, model consumer preferences, and quantify the importance of a feature
in a model.

Stripped of most of its statistical properties, linear regression remains a simple,
understandable, yet effective algorithm for the prediction of values and classes.
Fast to train, easy to explain to nontechnical people, and simple to implement in
any programming language, linear and logistic regression are the first choice of
most deep learning practitioners when building models to compare with more
sophisticated solutions (a baseline model). People also use them to determine
the key features in a problem, to experiment, and to obtain insight into feature
creation.

Working through simple linear regression
You need to differentiate between the statistical write-ups of linear regression
that involve plotting coordinates and drawing a line through them from the algo-
rithm that deep learning uses to predict the location of that line in a plot. Linear
regression works by combining numeric features through summation. Adding a
constant number, called the bias, completes the summation. The bias represents

CHAPTER 6 Laying Linear Regression Foundations 113

the prediction baseline when all the features have values of zero. Bias can play an
important role in producing default predictions, especially when some of your
features are missing (and so have a zero value). Here’s the common formula for a
linear regression:

y = βX + α

In this expression, y is the vector of the response values. Possible response vectors
are the prices of houses in a city or the sales of a product, which is simply any
answer that is numeric, such as a measure or a quantity. The X symbol states the
matrix of features to use to guess the y vector. X is a matrix that contains only
numeric values. The Greek letter alpha (α) represents the bias, which is a con-
stant, whereas the letter beta (β) is a vector of coefficients that a linear regression
model uses with the bias to create the prediction.

Using Greek letters alpha and beta in regression is widespread to the point that
most practitioners call the vector of coefficients the regression beta.

You can make sense of this expression in different ways. To simplify, you can
imagine that X is actually composed of a single feature (described as a predictor in
statistical practice), so you can represent it as a vector named x. When only one
predictor is available, the calculation is a simple linear regression. Now that you
have a simpler formulation, your high school algebra and geometry tell you that
the formulation y=bx+a is a line in a coordinate plane made of an x axis (the
abscissa) and a y axis (the ordinate).

Advancing to multiple linear regression
The world seldom offers problems that have just one feature. When predicting
house prices, you must consider all sorts of issues, such as the neighborhood and
the number of rooms in the house. Otherwise, people could solve most problems
without using automation such as deep learning. When you have more than one
feature (a multiple linear regression), you can’t use a simple coordinate plane made
of x and y anymore. The space now spans multiple dimensions, with each dimen-
sion being a feature. Now your formula is more intricate, composed of multiple x
values, each weighted by its own beta. For instance, if you have four features (so
that the space is four dimensional), the regression formulation, as explicated
from matrix form, is

y = x1b1+x2b2+x3b3+x4b4+a

This complex formula, which exists in a multidimensional space, isn’t a line any-
more, but rather a plane with as many dimensions as the space. This is a

114 PART 2 Considering Deep Learning Basics

hyperplane, and its surface individuates the response values for every possible
combination of values in the feature dimensions.

This discussion explains regression in its geometrical meaning, but you can also
view it as just a large weighted summation. You can decompose the response into
many parts, each one referring to a feature and contributing to a certain portion.
The geometric meaning is particularly useful for discussing regression properties,
but the weighted summation meaning helps you understand practical examples
better. For instance, if you want to predict a model for advertising expenditures,
you can use a regression model and create a model like this:

sales = advertising*badv + shops*bshop + price*bprice + a

In this formulation, sales are the sum of advertising expenditures, the number of
shops distributing the product, and the product’s price. You can quickly demystify
linear regression by explaining its components. First, you have the bias, the con-
stant a, which acts as a starting point. Then you have three feature values, each
one expressed in a different scale (advertising is a lot of money, price is some
affordable value, and shops is a positive number), each one rescaled by its respec-
tive beta coefficient.

Each beta presents a numeric value that describes the intensity of the relationship
to the response. It also has a sign that shows the effect of a change in feature.
When a beta coefficient is near zero, the effect of the feature on the response is
weak, but if its value is far from zero, either positive or negative, the effect is sig-
nificant and the feature is important to the regression model.

To obtain an estimate of the target value, you scale each beta to the measure of
the feature. A high beta provides more or less effect on the response depending
on the scale of the feature. A good habit is to standardize the features (by sub-
tracting the mean and dividing by standard deviation) to avoid being fooled by
high beta values on small-scale features and to compare different beta coeffi-
cients. The resulting beta values are comparable, allowing you to determine which
ones have the most impact on the response (those with the largest absolute value).

If beta is positive, increasing the feature will increase the response, whereas
decreasing the feature will decrease the response. Conversely, if beta is negative,
the response will act contrary to the feature: When one is increasing, the other is
decreasing. Each beta in a regression represents an impact.

CHAPTER 6 Laying Linear Regression Foundations 115

Including gradient descent
Using the gradient descent algorithm discussed later in this chapter, linear regres-
sion can find the best set of beta coefficients (and bias) to minimize a cost func-
tion given by the squared difference between the predictions and the real values:

J w
n

Xw y() ()1
2

2

This formula tells you the cost J as a function of w, the vector of coefficients of the
linear model. The cost is the summed, squared difference of response values from
predicted values (the multiplication Xw) divided by two times the number of
observations (n). The algorithm strives to find the minimum possible solution
values for the difference between the real target values and the predictions derived
from the linear regression.

You can express the result of the optimization graphically as the vertical distances
between the data points and the regression line. The regression line represents
the response variable well when the distances are small, as shown in Figure 6-1
(with a simple linear regression on the left and a multiple linear regression on the
right). If you sum the squares of the distances (the length of the line connecting
the data point to the regression line in the figure), the sum is always the
minimum possible when you calculate the regression line correctly. (No other
combination of beta will result in a lower error.)

In statistics, practitioners often indicate estimating the solution of a linear regres-
sion based on matrix calculus (that’s called solving by closed form). Using this
approach isn’t always feasible, and computations are quite slow when the input
matrix is large. In deep learning, you obtain the same results using the Gradient
Descent Optimization (GDO), which handles larger amounts of data easier and
faster, thus estimating a solution from any input matrix.

FIGURE 6-1:
An example of

visualizing errors
of a regression
line and plane.

116 PART 2 Considering Deep Learning Basics

Seeing linear regression in action
The following Python example uses the Boston dataset from Scikit-learn to try to
guess the Boston housing prices using a linear regression. The example also tries
to determine which variables influence the result more. Beyond computational
issues, standardizing the predictors proves quite useful if you want to determine
the influential variables:

from sklearn.datasets import load_boston
from sklearn.preprocessing import scale
boston = load_boston()
X, y = scale(boston.data), boston.target

The regression class in Scikit-learn is part of the linear_model module. Because
you previously scaled the X variables, you don’t need to decide any other prepara-
tions or special parameters when using this algorithm:

from sklearn.linear_model import LinearRegression
regression = LinearRegression()
regression.fit(X, y)

Now that the algorithm is fitted, you can use the score method to report the R2
measure:

print('R2 %0.3f' % regression.score(X, y))

R2 0.741

UNDERSTANDING R2 A LITTLE BETTER
R2, also known as coefficient of determination, is a measure ranging from 0 to 1. It
shows how using a regression model is better in predicting the response than using a
simple mean. The coefficient of determination is derived from statistical practice and
directly relates to the sum of squared errors. You can also understand R2 as the quan-
tity of information explained by the model (the same as the squared correlation), so get-
ting near 1 means being able to explain most of the data using the model.

Calculating the R2 on the same set of data used for the training is common in statistics.
In data science and deep learning, you’re always better off to test scores on data not
used for training. Complex algorithms can memorize the data rather than learn from it.
In certain circumstances, this problem can also happen when you use simpler models,
such as linear regression.

CHAPTER 6 Laying Linear Regression Foundations 117

To understand what drives the estimates in the multiple regression model, you
have to look at the coefficients_ attribute, which is an array containing the
regression beta coefficients. By printing the boston.DESCR attribute, you can
understand the variable reference:

print([a + ':' + str(round(b, 1)) for a, b in
 zip(boston.feature_names, regression.coef_)])

['CRIM:-0.9', 'ZN:1.1', 'INDUS:0.1', 'CHAS:0.7',
 'NOX:-2.1', 'RM:2.7', 'AGE:0.0', 'DIS:-3.1',
 'RAD:2.7', 'TAX:-2.1', 'PTRATIO:-2.1',
 'B:0.9', 'LSTAT:-3.7']

The DIS variable, which contains the weighted distances to five employment cen-
ters, has the largest absolute unit change. In real estate, a house that’s too far
away from people’s interests (such as work) lowers the value. Instead, AGE or
INDUS, which are both proportions that describe the building’s age and whether
nonretail activities are available in the area, don’t influence the result as much;
the absolute value of their beta coefficients is much lower.

You may wonder why the chapter’s examples don’t use Keras and TensorFlow.
Using these libraries is possible, but deep learning packages are most suited for
deep learning solutions. Using them for simpler models means overcomplicating
the solution. Scikit-learn offers clear and simple implementations of linear
regression models that help you understand how these algorithms work better.

Mixing Variable Types
Quite a few problems arise with the effective, yet simple, linear regression tool.
Sometimes, depending on the data you use, the problems are greater than the
benefits of using this tool. The best way to determine whether linear regression
will work is to use the algorithm and test its efficacy on your data.

Modeling the responses
Linear regression can model responses only as quantitative data. When you need
to model categories as a response, you must turn to logistic regression. When
working with predictors, you do best by using continuous numeric variables;
although you can fit both ordinal numbers and, with some transformations, qual-
itative categories.

118 PART 2 Considering Deep Learning Basics

A qualitative variable might express a color feature, such as the color of a product,
or a feature that indicates the profession of a person. You have a number of options
for transforming a qualitative variable by using a technique such as binary encod-
ing (the most common approach). When making a qualitative variable binary, you
create as many features as classes in the feature. Each feature contains zero values
unless its class appears in the data, when it takes the value of one. This procedure
is called one-hot encoding. A simple Python example using the Scikit-learn pre-
processing module shows how to perform one-hot encoding:

from sklearn.preprocessing import OneHotEncoder
from sklearn.preprocessing import LabelEncoder
lbl = LabelEncoder()
enc = OneHotEncoder()
qualitative = ['red', 'red', 'green', 'blue',
 'red', 'blue', 'blue', 'green']
labels = lbl.fit_transform(qualitative).reshape(8,1)
print(enc.fit_transform(labels).toarray())

[[0. 0. 1.]
 [0. 0. 1.]
 [0. 1. 0.]
 [1. 0. 0.]
 [0. 0. 1.]
 [1. 0. 0.]
 [1. 0. 0.]
 [0. 1. 0.]]

In this case, you see what appears to be three columns: blue, green, and red. For
example, notice that in array element [0, 2] you see a value of 1., which equates
to a value of red in that position. Now look at the original array, where you see that
qualitative[0] is indeed 'red'.

Modeling the features
In statistics, because you solve the linear regression using the closed form, when
you want to make a binary variable out of a categorical one, you transform all the
levels but one because you use the inverse matrix computation formula, which has
quite a few limitations. In deep learning, you use gradient descent, so you instead
transform all the levels.

If a data matrix is missing data and you don’t deal with it properly, the model will
stop working. Consequently, you need to impute the missing values (for instance,
by replacing a missing value with the mean value calculated from the feature
itself). Another solution is to use a zero value for the missing case, and to create

CHAPTER 6 Laying Linear Regression Foundations 119

an additional binary variable whose unit values point out missing values in the
feature. In addition, outliers (values outside the normal range) disrupt linear
regression because the model tries to minimize the square value of the errors (also
called residuals). Outliers have large residuals, thus forcing the algorithm to focus
more on them than on regular points.

Dealing with complex relations
The greatest linear regression limitation is that the model is a summation of inde-
pendent terms, because each feature stands alone in the summation, multiplied
only by its own beta. This mathematical form is perfect for expressing a situation
in which the features are unrelated. For instance, a person’s age and eye color are
unrelated terms because they do not influence each other. Thus, you can consider
them to be independent terms, and in a regression summation, having them stay
separated makes sense.

Contrast unrelated terms with related terms. For example, a person’s age and hair
color relate because aging causes hair to whiten. When you put these features in a
regression summation, it’s like summing the same information. Because of this
limitation, you can’t determine how to represent the effect of variable combina-
tions on the outcome. In other words, you can’t represent complex situations with
your data. Because the model is made of simple combinations of weighted fea-
tures, its predictions are more affected by bias than variance. In fact, after fitting
the observed outcome values, the solution proposed by linear models is always a
proportionally rescaled mix of features.

Unfortunately, you can’t represent some relations between a response and a fea-
ture faithfully by using a proportionally rescaled mix of features. On many occa-
sions, the response depends on features in a nonlinear way: Some feature values
act as hurdles, after which the response suddenly increases or decreases, strength-
ens or weakens, or even reverses. As an example, consider how human beings
grow in height from childhood. If observed in a specific age range, the relation-
ship between age and height is somehow linear: the child gets taller as age
increases. However, some children grow more (overall height) and some grow
faster (growth in a certain amount of time). This observation holds when you
expect a linear model to find an average answer. However, after a certain age,
children stop growing and the height remains constant for a long part of life,
slowly decreasing in older age. Clearly, a linear regression can’t grasp such a non-
linear relationship. (In the end, you can represent it as a kind of parabola.)

Because the relation between the target and each predictor variable is based on a
single coefficient, you don’t have a way to represent complex relations like a
parabola (a unique value of x maximizing or minimizing the response), an expo-
nential growth, or a more complex nonlinear curve unless you enrich the feature.

120 PART 2 Considering Deep Learning Basics

The easiest way to model complex relations is by employing mathematical trans-
formations of the predictors using polynomial expansion. Polynomial expansion,
given a certain degree d, creates powers of each feature up to the d-power and
d-combinations of all the terms. For instance, if you start with a simple linear
model such as the following:

y = b1x1 + b2x2 + a

and then use a polynomial expansion of the second degree, that model becomes

y = b1x1 + b2x2 + a + b3x1**2+b4x2**2+b5x1x2

You make the addition to the original formulation (the expansion) using powers
and combinations of the existing predictors. As the degree of the polynomial
expansion grows, so does the number of derived terms.

When using polynomial expansion, you start putting the variables in relation to
each other. That’s exactly what neural networks and deep learning do at a differ-
ent scale; they relate each variable to each other.

The following Python example uses the Boston dataset to check the technique’s
effectiveness. If successful, the polynomial expansion will catch nonlinear rela-
tionships in data that require a curve, not a line, to predict correctly and overcome
any difficulty in prediction at the expense of an increased number of predictors.

from sklearn.preprocessing import PolynomialFeatures
from sklearn.model_selection import train_test_split
from sklearn.metrics import r2_score

pf = PolynomialFeatures(degree=2)
poly_X = pf.fit_transform(X)
X_train, X_test, y_train, y_test = (
 train_test_split(poly_X,
 y, test_size=0.33, random_state=42))

from sklearn.linear_model import Ridge
reg_regression = Ridge(alpha=0.1, normalize=True)
reg_regression.fit(X_train,y_train)
print ('R2: %0.3f'
 % r2_score(y_test,reg_regression.predict(X_test)))

R2: 0.819

CHAPTER 6 Laying Linear Regression Foundations 121

Because feature scales are enlarged by power expansion, standardizing the data
after a polynomial expansion is a good practice.

Polynomial expansion doesn’t always provide the advantages demonstrated by
the previous example. By expanding the number of features, you reduce the bias
of the predictions at the expense of potentially overfitting.

Switching to Probabilities
Up to now, the chapter has considered only regression models, which express
numeric values as outputs from data learning. Most problems, however, also
require classification. The following sections discuss how you can address both
numeric and classification output.

Specifying a binary response
A solution to a problem involving a binary response (the model has to choose from
between two possible classes) would be to code a response vector as a sequence of
ones and zeros (or positive and negative values). The following Python code proves
both the feasibility and limits of using a binary response:

import numpy as np

a = np.array([0, 0, 0, 0, 1, 1, 1, 1])
b = np.array([1, 2, 3, 4, 5, 6, 7, 8]).reshape(8,1)
from sklearn.linear_model import LinearRegression
regression = LinearRegression()
regression.fit(b,a)
print (regression.predict(b)>0.5)

[False False False False True True True True]

In statistics, linear regression can’t solve classification problems because doing so
would create a series of violated statistical assumptions. So, for statistics, using
regression models for classification purposes is mainly a theoretical problem, not
a practical one. In deep learning, the problem with linear regression is that it
serves as a linear function that’s trying to minimize prediction errors; therefore,
depending on the slope of the computed line, it may not be able to solve the data
problem.

122 PART 2 Considering Deep Learning Basics

When a linear regression is given the task of predicting two values, such as 0 and
+1, which represent two classes, it tries to compute a line that provides results
close to the target values. In some cases, even though the results are precise, the
output is too far from the target values, which forces the regression line to adjust
in order to minimize the summed errors. The change results in fewer summed
deviance errors but more misclassified cases.

Linear regression doesn’t produce acceptable results when the priority is classifi-
cation accuracy, as shown in Figure 6-2 on the left. Therefore, it won’t work sat-
isfactorily in many classification tasks. Linear regression works best on a
continuum of numeric estimates. However, for classification tasks, you need a
more suitable measure, such as the probability of class ownership.

Transforming numeric estimates
into probabilities
Thanks to the following formula, you can transform linear regression numeric
estimates into probabilities that are more apt to describe how a class fits an
observation:

p y
r
r

()
exp()

(exp())
1

1

In this formula, the target is the probability that the response y will correspond
to the class 1. The letter r is the regression result, the sum of the variables weighted
by their coefficients. The exponential function, exp(r), corresponds to Euler’s
number e elevated to the power of r. A linear regression using this transformation
formula (also called a link function) for changing its results into probabilities is a
logistic regression.

Logistic regression (shown on the right in Figure 6-2) is the same as a linear regres-
sion except that the y data contains integer numbers indicating the class relative
to the observation. So, using the Boston dataset from the Scikit-learn datasets

FIGURE 6-2:
Probabilities do

not work as well
with a straight
line as they do
with a sigmoid

curve.

CHAPTER 6 Laying Linear Regression Foundations 123

module, you can try to guess what makes houses in an area overly expensive
(median values >= 40):

from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split

binary_y = np.array(y >= 40).astype(int)
X_train, X_test, y_train, y_test = train_test_split(X,
 binary_y, test_size=0.33, random_state=5)
logistic = LogisticRegression()
logistic.fit(X_train,y_train)
from sklearn.metrics import accuracy_score
print('In-sample accuracy: %0.3f' %
 accuracy_score(y_train, logistic.predict(X_train)))
print('Out-of-sample accuracy: %0.3f' %
 accuracy_score(y_test, logistic.predict(X_test)))

In-sample accuracy: 0.973
Out-of-sample accuracy: 0.958

The example splits the data into training and testing sets, enabling you to check
the efficacy of the logistic regression model on data that the model hasn’t used for
learning. The resulting coefficients tell you the probability of a particular class’s
being in the target class (which is any class encoded using a value of 1). If a coef-
ficient increases the likelihood, it will have a positive coefficient; otherwise, the
coefficient is negative.

for var,coef in zip(boston.feature_names,
 logistic.coef_[0]):
 print ("%7s : %7.3f" %(var, coef))

 CRIM : -0.006
 ZN : 0.197
 INDUS : 0.580
 CHAS : -0.023
 NOX : -0.236
 RM : 1.426
 AGE : -0.048
 DIS : -0.365
 RAD : 0.645
 TAX : -0.220
PTRATIO : -0.554
 B : 0.049
 LSTAT : -0.803

124 PART 2 Considering Deep Learning Basics

Reading the results on your screen, you can see that in Boston, criminality (CRIM)
has some effect on prices. However, the level of poverty (LSTAT), distance from
work (DIS), and pollution (NOX) all have much greater effects. Moreover, contrary
to linear regression, logistic regression doesn’t simply output the resulting class
(in this case a 1 or a 0) but also estimates the probability of the observation’s being
part of one of the two classes:

print('\nclasses:',logistic.classes_)
print('\nProbs:\n',logistic.predict_proba(X_test)[:3,:])

classes: [0 1]

Probs:
 [[0.39022779 0.60977221]
 [0.93856655 0.06143345]
 [0.98425623 0.01574377]]

In this small sample, only the first case has a 61 percent probability of being an
expensive housing area. When you perform predictions using this approach, you
also know the probability that your forecast is accurate and act accordingly,
choosing only predictions with the right level of accuracy. (For instance, you
might pick only predictions that exceed an 80 percent likelihood.)

Guessing the Right Features
Having many features to work with may seem to address the need for deep learn-
ing to understand a problem fully. However, just having features doesn’t solve
anything; you need the right features to solve problems. The following sections
discuss how to select the right features when performing deep learning tasks.

Defining the outcome of
incompatible features
Unless you use cross-validation, error measures such as R2 can be misleading
because the number of features can easily inflate it, even if the feature doesn’t
contain relevant information. The following example shows what happens to R2
when you add just random features:

from sklearn.model_selection import train_test_split
from sklearn.metrics import r2_score

CHAPTER 6 Laying Linear Regression Foundations 125

X_train, X_test, y_train, y_test = train_test_split(X,
 y, test_size=0.33, random_state=42)
check = [2**i for i in range(8)]
for i in range(2**7+1):
 X_train = np.column_stack((X_train,np.random.random(
 X_train.shape[0])))
 X_test = np.column_stack((X_test,np.random.random(
 X_test.shape[0])))
 regression.fit(X_train, y_train)
 if i in check:
 print ("Random features: %i -> R2: %0.3f" % (i,
 r2_score(y_train,regression.predict(X_train))))

Random features: 1 -> R2: 0.739
Random features: 2 -> R2: 0.740
Random features: 4 -> R2: 0.740
Random features: 8 -> R2: 0.743
Random features: 16 -> R2: 0.746
Random features: 32 -> R2: 0.762
Random features: 64 -> R2: 0.797
Random features: 128 -> R2: 0.859

What seems like an increased predictive capability is really just an illusion. You
can reveal what happened by checking the test set and discovering that the model
performance has decreased:

regression.fit(X_train, y_train)
print ('R2 %0.3f'
 % r2_score(y_test,regression.predict(X_test)))
Please notice that the R2 result may change from run to
run due to the random nature of the experiment

R2 0.474

Solving overfitting using selection
and regularization
Regularization is an effective, fast, and easy solution to implement when you have
many features and want to reduce the variance of the estimates because of multi-
collinearity between your predictors. It can also help if you have outliers and noise
in your data. Regularization works by adding a penalty to the cost function. The
penalization is a summation of the coefficients. If the coefficients are squared

126 PART 2 Considering Deep Learning Basics

(so that positive and negative values can’t cancel each other), it’s an L2 regulariza-
tion (also called the Ridge). When you use the coefficient absolute value, it’s an
L1 regularization (also called the Lasso).

However, regularization doesn’t always work perfectly. L2 regularization keeps all
the features in the model and balances the contribution of each of them. In an
L2 solution, if two variables correlate well, each one contributes equally to the
solution for a portion, whereas without regularization, their shared contribution
would have been unequally distributed.

Alternatively, L1 brings highly correlated features out of the model by making
their coefficient zero, thus proposing a real selection among features. In fact, set-
ting the coefficient to zero is just like excluding the feature from the model. When
multicollinearity is high, the choice of which predictor to set to zero becomes a bit
random, and, depending on your sample, you can get various solutions character-
ized by differently excluded features. Such solution instability may prove a nui-
sance, making the L1 solution less than ideal.

Scholars have found a fix by creating various solutions based on L1 regularization
and then looking at how the coefficients behave across solutions. In this case, the
algorithm picks only the stable coefficients (the ones that are seldom set to zero).
You can read more about this technique on the Scikit-learn website at https://
scikit-learn.org/0.15/auto_examples/linear_model/plot_sparse_recovery.
html. The following example modifies the polynomial expansions example using L2
regularization (Ridge regression) and reduces the influence of redundant coeffi-
cients created by the expansion procedure:

from sklearn.preprocessing import PolynomialFeatures
from sklearn.model_selection import train_test_split

pf = PolynomialFeatures(degree=2)
poly_X = pf.fit_transform(X)
X_train, X_test, y_train, y_test =
 train_test_split(poly_X,
 y, test_size=0.33, random_state=42)

from sklearn.linear_model import Ridge
reg_regression = Ridge(alpha=0.1, normalize=True)
reg_regression.fit(X_train,y_train)
print ('R2: %0.3f'
 % r2_score(y_test,reg_regression.predict(X_test)))

R2: 0.819

https://scikit-learn.org/0.15/auto_examples/linear_model/plot_sparse_recovery.html
https://scikit-learn.org/0.15/auto_examples/linear_model/plot_sparse_recovery.html
https://scikit-learn.org/0.15/auto_examples/linear_model/plot_sparse_recovery.html

CHAPTER 6 Laying Linear Regression Foundations 127

Learning One Example at a Time
Finding the right coefficients for a linear model is just a matter of time and mem-
ory. However, sometimes a system won’t have enough memory to store a huge
dataset. In this case, you must resort to other means, such as learning from one
example at a time, rather than having all of them loaded into memory. The fol-
lowing sections demonstrate the one-example-at-a-time approach to learning.

Using gradient descent
The gradient descent finds the right way to minimize the cost function one itera-
tion at a time. After each step, it checks all the model’s summed errors and updates
the coefficients to make the error even smaller during the next data iteration. The
efficiency of this approach derives from considering all the examples in the sam-
ple. The drawback of this approach is that you must load all the data into memory.

Unfortunately, you can’t always store all the data in memory because some data-
sets are huge. In addition, learning using simple learners requires large amounts
of data to build effective models (more data helps to correctly disambiguate mul-
ticollinearity). Getting and storing chunks of data on your hard disk is always
possible, but it’s not feasible because of the need to perform matrix multiplica-
tion, which requires data swapping from disk to select rows and columns. Scien-
tists who have worked on the problem have found an effective solution. Instead of
learning from all the data after having seen it all (which is called an iteration), the
algorithm learns from one example at a time, as picked from storage using
sequential access, and then goes on to learn from the next example. When the
algorithm has learned all the examples, it starts from the beginning unless it
meets some stopping criterion (such as completing a predefined number of
iterations).

Understanding how SGD is different
Stochastic gradient descent (SGD) is a slight variation on the gradient descent
algorithm. It provides an update procedure for estimating beta coefficients. Linear
models are perfectly at ease with this approach.

In SGD, the formulation remains the same as in the standard version of gradient
descent (called the batch version, in contrast to the online version), except for the
update. In SGD, the update is executed a single instance at a time, allowing the
algorithm to leave core data in storage and place just the single observation needed
to change the coefficient vector in memory:

wj = wj – α(wx - y)xj

128 PART 2 Considering Deep Learning Basics

As with the gradient descent algorithm, the algorithm updates the coefficient, w,
of feature j by subtracting the difference between the prediction and the real
response. It then multiplies the difference by the value of the feature j and by a
learning factor alpha (which can reduce or increase the effect of the update on the
coefficient).

SGD offers other subtle differences. The most important difference is the stochas-
tic term in the name of this online learning algorithm. In fact, SGD expects an
example at a time, drawn randomly from the available examples (random sam-
pling). The problem with online learning is that example ordering changes the
way the algorithm guesses beta coefficients. With partial optimization, one exam-
ple can change the way the algorithm reaches the optimum value, creating a dif-
ferent set of coefficients than would have happened without that example. As a
practical example, SGD can learn the order in which it sees the examples. If the
algorithm performs any kind of ordering (historical, alphabetical, or, worse,
related to the response variable), it invariably learns it. Only random sampling
allows you to obtain a reliable online model that works effectively on unseen data.
When streaming data, you need to randomly re-order your data (data shuffling).

The SGD algorithm, contrary to batch learning, needs a much larger number of
iterations to obtain the right global direction in spite of the contrary indications
that come from single examples. In fact, the algorithm updates after each new
example, and the consequent journey toward an optimum set of parameters is
more erratic in comparison to an optimization made on a batch, which immedi-
ately tends to get the right direction because it’s derived from data as a whole, as
shown in Figure 6-3.

FIGURE 6-3:
Visualizing

the different
optimization
paths on the

same data
problem.

CHAPTER 6 Laying Linear Regression Foundations 129

In this case, the learning rate has even more importance because it dictates how
the SGD optimization procedure can resist bad examples. In fact, if the learning
rate is high, an outlying example could derail the algorithm completely, prevent-
ing it from reaching a good result. On the other hand, high learning rates help to
keep the algorithm learning from examples. A good strategy is to use a flexible
learning rate, that is, starting with a flexible learning rate and making it rigid as
the number of examples it has seen grows.

Both SGD classification and regression implementations in Scikit-learn feature
different loss functions that you can apply to the stochastic gradient descent opti-
mization. Only two of those functions refer to the methods dealt with in this
chapter:

 » loss='squared_loss': Ordinary least squares (OLS) for linear regression

 » loss='log': Classical logistic regression

To demonstrate the effectiveness of out-core learning, the following example sets
up a brief experiment in Python using regression and squared_loss as the cost
function. It relies on the Boston dataset after shuffling it and separating it into
training and testing sets. The example demonstrates how beta coefficients change
as the algorithm sees more examples. The example also passes the same data
multiple times to reinforce data pattern learning. Using a test set guarantees a fair
evaluation, providing measures of the capability of the algorithm to generalize to
out-of-sample data. The output shows how long it takes before R2 increases and
the value of coefficients stabilize:

from sklearn.model_selection import train_test_split
from sklearn.linear_model import SGDRegressor

X_train, X_test, y_train, y_test = train_test_split(X,
 y, test_size=0.33, random_state=42)
SGD = SGDRegressor(penalty=None,
 learning_rate='invscaling',
 eta0=0.01, power_t=0.25,
 max_iter=5, tol=None)

power = 17
check = [2**i for i in range(power+1)]
for i in range(400):
 for j in range(X_train.shape[0]):
 SGD.partial_fit(X_train[j,:].reshape(1,13),
 y_train[j].reshape(1,))
 count = (j+1) + X_train.shape[0] * i

130 PART 2 Considering Deep Learning Basics

 if count in check:
 R2 = r2_score(y_test,SGD.predict(X_test))
 print ('Example %6i R2 %0.3f coef: %s' %
 (count, R2, ' '.join(map(
 lambda x:'%0.3f' %x, SGD.coef_))))

Example 131072 R2 0.724 coef: -1.098 0.891 0.374 0.849
 -1.905 2.752 -0.371 -3.005 2.026 -1.396 -2.011
 1.102 -3.956

No matter the amount of data, you can always fit a simple but effective linear
regression model using SGD online learning capabilities.

CHAPTER 7 Introducing Neural Networks 131

Chapter 7
Introducing Neural
Networks

You may have heard the term neural network in reference to artificial intel-
ligence. The first thing you need to know is that the correct term is Artificial
Neural Network (ANN) because no one has discovered any method of recreat-

ing a real brain, which is where the concept of a neural network comes from.
Chapter 2 of this book describes the various approaches to deep learning, of which
ANNs are one. You find the term shortened in this book because everyone else is
using the short term, but you need to know that ANN is actually the correct term
and that they’re the work of the connectionist tribe. (See the “Discovering the five
main approaches” section of Chapter 2 for a discussion of the five tribes of
machine learning and the approaches they’ve developed to solving problems.)

After you get past the whole idea that your computer lacks a brain — at least a real
brain — you can begin to appreciate the perceptron, which is the simplest type of
neural network. The perceptron is the focus of many of the neural network pic-
tures you see online, but not all neural networks mimic the perceptron.

A neural network can work with complex data because of how it allows multiple
inputs to flow through multiple layers of processing to produce myriad outputs.
(The perceptron can only actually choose between two outputs.) The idea is that
each of the paths fires only when it actually has a chance of answering whatever

IN THIS CHAPTER

 » Considering the perceptron

 » Dealing with complex data

 » Developing strategies for overcoming
overfitting

132 PART 2 Considering Deep Learning Basics

question you pose with your inputs, based on the algorithms you choose. The next
section of the chapter discusses some of these methods of dealing with complex
data.

Because neural networks can model incredibly complex data in a manner that
amazes some people, you might think it can correct for errors in processing, such
as overfitting (see the “Looking for generalization” section of Chapter 2 for
details). Unfortunately, computers really don’t have real brains, so overfitting is a
problem that you need to solve. The final section of this chapter looks at some
solutions for overfitting and discusses why it’s such a big problem in the first
place.

Discovering the Incredible Perceptron
Even though this book is about deep learning, you still need to know something
about the previous implementation levels of machine learning and AI. The per-
ceptron is actually a type (implementation) of machine learning for most people,
but other sources will tell you that it’s a true form of deep learning. You can start
the journey toward discovering how machine learning algorithms work by looking
at models that figure out their answers using lines and surfaces to divide exam-
ples into classes or to estimate value predictions. These are linear models, and this
chapter presents one of the earliest linear algorithms used in machine learning:
the perceptron. Later chapters will help you discover other sorts of modeling sig-
nificantly more advanced than the perceptron. However, before you can advance
to these other topics, you should understand the interesting history of the
perceptron.

Understanding perceptron functionality
Frank Rosenblatt, of the Cornell Aeronautical Laboratory, devised the perceptron
in 1957 under the sponsorship of the United States Naval Research. Rosenblatt was
a psychologist and pioneer in the field of artificial intelligence. Proficient in cog-
nitive science, his idea was to create a computer that could learn by trial and error,
just as a human does.

The idea was successfully developed, and at the beginning, the perceptron wasn’t
conceived as just a piece of software; it was created as software running on dedi-
cated hardware. You can see it at https://blogs.umass.edu/comphon/2017/
06/15/did-frank-rosenblatt-invent-deep-learning-in-1962/. Using that
combination allowed faster and more precise recognition of complex images than
any other computer could do at the time. The new technology raised great

https://blogs.umass.edu/comphon/2017/06/15/did-frank-rosenblatt-invent-deep-learning-in-1962/
https://blogs.umass.edu/comphon/2017/06/15/did-frank-rosenblatt-invent-deep-learning-in-1962/

CHAPTER 7 Introducing Neural Networks 133

expectations and caused a huge controversy when Rosenblatt affirmed that the
perceptron was the embryo of a new kind of computer that would be able to walk,
talk, see, write, and even reproduce itself and be conscious of its existence. If true,
it would have been a powerful tool, and it introduced the world to AI.

Needless to say, the perceptron didn’t realize the expectations of its creator. It
soon displayed a limited capacity, even in its image-recognition specialization.
The general disappointment ignited the first AI winter (a period of reduced fund-
ing and interest due to overhyping, for the most part) and the temporary aban-
donment of connectionism until the 1980s.

Connectionism is the approach to machine learning that is based on neuroscience
as well as the example of biologically interconnected networks. You can retrace
the root of connectionism to the perceptron.

The perceptron is an iterative algorithm that strives to determine, by successive
and reiterative approximations, the best set of values for a vector, w, which is also
called the coefficient vector. When the perceptron has achieved a suitable coefficient
vector, it can predict whether an example is part of a class. For instance, one of the
tasks the perceptron initially performed was to determine whether an image
received from visual sensors resembled a boat (an image recognition example
required by the United States Office of Naval Research, the sponsor of the research
on the perceptron). When the perceptron saw the image as part of the boat class,
it meant that it classified the image as a boat.

Vector w can help predict the class of an example when you multiply it by the
matrix of features, X, containing the information in numeric valuesexpressed in
numeric values relative to your example, and then add the result of the multipli-
cation to a constant term, called the bias, b. If the result of the sum is zero or posi-
tive, perceptron classifies the example as part of the class. When the sum is
negative, the example isn’t part of the class. Here’s the perceptron formula, in
which the sign function outputs 1 (when the example is part of the class) when the
value inside the parenthesis is equal or above zero; otherwise, it outputs 0:

y = sign(Xw + b)

Note that this algorithm contains all the elements that characterize a deep neural
network, meaning that all the building blocks enabling the technology were pres-
ent since the beginning:

 » Numeric processing of the input: X contains numbers, and no symbolic
values are used as input until you process it as a number. For instance, you
can’t input symbolic information such as red, green, or blue until you convert
these color values to numbers.

134 PART 2 Considering Deep Learning Basics

 » Weights and bias: The perceptron transforms X by multiplying by the weights
and adding the bias.

 » Summation of results: Uses matrix multiplication when multiplying X by the
w vector (an aspect of matrix multiplication covered in Chapter 5).

 » Activation function: The perceptron activates a result of the input being part
of the class when the summation exceeds a threshold — in this case, when
the resulting sum is zero or more.

 » Iterative learning of the best set of values for the vector w: The solution
relies on successive approximations based on the comparison between the
perceptron output and the expected result.

Touching the nonseparability limit
The secret to perceptron calculations is in how the algorithm updates the vector w
values. Such updates happen by randomly picking one of the misclassified exam-
ples. You have a misclassified example when the perceptron determines that an
example is part of the class, but it isn’t, or when the perceptron determines an
example isn’t part of the class, but it is. The perceptron handles one misclassified
example at a time (call it xt) and operates by changing the w vector using a simple
weighted addition:

w = w + ŋ(xt * yt)

This formula is called the update strategy of the perceptron, and the letters stand
for different numerical elements:

 » The letter w is the coefficient vectors, which is updated to correctly show
whether the misclassified example t is part of the class or not.

 » The Greek letter eta (η) is the learning rate. It’s a floating number between 0
and 1. When you set this value near zero, it can limit the capability of the
formula to update the vector w almost completely, whereas setting the value
near one makes the update process fully impact the w vector values. Setting
different learning rates can speed up or slow down the learning process.
Many other algorithms use this strategy, and lower eta is used to improve the
optimization process by reducing the number of sudden w value jumps after
an update. The trade-off is that you have to wait longer before getting the
concluding results.

 » The xt variable refers to the vector of numeric features for the example t.

 » The yt variable refers to the ground truth of whether the example t is part of
the class or not. For the perceptron algorithm, yt is numerically expressed with

CHAPTER 7 Introducing Neural Networks 135

+1 when the example is part of the class and with –1 when the example is not
part of the class.

The update strategy provides intuition about what happens when using a percep-
tron to learn the classes. If you imagine the examples projected on a Cartesian
plane, the perceptron is nothing more than a line trying to separate the positive
class from the negative one. As you may recall from linear algebra, everything
expressed in the form of y = xb+a is actually a line in a plane. The perceptron uses
a formula of y = xw + b, which uses different letters but expresses the same form,
the line in a Cartesian plane.

Initially, when w is set to zero or to random values, the separating line is just one
of the infinite possible lines found on a plane, as shown in Figure 7-1. The updat-
ing phase defines it by forcing it to become nearer to the misclassified point. As
the algorithm passes through the misclassified examples, it applies a series of
corrections. In the end, using multiple iterations to define the errors, the algo-
rithm places the separating line at the exact border between the two classes.

In spite of being such a smart algorithm, the perceptron showed its limits quite
soon. Apart from being capable of guessing two classes using only quantitative
features, it had an important limit: If two classes had no border because of mix-
ing, the algorithm couldn’t find a solution and kept updating itself infinitively.

If you can’t divide two classes spread on two or more dimensions by any line or
plane, they’re nonlinearly separable. Overcoming data’s being nonlinearly separa-
ble is one of the challenges that machine learning has to overcome in order to
become effective against complex problems based on real data, not just on artifi-
cial data created for academic purposes.

FIGURE 7-1:
The separating

line of a
perceptron
across two

classes.

136 PART 2 Considering Deep Learning Basics

When the nonlinearly separability matter came under scrutiny and practitioners
started losing interest in the perceptron, experts quickly theorized that they could
fix the problem by creating a new feature space in which previously inseparable
classes are tuned to become separable. Thus, the perceptron would be as fine as
before. Unfortunately, creating new feature spaces is a challenge because it
requires computational power that’s only partially available to the public today.
Creating a new feature space is an advanced topic discussed later in the book when
studying the learning strategies of algorithms, such as neural networks and sup-
port vector machines.

In recent years, the algorithm has had a revival thanks to big data: the perceptron,
in fact, doesn’t need to work with all the data in memory, but it can do fine using
single examples (updating its coefficient vector only when a misclassified case
makes it necessary). It’s therefore a perfect algorithm for online learning, such as
learning from big data an example at a time.

Hitting Complexity with Neural Networks
The previous section of the chapter helped you discover the neural network from
the perspective of the perceptron. Of course, there is more to neural networks
than that simple beginning. The capacity and other issues that plague the percep-
tron see at least partial resolution in newer algorithms. The following sections
help you understand neural networks as they exist today.

Considering the neuron
The core neural network component is the neuron (also called a unit). Many neu-
rons arranged in an interconnected structure make up a neural network, with each
neuron linking to the inputs and outputs of other neurons. Thus, a neuron can
input features from examples or the results of other neurons, depending on its
location in the neural network.

When the psychologist Rosenblatt conceived the perceptron, he thought of it as a
simplified mathematical version of a brain neuron. A perceptron takes values as
inputs from the nearby environment (the dataset), weights them (as brain cells
do, based on the strength of the in-bound connections), sums all the weighted
values, and activates when the sum exceeds a threshold. This threshold outputs a
value of 1; otherwise, its prediction is 0. Unfortunately, a perceptron can’t learn
when the classes it tries to process aren’t linearly separable. However, scholars
discovered that even though a single perceptron couldn’t learn the logical opera-
tion XOR shown in Figure 7-2 (the exclusive or, which is true only when the inputs
are dissimilar), two perceptrons working together could.

CHAPTER 7 Introducing Neural Networks 137

Neurons in a neural network are a further evolution of the perceptron: they take
many weighted values as inputs, sum them, and provide the summation as the
result, just as a perceptron does. However, they also provide a more sophisticated
transformation of the summation, something that the perceptron can’t do. In
observing nature, scientists noticed that neurons receive signals but don’t always
release a signal of their own. It depends on the amount of signal received. When a
neuron acquires enough stimuli, it fires an answer; otherwise, it remains silent. In
a similar fashion, algorithmic neurons, after receiving weighted values, sum them
and use an activation function to evaluate the result, which transforms it in a non-
linear way. For instance, the activation function can release a zero value unless
the input achieves a certain threshold, or it can dampen or enhance a value by
nonlinearly rescaling it, thus transmitting a rescaled signal.

A neural network has different activation functions, as shown in Figure 7-3. The
linear function (labeled Binary step) doesn’t apply any transformation, and it’s
seldom used because it reduces a neural network to a regression with polynomial
transformations. Neural networks commonly use the sigmoid (labeled Logistic) or
the hyperbolic tangent (labeled TanH), or the ReLU (which is by far the more
common today) activation functions. (The “Choosing the right activation func-
tion” section of Chapter 8 describes activation functions in more detail.)

FIGURE 7-2:
Learning logical

XOR using a
single separating

line isn’t possible.

FIGURE 7-3:
Plots of different

activation
functions.

138 PART 2 Considering Deep Learning Basics

The figure shows how an input (expressed on the horizontal axis) can transform
an output into something else (expressed on the vertical axis). The examples show
a binary step, a logistic (also called sigmoid), and a tangent hyperbolic activation
function (often referred to as tanh).

You learn more about activation functions later in the chapter, but note for now
that activation functions clearly work well in certain ranges of x values. For this
reason, you should always rescale inputs to a neural network using statistical
standardization (zero mean and unit variance) or normalize the input in the range
from 0 to 1 or from –1 to 1.

Activation functions are what make a neural network perform in a classification
or regression; yet, the initial choice of the sigmoid or tanh activations for most
networks pose a critical limit when using networks that are more complex,
because both activations work optimally for a very restricted range of values.

Pushing data with feed-forward
In a neural network, you must consider the architecture, which is how the neural
network components are arranged. Contrary to other algorithms, which have a
fixed pipeline that determines how algorithms receive and process data, neural
networks require you to decide how information flows by fixing the number of
units (the neurons) and their distribution in layers, as shown in Figure 7-4.

The figure shows a simple neural architecture. Note how the layers filter informa-
tion in a progressive way. This is a feed-forward input because data feeds one way
forward into the network. Connections exclusively link the units in one layer with
the units in the following layer (information flow from left to right). No connec-
tions exist between units in the same layer or with units outside the next layer.
Moreover, the information pushes forward (from the left to the right). Processed
data never returns to previous neuron layers.

FIGURE 7-4:
An example of

the architecture
of a neural

network.

CHAPTER 7 Introducing Neural Networks 139

Using a neural network is like using a stratified filtering system for water: You
pour the water from above and the water is filtered at the bottom. The water has
no way to go back; it just goes forward and straight down, and never laterally. In
the same way, neural networks force data features to flow through the network
and mix with each other only according to the network’s architecture. By using
the best architecture to mix features, the neural network creates new composed
features at every layer and helps achieve better predictions. Unfortunately, there
is no way to determine the best architecture without empirically trying different
solutions and testing whether the output data helps predict your target values
after flowing through the network.

The first and last layers play an important role. The first layer, called the input
layer, picks ups the features from each data example processed by the network.
The last layer, called the output layer, releases the results.

A neural network can process only numeric, continuous information; it can’t be
constrained to work with qualitative variables (for example, labels indicating a
quality such as red, blue, or green in an image). You can process qualitative vari-
ables by transforming them into a continuous numeric value, such as a series of
binary values. When a neural network processes a binary variable, the neuron
treats the variable as a generic number and turns the binary values into other
values, even negative ones, by processing across units.

Note the limitation of dealing only with numeric values, because you can’t expect
the last layer to output a nonnumeric label prediction. When dealing with a regres-
sion problem, the last layer is a single unit. Likewise, when you’re working with a
classification and you have output that must choose from a number n of classes,
you should have n terminal units, each one representing a score linked to the
probability of the represented class. Therefore, when classifying a multiclass
problem such as iris species, the final layer has as many units as species. For
instance, in the archetypal Iris classification example, created by the famous stat-
istician Fisher, you have three classes: setosa, versicolor, and virginica. In a
neural network based on the Iris dataset, you therefore have three units repre-
senting one of the three Iris species. For each example, the predicted class is the
one that gets the higher score at the end.

Some neural networks have special final layers, collectively called softmax, which
can adjust the probability of each class based on the values received from a previ-
ous layer. In classification, the final layer may represent both a partition of prob-
abilities thanks to softmax (a multiclass problem in which total probabilities sum
to 100 percent) or an independent score prediction (because an example can have
more classes, which is a multilabel problem in which summed probabilities can be
more than 100 percent). When the classification problem is a binary classification,
a single output suffices. Also, in regression, you can have multiple output units,

140 PART 2 Considering Deep Learning Basics

each one representing a different regression problem. (For instance, in forecast-
ing, you can have different predictions for the next day, week, month, and so on.)

Going even deeper into the rabbit hole
Neural networks have different layers, each one having its own weights. Because
the neural network segregates computations by layers, knowing the reference
layer is important because you can account for certain units and connections. You
can refer to every layer using a specific number and generically talk about each
layer using the letter l.

Each layer can have a different number of units, and the number of units located
between two layers dictates the number of connections. By multiplying the
number of units in the starting layer with the number in the following layer, you
can determine the total number of connections between the two: number of
connections(l) = units(l) * units(l+1).

A matrix of weights, usually named with the uppercase Greek letter Theta (θ),
represents the connections. For ease of reading, the book uses the capital letter W,
which is a fine choice because it is a matrix or a multi-dimensional array. Thus,
you can use W1 to refer to the connection weights from layer 1 to layer 2, W2 for the
connections from layer 2 to layer 3, and so on.

Weights represent the strength of the connection between neurons in the net-
work. When the weight of the connection between two layers is small, it means
that the network dumps values flowing between them and signals that taking this
route won’t likely influence the final prediction. Alternatively, a large positive or
negative value affects the values that the next layer receives, thus changing cer-
tain predictions. This approach is analogous to brain cells, which don’t stand
alone but connect with other cells. As someone grows in experience, connections
between neurons tend to weaken or strengthen to activate or deactivate certain
brain network cell regions, causing other processing or an activity (a reaction to a
danger, for instance, if the processed information signals a life-threatening
situation).

HIDDEN LAYERS
Outside this book, the layers between the input and the output are sometimes called
hidden layers, and the layer count starts from the first hidden layer. This is just a differ-
ent convention from the one used in this book. The examples in the book always start
counting from the input layer, so the first hidden layer is layer number 2.

CHAPTER 7 Introducing Neural Networks 141

Now that you know some conventions regarding layers, units, and connections,
you can start examining the operations that neural networks execute in detail. To
begin, you can call inputs and outputs in different ways:

 » a: The result stored in a unit in the neural network after being processed by
the activation function (called g). This is the final output that is sent further
along the network.

 » z: The multiplication between a and the weights from the W matrix. z repre-
sents the signal going through the connections, analogous to water in pipes
that flows at a higher or lower pressure depending on the pipe diameter. In
the same way, the values received from the previous layer get higher or lower
values because of the connection weights used to transmit them.

Each successive layer of units in a neural network progressively processes the val-
ues taken from the features (picture a conveyor belt). As data transmits in the net-
work, it arrives at each unit as a value produced by the summation of the values
present in the previous layer and weighted by connections represented in the
matrix W. When the data with added bias exceeds a certain threshold, the activation
function increases the value stored in the unit; otherwise, it extinguishes the signal
by reducing it. After processing by the activation function, the result is ready to
push forward to the connection linked to the next layer. These steps repeat for each
layer until the values reach the end and you have a result, as shown in Figure 7-5.

The figure shows a detail of the process that involves two units pushing their
results to another unit. This event happens in every part of the network. When you
understand the passage from two neurons to one, you can understand the entire
feed-forward process, even when more layers and neurons are involved. For more
explanation, here are the seven steps used to produce a prediction in a neural net-
work made of four layers (refer to Figure 7-4):

1. The first layer (notice the superscript 1 on a) loads the value of each feature in
a different unit:

a(1)= X

FIGURE 7-5:
A detail of the
feed-forward

process in a
neural network.

142 PART 2 Considering Deep Learning Basics

2. The weights of the connections bridging the input layer with the second layer
are multiplied by the values of the units in the first layer. A matrix multiplica-
tion weights and sums the inputs for the second layer together.

z(2)=W(1)a(1)

3. The algorithm adds a bias constant to layer two before running the activation
function. The activation function transforms the second layer inputs. The
resulting values are ready to pass to the connections.

a(2) = g(z(2) + bias(2))

4. The third layer connections weigh and sum the outputs of layer two.

z(3) = W(2)a(2)

5. The algorithm adds a bias constant to layer three before running the activation
function. The activation function transforms the layer-three inputs.

a(3) = g(z(3) + bias(3))

6. The layer-three outputs are weighted and summed by the connections to the
output layer.

z(4) = W(3)a(3)

7. Finally, the algorithm adds a bias constant to layer four before running the
activation function. The output units receive their inputs and transform the
input using the activation function. After this final transformation, the output
units are ready to release the resulting predictions of the neural network.

a(4) = g(z(4) + bias(4))

The activation function plays the role of a signal filter, helping to select the rele-
vant signals and avoid the weak and noisy ones (because it discards values below
a certain threshold). Activation functions also provide nonlinearity to the output
because they enhance or damp the values passing through them in a nonpropor-
tional way.

The weights of the connections provide a way to mix and compose the features in
a new way, creating new features in a way not too different from a polynomial
expansion. The activation renders nonlinear the resulting recombination of the
features by the connections. Both of these neural network components enable the
algorithm to learn complex target functions that represent the relationship
between the input features and the target outcome.

CHAPTER 7 Introducing Neural Networks 143

Using backpropagation to adjust learning
From an architectural perspective, a neural network does a great job of mixing
signals from examples and turning them into new features to achieve an approx-
imation of complex nonlinear functions (functions that you can’t represent as a
straight line in the features’ space). To create this capability, neural networks
work as universal approximators (for more details, go to https://www.techleer.
com/articles/449-the-universal-approximation-theorem-for-neural-
networks/), which means that they can guess any target function. However, you
have to consider that one aspect of this feature is the capacity to model complex
functions (representation capability), and another aspect is the capability to learn
from data effectively. Learning occurs in a brain because of the formation and
modification of synapses between neurons, based on stimuli received by trial-
and-error experience. Neural networks provide a way to replicate this process as
a mathematical formulation called backpropagation.

Since its early appearance in the 1970s, the backpropagation algorithm has been
given many fixes. Each neural network learning process improvement resulted in
new applications and a renewed interest in the technique. In addition, the current
deep learning revolution, a revival of neural networks, which were abandoned at
the beginning of the 1990s, is due to key advances in the way neural networks
learn from their errors. As seen in other algorithms, the cost function activates
the necessity to learn certain examples better (large errors correspond to high
costs). When an example with a large error occurs, the cost function outputs a
high value that is minimized by changing the parameters in the algorithm. The
optimization algorithm determines the best action for reducing the high outputs
from the cost function.

In linear regression, finding an update rule to apply to each parameter (the vector
of beta coefficients) is straightforward. However, in a neural network, things are
a bit more complicated. The architecture is variable and the parameter coefficients
(the connections) relate to each other because the connections in a layer depend
on how the connections in the previous layers recombined the inputs. The solu-
tion to this problem is the backpropagation algorithm. Backpropagation is a smart
way to propagate the errors back into the network and make each connection
adjust its weights accordingly. If you initially feed-forward propagated informa-
tion to the network, it’s time to go backward and give feedback on what went
wrong in the forward phase.

Backpropagation is how adjustments required by the optimization algorithm are
propagated through the neural network. Distinguishing between optimization and
backpropagation is important. In fact, all neural networks use backpropagation,
but the next chapter discusses many different optimization algorithms.

https://www.techleer.com/articles/449-the-universal-approximation-theorem-for-neural-networks/
https://www.techleer.com/articles/449-the-universal-approximation-theorem-for-neural-networks/
https://www.techleer.com/articles/449-the-universal-approximation-theorem-for-neural-networks/

144 PART 2 Considering Deep Learning Basics

Discovering how backpropagation works isn’t complicated, even though demon-
strating how it works using formulas and mathematics requires derivatives and
the proving of some formulations, which is quite tricky and beyond the scope of
this book. To get a sense of how backpropagation operates, start from the end of
the network, just at the moment when an example has been processed and you
have a prediction as an output. At this point, you can compare it with the real
result and, by subtracting the two results, get an offset, which is the error. Now
that you know the mismatch of the results at the output layer, you can progress
backward in order to distribute it along all the units in the network.

The cost function of a neural network for classification is based on cross-entropy
(as seen in logistic regression):

Cost = y * log(hW(X)) + (1 - y)*log(1 - hW(X))

This is a formulation involving logarithms. It refers to the prediction produced by
the neural network and expressed as hW(X) (which reads as the result of the net-
work given connections W and X as input). To make things easier, when thinking
of the cost, it helps to think of it as computing the offset between the expected
results and the neural network output.

The first step in transmitting the error back into the network relies on backward
multiplication. Because the values fed to the output layer are made of the contri-
butions of all units, proportional to the weight of their connections, you can redis-
tribute the error according to each contribution. For instance, the vector of errors
of a layer n in the network, a vector indicated by the Greek letter delta (δ), is the
result of the following formulation:

δ (n) = W(n)T * δ (n+1)

This formula says that, starting from the final delta, you can continue redistribut-
ing delta going backward in the network and using the weights you used to push
forward the value to partition the error to the different units. In this way, you can
get the terminal error redistributed to each neural unit, and you can use it to
recalculate a more appropriate weight for each network connection to minimize
the error. To update the weights W of layer l, you just apply the following formula:

W(l) = W(1) + η* δ (1) * g'(z(l)) *a(1)

The formula may appear puzzling at first sight, but it is a summation, and you can
discover how it works by looking at its elements. First, look at the function g’. It’s
the first derivative of the activation function g, evaluated by the input values z. In

CHAPTER 7 Introducing Neural Networks 145

fact, this is the gradient descent method. Gradient descent determines how to
reduce the error measure by finding, among the possible combinations of values,
the weights that most reduce the error.

The Greek letter eta (η), sometimes also called alpha (α) or epsilon (ε) depending
on the textbook you consult, is the learning rate. As found in other algorithms, it
reduces the effect of the update suggested by the gradient descent derivative. In
fact, the direction provided may be only partially correct or just roughly correct.
By taking multiple small steps in the descent, the algorithm can take a more pre-
cise direction toward the global minimum error, which is the target you want to
achieve (that is, a neural network producing the least possible prediction error).

Different methods are available for setting the right eta value, because the opti-
mization largely depends on it. One method sets the eta value starting high and
reduces it during the optimization process. Another method variably increases or
decreases eta based on the improvements obtained by the algorithm: large
improvements call a larger eta (because the descent is easy and straight); smaller
improvements call a smaller eta so that the optimization will move slower, look-
ing for the best opportunities to descend. Think of it as being on a tortuous path
in the mountains: You slow down and try not to be struck or thrown off the road
as you descend.

Most implementations offer an automatic setting of the correct eta. You need to
note this setting’s relevance when training a neural network because it’s one of
the important parameters to tweak to obtain better predictions, together with the
layer architecture. Weight updates can happen in different ways with respect to
the training set of examples:

 » Online mode: The weight update happens after every example traverses the
network. In this way, the algorithm treats the learning examples as a stream
from which to learn in real time. This mode is perfect when you have to learn
out of core, that is, when the training set can’t fit into RAM memory. However,
this method is sensitive to outliers, so you have to keep your learning rate low.
(Consequently, the algorithm is slow to converge to a solution.)

 » Batch mode: The weight update happens after processing all the examples in
the training set. This technique makes optimization fast and less subject to
having variance appear in the example stream. In batch mode, the backpropa-
gation considers the summed gradients of all examples.

 » Mini-batch (or stochastic) mode: The weight update happens after the
network has processed a subsample of randomly selected training set
examples. This approach mixes the advantages of online mode (low memory
usage) and batch mode (a rapid convergence) while introducing a random
element (the subsampling) to avoid having the gradient descent stuck in a
local minima (a drop in value that isn’t the true minimum).

146 PART 2 Considering Deep Learning Basics

Struggling with Overfitting
Given the neural network architecture, you can imagine how easily the algorithm
could learn almost anything from data, especially if you added too many layers. In
fact, the algorithm does so well that its predictions are often affected by a high
estimate variance called overfitting. Overfitting causes the neural network to learn
every detail of the training examples, which makes replicating them in the pre-
diction phase possible. But, apart from the training set, the network won’t ever
correctly predict anything different. The following sections discuss some of the
issues with overfitting in more detail.

Understanding the problem
When you use a neural network for a real problem, you become stricter and more
cautious in an implementation than you do with other algorithms. Neural net-
works are frailer and more prone to relevant errors than other machine learning
solutions.

You carefully split your data into training, validation, and test sets. Before the
algorithm learns from data, you must evaluate the goodness of your parameters:

 » Architecture (the number of layers and nodes in them)

 » Activation functions

 » Learning parameter

 » Number of iterations

In particular, the architecture offers great opportunities to create powerful pre-
dictive models at a high risk of overfitting. The learning parameter controls how
fast a network learns from data, but it may not suffice in preventing overfitting
the training data. (See the “Looking for generalization” section of Chapter 2 for
more details about why overfitting can cause problems.)

Opening the black box
You have two possible solutions to the problem of overfitting. The first is regular-
ization, as in linear and logistic regression. You can sum all connection coeffi-
cients, squared or in absolute value, to penalize models with too many coefficients
with high values (achieved by L2 regularization) or with values different from

CHAPTER 7 Introducing Neural Networks 147

zero (achieved by L1 regularization). The second solution is also effective because
it controls when overfitting happens. It’s called early stop and works by checking
the cost function on the validation set as the algorithm learns from the training
set. (The “Learning the right direction” section of Chapter 5 provides more details
about early stopping.)

You may not realize when your model starts overfitting. The cost function
 calculated using the training set keeps improving as optimization progresses.
However, as soon as you start recording noise from the data and stop learning
general rules, you can check the cost function on an out-of-sample data (the vali-
dation sample). At some point, you’ll notice that it stops improving and starts
worsening, which means that your model has reached its learning limit.

CHAPTER 8 Building a Basic Neural Network 149

Chapter 8
Building a Basic
Neural Network

Chapter 7 introduces neural networks using the simplest and most basic
neural network of all: the perceptron. However, neural networks come in a
number of forms, each of which has advantages. Fortunately, all the forms

of neural networks follow a basic architecture and rely on certain strategies to
accomplish what they need to do. If you learn how a basic neural network works,
you can figure out how more complex architectures operate. The first part of this
chapter discusses the basics of neural network functionality — that is, what you
need to know to understand how a neural network performs useful work. It
explains neural network functionality using a basic neural network that you can
build from scratch using Python.

The second part of the chapter delves into some differences between neural net-
works. For example, you discover in Chapter 7 that individual neurons fire after
reaching a particular threshold. An activation function determines when the input
is sufficient for the neuron to fire, so knowing which activator functions are avail-
able is important to differentiate between neural networks. In addition, you need
to know about the optimizer used to ensure that you get fast results that actually
model the problem you want to solve. Finally, you need to decide how fast your
neural network learns.

IN THIS CHAPTER

 » Considering the basic architecture

 » Defining the problem

 » Understanding the solution process

150 PART 2 Considering Deep Learning Basics

Save yourself the time and mistakes of typing the code manually. You can find the
downloadable source for this chapter in the DL4D_08_NN_From_Scratch.ipynb
file. (The Introduction tells you where to download the source code for this book.)

Understanding Neural Networks
You can find many discussions about neural network architectures online
(such as the one at https://www.kdnuggets.com/2018/02/8-neural-network-
architectures-machine-learning-researchers-need-learn.html). The prob-
lem, however, is that they all quickly become insanely complex, making normal
people want to pull out their hair. Some unwritten law seems to say that math has
to become instantly abstract and so complicated that no mere mortal can under-
stand it, but anyone can understand a neural network. The material in Chapter 7
gives you a good start. Even though Chapter 7 does rely a little on math to get its
point across, the math is relatively simple. Now, in this chapter you learn by putt-
ing into Python code all the essential functionalities of a neural network.

What a neural network truly represents is a kind of filter. You pour data into the
top, that data percolates through the various layers you create, and an output
appears at the bottom. The things that differentiate neural networks are the same
sorts of things you might look for in a filter. For example, the kind of algorithm
you choose determines the kind of filtering the neural network will perform. You
may want to filter the lead out of the water but leave the calcium and other benefi-
cial minerals intact, which means choosing a kind of filter to do that.

However, filters can come with controls. For example, you might choose to filter
particles of one size but let particles of another size pass. The use of weights and
biases in a neural network are simply a kind of control. You adjust the control to
fine-tune the filtering you receive. In this case, because you’re using electrical
signals modeled after those found in the brain, a signal is allowed to pass when it
meets a particular condition — a threshold defined by an activation function. To
keep things simple for now, though, just think about it as you would adjustments
to any filter’s basic operation.

You can monitor the activity of your filter. However, unless you want to stand
there all day looking at it, you probably rely on some sort of automation to ensure
that the filter’s output remains constant. This is where an optimizer comes into
play. By optimizing the output of the neural network, you see the results you need
without constantly tuning it manually.

Finally, you want to allow a filter to work at a speed and capacity that allows it to
perform its tasks correctly. Pouring water or some other substance through the

https://www.kdnuggets.com/2018/02/8-neural-network-architectures-machine-learning-researchers-need-learn.html
https://www.kdnuggets.com/2018/02/8-neural-network-architectures-machine-learning-researchers-need-learn.html

CHAPTER 8 Building a Basic Neural Network 151

filter too quickly would cause it to overflow. If you don’t pour fast enough, the
filter might clog or work erratically. Adjusting the learning rate of the optimizer
of a neural network enables you to ensure that the neural network produces the
output you want. It’s like adjusting the pouring rate of a filter.

Neural networks can seem hard to understand. The fact that much of what they do
is shrouded in mathematical complexity doesn’t help matters. However, you don’t
have to be a rocket scientist to understand what neural networks are all about. All
you really need to do is break them down into manageable pieces and use the right
perspective to look at them. The following sections demonstrate how to code each
part of a basic neural network from scratch.

Defining the basic architecture
A neural network relies on numerous computation units, the neurons, arranged
into hierarchical layers. Each neuron accepts inputs from all its predecessors and
provides outputs to its successors until the neural network as a whole satisfies a
requirement. At this point, the network processing ends and you receive the
output.

All these computations occur singularly in a neural network. The network passes
over each of them using loops for loop iterations. You can also leverage the fact
that most of these operations are plain multiplications, followed by addition, and
take advantage of the matrix calculations shown in the “Performing matrix mul-
tiplication” section of Chapter 5.

The example in this section creates a network with an input layer (whose dimen-
sions are defined by the input), a hidden layer with three neurons, and a single
output layer that tells whether the input is part of a class (basically a binary 0/1
answer). This architecture implies creating two sets of weights represented by
two matrices (when you’re actually using matrices):

 » The first matrix uses a size determined by the number of inputs x 3, repre-
sents the weights that multiply the inputs, and sums them into three neurons.

 » The second matrix uses a size of 3 x 1, gathers all the outputs from the hidden
layer, and makes that layer converge into the output.

Here’s the required Python script (which may take a while to complete running,
depending on the speed of your system):

import numpy as np
from sklearn.datasets import make_moons
from sklearn.model_selection import train_test_split

152 PART 2 Considering Deep Learning Basics

import matplotlib.pyplot as plt
%matplotlib inline

def init(inp, out):
 return np.random.randn(inp, out) / np.sqrt(inp)

def create_architecture(input_layer, first_layer,
 output_layer, random_seed=0):
 np.random.seed(random_seed)
 layers = X.shape[1], 3 , 1
 arch = list(zip(layers[:-1], layers[1:]))
 weights = [init(inp, out) for inp, out in arch]
 return weights

The interesting point of this initialization is that it uses a sequence of matrices to
automate the network calculations. How the code initializes them matters because
you can’t use numbers that are too small — there will be too little signal for the
network to work. However, you must also avoid numbers that are too big because
the calculations become too cumbersome to handle. Sometimes they fail, which
causes the exploding gradient problem or, more often, causes saturation of the
neurons, which means that you can’t correctly train a network because all the
neurons are always activated.

Initializing your network using all zeros is always a bad idea because if all the
neurons have the same value, they will react in the same way to the training input.
No matter how many neurons the architecture contains, they operate as a single
neuron.

The simpler solution is to start with initial random weights which are in the range
required for the activation functions, which are the transformation functions that
add flexibility to solving problems using the network. A possible simple solution
is to set the weights to zero mean and one standard deviation, which in statistics
is called the standard normal distribution and in the code appears as the np.random.
radn command.

There are, however, smarter weight initializations for more complex networks,
such as those found in this article: https://towardsdatascience.com/weight-
initialization-techniques-in-neural-networks-26c649eb3b78.

Moreover, because each neuron accepts the inputs of all previous neurons, the
code rescales the random normal distributed weights using the square root of the
number of inputs. Consequently, the neurons and their activation functions
always compute the right size for everything to work smoothly.

https://towardsdatascience.com/weight-initialization-techniques-in-neural-networks-26c649eb3b78
https://towardsdatascience.com/weight-initialization-techniques-in-neural-networks-26c649eb3b78

CHAPTER 8 Building a Basic Neural Network 153

Documenting the essential modules
The architecture is just one part of a neural network. You can imagine it as the
structure of the network. Architecture explains how the network processes data
and provides results. However, for any processing to happen, you also need to
code the neural network’s core functionalities.

The first building block of the network is the activation function. Chapter 7 details
a few activation functions used in neural networks without explaining them in
much in detail. The example in this section provides code for the sigmoid func-
tion, one of the basic neural network activation functions. The sigmoid function is
a step up from the Heaviside step function, which acts as a switch that activates at
a certain threshold. A Heaviside step function outputs 1 for inputs above the
threshold and 0 for inputs below it.

The sigmoid functions outputs 0 or 1, respectively, for small input values below
zero or high values above zero. For input values in the range between –5 and +5,
the function outputs values in the range 0–1, slowly increasing the output of
released values until it reaches around 0.2 and then growing fast in a linear way
until reaching 0.8. It then decreases again as the output rate approaches 1. Such
behavior represents a logistic curve, which is useful for describing many natural
phenomena, such as the growth of a population that starts growing slowly and
then fully blossoms and develops until it slows down before hitting a resource
limit (such as available living space or food).

In neural networks, the sigmoid function is particularly useful for modeling inputs
that resemble probabilities, and it’s differentiable, which is a mathematical aspect
that helps reverse its effects and works out the best backpropagation phase men-
tioned in the “Going even deeper into the rabbit hole” section of Chapter 7.

def sigmoid(z):
 return 1/(1 + np.exp(-z))

def sigmoid_prime(s):
 return s * (1 -s)

After you have an activation function, you can create a forward procedure, which is
a matrix multiplication between the input to each layer and the weights of the
connection. After completing the multiplication, the code applies the activation
function to the results to transform them in a nonlinear way. The following code
embeds the sigmoid function into the network’s feed-forward code. Of course,
you can use any other activation function if desired.

154 PART 2 Considering Deep Learning Basics

def feed_forward(X, weights):
 a = X.copy()
 out = list()
 for W in weights:
 z = np.dot(a, W)
 a = sigmoid(z)
 out.append(a)
 return out

By applying the feed forward to the complete network, you finally arrive at a result
in the output layer. Now you can compare the output against the real values you
want the network to obtain. The accuracy function determines whether the neural
network is performing predictions well by comparing the number of correct
guesses to the total number of predictions provided.

def accuracy(true_label, predicted):
 correct_preds = np.ravel(predicted)==true_label
 return np.sum(correct_preds) / len(true_label)

The backpropagation function comes next because the network is working, but all
or some of the predictions are incorrect. Correcting predictions during training
enables you to create a neural network that can take on new examples and provide
good predictions. The training is incorporated into its connection weights as pat-
terns present in data that can help predict the results correctly.

To perform backpropagation, you first compute the error at the end of each layer
(this architecture has two). Using this error, you multiply it by the derivative of the
activation function. The result provides you with a gradient, that is, the change in
weights necessary to compute predictions more correctly. The code starts by com-
paring the output with the correct answers (l2_error), and then computes the
gradients, which are the necessary weight corrections (l2_delta). The code then
proceeds to multiply the gradients by the weights the code must correct. The oper-
ation distributes the error from the output layer to the intermediate one (l1_error).
A new gradient computation (l1_delta) also provides the weight corrections to
apply to the input layer, which completes the process for a network with an input
layer, a hidden layer, and an output layer.

def backpropagation(l1, l2, weights, y):
 l2_error = y.reshape(-1, 1) - l2
 l2_delta = l2_error * sigmoid_prime(l2)
 l1_error = l2_delta.dot(weights[1].T)
 l1_delta = l1_error * sigmoid_prime(l1)
 return l2_error, l1_delta, l2_delta

CHAPTER 8 Building a Basic Neural Network 155

This is a Python code translation, in simplified form, of the formulas in Chapter 7.
The cost function is the difference between the network’s output and the correct
answers. The example doesn’t add biases during the feed forward phase, which
reduces the complexity of the backpropagation process and makes it easier to
understand.

After backpropagation assigns each connection its part of the correction that
should be applied over the entire network, you adjust the initial weights to repre-
sent an updated neural network. You do so by adding to the weights of each layer,
the multiplication of the input to that layer, and the delta corrections for the layer
as a whole. This is a gradient descent method step in which you approach the
solution by taking repeated small steps in the right direction, so you may need to
adjust the step size used to solve the problem. The alpha parameters help make
changing the step size possible. Using a value of 1 won’t affect the impact of the
previous weight correction, but values smaller than 1 effectively reduce it.

def update_weights(X, l1, l1_delta, l2_delta, weights,
alpha=1.0):

 weights[1] = weights[1] + (alpha * l1.T.dot(l2_delta))
 weights[0] = weights[0] + (alpha * X.T.dot(l1_delta))
 return weights

A neural network is not complete if it can only learn from data, but not predict.
The last predict function pushes new data using feed forward, reads the last out-
put layer, and transforms its values to problem predictions. Because the sigmoid
activation function is so adept at modeling probability, the code uses a value half-
way between 0 and 1, that is, 0.5, as the threshold for having a positive or negative
output. Such a binary output could help in classifying two classes or a single class
against all the others if a dataset has three or more types of outcomes to classify.

def predict(X, weights):
 _, l2 = feed_forward(X, weights)
 preds = np.ravel((l2 > 0.5).astype(int))
 return preds

At this point, the example has all the parts that make a neural network work. You
just need a problem that demonstrates how the neural network works.

Solving a simple problem
In this section, you test the neural network code you wrote by asking it to solve a
simple, but not banal, data problem. The code uses the Scikit-learn package’s
make_moons function to create two interleaving circles of points shaped as two
half moons. Separating these two circles requires an algorithm capable of defining

156 PART 2 Considering Deep Learning Basics

a nonlinear separation function that generalizes to new cases of the same kind.
A neural network, such as the one presented earlier in the chapter, can easily
handle the challenge.

np.random.seed(0)

coord, cl = make_moons(300, noise=0.05)
X, Xt, y, yt = train_test_split(coord, cl,
 test_size=0.30,
 random_state=0)

plt.scatter(X[:,0], X[:,1], s=25, c=y, cmap=plt.cm.Set1)
plt.show()

The code first sets the random seed to produce the same result anytime you want
to run the example. The next step is to produce 300 data examples and split them
into a train and a test dataset. (The test dataset is 30 percent of the total.) The data
consists of two variables representing the x and y coordinates of points on a Car-
tesian graph. Figure 8-1 shows the output of this process.

Because learning in a neural network happens in successive iterations (called
epochs), after creating and initializing the sets of weights, the code loops 30,000
iterations of the two half moons data (each passage is an epoch). On each itera-
tion, the script calls some of the previously prepared core neural network
functions:

 » Feed forward the data through the entire network.

 » Backpropagate the error back into the network.

FIGURE 8-1:
Two interleaving

moon-shaped
clouds of data

points.

CHAPTER 8 Building a Basic Neural Network 157

 » Update the weights of each layer in the network, based on the backpropa-
gated error.

 » Compute the training and validation errors.

The following code uses comments to detail when each function operates:

weights = create_architecture(X, 3, 1)

for j in range(30000 + 1):

 # First, feed forward through the hidden layer
 l1, l2 = feed_forward(X, weights)

 # Then, error backpropagation from output to input
 l2_error, l1_delta, l2_delta = backpropagation(l1,
 l2, weights, y)

 # Finally, updating the weights of the network
 weights = update_weights(X, l1, l1_delta, l2_delta,
 weights, alpha=0.05)

 # From time to time, reporting the results
 if (j % 5000) == 0:
 train_error = np.mean(np.abs(l2_error))
 print('Epoch {:5}'.format(j), end=' - ')
 print('error: {:0.4f}'.format(train_error),
 end= ' - ')
 train_accuracy = accuracy(true_label=y,
 predicted=(l2 > 0.5))
 test_preds = predict(Xt, weights)
 test_accuracy = accuracy(true_label=yt,
 predicted=test_preds)
 print('acc: train {:0.3f}'.format(train_accuracy),
 end= ' | ')
 print('test {:0.3f}'.format(test_accuracy))

Variable j counts the iterations. At each iteration, the code tries to divide j by
5,000 and check whether the division leaves a module. When the module is zero,
the code infers that 5,000 epochs have passed since the previous check, and sum-
marizing the neural network error is possible by examining its accuracy (how
many times the prediction is correct with respect to the total number of predic-
tions) on the training set and on the test set. The accuracy on the training set

158 PART 2 Considering Deep Learning Basics

shows how well the neural network is fitting the data by adapting its parameters
by the backpropagation process. The accuracy on the test set provides an idea of
how well the solution generalized to new data and thus whether you can reuse it.

The test accuracy should matter the most because it shows the potential usability
of the neural network with other data. The training accuracy just tells you how the
network scores with the present data you are using.

Looking Under the Hood of
Neural Networks

After you know how neural networks basically work, you need a better under-
standing of what differentiates them. Beyond the different architectures, the
choice of the activation functions, the optimizers and the neural network’s learn-
ing rate can make the difference. Knowing basic operations isn’t enough because
you won’t get the results you want. Looking under the hood helps you understand
how you can tune your neural network solution to model specific problems. In
addition, understanding the various algorithms used to create a neural network
will help you obtain better results with less effort and in a shorter time. The fol-
lowing sections focus on three areas of neural network differentiation.

Choosing the right activation function
An activation function simply defines when a neuron fires. Consider it a sort of
tipping point: Input of a certain value won’t cause the neuron to fire because it’s
not enough, but just a little more input can cause the neuron to fire. A neuron is
defined in a simple manner as follows:

y = ∑ (weight * input) + bias

The output, y, can be any value between + infinity and – infinity. The problem,
then, is to decide on what value of y is the firing value, which is where an activa-
tion function comes into play. The activation function determines which value is
high or low enough to reflect a decision point in the neural network for a partic-
ular neuron or group of neurons.

As with everything else in neural networks, you don’t have just one activation
function. You use the activation function that works best in a particular scenario.
With this in mind, you can break the activation functions into these categories:

CHAPTER 8 Building a Basic Neural Network 159

 » Step: A step function (also called a binary function) relies on a specific
threshold for making the decision about activating or not. Using a step
function means that you know which specific value will cause an activation.
However, step functions are limited in that they’re either fully activated or fully
deactivated —no shades of gray exist. Consequently, when attempting to
determine which class is most likely correct based in a given input, a step
function won’t work.

 » Linear: A linear function (A = cx) provides a straight-line determination of
activation based on input. Using a linear function helps you determine which
output to activate based on which output is most correct (as expressed by
weighting). However, linear functions work only as a single layer. If you were
to stack multiple linear function layers, the output would be the same as
using a single layer, which defeats the purpose of using neural networks.
Consequently, a linear function may appear as a single layer, but never as
multiple layers.

 » Sigmoid: A sigmoid function (A = 1 / 1 + e-x), which produces a curve
shaped like the letter C or S, is nonlinear. It begins by looking sort of like the
step function, except that the values between two points actually exist on a
curve, which means that you can stack sigmoid functions to perform classifica-
tion with multiple outputs. The range of a sigmoid function is between 0 and
1, not – infinity to + infinity as with a linear function, so the activations are
bound within a specific range. However, the sigmoid function suffers from a
problem called vanishing gradient, which means that the function refuses to
learn after a certain point because the propagated error shrinks to zero as it
approaches far away layers.

 » Tanh: A tanh function (A = (2 / 1 + e-2x) – 1) is actually a scaled sigmoid
function. It has a range of –1 to 1, so again, it’s a precise method for activating
neurons. The big difference between sigmoid functions and tanh functions is
that the tanh function gradient is stronger, which means that detecting small
differences is easier, making classification more sensitive. Like the sigmoid
function, tanh suffers from vanishing gradient issues.

 » ReLU: A ReLU, or Rectified Linear Units, function (A(x) = max(0, x))
provides an output in the range of 0 to infinity, so it’s similar to the linear
function except that it’s also nonlinear, enabling you to stack ReLU functions.
An advantage of ReLU is that it requires less processing power because fewer
neurons fire. The lack of activity as the neuron approaches the 0 part of the
line means that there are fewer potential outputs to look at. However, this
advantage can also become a disadvantage when you have a problem called
the dying ReLU. After a while, the neural network weights don’t provide the
desired effect any longer (it simply stops learning) and the affected neurons
die — they don’t respond to any input.

160 PART 2 Considering Deep Learning Basics

Also, the ReLU has some variants that you should consider:

 » ELU (Exponential Linear Unit): Differs from ReLU when the inputs are
negative. In this case, the outputs don’t go to zero but instead slowly decrease
to –1 exponentially.

 » PReLU (Parametric Rectified Linear Unit): Differs from ReLU when the
inputs are negative. In this case, the output is a linear function whose
parameters are learned using the same technique as any other parameter
of the network.

 » LeakyReLU: Similar to PReLU but the parameter for the linear side is fixed.

Relying on a smart optimizer
An optimizer serves to ensure that your neural network performs fast and cor-
rectly models whatever problem you want to solve by modifying the neural net-
work’s biases and weights. It turns out that an algorithm performs this task, but
you must choose the correct algorithm to obtain the results you expect. As with all
neural network scenarios, you have a number of optional algorithm types from
which to choose (see https://keras.io/optimizers/):

 » Stochastic gradient descent (SGD)

 » RMSProp

 » AdaGrad

 » AdaDelta

 » AMSGrad

 » Adam and its variants, Adamax and Nadam

An optimizer works by minimizing or maximizing the output of an objective func-
tion (also known as an error function) represented as E(x). This function is depen-
dent on the model’s internal learnable parameters used to calculate the target
values (Y) from the predictors (X). Two internal learnable parameters are weights
(W) and bias (b). The various algorithms have different methods of dealing with
the objective function.

You can categorize the optimizer functions by the manner in which they deal with
the derivative (dy/dx), which is the instantaneous change of y with respect to x.
Here are the two levels of derivative handling:

https://keras.io/optimizers/

CHAPTER 8 Building a Basic Neural Network 161

 » First order: These algorithms minimize or maximize the objective function
using gradient values with respect to the parameters.

 » Second order: These algorithms minimize or maximize the object function
using the second-order derivative values with respect to the parameters. The
second-order derivative can give a hint as to whether the first-order derivative
is increasing or decreasing, which provides information about the curvature of
the line.

You commonly use first-order optimization techniques, such as Gradient Descent,
because they require fewer computations and tend to converge to a good solution
relatively fast when working on large datasets.

Setting a working learning rate
Each optimizer has completely different parameters to tune. One constant is fix-
ing the learning rate, which represents the rate at which the code updates the net-
work’s weights (such as the alpha parameter used in the example for this chapter).
The learning rate can affect both the time the neural network takes to learn a good
solution (the number of epochs) and the result. In fact, if the learning rate is too
low, your network will take forever to learn. Setting the value too high causes
instability when updating the weights, and the network won’t ever converge to a
good solution.

Choosing a learning rate that works is daunting because you can effectively try
values in the range from 0.000001 to 100. The best value varies from optimizer to
optimizer. The value you choose depends on what type of data you have. Theory
can be of little help here; you have to test different combinations before finding
the most suitable learning rate for training your neural network successfully.

In spite of all the math surrounding them, tuning neural networks and having
them work best is mostly a matter of empirical efforts in trying different combi-
nations of architectures and parameters.

CHAPTER 9 Moving to Deep Learning 163

Chapter 9
Moving to Deep Learning

Chapters 7 and 8 look at AI from a machine learning perspective, with a little
added information for deep learning. This chapter looks exclusively at deep
learning, because you actually need deep learning solutions to work with

today’s overabundance of data in a smart way. Although machine learning adds
the capability to learn to the AI arsenal, it’s essential to realize from the outset
that computers have limitations — they don’t actually understand what humans
are doing. Algorithms, which are mathematical representations of various data
interpretation processes, control everything. So the first part of this chapter looks
at data from a deep learning perspective because you need huge amounts of data
to perform pattern matching effectively.

As you move from AI to machine learning to deep learning, the computational
requirements increase. In fact, one of the major reasons for AI winters in the past
was a lack of processing power. Today, you can use GPUs, such as the NVIDIA
Titan V (https://www.nvidia.com/en-us/titan/titan-v/), with 5,120 Compute
Unified Device Architecture (CUDA) cores, to process data in ways that weren’t
possible even a few years ago. Therefore, the second part of this chapter discusses
how you can improve your deep learning experience by throwing more hardware
at it or using other strategies currently employed by data scientists (among many
others).

The third part of the chapter focuses on precisely how deep learning differs from
machine learning — a difference that’s a constant source of problems for many
people. Finding a precise definition that everyone can agree with is nearly

IN THIS CHAPTER

 » Understanding the sources and uses
of data

 » Processing data faster

 » Considering the deep learning
difference

 » Defining smarter deep learning
solutions

https://www.nvidia.com/en-us/titan/titan-v/

164 PART 2 Considering Deep Learning Basics

impossible, so if you’re already a deep learning expert, you may not completely
agree with everything this chapter has to say. Even so, this book relies on this def-
inition to present deep learning principles and examples, so you need to know this
book’s particular way of viewing deep learning.

Finally, the fourth part of the chapter takes all the essentials that you discover in
the first three parts and improves on them. You begin to realize that deep learning
comes in many forms and that some forms are especially suited to solving partic-
ular problems. Currently, no single solution exists that solves every problem, even
inadequately, so knowing the right set of solutions to solve a particular problem
can save you a great deal of time and frustration.

Seeing Data Everywhere
Big data is more than a buzzword used by vendors to propose new ways to store
data and analyze it. The big data revolution is an everyday reality and a driving
force of our times. You may have heard big data mentioned in many specialized
scientific and business publications and wondered what the term really means.
From a technical perspective, big data refers to large and complex amounts of
computer data, so large and intricate that applications can’t deal with the data by
using additional storage or increasing computer power. The following sections
help you understand what makes data a universal resource today.

Considering the effects of structure
Big data implies a revolution in data storage and manipulation. It affects what you
can achieve with data in more qualitative terms (meaning that, in addition to
doing more, you can perform tasks better). Computers store big data in different
formats from a human perspective, but the computer sees data as a stream of ones
and zeros (the core language of computers). You can view data as being one of two
types, depending on how you produce and consume it:

 » Structured: You know exactly what it contains and where to find every piece
of data. Typical examples of structured data are database tables, in which
information is arranged into columns and each column contains a specific
type of information. Data is often structured by design. You gather it selec-
tively and record it in its correct place. For example, you might want to place a
count of the number of people buying a certain product in a specific column,
in a specific table, in a specific database. As with a library, if you know what
data you need, you can find it immediately.

CHAPTER 9 Moving to Deep Learning 165

 » Unstructured: You have an idea of what it contains, but you don’t know
exactly how it is arranged. Typical examples of unstructured data are images,
videos, and sound recordings. You may use an unstructured form for text so
that you can tag it with characteristics, such as size, date, or content type.
Usually you don’t know exactly where data appears in an unstructured
dataset because the data appears as sequences of ones and zeros that an
application must interpret or visualize.

Transforming unstructured data into a structured form can cost lots of time and
effort and can involve the work of many people. Most of the data of the big data
revolution is unstructured and stored as it is unless someone renders it in struc-
tured form.

This copious and sophisticated data store didn’t appear suddenly overnight. The
technology to store this amount of data took time to develop. Spreading the tech-
nology that generates and delivers data, namely computers, sensors, smart mobile
phones, the Internet, and its World Wide Web services, took time as well.

Understanding Moore’s implications
In 1965, Gordon Moore, cofounder of Intel and Fairchild Semiconductor, wrote in
an article entitled “Cramming More Components Onto Integrated Circuits”
(https://ieeexplore.ieee.org/document/4785860/) that the number of com-
ponents found in integrated circuits would double every year for the next decade.
At that time, transistors dominated electronics. Being able to stuff more transis-
tors into an Integrated Circuit (IC) meant being able to make electronic devices
more capable and useful. This process is called integration and implies a strong
process of electronics miniaturization (making the same circuit much smaller).
Today’s computers aren’t all that much smaller than computers of a decade ago,
yet they are decisively more powerful. The same goes for mobile phones. Even
though they’re the same size as their predecessors, they have become able to per-
form more tasks.

What Moore stated in that article has actually been true for many years. The sem-
iconductor industry calls it Moore’s Law (see http://www.mooreslaw.org/ for
details). Doubling did occur for the first ten years, as predicted. In 1975, Moore
corrected his statement, forecasting a doubling every two years. Figure 9-1 shows
the effects of this doubling. This rate of doubling is still valid, although now com-
mon opinion holds that it won’t persist beyond the end of the present decade (up
to about 2020). Starting in 2012, a mismatch began to occur between expected
speed increases and what semiconductor companies can achieve with regard to
miniaturization.

https://ieeexplore.ieee.org/document/4785860/
http://www.mooreslaw.org/

166 PART 2 Considering Deep Learning Basics

Physical barriers exist to integrating more circuits on an IC using the present
silica components because you can make things only so small. However, innova-
tion continues, as described at https://www.nature.com/news/the-chips-
are-down-for-moores-law-1.19338. In the future, Moore’s Law may not apply.
That will happen because industry will switch to a new technology, such as mak-
ing components by using optical lasers instead of transistors (see the article at
https://www.extremetech.com/extreme/187746-by-2020-you-could-have-
an-exascale-speed-of-light-optical-computeron-your-desk for details
about optical computing). Eventually, people will disregard Moore’s Law because
industry won’t be able to keep up the pace as it did in the past (see the story on the
MIT Technology Review at https://www.technologyreview.com/s/601441/
mooreslaw-is-dead-now-what/).

Considering what Moore’s Law changes
What matters to the data scientist and others interested in deep learning is that,
since 1965, the doubling of components every two years has ushered in great
advancements in digital electronics that have had far-reaching consequences in
the acquisition, storage, manipulation, and management of data.

Moore’s Law has a direct effect on data. It begins with smarter devices. The
smarter the device, the more people rely on it to interact with data in new ways
(as evidenced by electronics being everywhere today). The greater the diffusion of
this computing power, the lower the price becomes, creating an endless loop that

FIGURE 9-1:
Stuffing more and

more transistors
into a CPU.

https://www.nature.com/news/the-chips-are-down-for-moores-law-1.19338
https://www.nature.com/news/the-chips-are-down-for-moores-law-1.19338
https://www.extremetech.com/extreme/187746-by-2020-you-could-have-an-exascale-speed-of-light-optical-computeron-your-desk
https://www.extremetech.com/extreme/187746-by-2020-you-could-have-an-exascale-speed-of-light-optical-computeron-your-desk
https://www.technologyreview.com/s/601441/mooreslaw-is-dead-now-what/
https://www.technologyreview.com/s/601441/mooreslaw-is-dead-now-what/

CHAPTER 9 Moving to Deep Learning 167

drives the use of powerful computing machines and small sensors everywhere.
With large amounts of computer memory available and larger storage disks for
data, the consequences are an expansion of data availability, such as websites,
transaction records, measurements, digital images, and other sorts of data. With-
out these advancements, the Internet of today, wouldn’t be possible because its
flow of data depends on such smarter devices.

The Internet now generates and distributes new data in large amounts, thanks to
computers, mobile devices, and sensors interconnected with it. Some sources
estimate the current daily data production at about 2.5 quintillion (a number with
18 zeros) bytes, with the lion’s share going to unstructured data such as videos
and audios (see the article at https://www.forbes.com/sites/bernardmarr/
2018/05/21/how-much-data-do-we-create-every-day-the-mind-
blowing-stats-everyone-should-read/ for details). Most of this data relates to
common human activities, feelings, experiences, and relations, accompanied by a
growing share of data relative to the functioning of connected machines that
range from complex industrial machineries to simple smart home lamps (lamps
that you can control remotely through the Internet).

Discovering the Benefits of
Additional Data

With the explosion of data availability on digital devices, data assumes new
nuances of value and usefulness beyond its initial scope of instructing (training)
and transmitting knowledge (transferring data). The abundance of data, when
considered as part of data analysis, acquires new functions that distinguish it
from the informative ones:

 » Data describes the world better by presenting a wide variety of facts and in
more detail by providing nuances for each fact. It has become so abundant
that it covers every aspect of reality. You can use it to unveil how even
apparently unrelated things and facts actually relate to each other.

 » Data shows how facts associate with events. You can derive general rules
and learn how the world will change or transform, given certain premises.
When people act in a certain fashion, data provides a certain predictive
capability as well.

The following sections discuss how having more data is usually better. By having
more data to work with, your deep learning project can become more accurate,
reliable, and, in some cases, feasible.

https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/
https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/
https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/

168 PART 2 Considering Deep Learning Basics

Defining the ramifications of data
In some respects, data provides us with new superpowers. Chris Anderson, Wired’s
previous editor-in-chief, discusses how large amounts of data can help scientific
discoveries outside the scientific method (see the article at https://www.wired.
com/2008/06/pb-theory/). The author relies on the example of achievements of
Google in the advertising and translation business sectors, in which Google
achieved prominence not by using specific models or theories but rather by apply-
ing algorithms to learn from data.

As in advertising, scientific data (such as from physics or biology) can support
innovation that allows scientists to approach problems without hypotheses,
instead considering the variations found in large amounts of data and using dis-
covery algorithms. Galileo Galilei relied on the scientific method to create the
foundations of modern physics and astronomy (see https://www.biography.
com/people/galileo-9305220). Most early advances rely on observations and
controlled experiments that define reasons for how and why things happen. The
capability to innovate by using data alone is a major breakthrough in the way we
understand the world.

In the past, scientists took uncountable observations and made a multitude of
deductions to describe the physics of the universe. This manual process allowed
people to find underlying laws of the world we live in. Data analysis, by pairing
observations expressed as inputs and outputs, allows you to determine how things
work and to define, thanks to deep learning, approximate rules, or laws, of the
world without having to resort to using manual observations and deductions. The
process is now faster and more automatic.

Considering data timeliness and quality
More than simply powering deep learning, data makes deep learning possible.
Some people would say that deep learning is the output of sophisticated algo-
rithms of elevated mathematical complexity, and that’s certainly true. Activities
like vision and language understanding require algorithms that aren’t easily
explained in layman’s terms and necessitate millions of computations to work.
(Hardware plays a role here, too.)

Deep learning is more than algorithms, though. Dr. Alexander Wissner-Gross, an
American research scientist, entrepreneur, and fellow at the Institute for Applied
Computation Science at Harvard, offers his insights on deep learning in a recent
interview at Edge (https://www.edge.org/response-detail/26587). The inter-
view reflects on why deep learning technology took so long to take off. Wissner-
Gross concludes that quality and availability of data might have been key factors
rather than simply algorithmic availability. In other words, having powerful algo-
rithms is necessary but not sufficient if you don’t have the right data to run them.

https://www.wired.com/2008/06/pb-theory/
https://www.wired.com/2008/06/pb-theory/
https://www.biography.com/people/galileo-9305220
https://www.biography.com/people/galileo-9305220
https://www.edge.org/response-detail/26587

CHAPTER 9 Moving to Deep Learning 169

Wissner-Gross reviews the timing of most breakthrough deep learning achieve-
ments in recent years, showing how data and algorithms contribute to the success
of each breakthrough and highlighting how each of them was fresh at the time the
AI community reached the milestone. Wissner-Gross shows how data is relatively
new and always updated, whereas algorithms aren’t new discoveries but rather
rely on consolidation of older technology.

For instance, when you consider recent deep learning achievements, the near-
human performance of the GoogleLeNet network in correctly classifying images
into classes relies on an old algorithm run on recent data. It uses Convolutional
Neural Networks for Visual Recognition, an algorithm developed in 1989 that
could show its real effectiveness only after being trained using the ImageNet cor-
pus (http://www.image-net.org/) of more than 1.5 million images, spread over
1,000 categories (the ImageNet corpus became available in 2010).

Another achievement to consider is the result of the team at Google DeepMind.
The team deployed a deep neural network that achieves the same skillfulness as
humans in playing 29 different Atari games. They relied on a 1992 algorithm,
Q-Learning, which they could apply to Atari games only after 2013 when convo-
lutional neural networks become more common and a complete dataset of 50 Atari
2600 games, called the Arcade Learning Environment (https://github.com/
mgbellemare/Arcade-Learning-Environment), became available.

Wissner-Gross provides other examples of the same kind of deep learning
achievement, such as when IBM Deep Blue defeated Garry Kasparov and when
IBM Watson become the world Jeopardy! champion. In all these cases, Wissner-
Gross concludes that, on average, the algorithm is usually 15 years older than the
data. He points out that data is pushing deep learning’s achievements forward and
leaves the reader wondering what could happen if feeding the presently available
algorithms with better data in terms of quality and quantity is possible.

Improving Processing Speed
When you look inside deep learning, you may be surprised to find a lot of old tech-
nology, but amazingly, everything works as it never has before. Because research-
ers finally figured out how to make some simple, good-ol’ solutions work together,
big data can automatically filter, process, and transform data. For instance, new
activations such as ReLU aren’t all that new; they’ve been known since the per-
ceptron (which dates back to 1957; see Chapter 7).

The image-recognition capabilities that initially made deep learning so popular
aren’t new, either. Initially, deep learning achieved great momentum thanks to

http://www.image-net.org/
https://github.com/mgbellemare/Arcade-Learning-Environment
https://github.com/mgbellemare/Arcade-Learning-Environment

170 PART 2 Considering Deep Learning Basics

Convolutional Neural Networks (CNN). Discovered in the 1980s by the French sci-
entist Yann LeCun (whose personal home page is at http://yann.lecun.com/),
such networks now bring about astonishing results because they use many neural
layers and lots of data.

The same goes for technology that allows a machine to understand human speech
or translate from one language to another. In every case, the solution relies on
decades old technology that a researcher revisited and got to work in the new deep
learning paradigm. The only problem is that all this data processing requires a
great many processing cycles, so the sections that follow discuss how to improve
processing speed so that you can actually see the result of analyzing data in a rea-
sonable amount of time.

Leveraging powerful hardware
The use of incredible amounts of data makes the difference in algorithm perfor-
mance today. To process so much data, scientists of various types rely on the
increased usage of GPUs and computer networking to get answers quickly.
Together with parallelism (more computers put in clusters and operating in par-
allel), GPUs allow you to create larger networks and successfully train them on
more data. In fact, a GPU can perform certain operations 70 times faster than any
CPU, allowing a cut in training times for neural networks from weeks to days or
even hours. (The article at https://www.quora.com/Why-are-CPUs-still-
being-made-when-GPUs-are-so-much-faster tells you why you need both CPUs
and GPUs to create an effective deep learning system.)

GPUs are powerful matrix and vector calculation computing units necessary for
backpropagation. These technologies make training neural networks achievable in
a shorter time and accessible to more people. Research also opened a world of new
applications. Neural networks can learn from huge amounts of data and take
advantage of big data (images, text, transactions, and social media data), creating
models that continuously perform better, depending on the flow of data you feed
them.

For more information about how much a GPU can empower machine learning by
using a neural network, peruse this technical paper on the topic: https://icml.
cc/2009/papers/218.pdf.

Making other investments
Big players such as Google, Facebook, Microsoft, and IBM spotted the new trend
and since 2012 have started acquiring companies and hiring experts in the new
fields of deep learning. Two of these experts are Geoffrey Hinton, who is most

http://yann.lecun.com/
https://www.quora.com/Why-are-CPUs-still-being-made-when-GPUs-are-so-much-faster
https://www.quora.com/Why-are-CPUs-still-being-made-when-GPUs-are-so-much-faster
https://icml.cc/2009/papers/218.pdf
https://icml.cc/2009/papers/218.pdf

CHAPTER 9 Moving to Deep Learning 171

noted for his work on applying the backpropagation algorithm to multilayer neu-
ral networks and now works with Google, and Yann LeCun, the creator of Convo-
lutional Neural Networks, who now leads Facebook AI research.

Today, everyone can access networks, and people can access tools that help create
deep learning networks as well. This access goes beyond reading publicly available
scientific papers that explain how deep learning works; it also includes the tools
for programming networks.

In the early days of deep learning, scientists built every network from scratch
using languages such as C++. Unfortunately, developing applications in such a
low-level language limits data access to a few well-trained specialists. Scripting
capabilities today (for instance, using Python; go to https://www.python.org)
are better because of a large array of open source deep learning frameworks, such
as TensorFlow by Google (https://www.tensorflow.org/) or PyTorch by Face-
book (https://pytorch.org/). These frameworks allow the replication of the
most recent advances in deep learning using straightforward commands.

Explaining Deep Learning Differences
from Other Forms of AI

Given the embarrassment of riches that pertain to AI as a whole, such as large
amounts of data, new and powerful computational hardware available to every-
one, and plenty of private and public investments, you may be skeptical about the
technology behind deep learning, which consists of neural networks that have
more neurons and hidden layers than in the past. Deep networks contrast with the
simpler, shallower networks of the past, which featured one or two hidden layers
at best. Many solutions that render deep learning today possible are not at all new,
but deep learning uses them in new ways.

Deep learning isn’t simply a rebranding of an old technology, the perceptron,
discovered in 1957 by Frank Rosenblatt at the Cornell Aeronautical Laboratory (see
Chapter 7 for more details about the perceptron). Deep learning works better
because of the extra sophistication it adds through the full use of powerful com-
puters and the availability of better (not just more) data. Deep learning also
implies a profound qualitative change in the capabilities offered by the technology
along with new and astonishing applications. The presence of these capabilities
modernizes old but good neural networks, transforming them into something
new. The following sections describe just how deep learning achieves its task.

https://www.python.org
https://www.tensorflow.org/
https://pytorch.org/

172 PART 2 Considering Deep Learning Basics

Adding more layers
You may wonder why deep learning has blossomed only now when the technology
used as the foundation of deep learning existed long ago. As mentioned earlier in
this chapter, computers are more powerful today, and deep learning can access
huge amounts of data. However, these answers point only to important problems
with deep learning in the past, and lower computing power along with less data
weren’t the only insurmountable obstacles. Until recently, deep learning also suf-
fered from a key technical problem that kept neural networks from having enough
layers to perform truly complex tasks.

Because it can use many layers, deep learning can solve problems that are out of
reach of machine learning, such as image recognition, machine translation, and
speech recognition. When fitted with only a few layers, a neural network is a per-
fect universal function approximator, which is a system that can recreate any possi-
ble mathematical function. When fitted with many more layers, a neural network
becomes capable of creating, inside its internal chain of matrix multiplications, a
sophisticated system of representations to solve complex problems. To under-
stand how a complex task like image recognition works, consider this process:

1. A deep learning system trained to recognize images (such as a network
capable of distinguishing photos of dogs from those featuring cats) defines
internal weights that have the capability to recognize a picture topic.

2. After detecting each single contour and corner in the image, the deep learning
network assembles all such basic traits into composite characteristic features.

3. The network matches such features to an ideal representation that provides
the answer.

In other words, a deep learning network can distinguish dogs from cats using its
internal weights to define a representation of what, ideally, a dog and a cat should
resemble. It then uses these internal weights to match any new image you provide
it with.

One of the earliest achievements of deep learning that made the public aware of
its potentiality is the cat neuron. The Google Brain team, run at that time by Andrew
Ng and Jeff Dean, put together 16,000 computers to calculate a deep learning net-
work with more than a billion weights, thus enabling unsupervised learning from
YouTube videos. The computer network could even determine by itself, without
any human intervention, what a cat is, and Google scientists managed to dig out
of the network a representation of how the network itself expected a cat should
look (see the Wired article at https://www.wired.com/2012/06/google-x-
neural-network/).

https://www.wired.com/2012/06/google-x-neural-network/
https://www.wired.com/2012/06/google-x-neural-network/

CHAPTER 9 Moving to Deep Learning 173

During the time that scientists couldn’t stack more layers into a neural network
because of the limits of computer hardware, the potential of the technology
remained buried, and scientists ignored neural networks. The lack of success
added to the profound skepticism that arose around the technology during the last
AI winter. However, what really prevented scientists from creating something
more sophisticated was the problem with vanishing gradients.

A vanishing gradient occurs when you try to transmit a signal through a neural
network and the signal quickly fades to near zero values; it can’t get through the
activation functions. This happens because neural networks are chained multipli-
cations. Each below-zero multiplication decreases the incoming values rapidly,
and activation functions need large enough values to let the signal pass. The far-
ther neuron layers are from the output, the higher the likelihood that they’ll get
locked out of updates because the signals are too small and the activation func-
tions will stop them. Consequently, your network stops learning as a whole, or it
learns at an incredibly slow pace.

Every attempt at putting together and testing complex networks ended in failure
because the backpropagation algorithm couldn’t update the layers nearer the
input, thus rendering any learning from complex data, even when such data was
available at the time, almost impossible. Today, deep networks are possible thanks
to the studies of scholars from the University of Toronto in Canada, such as Geof-
frey Hinton (https://www.utoronto.ca/news/artificial-intelligence-u-t),
who insisted on working on neural networks even when they seemed to most to
be an old-fashioned machine learning approach.

Professor Hinton, a veteran of the field of neural networks (he contributed to
defining the backpropagation algorithm), and his team in Toronto devised a few
methods to circumvent the problem of vanishing gradients. He opened the field to
rethinking new solutions that made neural networks a crucial tool in machine
learning and AI again.

Professor Hinton and his team are memorable also for being among the first to
test GPU usage in order to accelerate the training of a deep neural network. In
2012, they won an open competition, organized by the pharmaceutical company
Merck and Kaggle (the latter a website for data science competitions), using their
most recent deep learning discoveries. This event brought great attention to their
work. You can read all the details of the Hinton team’s revolutionary achievement
with neural network layers from this Geoffrey Hinton interview: http://blog.
kaggle.com/2012/11/01/deep-learning-how-i-did-it-merck-1st-
place-interview/.

https://www.utoronto.ca/news/artificial-intelligence-u-t
http://blog.kaggle.com/2012/11/01/deep-learning-how-i-did-it-merck-1st-place-interview/
http://blog.kaggle.com/2012/11/01/deep-learning-how-i-did-it-merck-1st-place-interview/
http://blog.kaggle.com/2012/11/01/deep-learning-how-i-did-it-merck-1st-place-interview/

174 PART 2 Considering Deep Learning Basics

Changing the activations
Geoffrey Hinton’s team (see preceding section) was able to add more layers to a
neural architecture because of two solutions that prevented trouble with
backpropagation:

 » They prevented the exploding gradients problem by using smarter network
initialization. An exploding gradient differs from a vanishing gradient because it
can make a network blow up as the exploding gradient becomes too large
to handle.

Your network can explode unless you correctly initialize the network to
prevent it from computing large weight numbers. Then you solve the problem
of vanishing gradients by changing the network activations.

 » The team realized that passing a signal through various activation layers
tended to damp the backpropagation signal until it becomes too faint to pass
anymore after examining how a sigmoid activation worked. They used a new
activation as the solution for this problem. The choice of which algorithm to
use fell toward an old activation type of ReLU, which stands for rectified linear
units (see Chapter 7 for more about RELU). An ReLU activation stopped the
received signal if it was below zero assuring the non-linearity characteristic of
neural networks and letting the signal pass as it was if above zero. (Using this
type of activation is an example of combining old but still good technology
with current technology.) Figure 9-2 shows how this process works.

FIGURE 9-2:
How the ReLU

activation
function works

receiving and
releasing signals.

CHAPTER 9 Moving to Deep Learning 175

The ReLU worked incredibly well and let the backpropagation signal arrive at the
initial deep network layers. When the signal is positive, its derivative is 1. You can
also find proof of the ReLU derivative in looking at Figure 9-2. Note that the rate
of change is constant and equivalent to a unit when the input signal is positive
(whereas when the signal is negative, the derivative is 0, thus preventing the sig-
nal from passing).

You can calculate the ReLU function using f(x)=max(0,x). The use of this algo-
rithm increased training speed a lot, allowing fast training of even deeper net-
works without incurring any dead neurons. A dead neuron is one that the network
can’t activate because the signals are too faint.

Adding regularization by dropout
The other introduction to deep learning made by Hinton’s team (see preceding
sections in this chapter) to complete the initial deep learning solution aimed at
regularizing the network. A regularized network limits the network weights, which
keeps the network from memorizing the input data and generalizing the wit-
nessed data patterns.

Previous discussions in this chapter note that certain neurons memorize specific
information and force the other neurons to rely on this stronger neuron, causing
the weak neurons give up learning anything useful themselves (a situation called
co-adaptation). To prevent co-adaptation, the code temporary switches off the
activation of a random portion of neurons in the network.

As you see from the left side of Figure 9-3, the weights normally operate by mul-
tiplying their inputs into outputs for the activations. To switch off activation, the
code multiplies a mask made of a random mix of ones and zeros with the results.
If the neuron is multiplied by one, the network passes its signal. When a neuron
is multiplied by zero, the network stops its signal, forcing others neurons not to
rely on it in the process.

Dropout works only during training and doesn’t touch any part of the weights. It
simply masks and hides part of the network, forcing the unmasked part to take a
more active role in learning data patterns. During prediction time, dropout doesn’t
operate, and the weights are numerically rescaled to take into account the fact
that they didn’t work all together during training.

176 PART 2 Considering Deep Learning Basics

Finding Even Smarter Solutions
Deep learning influences AI’s effectiveness in solving problems in image recogni-
tion, machine translation, and speech recognition. These problems were initially
tackled by classic AI and machine learning. In addition, deep learning presents
new and advantageous solutions in the following areas:

 » Continuous learning using online learning

 » Reusable solutions using transfer learning

 » Simple straightforward solutions using end-to-end learning

The following sections help you understand what online learning, transfer learn-
ing, and end-to-end learning are all about.

Using online learning
Neural networks are more flexible than other machine learning algorithms, and
they can continue to train as they work on producing predictions and classifica-
tions. This capability comes from optimization algorithms that allow neural net-
works to learn, which can work repeatedly on small samples of examples (called
batch learning) or even on single examples (called online learning). Deep learning
networks can build their knowledge step by step and remain receptive to new
information that may arrive (like a baby’s mind, which is always open to new
stimuli and to learning experiences).

FIGURE 9-3:
Dropout

temporarily rules
out 40 percent of
neurons from the

training.

CHAPTER 9 Moving to Deep Learning 177

For instance, a deep learning application on a social media website can train on cat
images. As people post photos of cats, the application recognizes them and tags
them with an appropriate label. When people start posting photos of dogs on the
social network, the neural network doesn’t need to restart training; it can con-
tinue by learning images of dogs as well. This capability is particularly useful for
coping with the variability of Internet data. A deep learning network can be open
to novelty and adapt its weights to deal with it.

Transferring learning
Flexibility is handy even when a network completes its training, but you must
reuse it for purposes different from the initial learning. Networks that distinguish
objects and correctly classify them require a long time and a lot of computational
capacity to learn what to do. Extending a network’s capability to new kinds of
images that weren’t part of the previous learning means transferring the knowl-
edge to this new problem (transfer learning).

For instance, you can transfer a network that’s capable of distinguishing between
dogs and cats to perform a job that involves spotting dishes of macaroni and
cheese. You use the majority of the layers of the network as they are (you freeze
them) and then work on the final, output layers (fine-tuning). In a short time, and
with fewer examples, the network will apply what it learned in distinguishing
dogs and cats to macaroni and cheese. It will perform even better than a neural
network trained only to recognize macaroni and cheese.

Transfer learning is something new to most machine learning algorithms and
opens up a possible market for transferring knowledge from one application to
another, from one company to another. Google is already doing that, actually
sharing its immense data repository by making public the networks that it built on
it (as detailed in this post: https://techcrunch.com/2017/06/16/object-
detection-api/). This is a step in democratizing deep learning by allowing
everyone to access its potentiality.

Learning end to end
Finally, deep learning allows end-to-end learning, which means that it solves
problems in an easier and more straightforward way than previous deep learning
solutions. This flexibility might result in a greater impact when solving problems.

You may want to solve a difficult problem, such as having the AI recognize known
faces or drive a car. When using the classical AI approach, you had to split the
problem into more manageable subproblems to achieve an acceptable result in a

https://techcrunch.com/2017/06/16/object-detection-api/
https://techcrunch.com/2017/06/16/object-detection-api/

178 PART 2 Considering Deep Learning Basics

feasible time. For instance, if you wanted to recognize faces in a photo, previous
AI systems arranged the problem into parts, as follows:

1. Find the faces in the photo.

2. Crop the faces from the photo.

3. Process the cropped faces to have a pose similar to an ID card photo.

4. Feed the processed cropped faces as learning examples to a neural network
for image recognition.

Today, you can feed the photo to a deep learning architecture, guide it to learn to
find faces in the images, and then use the deep learning architecture to classify
them. You can use the same approach for language translation, speech recogni-
tion, or even self-driving cars. In all cases, you simply pass the input to a deep
learning system and obtain the wanted result.

CHAPTER 10 Explaining Convolutional Neural Networks 179

Chapter 10
Explaining Convolutional
Neural Networks

When you look inside deep learning, you may be surprised to find a lot of
old technology, but amazingly, everything works as it never has before
because researchers finally know how to make some simple, older solu-

tions work together. As a result, big data can automatically filter, process, and
transform data.

For instance, novel activations like Rectified Linear Units (ReLU), discussed in
previous chapters, aren’t new, but you see them used in new ways. ReLU is a neu-
ral networks function that leaves positive values untouched and turns negative
ones into zero; you can find a first reference to ReLU in a scientific paper by
Hahnloser and others from 2000. Also, the image recognition capabilities that
made deep learning so popular a few years ago aren’t new, either.

In recent years, deep learning achieved great momentum thanks to the ability to
code certain properties into the architecture using Convolutional Neural Networks
(CNNs), which are also called ConvNets. The French scientist Yann LeCun and
other notable scientists devised the idea of CNNs at the end of the 1980s, and they
fully developed their technology during the 1990s. But only now, about 25 years
later, are such networks starting to deliver astonishing results, even achieving

IN THIS CHAPTER

 » Introducing the basics of computer
vision

 » Determining how convolutional
neural networks work

 » Recreating a LeNet5 network using
Keras

 » Explaining how convolutions see the
world

180 PART 2 Considering Deep Learning Basics

better performance than humans do in particular recognition tasks. The change
has come because it’s possible to configure such networks into complex architec-
tures that can refine their learning from lots of useful data.

CNNs have strongly fueled the recent deep learning renaissance. The following
sections discuss how CNNs help in detecting image edges and shapes for tasks
such as deciphering handwritten text, exactly locating a certain object in an image,
or separating different parts of a complex image scene.

Save yourself the time and mistakes of typing this chapter’s example code by
hand. You can find the downloadable source for this chapter in the DL4D_10_
LeNet5.ipynb file. (The Introduction tells you where to download the source code
for this book.)

Beginning the CNN Tour with
Character Recognition

CNNs aren’t a new idea. They appeared at the end of the 1980s as the solution for
character recognition problems. Yann LeCun devised CNNs when he worked at
AT&T Labs Research, together with other scientists such as Yoshua Bengio, Leon
Bottou, and Patrick Haffner on a network named LeNet5. Before delving into the
technology of these specialized neural networks, this chapter spends time under-
standing the problem of image recognition.

Digital images are everywhere today because of the pervasive presence of digital
cameras, webcams, and mobile phones with cameras. Because capturing images
has become so easy, a new, huge stream of data is provided by images. Being able
to process images opens the doors to new applications in fields such as robotics,
autonomous driving, medicine, security, and surveillance.

Understanding image basics
Processing an image for use by a computer transforms it into data. Computers
send images to a monitor as a data stream composed of pixels, so computer images
are best represented as a matrix of pixels values, with each position in the matrix
corresponding to a point in the image.

Modern computer images represent colors using a series of 32 bits (8 bits apiece
for red, blue, green, and transparency — the alpha channel). You can use just 24
bits to create a true color image, however. The article at http://www.rit-mcsl.
org/fairchild/WhyIsColor/Questions/4-5.html explains this process in more

http://www.rit-mcsl.org/fairchild/WhyIsColor/Questions/4-5.html
http://www.rit-mcsl.org/fairchild/WhyIsColor/Questions/4-5.html

CHAPTER 10 Explaining Convolutional Neural Networks 181

detail. Computer images represent color using three overlapping matrices, each
one providing information relative to one of three colors: Red, Green, or Blue
(also called RGB). Blending different amounts of these three colors enables you to
represent any standard human-viewable color, but not those seen by people with
extraordinary perception. (Most people can see a maximum of 1,000,000 colors,
which is well within the color range of the 16,777,216 colors offered by 24-bit
color. Tetrachromats can see 100,000,000 colors, so you couldn’t use a computer
to analyze what they see. The article at http://nymag.com/scienceofus/2015/02/
what-like-see-a-hundred-million-colors.html tells you more about
tetrachromats.)

Generally, an image is therefore manipulated by a computer as a three-dimensional
matrix consisting of height, width, and the number of channels — which is three
for an RGB image, but could be just one for a black-and-white image. (Grayscale is
a special sort of RGB image for which each of the three channels is the same num-
ber; see https://introcomputing.org/image-6-grayscale.html for a discussion
of how conversions between color and grayscale occurs.) With a grayscale image, a
single matrix can suffice by having a single number represent the 256-grayscale
colors, as demonstrated by the example in Figure 10-1. In that figure, each pixel of
an image of a number is quantified by its matrix values.

Given the fact that images are pixels (represented as numeric inputs), neural net-
work practitioners initially achieved good results by connecting an image directly
to a neural network. Each image pixel connected to an input node in the network.
Then one or more following hidden layers completed the network, finally result-
ing in an output layer. The approach worked acceptably for small images and to
solve small problems, giving way to different approaches for solving image recog-
nition. As an alternative, researchers used other machine learning algorithms or

FIGURE 10-1:
Each pixel is read
by the computer
as a number in a

matrix.

http://nymag.com/scienceofus/2015/02/what-like-see-a-hundred-million-colors.html
http://nymag.com/scienceofus/2015/02/what-like-see-a-hundred-million-colors.html
https://introcomputing.org/image-6-grayscale.html

182 PART 2 Considering Deep Learning Basics

applied intensive feature creation to transform an image into newly processed
data that could help algorithms recognize the image better. An example of image
feature creation is the Histograms of Oriented Gradients (HOG), which is a com-
putational way to detect patterns in an image and turn them into a numeric
matrix. (You can explore how HOG works by viewing this tutorial from the Skim-
age package: http://scikit-image.org/docs/dev/auto_examples/features_
detection/plot_hog.html.)

Neural network practitioners found image feature creation to be computationally
intensive and often impractical. Connecting image pixels to neurons was difficult
because it required computing an incredibly large number of parameters and the
network couldn’t achieve translation invariance, which is the capability to deci-
pher a represented object under different conditions of size, distortion, or position
in the image, as shown in Figure 10-2.

A neural network, which is made of dense layers as described in the previous
chapters, can detect only images that are similar to those used for training —
those that it has seen before — because it learns by spotting patterns at certain
image locations. Also, a neural network can make many mistakes. Transforming
an image before feeding it to the neural network can partially solve the problem
by resizing, moving, cleaning the pixels, and creating special chunks of informa-
tion for better network processing. This technique, called feature creation,
requires expertise on the necessary image transformations, as well as many

FIGURE 10-2:
Only by transla-
tion invariance,

an algorithm can
spot the dog and

its variations.

http://scikit-image.org/docs/dev/auto_examples/features_detection/plot_hog.html
http://scikit-image.org/docs/dev/auto_examples/features_detection/plot_hog.html

CHAPTER 10 Explaining Convolutional Neural Networks 183

computations in terms of data analysis. Because of the intense level of custom
work required, image recognition tasks are more the work of an artisan than a
scientist. However, the amount of custom work has decreased over time as the
base of libraries automating certain tasks has increased.

Explaining How Convolutions Work
Convolutions easily solve the problem of translation invariance because they offer
a different image-processing approach inside the neural network. The idea started
from a biological point of view by observing what happens in the human visual
cortex.

A 1962 experiment by Nobel Prize winners David Hunter Hubel and Torsten Wiesel
demonstrated that only certain neurons activate in the brain when the eye sees
certain patterns, such as horizontal, vertical, or diagonal edges. In addition, the
two scientists found that the neurons organize vertically, in a hierarchy, suggest-
ing that visual perception relies on the organized contribution of many single,
specialized neurons. (You can find out more about this experiment by reading the
article at https://knowingneurons.com/2014/10/29/hubel-and-wiesel-the-
neural-basis-of-visual-perception/.) Convolutions simply take this idea and,
by using mathematics, apply it to image processing in order to enhance the capa-
bilities of a neural network to recognize different images accurately.

Understanding convolutions
To understand how convolutions work, you start from the input. The input is an
image composed of one or more pixel layers, called channels, and the image uses
values from 0, which means that the individual pixel is fully switched off, to 255,
which means that the individual pixel is switched on. (Usually, the values are
stored as integers to save memory.) As mentioned in the preceding section of this
chapter, RGB images have individual channels for red, green, and blue colors.
Mixing these channels generates the palette of colors as you see them on the
screen.

A convolution works by operating on small image chunks across all image chan-
nels simultaneously. (Picture a slice of layer cake, with, each piece showing all the
layers). Image chunks are simply a moving image window: The convolution win-
dow can be a square or a rectangle, and it starts from the upper left of the image
and moves from left to right and from top to bottom. The complete tour of the
window over the image is called a filter and implies a complete transformation of
the image. Also important to note is that when a new chunk is framed by the

https://knowingneurons.com/2014/10/29/hubel-and-wiesel-the-neural-basis-of-visual-perception/
https://knowingneurons.com/2014/10/29/hubel-and-wiesel-the-neural-basis-of-visual-perception/

184 PART 2 Considering Deep Learning Basics

window, the window then shifts a certain number of pixels; the amount of the
slide is called a stride. A stride of 1 means that the window is moving one pixel
toward right or bottom; a stride of 2 implies a movement of two pixels; and so on.

Every time the convolution window moves to a new position, a filtering process
occurs to create part of the filter described in the previous paragraph. In this pro-
cess, the values in the convolution window are multiplied by the values in the
kernel (a small matrix used for blurring, sharpening, embossing, edge detection,
and more — you choose the kernel you need for the task in question). (The article
at http://setosa.io/ev/image-kernels/ tells you more about various kernel
types.) The kernel is the same size as the convolution window. Multiplying each
part of the image with the kernel creates a new value for each pixel, which in a
sense is a new processed feature of the image. The convolution outputs the pixel
value and when the sliding window has completed its tour across the image, you
have filtered the image. As a result of the convolution, you find a new image having
the following characteristics:

 » If you use a single filtering process, the result is a transformed image of a
single channel.

 » If you use multiple kernels, the new image has as many channels as the
number of filters, each one containing specially processed new feature values.
The number of filters is the filter depth of a convolution.

 » If you use a stride of 1, you get an image of the same dimensions as the
original.

 » If you use strides of a size above 1, the resulting convoluted image is smaller
than the original (a stride of size two implies halving the image size).

 » The resulting image may be smaller depending on the kernel size, because the
kernel has to start and finish its tour on the image borders. When processing
the image, a kernel will eat up its size minus one. For instance, a kernel of 3 x
3 pixels processing a 7-x-7-pixel image will eat up 2 pixels from the height and
width of the image, and the result of the convolution will be an output of size
5 x 5 pixels. You have the option to pad the image with zeros at the border
(meaning, in essence, to put a black border on the image) so that the convolu-
tion process won’t reduce the final output size. This strategy is called same
padding. If you just let the kernel reduce the size of your starting image, it’s
called valid padding.

Image processing has relied on the convolution process for a long time. Convolu-
tion filters can detect an edge or enhance certain characteristics of an image.
Figure 10-3 provides an example of some convolutions transforming an image.

http://setosa.io/ev/image-kernels/

CHAPTER 10 Explaining Convolutional Neural Networks 185

The problem with using convolutions is that they are human made and require
effort to figure out. When using a neural network convolution instead, you just set
the following:

 » The number of filters (the number of kernels operating on an image that is its
output channels)

 » The kernel size (set just one side for a square; set width and height for a
rectangle)

 » The strides (usually 1- or 2-pixel steps)

 » Whether you want the image black bordered (choose valid padding or same
padding)

After determining the image-processing parameters, the optimization process
determines the kernel values used to process the image in a way to allow the best
classification of the final output layer. Each kernel matrix element is therefore a
neural network neuron and modified during training using backpropagation for
the best performance of the network itself.

Another interesting aspect of this process is that each kernel specializes in finding
specific aspects of an image. For example, a kernel specialized in filtering features
typical of cats can find a cat no matter where it is in an image and, if you use
enough kernels, every possible variant of an image of a kind (resized, rotated,
translated) is detected, rendering your neural network an efficient tool for image
classification and recognition.

FIGURE 10-3:
A convolution

processes a
chunk of an

image by matrix
multiplication.

186 PART 2 Considering Deep Learning Basics

borders of an image are easily detected after a 3-x-3-pixel kernel is applied. This
kernel specializes in finding edges, but another kernel could spot different image
features. By changing the values in the kernel, as the neural network does during
backpropagation, the network finds the best way to process images for its regres-
sion or classification purpose.

The kernel is a matrix whose values are defined by the neural network optimiza-
tion, multiplied by a small patch of the same size moving across the image, but it
can be intended as a neural layer whose weights are shared across the different
input neurons. You can see the patch as an immobile neural layer connected to the
many parts of the image always using the same set of weights. It is exactly the
same result.

Keras offers a convolutional layer, Conv2D, out of the box. This Keras layer can
take both the input directly from the image (in a tuple, you have to set the input_
shape the width, height, and number of channels of your image) or from another
layer (such as another convolution). You can also set filters, kernel_size,
strides, and padding, which are the basic parameters for any convolutional lay-
ers, as described earlier in the chapter.

When setting a Conv2D layer, you may also set many other parameters, which are
actually a bit too technical and maybe not necessary for your first experiments
with CNNs. The only other parameters you may find useful now are activation,
which can add an activation of your choice, and name, which sets a name for the
layer.

FIGURE 10-4:
The borders of an

image are
detected after

applying a
3-x-3-pixel kernel.

CHAPTER 10 Explaining Convolutional Neural Networks 187

Simplifying the use of pooling
Convolutional layers transform the original image using various kinds of filtering.
Each layer finds specific patterns in the image (particular sets of shapes and col-
ors that make the image recognizable). As this process continues, the complexity
of the neural network grows because the number of parameters grows as the net-
work gains more filters. To keep the complexity manageable, you need to speed
the filtering and reduce the number of operations.

Pooling layers can simplify the output received from convolutional layers, thus
reducing the number of successive operations performed and using fewer convo-
lutional operations to perform filtering. Working in a fashion similar to convolu-
tions (using a window size for the filter and a stride to slide it), pooling layers
operate on patches of the input they receive and reduce a patch to a single num-
ber, thus effectively downsizing the data flowing through the neural network.

Figure 10-5 represents the operations done by a pooling layer, receiving as input the
filtered data represented by the left 4-x-4 matrix: operating on it using a window
of size 2 pixels and moving by a stride of 2 pixels. As a result, the pooling layer pro-
duces the right output: a 2-x-2 matrix. The network applies the pooling operation
on four patches represented by four different colored parts of the matrix. For each
patch, the pooling layer computes the maximum value and saves it as an output.

The current example relies on the max pooling layer because it uses the max
transformation on its sliding window. You actually have access to four principal
types of pooling layers:

 » Max pooling

 » Average pooling

FIGURE 10-5:
A max pooling

layer operating
on chunks of a

reduced image.

188 PART 2 Considering Deep Learning Basics

 » Global max pooling

 » Global average pooling

In addition, these four pooling layer types have different versions, depending on
the dimensionality of the input they can process:

 » 1-D pooling: Works on vectors. Thus, 1-D pooling is ideal for sequence data
such as temporal data (data representing events following each other in time)
or text (represented as sequences of letters or words). It takes the maximum
or the average of contiguous parts of the sequence.

 » 2-D pooling: Fits spatial data that fits a matrix. You can use 2-D pooling for a
grayscale image or each channel of an RBG image separately. It takes the
maximum or the average of small patches (squares) of the data.

 » 3-D pooling: Fits spatial data represented as spatial-temporal data. You could
use 3-D pooling for images taken across time. A typical example is to use
magnetic resonance imagining (MRI) for a medical examination. Radiologists
use an MRI to examine body tissues with magnetic fields and radio waves.
(See the article from Stanford AI for healthcare to learn more about the
contribution of deep learning: https://medium.com/stanford-ai-for-
healthcare/dont-just-scan-this-deep-learning-techniques-for-
mri-52610e9b7a85.) This kind of pooling takes the maximum or the average
of small chunks (cubes) from the data.

You can find all these layers described in the Keras documentation, together with
all their parameters, at https://keras.io/layers/pooling/.

Describing the LeNet architecture
You may have been amazed by the description of a CNN in the preceding section,
and about how its layers (convolutions and max pooling) work, but you may be
even more amazed at discovering that it’s not a new technology; instead, it
appeared in the 1990s. The following sections describe the LeNet architecture in
more detail.

Considering the underlying functionality
The key person behind this innovation was Yann LeCun, who was working at
AT&T Labs Research as head of the Image Processing Research Department. LeCun
specialized in optical character recognition and computer vision. Yann LeCun is a

https://medium.com/stanford-ai-for-healthcare/dont-just-scan-this-deep-learning-techniques-for-mri-52610e9b7a85
https://medium.com/stanford-ai-for-healthcare/dont-just-scan-this-deep-learning-techniques-for-mri-52610e9b7a85
https://medium.com/stanford-ai-for-healthcare/dont-just-scan-this-deep-learning-techniques-for-mri-52610e9b7a85
https://keras.io/layers/pooling/

CHAPTER 10 Explaining Convolutional Neural Networks 189

French computer scientist who created convolutional neural networks with Léon
Bottou, Yoshua Bengio, and Patrick Haffner. At present, he is the Chief AI Scientist
at Facebook AI Research (FAIR) and a Silver Professor at New York University
(mainly affiliated with the NYU Center for Data Science). His personal home page
is at http://yann.lecun.com/.

In the late 1990s, AT&T implemented LeCun’s LeNet5 to read ZIP codes for the
United States Postal Service. The company also used LeNet5 for ATM check read-
ers, which can automatically read the check amount. The system doesn’t fail,
as reported by LeCunn at https://pafnuty.wordpress.com/2009/06/13/
yann-lecun/. However, the success of the LeNet passed almost unnoticed at the
time because the AI sector was undergoing an AI winter: both the public and inves-
tors were significantly less interested and attentive to improvements in neural
technology than they are now.

Part of the reason for an AI winter is that many researchers and investors lost
their faith in the idea that neural networks would revolutionize AI. Data of the
time lacked the complexity for such a network to perform well. (ATMs and the
USPS were notable exceptions because of the quantities of data they handled.)
With a lack of data, convolutions only marginally outperform regular neural net-
works made of connected layers. In addition, many researchers achieved results
comparable to LeNet5 using brand-new machine learning algorithms such as
Support Vector Machines (SVMs) and Random Forests, which were algorithms
based on mathematical principles different from those used for neural networks.

You can see the network in action at http://yann.lecun.com/exdb/lenet/ or
in this video, in which a younger LeCun demonstrates an earlier version of the
network: https://www.youtube.com/watch?v=FwFduRA_L6Q. At that time, hav-
ing a machine able to decipher both typewritten and handwritten numbers was
quite a feat.

As shown in Figure 10-6, the LeNet5 architecture consists of two sequences of
convolutional and average pooling layers that perform image processing. The last
layer of the sequence is then flattened; that is, each neuron in the resulting series
of convoluted 2-D arrays is copied into a single line of neurons. At this point, two
fully connected layers and a softmax classifier complete the network and provide
the output in terms of probability. The LeNet5 network is really the basis of all the
CNNs that follow. Recreating the architecture using Keras will explain it layer-by-
layer and demonstrate how to build your own convolutional networks.

http://yann.lecun.com/
https://pafnuty.wordpress.com/2009/06/13/yann-lecun/
https://pafnuty.wordpress.com/2009/06/13/yann-lecun/
http://yann.lecun.com/exdb/lenet/
https://www.youtube.com/watch?v=FwFduRA_L6Q

190 PART 2 Considering Deep Learning Basics

Building your own LeNet5 network
This network will be trained on a relevant amount of data (the digits dataset pro-
vided by Keras, consisting of more than 60,000 examples). You could therefore
have an advantage if you run it on Colab, as explained in Chapter 3, or on your
local machine if you have a GPU available. After opening a new notebook, you start
by importing the necessary packages and functions from Keras using the follow-
ing code:

import keras
import numpy as np
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Conv2D, AveragePooling2D
from keras.layers import Dense, Flatten
from keras.losses import categorical_crossentropy

After importing the necessary tools, you need to collect the data:

(X_train, y_train), (X_test, y_test) = mnist.load_data()

The first time you execute this command, the mnist command will download
all the data from the Internet, which could take a while. The downloaded data
consists of single-channel 28-x-28-pixel images representing handwritten
numbers from zero to nine. As a first step, you need to convert the response vari-
able (y_train for the training phase and y_test for the test after the model is
completed) into something that the neural network can understand and work on:

num_classes = len(np.unique(y_train))
print(y_train[0], end=' => ')
y_train = keras.utils.to_categorical(y_train, 10)
y_test = keras.utils.to_categorical(y_test, 10)
print(y_train[0])

FIGURE 10-6:
The architecture

of LeNet5, a
neural network
for handwritten

digits recognition.

CHAPTER 10 Explaining Convolutional Neural Networks 191

This code snippet translates the response from numbers to vectors of numbers,
where the value at the position corresponding to the number the network will
guess is 1 and the others are 0. The code will also output the transformation for
the first image example in the train set:

5 => [0. 0. 0. 0. 0. 1. 0. 0. 0. 0.]

Notice that the output is 0 based and that the 1 appears at the position corre-
sponding to the number 5. This setting is used because the neural network needs
a response layer, which is a set of neurons (hence the vector) that should become
activated if the provided answer is correct. In this case, you see ten neurons, and
in the training phase, the code activates the correct answer (the value at the cor-
rect position is set to 1) and turns the others off (their values are 0). In the test
phase, the neural network uses its database of examples to turn the correct neu-
ron on, or at least turn on more than the correct one. In the following code, the
code prepares the training and test data:

X_train = X_train.astype(np.float32) / 255
X_test = X_test.astype(np.float32) / 255
img_rows, img_cols = X_train.shape[1:]
X_train = X_train.reshape(len(X_train),
 img_rows, img_cols, 1)
X_test = X_test.reshape(len(X_test),
 img_rows, img_cols, 1)
input_shape = (img_rows, img_cols, 1)

The pixel numbers, which range from 0 to 255, are transformed into a decimal
value ranging from 0 to 1. The first two lines of code optimize the network to work
properly with large numbers that could cause problems. The lines that follow
reshape the images to have height, width, and channels.

The following line of code defines the LeNet5 architecture. You start by calling the
sequential function that provides an empty model:

lenet = Sequential()

The first layer added is a convolutional layer, named “”:

lenet.add(Conv2D(6, kernel_size=(5, 5), activation='tanh',
 input_shape=input_shape, padding='same', name='C1'))

The convolution operates with a filter size of 6 (meaning that it will create six new
channels made by convolutions) and a kernel size of 5 x 5 pixels.

192 PART 2 Considering Deep Learning Basics

The activation for all the layers of the network but the last one is tanh (Hyperbolic
Tangent function), a nonlinear function that was the state of the art for activation
at the time Yann LeCun created LetNet5. The function is outdated today, but the
example uses it in order to build a network that resembles the original LetNet5
architecture. To use such a network for your own projects, you should replace it
with a modern ReLU (see https://www.kaggle.com/dansbecker/rectified-
linear-units-relu-in-deep-learning for details). The example adds a pooling
layer, named S2, which uses a 2-x-2-pixel kernel:

lenet.add(AveragePooling2D(pool_size=(2, 2), strides=(1, 1),
padding='valid'))

At this point, the code proceeds with the sequence, always performed with a con-
volution and a pooling layer but this time using more filters:

lenet.add(Conv2D(16, kernel_size=(5, 5), strides=(1, 1),
 activation='tanh', padding='valid'))
lenet.add(AveragePooling2D(pool_size=(2, 2), strides=(1, 1),

padding='valid'))

The LeNet5 closes incrementally using a convolution with 120 filters. This convo-
lution doesn’t have a pooling layer but rather a flattening layer, which projects the
neurons into the last convolution layer as a dense layer:

lenet.add(Conv2D(120, kernel_size=(5, 5), activation='tanh',
name='C5'))

lenet.add(Flatten())

The closing of the network is a sequence of two dense layers that process the con-
volution’s outputs using the tanh and softmax activation. These two layers pro-
vide the final output layers where the neurons activate an output to signal the
predicted answer. The softmax layer is actually the output layer as specified by
name='OUTPUT':

lenet.add(Dense(84, activation='tanh', name='FC6'))
lenet.add(Dense(10, activation='softmax', name='OUTPUT'))

When the network is ready, you need Keras to compile it. (Behind all the Python
code is some C language code.) Keras compiles it based on the SGD optimizer:

lenet.compile(loss=categorical_crossentropy, optimizer='SGD',
metrics=['accuracy'])

lenet.summary()

https://www.kaggle.com/dansbecker/rectified-linear-units-relu-in-deep-learning
https://www.kaggle.com/dansbecker/rectified-linear-units-relu-in-deep-learning

CHAPTER 10 Explaining Convolutional Neural Networks 193

At this point, you can run the network and wait for it to process the images:

batch_size = 64
epochs = 50
history = lenet.fit(X_train, y_train,
 batch_size=batch_size,
 epochs=epochs,
 validation_data=(X_test,
 y_test))

Completing the run takes 50 epochs, each epoch processing batches of 64 images
at one time. (An epoch is the passing of the entire dataset through the neural
 network one time, while a batch is a part of the dataset, which means breaking the
dataset into 64 chunks in this case.) With each epoch (lasting about 8 seconds if
you use Colab), you can monitor a progress bar telling you the time required to
complete that epoch. You can also read the accuracy measures for both the train-
ing set (the optimistic estimate of the goodness of your model, see https://
towardsdatascience.com/measuring-model-goodness-part-1-a24ed4d62f71
for details on what precisely goodness means) and the test set (the more realistic
view). At the last epoch, you should read that a LeNet5 built in a few steps achieves
an accuracy of 0.989, meaning that out every 100 handwritten numbers that it
tries to recognize, the network should guess about 99 correctly.

Detecting Edges and Shapes from Images
Convolutions process images automatically and perform better than a densely
connected layer because they learn image patterns at a local level and can retrace
them in any other part of the image (a characteristic called translation invariance).
On the other hand, traditional dense neural layers can determine the overall
 characteristics of an image in a rigid way without the benefit of translation
 invariance. It’s like the difference between learning a book by memorizing the
text in meaningful chunks or memorizing it word by word. The student (the con-
volutions) who learned chunk by chunk can better abstract the book content and
is ready to apply that knowledge to similar cases. The student (the dense layer)
who learned it word by word struggles to extract something useful.

CNNs are not magic, nor are they a black box. You can understand them through
image processing and leverage their functionality to extend their capabilities to
new problems. This feature helps solve a series of computer vision problems that
data scientists deemed too hard to crack using older strategies.

https://towardsdatascience.com/measuring-model-goodness-part-1-a24ed4d62f71
https://towardsdatascience.com/measuring-model-goodness-part-1-a24ed4d62f71

194 PART 2 Considering Deep Learning Basics

Visualizing convolutions
A CNN uses different layers to perform specific tasks in a hierarchical way. Yann
LeCun (see the “Beginning the CNN Tour with Character Recognition” section,
early in this chapter) noticed how LeNet first processed edges and contours, and
then motifs, and then categories, and finally objects. Recent studies further unveil
how convolutions really work:

 » Initial layers: Discover the image edges

 » Middle layers: Detect complex shapes (created by edges)

 » Final layers: Uncover distinctive image features characteristic of the image
type that you want the network to classify (for instance, the nose of a dog or
the ears of a cat)

This hierarchy of patterns discovered by convolutions also explains why deep
convolutional networks perform better than shallow ones: the more stacked con-
volutions there are, the better the network can learn more and more complex and
useful patterns for successful image recognition. Figure 10-7 provides an idea of
how things work. The image of a dog is processed by convolutions, and the first
layer grasps patterns. The second layer accepts these patterns and assembles
them into a cat. If the patterns processed by the first layer seem too general to be
of any use, the patterns unveiled by the second layer recreate more characteristic
dog features that provide an advantage to the neural network in recognizing dogs.

FIGURE 10-7:
Processing a dog

image using
convolutions.

CHAPTER 10 Explaining Convolutional Neural Networks 195

The difficulty in determining how a convolution works is in understanding how
the kernel (matrix of numbers) creates the convolutions and how they work on
image patches. When you have many convolutions working one after the other,
determining the result through direct analysis is difficult. However, a technique
designed for understanding such networks builds images that activate the most
convolutions. When an image strongly activates a certain layer, you have an idea
of what that layer perceives the most.

Analyzing convolutions helps you understand how things work, both to avoid bias
in prediction and to devise new ways to process images. For instance, you may
discover that your CNN is distinguishing dogs from cats by activating on the back-
ground of the image because the images you used for the training represents dogs
outdoors and cats indoors.

A 2017 paper called “Feature Visualization,” by Chris Olah, Alexander Mordvint-
sev, and Ludwig Schubert from the Google Research and Google Brain Team
explains this process in detail (https://distill.pub/2017/feature-
visualization/). You can even inspect the images yourself by clicking and point-
ing at the layers of GoogleLeNet, a CNN built by Google at https://distill.
pub/2017/feature-visualization/appendix/. The images from the Feature
Visualization may remind you of deepdream images, if you had occasion to see
some when they were a hit on the web (read the original deepdream paper and
glance at some images at https://ai.googleblog.com/2015/06/inceptionism-
going-deeper-into-neural.html). It’s the same technique, but instead of look-
ing for images that activate a layer the most, you pick a convolutional layer and let
it transform an image.

You can also copy the style of works from a great artist of the past, such as Picasso
or van Gogh, using a similar technique based on using convolutions to transform
an existing image, a process called artistic style transfer. The resulting picture is
modern, but the style isn’t. You can get some interesting examples of artistic
style transfer from the original paper, “A Neural Algorithm of Artistic Style,”
by Leon Gatys, Alexander Ecker, and Matthias Bethge: https://arxiv.org/
pdf/1508.06576.pdf.

In Figure 10-8, the original image is transformed in style by applying the drawing
and color characteristics found in the Japanese Ukiyo-e “The Great Wave off
Kanagawa,” a woodblock print by the Japanese artist Katsushika Hokusai, who
lived from 1760 to 1849.

https://distill.pub/2017/feature-visualization/
https://distill.pub/2017/feature-visualization/
https://distill.pub/2017/feature-visualization/appendix/
https://distill.pub/2017/feature-visualization/appendix/
https://ai.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
https://ai.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
https://arxiv.org/pdf/1508.06576.pdf
https://arxiv.org/pdf/1508.06576.pdf

196 PART 2 Considering Deep Learning Basics

Unveiling successful architectures
In recent years, data scientists have achieved great progress thanks to deeper
investigation of how CNNs work. Other methods have also added to the progress
in how CNNs work. Image competitions have played a major role by challenging
researchers to improve their networks, which has made large quantities of images
available.

The architecture update process started during the last AI winter. Fei-Fei Li, a
computer science professor at the University of Illinois at Urbana Champaign (and
now chief scientist at Google Cloud as well as professor at Stanford) decided to
provide more real-world datasets to better test algorithms for neural networks.
She started amassing an incredible number of images representing a large num-
ber of object classes. She and her team performed such a huge task by using Ama-
zon’s Mechanical Turk, a service that you use to ask people to do microtasks for
you (such as classifying an image) for a small fee.

The resulting dataset, completed in 2009, was called ImageNet and initially con-
tained 3.2 million labeled images (it now contains more than 10 million images)
arranged into 5,247 hierarchically organized categories. If interested, you can
explore the dataset at http://www.image-net.org/ or read the original paper at
http://www.image-net.org/papers/imagenet_cvpr09.pdf.

ImageNet soon appeared at a 2010 competition in which neural networks, using
convolutions (hence the revival and further development of the technology devel-
oped by Yann LeCun in the 1990s), proved their capability in correctly classifying
images arranged into 1,000 classes. In seven years of competition (the challenge
closed in 2017), the winning algorithms improved the accuracy of predicting
images from 71.8 percent to 97.3 percent, which surpasses human capabilities
(humans make mistakes in classifying objects). Here are some notable CNN archi-
tectures that were devised for the competition:

FIGURE 10-8:
The content of an

image is
transformed by

style transfer.

http://www.image-net.org/
http://www.image-net.org/papers/imagenet_cvpr09.pdf

CHAPTER 10 Explaining Convolutional Neural Networks 197

 » AlexNet (2012): Created by Alex Krizhevsky from the University of Toronto. It
used CNNs with an 11-x-11-pixel filter, won the competition, and introduced
the use of GPUs for training neural networks, together with the ReLU activa-
tion to control overfitting.

 » VGGNet (2014): This appeared in two versions, 16 and 19. It was created by
the Visual Geometry Group at Oxford University and defined a new 3-x-3
standard in filter size for CNNs.

 » ResNet (2015): Created by Microsoft. This CNN not only extended the idea of
different versions of the network (50, 101, 152) but also introduced skip layers,
a way to connect deeper layers with shallower ones to prevent the vanishing
gradient problem (see Chapters 8 and 9 for more about this problem) and
allow much deeper networks that are more capable of recognizing patterns in
images.

You can take advantage of all the innovations introduced by the ImageNet compe-
tition and even use each of the neural networks. This accessibility allows you to
replicate the network performance seen in the competitions and successfully
extend them to myriad other problems.

Discussing transfer learning
Networks that distinguish objects and correctly classify them require a lot of
images, a long processing time, and vast computational capacity to learn what to
do. Adapting a network’s capability to new image types that weren’t part of the
initial training means transferring existing knowledge to the new problem. This
process of adapting a network’s capability is called transfer learning, and the net-
work you are adapting is often referred to as a pretrained network. You can’t apply
transfer learning to other machine learning algorithms; only deep learning has
the capability of transferring what it learned on one problem to another.

Transfer learning is something new to most machine learning algorithms and
opens a possible market for transferring knowledge from one application to
another, and from one company to another. Google is already doing that; it is
sharing its immense data repository by making public the networks it built on TF
Hub (https://www.tensorflow.org/hub).

For instance, you can transfer a network that’s capable of distinguishing between
dogs and cats to perform a job that involves spotting dishes of macaroni and
cheese. From a technical point of view, you achieve this task in different ways,
depending on how similar the new image problem is to the previous one and how
many new images you have for training. (A small image dataset amounts to a few
thousands of images, sometimes even less.)

https://www.tensorflow.org/hub

198 PART 2 Considering Deep Learning Basics

If your new image problem is similar to the old one, your network may know all
the convolutions necessary (edge, shape, and high-level feature layers) to deci-
pher similar images and classify them. In this case, you don’t need to put too
many images into training, add much computational power, or adapt your pre-
trained network too deeply. This type of transfer is the most common application
of transfer learning, and you usually apply it by leveraging a network trained dur-
ing the ImageNet competition (because those networks were trained on so many
images that you probably have all the convolutions needed to transfer the knowl-
edge to other tasks).

Say that the task you want to extend involves not only spotting dogs in images but
also in determining the dog’s breed. You use the majority of the layers of an Ima-
geNet network such as VGG16 as they are, without further adjustment. In transfer
learning, you freeze the values of the pretrained coefficients of the convolutions
so that they are not affected by any further training and the network won’t overfit
to the data you have, if it is too little.

With the new images, you then train the output layers set on the new problem (a
process known as fine-tuning). In a short time and with just a few examples, the
network will apply what it learned in distinguishing dogs and cats to breeds of
dogs. It will perform even better than a neural network trained only to recognize
breeds of dogs because in fine-tuning, it is leveraging what the network has
learned before from millions of images.

A neural network will identify only objects that it has been trained to identify.
Consequently, if you train a CNN to recognize major breeds of dogs such as a Lab-
rador Retriever or a Husky, the CNN won’t recognize mixes of those two breeds,
such as a Labsky. Instead, the CNN will output the closest match based on the
internal weights it develops during training.

If the task you have to transfer to the existing neural network is different from the
task it was trained to do, which is spotting dishes of macaroni and cheese starting
from a network used to identify dogs and cats, you have some options:

 » If you have little data, you can freeze the first and middle layers of the
pretrained network and discard the final layers because they contain high-
level features that probably aren’t useful for your problem. Instead of the final
convolutions, you then add a response layer suitable to your problem. The
fine-tuning will work out the best coefficients for the response layer, given the
pretrained convolutional layers available.

CHAPTER 10 Explaining Convolutional Neural Networks 199

 » If you have lots of data, you add the suitable response layer to the pretrained
network, but you don’t freeze the convolutional layers. You use the pretrained
weights as a starting point and let the network fit your problem in the best
way because you can train on lots of data.

The Keras package offers a few pretrained models that you can use for transfer
learning. You can read about all the available models and their architectures at
https://keras.io/applications/. The model descriptions also talk about some
of the award winning networks mentioned earlier in the chapter: VGG16, VGG19,
and ResNet50. Chapter 12 demonstrates how to use these networks in practice and
how to transfer the coefficients learned from the ImageNet competition to other
problems.

https://keras.io/applications/

CHAPTER 11 Introducing Recurrent Neural Networks 201

Chapter 11
Introducing Recurrent
Neural Networks

This chapter explores how deep learning can deal with information that
flows. Reality is not simply changeable, but is changeable in a progressive
way that is made predictable by observing the past. If a picture is a static

snapshot of a moment in time, a video, consisting of a sequence of related images,
is flowing information, and a film can tell you much more than a single photo or
a series of photos can. Likewise for short and long textual data (from tweets to
entire documents or books) and for all numeric series that represent something
occurring along a timeline (for instance, a series the about sales of a product or
the quality of the air by day in a city).

This chapter explains a series of new layers, the recurrent networks, and all their
improvements, such as the LSTM and GRU layers. These technologies are behind
the most astonishing deep learning applications that you can experiment with
today. You commonly see them used on your mobile phone or at home. For exam-
ple, you use this kind of application when chatting with smart speakers such as
Siri, Google Home, or Alexa. Another application is translating your conversation
into another language using Google Translate.

IN THIS CHAPTER

 » Understanding the importance of
learning data in sequence

 » Creating image captions and
translating languages using deep
learning

 » Discovering the long short-term
memory (LSTM) technology

 » Knowing about possible alternatives
to LSTM

202 PART 2 Considering Deep Learning Basics

Behind each of these technologies are a distinctive neural architecture and
application-specific data used for training — some public and some proprietary.
Even with these differences in data source and technique, the layers that make
everything possible are precisely the same layers that you import from Tensor-
Flow and Keras (Chapter 4 tells you about these two deep learning frameworks)
and use when coding your applications.

Introducing Recurrent Networks
Neural networks provide a transformation of your input into a desired output.
Even in deep learning, the process is the same, although the transformation is
more complex. In contrast to a simpler neural network made up of few layers,
deep learning relies on more layers to perform complex transformations. The out-
put from a data source connects to the input layer of the neural network, and the
input layer starts processing the data. The hidden layers map the patterns and
relate them to a specific output, which could be a value or a probability. This pro-
cess works perfectly for any kind of input, and it works especially well for images,
as described in Chapter 10.

After each layer processes its data, it outputs the transformed data to the next
layer. That next layer processes the data with complete independence from the
previous layers. The use of this strategy implies that if you are feeding a video to
your neural network, the network will process each image singularly, one after the
other, and the result won’t change at all even if you shuffled the order of the pro-
vided images. When running a network in such a fashion, using the architectures
described in previous chapters of this book, you won’t get any advantage from the
order of the information processing.

However, experience also teaches that to understand a process, you sometimes
have to observe events in sequence. When you use the experience gained from a
previous step to explore a new step, you can reduce the learning curve and lessen
the time and effort needed to understand each step.

Modeling sequences using memory
The kind of neural architectures seen so far don’t allow you to process a sequence
of elements simultaneously using a single input. For instance, when you have a
series of monthly product sales, you accommodate the sales figures using twelve
inputs, one for each month, and let the neural network analyze them at one time.
It follows that when you have longer sequences, you need to accommodate them
using a larger number of inputs, and your network becomes quite huge because

CHAPTER 11 Introducing Recurrent Neural Networks 203

each input should connect with every other input. You end up having a network
characterized by a large number of connections (which translates into many
weights), too.

Recurrent Neural Networks (RNNs) are an alternative to the solutions found in
previous chapters, such as the perceptron in Chapter 7 and CNNs in Chapter 10.
They first appeared in the 1980s, and various researchers have worked to improve
them until they recently gained popularity thanks to the developments in deep
learning and computational power. The idea behind RNNs is simple, they examine
each element of the sequence once and retain memory of it so they can reuse it
when examining the next element in the sequence. It’s akin to how the human
mind works when reading text: a person reads letter by letter the text but under-
stands words by remembering each letter in the word. In a similar fashion, an RNN
can associate a word to a result by remembering the sequence of letters it receives.
An extension of this technique makes it possible ask an RNN to determine whether
a phrase is positive or negative—a widely used analysis called sentiment analysis.
The network connects a positive or negative answer to certain word sequences it
has seen in training examples.

You represent an RNN graphically as a neural unit (also known as a cell) that con-
nects an input to an output but also connects to itself, as shown in Figure 11-1.
This self-connection represents the concept of recursion, which is a function
applied to itself until it achieves a particular output. One of the most commonly
used examples of recursion is computing a factorial, as described at https://www.
geeksforgeeks.org/recursion/. The figure shows a specific RNN example using
a letter sequence to make the word jazz. The right side of the figure depicts a rep-
resentation of the RNN unit behavior receiving jazz as an input, but there is actu-
ally only the one unit, as shown on the left.

Figure 11-1 shows a recursive cell on the left and expands it as an unfolded series
of units that receives the single letters of the word jazz on the right. It starts with
j, followed by the other letters. As this process occurs, the RNN emits an output
and modifies its internal parameters. By modifying its internal parameters, the
unit learns from the data it receives and from the memory of the previous data.
The sum of this learning is the state of the RNN cell.

FIGURE 11-1:
A folded and

unfolded RNN cell
processing a

sequence input.

https://www.geeksforgeeks.org/recursion/
https://www.geeksforgeeks.org/recursion/

204 PART 2 Considering Deep Learning Basics

When discussing neural networks in previous chapters, this book talks solely
about weights. With RNNs, you also need to know the term state. The weights help
process the input into an output in an RNN, but the state contains the traces of the
information the RNN has seen so far, so the state affects the functioning of the
RNN. The state is a kind of short-term memory that resets after a sequence com-
pletes. As an RNN cell gets pieces of a sequence, it does the following:

1. Processes them, changing the state with each input.

2. Emits an output.

3. After seeing the last output, the RNN learns the best weights for mapping the
input into the correct output using backpropagation.

Recognizing and translating speech
The capability to recognize and translate between languages becomes more impor-
tant each day as economies everywhere become increasingly globalized. Language
translation is an area in which AI has a definite advantage over humans — so
much so that articles like https://www.digitalistmag.com/digital-economy/
2018/07/06/artificial-intelligence-is-changing-translation-industry-
but-will-it-work-06178661 and https://www.forbes.com/sites/bernardmarr/
2018/08/24/will-machine-learning-ai-make-human-translators-an-
endangered-species/#535ec9703902 are beginning to question how long the
human translator will remain viable.

Of course, you must make the translation process viable using deep learning.
From a neural architecture perspective, you have a couple of choices:

 » Keep all the outputs provided by the RNN cell

 » Keep the last RNN cell output

The last output is the output of the entire RNN because it’s produced after com-
pleting the sequence examination. However, you can use the previous outputs if
you need to predict another sequence or you intend to stack more RNN cells after
the current one, such as when working with Convolutional Neural Networks
(CNNs). Staking RNNs vertically enables the network to learn complex sequence
patterns and become more effective in producing predictions.

You can also stack RNNs horizontally in the same layer. Allowing multiple RNNs
to learn from a sequence can help it get more from the data. Using multiple RNNs
is similar to CNNs, in which each single layer uses depths of convolutions to learn
details and patterns from the image. In the multiple RNNs case, a layer can grasp
different nuances of the sequence they are examining.

https://www.digitalistmag.com/digital-economy/2018/07/06/artificial-intelligence-is-changing-translation-industry-but-will-it-work-06178661
https://www.digitalistmag.com/digital-economy/2018/07/06/artificial-intelligence-is-changing-translation-industry-but-will-it-work-06178661
https://www.digitalistmag.com/digital-economy/2018/07/06/artificial-intelligence-is-changing-translation-industry-but-will-it-work-06178661
https://www.forbes.com/sites/bernardmarr/2018/08/24/will-machine-learning-ai-make-human-translators-an-endangered-species/#535ec9703902
https://www.forbes.com/sites/bernardmarr/2018/08/24/will-machine-learning-ai-make-human-translators-an-endangered-species/#535ec9703902
https://www.forbes.com/sites/bernardmarr/2018/08/24/will-machine-learning-ai-make-human-translators-an-endangered-species/#535ec9703902

CHAPTER 11 Introducing Recurrent Neural Networks 205

Designing grids of RNNs, both horizontally and vertically, improves predictive
performances. However, deciding how to use the output determines what a deep
learning architecture powered by RNNs can achieve. The key is the number of ele-
ments used as inputs and the sequence length expected as output. As the deep
learning network synchronizes the RNN outputs, you get your desired outcome.

You have a few possibilities when using multiple RNNs, as depicted in
Figure 11-2:

 » One to one: When you have one input and expect one output. The examples
in this book so far use this approach. They take one case, made up of a certain
number of informative variables, and provide an estimate, such as a number
or probability.

 » One to many: Here you have one input and you expect a sequence of
outputs as a result. Automatic captioning neural networks use this approach:
You input a single image and produce a phrase describing image content.

 » Many to one: The classic example for RNNs. For example, you input a textual
sequence and expect a single result as output. You see this approach used for
producing a sentiment analysis estimate or another classification of the text.

 » Many to many: You provide a sequence as input and expect a resulting
sequence as output. This is the core architecture for many of the most
impressive deep learning–powered AI applications. This approach is used for
machine translation (such as a network that can automatically translate a
phrase from English to German), chatbots (a neural network that can answer
your questions and argue with you), and sequence labeling (classifying each of
the images in a video).

Machine translation is the capability of a machine to translate, correctly and mean-
ingfully, one human language into another one. This capability is something that
scientists have striven to achieve for long time, especially for military purposes.
You can read the fascinating story of all the attempts to perform machine

FIGURE 11-2:
Different RNNs

input/output
configurations.

206 PART 2 Considering Deep Learning Basics

translation by U.S. and Russian scientists in the article at http://vas3k.com/
blog/machine_translation/ by Vasily Zubarev. The real breakthrough happened
only after Google launched its Google Neural Machine Translation (GNMT), which
you can read more about on the Google AI blog: https://ai.googleblog.
com/2016/09/a-neural-network-for-machine.html. GNMT relies on a series of
RNNs (using the many-to-many paradigm) to read the word sequence in the lan-
guage you want to translate from (called the encoder layer) and return the results
to another RNN layer (the decoder layer) that transforms it into translated output.

Neural machine translation needs two layers because the grammar and syntax of
one language can be different from another. A single RNN can’t grasp two lan-
guage systems at the same time, so the encoder-decoder couple is needed to han-
dle the two languages. The system isn’t perfect, but it’s an incredible leap forward
from the previous solutions described in Vasily Zubarev’s article, greatly reducing
errors in word order, lexical mistakes (the chosen translation word), and gram-
mar (how words are used).

Moreover, performance depends on the training set, the differences between the
languages involved, and their specific characteristics. For instance, because of
how sentence structure is built in Japanese, the Japanese government is now
investing in a real-time voice translator to help during the Tokyo Olympic
Games in 2020 and to boost tourism by developing an advanced neural network
solution (see https://www.japantimes.co.jp/news/2015/03/31/reference/
translation-tech-gets-olympic-push/ for details).

RNNs are the reason your voice assistant can answer you or your automatic trans-
lator can give you a foreign language translation. Because an RNN is simply a
recurring operation of multiplication and summation, deep learning networks
can’t really understand any meaning; they simply process words and phrases
based on what they learned during training.

Placing the correct caption on pictures
Another possible application of RNNs using the many-to-many approach is cap-
tion generation, which involves providing an image to a neural network and receiv-
ing a text description that explains what’s happening in the image. In contrast to
chatbots and machine translators, whose output is consumed by humans, caption
generation works with robotics. It does more than simply generate image or video
descriptions. Caption generation can help people with impaired vision perceive
their environment using devices like the Horus wearable (https://horus.tech/
horus/?l=en_us) or build a bridge between images and knowledge bases (which
are text based) for robots — allowing them to understand their surroundings bet-
ter. You start from specially devised datasets such as the Pascal Sentence Dataset
(see it at http://vision.cs.uiuc.edu/pascal-sentences/); the Flickr 30K

http://vas3k.com/blog/machine_translation/
http://vas3k.com/blog/machine_translation/
https://ai.googleblog.com/2016/09/a-neural-network-for-machine.html
https://ai.googleblog.com/2016/09/a-neural-network-for-machine.html
https://www.japantimes.co.jp/news/2015/03/31/reference/translation-tech-gets-olympic-push/
https://www.japantimes.co.jp/news/2015/03/31/reference/translation-tech-gets-olympic-push/
https://horus.tech/horus/?l=en_us
https://horus.tech/horus/?l=en_us
http://vision.cs.uiuc.edu/pascal-sentences/

CHAPTER 11 Introducing Recurrent Neural Networks 207

(http://shannon.cs.illinois.edu/DenotationGraph/), which consists of
Flickr images annotated by crowd sourcing; or the MS Coco dataset (http://
cocodataset.org). In all these datasets, each image includes one or more phrases
explaining the image content. For example, in the MS Coco dataset sample num-
ber 5947 (http://cocodataset.org/#explore?id=5947) you see four flying air-
planes that you could correctly caption as:

 » Four airplanes in the sky overhead on an overcast day

 » Four single-engine planes in the air on a cloudy day

 » A group of four planes flying in formation

 » A group of airplanes flying through the sky

 » A fleet of planes flying through the sky

A well-trained neural network should be able to produce analogous phrases, if
presented with a similar photo. Google first published a paper on the solution for
this problem, named the Show and Tell network or Neural Image Caption (NIC), in
2014, and then updated it one year later (see the article at https://arxiv.org/
pdf/1411.4555.pdf).

Google has since open sourced the NIC and offered it as part of the TensorFlow
framework. As a neural network, it consists of a pretrained CNN (such as Google
LeNet, the 2014 winner of the ImageNet competition; see the “Describing the
LeNet architecture” section of Chapter 10 for details) that processes images simi-
larly to transfer learning. An image is turned into a sequence of values represent-
ing the high-level image features detected by the CNN. During training, the
embedded image passes to a layer of RNNs that memorize the image characteris-
tics in their internal state. The CNN compares the results produced by the RNNs to
all the possible descriptions provided for the training image and an error is com-
puted. The error then backpropagates to the RNN’s part of the network to adjust
the RNN’s weights and help it learn how to caption images correctly. After repeat-
ing this process many times using different images, the network is ready to see
new images and provide its description of these new images.

Explaining Long Short-Term Memory
The use of short-term memory in RNNs may seem to be able to solve every pos-
sible deep learning problem. However, RNNs don’t come entirely without flaws.
The problem with RNNs arises from their key characteristic, which is the recur-
sion of the same information over time. The same information, passing many

http://shannon.cs.illinois.edu/DenotationGraph/
http://cocodataset.org
http://cocodataset.org
http://cocodataset.org/#explore?id=5947
https://arxiv.org/pdf/1411.4555.pdf
https://arxiv.org/pdf/1411.4555.pdf

208 PART 2 Considering Deep Learning Basics

times through the same cells, can become progressively dampened and then dis-
appear if the cell weights are too small. This is the so-called vanishing gradient
problem, when a backpropagated error-correcting signal disappears when passed
through a neural network. Because of the vanishing gradient problem, you can’t
stack too many layers of RNNs or updating them becomes difficult.

RNNs experience problems that are even more difficult. In backpropagation, the
gradient (a correction) deals with the error correction that the networks produce
when predicting. The layers before the prediction distribute the gradient to the
input layers, and they provide the correct weight update. Layers reached by a
small gradient update effectively stop learning.

In fact, the internally backpropagated signals of RNNs tend to disappear after a
few recursions, so the sequences that the neural network updates and learns bet-
ter are the most recent ones. The network forgets early signals and can’t relate
previously seen signals to more recent input. An RNN, therefore, can easily become
too shortsighted, and you can’t successfully apply it to problems that require a
longer memory.

Backpropagation in an RNN layer operates both through the layer toward other
layers and internally, inside each RNN cell, adjusting its memory. Unfortunately,
no matter how strong the signal is, after a while the gradient dampens and
vanishes.

Short memory and the vanishing gradient make it hard for RNNs to learn longer
sequences. Applications like image captioning or machine translation need a keen
memory on all the parts of the sequence. Consequently, most applications require
an alternative, and basic RNNs have been replaced by different recurrent cells.

Defining memory differences
Two scientists studied the vanishing gradient problem in RNNs and published a
milestone paper in 1997 that proposed a solution for RNNs. Sepp Hochreiter, a
computer scientist who made many contributions to the fields of machine learning,
deep learning, and bioinformatics, and Jürgen Schmidhuber, a pioneer in the field
of artificial intelligence, published “Long Short-Term Memory” in the MIT Press
Journal Neural Computation.(http://www.bioinf.at/publications/older/2604.
pdf). The article introduced a new recurrent cell concept that now serves as the
foundation of all the incredible deep learning applications using sequences. Origi-
nally refused because it was too innovative (ahead of its time), the new cell concept
proposed by the article, named LSTM (short for long short-term memory) is used
today to perform more than 4 billion neural operations per day, according to
Schmidhuber’s personal home page (http://people.idsia.ch/~juergen/). LTSM
is considered the standard for machine translation and chatbots.

http://www.bioinf.at/publications/older/2604.pdf
http://www.bioinf.at/publications/older/2604.pdf
http://people.idsia.ch/~juergen/

CHAPTER 11 Introducing Recurrent Neural Networks 209

Google, Apple, Facebook, Microsoft, and Amazon have all developed products
around the LSTM technology devised by Hochreiter and Schmidhuber. Products
such as smart voice assistants and machine translators would work differently if
LSTM were not invented.

The core idea behind LSTM is for the RNN to discriminate the state between short
and long term. The state is the memory of the cell, and LSTM separates into dif-
ferent channels:

 » Short term: Input data directly mixes with data arriving from the sequence

 » Long term: Picks up from short-term memory only the elements that need to
be retained for a long time

Moreover, the channel for long-term memory has fewer parameters to tune.
Long-term memory uses some additions and multiplications with the elements
arriving from the short-term memory and nothing more, making it an almost
direct information highway. (The vanishing gradient can’t stop the flow of
information.)

Walking through the LSTM architecture
LSTMs are arranged around gates, which are internal mechanisms that use sum-
mation, multiplication, and an activation function to regulate the flow of infor-
mation inside the LSTM cell. By regulating the flow, a gate can maintain, enhance,
or discard the information that has arrived from a sequence in both short- and
long-term memory. This flow is reminiscent of an electric circuit. Figure 11-3
shows how an LSTM is structured internally.

FIGURE 11-3:
The internal

structure of an
LSTM, with the

two memory
flows and gates.

210 PART 2 Considering Deep Learning Basics

The different roots and gates may seem a bit complicated at first, but the follow-
ing sequence of steps helps you understand them:

1. The short-term memory arriving from a previous state (or from random
values) meets the newly inputted part of the sequence and they mix together,
creating a first derivation.

2. The short-term memory signal, carrying both the exiting signal and the newly
inputted signal, tries to reach the long-term memory by passing through the
forget gate, which is used to forget certain data. (Technically, you see branching
where the signal is duplicated.)

3. The forget gate decides what short-term information it should discard before
passing it to the long-term memory. A sigmoid activation cancels the signals
that aren’t useful and enhances what instead seems important to keep and
remember.

4. Information passing through the forget gate arrives at the long-term memory
channel carrying the information from the previous states.

5. The values of the long-term memory and the output from the forget gate are
multiplied together.

6. The short-term memory that didn’t pass through the forget gate is duplicated
again and takes another branch; that is, one part proceeds to the output gate
and the other one faces the input gate.

7. At the input gate, the short-term memory data passes separately through a
sigmoid function and a tanh function. The outputs of these two functions are
then first multiplied together, and then added to the long-term memory. The
effect on long-term memory depends on the sigmoid, which acts in order to
forget or remember if the signal is deemed important.

8. After the addition with the outputs from the input gate, the long-term memory
doesn’t change. Being made of selected inputs from short-term memory, the
long-term memory carries information longer in the sequence and doesn’t
react to a temporal gap between.

9. Long-term memory provides information directly to the next state. It’s also
sent to the output gate, where the short-term memory also converges. This
last gate normalizes the data from long-term memory using tanh activation
and filters the short-term memory using the sigmoid function. The two results
are multiplied by one another and then sent to the next state.

LSTMs use both sigmoid and tanh activations for their gates. The principle to
remember is that a tanh function normalizes its input between –1 and 1, and a
sigmoid function reduces it between 0 and 1. Therefore, whereas a tanh activation
function keeps the input between a workable range of values, a sigmoid can switch

CHAPTER 11 Introducing Recurrent Neural Networks 211

the input off because it pushes weaker signals toward zero, extinguishing them.
In other words, the sigmoid function helps remembering (enhancing the signal)
and forgetting (dampening the signal).

Discovering interesting variants
LSTM has some variants, all called with additional numbers or letters in the name,
such as LSTM4, LSTM4a, LSTM5, LSTM5a, and LSMT6, to show that they have a
modified architecture although the core concepts of the solution remain. A popu-
lar and relevant modification that you find in these variants is the use of peephole
connections, which are simply data pipelines that allow all or some of the gate lay-
ers to look at the long-term memory (in RNN terms, the cell’s state). By allowing
peeping at long-term memory, the RNN can base decisions for the short term on
previously seen patterns that were consolidated in the run. On Keras, you can find
the regular LSTM implementation using the keras.layers.LSTM command
(keras.layers.CuDNNLST is the GPU version), which suffices for most applica-
tions. If you need to test the peephole variants, you can explore the TensorFlow
implementation (see https://www.tensorflow.org/api_docs/python/tf/nn/
rnn_cell/LSTMCell) that offers more options at the architecture level of the
LSTM cell.

Another variant is more radical. The Gated Recurrent Units (also known as GRUs)
first appeared in the paper called “Learning Phrase Representations using RNN
Encoder-Decoder for Statistical Machine Translation” at https://arxiv.org/
pdf/1406.1078.pdf. GRUs act as a simplification of the LSTM architecture. In
fact, they operate using information gates whose parameters are learnable in the
same fashion as LSTM. Overall, the flow of information in a GRU cell takes a linear
route because GRU uses only a working memory (equivalent to the long-term
memory in LSTM terms). This working memory is refreshed by an update gate
using the present information provided to the network. The updated information
is then summed again with the original working memory in a gate combining the
two, which is called a reset gate because it selects the working memory informa-
tion to effectively retain a memory of the data being released to the next sequence
step. You can see a simple schema of the flow in Figure 11-4.

Contrary to the LSTM, GRUs use a reset gate that stops the information that should
be forgotten. GRUs also use an update gate that maintains the useful signals. GRUs
have a unique memory, with no distinction between a long and short one.

You can use both GRUs and LSTM layers in your networks without changing the
code too much. Import the layer using keras.layers.GRU (or keras.layers.
CuDNNGRU for the GPU-only version that relies on the NVIDIA CuDNN library; see

https://www.tensorflow.org/api_docs/python/tf/nn/rnn_cell/LSTMCell
https://www.tensorflow.org/api_docs/python/tf/nn/rnn_cell/LSTMCell
https://arxiv.org/pdf/1406.1078.pdf
https://arxiv.org/pdf/1406.1078.pdf

212 PART 2 Considering Deep Learning Basics

https://developer.nvidia.com/cudnn for details) and interact with it as an
LSTM layer. You specify the parameter units by defining the number of GRU units
needed in one layer. Switching from LSTM to GRU provides these advantages as
well as some trade-offs:

 » GRUs treat the signals as LSTMs do and potentially avoid the vanishing
gradient problem, but they don’t distinguish between long and short memory
because they rely on a single working memory — a cell state processed
repeatedly through a GRU cell.

 » GRUs are less complex than LSTMs, but they are also less capable of remem-
bering past signals, thus LSTMs have an advantage when dealing with longer
sequences.

 » GRUs train faster than LSTMs (they have fewer parameters to adjust).

 » GRUs perform better than LSTMs when you have less training data, because
they are less likely to overfit the information they receive.

Getting the necessary attention
When reading about LSTM and GRU layers applied to language problems, fre-
quently you find the attention mechanism mentioned as the most effective way to
solve complex problems, such as

 » Asking a neural network answer questions

 » Classifying phrases

 » Translating a text from one language into another

FIGURE 11-4:
The internal

structure of a
GRU, with a single

memory flow a
two gates.

https://developer.nvidia.com/cudnn

CHAPTER 11 Introducing Recurrent Neural Networks 213

The attention mechanism is considered the state-of-the-art solution for solving
these complex problems and, in spite of being absent from presently available
layers in the TensorFlow and Keras packages, finding a working open source
implementation of it or even programming one yourself isn’t difficult.

You can start to create your own attention mechanism by looking at the open
source implementation developed by Philippe Rémy, a research engineer, at
https://github.com/philipperemy/keras-attention-mechanism.

First exposed in the paper “Neural machine translation by jointly learning to align
and translate,” by Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio in
2014 (https://arxiv.org/abs/1409.0473v7), attention layers that implement
an attention mechanism are vectors of weights expressing the importance of an
element in a set processed by a deep neural network. Often the set of elements
includes a sequence processed by RNNs, but it could also be an image. In fact, an
attention layer can solve two kinds of problems:

 » When processing long sequences of words, related words might appear far
apart in the sequence. For instance, pronouns are typically difficult for RNNs
to handle because they can’t relate the pronoun to elements passed previ-
ously in the sequence. An attention layer can highlight key elements in a
phrase before the RNN starts processing the sequence.

 » When processing large images, many objects appearing in the picture can
distract the neural network from learning how to classify target objects
correctly. An example is when building a network to recognize landmarks in
holiday photos. An attention layer can detect what portion of the photo the
neural network should process and suggest that the RNN ignore irrelevant
elements such as a person, dog, or car present in the picture.

In a neural network, the attention layer is usually placed following a recurrent
layer such as an LSTM or a GRU. In 2017, researchers from Google created a stand-
alone attention mechanism that can work without relying on previous recurrent
layers and that performs much better than previous solutions. They called such
architecture a Transformer.

https://github.com/philipperemy/keras-attention-mechanism
https://arxiv.org/abs/1409.0473v7

3Interacting with
Deep Learning

IN THIS PART . . .

Learn to classify images.

Work with CNNs.

Discover language processing fundamentals.

Generate visual art and music.

Delve into deep Reinforcement Learning.

CHAPTER 12 Performing Image Classification 217

Chapter 12
Performing Image
Classification

Understanding how convolutional layers work, as shown in Chapter 10, is
just a starting point. Theory can only explain how things work, but it can’t
adequately describe the success of deep neural network solutions in the

image-recognition field. The great part of this technology’s success, especially in
AI applications, comes from the availability of suitable data to train and test image
networks, their application to different problems thanks to transfer learning, and
further sophistication of the technology that allows it to answer complex ques-
tions about image content.

In this chapter, you delve into the topic of object classification and detection chal-
lenges to discover their contribution in the foundation of the present deep learn-
ing renaissance. Competitions, such as those based on the ImageNet dataset, not
only provide the right data to train reusable networks for different purposes
(thanks to transfer learning, as previously discussed in Chapter 10) but also push
researchers to find smarter new solutions for increasing the capability of neural
network to understand images. Local response normalization and inception mod-
ules are technological solutions too complex to discuss in this book, but you
should be aware that they’re revolutionary. All were introduced by neural net-
works that won the ImageNet competition: AlexNet (in 2012), GoogleLeNet (in
2014), and ResNet (in 2015).

IN THIS CHAPTER

 » Recognizing the key contributions of
image recognition challenges

 » Discovering the importance of image
augmentation

 » Using the German Traffic Sign
Benchmark dataset

 » Creating your own CNN capable of
classifying traffic signs

218 PART 3 Interacting with Deep Learning

Thanks to the German Traffic Sign Benchmark dataset, provided by the Institute
für NeuroInformatik at Ruhr-Universität Bochum in Germany, the chapter closes
with an example of how to use an image dataset. Using the dataset, you build your
own CNN for recognizing traffic signs using image augmentation and weighting
for balancing the frequency of different classes in the examples.

You don’t have to type the source code for this chapter manually. In fact, using the
downloadable source is a lot easier. The source code for this chapter appears in the
DL4D_12_German_Traffic_Sign_Benchmark.ipynb source code file (see the
Introduction for details on how to find that source file).

Using Image Classification Challenges
The CNN layers for image recognition were first conceived by Yann LeCun and a
team of researchers. AT&T actually implemented LeNet5 (the neural network for
handwritten numbers described in Chapter 10) into ATM check readers. However,
the invention didn’t prevent another AI winter that started in 1990s, with many
researchers and investors losing faith again that computers could achieve any
progress toward having a meaningful conversation with humans, translating
from different languages, understanding images, and reasoning in the manner of
human beings.

Actually, expert systems had already undermined public confidence. Expert systems
are a set of automatic rules set by humans to allow computers to perform certain
operations. Nevertheless, the new AI winter prevented neural networks from
being developed in favor of different kinds of machine learning algorithms. At the
time, computers lacked computational power and had certain limits, such as the
vanishing gradient problem. (Chapter 9 discusses the vanishing gradient and
other limitations that prevented deep neural architectures.) The data also lacked
complexity at the time, and consequently a complex and revolutionary CNN like
LeNet5, which already worked with the technology and limitations of the time,
had little opportunity to show its true power.

Only a handful of researchers, such as Geoffrey Hinton, Yann LeCun, Jürgen
Schmidhuber, and Yoshua Bengio, kept developing neural network technologies
striving to get a breakthrough that would have ended the AI winter. Meanwhile,
2006 saw an effort by Fei-Fei Li, a computer science professor at the University of
Illinois Urbana-Champaign (now an associate professor at Stanford, as well as the
director of the Stanford Artificial Intelligence Lab and the Stanford Vision Lab) to
provide more real-world datasets to better test algorithms. She started amassing
an incredible number of images, representing a large number of object classes.
You can read about this effort in the “Unveiling successful architectures” section

CHAPTER 12 Performing Image Classification 219

of Chapter 10. The proposed classes range through different types of objects, both
natural (for instance, 120 dog breeds) and human made (such as means of trans-
portation). You can explore all of them at http://image-net.org/challenges/
LSVRC/2014/browse-synsets. By using this huge image dataset for training,
researchers noticed that their algorithms started working better (nothing like
ImageNet existed at that time) and then they started testing new ideas and
improved neural network architectures.

Delving into ImageNet and MS COCO
The impact and importance of the ImageNet competition (also known as Ima-
geNet Large Scale Visual Recognition Challenge, or ILSVRC; http://image-net.
org/challenges/LSVRC/) on the development of deep learning solutions for
image recognition can be summarized in three key points:

 » Helping establish a deep neural network renaissance: The AlexNet CNN
architecture (developed by Alex Krizhevsky Ilya Sutskever, and Geoffrey
Hinton) won the 2012 ILSVRC challenge by a large margin over other solutions.

 » Pushing various teams of researchers to develop more sophisticated
solutions: ILSVRC advanced the performance of CNNs. VGG16, VGG19,
ResNet50, Inception V3, Xception, and NASNet are all neural networks tested
on ImageNet images that you can find in the Keras package (https://keras.
io/applications/). Each architecture represents an improvement over the
previous architectures and introduces key deep learning innovations.

 » Making transfer learning possible: The ImageNet competition helped make
the set of weights that made them work available. The 1.2 million ImageNet
training images, distributed over 1,000 separate classes, helped create
convolutional networks whose upper layers can actually generalize to
problems other than ImageNet.

Recently, a few researchers started suspecting that the more recent neural archi-
tectures are overfitting the ImageNet dataset. After all, the same test set has been
used for many years to select the best networks, as researchers Benjamin Recht,
Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar speculate at https://
arxiv.org/pdf/1806.00451.pdf.

Other researchers from the Google Brain team (Simon Kornblith, Jonathon Shlens,
and Quoc V.Le) have discovered a correlation between the accuracy obtained on
ImageNet and the performance obtained by transfer learning of the same network
on other datasets. They published their findings in the paper “Do Better ImageNet
Models Transfer Better?” (https://arxiv.org/pdf/1805.08974.pdf). Interest-
ingly, they also pointed out that if a network is overtuned on ImageNet, it could

http://image-net.org/challenges/LSVRC/2014/browse-synsets
http://image-net.org/challenges/LSVRC/2014/browse-synsets
http://image-net.org/challenges/LSVRC/
http://image-net.org/challenges/LSVRC/
https://keras.io/applications/
https://keras.io/applications/
https://arxiv.org/pdf/1806.00451.pdf
https://arxiv.org/pdf/1806.00451.pdf
https://arxiv.org/pdf/1805.08974.pdf

220 PART 3 Interacting with Deep Learning

experience problems generalizing. It is therefore a good practice to test transfer
learning based on the most recent and best performing network found on Ima-
geNet, but not to stop there. You may find that some less performing networks are
actually better for your problem.

Other objections about using ImageNet is that common pictures in everyday
scenes contain more objects and that these objects may not be clearly visible when
partially obstructed by other objects or because they mix with the background. If
you want to use an ImageNet pretrained network in an everyday context, such as
when creating an application or a robot, the performance may disappoint you.
Consequently, since the ImageNet competition stopped (claiming that improving
performance by continuing to work on the dataset wouldn’t be possible), research-
ers have increasingly focused on using alternative public datasets to challenge
one’s own CNNs and improve the state-of-the-art in image recognition. Here are
the alternatives so far:

 » PASCAL VOC (Visual Object Classes) http://host.robots.ox.ac.uk/
pascal/VOC/: Developed by the University of Oxford, this dataset sets a
neural network training standard for labeling multiple objects in the same
picture, the PASCAL VOC xml standard. The competition associated with this
dataset was halted in 2012.

 » SUN https://groups.csail.mit.edu/vision/SUN/: Created by the
Massachusetts Institute of technology (MIT), this dataset provides benchmarks
to help you determine your CNN performance. No competition is associated
with it.

 » MS COCO http://cocodataset.org/: Prepared by Microsoft Corporation,
this dataset offers a series of active competitions.

In particular, the Microsoft Common Objects in the Context dataset (hence the
name MS COCO) offers fewer training images for your model than you find in
ImageNet, but each image contains multiple objects. In addition, all objects appear
in realistic positions (not staged) and settings (often in the open air and in public
settings such as roads and streets). To distinguish the objects, the dataset pro-
vides both contours in pixel coordinates and labeling in the PASCAL VOC XML
standard, having each object defined not just by a class but also by its coordinates
in the images (a picture rectangle that shows where to find it). This rectangle is
called a bounding box, defined in a simple way using four pixels, in contrast to the
many pixels necessary for defining an object by its contours.

The ImageNet dataset has recently started offering, in at least one million images,
multiple objects to detect and their bounding boxes.

http://host.robots.ox.ac.uk/pascal/VOC/
http://host.robots.ox.ac.uk/pascal/VOC/
https://groups.csail.mit.edu/vision/SUN/
http://cocodataset.org/

CHAPTER 12 Performing Image Classification 221

Learning the magic of data augmentation
Even if you have access to large amounts of data for your deep learning model,
such as the ImageNet and MS COCO datasets, that may be not enough because of
the multitude of parameters found in most complex neural architectures. In fact,
even if you use techniques such as dropout (as explained in the “Adding regular-
ization by dropout” section of Chapter 9), overfitting is still possible. Overfitting
occurs when the network memorizes the input data and learns no generally useful
data patterns. Apart from dropout, other techniques that could help a network
fight overfitting are LASSO, Ridge, and ElasticNet. However, nothing is as effec-
tive for enhancing your neural network’s predictive capabilities as adding more
examples to your training schedule.

Originally, LASSO, Ridge, and ElasticNet were ways to constrain the weights of a
linear regression model, which is a statistical algorithm for computing regression
estimates. In a neural network, they work in a similar way by forcing the total sum
of the weights in a network to be the lowest possible without harming the correct-
ness of predictions. LASSO strives to put many weights down to zero, thus achiev-
ing a selection of the best weights. By contrast, Ridge instead tends to dampen all
the weights, avoiding higher weights that can generate overfitting. Finally, Elas-
ticNet is a mix of the LASSO and Ridge approaches, amounting to a trade-off
between the selection and dampening strategies.

Image augmentation provides a solution to the problem of a lack of examples to
feed a neural network to artificially create new images from existing ones. Image
augmentation consists of different image-processing operations that are carried
out separately or conjointly to produce an image different from the initial one. The
result helps the neural network learn its recognition task better.

For instance, if you have training images that are too bright or too blurry, image
processing modifies the existing images into darker and sharper versions. These
new versions exemplify the characteristics that the neural network must focus on,
rather than provide examples that focus on image quality. In addition, turning,
cutting, or bending the image, as shown in Figure 12-1, could help because, again,
they force the network to learn useful image features, no matter how the object
appears.

The most common image augmentation procedures, as shown in Figure 12-1, are

 » Flip: Flipping your image on its axis tests the algorithm’s capability to find it
regardless of perspective. The overall sense of your image should hold even
when flipped. Some algorithms can’t find objects when upside down or even
mirrored, especially if the original contains words or other specific signs.

222 PART 3 Interacting with Deep Learning

 » Rotation: Rotating your image allows algorithm testing at certain angles;
simulating different perspectives or imprecisely calibrated visuals.

 » Random crop: Cropping your image forces the algorithm to focus on an
image component. Cutting an area and expanding it to the same size of a
standard image enables you to test for recognition of partially hidden image
features.

 » Color shift: Changing the nuances of image colors generalizes your example
because the colors can change or be recorded differently in the real world.

 » Noise addition: Adding random noise tests the algorithm’s capability to
detect an object even when object quality is less than perfect.

 » Information loss: Randomly removing parts of an image simulates visual
obstruction. It also helps the neural network rely on general image features,
not on particulars (which could be randomly eliminated).

 » Contrast change: Changing the luminosity makes the neural network less
sensible to the light conditions (for instance, to daylight or to artificial light).

You don’t need to specialize in image processing to leverage this powerful image-
augmentation technique. Keras offers a way to easily incorporate augmentation
into any training using the ImageDataGenerator function (https://faroit.
github.io/keras-docs/1.2.2/preprocessing/image/).

FIGURE 12-1:
Some common

image
augmentations.

https://faroit.github.io/keras-docs/1.2.2/preprocessing/image/
https://faroit.github.io/keras-docs/1.2.2/preprocessing/image/

CHAPTER 12 Performing Image Classification 223

The ImageDataGenerator’s main purpose is to generate batches of inputs to feed
your neural network. This means that you can get your data as chunks from a
NumPy array using the .flow method. In addition, you don’t need to have all the
training data in memory because the .flow_from_directory method can get it
for you directly from disk. As ImageDataGenerator pulls the batches of images, it
can transform them using rescaling (images are made of integers, ranging from 0
to 255, but neural networks work best with floats ranging from zero to one) or by
applying some transformations, such as:

 » Standardization: Getting all your data on the same scale by setting the mean
to zero and the standard deviation to one (as the statistical standardization),
based on the mean and standard deviation of the entire dataset (feature-wise)
or separately for each image (sample-wise).

 » ZCA whitening: Removing any redundant information from the image while
maintaining the original image resemblance.

 » Random rotation, random shifts, and random flips: Orienting, shifting, and
flipping the image so that objects appear in a different pose than the original.

 » Reordering dimensions: Matching the dimensions of data between images.
For instance, converting BGR images (a color image format previously popular
among camera manufacturers) into standard RGB.

When you use ImageDataGenerator to process batches of images, you’re not
bound by the size of computer memory on your system, but rather by your storage
size (for instance, the size of your hard disk) and its speed of transfer. You could
even get the data you need on the fly from the Internet, if your connection is fast
enough.

You can get even more powerful image augmentations using a package such as
albumentations (https://github.com/albu/albumentations). Alexander Bus-
laev, Alex Parinov, Vladimir I. Iglovikov, and Evegene Khvedchenya created it
based on their experience with many image-detection challenges. The package
offers an incredible array of possible image processing tools based on the task to
accomplish and the kind of neural network you use.

Distinguishing Traffic Signs
After discussing the theoretical grounds and characteristics of CNNs, you can try
building one. TensorFlow and Keras can construct an image classifier for a specific
delimited problem. Specific problems don’t imply learning a large variety of image
features to accomplish the task successfully. Therefore, you can easily solve them

https://github.com/albu/albumentations

224 PART 3 Interacting with Deep Learning

using simple architectures, such as LeNet5 (the CNN that revolutionized neural
image recognition, discussed in Chapter 10) or something similar. This example per-
forms an interesting, realistic task using the German Traffic Sign Recognition
Benchmark (GTSRB) found at this Institute für NeuroInformatik at Ruhr-Universität
Bochum page: http://benchmark.ini.rub.de/?section=gtsrb.

Reading traffic signs is a challenging task because of differences in visual appear-
ance in real-world settings. The GTSRB provides a benchmark to evaluate different
machine learning algorithms applied to the task. You can read about the construc-
tion of this database in the paper by J. Stallkampand others called “Man vs. com-
puter: Benchmarking machine learning algorithms for traffic sign recognition” at
https://www.ini.rub.de/upload/file/1470692859_c57fac98ca9d02ac701c/
stallkampetal_gtsrb_nn_si2012.pdf.

The GTSRB dataset offers more than 50,000 images arranged in 42 classes (traffic
signs), which allows you to create a multiclass classification problem. In a multi-
class classification problem, you state the probability of the image’s being part of
a class and take the highest probability as the correct answer. For instance, an
“Attention: Construction Site” sign will cause the classification algorithm to gen-
erate high probabilities for all attention signs. (The highest probability should
match its class.) Blurriness, image resolution, different lighting, and perspective
conditions make the task challenging for a computer (as well as sometimes for a
human), as you can see from some of the examples extracted from the dataset in
Figure 12-2.

Preparing image data
The example begins by configuring the model, setting the optimizer, preprocess-
ing the images, and creating the convolutions, the pooling, and the dense layers,
as shown in the following code. (See Chapter 4 for how to work with TensorFlow
and Keras.)

FIGURE 12-2:
Some examples

from the German
Traffic Sign

Recognition
Benchmark.

http://benchmark.ini.rub.de/?section=gtsrb
https://www.ini.rub.de/upload/file/1470692859_c57fac98ca9d02ac701c/stallkampetal_gtsrb_nn_si2012.pdf
https://www.ini.rub.de/upload/file/1470692859_c57fac98ca9d02ac701c/stallkampetal_gtsrb_nn_si2012.pdf

CHAPTER 12 Performing Image Classification 225

import numpy as np
import zipfile
import pprint
from skimage.transform import resize
from skimage.io import imread
import matplotlib.pyplot as plt
% matplotlib inline

import warnings
warnings.filterwarnings("ignore")

from keras.models import Sequential
from keras.optimizers import Adam
from keras.preprocessing.image import ImageDataGenerator
from keras.utils import to_categorical
from keras.layers import Conv2D, MaxPooling2D
from keras.layers import (Flatten, Dense, Dropout)

The dataset comprises more than 50,000 images, and the associated neural net-
work can achieve a near-human level of accuracy in recognizing traffic signs.
Such an application will require a large amount of computer calculations, and
running this code locally could take a long time on your computer, depending on
the kind of computer you have. Likewise, Colab can take longer depending on the
resources that Google makes available to you, including whether you actually have
access to a GPU, as mentioned in Chapter 4. Timing this initial application on your
setup will help you know whether your local machine or Colab is the fastest envi-
ronment in which to run larger datasets. However, the best environment is the
one that produces the most consistent and reliable results. You may not have a
solid Internet connection to use, making Colab a poorer choice.

At this point, the example retrieves the GTSRB dataset from its location on the
Internet (the INI Benchmark website, at the Ruhr-Universität Bochum specified
before). The following code snippet downloads it to the same directory as the
Python code. Note that the download process can take a little time to complete, so
now might be a good time to refill your teacup.

import urllib.request
url = "http://benchmark.ini.rub.de/Dataset/\
GTSRB_Final_Training_Images.zip"
filename = "./GTSRB_Final_Training_Images.zip"
urllib.request.urlretrieve(url, filename)

After retrieving the dataset as a .zip file from the Internet, the code sets an image
size. (All images are resized to square images, so the size represents the sides in

226 PART 3 Interacting with Deep Learning

pixels.) The code also sets the portion of data to keep for testing purposes, which
means excluding certain images from training to have a more reliable measure of
how the neural network works.

A loop through the files stored in the downloaded .zip file retrieves individual
images, resizes them, stores the class labels, and appends the images to two sep-
arate lists: one for the training and one for testing purposes. The sorting uses a
hash function, which translates the image name into a number and, based on that
number, decides where to append the image.

IMG_SIZE = 32
TEST_SIZE = 0.2
X, Xt, y, yt = list(), list(), list(), list()

archive = zipfile.ZipFile(
 './GTSRB_Final_Training_Images.zip', 'r')
file_paths = [file for file in archive.namelist()
 if '.ppm' in file]

for filename in file_paths:
 img = imread(archive.open(filename))
 img = resize(img,
 output_shape=(IMG_SIZE, IMG_SIZE),
 mode='reflect')
 img_class = int(filename.split('/')[-2])

 if (hash(filename) % 1000) / 1000 > TEST_SIZE:
 X.append(img)
 y.append(img_class)
 else:
 Xt.append(img)
 yt.append(img_class)

archive.close()

After the job is completed, the code reports the consistency of the train and test
examples.

test_ratio = len(Xt) / len(file_paths)
print("Train size:{} test size:{} ({:0.3f})".format(len(X),
 len(Xt),
 test_ratio))

CHAPTER 12 Performing Image Classification 227

The train size is more than 30,000 images, and the test almost is 8,000 (20 per-
cent of the total):

Train size:31344 test size:7865 (0.201)

Your results may vary a little from those shown. For example, another run of the
example produced a train size of 31,415 and a test size of 7,794. Neural networks
can learn multiclass problems better when the classes are numerically similar or
they tend to concentrate their attention on learning just the more populated
classes. The following code checks the distribution of classes:

classes, dist = np.unique(y+yt, return_counts=True)
NUM_CLASSES = len(classes)
print ("No classes:{}".format(NUM_CLASSES))

plt.bar(classes, dist, align='center', alpha=0.5)
plt.show()

Figure 12-3 shows that the classes aren’t balanced. Some traffic signs appear
more frequently than others do (for instance, while driving, stop signs are
encountered more frequently than a deer crossing sign).

As a solution, the code computes a weight, which is a ratio based on frequencies of
classes that the neural network uses to increase the signal it receives from rarer
examples and to dump the more frequent ones:

class_weight = {c:dist[c]/np.sum(dist) for c in classes}

FIGURE 12-3:
Distribution of

classes.

228 PART 3 Interacting with Deep Learning

Running a classification task
After setting the weights, the code defines the image generator, the part of the
code that retrieves the images in batches (samples of a predefined size) for train-
ing and validation, normalizes their values, and applies augmentation to fight
overfitting by slightly shifting and rotating them. Notice that the following code
applies augmentation only on the training image generator, not the validation
generator, because it’s necessary to test the original images only.

batch_size = 256
tgen=ImageDataGenerator(rescale=1./255,
 rotation_range=5,
 width_shift_range=0.10,
 height_shift_range=0.10)

train_gen = tgen.flow(np.array(X),
 to_categorical(y),
 batch_size=batch_size)

vgen=ImageDataGenerator(rescale=1./255)

val_gen = vgen.flow(np.array(Xt),
 to_categorical(yt),
 batch_size=batch_size)

The code finally builds the neural network:

def small_cnn():
 model = Sequential()
 model.add(Conv2D(32, (5, 5), padding='same',
 input_shape=(IMG_SIZE, IMG_SIZE, 3),
 activation='relu'))
 model.add(Conv2D(64, (5, 5), activation='relu'))
 model.add(Flatten())
 model.add(Dense(768, activation='relu'))
 model.add(Dropout(0.4))
 model.add(Dense(NUM_CLASSES, activation='softmax'))
 return model

model = small_cnn()
model.compile(loss='categorical_crossentropy',
 optimizer=Adam(),
 metrics=['accuracy'])

CHAPTER 12 Performing Image Classification 229

The neural network consists of two convolutions, one with 32 channels, the other
with 64, both working with a kernel of size (5,5). The convolutions are followed
by a dense layer of 768 nodes. Dropout (dropping 40 percent of the nodes) regu-
larizes this last layer and softmax activates it (thus the sum of the output proba-
bilities of all classes will sum to 100 percent).

CONSIDERING THE COST OF
REALISTIC OUTPUT
As mentioned a few times in this book already, deep learning training can take a consid-
erable amount of time to complete. Whenever you see a fit function in the code, such as
model.fit_generator, you’re likely asking the system to perform training. The exam-
ple code will always strive to provide you with realistic output — that is, what a scientist
in the real world would consider acceptable.

Unfortunately, realistic output may cost you too much in the way of time. Not everyone
has access to the latest high-technology system, and not everyone will get a GPU on
Colab. The example in this chapter consumes a great deal of time to train in some
cases. For example, in testing the code on Colab, it required a little over 16 hours to
complete when Colab didn’t provide a GPU. The same example might run in as little as
an hour if Colab does provide a GPU. (Chapter 4 tells you more about the GPU issue.)
Likewise, using a CPU-only system, a 16-core Xeon system required 4 hours and
23 minutes to complete training, but an Intel i7 processor with 8 cores required a little
over 9 hours to do the same thing.

One way around this issue is to change the number of epochs used to train your model.
The epochs=100 setting used for the example in this chapter provides an output accu-
racy of a little over 99 percent. However, if time is a factor, you may want to use a lower
epochs setting when running this example to reduce the time you wait for the example
to complete.

Another alternative for avoiding the problem is using GPU support on your local
machine. However, to use this alternative, you must have a display adapter with the
right kind of chip. Because the setup is complex and you’re not likely to have the right
GPU, this book takes the CPU-only route. However, you can certainly install the correct
support by using Chapter 4 as a starting point and then adding CUDA support. The
article at https://towardsdatascience.com/tensorflow-gpu-installation-
made-easy-use-conda-instead-of-pip-52e5249374bc provides additional details.

https://towardsdatascience.com/tensorflow-gpu-installation-made-easy-use-conda-instead-of-pip-52e5249374bc
https://towardsdatascience.com/tensorflow-gpu-installation-made-easy-use-conda-instead-of-pip-52e5249374bc

230 PART 3 Interacting with Deep Learning

On the optimization side, the loss to minimize is the categorical crossentropy. The
code measures success on accuracy, which is the percentage of correct answers
provided by the algorithm. (The traffic sign class with the highest predicted prob-
ability is the answer.)

history = model.fit_generator(train_gen,
 steps_per_epoch=len(X) // batch_size,
 validation_data=val_gen,
 validation_steps=len(Xt) // batch_size,
 class_weight=class_weight,
 epochs=100,
 verbose=2)

Using the fit_generator on the model, the batches of images start being ran-
domly extracted, normalized, and augmented for the training phase. After pulling
out all the training images, the code sees an epoch (a training iteration using a full
pass on the dataset) and computes a validation score on the validation images.
After reading 100 epochs, the training and the model are completed.

If you don’t use any augmentation, you can train your model in just about 30
epochs and reach a performance of your model that is almost comparable to a
driver’s skill in recognizing the different kinds of traffic signs (which is about
98.8 percent accuracy). The more aggressive the augmentation you use, the more
epochs necessary for the model to reach its top potential, although accuracy per-
formances will be higher, too. At this point, the code plots a graph depicting how
the training and validation accuracy behaved during training:

print("Best validation accuracy: {:0.3f}"
 .format(np.max(history.history['val_acc'])))

plt.plot(history.history['acc'])
plt.plot(history.history['val_acc'])
plt.ylabel('accuracy'); plt.xlabel('epochs')
plt.legend(['train', 'test'], loc='lower right')
plt.show()

The code will report to you the best validation accuracy recorded and plot the
accuracy curves achieved on train and validation data during the increasing epochs
of learning, as shown in Figure 12-4. Notice how the training and validation accu-
racies are nearly similar at the end of training, although the validation is always
better than the training. That’s easily explained because the validation images are
actually “easier” to guess than the training images because no augmentation is
applied to them.

CHAPTER 12 Performing Image Classification 231

Given the code can initialize the neural network in different ways, you may see
different best results at the end of the training optimization. However, by the end
of the 100 epochs set in the code, the validation accuracy should exceed 99 percent
(sample runs achieved up to 99.5 percent on Colab).

A difference exists between the performance you obtain on the train data (which
is often less) and on your validation subset, because train data is more complex
and variable than validation data, given the image augmentations that the code
sets up.

You should consider this result to be quite an excellent one based on the state-of-
the-art benchmarks that you can read about in the paper called “HALOI, Mrinal.
Traffic sign classification using deep inception based convolutional networks
(https://arxiv.org/pdf/1511.02992.pdf). The paper hints at what can be eas-
ily achieved in terms of image recognition on limited problems using clean data
and readily available tools such as TensorFlow and Keras.

FIGURE 12-4:
Training and

validation errors
compared.

https://arxiv.org/pdf/1511.02992.pdf

CHAPTER 13 Learning Advanced CNNs 233

Chapter 13
Learning Advanced
CNNs

Deep learning solutions for image recognition have become so impressive
in their human-level performance that you see them used in developing
or already marketed applications, such as self-driving cars and video-

surveillance appliances. The video-surveillance appliances already perform tasks,
such as automatic satellite image monitoring, facial detection, and people
 localization and counting. Yet you can’t imagine a complex application when your
network labels an image with only a single prediction. Even a simple dog or cat
detector may not prove useful when the photos you analyze contain multiple dogs
and cats. The real world is messy and complex. You can’t expect, except in limited
and controlled cases, laboratory style images that consist of single, clearly depicted
objects.

The need to handle complex images paved the way for variants of Convolutional
Neural Networks (CNNs). Such variants offer sophistication that’s still being
developed and refined, such as multiple-object detection and localization.
Multiple-object detection can deal with many different objects at a time. Localiza-
tion can tell you where they are in the picture and segmentation can find their
exact contours. These new capabilities require complex neural architectures and
image processing more advanced than the basic CNNs discussed in previous

IN THIS CHAPTER

 » Understanding the importance of
object detection

 » Distinguishing between detection,
localization, and segmentation

 » Testing object detection by RetinaNet
from a GitHub implementation

 » Realizing the weak spots of CNNs
that could be exploited

234 PART 3 Interacting with Deep Learning

chapters. This chapter illustrates the fundamentals of how these solutions work,
names key approaches and architectures, and finally tests one of the best per-
forming object detection implementations.

The chapter closes by unveiling an expected weakness in an otherwise unbelievable
technology. Someone could maliciously trick CNNs to report misleading detections
or ignore seen objects using appropriate image-manipulation techniques. This
puzzling discovery opens a new research front that shows that deep learning per-
formance must also consider security for private and public use.

Distinguishing Classification Tasks
CNNs are the building blocks of deep learning–based image recognition, yet they
answer only a basic classification need: Given a picture, they can determine
whether its content can be associated with a specific image class learned through
previous examples. Therefore, when you train a deep neural network to recognize
dogs and cats, you can feed it a photo and obtain output that tells you whether the
photo contains a dog or cat. If the last network layer is a softmax layer, the net-
work outputs the probability of the photo containing a dog or a cat (the two classes
you trained it to recognize) and the output sums to 100 percent. When the last
layer is a sigmoid-activated layer, you obtain scores that you can interpret as
probabilities of content belonging to each class, independently. The scores won’t
necessarily sum to 100 percent. In both cases, the classification may fail when the
following occurs:

 » The main object isn’t what you trained the network to recognize, such as
presenting the example neural network with a photo of a raccoon. In this
case, the network will output an incorrect answer of dog or cat.

 » The main object is partially obstructed. For instance, your cat is playing hide
and seek in the photo you show the network, and the network can’t spot it.

 » The photo contains many different objects to detect, perhaps including
animals other than cats and dogs. In this case, the output from the network
will suggest a single class rather than include all the objects.

Figure 13-1 shows image 47780 (http://cocodataset.org/#explore?id=47780)
taken from the MS Coco dataset (released as part of the open source Creative
Commons Attribution 4.0 License). The series of three outputs shows how a CNN
has detected, localized, and segmented the objects appearing in the image (a kit-
ten and a dog standing on a field of grass). A plain CNN can’t reproduce the exam-
ples in Figure 13-1 because its architecture will output the entire image as being of
a certain class. To overcome this limitation, researchers extend the basic CNNs
capabilities to make them capable of the following:

http://cocodataset.org/#explore?id=47780

CHAPTER 13 Learning Advanced CNNs 235

 » Detection: Determining when an object is present in an image. Detection is
different from classification because it involves just a portion of the image,
implying that the network can detect multiple objects of the same and of
different types. The capability to spot objects in partial images is called
instance spotting.

 » Localization: Defining exactly where a detected object appears in an image.
You can have different types of localizations. Depending on granularity, they
distinguish the part of the image that contains the detected object.

 » Segmentation: Classification of objects at the pixel level. Segmentation takes
localization to the extreme. This kind of neural model assigns each pixel of the
image to a class or even an entity. For instance, the network marks all the
pixels in a picture relative to dogs and distinguishes each one using a different
label (called instance segmentation).

Performing localization
Localization is perhaps the easiest extension that you can get from a regular
CNN. It requires that you train a regressor model alongside your deep learning
classification model. A regressor is a model that guesses numbers. Defining object
location in an image is possible using corner pixel coordinates, which means that
you can train a neural network to output key measures that make it easy to
 determine where the classified object appears in the picture using a bounding box.
Usually a bounding box uses the x and y coordinates of the lower-left corner,
together with the width and the height of the area that encloses the object.

Classifying multiple objects
A CNN can detect (predicting a class) and localize (by providing coordinates) only
a single object in an image. If you have multiple objects in an image, you may still

FIGURE 13-1:
Detection,

localization and
segmentation

example from the
Coco dataset.

236 PART 3 Interacting with Deep Learning

use a CNN and locate each object present in the picture by means of two old
image-processing solutions:

 » Sliding window: Analyzes only a portion (called a region of interest) of the
image at a time. When the region of interest is small enough, it likely contains
only a single object. The small region of interest allows the CNN to correctly
classify the object. This technique is called sliding window because the
software uses an image window to limit visibility to a particular area (the way
a window in a home does) and slowly moves this window around the image.
The technique is effective but could detect the same image multiple times, or
you may find that some objects go undetected based on the window size that
you decide to use to analyze the images.

 » Image pyramids: Solves the problem of using a window of fixed size because
it generates increasingly smaller resolutions of the image. Therefore, you can
apply a small sliding window. In this way, you transform the objects in the
image, and one of the reductions may fit exactly into the sliding window used.

These techniques are computationally intensive. To apply them, you have to resize
the image multiple times and then split it into chunks. You then process each
chunk using your classification CNN. The number of operations for these activities
is so large that rendering the output in real time is impossible.

The sliding window and image pyramid have inspired deep learning researchers
to discover a couple of conceptually similar approaches that are less computation-
ally intensive. The first approach is one-stage detection. It works by dividing the
images into grids, and the neural network makes a prediction for every grid cell,
predicting the class of the object inside. The prediction is quite rough, depending
on the grid resolution (the higher the resolution, the more complex and slower the
deep learning network). One-stage detection is very fast, having almost the same
speed as a simple CNN for classification. The results have to be processed to gather
the cells representing the same object together, and that may lead to further inac-
curacies. Neural architectures based on this approach are Single-Shot Detector
(SSD), You Only Look Once (YOLO), and RetinaNet. One-stage detectors are very
fast, but not so precise.

The second approach is two-stage detection. This approach uses a second neural
network to refine the predictions of the first one. The first stage is the proposal
network, which outputs its predictions on a grid. The second stage fine-tunes
these proposals and outputs a final detection and localization of the objects.
R-CNN, Fast R-CNN, and Faster R-CNN are all two-stage detection models that
are much slower than their one-stage equivalents, but more precise in their
predictions.

CHAPTER 13 Learning Advanced CNNs 237

Annotating multiple objects in images
To train deep learning models to detect multiple objects, you need to provide more
information than in simple classification. For each object, you provide both a clas-
sification and coordinates within the image using the annotation process, which
contrasts with the labeling used in simple image classification.

Labeling images in a dataset is a daunting task even in simple classification. Given
a picture, the network must provide a correct classification for the training and
test phases. In labeling, the network decides on the right label for each picture,
and not everyone will perceive the depicted image in the same way. The people
who created the ImageNet dataset used the classification provided by multiple
users from the Amazon Mechanical Turk crowdsourcing platform (ImageNet used
the Amazon service so much that in 2012, it turned out to be Amazon’s most
important academic customer.)

In a similar way, you rely on the work of multiple people when annotating an
image using bounding boxes. Annotation requires that you not only label each
object in a picture but also must determine the best box with which to enclose
each object. These two tasks make the annotation even more complex than label-
ing and more prone to producing erroneous results. Performing annotation cor-
rectly requires the work of more people who can provide a consensus on the
accuracy of the annotation.

Some open source software can help in annotation for image detection (as well as
for image segmentation, discussed in the following section). Two tools are partic-
ularly effective:

 » LabelImg, created by TzuTa Lin (https://github.com/tzutalin/labelImg)
with a tutorial at https://www.youtube.com/watch?v=p0nR2YsCY_U).

 » LabelMe (https://github.com/wkentaro/labelme) is a powerful tool for
image segmentation that provides an online service.

 » FastAnnotationTool, based on the computer vision library OpenCV (https://
github.com/christopher5106/FastAnnotationTool). The package is less
well maintained but still viable.

Segmenting images
Semantic segmentation predicts a class for each pixel in the image, which is a
 different perspective from either labeling or annotation. Some people also call this
task dense prediction because it makes a prediction for every pixel in an image.

https://github.com/tzutalin/labelImg
https://www.youtube.com/watch?v=p0nR2YsCY_U
https://github.com/wkentaro/labelme
https://github.com/christopher5106/FastAnnotationTool
https://github.com/christopher5106/FastAnnotationTool

238 PART 3 Interacting with Deep Learning

The task doesn’t specifically distinguish different objects in the prediction. For
instance, a semantic segmentation can show all the pixels that are of the class cat,
but it won’t provide any information about what the cat (or cats) are doing in the
picture. You can easily get all the objects in a segmented image by post-processing,
because after performing the prediction, you can get the object pixel areas and
distinguish between different instances of them, if multiple separated areas exist
under the same class prediction.

Different deep learning architectures can achieve image segmentation. Fully
Convolutional Networks (FCNs) and U-NETs are among the most effective. FCNs
are built for the first part (called the encoder), which is the same as CNNs. After
the initial series of convolutional layers, FCNs end with another series of CNNs
that operate in a reverse fashion as the encoder (making them a decoder). The
decoder is constructed to recreate the original input image size and output as
pixels the classification of each pixel in the image. In such a fashion, the FCN
achieves the semantic segmentation of the image. FCN are too computationally
intensive for most real-time applications. In addition, they require large training
sets to learn their tasks well; otherwise, their segmentation results are often
coarse.

Finding the encoder part of the FCN pretrained on ImageNet, which accelerates
training and improves learning performance, is common.

U-NETs are an evolution of FCN devised by Olaf Ronneberger, Philipp Fischer,
and Thomas Brox in 2015 for medical purposes (see https://lmb.informatik.
uni-freiburg.de/people/ronneber/u-net/). U-NETs present advantages
compared to FCNs. The encoding (also called contraction) and the decoding parts
(also referred to as expansion) are perfectly symmetric. In addition, U-NETs use
shortcut connections between the encoder and the decoder layers. These short-
cuts allow the details of objects to pass easily from the encoding to the decoding
parts of the U-NET, and the resulting segmentation is precise and fine-
grained.

Building a segmentation model from scratch can be a daunting task, but you don’t
need to do that. You can use some pretrained U-NET architectures and immedi-
ately start using this kind of neural network by leveraging the segmentation
model zoo (a term used to describe the collection of pretrained models offered by
many frameworks; see https://modelzoo.co/ for details) offered by segmentation
models, a package offered by Pavel Yakubovskiy. You can find installation instruc-
tions, the source code, and plenty of usage examples at https://github.com/
qubvel/segmentation_models. The commands from the package seamlessly
integrate with Keras.

https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/
https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/
https://modelzoo.co/
https://github.com/qubvel/segmentation_models
https://github.com/qubvel/segmentation_models

CHAPTER 13 Learning Advanced CNNs 239

Perceiving Objects in Their Surroundings
Integrating vision capabilities into the sensing system of a self-driving car could
enhance how confidently and safely it drives. A segmentation algorithm could
help the car distinguish lanes from sidewalks, as well as from other obstacles the
car should notice. The car could even feature a complete end-to-end system, such
as NVIDIA’s, that controls steering, acceleration, and braking in a reactive manner
based on its visual inputs. (NVIDIA is a major player in deep learning, and the
book mentions it in Chapters 4, 9, and 11 as well. You can learn more about the
NVIDIA self-driving car efforts at https://www.nvidia.com/en-us/self-
driving-cars/.) A visual system could spot certain objects on the road relevant to
driving, such as traffic signs and traffic lights. It could visually track the trajecto-
ries of other cars. In all cases, a deep learning network could provide the solution.

The “Distinguishing Classification Tasks” section discusses how object detection
improves upon single-object classification offered by CNNs. That section also
clarifies the architectures and current models of the two main approaches: one-
stage detection (or one-shot detection) and two-stage detection (also known as
region proposal). This section tells how a one-stage detection system works and
provides help for an autonomous vehicle.

Programming such a detection system from scratch would be a daunting task, one
requiring an entire book of its own. Fortunately, you can employ open source
projects on GitHub such as Keras-RetinaNet (https://github.com/fizyr/
keras-retinanet). Keras-RetinaNet is the Keras implementation of the Reti-
naNet model proposed by Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He,
and Piotr Dollár in the paper “Focal Loss for Dense Object Detection” published in
August 2017 at https://arxiv.org/abs/1708.02002.

Isaac Newton stated, “If I have seen further, it is by standing on the shoulders of
Giants.” Likewise, you can achieve more in deep learning when you make use of
existing neural architectures and pretrained networks. For instance, you can find
many models on GitHub (www.github.com) such as the TensorFlow model zoo
(https://github.com/tensorflow/models).

Discovering how RetinaNet works
The RetinaNet is a sophisticated and interesting object-detection model that
strives to be as fast as other one-stage detection models while also achieving the
accuracy of bounding box predictions of two-stage detection systems like Faster
R-CNN (the top-performing model). Thanks to its architecture, RetinaNet
achieves its goals, using techniques similar to the U-NET architecture discussed
for semantic segmentation. RetinaNet is part of a group of models called Feature
Pyramid Networks (FPN).

https://www.nvidia.com/en-us/self-driving-cars/
https://www.nvidia.com/en-us/self-driving-cars/
https://github.com/fizyr/keras-retinanet
https://github.com/fizyr/keras-retinanet
https://arxiv.org/abs/1708.02002
http://www.github.com
https://github.com/tensorflow/models

240 PART 3 Interacting with Deep Learning

RetinaNet owes its performance to its authors, Tsung-Yi Lin, Priya Goyal, Ross
Girshick, Kaiming He, and Piotr Dollár, who noted that one-stage detection
models don’t always detect objects precisely because they are affected by the
overwhelming presence of distracting elements in the images used for training.
Their paper, “Focal Loss for Dense Object Detection (https://arxiv.org/
pdf/1708.02002.pdf), provides details of the techniques RetinaNet uses. The
problem is that the images present few objects of interest to detect. In fact, one-
stage detection networks are trained to guess the class of each cell in an image
divided by a fixed grid, where the majority of cells are empty of objects of interest.

In semantic segmentation, the targets of the classification are single pixels. In
one-stage detection, the targets are sets of contiguous pixels, performing a simi-
lar task to semantic segmentation but at a different granularity level.

Here’s what happens when you have such a predominance of null examples in
images and are using a training approach that examines all available cells as
examples. The network will be more likely to predict that nothing is in a processed
image cell than to provide a correctly predicted class. Neural networks always take
the most efficient route to learn, and in this case it’s easier to predict the
background than anything else. In this situation, which goes under the name of
unbalanced learning, many objects are undetected by the neural network using a
single-shot object detection approach.

In machine learning, when you want to predict two numerically different classes
(one is the majority class, and the other one is the minority class), you have an
unbalanced classification problem. Most algorithms don’t perform properly when
the classes are unbalanced because they tend to prefer the majority class. A few
solutions are available for this problem:

 » Sampling: Selecting some examples and discarding others.

 » Downsample: Reducing the effect of the majority class by choosing to use
only a part of it, which balances the majority and minority predictions. In
many cases, this is the easiest approach.

 » Upsample: Increasing the effect of the minority class by replicating its
examples many times until the minority class has the same number of
examples as the majority class.

The creators of RetinaNet take a different route, as they note in their paper Focal
Loss for Dense Object Detection mentioned earlier in this section. They discount the
majority class examples that are easier to classify and concentrate on the cells that
are difficult to classify. The result is that the network cost function focuses more

https://arxiv.org/pdf/1708.02002.pdf
https://arxiv.org/pdf/1708.02002.pdf

CHAPTER 13 Learning Advanced CNNs 241

on adapting its weights to recognize background objects. This is the focal loss solu-
tion and represents a smart way to make one-stage detection perform more cor-
rectly, yet speedily, which is a real-time application requirement, such as for
obstacle or object detection in self-driving cars, or processing large quantities of
images in video surveillance.

Using the Keras-RetinaNet code
Released under the open source Apache License 2.0, Keras-RetinaNet is a project
sponsored by the Dutch robotic company Fitz and made possible by many con-
tributors (the top contributors are Hans Gaiser and Maarten de Vries). It’s an
implementation of the RetinaNet neural network written in Python using Keras
(https://github.com/fizyr/keras-retinanet/). You find Keras-RetinaNet
used successfully used by many projects — the most notable and impressive of
which is the winning model for the NATO Innovation Challenge, a competition
whose task was to detect cars in aerial images. (You can read the narrative from the
winning team in this blog post: https://medium.com/data-from-the-trenches/
object-detection-with-deep-learning-on-aerial-imagery-2465078db8a9.)

Object detection network code is too complex to explain in a few pages, plus you
can use an existing network to set up deep learning solutions, so this section
demonstrates how to download and use Keras-RetinaNet on your computer.
Before you try this process, ensure that you have configured your computer as
described in Chapter 4, and consider the trade-offs involved in using various exe-
cution options described in the “Considering the cost of realistic output” sidebar
in Chapter 12.

As a first step, you upload the necessary packages and start downloading the
zipped version of the GitHub repository. This example uses the 0.5.0 version of
Keras-RetinaNet, which was the most recent version available at the time of
writing.

import os
import zipfile
import urllib.request
import warnings
warnings.filterwarnings("ignore")
url = "https://github.com/lmassaron/\
dl4dummies/releases/download/0.5.1/0.5.1.zip"
urllib.request.urlretrieve(url, './'+url.split('/')[-1])

https://github.com/fizyr/keras-retinanet/
https://medium.com/data-from-the-trenches/object-detection-with-deep-learning-on-aerial-imagery-2465078db8a9
https://medium.com/data-from-the-trenches/object-detection-with-deep-learning-on-aerial-imagery-2465078db8a9

242 PART 3 Interacting with Deep Learning

After downloading the zipped code, the example code automatically extracts it
using these commands:

zip_ref = zipfile.ZipFile('./0.5.1.zip', 'r')
for name in zip_ref.namelist():
 zip_ref.extract(name, './')
zip_ref.close()

The execution creates a new directory called keras-retinanet-0.5.0, which
contains the code for setting up the neural network. The code then executes the
compilation and installation of the package using the pip command:

os.chdir('./keras-retinanet-0.5.1')
!python setup.py build_ext --inplace
!pip install .

All these commands have just retrieved the code that builds the architecture of the
network. The example now needs the pretrained weights and relies on weights
trained on the MS Coco dataset using the ResNet50 CNN, the neural network that
Microsoft used to win the 2015 ImageNet competition.

os.chdir('../')
url = "https://github.com/fizyr/\
 keras-retinanet/releases/download/0.5.1/\
 resnet50_coco_best_v2.1.0.h5"
urllib.request.urlretrieve(url, './'+url.split('/')[-1])

Downloading all the weights takes a while, so now it would be a good time to refill
your coffee. After this step completes, the example is ready to import all the
necessary commands and to initialize the RetinaNet model using the pretrained
weights retrieved from the Internet. This step also sets a dictionary to convert the
numeric network results into understandable classes. The selection of classes is
useful for the detector on a self-driving car or any other solution that has to
understand images taken from a road or an intersection.

import os
import numpy as np
from collections import defaultdict
import keras
from keras_retinanet import models
from keras_retinanet.utils.image import (read_image_bgr,
 preprocess_image, resize_image)
from keras_retinanet.utils.visualization import (draw_box,
 draw_caption)
from keras_retinanet.utils.colors import label_color

CHAPTER 13 Learning Advanced CNNs 243

import matplotlib.pyplot as plt
%matplotlib inline

model_path = os.path.join('.',
 'resnet50_coco_best_v2.1.0.h5')

model = models.load_model(model_path,
 backbone_name='resnet50')

labels_to_names = defaultdict(lambda: 'object',
 {0: 'person', 1: 'bicycle', 2: 'car',
 3: 'motorcycle', 4: 'airplane', 5: 'bus',
 6: 'train', 7: 'truck', 8: 'boat',
 9: 'traffic light', 10: 'fire hydrant',
 11: 'stop sign', 12: 'parking meter',
 25: 'umbrella'})

To make the example useful, you need a sample image to test the RetinaNet model.
The example relies on a free image from Wikimedia representing an intersection
with people expecting to cross the road, some stopped vehicles, traffic lights, and
traffic signs.

url = "https://upload.wikimedia.org/wikipedia/commons/\
thumb/f/f8/Woman_with_blue_parasol_at_intersection.png/\
640px-Woman_with_blue_parasol_at_intersection.png"
urllib.request.urlretrieve(url, './'+url.split('/')[-1])

After completing the image download, it’s time to test the neural network. In the
code snippet that follows this explanation, the code reads the image from disk and
then switches the blue with red image channels (because the image is uploaded in
BGR format, but RetinaNet works with RGB images). Finally, the code prepro-
cesses and resizes the image. All these steps complete using the provided func-
tions and require no special settings.

The model will output the detected bounding boxes, the level of confidence (a
probability score that the network truly detected something), and a code label that
will convert into text using the previously defined dictionary of labels. The loop
filters the boxes printed on the image by the example. The code uses a confidence
threshold of 0.5, implying that the example will keep any detection whose confi-
dence is at least at 50 percent. Using a lower confidence threshold results in more
detections, especially of those objects that appear small in the image, but also
increases wrong detections (for instance, some shadows may start being detected
as objects).

244 PART 3 Interacting with Deep Learning

Depending on your objectives using RetinaNet, you may decide that using a lower
confidence threshold is fine. You’ll notice that as you lower the confidence, the
proportion of the resulting exact guesses (those with near 100 percent confidence)
will diminish. Such a proportion is called the precision of the detection, and by
deciding what precision you can tolerate, you can set the best confidence for your
purposes.

image = read_image_bgr('640px-Woman_with_blue_parasol_at_
intersection.png')

draw = image.copy()
draw[:,:,0], draw[:,:,2] = image[:,:,2], image[:,:,0]

image = preprocess_image(image)
image, scale = resize_image(image)

boxes, scores, labels = model.predict_on_batch(np.expand_

dims(image, axis=0))
boxes /= scale

for box, score, label in zip(boxes[0], scores[0], labels[0]):
 if score > 0.5:
 color = label_color(label)
 b = box.astype(int)
 draw_box(draw, b, color=color)
 caption = "{} {:.3f}".format(labels_to_names[label],

score)
 draw_caption(draw, b, caption.upper())

plt.figure(figsize=(12, 6))
plt.axis('off')
plt.imshow(draw)
plt.show()

It may take a while the first time you run the code, but after some computations,
you should obtain the output reproduced in Figure 13-2.

The network can successfully detect various objects, some extremely small (such
as a person in the background), some partially shown (such as the nose of a car on
the right of the image). Each detected object is delimited by its bounding box,
which creates a large range of possible applications.

CHAPTER 13 Learning Advanced CNNs 245

For instance, you could use the network to detect that an umbrella — or some
object — is being used by a person. When processing the results, you can relate
the fact that two bounding boxes are overlapping, with one being an umbrella and
the other one being a person, and that the first box is positioned on top of the
second in order to infer that a person is holding an umbrella. This is called visual
relationship detection. In the same way, by the overall setting of detected objects
and their relative positions, you can train a second deep learning network to infer
an overall description of the scene.

Overcoming Adversarial Attacks
on Deep Learning Applications

As deep learning finds many applications in self-driving cars, such as detecting
and interpreting traffic signs and lights; detecting the road and its lanes; detect-
ing crossing pedestrians and other vehicles; controlling the car by steering and
braking in an end-to-end approach to automatic driving; and so on, questions
may arise about the safety of a self-driving car. driving isn’t the only common
activity that’s undergoing a revolution. because of deep learning applications.
Recently introduced applications that are accessible by the public include facial
recognition for security access. (You can read about this use in ATMs in China at
https://www.telegraph.co.uk/news/worldnews/asia/china/11643314/
China-unveils-worlds-first-facial-recognition-ATM.html.) Another exam-
ple of a deep learning application is in speech recognition used for Voice

FIGURE 13-2:
Object detection

resulting from
Keras-RetinaNet.

https://www.telegraph.co.uk/news/worldnews/asia/china/11643314/China-unveils-worlds-first-facial-recognition-ATM.html
https://www.telegraph.co.uk/news/worldnews/asia/china/11643314/China-unveils-worlds-first-facial-recognition-ATM.html

246 PART 3 Interacting with Deep Learning

Controllable Systems (VCSs), as provided by a plethora of companies such as
Apple, Amazon, Microsoft, and Google in a wide variety of applications that
include Siri, Alexa, and Google Home.

Some of these deep learning applications may cause economic damage or even be
life threatening when they fail to provide the correct answer. Therefore, you may
be surprised to discover that hackers can intentionally trick deep neural networks
and guide them into failing predictions by using particular techniques called
adversarial examples.

An adversarial example is a handcrafted piece of data that is processed by a neural
network as training or test inputs. A hacker modifies the data to force the algo-
rithm to fail in its task. Each adversarial example bears modifications that are
indeed slight, subtle, and deliberately made imperceptible to humans. The modi-
fications, while ineffective on humans, are still quite effective in reducing the
effectiveness and usefulness of a neural network. Often, such malicious examples
aim at leading a neural network to fail in a predictable way to create some illegal
advantage for the hacker. Here are just a few malicious uses of adversarial exam-
ples (the list is far from exhaustive):

 » Misleading a self-driving car into a accident

 » Obtaining money from an insurance fraud by having fake claim photos
trusted as true ones by automatic systems

 » Tricking a facial recognition system to recognize the wrong face and grant
access to money in a bank account or personal data on a mobile device

Chapter 16 discusses generative adversarial networks (GANs) and adversarial
training, which have a completely different purpose than adversarial examples.
These techniques are a way to train a deep neural network to generate new exam-
ples of any kind from it.

Tricking pixels
First made known by the paper “Intriguing Properties of Neural Networks” (go to
https://arxiv.org/pdf/1312.6199.pdf), adversarial examples have attracted
much attention in recent years, and successful (and shocking) discoveries in the
field have led many researchers to devise faster and more effective ways of creat-
ing such examples than the original paper pointed out.

https://arxiv.org/pdf/1312.6199.pdf

CHAPTER 13 Learning Advanced CNNs 247

Adversarial examples are still confined to deep learning research laboratories. For
this reason, you find many scientific papers quoted in these paragraphs when
referring to various kinds of examples. However, you should never discount
adversarial examples as being some kind of academic diversion because their
potential for damage is high.

DISCOVERING THAT A MUFFIN
IS NOT A CHIHUAHUA
Sometimes deep learning image classification fails to provide the right answer because
the target image is inherently ambiguous or rendered to puzzle observers. For instance,
some images are so misleading that they can even mystify a human examiner for a
while, such as the Internet memes Chihuahua versus Muffin (see https://imgur.com/
QWQiBYU) or Labradoodle versus Fried Chicken (see https://imgur.com/5EnWOJU).
A neural network can misunderstand confusing images if its architecture isn’t adequate
to the task and its training hasn’t been exhaustive in terms of seen examples. The AI
technology columnist Mariya Yao has compared different computer vision APIs at
https://medium.freecodecamp.org/chihuahua-or-muffin-my-search-
for-the-best-computer-vision-api-cbda4d6b425d) and found that even
full-fledged vision products can be tricked by ambiguous pictures.

Recently, other studies have challenged deep neural networks by proposing unexpected
perspectives of known objects. In the paper called “Strike (with) a Pose: Neural Networks
Are Easily Fooled by Strange Poses of Familiar Objects at https://arxiv.org/
pdf/1811.11553.pdf, researchers found that simple ambiguity can trick state-of-the-
art image classifiers and object detectors trained on large-scale image datasets. Often,
objects are learned by neural networks from pictures taken in canonical poses (which
means in common and usual situations). When faced with an object in an unusual pose
or outside its usual environment, some neural networks can’t categorize the resulting
object. For instance, you expect a school bus to be running on the road, but if you rotate
and twist it in the air and then land it in the middle of the road, a neural network can
easily see it as a garbage truck, a punching bag, or even a snowplow. You may argue
that the misclassification occurs because of learning bias (teaching a neural network
using only images in canonical poses). Yet that implies that at present, you shouldn’t rely
such technology under all circumstances, especially, as the authors of the paper pointed
out, in self-driving car applications because objects may suddenly appear on the road in
new poses or circumstances.

https://imgur.com/QWQiBYU
https://imgur.com/QWQiBYU
https://imgur.com/5EnWOJU
https://medium.freecodecamp.org/chihuahua-or-muffin-my-search-for-the-best-computer-vision-api-cbda4d6b425d
https://medium.freecodecamp.org/chihuahua-or-muffin-my-search-for-the-best-computer-vision-api-cbda4d6b425d
https://arxiv.org/pdf/1811.11553.pdf
https://arxiv.org/pdf/1811.11553.pdf

248 PART 3 Interacting with Deep Learning

At the foundations of all these approaches the idea that mixing some numeric
information, called a perturbation, with the image can lead a neural network to
behave differently from expectations, although in a controlled way. When you
create an adversarial example, you add some specially devised noise (looking as
what appears to be random numbers) to an existing image, and that’s enough to
trick most CNNs (because often the same trick works with different architectures
when trained by the same data). Generally, you can discover such perturbations by
having access to the model (its architecture and weights). You then exploit its
backpropagation algorithm to systematically discover the best set of numeric
information to add to an image so that you can mutate one predicted class into
another one.

You can create the perturbation effect by changing a single pixel in an image.
Researchers have obtained perfectly working adversarial examples using this
approach, as discovered by researchers from Kyushu University and described in
their paper “One Pixel Attack for Fooling Deep Neural Networks” (https://
arxiv.org/pdf/1710.08864.pdf).

Hacking with stickers and other artifacts
Most adversarial examples are laboratory experiments on vision robustness, and
those examples can demonstrate all their capabilities because they are produced
by directly modifying data inputs and tested images during the training phase.
However, many applications based on deep learning operate in the real world, and
the use of laboratory techniques don’t prevent malicious attacks. Such attacks
don’t need access to the underlying neural model to be effective. Some examples
may take the form of a sticker or an inaudible sound that the neural network
doesn’t know how to handle.

A paper called “Adversarial Examples in the Physical World” (found at https://
arxiv.org/pdf/1607.02533.pdf) demonstrates that various attacks are also
possible in a nonlaboratory setting. All you need is to print the adversarial exam-
ples and show them to the camera feeding the neural network (for instance, by
using the camera in a mobile phone). This approach demonstrates that the effi-
cacy of an adversarial example is not strictly due to the numerical input fed into a
neural network. It’s the ensemble of shapes, colors, and contrast present in the
image that achieves the trick, and you don’t need any direct access to the neural
model to find out what ensemble works best. You can see how a network could
mistake the image of a washing machine for a safe or a loudspeaker directly from
this video made by the authors who tricked the TensorFlow camera demo, an
application for mobile devices that performs on-the-fly image classification:
https://www.youtube.com/watch?v=zQ_uMenoBCk.

https://arxiv.org/pdf/1710.08864.pdf
https://arxiv.org/pdf/1710.08864.pdf
https://arxiv.org/pdf/1607.02533.pdf
https://arxiv.org/pdf/1607.02533.pdf
https://www.youtube.com/watch?v=zQ_uMenoBCk

CHAPTER 13 Learning Advanced CNNs 249

Other researchers from Carnegie Mellon University have found a way to trick face
detection into believing a person is a celebrity by fabricating eyeglass frames that
can affect how a deep neural network recognizes instances. As automated security
systems become widespread, the ability to trick the system by using simple
 add-ons like eyeglasses could turn into a serious security threat. A paper called
“Accessorize to a Crime: Real and Stealthy Attacks on State-of-the-Art Face Rec-
ognition” (https://www.cs.cmu.edu/~sbhagava/papers/face-rec-ccs16.pdf)
describes how accessories could allow both dodging personal recognition and
impersonation.

Finally, another disturbing real-world use of an adversarial example appears in the
paper “Robust Physical-World Attacks on Deep Learning Visual Classification”
(https://arxiv.org/pdf/1707.08945.pdf). Plain black-and-white stickers placed
on a stop sign can affect how a self-driving car understands the signal, misunder-
standing it for another road indication. When you use more colorful (but also more
noticeable) stickers, such as the ones described in the paper “Adversarial Patch”
(https://arxiv.org/pdf/1712.09665.pdf), you can guide the predictions of a
neural network in a particular direction by having it ignore anything but the sticker
and its misleading information. As explained in the paper, a neural network could
predict a banana to be anything else just by placing a proper deceitful sticker nearby.

At this point, you may wonder whether any defense against adversarial examples
is possible, or if sooner or later they will destroy the public confidence in deep
learning applications, especially in the self-driving car field. By intensely study-
ing how to mislead a neural network, researchers are also finding how to protect
it against any misuse. First, neural networks can approximate any function. If the
neural networks are complex enough, they can also determine by themselves how
to rule out adversarial examples when taught by other examples. Second, novel
techniques such as constraining the values in a neural network or reducing the
neural network size after training it (a technique called distillation, used previously
to make a network viable on devices with little memory) have been successfully
tested against many different kinds of adversarial attacks.

https://www.cs.cmu.edu/~sbhagava/papers/face-rec-ccs16.pdf
https://arxiv.org/pdf/1707.08945.pdf
https://arxiv.org/pdf/1712.09665.pdf

CHAPTER 14 Working on Language Processing 251

Chapter 14
Working on Language
Processing

Acomputer can’t understand language; it only processes language for spe-
cific applications. In addition, a computer can’t process language unless
it’s highly formal and precise, such as a programming language. Rigid

syntax rules and grammar enables a computer to turn a program written by a
developer in a computer language like Python into the machine language that
determines what tasks the computer will perform. Human language is not at all
similar to a computer’s language. Human language often lacks a precise structure
and is full of errors, contradictions, and ambiguities, yet it works well for humans,
with some effort on the part of the hearer, to serve human society and the prog-
ress of knowledge.

Programming a computer to process human language is therefore a daunting
task, which is only recently possible using Natural Language Processing (NLP),
deep learning Recurrent Neural Networks (RNNs), and word embeddings. Word
embeddings is the name of the language-modeling and feature-learning technique
in NLP that maps vocabulary to real number vectors using products like Word-
2vec, GloVe, and fastText. You also see it used in pretrained networks such as
Google’s open-sourced BERT. In this chapter, you start with the basics needed to
understand NLP and see how it can serve you in building better deep learning
models for language problems. The chapter then explains word embeddings, how

IN THIS CHAPTER

 » Discovering Natural Language
Processing

 » Finding out how to turn words into
numbers in deep learning

 » Mapping words and their meanings
into word embeddings

 » Creating a sentiment analysis system
using deep learning RNNs

252 PART 3 Interacting with Deep Learning

pretrained networks will revolutionize deep learning, and how computers can
communicate through chatbots. The chapter closes with an example of a deep
learning model applied sentiment analysis that discovers opinions in text.

You don’t have to type the source code for this chapter manually. In fact, it’s a lot
easier if you use the downloadable source. The source code for this chapter appears
in the DL4D_14_Processing_Language.ipynb and DL4D_14_Movie_Sentiment.
ipynb source code files (see the Introduction for details on how to find those
source files).

Processing Language
As a simplification, you can view language as a sequence of words made of letters
(as well as punctuation marks, symbols, emoticons, and so on). Deep learning
processes language best by using layers of RNNs, such as LSTM or GRU (see
 Chapter 11). However, knowing to use RNNs doesn’t tell you how to use sequences
as inputs; you need to determine the kind of sequences. In fact, deep learning
networks accept only numeric input values. Computers encode letter sequences
that you understand into numbers according to a protocol, such as Unicode
 Transformation Format-8 bit (UTF-8). UTF-8 is the most widely used encoding.
(You can read the primer about encodings at https://www.alexreisner.com/
code/character-encoding.)

Deep learning can also process textual data using Convolutional Neural Networks
(CNNs) instead of RNNs by representing sequences as matrices (similar to image
processing). Keras supports CNN layers, such as the Conv1D (https://keras.io/
layers/convolutional/), which can operate on ordered features in time — that
is, sequences of words or other signals. The 1D convolution output is usually fol-
lowed by a MaxPooling1D layer that summarizes the outputs. CNNs applied to
sequences find a limit in their insensitivity to the global order of the sequence.
(They tend to spot local patterns.) For this reason, they’re best used in sequence
processing in combination with RNNs, not as their replacement.

Natural Language Processing (NLP) consists of a series of procedures that improve
the processing of words and phrases for statistical analysis, machine learning
algorithms, and deep learning. NLP owes its roots to computational linguistics
that powered AI rule-based systems, such as expert systems, which made deci-
sions based on a computer translation of human knowledge, experience, and way
of thinking. NLP digested textual information, which is unstructured, into more
structured data so that expert systems could easily manipulate and evaluate it.
Deep learning has taken the upper hand today, and expert systems are limited to
specific applications in which interpretability and control of decision processes

https://www.alexreisner.com/code/character-encoding
https://www.alexreisner.com/code/character-encoding
https://keras.io/layers/convolutional/
https://keras.io/layers/convolutional/

CHAPTER 14 Working on Language Processing 253

are paramount (for instance, in medical applications and driving behavior
decision systems on some self-driving cars). Yet, the NLP pipeline is still quite
relevant for many deep learning applications.

Defining understanding as tokenization
In an NLP pipeline, the first step is to obtain raw text. Usually you store it in mem-
ory or access it from disk. When the data is too large to fit in memory, you maintain
a pointer to it on disk (such as the directory name and the filename). In the follow-
ing example, you use three documents (represented by string variables) stored in a
list (the document container is the corpus in computational linguistics):

import numpy as np

texts = ["My dog gets along with cats",
 "That cat is vicious",
 "My dog is happy when it is lunch"]

After obtaining the text, you process it. As you process each phrase, you extract
the relevant features from the text (you usually create a bag-of-words matrix) and
pass everything to a learning model, such as a deep learning algorithm. During
text processing, you can use different transformations to manipulate the text
(with tokenization being the only mandatory transformation):

 » Normalization: Remove capitalization.

 » Cleaning: Remove nontextual elements such as punctuation and numbers.

 » Tokenization: Split a sentence into individual words.

 » Stop word removal: Remove common, uninformative words that don’t add
meaning to the sentence, such as the articles the and a. Removing negations
such as not could be detrimental if you want to guess the sentiment.

 » Stemming: Reduce a word to its stem (which is the word form before adding
inflectional affixes, as you can read here: https://www.thoughtco.com/
stem-word-forms-1692141). An algorithm, called a stemmer, can do this
based on a series of rules.

 » Lemmatization: Transform a word into its dictionary form (the lemma). It’s
an alternative to stemming, but it’s more complex because you don’t use an
algorithm. Instead, you use a dictionary to convert every word into its lemma.

 » Pos-tagging: Tag every word in a phrase with its grammatical role in the
sentence (such as tagging a word as a verb or as a noun).

https://www.thoughtco.com/stem-word-forms-1692141
https://www.thoughtco.com/stem-word-forms-1692141

254 PART 3 Interacting with Deep Learning

 » N-grams: Associate every word with a certain number (the n in n-gram), of
following words and treat them as a unique set. Usually, bi-grams (a series of
two adjacent elements or tokens) and tri-grams (a series of three adjacent
elements or tokens) work the best for analysis purposes.

To achieve these transformations, you may need a specialized Python package
such as NLTK (http://www.nltk.org/api/nltk.html) or Scikit-learn (see the
tutorial at https://scikit-learn.org/stable/tutorial/text_analytics/
working_with_text_data.html). When working with deep learning and a large
number of examples, you need only basic transformations: normalization, clean-
ing, and tokenization. The deep learning layers can determine what information
to extract and process. When working with few examples, you do need to provide
as much NLP processing as possible to help the deep learning network determine
what to do in spite of the little guidance provided by the few examples.

Keras offers a function, keras.preprocessing.text.Tokenizer, that normalizes
(using the lower parameter set to True), cleans (the filters parameter contains a
string of the characters to remove, usually these: ’!"#$%&()*+,-./:;<=>?@
[\]^_`{|}~ ’) and tokenizes.

Putting all the documents into a bag
After processing the text, you have to extract the relevant features, which means
transforming the remaining text into numeric information for the neural network
to process. This is commonly done using the bag-of-words approach, which is
obtained by frequency encoding or binary encoding the text. This process equates
to transforming each word into a matrix column as wide as the number of words
you need to represent. The following example shows how to achieve this process
and what it implies. The example uses the texts list instantiated earlier in the
chapter. As a first step, you prepare a basic normalization and tokenization using
a few Python commands to determine the word vocabulary size for processing:

unique_words = set(word.lower() for phrase in texts for
 word in phrase.split(" "))
print(f"There are {len(unique_words)} unique words")

The code reports 14 words. You now proceed to load the Tokenizer function from
Keras and set it to process the text by providing the expected vocabulary size:

from keras.preprocessing.text import Tokenizer
vocabulary_size = len(unique_words) + 1
tokenizer = Tokenizer(num_words=vocabulary_size)

http://www.nltk.org/api/nltk.html
https://scikit-learn.org/stable/tutorial/text_analytics/working_with_text_data.html
https://scikit-learn.org/stable/tutorial/text_analytics/working_with_text_data.html

CHAPTER 14 Working on Language Processing 255

Using a vocabulary_size that’s too small may exclude important words from the
learning process. One that’s too large may uselessly consume computer memory.
You need to provide Tokenizer with a correct estimate of the number of distinct
words contained in the list of texts. You also always add 1 to the vocabulary_size
to provide an extra word for the start of a phrase (a term that helps the deep
learning network). At this point, Tokenizer maps the words present in the texts
to indexes, which are numeric values representing the words in text:

tokenizer.fit_on_texts(texts)
print(tokenizer.index_word)

The resulting indexes are as follows:

{1: 'is', 2: 'my', 3: 'dog', 4: 'gets', 5: 'along',
 6: 'with', 7: 'cats', 8: 'that', 9: 'cat', 10: 'vicious',
 11: 'happy', 12: 'when', 13: 'it', 14: 'lunch'}

The indexes represent the column number that houses the word information:

 print(tokenizer.texts_to_matrix(texts))

Here’s the resulting matrix:

[[0. 0. 1. 1. 1. 1. 1. 1. 0. 0. 0. 0. 0. 0. 0.]
 [0. 1. 0. 0. 0. 0. 0. 0. 1. 1. 1. 0. 0. 0. 0.]
 [0. 1. 1. 1. 0. 0. 0. 0. 0. 0. 0. 1. 1. 1. 1.]]

The matrix consists of 15 columns (14 words plus the start of phrase pointer) and
three rows, representing the three processed texts. This is the text matrix to process
using a shallow neural network (RNNs require a different format, as discussed
later), which is always sized as vocabulary_size by the number of texts.

The numbers inside the matrix represent the number of times a word appears in
the phrase. This isn’t the only representation possible, though. Here are the
others:

 » Frequency encoding: Counts the number of word appearances in
the phrase.

 » one-hot encoding or binary encoding: Notes the presence of a word in a
phrase, no matter how many times it appear.

 » Term Frequency-Inverse Document Frequency (TF-IDF) score: Encodes a
measure relative to how many times a word appears in a document relative to
the overall number of words in the matrix. (Words with higher scores are
more distinctive; words with lower scores are less informative.)

256 PART 3 Interacting with Deep Learning

You can use the TF-IDF transformation from Keras directly. The Tokenizer offers
a method, texts_to_matrix, that by default encodes your text and transforms it
into a matrix in which the columns are your words, the rows are your texts, and
the values are the word frequency within a text. If you apply the transformation
by specifying mode='tfidf’, the transformation uses TF-IDF instead of word fre-
quencies to fill the matrix values:

print(np.round(tokenizer.texts_to_matrix(texts,
 mode='tfidf'), 1))

Note that by using a matrix representation, no matter whether you use binary,
frequency, or the more sophisticated TF-IDF, you have lost any sense of word
ordering that exists in the phrase. During processing, the words scatter in differ-
ent columns, and the neural network can’t guess the word order in a phrase. This
lack of order is why you call it a bag-of-words approach. The bag-of-words
approach is used in many machine learning algorithms, often with results rang-
ing from good to fair, and you can apply it to a neural network using dense archi-
tecture layers. Transformations of words encoded into n_grams (discussed in the
previous paragraph as an NLP processing transformation) provide some more
information, but again, you can’t relate the words.

RNNs keep track of sequences, so they still use one-hot encoding, but they don’t
encode the entire phrase, rather, they individually encode each token (which could
be a word, a character, or even a bunch of characters). For this reason, they expect
a sequence of indexes representing the phrase:

print(tokenizer.texts_to_sequences(texts))

As each phrase passes to a neural network input as a sequence of index numbers,
the number is turned into a one-hot encoded vector. The one-hot encoded vectors
are then fed into the RNN’s layers one at a time, making them easy to learn. For
instance, here’s the transformation of the first phrase in the matrix:

[[0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.]]

In this representation, you get a distinct matrix for each piece of text. Each matrix
represents the individual texts as distinct words using columns, but now the rows
represent the word appearance order. (The first row is the first word, the second
row is the second word, and so on.)

CHAPTER 14 Working on Language Processing 257

Memorizing Sequences that Matter
Working with TF-IDF and n-grams (either of letters or words) enables you to cre-
ate language models using few examples. Encoding phrases as sequences of single
word one-hot encodings helps you effectively use RNNs. However, a better way to
process textual data with greater speed (a way that creates powerful deep learning
models) is by using embeddings.

Embeddings have a long history. The concept of embeddings appeared in statisti-
cal multivariate analysis under the name of multivariate correspondence analysis.
Since the 1970s, Jean-Paul Benzécri, a French statistician and linguist, along with
many other French researchers from the French School of Data Analysis discov-
ered how to map a limited set of words into low-dimensional spaces (usually 2-D
representations, such as a topographic map). This process turns words into mean-
ingful numbers and projections, a discovery that brought about many applications
in linguistics and in the social sciences and paved the way for the recent advance-
ments in language processing using deep learning.

Understanding semantics by word
embeddings
Neural networks are incredibly fast at processing data and finding the right
weights to achieve the best predictions, and so are all the deep learning layers
discussed so far: from CNNs to RNNs. These neural networks have effectiveness
limits based on the data they have to process, such as normalizing data to allow a
neural network to work properly or forcing its range of input values between 0 to
+1 or –1 to +1 to reduce trouble when updating network weights.

Normalization is done internally to the network by using activation functions like
tanh, which squeezes values to appear in the range from –1 to +1 (https://tex.
stackexchange.com/questions/176101/plotting-the-graph-of-hyperbolic-
tangent), or by using specialized layers like BatchNormalization (https://
keras.io/layers/normalization/), which apply a statistical transformation on
values transferred from one layer to another.

Another kind of problematic data that a neural network finds difficult to handle is
sparse data. You have sparse data when your data mostly consists of zero values,
which is exactly what happens when you process textual data using frequency or
binary encoding, even if you don’t use TF-IDF. When working with sparse data,
not only will the neural network have difficulties finding a good solution (as tech-
nically explained in these Quora answers: https://www.quora.com/Why-are-
deep-neural-networks-so-bad-with-sparse-data), but you’ll also need to have

https://tex.stackexchange.com/questions/176101/plotting-the-graph-of-hyperbolic-tangent
https://tex.stackexchange.com/questions/176101/plotting-the-graph-of-hyperbolic-tangent
https://tex.stackexchange.com/questions/176101/plotting-the-graph-of-hyperbolic-tangent
https://keras.io/layers/normalization/
https://keras.io/layers/normalization/
https://www.quora.com/Why-are-deep-neural-networks-so-bad-with-sparse-data
https://www.quora.com/Why-are-deep-neural-networks-so-bad-with-sparse-data

258 PART 3 Interacting with Deep Learning

a huge number of weights for the input layer because sparse matrices are usually
quite wide (they have many columns).

Sparse data problems motivated the use of word embeddings, which is a way to
transform a sparse matrix into a dense one. Word embeddings can reduce the
number of columns in the matrix from hundreds of thousands to a few hundred.
Also, they allow no zero values inside the matrix. The word embedding process
isn’t done randomly but is devised so that words get similar values when they
have the same meaning or are found within the same topics. In other words, it’s a
complex mapping; each embedding column is a specialty map (or a scale, if you
prefer) and the similar or related words gather near each other.

Word embeddings aren’t the only advanced technique that you can use to make
deep learning solutions shine with unstructured text. Recently, a series of pre-
trained networks appeared that make it even easier to model language problems.
For instance, one of the most promising is the Google Bidirectional Encoder
Representations from Transformers (BERT). Here’s a link to the Google AI blog
post describing the technique: https://ai.googleblog.com/2018/11/open-
sourcing-bert-state-of-art-pre.html.

As another example, you can have an embedding that transforms the name of dif-
ferent foods into columns of numeric values, which is a matrix of embedded
words. On that matrix, the words that show fruits can have a similar score on a
particular column. On the same column, vegetables can get different values, but
not too far from those of fruit. Finally, the names of meat dishes can be far away
in value from fruits and vegetables. An embedding performs this work by convert-
ing words into values in a matrix. The values are similar when the words are syn-
onymous or refer to a similar concept. (This is called semantic similarity, with
semantic referring to the meaning of words.)

Because the same semantic meaning can occur across languages, you can use
carefully built embeddings to help you translate from one language to another: A
word in one language will have the same embedded scores as the same word in
another language. Researchers at Facebook AI Research (FAIR) lab have found a
way to synchronize different embeddings and leverage them to provide multilin-
gual applications based on deep learning (go to https://code.fb.com/ml-
applications/under-the-hood-multilingual-embeddings/ for details).

An important aspect to keep in mind when working with word embeddings is that
they are a product of data and thus reflect the content of the data used to create
them. Because word embeddings require large amounts of text examples for
proper generation, the content of texts fed into the embeddings during the

https://ai.googleblog.com/2018/11/open-sourcing-bert-state-of-art-pre.html
https://ai.googleblog.com/2018/11/open-sourcing-bert-state-of-art-pre.html
https://code.fb.com/ml-applications/under-the-hood-multilingual-embeddings/
https://code.fb.com/ml-applications/under-the-hood-multilingual-embeddings/

CHAPTER 14 Working on Language Processing 259

training is often retrieved automatically from the web and not fully scrutinized.
The use of unverified input may lead to word embedding biases. For instance, you
may be surprised to discover that the word embeddings create improper associa-
tions between words. You should be aware of such a risk and test your application
carefully because the consequence is adding the same unfair biases to the deep
learning applications you create.

For now, the most popular word embeddings commonly used for deep learning
applications are

 » Word2vec: Created by a team of researchers led by Tomáš Mikolov at Google
(you can read the original paper about this patented method here: https://
arxiv.org/pdf/1301.3781.pdf). It relies on two shallow neural network
layers that attempt to learn to predict a word by knowing the words that
precede and follow it. Word2vec comes in two versions: one based on
something like a bag of words model (called continuous bag-of-words, or
CBOW), which is less sensitive to word order; and another based on n-grams
(called continuous skip-gram), which is more sensitive to the order. Word2vec
learns to predict a word given its context using distributional hypothesis, which
means that similar words appear in similar contexts of words. By learning
what words should appear in different contexts, Word2vec internalizes the
contexts. Both versions are suitable for most applications, but the skip-gram
version is actually better at representing infrequent words.

 » GloVe (Global Vectors): Developed as an open source project at Stanford
University (https://nlp.stanford.edu/projects/glove/), the GloVe
approach is similar to statistical linguist methods. It takes word-word
 co-occurrence statistics from a corpus and reduces the resulting sparse
matrix to a dense one using matrix factorization, which is an algebraic
method widely used in multivariate statistics.

 » fastText: Created by Facebook’s AI Research (FAIR) lab, fastText (https://
fasttext.cc/) is a word embedding, available in multiple languages that
works with word subsequences instead of single words. It breaks a word
down into many chunks of letters and embeds them. This technique has
interesting implications because fastText offers a better representation of
rare words (which are often composed of subsequences that aren’t rare)
and determines how to project misspelled words. The capability to handle
misspellings and errors allows an effective use of the embedding with text
coming from social networks, e-mails, and other sources people don’t usually
use a spell checker with.

https://arxiv.org/pdf/1301.3781.pdf
https://arxiv.org/pdf/1301.3781.pdf
https://nlp.stanford.edu/projects/glove/
https://fasttext.cc/
https://fasttext.cc/

260 PART 3 Interacting with Deep Learning

EXPLAINING WHY (KING – MAN) +
WOMAN = QUEEN
Word embeddings translate a word into a series of numbers representing its position in
the embedding itself. This series of numbers is the word vector. It’s usually made up of
about 300 vectors (the number of vectors Google used in their model trained on the
Google news dataset), and neural networks use it to process textual information better
and more effectively. In fact, words with similar meaning or that are used in similar con-
texts have similar word vectors; therefore, neural networks can easily spot words with
similar meaning. In addition, neural networks can work with analogies by manipulating
vectors, which means that you can obtain amazing results such as

• king – man + woman = queen

• paris – france + poland = warsaw

It may seem like magic but it’s simple mathematics. You can see how things work by
looking at the following figure, which represents two Word2vec vectors.

Each vector in Word2vec represents a different semantic; it could be food type, quality of a
person, nationality, or gender. There are many semantics and they aren’t predefined; the
embedding training created them automatically based on the presented examples. The
figure shows two vectors from Word2vec: one representing the quality of a person;

CHAPTER 14 Working on Language Processing 261

Using AI for Sentiment Analysis
Sentiment analysis computationally derives from a written text using the writer’s
attitude (whether positive, negative, or neutral), toward the text topic. This kind
of analysis proves useful for people working in marketing and communication
because it helps them understand what customers and consumers think of a prod-
uct or service and thus, act appropriately (for instance, trying to recover unsatis-
fied customers or deciding to use a different sales strategy). Everyone performs
sentiment analysis. For example, when reading text, people naturally try to deter-
mine the sentiment that moved the person who wrote it. However, when the num-
ber of texts to read and understand is too huge and the text constantly accumulates,
as in social media and customer e-mails, automating the task is important.

The upcoming example is a test run of RNNs using Keras and TensorFlow that
builds a sentiment analysis algorithm capable of classifying the attitudes expressed
in a film review. The data is a sample of the IMDb dataset that contains 50,000
reviews (split in half between train and test sets) of movies accompanied by a
label expressing the sentiment of the review (0=negative, 1=positive). IMDb
(https://www.imdb.com/) is a large online database containing information
about films, TV series, and video games. Originally maintained by a fan base, it’s
now run by an Amazon subsidiary. On IMDb, people find the information they
need about their favorite show as well as post their comments or write a review for
other visitors to read.

Keras offers a downloadable wrapper for IMDb data. You prepare, shuffle, and
arrange this data into a train and a test set. This dataset appears among other use-
ful datasets at https://keras.io/datasets/. In particular, the IMDb textual
data offered by Keras is cleansed of punctuation, normalized into lowercase, and
transformed into numeric values. Each word is coded into a number representing
its ranking in frequency. Most frequent words have low numbers; less frequent
words have higher numbers.

another representing the gender of a person. The first vector defines roles, starting with
king and queen with higher scores, passing through actor and actress, and finally ending
with man and woman having lower scores. If you add this vector to the gender vector, you
see that the male and female variants separate by different scores on that vector. Now,
when you subtract man and add woman to king, you are simply moving away from the
coordinates of king and shifting along the gender vector until you reach the position of
queen. This simple trick of coordinates, which doesn’t imply any understanding of words
by Word2vec, is possible because all the vectors of a word embedding are synchronized,
representing the meaning of a language, and you can meaningfully shift from one coordi-
nate to another as you were shifting concepts in reasoning.

https://www.imdb.com/
https://keras.io/datasets/

262 PART 3 Interacting with Deep Learning

As a starter point, the code imports the imdb function from Keras and uses it to
retrieve the data from the Internet (about a 17.5MB download). The parameters
that the example uses encompass just the top 10,000 words, and Keras should
shuffle the data using a specific random seed. (Knowing the seed makes it possible
to reproduce the shuffle as needed.) The function returns two train and test sets,
both made of text sequences and the sentiment outcome.

from keras.datasets import imdb

top_words = 10000
((x_train, y_train),
 (x_test, y_test)) = imdb.load_data(num_words=top_words,
 seed=21)

After the previous code completes, you can check the number of examples using
the following code:

print("Training examples: %i" % len(x_train))
print("Test examples: %i" % len(x_test))

After inquiring about the number of cases available for use in the training and test
phase of the neural network, the code outputs an answer of 25,000 examples for
each phase. (This dataset is a relatively small one for a language problem; clearly
the dataset is mainly for demonstration purposes.) In addition, the code deter-
mines whether the dataset is balanced, which means it has an almost equal num-
ber of positive and negative sentiment examples.

import numpy as np
print(np.unique(y_train, return_counts=True))

The result, array([12500, 12500]), confirms that the dataset is split evenly
between positive and negative outcomes. Such a balance between the response
classes is exclusively because of the demonstrative nature of the dataset. In the
real world, you seldom find balanced datasets. The next step creates some Python
dictionaries that can convert between the code used in the dataset and the real
words. In fact, the dataset used in this example is preprocessed and provides
sequences of numbers representing the words, not the words themselves. (LSTM
and GRU algorithms that you find in Keras expect sequences of numbers as
numbers.)

word_to_id = {w:i+3 for w,i in imdb.get_word_index().items()}
id_to_word = {0:'<PAD>', 1:'<START>', 2:'<UNK>'}
id_to_word.update({i+3:w for w,i in imdb.get_word_index().

items()})

CHAPTER 14 Working on Language Processing 263

def convert_to_text(sequence):
 return ' '.join([id_to_word[s] for s in sequence if s>=3])

print(convert_to_text(x_train[8]))

The previous code snippet defines two conversion dictionaries (from words to
numeric codes and vice versa) and a function that translates the dataset examples
into readable text. As an example, the code prints the ninth example: “this movie
was like a bad train wreck as horrible as it was . . .”. From this excerpt, you can
easily anticipate that the sentiment for this movie isn’t positive. Words such as
bad, wreck, and horrible convey a strong negative feeling, and that makes guessing
the correct sentiment easy.

In this example, you receive the numeric sequences and turn them back into
words, but the opposite is common. Usually, you get phrases made up of words
and turn them into sequences of integers to feed to a layer of RNNs. Keras offers a
specialized function, Tokenizer (see https://keras.io/preprocessing/text/#
tokenizer), which can do that for you. It uses the methods fit_on_text, to learn
how to map words to integers from training data, and texts_to_matrix, to trans-
form text into a sequence.

However, in other phrases, you may not find such revealing words. The feeling is
expressed in a more subtle or indirect way, and understanding the sentiment early
in the text may not be possible because revealing phrases and words may appear
much later in the discourse. For this reason, you also need to decide how much of
the phrase you want to analyze. Conventionally, you take an initial part of the text
and use it as representative of the entire review. Sometimes you just need a few
initial words — for instance the first 50 words — to get the sense; sometimes you
need more. Especially long texts don’t reveal their orientation early. It is therefore
up to you to understand the type of text you are working with and decide how
many words to analyze using deep learning. This example considers only the first
200 words, which should suffice.

You have noticed that the code starts giving code to words beginning with the
number 3, thus leaving codes from 0 to 2. Lower numbers are used for special
tags, such as signaling the start of the phrase, filling empty spaces to have the
sequence fixed at a certain length, and marking the words that are excluded
because they’re not frequent enough. This example picks up only the most fre-
quent 10,000 words. Using tags to point out start, end, and notable situations is a
trick that works with RNNs, especially for machine translation.

https://keras.io/preprocessing/text/#tokenizer
https://keras.io/preprocessing/text/#tokenizer

264 PART 3 Interacting with Deep Learning

from keras.preprocessing.sequence import pad_sequences

max_pad = 200
x_train = pad_sequences(x_train,
 maxlen=max_pad)

x_test = pad_sequences(x_test,
 maxlen=max_pad)

print(x_train[0])

By using the pad_sequences function from Keras with max_pad set to 200, the
code takes the first two hundred words of each review. In case the review contains
fewer than two hundred words, as many zero values as necessary precede the
sequence to reach the required number of sequence elements. Cutting the
sequences to a certain length and filling the voids with zero values is called input
padding, an important processing activity when using RNNs like deep learning
algorithms. Now the code designs the architecture:

from keras.models import Sequential
from keras.layers import Bidirectional, Dense, Dropout
from keras.layers import GlobalMaxPool1D, LSTM
from keras.layers.embeddings import Embedding

embedding_vector_length = 32
model = Sequential()
model.add(Embedding(top_words,
 embedding_vector_length,
 input_length=max_pad))

model.add(Bidirectional(LSTM(64, return_sequences=True)))
model.add(GlobalMaxPool1D())
model.add(Dense(16, activation="relu"))
model.add(Dense(1, activation="sigmoid"))

model.compile(loss='binary_crossentropy',
 optimizer='adam',
 metrics=['accuracy'])

print(model.summary())

The previous code snippet defines the shape of the deep learning model, where it
uses a few specialized layers for natural language processing from Keras. The
example also has required a summary of the model (model.summary() command)
to determine what is happening with architecture by using different neural layers.

CHAPTER 14 Working on Language Processing 265

You have the Embedding layer, which transforms the numeric sequences into a
dense word embedding. That type of word embedding is more suitable for being
learned by a layer of RNNs, as discussed in the previous paragraph in this chapter.
Keras provides an Embedding layer, which, apart from necessarily having to be the
first layer of the network, can accomplish two tasks:

 » Applying pretrained word embedding (such as Word2vec or GloVe) to the
sequence input. You just need to pass the matrix containing the embedding
to its parameter weights.

 » Creating a word embedding from scratch, based on the inputs it receives.

In this second case, Embedding just needs to know:

 » input_dim: The size of the vocabulary expected from data

 » output_dim: The size of the embedding space that will be produced (the
so-called dimensions)

 » input_length: The sequence size to expect

After you determine the parameters, Embedding will find the better weights to
transform the sequences into a dense matrix during training. The dense matrix
size is given by the length of sequences and the dimensionality of the embedding.

If you use The Embedding layer provided by Keras, you have to remember that the
function provides only a weight matrix of the size of the vocabulary by the dimen-
sion of the desired embedding. It maps the words to the columns of the matrix and
then tunes the matrix weights to the provided examples. This solution, although
practical for nonstandard language problems, is not analogous to the word embed-
dings discussed previously, which are trained in a different way and on millions of
examples.

The example uses Bidirectional wrapping — an LSTM layer of 64 cells.
 Bidirectional transforms a normal LSTM layer by doubling it: On the first side,
it applies the normal sequence of inputs you provide; on the second, it passes the
reverse of the sequence. You use this approach because sometimes you use words
in a different order, and building a bidirectional layer will catch any word pattern,
no matter the order. The Keras implementation is indeed straightforward: You
just apply it as a function on the layer you want to render bidirectionally.

The bidirectional LSTM is set to return sequences (return_sequences=True); that
is, for each cell, it returns the result provided after seeing each element of the
sequence. The results, for each sequence, is an output matrix of 200 x 128, where
200 is the number of sequence elements and 128 is the number of LSTM cells used

266 PART 3 Interacting with Deep Learning

in the layer. This technique prevents the RNN from taking the last result of each
LSTM cell. Hints about the sentiment of the text could actually appear anywhere
in the embedded words sequence.

In short, it’s important not to take the last result of each cell, but rather the best
result of it. The code therefore relies on the following layer, GlobalMaxPool1D, to
check each sequence of results provided by each LSTM cell and retain only the
maximum result. That should ensure that the example picks the strongest signal
from each LSTM cell, which is hopefully specialized by its training to pick some
meaningful signals.

After the neural signals are filtered, the example has a layer of 128 outputs, one
for each LSTM cell. The code reduces and mixes the signals using a successive
dense layer of 16 neurons with ReLU activation (thus making only positive signals
pass through; see the “Choosing the right activation function” section of Chapter 8
for details). The architecture ends with a final node using sigmoid activation,
which will squeeze the results into the 0–1 range and make them look like prob-
abilities. Having defined the architecture, you can now train the network. Three
epochs (passing the data three times through the network to have it learn the
patterns) will suffice. The code uses batches of 256 reviews each time, which
allows the network to see enough variety of words and sentiments each time
before updating its weights using backpropagation. Finally, the code focuses on
the results provided by the validation data (which isn’t part of the training data).
Getting a good result from the validation data means the neural net is processing
the input correctly. The code reports on validation data just after each epoch
finishes.

history = model.fit(x_train, y_train,
 validation_data=(x_test, y_test),
 epochs=3, batch_size=256)

Getting the results takes a while, but if you are using a GPU, it will complete in the
time you take to drink a cup of coffee. At this point, you can evaluate the results,
again using the validation data. (The results shouldn’t have any surprises or dif-
ferences from what the code reported during training.)

loss, metric = model.evaluate(x_test, y_test, verbose=0)
print("Test accuracy: %0.3f" % metric)

The final accuracy, which is the percentage of correct answers from the deep neu-
ral network, will be a value of around 85—86 percent. The result will change
slightly each time you run the experiment because of randomization when

CHAPTER 14 Working on Language Processing 267

building your neural network. That’s perfectly normal given the small size of the
data you are working with. If you start with the right lucky weights, the learning
will be easier in such a short training session.

In the end, your network is a sentiment analyzer that can guess the sentiment
expressed in a movie review correctly about 85 percent of the time. Given even
more training data and more sophisticated neural architectures, you can get
results that are even more impressive. In marketing, a similar tool is used to auto-
mate many processes that require reading text and taking action. Again, you could
couple a network like this with a neural network that listens to a voice and turns
it into text. (This is another application of RNNs, now powering Alexa, Siri, Google
Voice, and many other personal assistants.) The transition allows the application
to understand the sentiment even in vocal expressions, such as a phone call from
a customer.

CHAPTER 15 Generating Music and Visual Art 269

Chapter 15
Generating Music
and Visual Art

You can find considerable discussions online about whether computers can
be creative by employing deep learning. The dialogue goes to the very
essence of what it means to be creative. Philosophers and others have dis-

cussed the topic endlessly throughout human history without arriving at a con-
clusion as to what, precisely, creativity means. Consequently, a single chapter in
a book written in just a few months won’t solve the problem for you.

However, to provide a basis for the discussions in this chapter, this book defines
creativity as the ability to define new ideas, patterns, relationships, and so on. The
emphasis is on new: the originality, progressiveness, and imagination that
humans provide. It doesn’t include copying someone else’s style and calling it
one’s own. Of course, this definition will almost certainly raise the ire of some
while garnering the accepting nods of others, but to make the discussion work at
all, you need a definition. Mind you, this definition doesn’t exclude creativity by
nonhumans. For example, some people can make a case for creative apes (see
http://www.bbc.com/future/story/20140723-are-we-the-only-creative-
species for more details).

This chapter does help you understand how creativity and computers can come
together in a fascinating collaboration. First, you must consider that computers

IN THIS CHAPTER

 » Discovering how to imitate creativity

 » Understanding that deep learning
can’t create

 » Developing art based on established
styles

 » Composing music based on
established styles

http://www.bbc.com/future/story/20140723-are-we-the-only-creative-species
http://www.bbc.com/future/story/20140723-are-we-the-only-creative-species

270 PART 3 Interacting with Deep Learning

rely on math to do everything, and art and music are no exception. A computer can
transfer existing art or music patterns to a neural network and use the result to
generate something that looks new but actually relies on the existing pattern.
However, along with this revelation, a second consideration is that a human
designed the algorithm used to perform the statistical analysis of the pattern and
subsequently output the new art. In other words, the computer didn’t perform
this task on its own; it relied on a human to provide the means to accomplish the
task. Moreover, a human will decide on which style to mimic and define what sort
of output might prove aesthetically pleasing. In short, the computer ends up being
a tool in the hands of an exceptionally smart human to automate the process of
creating what could be deemed as new, but really isn’t.

As part of the process of defining how some can see a computer as creative, the
chapter also defines how computers mimic an established style. You can see for
yourself that deep learning relies on math to perform a task generally not associ-
ated with math at all. An artist or musician doesn’t rely on calculations to create
something new, but could rely on calculations to see how others performed their
task. When an artist or musician employs math to study another style, the process
is called learning, not creating. Of course, this entire book is about how deep
learning performs learning tasks, and even that process differs greatly from how
humans learn.

Learning to Imitate Art and Life
You have likely seen interesting visions of AI art, such as those mentioned in the
article at https://news.artnet.com/art-world/ai-art-comes-to-market-is-it-
worth-the-hype-1352011. The art undeniably has aesthetic appeal. In fact, the
article mentions that Christie’s, one of the most famous auction houses in the
world, originally expected to sell the piece of art for $7,000 to $10,000 but it actu-
ally sold for $432,000, according to the Guardian (https://www.theguardian.
com/ artanddesign/shortcuts/2018/oct/26/call-that-art-can-a-computer-
be-a-painter) and the New York Times (https://www.nytimes.com/2018/10/25/
arts/design/ai-art-sold-christies.html). So not only is type of art appeal-
ing, it can also generate a lot of money. However, in every unbiased story you
read, the question remains as to whether the AI art actually is art at all. The
 following sections help you understand that computer generation doesn’t corre-
late to creative—it translates to amazing algorithms employing the latest in
statistics.

https://news.artnet.com/art-world/ai-art-comes-to-market-is-it-worth-the-hype-1352011
https://news.artnet.com/art-world/ai-art-comes-to-market-is-it-worth-the-hype-1352011
https://www.theguardian.com/artanddesign/shortcuts/2018/oct/26/call-that-art-can-a-computer-be-a-painter
https://www.theguardian.com/artanddesign/shortcuts/2018/oct/26/call-that-art-can-a-computer-be-a-painter
https://www.theguardian.com/artanddesign/shortcuts/2018/oct/26/call-that-art-can-a-computer-be-a-painter
https://www.nytimes.com/2018/10/25/arts/design/ai-art-sold-christies.html
https://www.nytimes.com/2018/10/25/arts/design/ai-art-sold-christies.html

CHAPTER 15 Generating Music and Visual Art 271

Transferring an artistic style
One of the differentiators of art is the artistic style. Even when someone takes a
photograph and displays it as art (http://www.wallartprints.com.au/blog/
artistic-photography/), the method in which the photograph is taken, pro-
cessed, and optionally touched up all define a particular style. In many cases,
depending on the skill of the artist, you can’t even tell that you’re looking at a
photograph because of its artistic elements (https://www.pinterest.com/
lorimcneeartist/artistic-photography/?lp=true).

Some artists become so famous for their particular style that others take time to
study it in depth to improve their own technique. For example, Vincent van Gogh’s
unique style is often mimicked (https://www.artble.com/artists/vincent_van_
gogh/more_information/style_and_technique). Van Gogh’s style — his use of
colors, methods, media, subject matter, and a wealth of other considerations —
requires intense study for humans to replicate. Humans improvise, so the adjec-
tive suffix esque often appears as a descriptor of a person’s style. A critic might say
that a particular artist uses a van Goghesque methodology.

To create art, the computer relies on a particular artistic style to modify the
appearance of a source picture. In contrast to a human, a computer can perfectly
replicate a particular style given enough consistent examples. Of course, you
could create a sort of mixed style by using examples from various periods in the
artist’s life. The point is that the computer isn’t creating a new style, nor is it
improvising. The source image isn’t new, either. You see a perfectly copied style
and a perfectly copied source image when working with a computer, and you
transfer the style to the source image to create something that looks a little like
both.

The process used to transfer the style to the source picture and produce an output
is complex and generates a lot of discussion. For example, considering where
source code ends and elements such as training begin is important. The article at
https://www.theverge.com/2018/10/23/18013190/ai-art-portrait-
auction-christies-belamy-obvious-robbie-barrat-gans discusses one such
situation that involves the use of existing code but different training from the
original implementation, which has people wondering over issues such as attri-
bution when art is generated by computer. Mind you, all the discussion focuses on
the humans who create the code and perform the training of the computer; the
computer itself doesn’t figure in to the discussion because the computer is simply
crunching numbers.

http://www.wallartprints.com.au/blog/artistic-photography/
http://www.wallartprints.com.au/blog/artistic-photography/
https://www.pinterest.com/lorimcneeartist/artistic-photography/?lp=true
https://www.pinterest.com/lorimcneeartist/artistic-photography/?lp=true
https://www.artble.com/artists/vincent_van_gogh/more_information/style_and_technique
https://www.artble.com/artists/vincent_van_gogh/more_information/style_and_technique
https://www.theverge.com/2018/10/23/18013190/ai-art-portrait-auction-christies-belamy-obvious-robbie-barrat-gans
https://www.theverge.com/2018/10/23/18013190/ai-art-portrait-auction-christies-belamy-obvious-robbie-barrat-gans

272 PART 3 Interacting with Deep Learning

Reducing the problem to statistics
Computers can’t actually see anything. Someone takes a digital image of a real-
world object or creates a fanciful drawing like the one in Figure 15-1, and each
pixel in that image appears as tuples of numbers representing the red, blue, and
green values of each pixel, as shown in Figure 15-2. These numbers, in turn, are
what the computer interacts with using an algorithm. The computer doesn’t
understand that the numbers form a tuple — that’s a human convention. All it
knows is that the algorithm defines the operations that must take place on the
series of numbers. In short, the art becomes a matter of manipulating numbers
using a variety of methods, including statistics.

OTHER SORTS OF GENERATED ART
Keep in mind that this book discusses a particular kind of computer art — the sort gener-
ated by a deep learning network. You can find all sorts of other computer generated art
that doesn’t necessarily rely on deep learning. One of the earlier examples of generated
art is the fractal (http://www.arthistory.net/fractal-art/), created by using
an equation. The first of these fractals is the Mandelbrot set (http://mathworld.
wolfram.com/MandelbrotSet.html) created in 1980 by Benoit B. Mandelbrot, a Polish
mathematician. Some fractals today are quite beautiful (https://www.creativebloq.
com/computer-arts/5-eye-popping-examples-fractal-art-71412376) and even
incorporate some real world elements. Even so, the creativity belongs not to the com-
puter, which is simply crunching numbers, but to the mathematician or artist who
designs the algorithm used to generate the fractal.

A next step in generated art is Computer Generated Imagery (CGI). You have likely seen
some amazing examples of CGI art in movies, but it appears just about everywhere today
(https://www.vice.com/en_us/topic/cgi-art). Some people restrict CGI to 3-D art
and some restrict it to 3-D dynamic art of the sort used for video games and movies. No
matter what restrictions you place on CGI art, the process is essentially the same. An artist
decides on a series of transformations to create effects on the computer screen, such
as water that looks wet and fog that looks misty (https://www.widewalls.ch/cgi-
artworks/). CGI also sees use in building models based on designs, such as architectural
drawings (https://archicgi.com/3d-modeling-things-youve-got-know/ and
https://oceancgi.com/). These models help you visualize what the finished product
will look like long before the first spade of earth is turned. However, in the end what you
see is the creativity of an artist, architect, mathematician, or other individual in telling the
computer to perform various kinds of calculations to transform design into something
that looks real. The computer understands nothing in all this.

http://www.arthistory.net/fractal-art/
http://mathworld.wolfram.com/MandelbrotSet.html
http://mathworld.wolfram.com/MandelbrotSet.html
https://www.creativebloq.com/computer-arts/5-eye-popping-examples-fractal-art-71412376
https://www.creativebloq.com/computer-arts/5-eye-popping-examples-fractal-art-71412376
https://www.vice.com/en_us/topic/cgi-art
https://www.widewalls.ch/cgi-artworks/
https://www.widewalls.ch/cgi-artworks/
https://archicgi.com/3d-modeling-things-youve-got-know/
https://oceancgi.com/

CHAPTER 15 Generating Music and Visual Art 273

Deep learning relies on a number of algorithms to manipulate the pixels in a
source drawing in a variety of ways to reflect the particular style you want to use.
In fact, you can find a dizzying array of such algorithms because everyone appears
to have a different idea of how to force a computer to create particular kinds of art.
The point is that all these methods rely on algorithms that act on a series of num-
bers to perform the task; the computer never takes brush in hand to actually create
something new. Two methods appear to drive the current strategies, though:

 » Convolutional Neural Networks (CNNs): See Chapter 10 for an overview;
also see the “Defining a new piece based on a single artist” section, later in this
chapter, for the artistic perspective

 » Generative Adversarial Networks (GANs): See Chapter 16 for an overview;
also check out the “Visualizing how neural networks dream” section, later in
this chapter, again for the artistic perspective

FIGURE 15-1:
A human might

see a fanciful
drawing.

FIGURE 15-2:
The computer

sees a series
of numbers.

274 PART 3 Interacting with Deep Learning

Understanding that deep learning
doesn’t create
For art created by deep learning, the images are borrowed, the computer doesn’t
understand them at all, and the computer relies on algorithms to perform the task
of modifying the images. Deep learning doesn’t even choose the method of learn-
ing about the images — a human does that. In short, deep learning is an interest-
ing method of manipulating images created by someone else using a style that
another person also created.

Whether deep learning can create something isn’t the real question to ask. The
question that matters is whether humans can appreciate the result of the deep
learning output. Despite its inability to understand or create, deep learning can
deliver some amazing results. Consequently, creativity is best left to humans, but
deep learning can give everyone an expressive tool, even people who aren’t artis-
tic. For example, you could use deep learning to create a van Gogh version of a
loved one to hang on your wall. The fact that you participated in the process and
that you have something that looks professionally drawn is the point to
consider — not whether the computer is creative.

Mimicking an Artist
Deep learning helps you mimic a particular artist. You can mimic any artist you
want because the computer doesn’t understand anything about style or drawing.
The deep learning algorithm will faithfully reproduce a style based on the inputs
you provide. Consequently, mimicking is a flexible way to produce a particular
output, as described in the following sections.

Defining a new piece based
on a single artist
Convolutional Neural Networks (CNNs) appear in a number of uses for deep
learning applications. For example, they’re used for self-driving cars and facial
recognition systems. Chapter 10 provides some additional examples of how CNNs
do their job, but the point is that a CNN can perform recognition tasks well given
enough training.

Interestingly, CNNs work particularly well in recognizing art style. So you can
combine two pieces of art into a single piece. However, those two pieces supply
two different kinds of input for the CNN:

CHAPTER 15 Generating Music and Visual Art 275

 » Content: The image that defines the desired output. For example, if you
provide a content image of a cat, the output will look like a cat. It won’t be the
same cat you started with, but the content defines the desired output with
regard to what a human will see.

 » Style: The image that defines the desired modification. For example, if you
provide an example of a van Gogh painting, the output will reflect this style.

In general, you see CNNs that rely on a single content image and a single style
image. Using just the two images like this lets you see how content and style work
together to produce a particular output. The example at https://medium.com/
mlreview/making-ai-art-with-style-transfer-using-keras-8bb5fa44b216
provides a method for combining two images in this manner.

Of course, you need to decide how to combine the images. In fact, this is where
the statistics of deep learning come into play. To perform this task, you use a
neural style transfer, as outlined in the paper “A Neural Algorithm of Artistic
Style” by Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge (https://
arxiv.org/pdf/1508.06576.pdf or https://www.robots.ox.ac.uk/~vgg/rg/
papers/1508.06576v2.pdf).

The algorithm works with these kinds of images: a content image, which depicts
the object you want to represent; a style image, which provides the art style you
want to mimic; and an input image, which is the image to transform. The input
image is usually a random image or the same image as the content image. Trans-
ferring the style implies preserving the content (that is, if you start with a photo
of a dog, the result will still depict a dog). However, the transformed input image
is nearer to the style image in presentation. The algorithm you use will define two
loss measures:

 » Content loss: Determines the amount of the original image that the CNN
uses to provide output. A greater loss here means that the output will better
reflect the style you provide. However, you can reach a point at which the loss
is so great that you can no longer to see the content.

 » Style loss: Determines the manner in which the style is applied to the content.
A higher level of loss means that the content retains more of its original style.
The style loss must be low enough for you to end up with a new piece of art
that reflects the desired style.

Having just two images doesn’t allow for extensive training, so you use a pre-
trained deep learning network, such as VGG-19 (the 2014 winner of the ImageNet
challenge created by the Visual Geometry Group, VGG, at Oxford University). The
pretrained deep learning network already knows how to process an image into
image features of different complexity. The algorithm for neural style transfer

https://medium.com/mlreview/making-ai-art-with-style-transfer-using-keras-8bb5fa44b216
https://medium.com/mlreview/making-ai-art-with-style-transfer-using-keras-8bb5fa44b216
https://arxiv.org/pdf/1508.06576.pdf
https://arxiv.org/pdf/1508.06576.pdf
https://www.robots.ox.ac.uk/~vgg/rg/papers/1508.06576v2.pdf
https://www.robots.ox.ac.uk/~vgg/rg/papers/1508.06576v2.pdf

276 PART 3 Interacting with Deep Learning

picks the CNN of a VGG-19, excluding the final fully connected layers. In this way,
you have the network that acts as a processing filter for images. When you send in
an image, VGG-19 transforms it into a neural network representation, which
could be completely different from the original. However, when you use only the
top layers of the network as image filters, the network transforms the resulting
image but doesn’t completely change it.

Taking advantage of such transformative neural network properties, the neural
transfer style doesn’t use all the convolutions in the VGG-19. Instead, it monitors
them using the two loss measures to assure that, in spite of the transformations
applied to the image, the network maintains the content and applies the style. In
this way, when you pass the input image through VGG-19 several times, its
weights adjust to accomplish the double task of content preservation and style
learning. After a few iterations, which actually require a lot of computations and
weight updates, the network transforms your input image into the anticipated
image and art style.

You often see the output of a CNN referred to as a pastiche. It’s a fancy word that
generally means an artistic piece composed of elements borrowed from motifs or
techniques of other artists. Given the nature of deep learning art, the term is
appropriate.

Combining styles to create new art
If you really want to get fancy, you can create a pastiche based on multiple style
images. For example, you could train the CNN using multiple Monet works so that
the pastiche looks more like a Monet piece in general. Of course, you could just as
easily combine the styles of multiple impressionist painters to create what appears
to be a unique piece of art that reflects the impressionist style in general. The
actual method for performing this task varies, but the article at https://
ai.googleblog.com/2016/10/supercharging-style-transfer.html offers ideas
for accomplishing the task.

Visualizing how neural networks dream
Using a CNN is essentially a manual process with regard to choosing the loss
functions. The success or failure of a CNN depends on the human setting the var-
ious values. A GAN takes a different approach. It relies on two interactive deep
networks to automatically adjust the values to provide better output. You can see
these two deep networks having these names:

https://ai.googleblog.com/2016/10/supercharging-style-transfer.html
https://ai.googleblog.com/2016/10/supercharging-style-transfer.html

CHAPTER 15 Generating Music and Visual Art 277

 » Generator: Creates an image based on the inputs you provide. The image
needs to retain the original content, but with the appropriate level of style to
produce a pastiche that is hard to distinguish from an original.

 » Discriminator: Determines whether the generator output is real enough to
pass as an original. If not, the discriminator provides feedback telling the
generator what is wrong with the pastiche.

To make this setup work, you actually train two models: one for the generator and
another for the discriminator. The two act in concert, with the generator creating
new samples and the discriminator telling the generator what is wrong with each
sample. The process goes back and forth between generator and discriminator
until the pastiche achieves a specific level of perfection. In Chapter 16, you can
find an even more detailed explanation about how GANs work.

This approach is advantageous because it provides a greater level of automation
and a higher probability of good results than using a CNN. The disadvantage is
that this approach also requires considerable time to implement, and the process-
ing requirements are much greater. Consequently, using the CNN approach is
often better to achieve a result that’s good enough. You can see an example of the
GAN approach at https://towardsdatascience.com/gan-by-example-using-
keras-on-tensorflow-backend-1a6d515a60d0.

Using a network to compose music
This chapter focuses mainly on visual art because you can easily judge the subtle
changes that occur to it. However, the same techniques also work with music. You
can use CNNs and GANs to create music based on a specific style. Computers can’t
see visual art, nor can they hear music. The musical tones become numbers that
the computer manipulates just as it manipulates the numbers associated with
pixels. The computer doesn’t see any difference at all.

However, deep learning does detect a difference. Yes, you use the same algorithms
for music as for visual art, but the settings you use are different, and the training
is unique as well. In addition, some sources say that training for music is a lot
harder than for art (see https://motherboard.vice.com/en_us/article/
qvq54v/why-is-ai-generated-music-still-so-bad for details). Of course, part
of the difficulty stems from the differences among the humans listening to the
music. As a group, humans seem to have a hard time defining aesthetically pleas-
ing music, and even people who like a particular style or particular artists rarely
like everything those artists produce.

https://towardsdatascience.com/gan-by-example-using-keras-on-tensorflow-backend-1a6d515a60d0
https://towardsdatascience.com/gan-by-example-using-keras-on-tensorflow-backend-1a6d515a60d0
https://motherboard.vice.com/en_us/article/qvq54v/why-is-ai-generated-music-still-so-bad
https://motherboard.vice.com/en_us/article/qvq54v/why-is-ai-generated-music-still-so-bad

278 PART 3 Interacting with Deep Learning

In some respects, the tools used to compose music using AI are more formalized
and mature than those used for visual art. This doesn’t mean that the music com-
position tools always produce great results, but it does mean that you can easily
buy a package to perform music composition tasks. Here are the two most popular
offerings today:

 » Amper: https://www.ampermusic.com/

 » Jukedeck: https://www.jukedeck.com/

AI music composition is different from visual art generation because the music
tools have been around for a longer time, according to the article at https://www.
theverge.com/2018/8/31/17777008/artificial-intelligence-taryn-
southern-amper-music. The late songwriter and performer David Bowie used an
older application called Verbasizer (https://motherboard.vice.com/en_us/
article/xygxpn/the-verbasizer-was-david-bowies-1995-lyric- writing-
mac-app) in 1995 to aid in his work. The key idea here is that this tool aided in,
rather than produced, work. The human being is the creative talent; the AI serves
as a creative tool to produce better music. Consequently, music takes on a collab-
orative feel, rather than giving the AI center stage.

https://www.ampermusic.com/
https://www.jukedeck.com/
https://www.theverge.com/2018/8/31/17777008/artificial-intelligence-taryn-southern-amper-music
https://www.theverge.com/2018/8/31/17777008/artificial-intelligence-taryn-southern-amper-music
https://www.theverge.com/2018/8/31/17777008/artificial-intelligence-taryn-southern-amper-music
https://motherboard.vice.com/en_us/article/xygxpn/the-verbasizer-was-david-bowies-1995-lyric-writing-mac-app
https://motherboard.vice.com/en_us/article/xygxpn/the-verbasizer-was-david-bowies-1995-lyric-writing-mac-app
https://motherboard.vice.com/en_us/article/xygxpn/the-verbasizer-was-david-bowies-1995-lyric-writing-mac-app

CHAPTER 16 Building Generative Adversarial Networks 279

Chapter 16
Building Generative
Adversarial Networks

Deep learning has turned into a hot technology, and new research produces
ever more impressive discoveries all the time. Discoveries always appear at
an even faster rate during the Neural Information Processing Systems

(NeurIPS) conference (https://neurips.cc/), which serves as the stage for
everything related to deep learning. The conference is held every year at a differ-
ent location around the world (most recently, before this book’s publication, in
Montréal, Canada).

The conference always makes new technologies available for people to see, but a
few fields have received all the attention. Among the impressive variety of appli-
cations and new technologies related to deep learning recently introduced at the
conference, here are the ones to pay the most attention to: Natural Language Pro-
cessing (especially for pretrained embeddings like BERT discussed in Chapter 14);
Reinforcement Learning (the topic of the next chapter); and Generative Adversar-
ial Networks (GANs). GANs are a thinking-outside--the box idea. Yann LeCun,
now Director of Facebook AI, defines it as “the most interesting idea in the last ten
years in machine learning”.

This chapter describes what GANs are and demonstrates how they’re capable of
generating new data, especially images, from preexisting ones. The chapter com-
pletes the overview of GANs by building a network using Keras and TensorFlow.

IN THIS CHAPTER

 » Introducing how neural networks can
create credible data

 » Creating a GAN that can generate
handwritten numbers

 » Presenting image and music
applications where GANs shine

https://neurips.cc/

280 PART 3 Interacting with Deep Learning

After you see a GAN in action, the chapter goes on to discuss the most interesting
developments and achievements of GANs.

Save yourself the time and mistakes of typing the code manually. You can find the
downloadable source for this chapter in the DL4D_16_MNIST_GAN.ipynb file. (The
Introduction tells you where to download the source code for this book.)

Making Networks Compete
In 2014, at the Department d’informatique et de recherche opérationnelle at the
University of Montreal, Ian Goodfellow and other researchers (among whom is
Yoshua Bengio, one of Canada’s most noted scientists working on artificial neural
networks and deep learning) published the first paper on GANs. You can read the
work at https://arxiv.org/pdf/1406.2661v1.pdf or https://papers.nips.
cc/paper/5423-generative-adversarial-nets.pdf. In the following months,
the paper attracted attention and was deemed innovative for its proposed mix of
deep learning and game theory. The idea became widespread because of its acces-
sibility in terms of neural network architecture: You can train a working GAN
using standard a computer. (The technique works better if you can invest a lot of
computational power.)

Contrary to other deep learning neural networks that classify images or sequences,
the specialty of GANs is their capability to generate new data by deriving inspira-
tion from training data. This capability becomes particularly impressive when
dealing with image data, because well-trained GANs can generate new pieces of
art that people sell at auctions (such as the artwork sold at Christie’s for nearly
half a million dollars, mentioned in Chapter 15: https://www.dezeen.
com/2018/10/29/christies-ai-artwork-obvious-portrait-edmond-
de-belamy-design/). This feat is even more incredible because previous results
obtained using other mathematical and statistical techniques were far from
credible or usable.

Finding the key in the competition
The GAN name contains the term adversarial in it because the key idea behind
GANs is the competition between two networks, which play as adversaries against
each other. Ian Goodfellow, the principal author of the original paper on GANs,
used a simple metaphor to describe how everything works. Goodfellow described
the process as an endless challenge between a forger and a detective: the forger
has to create a fake piece of art by copying some real art masterpiece, so he starts
painting something. After the forger completes the fake painting, a detective

https://arxiv.org/pdf/1406.2661v1.pdf
https://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
https://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
https://www.dezeen.com/2018/10/29/christies-ai-artwork-obvious-portrait-edmond-de-belamy-design/
https://www.dezeen.com/2018/10/29/christies-ai-artwork-obvious-portrait-edmond-de-belamy-design/
https://www.dezeen.com/2018/10/29/christies-ai-artwork-obvious-portrait-edmond-de-belamy-design/

CHAPTER 16 Building Generative Adversarial Networks 281

examines it and decides whether the forger created a real piece of art or simply a
fake. If the detective sees a fake, the forger receives notice that something is
wrong with the work (but not where the fault lies). When the forger shows that
the art is real despite the negative feedback of the detective, the detective receives
notice of the mistake and changes the detection technique to avoid failure during
the next attempt. As the forger continues attempts to fool the detective, both the
forger and the detective grow in expertise of their respective duties. Given time,
the art produced by the forger becomes extremely high in quality and is almost
undistinguishable from the real thing except by someone with an expert eye.

Figure 16-1 illustrates the story of GANs as a simple schema, in which inputs and
neural architectures interact together in closed loop of reciprocal feedbacks. The
generator network plays the part of the forger and a discriminator network plays
the detective. GANs use the term discriminator because of the similarity in purpose
to electronic circuits that accept or reject signals based on their characteristics.
The discriminator in a GAN accepts (wrongly) or refuses (correctly) the work cre-
ated by the generator. The interesting aspect of this architecture is that the gen-
erator never sees a single training example. Only the discriminator accesses such
data in its training. The generator receives random inputs (noise) to provide a
random starting point each time, which forces it to produce a different result.

The generator may seem take all the glory (after all it, generates the data product).
However, the real powerhouse of the architecture is the discriminator. The dis-
criminator computes errors that are backpropagated to its own network to learn
how best to distinguish between real and fake data. The errors also propagate to
the generator, which optimizes itself to cause the discriminator to fail during the
next round.

FIGURE 16-1:
How a GAN

operates.

282 PART 3 Interacting with Deep Learning

GANs may seem creative. However, a more correct term would be that they are
generative: They learn from examples how data varies and they can generate new
samples as if they were taken from the same data. A GAN learns to mimic a previ-
ously existing data distribution; it can’t create something new. As stated in other
chapters, deep learning isn’t creative.

Achieving more realistic results
Even if the concept of a GAN is clear, its architecture may initially appear to be
complicated. Creating a basic GAN example has become quite accessible using
Keras with TensorFlow, and learning by doing is a good way to explain details of
the technology that would otherwise remain theoretical. The process has a few
tricky parts, but in the end, everything is exactly as described in the previous
paragraphs using the Ian Goodfellow metaphor.

In the following pages, you build a simple GAN that learns how to recreate hand-
written numbers from zero to nine after learning them from the MNIST dataset.
The MNIST dataset is a set of digitized, normalized, 28-x-28-pixel, handwritten
samples (written by both high school students and employees of the American

THE PROBLEM WITH FAKE DATA
Just as a GAN can generate impressive art, so it can generate fake people. Look at
https://www.thispersondoesnotexist.com/ to see a person who doesn’t exist.
Unless you know where to look, the pictures are really quite convincing. However, little
details give them away for now:

• The backgrounds look muddy or lack that real feel in some manner.

• Those who have watched the movie The Matrix will be familiar with the episodic
glitches that appear in some images.

• The foreground pixel texture may not be quite right. For example, you might see
moiré patterns (https://photographylife.com/what-is-moire) where they
aren’t expected

However, recognizing these sorts of issues requires a human. In addition, the various
problems will eventually go away when GANs improve. GANs can fake more than just
pictures,. You could create a completely fake human identity in an incredibly short time
with little effort. GANs could have all the right records in all the right places. The technol-
ogy exists today to create fake human identities that could possibly appear in places
where it would be extremely inconvenient to root them out. This is the sort of problem
that you need to be aware of — not killer robots.

https://www.thispersondoesnotexist.com/
https://photographylife.com/what-is-moire

CHAPTER 16 Building Generative Adversarial Networks 283

Census Bureau) that are often used for training image systems. You can find the
dataset on Yann LeCun’s website at http://yann.lecun.com/exdb/mnist/.

The example starts by importing the necessary functions and classes. You don’t
need anything fancy for the task, and you have already dealt with or even already
tested everything the code imports:

import numpy as np
from keras.datasets import mnist
from keras.models import Sequential, Model
from keras.layers import Input, Dense, Dropout
from keras.layers import BatchNormalization
from keras.layers.advanced_activations import LeakyReLU
from keras.optimizers import Adam
import matplotlib.pyplot as plt
%matplotlib inline

Note that the code downloads the MNIST dataset using the Keras mnist function.
The distinct 28-x-28-pixel image arrays and expresses pixel values from 0 to 255.
The code processes them to make them useful for a deep learning network using
these steps:

1. Make them a vector, that is, a list of values, by reshaping the data.

2. Convert their values to the floating-point type using the 32-bit precision
suitable for GPUs because the 64 bit version is only applicable to CPU
processing.

3. Rescale their values in the range 0–1.

Normalization is the process of transforming image data before deep learning pro-
cessing. You can use different kinds of normalization, such as rescaling the range
from 0 to 1 to –1 to 1, or applying statistical normalization by subtracting the
mean and dividing by the standard deviation. Usually, rescaling all values in the
range from 0 to 1 is a good working solution.

def normalize(X):
 X = X.reshape(len(X), 784)
 X = X.astype('float32')/255
 return X

(X_train, Y_train), (X_test, Y_test) = mnist.load_data()
X_train = normalize(X_train)

http://yann.lecun.com/exdb/mnist/

284 PART 3 Interacting with Deep Learning

Having prepared the dataset for the neural network to learn, you can start prepar-
ing the GAN architecture. You begin by defining a few parameters, such as the type
of data input provided to the GAN to generate its images. A good choice for this
project is to use a list of random numbers. Imagine these random numbers as
instructions provided to the GAN to decide what to represent. You have little con-
trol of what the GAN does with the numbers, but on other models, you can effec-
tively use the inputs and obtain a desired output.

You also set the optimizer (the Adam optimizer in this case) and define the first
part of the architecture, the generator. The generator takes the random input and
passes it through a series of four dense layers. The only notable aspect of this
process is that, except for the last layer, LeakyReLU powers all the layers, which is
an activation that dampens negative inputs. BatchNormalization controls the dis-
tribution of outputs by applying statistical normalization to them. Using this
approach avoids the situation that occurs when an extreme number pops up dur-
ing training.

Notably, the last layer is different; it uses a sigmoid activation to generate outputs
from zero to one. This last layer releases the image produced by the GAN, making
it the generator part of the architecture. Because it produces 784 outputs whose
values range from 0 to 1, the outputs could be easily reshaped and rescaled into
28-x-28-pixel arrays with values ranging from 0 to 255 (that is a MNIST image).

input_dim = 100
np.random.seed(42)
optimizer = Adam(lr=0.0002, beta_1=0.5)

gen = Sequential()
gen.add(Dense(256, input_dim=input_dim))
gen.add(LeakyReLU(alpha=0.2))
gen.add(BatchNormalization())
gen.add(Dense(512))
gen.add(LeakyReLU(alpha=0.2))
gen.add(BatchNormalization())
gen.add(Dense(1024))
gen.add(LeakyReLU(alpha=0.2))
gen.add(BatchNormalization())
gen.add(Dense(784, activation='sigmoid'))
gen.compile(loss='binary_crossentropy',
 optimizer=optimizer)

The second part of the architecture, the discriminator, is similar in construction
to the generator. It has four dense layers again, and all but the last one is
powered by LeakyReLU activation functions. The discriminator doesn’t use
BatchNormalization, but it has Dropout to avoid overfitting because this part

CHAPTER 16 Building Generative Adversarial Networks 285

performs a supervised classification task. In fact, the output is a single node that
outputs a probability value from 0 to 1. The purpose of this part of the neural net-
work is to differentiate the fake images produced by the generator part from the
real images.

dsc = Sequential()
dsc.add(Dense(1024, input_dim=784))
dsc.add(LeakyReLU(alpha=0.2))
dsc.add(Dropout(0.3))
dsc.add(Dense(512))
dsc.add(LeakyReLU(alpha=0.2))
dsc.add(Dropout(0.3))
dsc.add(Dense(256))
dsc.add(LeakyReLU(alpha=0.2))
dsc.add(Dropout(0.3))
dsc.add(Dense(1, activation='sigmoid'))
dsc.compile(loss='binary_crossentropy',
 optimizer=optimizer)

At this point, you have the tricky part done, you’ve put the first and second half of
the network together and ensured that they work together. Using the Keras func-
tional API (see https://keras.io/getting-started/functional-api-guide/
for details), you set architectures that are more complex than the sequential
architectures used earlier in this section. In sum, the generator part processes the
input and outputs the result to the discriminator part. The discriminator acts like
a mathematical function applied to other functions — that is, it’s a function dis-
criminator (function generator [input]). In this way, you also control the network
optimization because you can freeze part of it using the make_trainable function
def make_trainable(dnn, flag). (In fact, you do train the generator and dis-
criminator toward maximizing different objectives.)

 dnn.trainable = flag
 for l in dnn.layers:
 l.trainable = flag

make_trainable(dsc, False)
inputs = Input(shape=(input_dim,))
hidden = gen(inputs)
output = dsc(hidden)
gan = Model(inputs, output)
gan.compile(loss='binary_crossentropy',
 optimizer=optimizer)

https://keras.io/getting-started/functional-api-guide/

286 PART 3 Interacting with Deep Learning

Now you can test the setup. You prepare two useful, handy functions for generat-
ing the input noise and plotting the results of the generator:

def create_noise(n, z):
 return np.random.normal(0, 1, size=(n, z))

def plot_sample(n, z):
 samples = gen.predict(create_noise(n, z))
 plt.figure(figsize=(15,3))
 for i in range(n):
 plt.subplot(1, n, (i+1))
 plt.imshow(samples[i].reshape(28, 28),
 cmap='gray_r')
 plt.axis('off')
 plt.show()

The actual test begins by configuring the code for 100 epochs of training and set-
ting the training batch to 128 images. The code starts iterating through the num-
ber of epochs and batches necessary to pass all the training images to the GAN. As
with other examples in the book, this one takes a while to run. If you can gain
access to a GPU, you’re better off running it on Google Colab or on a computer
with a GPU card. When you can obtain access to a GPU, plan on waiting for half an
hour for it to run on Google Colab. (Your own local GPU setup may do better.) The
sample example could well exceed several hours to complete on a CPU system.

epochs = 100
batch_size = 128
batch_no = int(len(X_train) / batch_size)
gen_errors, dsc_errors = (list(), list())

for i in range(0, epochs):
 for j in range(batch_no):

 # Drawing a random sample of the training set
 rand_sample = np.random.randint(0, len(X_train),
 size=batch_size)
 image_batch = X_train[rand_sample]

 # Creating noisy inputs for the generator
 input_noise = create_noise(batch_size, input_dim)

 # Generating fake images from the noisy input
 generated_images = gen.predict(input_noise)
 X = np.concatenate((image_batch,
 generated_images))

CHAPTER 16 Building Generative Adversarial Networks 287

 # Creating somehow noisy labels
 y = np.concatenate([[0.9]*batch_size,
 [0.0]*batch_size])

 # Training discriminator to distinguish fakes from
 # real ones
 make_trainable(dsc, True)
 dsc_loss = dsc.train_on_batch(X, y)
 make_trainable(dsc, False)

 # Trainining generating fakes
 input_noise = create_noise(batch_size, input_dim)
 fakes = np.ones(batch_size)
 for _ in range(4):
 gen_loss = gan.train_on_batch(input_noise,
 fakes)

 # Recording the losses
 gen_errors.append(gen_loss)
 dsc_errors.append(dsc_loss)

 # Showing intermediate results
 if i % 10 == 0:
 print("Epoch %i" % i)
 plot_sample(10, input_dim)

As the code completes running through the many calculations, it can revise the
steps that it takes:

1. Generate a bunch of fake images by calling the generator function alone.
Because this is a simple prediction, with no learning involved, the output
images from the generator will appear completely random at the beginning.

2. Concatenate the fake images with a batch of real images.

3. Feed the images to the discriminator to determine whether the discriminator
can separate the fake images from the real ones. This is a training activity, and
the discriminator learns to separate the state-of-the-art images from the
generator from the true source images.

4. Freeze the discriminator after it finishes learning so that the code can run it
together with the generator, but this time only the generator will learn. During
this step, the code feeds a few random inputs through the generator to
transform into images and then pass the fakes to the discriminator to determine
whether the discriminator can be fooled into believing that they are real images.

288 PART 3 Interacting with Deep Learning

When the discriminator can determine that these images are the product of the
generator, the code will use the discriminator score as an error for the generator
to learn from (the success of the discriminator is a failure for the generator).

The code contains a couple of tricks to ensure that the GAN always produces good
results:

 » When training the discriminator, you provide some uncertainty to the labels of
the true, thereby making the discriminator less severe.

 » Every time you train the discriminator, you also train the generator four times.
That’s because learning to generate images is actually a longer process, and
using this approach accelerates the process.

These are the two most effective tricks, but you can read about even more of them
at this page maintained by Soumith Chintala at https://github.com/soumith/
ganhacks. Clearly, deep learning is still more of an art (an explainable one) than a
science. Plotting some of the results as shown in the following code reveals that
the GAN has learned how to generate almost credible handwritten numbers,
though they are not perfect. Looking at Figure 16-2, you can see what a GAN can
achieve in such a short learning time.

Plotting the final result
plot_sample(10, input_dim)

You can also observe the errors that the two networks composing the GAN pro-
duced during the training. Use the following code (Figure 16-3 shows the output):

Plotting the errors
plt.figure(figsize=(15, 5))
plt.plot(dsc_errors, label='discriminitive loss')
plt.plot(gen_errors, label='generative loss')
plt.legend()
plt.show()

FIGURE 16-2:
Some results

from the trained
GAN after 100

epochs.

https://github.com/soumith/ganhacks
https://github.com/soumith/ganhacks

CHAPTER 16 Building Generative Adversarial Networks 289

Figure 16-3 shows that errors are on a different scale because the discriminator
error is always lower than the generator error. In addition, the discriminator error
tends to decrease because seeing more examples helps the discriminator separate
fake images from the real ones, even if the generator improves its ability. As for
the generator, the errors are at first strongly reduced but then tend to build up
again because the discriminator gains experience in detection. If you run more
epochs, you will see the generator error taking on a sinusoidal shape as it regu-
larly increases its error rate for a while (as the generator becomes more skillful)
and then decreases again (after finding out some new trick to fool the discrimina-
tor). It’s an endless struggle between the two parts of the GAN network — a
struggle that always produces more realistic images as the training continues.

Considering a Growing Field
After starting with a plain-vanilla implementation, similar to the one just com-
pleted, researchers have grown the GAN idea into a large number of variants that
achieve tasks more complex than simply creating new images. The list of GANs
and their applications grows every day, and keeping up is difficult. Avinash
Hindupur has built a “GAN Zoo” by tracking all the variants, a task that’s becom-
ing more difficult daily. (You can see the most recent updates at https://github.
com/hindupuravinash/the-gan-zoo.) Zheng Liu favors a historical approach
instead, and you can see the GAN timeline he maintains at https://github.com/
dongb5/GAN-timeline. No matter how you approach GANs, seeing how each new
idea sprouts from previous ones is a useful exercise.

Inventing realistic pictures of celebrities
The chief application of GANs is to create images. The first GAN network that
evolved from the original paper by Goodfellow and others is the DCGAN, which
was based on convolutional layers. The example in this chapter does produce

FIGURE 16-3:
The training

errors of a GAN’s
generator and
discriminator

network.

https://github.com/hindupuravinash/the-gan-zoo
https://github.com/hindupuravinash/the-gan-zoo
https://github.com/dongb5/GAN-timeline
https://github.com/dongb5/GAN-timeline

290 PART 3 Interacting with Deep Learning

credible simple images, but it relies on using dense layers, not CNNs, which per-
form better when working on image data.

DCGAN greatly improved the generative capabilities of the original GANs, and they
soon impressed everyone when they created fake images of faces by taking examples
from photos of celebrities. Of course, not all the DCGAN-created faces were realistic,
but the effort was just the starting point of a rush to create more realistic images.
EBGAN-PT, BEGAN, and Progressive GAN are all improvements that achieve a higher
degree of realism. You can read the NVIDIA paper prepared on Progressive GANs to
gain a more precise idea of the quality reached by such state-of-the-art techniques:
https://research.nvidia.com/publication/2017-10_Progressive-Growing-of.

Another great enhancement to GANs is the conditional GAN (CGAN). Although
having a network produce realistic images of all the kinds is interesting, it’s of
little use when you can’t control the type of output you receive in some way.
CGANs manipulate the input and the network to suggest to the GAN what it should
produce. Now, for instance, you have networks that produce images of faces of
persons that don’t exist, based on your preferences of how hair, eyes, and other
details appear, as shown by this demonstrative video by NVIDIA: https://www.
youtube.com/watch?v=kSLJriaOumA.

Enhancing details and image translation
Producing images of higher quality and possibly controlling the output generated
has opened the way to more applications. This chapter doesn’t have room to dis-
cuss them all, but the following list offers an overview of what you can find:

 » Cycle GAN: Applied to neural transfer style (as discussed in Chapter 10). For
example, you can turn a horse into a zebra or a Monet painting into one that
appears to come from van Gough. By exploring the project at https://
github.com/junyanz/CycleGAN, you can see how it works and consider the
kind of transformations it can apply to images.

 » Super Resolution GAN (SRGAN): Transforms images by making blurred,
low-resolution images into clear, high-resolution ones. The application of this
technique to photography and cinema is interesting because it improves
low-quality images at nearly no cost. You can find the paper describing the
technique and the results here: https://arxiv.org/pdf/1609.04802.pdf.

 » Pose Guided Person Image Generation: Controls the pose of the person
depicted in the created image. The paper at https://arxiv.org/
pdf/1705.09368.pdf describes practical uses in the fashion industry to
generate more poses of a model, but you might be surprised to know that the
same approach can create videos of one person dancing exactly the same as
another one: https://www.youtube.com/watch?v=PCBTZh41Ris

https://research.nvidia.com/publication/2017-10_Progressive-Growing-of
https://www.youtube.com/watch?v=kSLJriaOumA
https://www.youtube.com/watch?v=kSLJriaOumA
https://github.com/junyanz/CycleGAN
https://github.com/junyanz/CycleGAN
https://arxiv.org/pdf/1609.04802.pdf
https://arxiv.org/pdf/1705.09368.pdf
https://arxiv.org/pdf/1705.09368.pdf
https://www.youtube.com/watch?v=PCBTZh41Ris

CHAPTER 16 Building Generative Adversarial Networks 291

 » Pix2Pix: Translates sketches and maps into real images and vice versa. You
can use this application to transform architectural sketches into a picture of a
real building or to convert a satellite photo into a drawn map. The paper at
https://arxiv.org/pdf/1611.07004.pdf discusses more of the possibili-
ties offered the Pix2Pix network.

 » Image repairing: Repairs or modifies an existing image by determining what’s
missing, cancelled, or obscured: https://github.com/pathak22/
context-encoder.

 » Face Aging: Determines how a face will age. You can read about it at
https://arxiv.org/pdf/1702.01983.pdf.

 » Midi Net: Creates music in your favorite style, as described at https://
arxiv.org/pdf/1703.10847.pdf.

https://arxiv.org/pdf/1611.07004.pdf
https://github.com/pathak22/context-encoder
https://github.com/pathak22/context-encoder
https://arxiv.org/pdf/1702.01983.pdf
https://arxiv.org/pdf/1703.10847.pdf
https://arxiv.org/pdf/1703.10847.pdf

CHAPTER 17 Playing with Deep Reinforcement Learning 293

Chapter 17
Playing with Deep
Reinforcement Learning

Apart from the example of GANs, you may be tempted to identify deep
learning with supervised learning predictions. However, you also use deep
learning for unsupervised learning and reinforcement learning (RL).

Unsupervised learning supports a number of established techniques, such as
autoencoders and self-organizing maps (SOMs), which this book doesn’t cover.
Unsupervised techniques can help you to segment your data into homogeneous
groups or to detect anomalies in your variables.

RL techniques are even more popular than unsupervised learning techniques
among practitioners. Recently the object of intense research, RL achieves smarter
solutions for problems such as parking a car, learning to drive in as little as twenty
minutes (as this paper illustrates: https://arxiv.org/abs/1807.00412), control-
ling an industrial robot, and more. (This article by Yuxi Li provides a complete list
of applications: https://medium.com/@yuxili/rl-applications-73ef685c07eb.)
This chapter tells you about some of these techniques, including one called AlphaGo,
which was featured on the news after becoming the first algorithm to beat a human
professional player at Go (an ancient Chinese board game) in an even game.

You also get some practical experience by working with some examples, which
introduce you to OpenAI Gym (https://gym.openai.com/), a complete toolkit

IN THIS CHAPTER

 » Presenting reinforcement learning

 » Using OpenAI Gym for
experimentation

 » Determining how a Deep Q-Network
(DQN) works

 » Working with AlphaGo, AlphaGo Zero,
and Alpha Zero

https://arxiv.org/abs/1807.00412
https://medium.com/@yuxili/rl-applications-73ef685c07eb
https://gym.openai.com/

294 PART 3 Interacting with Deep Learning

for experimenting with deep learning, and to keras-rl (https://github.com/
keras-rl/keras-rl), a ready-to-use implementation of the state-of-the-art RL
algorithms, such as Google’s Deep Q-Network (DQN). DQN is the algorithm used
to play vintage Atari 2600 games at expert human level and win. DQN is just one
of the possible applications of this technique, which Google DeepMind has pat-
ented). After showing you how to build a working deep learning example network
capable of successfully playing a simple game, the chapter explores how AlphaGo
works and why its victory is such a milestone for deep learning and AI in general.

Save yourself the time and mistakes of typing the code manually. You can find the
downloadable source for this chapter in the DL4D_17_Reinforcement_Learning.
ipynb file. (The Introduction tells you where to download the source code for this
book.)

Playing a Game with Neural Networks
As a toddler, you may have enjoyed discovering the world around you and taking
risks to test your abilities under the vigilant eye of your parents. Only later did you
replace knowledge built on direct experience with knowledge received from oth-
ers. Just as a supervised machine learning algorithm resembles a student learning
about the world from someone else’s past experiences described in books (in this
metaphor, experiences are the data), an RL algorithm is more like a toddler — a
clean whiteboard that accumulates knowledge by trying something and testing
whether that knowledge provides a reward or a penalty.

RL provides a compact way of learning without gathering large masses of data,
but it also involves complex interaction with the external world. Because RL begins
without any data, interacting with the external world and receiving feedback
defines the method used to obtain the data it requires. You could use this approach
for a robot, moving in the physical world, or for a bot, wandering in the digital
one. In particular, RL seems alluring for problems that aren’t easy to crack using
static (provided) data alone. Examples of such problems are teaching a computer
to play a game by itself or working out the best possible outcome in uncertain
situations, such as online advertising optimization. Advertising is one of the best
examples because the application has to deliver the right campaigns to the right
audience, but previous experience is lacking (for static or existing data) because
all the campaigns are new.

Introducing reinforcement learning
In RL, you have an agent (which could be a robot in the real world or a bot in the
digital one) interacting with an environment that could include a virtual or other

https://github.com/keras-rl/keras-rl
https://github.com/keras-rl/keras-rl

CHAPTER 17 Playing with Deep Reinforcement Learning 295

sort of world with its own rules. The agent can receive information from the envi-
ronment (called the state) and can act on it, sometimes changing it. More impor-
tant, the agent can receive an input from the environment, a positive or negative
one, based on its sequence of actions or inactions. The input is a reward even when
negative. The purpose of RL is to have the agent learn how to behave to maximize
the total sum of rewards received during its experience inside the environment.

You can determine the relationship between the agent and the environment from
Figure 17-1. Note the time subscripts. If you consider the present instant in time
as t, the previous instant is t–1. At time t–1, the agent acts and then receives both
a state and a reward from the environment. Based on the sets of values relative to
the action at time t, state at time t–1, and reward at time t, an RL algorithm can
learn the action to obtain a certain environmental state.

Ian Goodfellow, the AI research scientist behind the creation of GANs, believes
that better integration between RL and deep learning is among the top priorities
for further deep learning advances. Better integration leads to smarter robots (see
https://www.forbes.com/sites/quora/2017/07/21/whats-next-for-deep-
learning/#36131b871002 for details). Integration is now a hot topic, but until
recently, RL typically had stronger bonds to statistics and algorithms than neural
networks. Some people attempted to make the two operate together at an earlier
time. In the early 1990s, Gerald Tesauro, at IBM Research Center, devised a way
for a computer to learn to play Backgammon (one of the oldest board games
known: http://www.bkgm.com/rules.html) and defeat a world (human) cham-
pion. He successfully used a neural network to power an RL algorithm by crafting
a computer program that he called TD-Gammon. TD-Gammon raised widespread
interest on the application of neural networks to RL problems, so many people
tried after Tesauro to show some other possible use for the technique, but they all
failed, and the idea died.

Later, some researchers noticed that Backgammon is a game based partly on
chance. Other games (such as chess or Go) and real-world problems that didn’t
respond well to a combination of deep learning and RL aren’t dependent on luck.
The lack of a luck component only partially explains the problem with getting

FIGURE 17-1:
A schema of how
an agent and an

environment
relate in RL.

https://www.forbes.com/sites/quora/2017/07/21/whats-next-for-deep-learning/#36131b871002
https://www.forbes.com/sites/quora/2017/07/21/whats-next-for-deep-learning/#36131b871002
http://www.bkgm.com/rules.html

296 PART 3 Interacting with Deep Learning

deep learning to work well with some games (for instance, poker is a game of
chance but it has been beyond reach of RL and deep learning for a while). In spite
of this insight (that is, deep learning works better with uncertainty), scientists
still couldn’t find a solution that allows neural networks to support RL on new
problems until a few years later, when the Google deep learning research team
proved the contrary.

At Google DeepMind, they took a well-known RL technique called Q-learning and
made it work with deep learning rather than the classical computation algorithm.
The new variant, named Deep Q-Learning, uses both convolutions and regular
dense layers to obtain problem input and process it. This solution not only put
deep learning and RL together again but also resulted in superhuman capabilities
for playing some Atari 2600 games (see https://www.youtube.com/
watch?v=V1eYniJ0Rnk). The algorithm learned to play in a relatively short time
and found clever strategies that only the most skilled game players use.

The DeepMind team also published a paper entitled “Human-level control through
deep reinforcement learning” (https://storage.googleapis.com/deepmind-
media/dqn/DQNNaturePaper.pdf). In spite of its highly technical topic, the paper
is quite readable. It illustrates why Deep Q-Learning works with certain games
and performs badly with others. The problem occurs when the neural network
needs to develop complex and long-term strategies.

Simulating game environments
Even if you don’t work with preconstituted datasets when working with RL
(meaning that you don’t have to gather and label data), you have to consider
interactions between the algorithm and the external world, which is a different
challenge. For instance, if you want to build an RL algorithm that can beat you at
chess, you first have to build a chess computer game that incorporates all the
game rules. The algorithm will interface to this set of rules as part of its input.

To allow more researchers and practitioners to advance with this prerequisite,
OpenAI (https://openai.com/), a nonprofit AI research company, has developed
the open source Gym package. (You can find the code at https://github.com/
openai/gym and the paper describing the solution at https://arxiv.org/
pdf/1606.01540.pdf.) Gym is a complete a toolkit to help everyone develop RL
algorithms applied to both basic and challenging problems by offering ready-
to-use environments.

OpenAI Gym lets you verify whether your algorithms are general in scope because
all environments use the same command interface. You just change the environ-
ment name to test your RL solution within another situation.

https://www.youtube.com/watch?v=V1eYniJ0Rnk
https://www.youtube.com/watch?v=V1eYniJ0Rnk
https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf
https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf
https://openai.com/
https://github.com/openai/gym
https://github.com/openai/gym
https://arxiv.org/pdf/1606.01540.pdf
https://arxiv.org/pdf/1606.01540.pdf

CHAPTER 17 Playing with Deep Reinforcement Learning 297

The package also has a website where you can post your scores, comparing how
your RL algorithm fares against other solutions. You easily install the gym package
and its prerequisites on your local computer (the package h5py) from the Ana-
conda shell using these commands (pip will connect to the Internet to obtain the
packages and install them locally):

pip install h5py
pip install gym
conda install -c menpo ffmpeg

In contrast to other book examples, the examples in this chapter can’t run on
Google Colab for technical reasons — the procedures are too complex. You need to
run the code on your local computer.

Using Gym, you don’t have to worry about the environment anymore. Different
environments are available, some presenting algorithmic tasks (such as learning
to copy a sequence), some text based, some robotic related (like controlling a
robot’s arm), and a larger number based on the old Atari arcade games, such as
Space Invaders or Breakout. You can see all the environments available at https://
gym.openai.com/envs/. You start with a classic environment, as described in the
RL scientific literature, but you can also explore the other possibilities offered by
the package.

Studying how to solve games using RL also helps you devise better solutions for
real-world problems. At Uber, a transportation network company, engineers study
RL algorithms, contemplate how RL operates, and reverse engineer how RL makes
decisions to develop trust and confidence in AI, as you can read in Uber’s engineer-
ing blog at https://eng.uber.com/atari-zoo-deep-reinforcement-learning/.

Gym is structured around the core principles of RL, so you find functions and
methods to describe the agent and the environment. You can also have the agent
perform an action or inaction inside the environment. The environment will
answer by providing feedback in two forms: a new state, which you can use to
summarize the new situation within the environment; and a reward, which is a
score showing success or failure. The only part you need to code is the RL, and you
can start a basic example using a few lines of Python.

The environment for the RL experiment is the CartPole problem (see https://
gym.openai.com/envs/CartPole-v1/ for details). A pole attaches freely to a cart
that moves along a track (you don’t account for friction). The pendulum starts
upright, in unstable equilibrium, and the goal of the environment is to prevent it
from falling over (which requires an angle greater than 15 degrees from vertical).
For actions, you determine whether to increase or decrease the cart’s velocity in
one direction or another.

https://gym.openai.com/envs/
https://gym.openai.com/envs/
https://eng.uber.com/atari-zoo-deep-reinforcement-learning/
https://gym.openai.com/envs/CartPole-v1/
https://gym.openai.com/envs/CartPole-v1/

298 PART 3 Interacting with Deep Learning

Figure 17-2 shows a representation of the environment provided by the OpenAI
Gym package. You can also see an example of how to balance a CartPole in this
real-world experiment by the Department of Engineering of the Technological
Educational Institute of Creteat https://www.youtube.com/watch?v=XWhGjxdug0o.

The CartPole environment operates by reporting observations of these states:

 » Cart position

 » Cart velocity

 » Pole angle

 » Pole velocity at tip

You can manipulate the environment based on the these states by

 » Pushing the cart to the left

 » Pushing the cart to the right

The following code creates the environment and tests some random commands
with it:

import numpy as np
import gym
env = gym.make('CartPole-v0')

FIGURE 17-2:
The CartPole

environment in
OpenAI Gym.

https://www.youtube.com/watch?v=XWhGjxdug0o

CHAPTER 17 Playing with Deep Reinforcement Learning 299

np.random.seed(42), env.seed(42)
nb_actions = env.action_space.n
input_shape = (1, env.observation_space.shape[0])

You create the environment using a single make command that returns a Python
class used for getting general information about the environment (for instance,
about actions you can perform using the env.action_space), controlling the flow
of time, or performing some specific action inside the environment.

The next few lines reset the environment just created. Everything is restarted at
an initial position (some environmental aspects are randomly decided). The code
uses a loop of 200 iterations to perform various random actions sampled from the
range of the possible available actions (a force applied on the cart, ranging from -1
to +1). When the iterations complete, the game ends in failure (when the pole is
more than 15 degrees from vertical), or the cart moves more than 2.4 units from
the center, the done variable becomes true and the experiment concludes (the
number of steps will vary because it’s a random process of choices).

observation = env.reset()
for t in range(200):
 env.render()
 act = env.action_space.sample()
 obs, rwrd, done, info = env.step(act)
 if done:
 print("Episode concluded after %i timesteps" % (t+1))
 break
env.close()

Presenting Q-learning
Building an RL solution based on deep learning requires quite a coding effort, but
you can leverage an existing package, keras-rl (https://github.com/keras-rl/
keras-rl), which contains the most recent state-of-the-art RL algorithms. This
package, developed by Matthias Plappert, a Research Scientist working at OpenAI,
can seamlessly integrate with neural networks built with Keras and the OpenAI
environments. You install the package by issuing this command on a shell:

pip install keras-rl

After you install keras-rl, you import the necessary functions from Keras (you use
a neural network for your RL solution) and keras-rl specialized functions for cre-
ating an RL agent. (The details about how they work appear later in the chapter.)

https://github.com/keras-rl/keras-rl
https://github.com/keras-rl/keras-rl

300 PART 3 Interacting with Deep Learning

from keras.models import Sequential
from keras.layers import Dense, Activation
from keras.layers import Flatten, Dropout
from keras.optimizers import Adam
from rl.agents.dqn import DQNAgent
from rl.policy import EpsGreedyQPolicy
from rl.memory import SequentialMemory

The first step is building a network capable of figuring out the outcome in terms
of a reward from a certain environmental state. This is the value-based learning
approach, and it’s the idea behind Deep Q-Network and Deep Q-Learning: to
approximately determine the reward after taking a certain action, given the pres-
ent state. This technique doesn’t directly consider past actions and the associated
state, or the complete sequence of actions that an agent should take, yet it works
effectively for many problems by pointing out the best single action to take among
the alternatives.

model = Sequential()
model.add(Flatten(input_shape=input_shape))
model.add(Dense(12))
model.add(Activation('relu'))
model.add(Dense(nb_actions))
model.add(Activation('linear'))

print(model.summary())

The neural network that the code creates is simple, made of three layers of
decreasing numbers of neurons. All the layers are activated by an ReLU function,
but the final layer activates linearly to get an output value that’s used as the action
the bot will take.

The DQN algorithm doesn’t understand how the environment works. In a human
sense, the algorithm simply associates state and actions to expected rewards,
which is done using a mathematical function. The algorithm, therefore, can’t
understand whether it’s playing a particular game; its understanding of the envi-
ronment is limited to the knowledge of the reported state deriving from taken
actions.

This neural network feeds into the DQN algorithm, together with a policy (a policy
is a function that chooses a sequence of actions), and a memory of previous actions
and states. The memory is necessary to allow the example to train a neural net-
work. It records previous agent experiences with the environment, and the code
can sample it to extract a series of actions given a state. The neural network uses
the memory to learn how to estimate the likely reward from an action taken in
a state.

CHAPTER 17 Playing with Deep Reinforcement Learning 301

For the policy, Eps Greedy Q policy does either of the following:

 » Takes a random action with probability epsilon

 » Takes a current best action with probability (1 – epsilon)

The two policies show the exploration/exploitation trade-off. When the Eps
Greedy Q policy function chooses randomly to take a random action, the algorithm
is exploring because it could decide on an unexpected action, and that action could
lead to an interesting result. For instance, in the Atari Breakthrough game, dig-
ging a hole in the wall and having the ball run amok, destroying the wall from
above, is clearly a strategy that emerged randomly by exploration and that the RL
algorithm recorded and learned as being extremely useful.

policy = EpsGreedyQPolicy(eps=0.3)
memory = SequentialMemory(limit=50000,
 window_length=1)

dqn = DQNAgent(model=model,
 nb_actions=nb_actions,
 memory=memory,
 nb_steps_warmup=50,
 target_model_update=0.01,
 policy=policy)

dqn.compile(Adam(lr=0.001))

training = dqn.fit(env, nb_steps=30000,
 visualize=False, verbose=1)

The system trains itself using the same approach used by other deep learning
networks. After completing its learning from 30,000 examples, it’s ready to test:

env = gym.make('CartPole-v0')
mon = gym.wrappers.Monitor(env,
 "./gym-results",
 force=True)
mon.reset()
dqn.test(mon, nb_episodes=1, visualize=True)
mon.close()
env.close()

The test should end up in a high reward (the expected result is about 200, but it
could be different because the test has a random training element). You can review

302 PART 3 Interacting with Deep Learning

the behavior of the cart using the DQN directives found in the video that recorded
during the test:

import io
import base64
from IPython.display import HTML

template =
 './gym-results/openaigym.video.%s.video000001.mp4'
video = io.open(template % mon.file_infix, 'r+b').read()
encoded = base64.b64encode(video)
HTML(data='''
<video width="520" height="auto" alt="test" controls>
<source src="data:video/mp4;base64,{0}"
 type="video/mp4"/>
</video>'''.format(encoded.decode('ascii')))

Explaining Alpha-Go
Chess and Go are both popular board games that share characteristics, such as
being played by two players who move in turns and lack a random element (no
dice are thrown as in Backgammon). Apart from that, they have different game
rules and complexity. In chess, each player has 16 pieces to move on the board
according to type, and the game ends when the king piece is stalemated
(checked) — unable to move further. Experts calculate that about 10123 different
chess games are possible, which is a large number when you consider that scien-
tists estimate the number of atoms in the known universe at about 1080. Yet, com-
puters can master a single game of chess by determining the future possible
moves far enough ahead to have an advantage against any human opponent. In
1997, Deep Blue, an IBM supercomputer designed for playing chess, defeated
Garry Kasparov, the world chess champion.

A computer cannot prefigure a complete game of chess using brute force (calcu-
lating every possible move from beginning to end of the game). It uses some heu-
ristics and its ability to look into a certain number of future moves. Deep Blue was
a computer with high computational performance that could anticipate more
future moves in the game than any previous computer.

In Go, you have a 19-x-19 grid of lines containing 361 spots on which each player
places a stone (usually black or white color) each time a player takes a turn. The
purpose of the game is to enclose in stones a larger portion of the board than one’s
opponent’s. Considering that, on average, each player has about 250 possible
moves at each turn, and that a game consists of about 150 moves, a computer

CHAPTER 17 Playing with Deep Reinforcement Learning 303

would need enough memory to hold 150250 games, which is on the order of 10360
boards. From a resource perspective, Go is more complex than chess, and experts
used to believe that no computer software would be able to beat a human Go mas-
ter within the next decade using the same approach as Deep Blue. Yet, AlphaGo
accomplished it using RL techniques.

DeepMind, a research center in London owned by Google, developed a computer
system named AlphaGo in 2016 that featured Go playing skills never attained
before by any hardware and software solution. After setting up the system, Deep-
Mind had AlphaGo test itself against the strongest Go champion living in Europe,
Fan Gui, who had been the European Go champion three times. DeepMind chal-
lenged him in a closed-door match, and AlphaGo won all the games, leaving Fan
Gui amazed by the game style displayed by the computer.

Then, after Fan Gui helped refine the AlphaGo skills, the DeepMind team, led by
their CEO Demis Hassabis and chief scientist David Silver, challenged Lee Sedol, a
South Korean professional Go player ranked at the ninth dan, the highest level a
master can attain. AlphaGo won a series of four games against Lee Sedol and lost
only one. Apart from the match it lost because of an unexpected move from the
champion, it actually led the other games and amazed the champion by playing
unexpected, impactful moves. In fact, both players, Fan Gui and Lee Sedol, felt
that playing against AlphaGo was like playing against a contestant coming from
another reality: AlphaGo moves resembled nothing they had seen before.

The story behind AlphaGo is so fascinating that someone made a film out of it. It’s
well worth seeing: https://www.imdb.com/title/tt6700846/.

Determining if you’re going to win
In chess, you can explore future moves and go far with the right computer. The
number of pieces, their limited movements, and the state of the board all make
determining what could happen easier. Moreover, you can get a measure of how
well the game is progressing or how a move could rate because of the nature of the
game itself (chess pieces have a value, for instance). In Go, you can’t make these
determinations because the number of possible moves explodes just a few moves
ahead. In addition, you can’t determine the move value because you have to see
the game completed before understanding how each move contributed to the end
of the game.

Because the underlying strategy of Go differs from chess, computer programs
playing Go use another approach to determine which moves to make. That
approach is called Monte Carlo Tree Search (MCTS). In MCTS, the computer simu-
lates many complete games from the existing state of the board, first using ran-
dom moves and then using the most successful moves that it finds during random

https://www.imdb.com/title/tt6700846/

304 PART 3 Interacting with Deep Learning

play. This isn’t too different from the exploration/exploitation approach in
RL. Using this approach, a computer can determine whether a move in Go is good
or not by simulating enough games to obtain a reliable answer.

AlphaGo uses MCTS but supports the algorithm’s processing using neural net-
works. The system is made of two components:

 » A look at a future move system: A forecasting method similar to the one
used by Deep Blue. It’s a tree search system because it branches through
possible games and relies on MCTS to do so.

 » Some CNNs: Provide the guidance to the tree search system.

The deep learning networks are of two kinds: policy networks and value networks.
Both networks process the board image, looking for local and general patterns like
those used in image processing used to differentiate between a dog and a cat. The
roles of two policy networks (one slower but more precise, one faster but rougher)
are to guide action selection. These policy networks output a probability for each
possible move, so MCTS can simulate realistic games based on their suggestions,
not randomly. The value network provides a likelihood of winning, given the
board state.

By using both value networks, which provide an intuition of the game situation,
and the policy network, which helps the computer prefigure future moves,
AlphaGo can deliver the best strategy and moves during game play.

Given that such an architecture isn’t really end-to-end because it involves so
many different systems, engineers at Deep Mind first trained AlphaGo using
games played by strong amateurs to kick-start the neural networks. (They used
160,000 amateur games collected from an online Go community.) Finally, they let
AlphaGo play against itself to learn how to improve and refine its playing skills.
Here, RL techniques had a key role: They taught computers to play Backgammon,
chess, poker, Scrabble, and finally Go by having AlphaGo challenge itself millions
of times, working in the kind of fast and intense experience-building environ-
ment that humans can’t handle.

David Silver, the AlphaGo project chief researcher, declared that self-learning is
so effective in building smart systems because the opponent these systems face is
always at the right level of skill — never too low or too high. Letting a system
learn by playing itself is something seen in TD-Gammon in 1992, as well as in the
WOPR computer in the 1983 WarGames film. (In this sense, the WOPR computer is
as emblematic for AI as HAL9000 in 2001: A Space Odyssey is.)

CHAPTER 17 Playing with Deep Reinforcement Learning 305

Applying self-learning at scale
The DeepMind team that created AlphaGo didn’t stop after the success of its solu-
tion; it retired AlphaGo and created even more incredible systems. First, the team
built up AlphaGo Zero, which is AlphaGo trained by playing against itself. Then it
created Alpha Zero, which is a general program that can learn to play chess and
shogi, the Japanese chess game, by itself.

If AlphaGo demonstrated how to solve a problem deemed impossible for comput-
ers, AlphaGo Zero demonstrated that computers can attain super-capabilities
using self-learning (which is RL in its essence). In the end, its results were even
better than from those starting from human experience: AlphaGo Zero has chal-
lenged AlphaGo and won 100 matches without losing one.

GRASPING THE IMPORTANCE OF
ALPHA ZERO
The Alpha Zero feat is even more important than what AlphaGo achieved. This book fre-
quently mentions the role of data in opening the way for deep learning to perform well.
More data with a simple model can beat a clever algorithm using less data. However,
Alpha Zero managed to reach the pinnacle of performance starting with zero data. This
capability goes beyond the idea that data can achieve every AI target (as Alon Halevy,
Peter Norvig, and Fernando Pereira stated just a few years ago in the whitepaper at
https://static.googleusercontent.com/media/research.google.com/it//
pubs/archive/35179.pdf). Alpha Zero is possible because we know the generative
processes used by Go game players, and DeepMind researchers were able to recreate a
perfect Go environment.

In terms of laws, many more situations than Go can be defined. For instance, scientists
know the basic laws of how the physical world works because humans spent centuries
investigating them, with the brightest minds endeavoring to understanding them — from
Isaac Newton to Albert Einstein and Stephen Hawking. This knowledge opens the door to
creating generative models that can replicate and simulate the thought processes used
to create the data needed by deep learning and AI models to learn. If this process sounds
really advanced, take note: It’s already here. People are already discussing how a video
game could help build better self-driving cars, as you can read in the article at https://
www.inverse.com/article/26307-grand-theft-auto-open-ai.

https://static.googleusercontent.com/media/research.google.com/it//pubs/archive/35179.pdf
https://static.googleusercontent.com/media/research.google.com/it//pubs/archive/35179.pdf
https://www.inverse.com/article/26307-grand-theft-auto-open-ai
https://www.inverse.com/article/26307-grand-theft-auto-open-ai

306 PART 3 Interacting with Deep Learning

A paper published in Nature (and accessible on the DeepMind website at https://
deepmind.com/research/publications/mastering-game-go-without-human-
knowledge/) explains that AlphaGo Zero started learning by making random
moves. This activity is similar to how the reinforcement algorithm DQN learned to
balance a cart in the coding example. In about 29 million self-playing games,
AlphaGo Zero reached a level exceeding the previous AlphaGo system. Moreover,
AlphaGo Zero is both less complex in terms of deep learning models and hardware
it requires. It needs a single computer and four of Google’s custom TPU chips,
whereas the original AlphaGo required several machines and 48 TPUs.

AlphaGo, AlphaGo Zero, and Alpha Zero represent the new frontier of RL as well
as hope for future applications. In fact, apart from playing Go, chess, and shogi,
these systems aren’t capable of anything else. Like Deep Blue, these systems con-
centrate on a single task that they can execute at a qualitatively super-human
level. Researchers at DeepMind envision further possible applications that are
now difficult and challenging for humans, such as protein folding, optimizing
energy consumption in a network, or discovering new materials in chemistry.

https://deepmind.com/research/publications/mastering-game-go-without-human-knowledge/
https://deepmind.com/research/publications/mastering-game-go-without-human-knowledge/
https://deepmind.com/research/publications/mastering-game-go-without-human-knowledge/

4The Part of Tens

IN THIS PART . . .

Consider real-world applications that use deep learning.

Find some of the best tools for deep learning tasks.

Discover an occupation that relies on deep learning.

CHAPTER 18 Ten Applications that Require Deep Learning 309

Chapter 18
Ten Applications that
Require Deep Learning

This chapter is too short. It can’t even begin to describe the ways in which
deep learning will affect you in the future. Consider this chapter to be offer-
ing a tantalizing tidbit — an appetizer that can whet your appetite for

exploring the world of deep learning further. The applications you see listed in
this chapter are already common in some cases. You probably used at least one of
them today, and quite likely more than just one. After reading this chapter, you
might want to take the time to consider all the ways in which deep learning cur-
rently affects your life. Although the technology has begun to see widespread
usage, it’s really just the beginning. We’re at the start of something, and AI is
actually quite immature at this point.

This chapter doesn’t discuss killer robots, dystopian futures, AI run amok, or any
of the sensational scenarios that you might see in the movies. This chapter is
about real life, discussing existing AI applications that you can interact with
today.

IN THIS CHAPTER

 » Interacting with people directly

 » Determining the effectiveness of
green technologies

 » Employing probability to tell the
future

 » Mimicking creative processes

310 PART 4 The Part of Tens

Restoring Color to Black-and-White
Videos and Pictures

You probably have some black-and-white videos or pictures of family members or
special events that you’d love to see in color. Color consists of three elements: hue
(the actual color), value (the darkness or lightness of the color), and saturation (the
intensity of the color). You can read more about these elements at http://learn.
leighcotnoir.com/artspeak/elements-color/hue-value-saturation/. Oddly
enough, many artists are color-blind and make strong use of color value in their
creations (read https://www.nytimes.com/2017/12/23/books/a-colorblind-
artist-illustrator-childrens-books.html as one of many examples). So
having hue missing (the element that black-and-white art lacks) isn’t the end of
the world. Quite the contrary, some artists view it as an advantage (see https://
www.artsy.net/article/artsy-editorial-the-advantages-of-being-a-
colorblind-artist for details).

When viewing something in black and white, you see value and saturation but not
hue. Colorization is the process of adding the hue back in. Artists generally perform
this process using a painstaking selection of individual colors, as described at
https://fstoppers.com/video/how-amazing-colorization-black-and-white-
photos-are-done-5384 and https://www.diyphotography.net/know-colors-
add-colorizing-black-white-photos/. However, AI has automated this process
using Convolutional Neural Networks (CNNs), as described at https://emerj.com/
ai-future-outlook/ai-is-colorizing-and-beautifying-the-world/.

The easiest way to use CNN for colorization is to find a library to help you. The
Algorithmia site at https://demos.algorithmia.com/colorize-photos/ offers
such a library and shows some example code. You can also try the application by
pasting a URL into the supplied field. The article at https://petapixel.
com/2016/07/14/app-magically-turns-bw-photos-color-ones/ describes just
how well this application works. It’s absolutely amazing!

Approximating Person Poses in Real Time
Person poses don’t tell you who is in a video stream, but rather what elements of
a person are in the video stream. For example, using a person pose could tell you
whether the person’s elbow appears in the video and where it appears. The article
at https://medium.com/tensorflow/real-time-human-pose-estimation-in-
the-browser-with-tensorflow-js-7dd0bc881cd5 tells you more about how this
whole visualization technique works. In fact, you can see how the system works
through a short animation of one person in the first case and three people in the
second case.

http://learn.leighcotnoir.com/artspeak/elements-color/hue-value-saturation/
http://learn.leighcotnoir.com/artspeak/elements-color/hue-value-saturation/
https://www.nytimes.com/2017/12/23/books/a-colorblind-artist-illustrator-childrens-books.html
https://www.nytimes.com/2017/12/23/books/a-colorblind-artist-illustrator-childrens-books.html
https://www.artsy.net/article/artsy-editorial-the-advantages-of-being-a-colorblind-artist
https://www.artsy.net/article/artsy-editorial-the-advantages-of-being-a-colorblind-artist
https://www.artsy.net/article/artsy-editorial-the-advantages-of-being-a-colorblind-artist
https://fstoppers.com/video/how-amazing-colorization-black-and-white-photos-are-done-5384
https://fstoppers.com/video/how-amazing-colorization-black-and-white-photos-are-done-5384
https://www.diyphotography.net/know-colors-add-colorizing-black-white-photos/
https://www.diyphotography.net/know-colors-add-colorizing-black-white-photos/
https://emerj.com/ai-future-outlook/ai-is-colorizing-and-beautifying-the-world/
https://emerj.com/ai-future-outlook/ai-is-colorizing-and-beautifying-the-world/
https://demos.algorithmia.com/colorize-photos/
https://petapixel.com/2016/07/14/app-magically-turns-bw-photos-color-ones/
https://petapixel.com/2016/07/14/app-magically-turns-bw-photos-color-ones/
https://medium.com/tensorflow/real-time-human-pose-estimation-in-the-browser-with-tensorflow-js-7dd0bc881cd5
https://medium.com/tensorflow/real-time-human-pose-estimation-in-the-browser-with-tensorflow-js-7dd0bc881cd5

CHAPTER 18 Ten Applications that Require Deep Learning 311

Person poses can have all sorts of useful purposes. For example, you could use a
person pose to help people improve their form for various kinds of sports —
everything from golf to bowling. A person pose could also make new sorts of video
games possible. Imagine being able to track a person’s position for a game with-
out the usual assortment of cumbersome gear. Theoretically, you could use person
poses to perform crime-scene analysis or to determine the possibility of a person
committing a crime.

Another interesting application of pose detection is for medical and rehabilitation
purposes. Software powered by deep learning could tell you whether you’re doing
your exercises correctly and track your improvements. An application of this sort
could support the work of a professional rehabilitator by taking care of you when
you aren’t in a medical facility (an activity called telerehabilitation; see https://
matrc.org/telerehabilitation-telepractice for details).

Fortunately, you can at least start working with person poses today using the
tfjs-models (PoseNet) library at https://github.com/tensorflow/tfjs-models/
tree/master/posenet. You can see it in action with a webcam, complete with
source code, at https://ml5js.org/docs/posenet-webcam. The example takes a
while to load, so you need to be patient.

Performing Real-Time Behavior Analysis
Behavior analysis goes a step beyond what the person poses analysis described in
the previous section does. When you perform behavior analysis, the question still
isn’t a matter of whom, but how. This particular AI application affects how vendors
design products and websites. Articles such as the one at https://amplitude.
com/blog/2016/06/14/10-steps-behavioral-analytics go to great lengths to
fully define and characterize the use of behavior analysis. In most cases, behavior
analysis helps you see how the process the product designer expected you to follow
doesn’t match the process you actually use.

Behavior analysis has a role to play in other areas of life as well. For example, it
can help people in the medical profession identify potential issues with people
who have specific medical conditions, such as autism, and help the patient
overcome those issues (see https://www.autismspeaks.org/applied- behavior-
analysis-aba-0 for details). Behavior analysis may also help teachers of physical
arts show students how to hone their skills. You might also see it used in the legal
profession to help ascertain motive. (The guilt is obvious, but why a person does
something is essential to fair remediation of an unwanted behavior.)

https://matrc.org/telerehabilitation-telepractice
https://matrc.org/telerehabilitation-telepractice
https://github.com/tensorflow/tfjs-models/tree/master/posenet
https://github.com/tensorflow/tfjs-models/tree/master/posenet
https://ml5js.org/docs/posenet-webcam
https://amplitude.com/blog/2016/06/14/10-steps-behavioral-analytics
https://amplitude.com/blog/2016/06/14/10-steps-behavioral-analytics
https://www.autismspeaks.org/applied-behavior-analysis-aba-0
https://www.autismspeaks.org/applied-behavior-analysis-aba-0

312 PART 4 The Part of Tens

Fortunately, you can already start performing behavior analysis with Python. For
example, the site at https://rrighart.github.io/GA/ discusses the technique
(and provides source code as well) with regard to web analytics.

Translating Languages
The Internet has created an environment that can keep you from knowing whom
you’re really talking to, where that person is, or sometimes even when the person
is talking to you. One thing hasn’t changed, however: the need to translate one
language to another when the two parties don’t speak a common language. In a
few cases, mistranslation can be humorous, assuming that both parties have a
sense of humor. However, mistranslation has also led to all sorts of serious
consequences, including war (see https://unbabel.com/blog/translation-
errors-war-iraq-hiroshima-vietnam/). Consequently, even though translation
software is extremely accessible on the Internet, careful selection of which prod-
uct to use is important. One of the most popular of these applications is Google
Translate (https://translate.google.com/), but many other applications are
available, such as, DeepL (https://www.deepl.com/en/translator). According
to Forbes, machine translation is one area in which AI excels (see https://www.
forbes.com/sites/bernardmarr/2018/08/24/will-machine-learning-
ai-make-human-translators-an-endangered-species/#114274573902).

Translation applications generally rely on Bidirectional Recurrent Neural
Networks (BRNNs) as described at https://blog.statsbot.co/machine-
learning-translation-96f0ed8f19e4. You don’t have to create your own BRNN
because you have many existing APIs to choose from. For example, you can get
Python access to the Google Translate API using the library found at https://
pypi.org/project/googletrans/. The point is that translation is possibly one of
the more popular deep learning applications and one that many people use
without even thinking about it.

Estimating Solar Savings Potential
Trying to determine whether solar energy will actually work in your location is dif-
ficult unless a lot of other people are also using it. In addition, it’s even harder to
know what level of savings you might enjoy. Of course, you don’t want to install
solar energy if it won’t satisfy your goals for using it, which may not actually include

https://rrighart.github.io/GA/
https://unbabel.com/blog/translation-errors-war-iraq-hiroshima-vietnam/
https://unbabel.com/blog/translation-errors-war-iraq-hiroshima-vietnam/
https://translate.google.com/
https://www.deepl.com/en/translator
https://www.forbes.com/sites/bernardmarr/2018/08/24/will-machine-learning-ai-make-human-translators-an-endangered-species/#114274573902
https://www.forbes.com/sites/bernardmarr/2018/08/24/will-machine-learning-ai-make-human-translators-an-endangered-species/#114274573902
https://www.forbes.com/sites/bernardmarr/2018/08/24/will-machine-learning-ai-make-human-translators-an-endangered-species/#114274573902
https://blog.statsbot.co/machine-learning-translation-96f0ed8f19e4
https://blog.statsbot.co/machine-learning-translation-96f0ed8f19e4
https://pypi.org/project/googletrans/
https://pypi.org/project/googletrans/

CHAPTER 18 Ten Applications that Require Deep Learning 313

long-term cost savings (although generally it does). Some deep reinforcement
learning projects now help you take the guesswork out of solar energy, including
Project Sunroof found at https://www.google.com/get/sunroof. Fortunately, you
can also get support for this kind of prediction in your Python application at https://
github.com/ColasGael/Machine-Learning-for-Solar-Energy-Prediction.

Beating People at Computer Games
The AI-versus-people competition continues to attract interest. From winning at
chess to winning at Go, AI seems to have become unbeatable — at least, unbeat-
able at one game. Unlike humans, AI specializes, and an AI that can win at Go is
unlikely to do well at chess. Even so, 2017 is often hailed as the beginning of the
end for humans over AI in games, as described at https://newatlas.com/
ai-2017-beating-humans-games/52741/. Of course, the competition has been
going on for some time, And you can likely find competitions that the AI won far
earlier than 2017. Indeed, some sources (https://en.wikipedia.org/wiki/
AlphaGo) place the date for a Go win as early as October 2015. The article at
https://interestingengineering.com/11-times-ai-beat-humans-at-games-
art-law-and-everything-in-between describes 11 other times that the AI won.

The problem is to custom create an AI that can win a particular game and realize
that in specializing at that game, the AI may not do well at other games. The pro-
cess of building an AI for just one game can look difficult. The article at https://
medium.freecodecamp.org/simple-chess-ai-step-by-step-d55a9266977
describes how to build a simple chess AI, which actually won’t defeat a chess mas-
ter but could do well with an intermediate player.

However, it’s actually a bit soon to say that people are out of the game. In the
future, people may compete against the AI with more than one game. Examples of
this sort of competition already abound, such as people who perform in a triathlon
of games, which consists of three sporting events, rather than one. The competi-
tion would then become one of flexibility: the AI couldn’t simply hunker down and
learn only one game, so the human would have a flexibility edge. This sort of AI
use demonstrates that humans and AI may have to cooperate in the future, with
the AI specializing in specific tasks and the human providing the flexibility needed
to perform all required tasks.

https://www.google.com/get/sunroof
https://github.com/ColasGael/Machine-Learning-for-Solar-Energy-Prediction
https://github.com/ColasGael/Machine-Learning-for-Solar-Energy-Prediction
https://newatlas.com/ai-2017-beating-humans-games/52741/
https://newatlas.com/ai-2017-beating-humans-games/52741/
https://en.wikipedia.org/wiki/AlphaGo
https://en.wikipedia.org/wiki/AlphaGo
https://interestingengineering.com/11-times-ai-beat-humans-at-games-art-law-and-everything-in-between
https://interestingengineering.com/11-times-ai-beat-humans-at-games-art-law-and-everything-in-between
https://medium.freecodecamp.org/simple-chess-ai-step-by-step-d55a9266977
https://medium.freecodecamp.org/simple-chess-ai-step-by-step-d55a9266977

314 PART 4 The Part of Tens

Generating Voices
Your car may already speak to you; many cars speak regularly to people now.
Oddly, the voice generation is often so good that it’s hard to tell the generated
voice from a real one. Articles such as the one at https://qz.com/1165775/
googles-voice-generating-ai-is-now-indistinguishable-from-humans/
talk about how the experience of finding computer voices that sound quite real are
becoming more common. The issue attracts enough attention now that many call
centers tell you that you’re speaking to a computer rather than a person.

Although call output relies on scripted responses, making it possible to generate
responses with an extremely high level of confidence, voice recognition is a little
harder to perform (but it has greatly improved). To work with voice recognition
successfully, you often need to limit your input to specific key terms. By using
keywords that the voice recognition is designed to understand, you avoid the need
for a user to repeat a request. This need for specific terms gives it away that you’re
talking to a computer — simply ask for something unexpected and the computer
won’t know what to do with it.

The easy way to implement your own voice system is to rely on an existing API,
such as Cloud Speech to Text (https://cloud.google.com/speech-to-text/).
Of course, you might need something that you can customize. In this case, using
an API will prove helpful. The article at https://medium.com/@sundarstyles89/
create-your-own-google-assistant-voice-based-assistant-using-python-
94b577d724f9 tells how to build your own voice-based application using Python.

Predicting Demographics
Demographics, those vital or social statistics that group people by certain charac-
teristics, have always been part art and part science. You can find any number of
articles about getting your computer to generate demographics for clients (or
potential clients). The use of demographics is wide ranging, but you see them used
for things like predicting which product a particular group will buy (versus that of
the competition). Demographics are an important means of categorizing people and
then predicting some action on their part based on their group associations. Here
are the methods that you often see cited for AIs when gathering demographics:

 » Historical: Based on previous actions, an AI generalizes which actions you
might perform in the future.

 » Current activity: Based on the action you perform now and perhaps other
characteristics, such as gender, a computer predicts your next action.

https://qz.com/1165775/googles-voice-generating-ai-is-now-indistinguishable-from-humans/
https://qz.com/1165775/googles-voice-generating-ai-is-now-indistinguishable-from-humans/
https://cloud.google.com/speech-to-text/
https://medium.com/@sundarstyles89/create-your-own-google-assistant-voice-based-assistant-using-python-94b577d724f9
https://medium.com/@sundarstyles89/create-your-own-google-assistant-voice-based-assistant-using-python-94b577d724f9
https://medium.com/@sundarstyles89/create-your-own-google-assistant-voice-based-assistant-using-python-94b577d724f9

CHAPTER 18 Ten Applications that Require Deep Learning 315

 » Characteristics: Based on the properties that define you, such as gender,
age, and area where you live, a computer predicts the choices you are likely
to make.

You can find articles about AI’s predictive capabilities that seem almost too good
to be true. For example, the article at https://medium.com/@demografy/
artificial-intelligence-can-now-predict-demographic-characteristics-
knowing-only-your-name-6749436a6bd3 says that AI can now predict your dem-
ographics based solely on your name. The company in that article, Demografy
(https://demografy.com/), claims to provide gender, age, and cultural affinity
based solely on name. Even though the site claims that it’s 90 to 95 percent accu-
rate (see the Is Demografy Accurate answer at https://demografy.com/faq for
details), this statistic is unlikely because some names are gender ambiguous, such
as Renee, and others are assigned to one gender in some countries and another
gender in others. In fact, the answer on the Demografy site seems to acknowledge
this issue by saying the outcome “heavily depends on your particular list and may
show considerably different results than these averages”. Yes, demographic pre-
diction can work, but exercise care before believing everything that these sites
tell you.

If you want to experiment with demographic prediction, you can find a number of
APIs online. For example, the DeepAI API at https://deepai.org/machine-
learning-model/demographic-recognition promises to help you predict age,
gender, and cultural background based on a person’s appearance in a video. Each
of the online APIs do specialize, so you need to choose the API with an eye toward
the kind of input data you can provide.

Creating Art from Real-World Pictures
Chapter 15 provides you with some good ideas on how deep learning can use the
content of a real-world picture and an existing master for style to create a combi-
nation of the two. In fact, some pieces of art generated using this approach are
commanding high prices on the auction block. You can find all sorts of articles on
this particular kind of art generation, such as the Wired article at https://www.
wired.com/story/we-made-artificial-intelligence-art-so-can-you/.

However, even though pictures are nice for hanging on the wall, you might want
to produce other kinds of art. For example, you can create a 3-D version of your
picture using products like Smoothie 3-D. The articles at https://styly.cc/
tips/smoothie-3d/ and https://3dprint.com/38467/smoothie-3d-software/
describe how this software works. It’s not the same as creating a sculpture; rather,

https://medium.com/@demografy/artificial-intelligence-can-now-predict-demographic-characteristics-knowing-only-your-name-6749436a6bd3
https://medium.com/@demografy/artificial-intelligence-can-now-predict-demographic-characteristics-knowing-only-your-name-6749436a6bd3
https://medium.com/@demografy/artificial-intelligence-can-now-predict-demographic-characteristics-knowing-only-your-name-6749436a6bd3
https://demografy.com/
https://deepai.org/machine-learning-model/demographic-recognition
https://deepai.org/machine-learning-model/demographic-recognition
https://www.wired.com/story/we-made-artificial-intelligence-art-so-can-you/
https://www.wired.com/story/we-made-artificial-intelligence-art-so-can-you/
https://styly.cc/tips/smoothie-3d/
https://styly.cc/tips/smoothie-3d/
https://3dprint.com/38467/smoothie-3d-software/

316 PART 4 The Part of Tens

you use a 3-D printer to build a 3-D version of your picture. The article at https://
thenextweb.com/artificial-intelligence/2018/03/08/try-this-ai-
experiment-that-converts-2d-images-to-3d/ offers an experiment that you
can perform to see how the process works.

The output of an AI doesn’t need to consist of something visual, either. For exam-
ple, deep learning enables you to create music based on the content of a picture,
as described at https://www.cnet.com/news/baidu-ai-creates-original-
music-by-looking-at-pictures-china-google/. This form of art makes the
method used by AI clearer. The AI transforms content that it doesn’t understand
from one form to another. As humans, we see and understand the transformation,
but all the computer sees are numbers to process using clever algorithms created
by other humans.

Forecasting Natural Catastrophes
People have been trying to predict natural disasters for as long as there have been
people and natural disasters. No one wants to be part of an earthquake, tornado,
volcanic eruption, or any other natural disaster. Being able to get away quickly is
the prime consideration in this case given that humans can’t control their envi-
ronment well enough yet to prevent any natural disaster.

Deep learning provides the means to look for extremely subtle patterns that bog-
gle the minds of humans. These patterns can help predict a natural catastrophe,
according to the article on Google’s solution at http://www.digitaljournal.
com/tech-and-science/technology/google-to-use-ai-to-predict-natural-
disasters/article/533026. The fact that the software can predict any disaster at
all is simply amazing. However, the article at http://theconversation.com/ai-
could-help-us-manage-natural-disasters-but-only-to-an-extent-90777
warns that relying on such software exclusively would be a mistake. Overreliance
on technology is a constant theme throughout this book, so don’t be surprised that
deep learning is less than perfect in predicting natural catastrophes as well.

https://www.cnet.com/news/baidu-ai-creates-original-music-by-looking-at-pictures-china-google/
https://www.cnet.com/news/baidu-ai-creates-original-music-by-looking-at-pictures-china-google/
http://www.digitaljournal.com/tech-and-science/technology/google-to-use-ai-to-predict-natural-disasters/article/533026
http://www.digitaljournal.com/tech-and-science/technology/google-to-use-ai-to-predict-natural-disasters/article/533026
http://www.digitaljournal.com/tech-and-science/technology/google-to-use-ai-to-predict-natural-disasters/article/533026
http://theconversation.com/ai-could-help-us-manage-natural-disasters-but-only-to-an-extent-90777
http://theconversation.com/ai-could-help-us-manage-natural-disasters-but-only-to-an-extent-90777
https://thenextweb.com/artificial-intelligence/2018/03/08/try-this-ai-experiment-that-converts-2d-images-to-3d/
https://thenextweb.com/artificial-intelligence/2018/03/08/try-this-ai-experiment-that-converts-2d-images-to-3d/
https://thenextweb.com/artificial-intelligence/2018/03/08/try-this-ai-experiment-that-converts-2d-images-to-3d/

CHAPTER 19 Ten Must-Have Deep Learning Tools 317

Chapter 19
Ten Must-Have Deep
Learning Tools

Deep learning is a complex task, and if you try to write every last bit of code
you need, you won’t ever have time to perform any analysis, which takes
considerable time by itself. Consequently, you need tools that will help you

get the job done with less effort. Throughout the book, you have seen a number of
tools described and used. However, except for TensorFlow and Keras, the tools
described previously are generally a good starting point, or something to consider
to ease the learning curve. The tools in this chapter are special. They help you
accomplish a variety of tasks with professional results.

Compiling Math Expressions Using Theano
Theano (http://deeplearning.net/software/theano/) is a Python library that
makes it easier for you to work with various math expressions quickly. You can
replace the copy of TensorFlow you installed in the “Getting your copy of Tensor-
Flow and Keras” section of Chapter 4 with Theano when desired. The choice of which
to use can be quite complicated, as shown by the discussions at https://www.
analyticsindiamag.com/tensorflow-vs-theano-researchers-prefer- artificial-
intelligence-framework/ and https://www.reddit.com/r/MachineLearning/
comments/4ekywt/tensorflow_vs_theano_which_to_learn/. However, Theano’s
fast speed doesn’t seem to be in question.

IN THIS CHAPTER

 » Augmenting your development
environment

 » Creating specialty environments

 » Performing business tasks

 » Accessing specialized hardware

http://deeplearning.net/software/theano/
https://www.analyticsindiamag.com/tensorflow-vs-theano-researchers-prefer-artificial-intelligence-framework/
https://www.analyticsindiamag.com/tensorflow-vs-theano-researchers-prefer-artificial-intelligence-framework/
https://www.analyticsindiamag.com/tensorflow-vs-theano-researchers-prefer-artificial-intelligence-framework/
https://www.reddit.com/r/MachineLearning/comments/4ekywt/tensorflow_vs_theano_which_to_learn/
https://www.reddit.com/r/MachineLearning/comments/4ekywt/tensorflow_vs_theano_which_to_learn/

318 PART 4 The Part of Tens

After training a few models in this book, you already know that speed is
 important — even essential. For example, the Chapter 12 code really could use
some speeding up, and libraries like this one could help you make that happen
(see the “Considering the cost of realistic output” sidebar in Chapter 12 for a dis-
cussion of speed issues). Here are the underlying features that make Theano so
incredibly fast:

 » Transparent GPU use

 » Dynamic C-code generation

 » Specialized optimizations

Theano is currently the fourth most-used framework (as shown at https://
towardsdatascience.com/deep-learning-framework-power-scores-
2018-23607ddf297a), which is why it appears in this chapter. However, as stated
at https://groups.google.com/forum/m/#!msg/theano-users/7Poq8BZutbY/
rNCIfvAEAwAJ, the Theano developers aren’t doing anything more with it. You can
see the final update notes at http://www.deeplearning.net/software/theano/
NEWS.html and read developer reactions to the loss at https://www.quora.com/
Is-Theano-deep-learning-library-dying. Many developers still make a strong
case for using it, as discussed at https://www.reddit.com/r/MachineLearning/
comments/47qh90/is_there_a_case_for_still_using_torch_theano/.

Augmenting TensorFlow Using Keras
Chapter 4 and various other chapters in this book describe using Keras (https://
keras.io/) with TensorFlow. The “Getting your copy of TensorFlow and Keras”
section of Chapter 4 tells you how to obtain a copy of these products and install
them. Many of the book examples won’t run without Keras, so you may have
already seen a smidgen of what Keras can do for you.

Fortunately, if you choose to go the Theano route instead of working with Tensor-
Flow, you still have the option of using Keras alongside it. You can also use the
built-in version of Keras with TensorFlow (see https://www.tensorflow.org/
api_docs/python/tf/keras for details). The connection between Keras and
TensorFlow will only get stronger when TensorFlow 2.0 is finally released (see
https://medium.com/tensorflow/standardizing-on-keras-guidance-on-
high-level-apis-in-tensorflow-2-0-bad2b04c819a for details).

Oddly enough, you can also use Keras with your Microsoft Cognitive Toolkit
(CNTK) installation. Keras supports all three through a backend, as described at
https://keras.io/backend/. You simply need to use a different underlying tool-
kit to make a change to a configuration file. As a result, you can experiment to see

https://towardsdatascience.com/deep-learning-framework-power-scores-2018-23607ddf297a
https://towardsdatascience.com/deep-learning-framework-power-scores-2018-23607ddf297a
https://towardsdatascience.com/deep-learning-framework-power-scores-2018-23607ddf297a
https://groups.google.com/forum/m/#!msg/theano-users/7Poq8BZutbY/rNCIfvAEAwAJ
https://groups.google.com/forum/m/#!msg/theano-users/7Poq8BZutbY/rNCIfvAEAwAJ
http://www.deeplearning.net/software/theano/NEWS.html
http://www.deeplearning.net/software/theano/NEWS.html
https://www.quora.com/Is-Theano-deep-learning-library-dying
https://www.quora.com/Is-Theano-deep-learning-library-dying
https://www.reddit.com/r/MachineLearning/comments/47qh90/is_there_a_case_for_still_using_torch_theano/
https://www.reddit.com/r/MachineLearning/comments/47qh90/is_there_a_case_for_still_using_torch_theano/
https://keras.io/
https://keras.io/
https://www.tensorflow.org/api_docs/python/tf/keras
https://www.tensorflow.org/api_docs/python/tf/keras
https://medium.com/tensorflow/standardizing-on-keras-guidance-on-high-level-apis-in-tensorflow-2-0-bad2b04c819a
https://medium.com/tensorflow/standardizing-on-keras-guidance-on-high-level-apis-in-tensorflow-2-0-bad2b04c819a
https://keras.io/backend/

CHAPTER 19 Ten Must-Have Deep Learning Tools 319

which toolkit serves your needs best, and your Keras code will remain the same.
One caveat, however: You must write your code using the abstract Keras backend
API for it to be compatible with multiple underlying toolkits. This book doesn’t
show you how to use the abstract Keras backend API, so this technique would
require additional learning time on your part.

Dynamically Computing Graphs
with Chainer

At one time, you might have used a library such as Pylearn2 (which is built on
TensorFlow; (see http://deeplearning.net/software/pylearn2/ for details) to
bridge the gap between algorithms and deep learning. However, new products,
such as Chainer (https://chainer.org/) have taken the stage for reasons such
as those discussed at https://www.quora.com/Which-is-better-for-deep-
learning-TensorFlow-or-Chainer. The emphasis is on making it easier to access
the functionality that most systems can provide today or access through online
hosts. Consequently, you can look to Chainer to provide these features:

 » CUDA support for GPU access

 » Multiple GPU support with little effort

 » Support for a variety of networks including feed-forward nets, CNNs, recur-
rent nets, and recursive nets

 » Per-batch architecture support

 » Control of flow statements in forward computation without losing
backpropagation

 » Significant debugging functionality to make finding errors easier

Creating a MATLAB-Like
Environment with Torch

To get optimal performance from deep learning solutions, you need GPU support,
which is where Torch (http://torch.ch/) comes into play. It puts the GPU first
when you develop solutions, which allows you to get the additional cores and
optimized processing features that GPUs can provide. To offer maximum speed,
Torch relies on the LuaJIT compiler (http://luajit.org/) to compile your

http://deeplearning.net/software/pylearn2/
https://chainer.org/
https://www.quora.com/Which-is-better-for-deep-learning-TensorFlow-or-Chainer
https://www.quora.com/Which-is-better-for-deep-learning-TensorFlow-or-Chainer
http://torch.ch/
http://luajit.org/

320 PART 4 The Part of Tens

application instead of interpreting it. (Interpreters can make applications run
slower.) It also has an underlying C language and CUDA (https://www.geforce.
com/hardware/technology/cuda) implementation that turns your high-level
code into a low-level language to run as quickly as possible.

Torch comes with some features that are similar to those found in NumPy, but
with an emphasis on deep learning. (You can find the package documentation at
http://torch.ch/docs/package-docs.html.) For example, you’ll find:

 » N-dimensional arrays

 » Matrix manipulation features

 » Linear algebra routines

In addition to these features, you find some that are specifically devoted to AI
needs, including deep learning:

 » Neural network models

 » Energy-based models

 » Numeric optimization routines

 » Fast and reliable GPU support

Performing Tasks Dynamically
with PyTorch

PyTorch (https://pytorch.org/) is a serious competitor for TensorFlow. One
item on the main page that will likely pique your attention is that you can click
various options to be shown the required installation instructions for your plat-
form using the technique you really want to use. In fact, of all of the products you
find online, this one might be the easiest to install. The ease of installation extends
to other aspects of this product as well, such as debugging, as described at
https://medium.com/@NirantK/the-silent-rise-of-pytorch-ecosystem-
693e74b33f1e. Note that this article also describes a few missing elements and
how to fix them.

You use PyTorch much as you would TensorFlow and Keras, but there are differ-
ences that you need to know about, as described at https://hub.packtpub.com/
what-is-pytorch-and-how-does-it-work/. These differences aren’t bad, and

https://www.geforce.com/hardware/technology/cuda
https://www.geforce.com/hardware/technology/cuda
http://torch.ch/docs/package-docs.html
https://pytorch.org/
https://medium.com/@NirantK/the-silent-rise-of-pytorch-ecosystem-693e74b33f1e
https://medium.com/@NirantK/the-silent-rise-of-pytorch-ecosystem-693e74b33f1e
https://hub.packtpub.com/what-is-pytorch-and-how-does-it-work/
https://hub.packtpub.com/what-is-pytorch-and-how-does-it-work/

CHAPTER 19 Ten Must-Have Deep Learning Tools 321

you could easily argue that they have contributed to PyTorch’s fast growth (see
https://venturebeat.com/2018/10/16/github-facebooks-pytorch-
and-microsofts-azure-have-the-fastest-growing-open-source-projects/
for details). Many developers pair PyTorch with other products such as Fastai,
which is described at https://twimlai.com/twiml-talk-186-the-fastai-v1-deep-
learning-framework-with-jeremy-howard/.

Accelerating Deep Learning
Research Using CUDA

You can find CUDA (https://developer.nvidia.com/how-to-cuda-python) in
various forms for various languages and a range of needs. For example, the C/C++
version appears at https://developer.nvidia.com/cuda-math-library. This
section looks at the Python offering, but other versions exist as well, and their
features differ from the version discussed in this section. No matter what form it
takes, CUDA is about using GPUs, specially the GPUs on NVIDIA devices, such as
the Titan V (https://www.nvidia.com/en-us/titan/titan-v/).

You don’t actually need a GPU in your system to use CUDA. Instead, you can access
the GPUs on any of a number of hosted sites, including Amazon AWS, Microsoft
Azure, and IBM SoftLayer. In fact, your installation comes with the NVIDIA-
maintained CUDA Amazon Machine Image (AMI) on AWS, so you don’t even have
to work very hard to access this support.

CUDA gives you a great deal of flexibility in using a variety of GPU sources.
Flexibility comes with the price of a higher learning curve and additional coding
in most cases because you can’t make as many assumptions about package use.
Consequently, before you even install this package, make sure to read the blog
post at https://devblogs.nvidia.com/numba-python-cuda-acceleration/ that
tells you more about how to use CUDA to perform real-world tasks. However, after
you get past the learning curve, you find that you can perform an incredible array
of tasks that you might not be able to do otherwise.

When working with CUDA, many developers couple it with the CUDA Deep Neu-
ral Network (cuDNN) library (https://developer.nvidia.com/cudnn). This is
a special library of optimized routines that support using CUDA for deep learn-
ing needs.

https://venturebeat.com/2018/10/16/github-facebooks-pytorch-and-microsofts-azure-have-the-fastest-growing-open-source-projects/
https://venturebeat.com/2018/10/16/github-facebooks-pytorch-and-microsofts-azure-have-the-fastest-growing-open-source-projects/
https://twimlai.com/twiml-talk-186-the-fastai-v1-deep-learning-framework-with-jeremy-howard/
https://twimlai.com/twiml-talk-186-the-fastai-v1-deep-learning-framework-with-jeremy-howard/
https://developer.nvidia.com/how-to-cuda-python
https://developer.nvidia.com/cuda-math-library
https://www.nvidia.com/en-us/titan/titan-v/
https://devblogs.nvidia.com/numba-python-cuda-acceleration/
https://developer.nvidia.com/cudnn

322 PART 4 The Part of Tens

CONSIDERING THE ETHICS OF AI
It would be easy to write an entire book on ethics and AI because the technology has such
an incredible potential for misuse. For example, the recent article at https://medium.
com/futuresin/facebooks-suicide-algorithms-is-invasive-25e4ef33beb5
discusses the use of suicide prevention algorithms by Facebook to monitor its users. In
fact, Facebook regularly uses algorithms to monitor people using the service and it feels
that doing so without permission is perfectly acceptable. CEO Mark Zuckerberg feels
that privacy is dead and everyone should get used to it (see the article at http://www.
nbcnews.com/id/34825225/ns/technology_and_science-tech_and_gadgets/t/
privacy-dead-facebook-get-over-it/#.XFh14FVKhpg for details).

Books like 1984 by George Orwell have seen a surge in sales (see https://www.nytimes.
com/2017/01/25/books/1984-george-orwell-donald-trump.html) partly because
of people’s feelings of insecurity over their personal information. The tendency of Facebook
to keep your information in public view forever is one of the reasons that it’s losing
users, according to the article at https://www.recode.net/2018/2/12/16998750/
facebooks-teen-users-decline-instagram-snap-emarketer. All these articles
share the realization that people know that a company is misusing a technology in a big
way and aren’t happy about it.

The problem comes when people aren’t aware of what a company is doing. Keeping up
with all the technology changes today isn’t possible because technology moves so
quickly. In this case, employees of the organization need to bring their concerns before
the organization, as happened when Amazon employees took Jeff Bezos to task over
the sale of Rekognition (https://aws.amazon.com/rekognition/) to law enforce-
ment, who would be using it to perform mass surveillance through facial recognition
(https://www.pcmag.com/commentary/366229/
the-ai-industrys-year-of-ethical-reckoning).

After WWII, society became progressively more complex but also more frail. To protect
people from dangers appearing inside and outside the state, military and law enforce-
ment have sometimes leveraged these new technologies for surveillance, control, and
influence. If scientists don’t complain and regulate the use of the new technologies for
such purposes, their extensive and indiscriminate use may erode people’s rights and
even create a totalitarian state akin to the one in 1984. Only the ethical behavior of sci-
entists who are aware of how their technology is used will help mitigate this decidedly
unethical behavior.

https://medium.com/futuresin/facebooks-suicide-algorithms-is-invasive-25e4ef33beb5
https://medium.com/futuresin/facebooks-suicide-algorithms-is-invasive-25e4ef33beb5
http://www.nbcnews.com/id/34825225/ns/technology_and_science-tech_and_gadgets/t/privacy-dead-facebook-get-over-it/#.XFh14FVKhpg
http://www.nbcnews.com/id/34825225/ns/technology_and_science-tech_and_gadgets/t/privacy-dead-facebook-get-over-it/#.XFh14FVKhpg
http://www.nbcnews.com/id/34825225/ns/technology_and_science-tech_and_gadgets/t/privacy-dead-facebook-get-over-it/#.XFh14FVKhpg
https://www.nytimes.com/2017/01/25/books/1984-george-orwell-donald-trump.html
https://www.nytimes.com/2017/01/25/books/1984-george-orwell-donald-trump.html
https://www.recode.net/2018/2/12/16998750/facebooks-teen-users-decline-instagram-snap-emarketer
https://www.recode.net/2018/2/12/16998750/facebooks-teen-users-decline-instagram-snap-emarketer
https://aws.amazon.com/rekognition/
https://www.pcmag.com/commentary/366229/the-ai-industrys-year-of-ethical-reckoning
https://www.pcmag.com/commentary/366229/the-ai-industrys-year-of-ethical-reckoning

CHAPTER 19 Ten Must-Have Deep Learning Tools 323

Supporting Business Needs
with Deeplearning4j

Businesses could be viewed as boring because they perform the same repetitive
tasks with different parameters when it comes to data. Using a neural network to
deal with a business’s data needs is tricky, though, because the various tasks
differ too much for a single neural network model to fit all situations. The Deep-
learning4J (https://deeplearning4j.org/) lets you combine various shallow
nets (layers) to create a deep neural net. This approach greatly reduces the time
required to train a deep neural net, and time is something that businesses usually
have in extremely short supply.

This particular solution is written in Java and will work with any JVM-compatible
language, including Scala, Clojure, or Kotlin. The underlying computations are
written in C and CUDA, so you can also use this solution with those languages if
all you want to do is access the underlying computations. To use this solution with
Python, you need to run it on Keras. The example at https://www. javacodegeeks.
com/2018/11/deep-learning-apache-kafka-keras.html demonstrates what is
involved in creating a solution in this environment. Make sure to spend some time
reviewing it before you take the plunge.

Mining Data Using Neural Designer
Many of the products listed in this chapter don’t feel quite finished; they have that
rough feel that researchers and experimenters love. However, some people just
need a solution that works. Neural Designer (https://www.neuraldesigner.
com/) is that solution, and it performs a variety of tasks, including:

 » Discovering complex relationships

 » Recognizing unknown patterns

 » Predicting trends

 » Recognizing associations from data

Unlike many of the other solutions you find, Neural Designer also places specific
emphasis on particular industries. You can find specific information for the
following:

 » Banking and insurance (https://www.neuraldesigner.com/solutions/
solutions-banking-insurance)

https://deeplearning4j.org/
https://www.javacodegeeks.com/2018/11/deep-learning-apache-kafka-keras.html
https://www.javacodegeeks.com/2018/11/deep-learning-apache-kafka-keras.html
https://www.neuraldesigner.com/
https://www.neuraldesigner.com/
https://www.neuraldesigner.com/solutions/solutions-banking-insurance
https://www.neuraldesigner.com/solutions/solutions-banking-insurance

324 PART 4 The Part of Tens

 » Engineering and manufacturing (https://www.neuraldesigner.com/
solutions/solutions-engineering-manufacturing)

 » Retail and consumer (https://www.neuraldesigner.com/solutions/
solutions-retail)

 » Healthcare (https://www.neuraldesigner.com/solutions/
solutions-health)

Training Algorithms Using Microsoft
Cognitive Toolkit (CNTK)

Microsoft Cognitive Toolkit (CNTK) (https://www.microsoft.com/en-us/
cognitive-toolkit/) is another back-end framework used for deep learning, much
like TensorFlow and Theano. You can run Keras on any of the three. Consequently,
people constantly compare the three to see which performs best, such as this com-
parison between CNTK and TensorFlow at https://minimaxir.com/2017/06/
keras-cntk/. You can get a quick overview of all three back ends at http://
kaggler.com/keras-backend-benchmark-theano-vs-tensorflow-vs-cntk/.

Besides comparing the three frameworks’ speed and other performance issues,
you also need to look at features. Obviously, all three will run Keras — usually
with some modifications (see the “Augmenting TensorFlow Using Keras” section
of this chapter for details). However, each of the three back ends also sport some
special functionality. For example, if you want to use Azure, CNTK is probably
your best solution because the Microsoft scientists are the most familiar with cur-
rent and upcoming Azure features. Of course, you’d expect this sort of function-
ality from CNTK.

One of the nicer features of CNTK is the extensive model gallery at https://www.
microsoft.com/en-us/cognitive-toolkit/features/model-gallery/. You find
examples in multiple languages, with some of the examples specific to one lan-
guage and other examples supporting multiple languages. Look carefully at this
page and you see that it includes models for C++, C#, and .NET in general, which
you might be hard pressed to find with other back ends.

https://www.neuraldesigner.com/solutions/solutions-engineering-manufacturing
https://www.neuraldesigner.com/solutions/solutions-engineering-manufacturing
https://www.neuraldesigner.com/solutions/solutions-retail
https://www.neuraldesigner.com/solutions/solutions-retail
https://www.neuraldesigner.com/solutions/solutions-health
https://www.neuraldesigner.com/solutions/solutions-health
https://www.microsoft.com/en-us/cognitive-toolkit/
https://www.microsoft.com/en-us/cognitive-toolkit/
https://minimaxir.com/2017/06/keras-cntk/
https://minimaxir.com/2017/06/keras-cntk/
http://kaggler.com/keras-backend-benchmark-theano-vs-tensorflow-vs-cntk/
http://kaggler.com/keras-backend-benchmark-theano-vs-tensorflow-vs-cntk/
https://www.microsoft.com/en-us/cognitive-toolkit/features/model-gallery/
https://www.microsoft.com/en-us/cognitive-toolkit/features/model-gallery/

CHAPTER 19 Ten Must-Have Deep Learning Tools 325

Exploiting Full GPU Capability
Using MXNet

MXNet (https://mxnet.apache.org/) has some interesting features that are
good for experimenting with at this point, but the product probably isn’t ready for
a production because the site tells you that it’s still incubating. This product pro-
vides some amazing models that will significantly reduce the time required to
create many deep learning applications.

To work with MXNet, you rely on Gluon (you can theoretically also use the module
API, but it looks a little painful at this point). Gluon is the imperative interface
described at https://beta.mxnet.io/guide/crash-course/index.html (note
again that this is a beta site, not a finished site). When going through the crash
course, the first thing you notice is that Gluon really does look easy. To use
Gluon with Python, you want to read about the Python package at https://mxnet.
incubator.apache.org/api/python/gluon/gluon.html. The information at
https://beta.mxnet.io/ will help you get a reasonably good install, albeit with
some fuss.

Fortunately, the MXNet documentation for Gluon is great (https://mxnet.
apache.org/api/python/gluon/model_zoo.html), and you can find additional
resources on Medium (https://medium.com/apache-mxnet). Most impressive is
the huge number of models that this product already supports. In addition, you
can find a considerable number of examples to ease your learning curve (https://
github.com/apache/incubator-mxnet/tree/master/example) and tutorials as
well (https://mxnet.apache.org/versions/master/tutorials/index.html).
Overall, this is a product to watch because of its significant potential for reducing
your workload.

https://mxnet.apache.org/
https://beta.mxnet.io/guide/crash-course/index.html
https://mxnet.incubator.apache.org/api/python/gluon/gluon.html
https://mxnet.incubator.apache.org/api/python/gluon/gluon.html
https://beta.mxnet.io/
https://mxnet.apache.org/api/python/gluon/model_zoo.html
https://mxnet.apache.org/api/python/gluon/model_zoo.html
https://medium.com/apache-mxnet
https://github.com/apache/incubator-mxnet/tree/master/example
https://github.com/apache/incubator-mxnet/tree/master/example
https://mxnet.apache.org/versions/master/tutorials/index.html

CHAPTER 20 Ten Types of Occupations that Use Deep Learning 327

Chapter 20
Ten Types of
Occupations that Use
Deep Learning

This books covers a lot of different uses for deep learning — everything from
the voice-activated features of your digital assistant to self-driving cars.
Using deep learning to improve your daily life is nice, of course, but most

people need other reasons to embrace a technology, such as getting a job.
Fortunately, deep learning doesn’t just affect your ability to locate information
faster but also offers some really interesting job opportunities, and with the “wow”
factor that only deep learning can provide. This chapter gives you an overview of
ten interesting occupations that rely on deep learning to some extent today. This
material represents only the tip of the iceberg, though; more occupations than can
fit in this book are already using deep learning, and more are added every day.

Managing People
A terrifying movie called The Circle (https://www.amazon.com/exec/obidos/
ASIN/B071GB3P5N/datacservip0f-20/) would have you believe that modern
technology will be even more invasive than Big Brother in the book 1984, by George

IN THIS CHAPTER

 » Working with people

 » Developing new technologies

 » Analyzing data

 » Performing research

https://www.amazon.com/exec/obidos/ASIN/B071GB3P5N/datacservip0f-20/
https://www.amazon.com/exec/obidos/ASIN/B071GB3P5N/datacservip0f-20/

328 PART 4 The Part of Tens

Orwell. Part of the movie’s story involves installing cameras everywhere — even
in bedrooms. The main character wakes up every morning to greet everyone who
is watching her. Yes, it can give you the willies if you let it.

However, real deep learning isn’t about monitoring and judging people, for the
most part. It’s more like Oracle’s Global Human Resources Cloud (https://
cloud.oracle.com/en_US/global-human-resources-cloud). Far from being
scary, this particular technology can make you look smart and on top of all the
activities of your day, as shown in the video at https://www.youtube.com/
watch?v=NMm_cIHeEZ0&list=PL2Gxt-CBX-Ep2n5ytNGkl3bRUnUKAMI1Z. The video
is a little over the top, but it gives you a good idea of how deep learning can cur-
rently make your job easier.

The idea behind this technology is to make success easier for people. If you look at
Oracle’s video and associated materials, you find that the technology helps man-
agement suggest potential paths to employees’ goals within the organization. In
some cases, employees like their current situation, but the software can still sug-
gest ways to make their work more engaging and fun. The software keeps employ-
ees from getting lost in the system and helps to manage the employee at a custom
level so that each employee receives individualized input.

Improving Medicine
Deep learning is affecting the practice of medicine in many ways, as you can see when
you go to the doctor or spend time at a hospital. Deep learning assists with diagnos-
ing illnesses (https://www.cio.com/article/3305951/health-care-industry/
the-promise-of-artificial-intelligence-in-diagnosing-illness.html) and
finding their correct cure (https://emerj.com/ai-sector-overviews/machine-
learning-medical-diagnostics-4-current-applications/). Deep learning is
even used to improve the diagnostic process for hard-to-detect issues, including
those of the eye (https://www.theverge.com/2018/8/13/17670156/deepmind-
ai-eye-disease-doctor-moorfields). However, one of the most important uses
for deep learning in medicine is in research.

The seemingly simple act of finding the correct patients to use for research pur-
poses isn’t really that simple. The patients must meet strict criteria or any testing
results may prove invalid. Researchers now rely on deep learning to perform tasks
like finding the right patient (https://emerj.com/ai-sector-overviews/ai-
machine-learning-clinical-trials-examining-x-current-applications/),
designing the trial criteria, and optimizing the results. Obviously, medicine will
need a lot of people who are trained both in medicine and in the use of deep

https://cloud.oracle.com/en_US/global-human-resources-cloud
https://cloud.oracle.com/en_US/global-human-resources-cloud
https://www.youtube.com/watch?v=NMm_cIHeEZ0&list=PL2Gxt-CBX-Ep2n5ytNGkl3bRUnUKAMI1Z
https://www.youtube.com/watch?v=NMm_cIHeEZ0&list=PL2Gxt-CBX-Ep2n5ytNGkl3bRUnUKAMI1Z
https://www.cio.com/article/3305951/health-care-industry/the-promise-of-artificial-intelligence-in-diagnosing-illness.html
https://www.cio.com/article/3305951/health-care-industry/the-promise-of-artificial-intelligence-in-diagnosing-illness.html
https://emerj.com/ai-sector-overviews/machine-learning-medical-diagnostics-4-current-applications/
https://emerj.com/ai-sector-overviews/machine-learning-medical-diagnostics-4-current-applications/
https://www.theverge.com/2018/8/13/17670156/deepmind-ai-eye-disease-doctor-moorfields
https://www.theverge.com/2018/8/13/17670156/deepmind-ai-eye-disease-doctor-moorfields
https://emerj.com/ai-sector-overviews/ai-machine-learning-clinical-trials-examining-x-current-applications/
https://emerj.com/ai-sector-overviews/ai-machine-learning-clinical-trials-examining-x-current-applications/

CHAPTER 20 Ten Types of Occupations that Use Deep Learning 329

learning techniques for medicine (https://healthitanalytics.com/features/
what-is-deep-learning-and-how-will-it-change-healthcare) to continue
achieving advances at their current pace.

Developing New Devices
Innovation in some areas of computer technology, such as the basic system, which
is now a commodity, has slowed down over the years. However, innovation in areas
that only recently became viable has greatly increased. An inventor today has more
possible outlets for new devices than ever before. One of these new areas is the
means to perform deep learning tasks (https://www.oreilly.com/ideas/
specialized-hardware-for-deep-learning-will-unleash-innovation). To create
the potential for performing deep learning tasks of greater complexity, many
organizations now use specialized hardware that exceeds the capabilities of GPUs —
the currently preferred processing technology for deep learning.

This book talks a lot about various deep learning technologies, but the technology
is in its infancy, so a smart inventor could come up with something interesting
without really working all that hard. The article at https://blog.adext.com/en/
artificial-intelligence-technologies-2019 tells about new AI technologies,
but even these technologies don’t begin to plumb the depths of what could happen.

Deep learning is attracting the attention of both inventors and investors because of
its potential to upend current patent law and the manner in which people create
new things (https://marketbrief.edweek.org/marketplace-k-12/artificial-
intelligence-attracting-investors-inventors-academic-researchers-
worldwide/). An interesting part of most of the articles of this sort is that they pre-
dict a significant increase in jobs that revolve around various kinds of deep learn-
ing, most of which involve creating something new. Essentially, if you can make use
of deep learning in some way and couple it with a current vibrant occupation, you
can find a job or develop a business of your own.

Providing Customer Support
Many of the discussions in this book refer to chatbots (see Chapters 1, 2, 11, and 14)
and other forms of customer support, including translation services. In case
you’re curious, you can have an interactive experience with a chatbot at https://
pandorabots.com/mitsuku/. The use of chatbots and other customer support
technologies have stirred up concern, however.

https://healthitanalytics.com/features/what-is-deep-learning-and-how-will-it-change-healthcare
https://healthitanalytics.com/features/what-is-deep-learning-and-how-will-it-change-healthcare
https://www.oreilly.com/ideas/specialized-hardware-for-deep-learning-will-unleash-innovation
https://www.oreilly.com/ideas/specialized-hardware-for-deep-learning-will-unleash-innovation
https://blog.adext.com/en/artificial-intelligence-technologies-2019
https://blog.adext.com/en/artificial-intelligence-technologies-2019
https://marketbrief.edweek.org/marketplace-k-12/artificial-intelligence-attracting-investors-inventors-academic-researchers-worldwide/
https://marketbrief.edweek.org/marketplace-k-12/artificial-intelligence-attracting-investors-inventors-academic-researchers-worldwide/
https://marketbrief.edweek.org/marketplace-k-12/artificial-intelligence-attracting-investors-inventors-academic-researchers-worldwide/
https://pandorabots.com/mitsuku/
https://pandorabots.com/mitsuku/

330 PART 4 The Part of Tens

Some consumer groups that say human customer support is doomed, as in the
article at https://www.forbes.com/sites/christopherelliott/2018/08/27/
chatbots-are-killing-customer-service-heres-why/. However, if you have
ever had to deal with a chatbot to perform anything complex, you know the
experience is less than appealing. So the new paradigm is the human and
chatbot combination, as described at https://chatbotsmagazine.com/bot-
human-hybrid-the-new-era-of-customer-support-346e1633e910.

Much of the technology you see used today supposedly replaces a human, but in
most cases, it can’t. For the time being, you should expect to see many situations
that have humans and bots working together as a team. The bot reduces the strain
of performing physically intense tasks as well as the mundane, boring chores. The
human will do the more interesting things and provide creative solutions to unex-
pected situations. Consequently, people need to obtain training required to work
in these areas and feel secure that they’ll continue to have gainful employment.

Seeing Data in New Ways
Look at a series of websites and other data sources and you notice one thing: They
all present data differently. A computer doesn’t understand differences in presen-
tation and isn’t swayed by one look or another. It doesn’t actually understand
data; it looks for patterns. Deep learning is enabling applications to collect more
data on their own by ensuring that the application can see appropriate patterns,
even when those patterns differ from what the application has seen before (see
https://www.kdnuggets.com/2018/09/data-capture-deep-learning-way.
html for details). Even though deep learning will enhance and speed up data col-
lection, however, a human will still need to interpret the data. In fact, humans still
need to ensure that the application collects good data because the application truly
understands nothing about data.

Another way to see data in new ways is to perform data augmentation (https://
medium.com/nanonets/how-to-use-deep-learning-when-you-have-
limited-data-part-2-data-augmentation-c26971dc8ced). Again, the applica-
tion does the grunt work, but it takes a human to determine what sort of augmen-
tation to provide. In other words, the human does the creative, interesting part,
and the application just trudges along, ensuring that things work.

These first two deep learning uses are interesting and they’ll continue to generate
jobs, but the most interesting using of deep learning is for activities that don’t
exist yet. A creative human can look at ways that others are using deep learning
and come up with something new. This article describe some interesting uses of

https://www.forbes.com/sites/christopherelliott/2018/08/27/chatbots-are-killing-customer-service-heres-why/
https://www.forbes.com/sites/christopherelliott/2018/08/27/chatbots-are-killing-customer-service-heres-why/
https://chatbotsmagazine.com/bot-human-hybrid-the-new-era-of-customer-support-346e1633e910
https://chatbotsmagazine.com/bot-human-hybrid-the-new-era-of-customer-support-346e1633e910
https://www.kdnuggets.com/2018/09/data-capture-deep-learning-way.html
https://www.kdnuggets.com/2018/09/data-capture-deep-learning-way.html
https://medium.com/nanonets/how-to-use-deep-learning-when-you-have-limited-data-part-2-data-augmentation-c26971dc8ced
https://medium.com/nanonets/how-to-use-deep-learning-when-you-have-limited-data-part-2-data-augmentation-c26971dc8ced
https://medium.com/nanonets/how-to-use-deep-learning-when-you-have-limited-data-part-2-data-augmentation-c26971dc8ced

CHAPTER 20 Ten Types of Occupations that Use Deep Learning 331

AI, machine learning, and deep learning that are just now becoming practical:
https://www.wordstream.com/blog/ws/2017/07/28/machine-
learning-applications.

Performing Analysis Faster
When most people speak of analysis, they think about a researcher, some sort of
scientist, or a specialist. However, deep learning is becoming entrenched in some
interesting places that will require human participation to see full use, such as
predicting traffic accidents: https://www.hindawi.com/journals/jat/2018/
3869106/.

Imagine a police department allocating resources based on traffic flow patterns so
that an officer is already waiting at the site of an expected accident. The police
lieutenant would need to know how to use an application of this sort. Of course,
this particular use hasn’t happened yet, but it very likely could because it’s already
feasible using existing technology. So performing analysis will no longer be a job
for those with “Dr.” in front of their names; it will be for everyone.

Analysis, by itself, isn’t all that useful. It’s the act of combining the analysis with
a specific need in a particular environment that becomes useful. What you do with
analysis defines the effect of that analysis on you and those around you. A human
can understand the concept of analysis with a purpose; a deep learning solution
can only perform the analysis and provide an output.

Creating a Better Work Environment
This book discusses how deep learning works, but what it all really means is that
deep learning will make your life better and your employment more enjoyable if
you happen to have skills that allow you to interact successfully with an AI. The
article at https://www.siliconrepublic.com/careers/future-ai-workplace-
office describes how AI could change the workplace in the future. An important
element of this discussion is to make work more inviting.

At one point in human history, work was actually enjoyable for most people. It’s
not that they ran around singing and laughing all the time, but many people did
look forward to starting each day. Later, during the industrial revolution, other
people put the drudge into work, making every day away from work the only plea-
sure that some people enjoyed. The problem has become so severe that you can

https://www.wordstream.com/blog/ws/2017/07/28/machine-learning-applications
https://www.wordstream.com/blog/ws/2017/07/28/machine-learning-applications
https://www.hindawi.com/journals/jat/2018/3869106/
https://www.hindawi.com/journals/jat/2018/3869106/
https://www.siliconrepublic.com/careers/future-ai-workplace-office
https://www.siliconrepublic.com/careers/future-ai-workplace-office

332 PART 4 The Part of Tens

find popular songs about it, like “Working for the Weekend” (https://www.
youtube.com/watch?v=ahvSgFHzJIc). By removing the drudge from the workplace,
deep learning has the potential to make work enjoyable again.

Deep learning will strongly affect the work environment in a number of ways, and
not just the actual performance of work. For example, technologies based on deep
learning have the potential to improve your health (https://www.entrepreneur.
com/article/317047) and therefore your productivity. It’s a win for everyone
because you’ll enjoy life and work more, while your boss gets more of that hidden
potential from your efforts.

One of the things that you don’t see mentioned often is the effect on productivity
of a falling birth rate in developed countries. The article at https://www.
mckinsey.com/featured-insights/future-of-work/ai-automation-and-the-future-
of-work-ten-things-to-solve-for takes this issue on to some extent and
provides a chart showing the potential impact of deep learning on various indus-
tries. If the current trend continues, having fewer available workers will mean a
need for augmentation in the workplace.

However, you might wonder about your future if you worry that you might not be
able to adapt to the new reality. The problem is that you might not actually know
whether you’re safe. In Artificial Intelligence For Dummies, by John Paul Mueller and
Luca Massaron [Wiley], you see discussions of AI-safe occupations and new occu-
pations that AI will create. You can even discover how you might end up working
in space at some point. Unfortunately, not everyone wants to make that sort of
move, much as the Luddites didn’t during the industrial revolution (see https://
www.history.com/news/industrial-revolution-luddites-workers for details).
Certainly, what AI promises is going to have consequences even greater than the
industrial revolution did (read about the effects of the industrial revolution at
https://www.britishmuseum.org/research/publications/online_research_
catalogues/paper_money/paper_money_of_england__wales/the_industrial_
revolution.aspx) and will be even more disruptive. Some politicians, such as
Andrew Wang (https://www.yang2020.com/policies/), are already looking at
short-term fixes like basic universal income. These policies, if enacted, would help
reduce the impact of AI, but they won’t provide a long-term solution. At some
point, society will become significantly different from what it is today as a result
of AI — much as the industrial revolution has already changed society.

https://www.youtube.com/watch?v=ahvSgFHzJIc
https://www.youtube.com/watch?v=ahvSgFHzJIc
https://www.entrepreneur.com/article/317047
https://www.entrepreneur.com/article/317047
https://www.mckinsey.com/featured-insights/future-of-work/ai-automation-and-the-future-of-work-ten-things-to-solve-for
https://www.mckinsey.com/featured-insights/future-of-work/ai-automation-and-the-future-of-work-ten-things-to-solve-for
https://www.mckinsey.com/featured-insights/future-of-work/ai-automation-and-the-future-of-work-ten-things-to-solve-for
https://www.history.com/news/industrial-revolution-luddites-workers
https://www.history.com/news/industrial-revolution-luddites-workers
https://www.britishmuseum.org/research/publications/online_research_catalogues/paper_money/paper_money_of_england__wales/the_industrial_revolution.aspx
https://www.britishmuseum.org/research/publications/online_research_catalogues/paper_money/paper_money_of_england__wales/the_industrial_revolution.aspx
https://www.britishmuseum.org/research/publications/online_research_catalogues/paper_money/paper_money_of_england__wales/the_industrial_revolution.aspx
https://www.yang2020.com/policies/

CHAPTER 20 Ten Types of Occupations that Use Deep Learning 333

Researching Obscure or Detailed
Information

Computers can do one thing — pattern matching — exceptionally well (and much
better than humans. If you’ve ever had the feeling that you’re floating in informa-
tion and none of it relates to your current need, you’re not alone. Information
overload has been a problem for many years and worsens every year. You can find
a lot of advice on dealing with information overload, such as the site at https://
www.interaction-design.org/literature/article/information-overload-
why-it-matters-and-how-to-combat-it. The problem is that you’re still drown-
ing in information. Deep learning enable you to find the needle in a haystack, and
in a reasonable amount of time. Instead of months, a good deep learning solution
could find the information you need in a matter of hours in most cases.

However, knowing that the information exists is usually not sufficient. You need
information that’s detailed enough to fully answer your question, which often
means locating more than one source and consolidating the information. Again, a
deep learning solution could find patterns and mash the data together for you so
that you don’t have to combine the input from multiple sources manually.

After AI finds the data and combines the multiple sources into a single cohesive
report (you hope), it has done everything it can for you. It’s still up to the human
to make sense of the information and determine a way to use it successfully. The
computer won’t remove the creative part of the task; it removes the drudgery of
finding the resources required to perform the creative part of the task. As infor-
mation continues to increase, expect to see an increase in the number of people
who specialize in locating detailed or obscure information.

The information broker is becoming an essential part of society and represents an
interesting career path that many people haven’t even heard about. The article at
https://www1.cfnc.org/Plan/For_A_Career/Career_Profile/Career_
Profile.aspx?id=edMrqnSJebpXYIKXsDcurwXAP3DPAXXAP3DPAX offers a good
summary of what information brokers do.

Designing Buildings
Most people view architecture as a creative trade. Imagine designing the next
Empire State Building or some other edifice that will that will stand the test of
time. In the past, designing such a building took years. Oddly enough, the con-
tractor actually built the Empire State Building in just a little over a year (see

https://www.interaction-design.org/literature/article/information-overload-why-it-matters-and-how-to-combat-it
https://www.interaction-design.org/literature/article/information-overload-why-it-matters-and-how-to-combat-it
https://www.interaction-design.org/literature/article/information-overload-why-it-matters-and-how-to-combat-it
https://www1.cfnc.org/Plan/For_A_Career/Career_Profile/Career_Profile.aspx?id=edMrqnSJebpXYIKXsDcurwXAP3DPAXXAP3DPAX
https://www1.cfnc.org/Plan/For_A_Career/Career_Profile/Career_Profile.aspx?id=edMrqnSJebpXYIKXsDcurwXAP3DPAXXAP3DPAX

334 PART 4 The Part of Tens

http://www.designbookmag.com/empirestatebuilding.htm for details), but
this isn’t usually the case. Deep learning and computer technology can help reduce
the time to design and build buildings considerably by allowing things like virtual
walkthroughs (https://pdf.wondershare.com/real-estate/virtual-tour-
software-for-real-estate.html). In fact, the use of deep learning is improving
the lives of architects in significant ways, as stated at https://www.autodesk.
com/redshift/machine-learning-in-architecture/.

However, turning a design into a virtual tour isn’t even the most impressive feat
of deep learning in this field. Using deep learning enables designers to locate
potential engineering problems, perform stress testing, and ensure safety in other
ways before the design ever leaves the drawing board. These capabilities minimize
the number of issues that occur after a building becomes operational, and the
architect can enjoy the laurels of a success rather than the scorn and potential
tragedy of a failure.

Enhancing Safety
Accidents happen! However, deep learning can help prevent accidents from
happening — at least for the most part. By analyzing complex patterns in real
time, deep learning can assist people who are involved in various aspects of safety
assurance. For example, by tracking various traffic patterns and predicting the
potential for an accident well in advance, a deep learning solution could provide
safety experts with suggestions for preventing the accident from happening at all.
A human couldn’t perform the analysis because of too many variables. However, a
deep learning solution can perform the analysis and then provide output to a
human for potential implementation.

As with every other occupation that involves deep learning, the human acts as the
understanding part of the solution. Various kinds of accidents will defy the capa-
bility of any deep learning solution to provide precise solutions every time.
Humans aren’t predictable, but other humans can reduce the odds of something
terrible happening given the right information. The deep learning solution pro-
vides that correct information, but it requires human foresight and intuition to
interpret the information correctly.

http://www.designbookmag.com/empirestatebuilding.htm
https://pdf.wondershare.com/real-estate/virtual-tour-software-for-real-estate.html
https://pdf.wondershare.com/real-estate/virtual-tour-software-for-real-estate.html
https://www.autodesk.com/redshift/machine-learning-in-architecture/
https://www.autodesk.com/redshift/machine-learning-in-architecture/

Index 335

A
abscissa, 113
access control, 16
accuracy, neural network, 154, 157–158, 193, 230,

266–267
activation functions

backpropagation problems, 174–175
choosing correct, 149, 158–160
coding, 153
defined, 152
in feed-forward process, 141, 142
in LSTMs, 210–211
neurons, 137–138
vanishing gradients, 173, 174

adversarial examples, 245–249
adversarial training, 246. See also Generative

Adversarial Networks
agent, in RL, 294–295
AI. See artificial intelligence; specific types of AI
albumentations package, 223
AlexNet, 197
Algorithmia, 310
algorithms. See also specific algorithms

analogizers, 36
association-rule, 37
Bayesian, 35–36, 37
bias, 44
categorized by similarity, 36–40
classifier, 31
clustering, 37
decision-tree, 37–38
deep learning, 38
defined, 26
dimensionality reduction, 38
ensemble, 38
evolutionary, 35
instance-based, 39
as insufficient for deep learning, 168–169
introducing bias, 33

learning process, 26–28
learning styles used to create, 28–30
main approaches to, 34
neural networks, 35, 36–37
optimization, 105–109
optimizers, 160–161
regression, 39
regularization, 39
reinforcement, 30
reinforcement learning, 296
role in computer generated art, 272–273
self-supervised, 29–30
supervised, 28–29
Support Vector Machines, 39
symbolic reasoning, 34
training process, 30, 31
unsupervised, 29

allclose function, 102
Alpha Zero, 305
AlphaGo, 293, 294, 302–304
AlphaGo Zero, 305–306
Amazon

Mechanical Turk crowdsourcing platform,
196, 237

recommender systems, 41
Rekognition, 322

Amazon Web Services (AWS), 20
Anaconda 3 environment

add-on products, 47
installing, 47–53
literate programming, 55
obtaining, 46–47
screenshots in book, 53
TensorFlow and Keras installation, 86–88

Anaconda Navigator, 89–90
analogizers, 36
analysis

of convolutions, 195
deep learning in, 331

Index

336 Deep Learning For Dummies

Anderson, Chris, 168
animal protection, 16
annotation, for multiple-object detection, 237
ANNs (artificial neural networks). See neural networks
Application Programming Interfaces (APIs), 76. See

also Keras; specific APIs
applications. See also specific applications

adversarial examples, 245–249
comments, 66–69
creating, 62–64
employing deep learning in, 19
framework, choosing for, 78
indentation, 65–66
requiring deep learning, 309

Arcade Learning Environment, 169
architecture, deep learning in, 333–334
art, generating

artistic style transfer, 271, 276
artists, mimicking, 274–278
versus creation, 274
examples, 272
overview, 270, 315–316
statistics in, 272–273

artificial intelligence (AI). See also specific types of AI
AI winters, 133, 163, 189, 218
deep learning, relation to, 10–15
deep learning versus other forms, 163–164,

171–178
ethics, 322
failures, 23

artificial neural networks. See neural networks
artistic style transfer, 195–196, 271, 276
asarray function, 98
asmatrix function, 98
association-rule algorithms, 37
AT&T, 188, 189
attention mechanism, LSTM, 212–213
augmentation

data, 330
image, 221–223, 230

automatic indention, Jupyter Notebook, 65
automation, AI in, 14
automobile voice interface, 18

autonomous supervised learning, 29–30
autonomous vehicles, 22, 239–245
AWS (Amazon Web Services), 20

B
backend API, Keras, 318–319
Backgammon, 295
backpropagation

adjusting learning with, 143–145
exploding gradients problem, 174
overview, 35, 107
performing, 154–155
ReLU activation function, 174–175
in RNNs, 208
vanishing gradients, 173

bag-of-words approach, 254–256, 259
batch learning, 176
batch updates, 109, 145
batches, defined, 193
Bayesian algorithms, 35–36, 37
behavior analysis, 311–312
beta coefficients, 113, 114, 115,

127–130
bias

in linear regression, 112–113
in machine learning, 32–33, 44
in neural networks, 35
in word embeddings, 259

Bidirectional Encoder Representations from
Transformers (BERT), Google, 258

bidirectional LSTM, 265–266
Bidirectional Recurrent Neural Networks

(BRNNs), 312
big data, 164
bi-grams, 254
binary encoding, 118, 254–255
binary response, in linear regression, 121–122
binary step (linear) activation function, 137–138, 159
black-and-white photos/video, colorization of, 310
Boston house prices dataset, 61–62, 116–117,

120–121, 122–124
bounding boxes, 220, 235, 245
brain imaging, 13

Index 337

breaking changes, Python, 46
build tools, C++, 88–89
buildings, designing, 333–334
business needs, supporting, 323

C
C++ build tools, 88–89
Caffe framework, 79
Caffe2 framework, 79–80
canonical poses, 247
caption generation, 206–207
CartPole environment, OpenAI Gym, 297–299
cat neuron, 172
categorizing objects, 111–112
CBOW (continuous bag-of-words), 259
celebrities, GAN creation of, 289–290
cells

Jupyter Notebook, 62–64
RNN, 203

CGANs (conditional GANs), 290
CGI (Computer Generated Imagery), 272
Chainer framework, 80, 319
channels, image, 183
character encoding, 252
character recognition, 180
chatbots, 205, 329–330
cheat sheet, explained, 4
chess, 302
classification problems, 28–29, 121–124. See also

image recognition
classifier algorithms, 31
cleaning text, 253, 254
cloud hosting, framework compatibility with, 78
cloud resources, 70–72. See also specific cloud

resources
cloud solutions, deep learning, 20. See also specific

cloud solutions
clustering algorithms, 37
CNNs. See Convolutional Neural Networks; image

recognition
co-adaptation, 175
code repository, defining, 56–61. See also Jupyter

Notebook; Python

coefficient of determination (R2), 116, 124–125
coefficient vector (w vector), perceptron, 133, 134
cognitive modeling approach, 13
Cognitive Toolkit (CNTK), Microsoft, 81, 82, 324
Colaboratory (Colab), Google

GAN, building, 286
overview, 45
realistic output, cost of, 229
screenshots, in book, 53
TensorFlow support, 83
traffic signs, distinguishing, 225
use of, 70–72

color images, 180–181, 183
Color shift image augmentation, 222
colorization, 310
commenting out, 69
comments, in Python code, 66–69
community support, programming languages, 21
competition between networks, in GANs,

280–282
complex analysis, AI in, 14
complex relations, in linear regression, 119–121
complexity, in machine learning, 33
composition, music, 277–278
computational graphs, TensorFlow support for, 83
computer generated art, 270–274
Computer Generated Imagery (CGI), 272
concatenation, 65, 66
conda environment product, 86–87
conditional GANs (CGANs), 290
confidence threshold, RetinaNet object detection,

243–244
connectionism, 133
connections, in neural networks, 140, 142
content images, 275
content loss, neural style transfer, 275
continuous bag-of-words (CBOW), 259
continuous skip-gram, 259
Continuum Analytics Anaconda. See Anaconda 3

environment
contraction, in U-NETs, 238
Contrast change image augmentation, 222
Conv2D layer, Keras, 186

338 Deep Learning For Dummies

Convolutional Neural Networks (CNNs or ConvNets).
See also image recognition

adversarial examples, 245–249
architecture update process, 196–197
art, generating, 273, 274–276
colorization, 310
convolutions, understanding, 183–186
convolutions, visualizing, 194–196
detecting edges and shapes from images, 193–199
language processing, 252
LeNet5 architecture, 188–193
overview, 170, 179–180
pooling layers, 187–188
transfer learning, 197–199

Convolutional Neural Networks for Visual
Recognition, 169

cost, of programming languages, 21
cost functions (loss functions), 105–107, 144, 147
creativity, in deep learning, 269–270, 274, 282
criterion variable, in linear regression, 111
cross entropy, 106
CUDA, 321
customer service, 15, 43, 329–330
Cycle GAN, 290

D
data. See also math; matrixes

augmentation, 330
benefits of additional, 167–169
big, 164
complex, in neural networks, 131–132, 136–145
from deep learning perspective, 163, 164–169
defined, 94
entry errors, reducing, 42
forms of, 96
introducing bias, 32–33
Moore’s Law, 165–167
nonlinearly separable, 135–136
seeing in new ways, 330–331
structured versus unstructured, 164–165
timeliness and quality of, 168–169
working with, 94–95

data points, in linear regression, 111–112
data shuffling, SGD, 128
datasets. See also specific datasets

for caption generation, 206–207
defined, 96
getting and using, 54, 61–62
Kaggle, 70

DCGAN, 289–290
dead neurons, 175
debugging, 80
decision-tree algorithms, 37–38
decoder, segmentation, 238
deduction, in symbolic reasoning, 34
Deep Blue, 302
deep convolutional layers, 193–195
deep learning. See also neural networks;

specific applications of deep learning;
specific deep learning tools

adversarial examples, 245–249
algorithms for, 38
artificial intelligence, 10–15
breakthroughs in, 40
creativity, 269–270, 274, 282
data from perspective of, 163, 164–169
defined, 95
end-to-end learning, 177–178
ethics of, 322
hype associated with, avoiding, 22–23
issues with, 17–18
layers, 172–173
machine learning, 15–18
math needed for, 94–96
online learning, 176–177
versus other forms of AI, 163–164, 171–178
overview, 1–5, 9–10, 163–164
processing speed, improving, 163, 169–171
programming environment for, 19–21
in real world, 18–19
regularization by dropout, 175–176
ReLU activation function, 174–175
start-up ecosystem, 22
transfer learning, 177
when not to use, 22–23

Index 339

Deep Learning Studio, 19–20
Deep Q-Learning, 296, 300–302
Deep Q-Network (DQN), 294, 300–302
DeepAI API, 315
deepdream images, 195
Deeplearning4j, 323
DeepMind, Google, 169, 296, 303–306
define and run approach, 80
define-by-run approach, 80
degenerate (singular) matrixes, 102
deleting notebooks, 59–60
Demografy, 315
demographics, predicting, 314–315
dense convolutional layers, 193–195
dense prediction, 237–238
derivative handling, optimizers, 160–161
detection, multiple-object, 233, 234–237, 239–245
device development, 329
differentiable activation functions, 153
digits dataset, Keras, 190
dimensionality reduction algorithms, 38
dimensions

matrix, 97–98
tensor, 102–103

discriminator, GAN, 277, 281, 284–285, 287–289
distillation, 249
distributional hypothesis, Word2vec, 259
DL4Denv environment

accessing, 89–90
creating, 86–87

DNN Frameworks support, programming
languages, 21

doAdd function, 104
documentation cells, Jupyter Notebook, 63–64
Dollár, Piotr, 240
dot products, 99–100
downsampling, 240
DQN (Deep Q-Network), 294, 300–302
Drive, Google, 71, 72
dropout, 175–176
dying ReLU, 159
dynamic execution, 83
dynamic graphs, 83

E
eager execution, 83
early stopping, 107, 147
edges, detecting from images, 193–199
ElasticNet, 221
element-by-element matrix multiplication, 99, 100
ELU (Exponential Linear Unit) activation function, 160
Embedding layer, 265
embeddings, word, 251, 257–261, 265
employee downtime, forecasting, 42
encoder, segmentation, 238
encoding, character, 252
end-to-end learning, 177–178
ensemble algorithms, 38
enterprise frameworks, 77
environment

DL4Denv, accessing, 89–90
DL4Denv, creating, 86–87
in RL, 294–295, 296–299

epochs, 156, 193, 229, 230
Eps Greedy Q policy, 301
error correction, 106–107. See also backpropagation
ethics, 322
evolutionary algorithms, 35
exclusive or (XOR), 136–137
expansion, in U-NETs, 238
expert systems, 19, 22, 218, 252–253
exploding gradients problem, 152, 174
exporting notebooks, 58
extensibility, TensorFlow, 82

F
Face Aging, 291
face recognition, 178, 249
Facebook, ethics of AI used by, 322
Facebook AI Research (FAIR), 258
fake images, GAN generation of, 282, 287
FastAnnotationTool, 237
fastText, 259
FCNs (Fully Convolutional Networks), 238
feature creation, 17, 182–183
feature space, creating new, 136

340 Deep Learning For Dummies

feature visualization, 195
features

complex relations, dealing with, 119–121
incompatible, defining outcome of, 124–125
modeling with linear regression, 118–119
multiple linear regression, 114
selecting correct, 112, 124–126

feedback loop, in RL, 30. See also reinforcement
learning

feed-forward process, neural networks, 138–140,
141–142, 153–154

film reviews, sentiment analysis of, 261–267
filter depth, 184
filters, convolution, 183, 184, 185
financial rule and modeling precision, improving, 42
fine-tuning, 198
first-order optimization, 161
fitting process, 26, 31–32. See also training data
Flickr 30K dataset, 206–207
Flip image augmentation, 221, 222
focal loss solution, 240–241
Fold extension, TensorFlow, 83
folder, creating new, 56, 57
forget gate, in LSTMs, 210
forward procedure, 153–154
fractals, 272
frameworks. See also specific frameworks

choosing, 78
downsides of, 77
focus on specific issues, 77–78
Keras use with, 85–86
low-end, 79–82
open source, 171
overview, 73–74
popularity of, 75–76
programming language support, 21
types of, 74–75

fraud detection, 14
frequency encoding of text, 254–255
frozen spots, in frameworks, 75, 77–78
Fully Convolutional Networks (FCNs), 238
functions. See also specific functions

for importing datasets, 61
vector and matrix array-creation, 98

G
games, deep learning in, 295–299, 313
Gated Recurrent Units (GRUs), 211–212
gates

in GRUs, 211
in LSTMs, 209–210

General Data Protection Regulation (GDPR), 18, 44
generalization, 31–32, 41, 107
generated art, 270–274
Generative Adversarial Networks (GANs)

art, generating, 273, 276
building, 282–289
competition between networks in, 280–282
fake images, 282, 287
overview, 246, 279–280
variants of, 289–291

generator, GAN, 277, 281, 284, 285, 287–289
geometrical meaning of regression, 112–114
German Traffic Sign Recognition Benchmark (GTSRB),

218, 224, 225
Girshick, Ross, 240
GitHub, 71
Global Human Resources Cloud, Oracle, 328
global minimum, 108, 145
GloVe (Global Vectors), 259
Gluon, 325
Go game, 302–305
Goodfellow, Ian, 280, 295
Google. See also Colaboratory, Google

attention mechanism, 213
BERT, 258
Deep Q-Network, 294, 300–302
natural disasters, predicting, 316
Neural Image Caption, 207
transfer learning, 177, 197

Google Brain team, 172, 219–220
Google Cloud, 78
Google DeepMind, 169, 296, 303–306
Google Drive, 71, 72
Google Neural Machine Translation (GNMT), 206
Google Translate, 312
GoogleLeNet, 169, 195
Goyal, Priya, 240

Index 341

gradient descent, 107–109, 115, 127, 144–145
Graphics Processing Units (GPUs)

Colab support, 83
CUDA, working with, 321
GAN, building, 286
improving processing speed with, 170
realistic output, cost of, 229
TensorFlow support for, 84

graphs, dynamic, 83
grayscale images, 181
GRUs (Gated Recurrent Units), 211–212
GUI. See Jupyter Notebook
Gui, Fan, 303
Gym package, OpenAI, 293–294, 296–299

H
hackers, 245–249
hardware, improving processing speed with, 170
He, Kaiming, 240
headings, 64, 66
Heaviside step function, 153
help resources, Python, 69
hidden functionality, 43–44
hidden layers, 140
Hinton, Geoffrey, 170–171, 173–175
Histograms of Oriented Gradients (HOG), 182
Hochreiter, Sepp, 208
hot spots, in frameworks, 75, 77–78
Hubel, David Hunter, 183
human processes

AI as simulating, 11–13
versus deep learning, 18–19
introducing bias, 33
versus rational processes, 14

hyperbolic tangent (tanh) activation function,
137–138, 159, 192, 210–211

hyperparameters, 17
hyperplane, 113–114

I
icons, explained, 3–4
ICs (integrated circuits), 165–166

identity function, 102
identity matrix, 102
IDEs (Integrated Development Environments), 55, 75.

See also Anaconda 3 environment
image augmentation, 221–223, 230
image generator, 228
image pyramids technique, 236
image recognition. See also Convolutional Neural

Networks
advanced, overview, 233–234
adversarial examples, 245–249
ambiguous and confusing images, 247
annotation process, 237
architecture update process, 196–197
basics of, 180–183
classification tasks, distinguishing, 234–235
competitions, role of, 217, 218–223
convolutions, understanding, 183–186
convolutions, visualizing, 194–196
detecting edges and shapes from images,

193–199
GoogleLeNet, 169
image augmentation, 221–223
LeNet5 architecture, 188–193
localization, 235
multiple-object detection, 234–237
overview, 172, 217–218
pooling convolutional layers, 187–188
segmentation, 237–238
testing RetinaNet object detection, 239–245
traffic signs, distinguishing, 218, 223–231
transfer learning, 197–199

ImageDataGenerator function, 222–223
ImageNet, 169, 196–197, 218–220, 237
images. See also image recognition

caption generation for, 206–207
combining in single piece of art, 274–276
repairing, 291

imaging, brain, 13
IMDb dataset, 261–262
imdb function, 262
indentation, in Python code, 65–66
induction (inverse deduction), 34
industrial revolution, 332

342 Deep Learning For Dummies

information brokers, 333
Information loss image augmentation, 222
information overload, 333
innovation, data as supporting, 168
input gate, in LSTMs, 210
input images, neural style transfer, 275
input layer, neural networks, 139
input padding, 264
instance segmentation, 235
instance spotting, 235
instance-based algorithms, 39
integrated circuits (ICs), 165–166
Integrated Development Environments (IDEs), 55, 75.

See also Anaconda 3 environment
intelligence. See also artificial intelligence

defining, 11–12
versus learning, 15–16

introspection, in cognitive modeling, 13
inverse deduction (induction), 34
inversion, matrix, 101–102
Iris dataset, 139
iterations, 127, 128

J
Jupyter Notebook

accessing new environment in, 89–90
application, creating, 62–64
C++ build tools, 88
cells, 62–64
closing notebook, 59
code repository, defining, 56–61
comments, 66–69
creating notebook, 56–58
exporting notebook, 58
folder creation, 56, 57
Google Colaboratory use, 70–72
importing notebook, 60–61
indentation, 65–66
literate programming, 55
overview, 54
removing notebook, 59–60
saving notebook, 59
screenshots in book, 53

starting, 54–55
stopping, 56

K
Kaggle datasets and kernels, 70
Kasparov, Garry, 302
Keras

augmenting TensorFlow with, 318–319
building LeNet5 architecture with,

189–193
Conv2D layer, 186
GAN, building, 282–289
image augmentation, 222–223
language processing, 252
LSTM, 211
obtaining, 86–88
overview, 85–86
sentiment analysis, 261–267
traffic signs, distinguishing, 223–231
transfer learning, 199
transformations to manipulate text, 254–255

Keras-RetinaNet, 239, 241–245
keras-rl, 294, 299–302
kernels

convolution, 184, 185–186
Kaggle, 70

Kornblith, Simon, 219–220

L
L1 regularization (Lasso), 126, 221
L2 regularization (Ridge), 126, 221
LabelImg tool, 237
labeling

in image classification, 237
in machine learning, 43

LabelMe tool, 237
language processing

bag-of-words approach, 254–256
overview, 251–253
sentiment analysis, 261–267
transformations to manipulate text, 253–254
word embeddings, 251, 257–261

Index 343

language translation, 204–206, 258, 312
languages, programming, 20–21. See also specific

languages
Lasso (L1 regularization), 126, 221
layers

attention, 213
convolutional, 186–188, 193–195
in deep learning, 17, 172–173
neural networks, 138, 139, 140
pooling, 187–188
skip, 197
tensors, 103–104

Le, Quoc V., 219–220
LeakyReLU activation function, 160
learning. See also deep learning; machine learning;

reinforcement learning
approaches to, 33–40
human versus computer, 18
versus intelligence, 15–16
one-example-at-a-time approach, 127–130
as optimization, 93–94, 105
programming languages, 21
styles used to create algorithms, 28–30
unsupervised, 293

learning rates
backpropagation, 145
for neural network, setting, 150–151, 161
update strategy of perceptron, 134

LeCun, Yann, 170, 171, 179, 188–189, 194, 279
lemmatization, 253
LeNet5 architecture, 188–193, 218
Li, Fei-Fei, 196, 218
Lin, Tsung-Yi, 240
linalg.inv function, 102
linear (binary step) activation function, 137–138, 159
linear algebra manipulation functions, 99
linear models, 132. See also perceptron
linear regression

combining variables, 112–117
complex relations, dealing with, 119–121
example of, 116–117
features, modeling, 118–119
features, selecting correct, 112, 124–126
gradient descent, 115, 127

mixing variable types, 117–121
multiple, 111, 113–114, 115
one-example-at-a-time approach, 127–130
overview, 111–112
probabilities, 121–124
responses, modeling, 117–118
simple, 111, 112–113, 115
stochastic gradient descent, 127–130

link function, 122
Linux, installing Anaconda on, 47–48
literate programming, 55. See also Jupyter Notebook
Local Interpretable Model-Agnostic Explanations

(LIME), 44
local minima, 108, 145
localization, 233–234, 234–235
log loss, 106
logistic (sigmoid) activation function, 137–138, 153,

159, 210–211
logistic regression, 122–124
long short-term memory (LSTM)

architecture, 209–211
attention mechanism, 212–213
overview, 207–209
sentiment analysis, 265–266
variants, 211–212

loss functions (cost functions), 105–107, 144, 147
loss measures, neural style transfer, 275
low-end frameworks, 79–82

M
machine efficiency, 15
machine learning. See also deep learning; specific

machine learning applications
benefits of, 41–43
bias, 32–33
breakthroughs in, 40
complexity, 33
deep learning, relation to, 15–18
deep learning versus, 163–164, 171–176
defined, 26
generalization, 31–32, 41
learning approaches, 33–40
learning styles used to create algorithms, 28–30
limitations of, 43–44

344 Deep Learning For Dummies

machine learning (continued)

math in, 27–28
overview, 25–26
process of, 26–27
reinforcement learning algorithms, 30
self-supervised learning algorithms, 29–30
simplicity in, 33
supervised learning algorithms, 28–29
training, validating, and testing data, 30–31
true uses of, 40–44
unsupervised learning algorithms, 29

machine translation, 205–206, 312
MacOS, installing Anaconda on, 48–49
maintenance needs, predicting, 42
make_moons function, 155–156
management, deep learning in, 327–328
many to many RNN configuration, 205–206
many to one RNN configuration, 205
marketing, machine learning in, 41
mat function, 98
math. See also neural networks

data, working with, 94–95
data forms, 96
defined, 94
in machine learning, 27–28
matrix operations, 95–102
needed for deep learning, 94
optimization, 105–109
overview, 93–94
tensors, 102–104
vectorization, 104

MATLAB language, 20–21
MATLAB product, 20
matrix class, 98, 100
matrix computations, 95
matrix factorization, 259
matrixes

advanced operations, 100–102
bag-of-words approach, 254–256
creating, 97–98
defined, 96
identity, 102
inversion, 101–102
linear regression, 115

multiplication, 99–100
neural network architecture, defining, 151–152
operations, 97–102
overview, 95–96
reshaping vector into, 100–101
singular, 102
tensors, 102–104
transposition, 101
word embeddings, 258

MCTS (Monte Carlo Tree Search), 303–304
mean squared error, 106
Mechanical Turk, Amazon, 196, 237
medicine, deep learning in, 328–329
memory. See also long short-term memory

modeling sequences using, 202–204
in RL, 300
short-term, in RNNs, 204, 207–209, 210

Microsoft Cognitive Toolkit (CNTK), 81, 82, 324
Microsoft Common Objects in the Context (MS COCO)

dataset, 207, 220
Microsoft ResNet, 197
Microsoft Windows

C++ build tools, 88–89
installing Anaconda on, 49–53

Midi Net, 291
mini-batch (stochastic) updates, 109, 145
misclassified examples, perceptron handling of, 134
missing data, in linear regression, 118–119
mnist command, 190
MNIST dataset, 282–283
model zoos, 79, 238
Monte Carlo Tree Search (MCTS), 303–304
Moore’s Law, 165–167
Mordvintsev, Alexander, 195
movie reviews, sentiment analysis of,

261–267
multiclass classification problems, 224–231
multiline comments, 67–68, 69
multilingual applications, 258
multiple linear regression, 111, 113–114, 115
multiple RNNs, 204–205
multiple-object detection

overview, 233, 234–237
RetinaNet, testing, 239–245

Index 345

multiplication, matrix, 99–100
multiply function, 99, 100
music, generating from picture, 316
music composition, 277–278
MXNet framework, 81, 325

N
NATO Innovation Challenge, 241
natural disasters, predicting, 316
Natural Language Processing (NLP), 251, 252–253. See

also language processing
Neural Designer, 323–324
Neural Image Caption (NIC), Google, 207
Neural Information Processing Systems (NeurIPS)

conference, 279
neural networks. See also Convolutional Neural

Networks; deep learning; Recurrent Neural
Networks; specific neural network applications;
weights, neural network

activation function, choosing, 149, 158–160
architecture of, 138–139, 151–152
backpropagation, 143–145
competition between, in GANs, 280–282
connections, 140, 142
core functionalities, coding, 153–155
feed-forward process, 138–140, 141–142, 153–154
versus human learning, 18
image feature creation, 182–183
images, connecting directly to, 181
layers, 140, 172–173
learning rate, setting, 150–151, 161
LeNet5 architecture, 190–193
neurons, 35, 136–138
optimizers, 150–151, 160–161
overfitting, 146–147
overview, 17, 35, 36–37, 131–132, 149
perceptron, 132–136
tensors, 103–104
testing, 155–158
understanding, 150–151
updating, 109

neural style transfer, 195–196, 275–276, 290
neurons

activation functions, 137–138, 158
dead, 175

in deep learning, 17
defined, 151
human visual perception, 183
in neural networks, 35, 136–138
regularization by dropout, 175–176
saturation of, 152

n-grams, 254, 259
Noise addition image augmentation, 222
nonlinearly separable data, 135–136
nonprogramming solutions, for deep learning, 19–20
normalization, 253, 254, 257, 283
Notebook. See Jupyter Notebook
numeric estimates, transforming into probabilities,

122–124
numeric values, in neural networks, 139
NumPy library

advanced matrix operations, 100–102
matrix creation, 97–98
matrix multiplication, 99–100
overview, 97
tensors, 102–104
vectorization, 104

NVIDIA, 239

O
object categorization, 111–112
object recognition. See image recognition
Occam’s Razor, 33
occupations using deep learning

analysis, 331
architecture, 333–334
customer support, 329–330
data, seeing in new ways, 330–331
device development, 329
information broker, 333
management, 327–328
medicine, 328–329
overview, 327
safety, enhancing, 334
work environment, improving, 331–332

Octave language, 20–21
Olah, Chris, 195
one to many RNN configuration, 205
one to one RNN configuration, 205

346 Deep Learning For Dummies

1-D pooling, 188
one-hot encoding, 118, 255, 256
ones function, 98
one-stage detection, 236, 239–245
online learning, 176–177
online mode, weight updates, 145
OpenAI Gym, 293–294, 296–299
operations, math, 97–102
optimization

versus backpropagation, 143
cost functions, 105–106
error correction, 106–107
gradient descent, 107–109, 115
learning as, 93–94, 105
updating, 109

optimizers, neural network, 150–151,
160–161

Oracle Global Human Resources Cloud, 328
ordinate, 113
out of core learning, 145
outliers, 119
output gate, in LSTMs, 210
output layer, neural networks, 139
overfitting

generalization, 31–32, 107
image augmentation for, 221–223
ImageNet dataset, 219
overview, 132
regularization, 125–126
solving, 146–147

P
packages, Python, 46
pad_sequences function, 264
padding

convoluted images, 184, 185
input, 264

paradigms, 17
parallelism, 170
Pascal Sentence Dataset, 206–207
PASCAL VOC (Visual Object Classes) dataset, 220
pastiches, 276
PATH environment variable, 51–52
pattern recognition, 36

peephole connections, in LSTM variants, 211
perceptron

functionality, 132–134
neurons as evolution of, 136–137
nonlinearly separable data, 135–136
overview, 131, 132, 171
update strategy of, 134–136

person poses, 310–311
perturbations, 248
Pix2Pix, 291
platform-specific issues, 3
policy, in RL, 300, 301
policy networks, AlphaGo, 304
polynomial expansion, 120–121
pooling convolutional layers, 187–188
Pose Guided Person Image Generation, 290
PoseNet library, 311
pos-tagging text, 253
post-processing, 238
precision, RetinaNet object detection, 244
predict function, 155
predictors, in linear regression, 111, 113
PReLU (Parametric Rectified Linear Unit) activation

function, 160
pretrained networks

for language processing, 258
neural style transfer, 275–276
segmentation, 238
transfer learning, 197–199

privacy, AI and, 322
probabilities

in linear regression, 121–124
softmax in neural networks, 139–140

problem domains, 74–75
processing speed, improving, 163, 169–171
product marketing, 41
programming, literate, 55. See also Jupyter Notebook
programming environment, 19–21
programming languages, 20–21. See also specific

languages
psychological testing, 13
Python. See also Anaconda 3 environment

application, creating, 62–64
breaking changes, 46
C++ build tools, 88–89

Index 347

cloud-related activities, 70–72
code repository, defining, 56–61
comments, 66–69
datasets, getting and using, 61–62
help resources, 69
hype associated with deep learning, avoiding, 22
indentation, 65–66
Jupyter Notebook, 54–61
knowledge needed to work with book, 3
linear regression example, 116–117
literate programming, 55
matrix operations, 97–102
neural network architecture in, 151–152
neural network core functionalities in, 153–155
neural network, testing, 155–158
versus other languages for deep learning, 20–21
overview, 45–46
packages, 46
working with, 46

PyTorch framework, 80–81, 320–321

Q
Q-learning, 169, 296, 299–302
qualitative variables, 117–118, 139

R
R language, 20–21
R2 (coefficient of determination), 116, 124–125
Random crop image augmentation, 222
random sampling, SGD, 128
rational processes, in AI, 13, 14
realistic output, cost of, 229
recognition, image. See image recognition
recommender systems, 36, 41
Recurrent Neural Networks (RNNs)

caption generation, 206–207
language processing, 252, 256
long short-term memory, 207–213
modeling sequences using memory, 202–204
multiple, 204–205
overview, 201–204
recognizing and translating speech, 204–206
sentiment analysis, 261–267

recursion, 35, 203
region of interest, 236
regression, linear. See linear regression
regression algorithms, 39
regression beta, 113
regression line, 115
regression problems, 28–29
regression result, 122
regressor model, 235
regularization, 39, 125–126, 146–147, 175–176
reinforcement learning (RL)

algorithms for, 30
AlphaGo, 293, 294, 302–306
basics of, 294–296
keras-rl, 299–302
overview, 293–294
simulating game environments, 296–299

Rekognition, Amazon, 322
ReLU (Rectified Linear Units) activation function, 137,

159–160, 174–175, 179, 192
Remember icon, explained, 4
reminders, using comments to leave, 68
reordering image dimensions, 223
repository, defining code, 56–61
representation capability, 143
rescaling images, 223
reset gate, GRUs, 211
reshape function, 100–101
residuals, 119
ResNet, Microsoft, 197
resource scheduling, 14
responses, modeling with linear regression, 117–118
RetinaNet object detection, 239–245
rewards, in RL, 295
RGB images, 181, 183
Ridge (L2 regularization), 126, 221
Rosenblatt, Frank, 132–133, 136
Rotation image augmentation, 222

S
saddle points, 108
safety systems, 15, 334
sales predictions, 42
same padding, 184

348 Deep Learning For Dummies

sampling, to solve unbalanced classification, 240
saturation of neurons, 152
saving notebooks, 59
scalars, 95, 96
Schmidhuber, Jürgen, 208
Schubert, Ludwig, 195
scientific innovation, data as supporting, 168
Scikit-learn library, 61–62, 116–117, 118
screenshots, in book, 53
second-order optimization, 161
Sedol, Lee, 303
segmentation, 233–235, 237–238, 240
segmentation models package, 238
self-driving cars, 22, 239–245
self-learning, 304–306. See also reinforcement

learning
self-supervised learning algorithms, 29–30
semantic segmentation, 233–235, 237–238, 240
semantic similarity, 258
semantics, understanding by word embeddings,

257–261
semi-supervised learning, 30
sentiment analysis, 203, 261–267
sequence labeling, 205
sequences, processing, 202–204. See also Recurrent

Neural Networks
SGD (stochastic gradient descent), 127–130
shapes, detecting from images, 193–199
sharing notebooks, 58
Shlens, Jonathon, 219–220
short-term memory, in RNNs, 204, 207–209, 210
Show and Tell network, Google, 207
sigmoid (logistic) activation function, 137–138, 153,

159, 210–211
Silver, David, 304
simple linear regression, 111, 112–113, 115
simplicity, in machine learning, 33
simulating game environments, 296–299
single-line comments, 67, 69
single-object classification. See image recognition
singular (degenerate) matrixes, 102
skip layers, 197
skip-gram version, Word2vec, 259
sliding window technique, 236
Smoothie 3-D, 315

softmax, neural networks, 139–140
solar savings potential, estimating, 312–313
solutions, deep learning, 19–20, 22
solving by closed form, 115
sparse data problems, 257–258
speech recognition, 204–206
standard normal distribution, 152
standardization, image, 223
start-up ecosystem, deep learning, 22
state

in RL, 295
RNNs, 204, 209

static graphs, 83
statistics, role in computer generated art, 272–273.

See also linear regression
stemming, text, 253
stickers, adversarial examples in form of, 249
stochastic (mini-batch) updates, 109, 145
stochastic gradient descent (SGD), 127–130
stop word removal, text, 253
stride, convolution, 184, 185
structured data, 164–165
style images, 275
style loss, neural style transfer, 275
style transfer, artistic, 195–196, 271, 276
SUN dataset, 220
Super Resolution GAN (SRGAN), 290
supervised learning algorithms, 28–30
Support Vector Machines (SVM), 39
symbolic reasoning, 34

T
tangent hyperbolic (tanh) activation function,

137–138, 159, 192, 210–211
TD-Gammon, 295
Technical Stuff icon, explained, 4
Tensor Processing Units (TPUs), 78
TensorBoard extension, TensorFlow, 84
TensorFlow framework

accessing new environment in Notebook, 89–90
augmenting with Keras, 318–319
benefits of using, 82–84
C++ build tools, 88–89
cloud options, 78

Index 349

Colab support, 83
define and run approach, 80
define-by-run approach, 80
Fold extension, 83
GAN, building, 282–289
Keras, 85–86
LSTM, 211
obtaining, 86–88
overview, 74, 82
sentiment analysis, 261–267
TensorBoard extension, 84
TFLearn, 84–85
traffic signs, distinguishing, 223–231

tensors, 102–104
Term Frequency-Inverse Document Frequency

(TF-IDF) score, 255–256
Tesauro, Gerald, 295
testing

data, in machine learning, 30–31
neural networks, 155–158
RetinaNet object detection, 239–245

tetrachromats, 181
text. See also language processing

sentiment analysis of, 261–267
transformations to manipulate, 253–254

texts_to_matrix method, 256
TFLearn package, 84–85
Theano, 80, 317–318
thinking

human, in AI, 12–13
rational, in AI, 13

3-D art, generating, 315
3-D pooling, 188
three-dimensional matrixes, 97–98
Tip icon, explained, 3
tokenization, 253, 254
Tokenizer function, 254–255, 256, 263
Torch, 319–320
Total Turing Test, 12
TPUs (Tensor Processing Units), 78
traffic accidents, predicting, 331
traffic signs, distinguishing

classification task, running, 228–231
overview, 218, 223–224
preparing image data, 224–227

training data
generalization, 31–32
image recognition, 228–231
introducing bias, 33
in machine learning, 26, 28, 30–31, 43
optimization, 107

transfer learning, 177, 197–199, 219–220
transformations to manipulate text, 253–254
Transformer attention mechanism, Google, 213
translation, language, 204–206, 258, 312
translation invariance, 182, 193
transpose function, 101
transposition, matrix, 101
tri-grams, 254
triple-quoted strings, 67
Turing Test, 12
tutorial kernels, Kaggle, 70
2-D pooling, 188
two-dimensional matrixes, 97
two-stage detection, 236

U
Uber, 297
unbalanced learning, 240
underfitted models, 31
U-NETs, 238
universal approximators, neural networks as,

143, 172
University of Toronto, 173–175
unstructured data, 164–165
unsupervised learning, 29, 30, 293
update gate, GRUs, 211
updates

book, 4
CNN architecture, 196–197
perceptron strategy for, 134–136
weight, in neural networks, 109,

145, 155
upsampling, 240

V
valid padding, 184
validating data, 30–31, 228–231
value networks, AlphaGo, 304

350 Deep Learning For Dummies

value-based learning, 300
vanishing gradients, 159, 173, 174, 208
variables, in linear regression

combining, 112–117
mixing types of, 117–121

vectAdd function, 104
vectorization, 104
vectors

defined, 96
overview, 95
reshaping into matrix, 100–101
word, 260–261

version numbers, Python packages, 46
VGG-19 pretrained network, 275–276
VGGNet architecture, 197
virtualenv environment product, 86
visual art. See art, generating
visual perception, 183
visual recognition. See image recognition
visual relationship detection, 245
Visual Studio C++ build tools, 88–89
visualizing convolutions, 194–196
vocabulary size, for language processing, 254–255
voice generation, 314
voice interface, in automobiles, 18
voice recognition, 314

W
w vector (coefficient vector), perceptron, 133, 134
wait time prediction, 16
Warning icon, explained, 3
weighted summation meaning of regression, 114

weighting tensors, 103–104
weights, neural network

basic architecture, 151–152
connections between neurons, 140
constraining, 221
defined, 35
feed-forward process, 142
image recognition, 227
updates, 109, 145, 155

Wiesel, Torsten, 183
Windows, Microsoft

C++ build tools, 88–89
installing Anaconda on, 49–53

winters, AI, 133, 163, 189, 218
Wissner-Gross, Alexander, 168–169
word embeddings, 251, 257–261, 265
word vectors, 260–261
Word2vec, 259, 260–261
work environment, improving, 331–332

X
XOR (exclusive or), 136–137

Y
Yao, Mariya, 247

Z
ZCA whitening, 223
Zubarev, Vasily, 206
Zuckerberg, Mark, 322

About the Authors
John Mueller is a freelance author and technical editor. He has writing in his blood,
having produced 112 books and more than 600 articles to date. The topics range from
networking to artificial intelligence and from database management to heads-down
programming. Some of his current books include discussions of data science, machine
learning, and algorithms. His technical editing skills have helped more than
70 authors refine the content of their manuscripts. John has provided technical edit-
ing services to various magazines, performed various kinds of consulting, and writes
certification exams. Be sure to read John’s blog at http://blog.johnmuellerbooks.
com/. You can reach John on the Internet at John@JohnMuellerBooks.com. John also
has a website at http://www.johnmuellerbooks.com/. Be sure to follow John on
Amazon at https://www.amazon.com/John-Mueller/.

Luca Massaron is a data scientist and marketing research director who specializes
in multivariate statistical analysis, machine learning, and customer insight, with
more than a decade of experience in solving real-world problems and generating
value for stakeholders by applying reasoning, statistics, data mining, and algo-
rithms. Starting from being a pioneer of web audience analysis in Italy to achiev-
ing the rank of top-ten Kaggler on kaggle.com, he has always been passionate
about everything regarding data and analysis and about demonstrating the poten-
tiality of data-driven knowledge discovery to both experts and non experts.
Favoring simplicity over unnecessary sophistication, he believes that a lot can be
achieved in data science by understanding and practicing the essentials of it. Luca
is also a Google Developer Expert (GDE) in machine learning.

John’s Dedication
This book is dedicated to my exceptionally kind neighbors, Donnie and Shannon
Thompson. They redefined the term neighbor for me in so many ways that I’ve
lost count.

Luca’s Dedication
I would like to dedicate this book to my family, Yukiko and Amelia, to my parents,
Renzo and Licia, and to Yukiko’s family, Yoshiki, Takayo, and Makiko.

http://blog.johnmuellerbooks.com/
http://blog.johnmuellerbooks.com/
mailto:John@JohnMuellerBooks.com
http://www.johnmuellerbooks.com/
https://www.amazon.com/John-Mueller/

John’s Acknowledgments
Thanks to my wife, Rebecca. Even though she is gone now, her spirit is in every
book I write, in every word that appears on the page. She believed in me when no
one else would.

Russ Mullen deserves thanks for his technical edit of this book. He greatly added
to the accuracy and depth of the material you see here. Russ worked exceptionally
hard helping with the research for this book by locating hard-to-find URLs and
also offering a lot of suggestions.

Matt Wagner, my agent, deserves credit for helping me get the contract in the first
place and taking care of all the details that most authors don’t really consider. I
always appreciate his assistance. It’s good to know that someone wants to help.

A number of people read all or part of this book to help me refine the approach,
test scripts, and generally provide input that all readers wish they could have.
These unpaid volunteers helped in ways too numerous to mention here. I espe-
cially appreciate the efforts of Eva Beattie, Glenn A. Russell, Mr. Osvaldo Téllez
Almirall, and Simone Scardapane, who provided general input, read the entire
book, and selflessly devoted themselves to this project.

Finally, I would like to thank Katie Mohr, Susan Christophersen, and the rest of
the editorial and production staff.

Luca’s Acknowledgments
My greatest thanks go to my family, Yukiko and Amelia, for their support and lov-
ing patience. I also want to thank Simone Scardapane, an assistant professor at
Sapienza University (Rome) and a fellow Google Developer Expert, who provided
invaluable feedback during the writing of this book.

Publisher’s Acknowledgments

Associate Publisher: Katie Mohr

Project Manager and Copy Editor:
Susan Christophersen

Technical Editor: Russ Mullen

Sr. Editorial Assistant: Cherie Case

Production Editor: Mohammed Zafar Ali

Cover Image: © agsandrew/Shutterstock

Take dummies with you
everywhere you go!
Whether you are excited about e-books, want more

from the web, must have your mobile apps, or are swept
up in social media, dummies makes everything easier.

dummies.com

Find us online!

9781119187790
USA $26.00
CAN $31.99
UK £19.99

9781119179030
USA $21.99
CAN $25.99
UK £16.99

9781119293354
USA $24.99
CAN $29.99
UK £17.99

9781119293347
USA $22.99
CAN $27.99
UK £16.99

9781119310068
USA $22.99
CAN $27.99
UK £16.99

9781119235606
USA $24.99
CAN $29.99
UK £17.99

9781119251163
USA $24.99
CAN $29.99
UK £17.99

9781119235491
USA $26.99
CAN $31.99
UK £19.99

9781119279952
USA $24.99
CAN $29.99
UK £17.99

9781119283133
USA $24.99
CAN $29.99
UK £17.99

9781119287117
USA $24.99
CAN $29.99
UK £16.99

9781119130246
USA $22.99
CAN $27.99
UK £16.99

PERSONAL ENRICHMENT

9781119311041
USA $24.99
CAN $29.99
UK £17.99

9781119255796
USA $39.99
CAN $47.99
UK £27.99

9781119293439
USA $26.99
CAN $31.99
UK £19.99

9781119281467
USA $26.99
CAN $31.99
UK £19.99

9781119280651
USA $29.99
CAN $35.99
UK £21.99

9781119251132
USA $24.99
CAN $29.99
UK £17.99

9781119310563
USA $34.00
CAN $41.99
UK £24.99

9781119181705
USA $29.99
CAN $35.99
UK £21.99

9781119263593
USA $26.99
CAN $31.99
UK £19.99

9781119257769
USA $29.99
CAN $35.99
UK £21.99

9781119293477
USA $26.99
CAN $31.99
UK £19.99

9781119265313
USA $24.99
CAN $29.99
UK £17.99

9781119239314
USA $29.99
CAN $35.99
UK £21.99

9781119293323
USA $29.99
CAN $35.99
UK £21.99

PROFESSIONAL DEVELOPMENT

dummies.com

WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Title Page
	Copyright Page
	Table of Contents
	Introduction
	About This Book
	Foolish Assumptions
	Icons Used in This Book
	Beyond the Book
	Where to Go from Here

	Part 1 Discovering Deep Learning
	Chapter 1 Introducing Deep Learning
	Defining What Deep Learning Means
	Starting from Artificial Intelligence
	Considering the role of AI
	Focusing on machine learning
	Moving from machine learning to deep learning

	Using Deep Learning in the Real World
	Understanding the concept of learning
	Performing deep learning tasks
	Employing deep learning in applications

	Considering the Deep Learning Programming Environment
	Overcoming Deep Learning Hype
	Discovering the start-up ecosystem
	Knowing when not to use deep learning

	Chapter 2 Introducing the Machine Learning Principles
	Defining Machine Learning
	Understanding how machine learning works
	Understanding that it’s pure math
	Learning by different strategies
	Training, validating, and testing data
	Looking for generalization
	Getting to know the limits of bias
	Keeping model complexity in mind

	Considering the Many Different Roads to Learning
	Understanding there is no free lunch
	Discovering the five main approaches
	Delving into some different approaches
	Awaiting the next breakthrough

	Pondering the True Uses of Machine Learning
	Understanding machine learning benefits
	Discovering machine learning limits

	Chapter 3 Getting and Using Python
	Working with Python in this Book
	Obtaining Your Copy of Anaconda
	Getting Continuum Analytics Anaconda
	Installing Anaconda on Linux
	Installing Anaconda on MacOS
	Installing Anaconda on Windows

	Downloading the Datasets and Example Code
	Using Jupyter Notebook
	Defining the code repository
	Getting and using datasets

	Creating the Application
	Understanding cells
	Adding documentation cells
	Using other cell types

	Understanding the Use of Indentation
	Adding Comments
	Understanding comments
	Using comments to leave yourself reminders
	Using comments to keep code from executing

	Getting Help with the Python Language
	Working in the Cloud
	Using the Kaggle datasets and kernels
	Using the Google Colaboratory

	Chapter 4 Leveraging a Deep Learning Framework
	Presenting Frameworks
	Defining the differences
	Explaining the popularity of frameworks
	Defining the deep learning framework
	Choosing a particular framework

	Working with Low-End Frameworks
	Caffe2
	Chainer
	PyTorch
	MXNet
	Microsoft Cognitive Toolkit/CNTK

	Understanding TensorFlow
	Grasping why TensorFlow is so good
	Making TensorFlow easier by using TFLearn
	Using Keras as the best simplifier
	Getting your copy of TensorFlow and Keras
	Fixing the C++ build tools error in Windows
	Accessing your new environment in Notebook

	Part 2 Considering Deep Learning Basics
	Chapter 5 Reviewing Matrix Math and Optimization
	Revealing the Math You Really Need
	Working with data
	Creating and operating with a matrix

	Understanding Scalar, Vector, and Matrix Operations
	Creating a matrix
	Performing matrix multiplication
	Executing advanced matrix operations
	Extending analysis to tensors
	Using vectorization effectively

	Interpreting Learning as Optimization
	Exploring cost functions
	Descending the error curve
	Learning the right direction
	Updating

	Chapter 6 Laying Linear Regression Foundations
	Combining Variables
	Working through simple linear regression
	Advancing to multiple linear regression
	Including gradient descent
	Seeing linear regression in action

	Mixing Variable Types
	Modeling the responses
	Modeling the features
	Dealing with complex relations

	Switching to Probabilities
	Specifying a binary response
	Transforming numeric estimates into probabilities

	Guessing the Right Features
	Defining the outcome of incompatible features
	Solving overfitting using selection and regularization

	Learning One Example at a Time
	Using gradient descent
	Understanding how SGD is different

	Chapter 7 Introducing Neural Networks
	Discovering the Incredible Perceptron
	Understanding perceptron functionality
	Touching the nonseparability limit

	Hitting Complexity with Neural Networks
	Considering the neuron
	Pushing data with feed-forward
	Going even deeper into the rabbit hole
	Using backpropagation to adjust learning

	Struggling with Overfitting
	Understanding the problem
	Opening the black box

	Chapter 8 Building a Basic Neural Network
	Understanding Neural Networks
	Defining the basic architecture
	Documenting the essential modules
	Solving a simple problem

	Looking Under the Hood of Neural Networks
	Choosing the right activation function
	Relying on a smart optimizer
	Setting a working learning rate

	Chapter 9 Moving to Deep Learning
	Seeing Data Everywhere
	Considering the effects of structure
	Understanding Moore’s implications
	Considering what Moore’s Law changes

	Discovering the Benefits of Additional Data
	Defining the ramifications of data
	Considering data timeliness and quality

	Improving Processing Speed
	Leveraging powerful hardware
	Making other investments

	Explaining Deep Learning Differences from Other Forms of AI
	Adding more layers
	Changing the activations
	Adding regularization by dropout

	Finding Even Smarter Solutions
	Using online learning
	Transferring learning
	Learning end to end

	Chapter 10 Explaining Convolutional Neural Networks
	Beginning the CNN Tour with Character Recognition
	Understanding image basics

	Explaining How Convolutions Work
	Understanding convolutions
	Simplifying the use of pooling
	Describing the LeNet architecture

	Detecting Edges and Shapes from Images
	Visualizing convolutions
	Unveiling successful architectures
	Discussing transfer learning

	Chapter 11 Introducing Recurrent Neural Networks
	Introducing Recurrent Networks
	Modeling sequences using memory
	Recognizing and translating speech
	Placing the correct caption on pictures

	Explaining Long Short-Term Memory
	Defining memory differences
	Walking through the LSTM architecture
	Discovering interesting variants
	Getting the necessary attention

	Part 3 Interacting with Deep Learning
	Chapter 12 Performing Image Classification
	Using Image Classification Challenges
	Delving into ImageNet and MS COCO
	Learning the magic of data augmentation

	Distinguishing Traffic Signs
	Preparing image data
	Running a classification task

	Chapter 13 Learning Advanced CNNs
	Distinguishing Classification Tasks
	Performing localization
	Classifying multiple objects
	Annotating multiple objects in images
	Segmenting images

	Perceiving Objects in Their Surroundings
	Discovering how RetinaNet works
	Using the Keras-RetinaNet code

	Overcoming Adversarial Attacks on Deep Learning Applications
	Tricking pixels
	Hacking with stickers and other artifacts

	Chapter 14 Working on Language Processing
	Processing Language
	Defining understanding as tokenization
	Putting all the documents into a bag

	Memorizing Sequences that Matter
	Understanding semantics by word embeddings

	Using AI for Sentiment Analysis

	Chapter 15 Generating Music and Visual Art
	Learning to Imitate Art and Life
	Transferring an artistic style
	Reducing the problem to statistics
	Understanding that deep learning doesn’t create

	Mimicking an Artist
	Defining a new piece based on a single artist
	Combining styles to create new art
	Visualizing how neural networks dream
	Using a network to compose music

	Chapter 16 Building Generative Adversarial Networks
	Making Networks Compete
	Finding the key in the competition
	Achieving more realistic results

	Considering a Growing Field
	Inventing realistic pictures of celebrities
	Enhancing details and image translation

	Chapter 17 Playing with Deep Reinforcement Learning
	Playing a Game with Neural Networks
	Introducing reinforcement learning
	Simulating game environments
	Presenting Q-learning

	Explaining Alpha-Go
	Determining if you’re going to win
	Applying self-learning at scale

	Part 4 The Part of Tens
	Chapter 18 Ten Applications that Require Deep Learning
	Restoring Color to Black-and-White Videos and Pictures
	Approximating Person Poses in Real Time
	Performing Real-Time Behavior Analysis
	Translating Languages
	Estimating Solar Savings Potential
	Beating People at Computer Games
	Generating Voices
	Predicting Demographics
	Creating Art from Real-World Pictures
	Forecasting Natural Catastrophes

	Chapter 19 Ten Must-Have Deep Learning Tools
	Compiling Math Expressions Using Theano
	Augmenting TensorFlow Using Keras
	Dynamically Computing Graphs with Chainer
	Creating a MATLAB-Like Environment with Torch
	Performing Tasks Dynamically with PyTorch
	Accelerating Deep Learning Research Using CUDA
	Supporting Business Needs with Deeplearning4j
	Mining Data Using Neural Designer
	Training Algorithms Using Microsoft Cognitive Toolkit (CNTK)
	Exploiting Full GPU Capability Using MXNet

	Chapter 20 Ten Types of Occupations that Use Deep Learning
	Managing People
	Improving Medicine
	Developing New Devices
	Providing Customer Support
	Seeing Data in New Ways
	Performing Analysis Faster
	Creating a Better Work Environment
	Researching Obscure or Detailed Information
	Designing Buildings
	Enhancing Safety

	Index
	EULA

©

Deep Learning
-4

