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Introduction

When you talk to some people about deep learning, they think of some 
deep dark mystery, but deep learning really isn’t a mystery at all — you 
use it every time you talk to your smartphone, so you have it with you 

every day. In fact, you find deep learning used everywhere. For example, you see 
it when using many applications online and even when you shop. You are 
 surrounded by deep learning and don’t even realize it, which makes learning 
about deep learning essential because you can use it to do so much more than you 
might think possible.

Other people have another view of deep learning that has no basis in reality. They 
think that somehow deep learning will be responsible for some dire apocalypse, 
but that really isn’t possible with today’s technology. More likely is that someone 
will find a way to use deep learning to create fake people in order to commit 
crimes or to bilk the government out of thousands of dollars. However, killer 
robots are most definitely not part of the future.

Whether you’re part of the mystified crowd or the killer robot crowd, we hope that 
you’ll read Deep Learning For Dummies with the goal of understanding what deep 
learning can actually do. This technology can probably do a lot more in the way of 
mundane tasks than you think possible, but it also has limits, and you need to 
know about both.

About This Book
When you work through Deep Learning For Dummies, you gain access to a lot of 
example code that will run on a standard Mac, Linux, or Windows system. You can 
also run the code online using something like Google Colab. (We provide pointers 
on how to get the information you need to do this.) Special equipment, such as a 
GPU, will make the examples run faster. However, the point of this book is that 
you can create deep learning code no matter what sort of machine you have as 
long as you’re willing to wait for some of it to complete. (We tell you which exam-
ples take a long time to run.)



The first part of this book gives you some starter information so that you don’t get 
completely lost before you start. You discover how to install the various products 
you need and gain an understanding of some essential math. The beginning 
examples are more along the lines of standard regression and machine learning, 
but you need this basis to gain a full appreciation of just what deep learning can 
do for you.

After you get past these initial bits of information, you start to do some pretty 
amazing things. For example, you discover how to generate your own art and per-
form other tasks that you might have assumed to require many of coding and 
some special hardware to accomplish. By the end of the book, you’ll be amazed by 
what you can do, even if you don’t have an advanced machine learning or deep 
learning degree.

To make absorbing the concepts even easier, this book uses the following 
conventions:

 » Text that you’re meant to type just as it appears in the book is in bold. The 
exception is when you’re working through a step list: Because each step is 
bold, the text to type is not bold.

 » When you see words in italics as part of a typing sequence, you need to 
replace that value with something that works for you. For example, if you 
see “Type Your Name and press Enter,” you need to replace Your Name with 
your actual name.

 » Web addresses and programming code appear in monofont. If you’re reading 
a digital version of this book on a device connected to the Internet, you can 
click or tap the web address to visit that website, like this: http://www.
dummies.com.

 » When you need to type command sequences, you see them separated 
by a special arrow, like this: File ➪ New File. In this example, you go to the 
File menu first and then select the New File entry on that menu.

Foolish Assumptions
You might find it difficult to believe that we’ve assumed anything about you — 
after all, we haven’t even met you yet! Although most assumptions are indeed 
foolish, we made these assumptions to provide a starting point for the book.
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You need to be familiar with the platform you want to use because the book doesn’t  
offer any guidance in this regard. (Chapter 3 does, however, provide Anaconda 
installation instructions, and Chapter  4 helps you install the TensorFlow and 
Keras frameworks used for this book.) To give you the maximum information 
about Python concerning how it applies to deep learning, this book doesn’t  
discuss any platform-specific issues. You really do need to know how to install 
applications, use applications, and generally work with your chosen platform 
before you begin working with this book.

You must know how to work with Python. You can find a wealth of tutorials online 
(see https://www.w3schools.com/python/ and https://www.tutorialspoint.
com/python/ as examples).

This book isn’t a math primer. Yes, you see many examples of complex math,  
but the emphasis is on helping you use Python to perform deep learning tasks 
rather than teaching math theory. We include some examples that also discuss the 
use of machine learning as it applies to deep learning. Chapters 1 and 2 give you a 
better understanding of precisely what you need to know to use this book 
successfully.

This book also assumes that you can access items on the Internet. Sprinkled 
throughout are numerous references to online material that will enhance your 
learning experience. However, these added sources are useful only if you actually 
find and use them.

Icons Used in This Book
As you read this book, you see icons in the margins that indicate material of inter-
est (or not, as the case may be).This section briefly describes each icon in this 
book.

Tips are nice because they help you save time or perform some task without a lot 
of extra work. The tips in this book are time-saving techniques or pointers to 
resources that you should try so that you can get the maximum benefit from 
Python or from performing deep learning–related tasks.

We don’t want to sound like angry parents or some kind of maniacs, but you 
should avoid doing anything that’s marked with a Warning icon. Otherwise, you 
might find that your application fails to work as expected, you get incorrect 
answers from seemingly bulletproof algorithms, or (in the worst-case scenario) 
you lose data.
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Whenever you see this icon, think advanced tip or technique. You might find these 
tidbits of useful information just too boring for words, or they could contain the 
solution you need to get a program running. Skip these bits of information when-
ever you like.

If you don’t get anything else out of a particular chapter or section, remember the 
material marked by this icon. This text usually contains an essential process or a 
bit of information that you must know to work with Python or to perform deep 
learning–related tasks successfully.

Beyond the Book
This book isn’t the end of your Python or deep learning experience — it’s really 
just the beginning. We provide online content to make this book more flexible and 
better able to meet your needs. That way, as we receive e-mail from you, we can 
address questions and tell you how updates to either Python or its associated add-
ons affect book content. In fact, you gain access to all these cool additions:

 » Cheat sheet: You remember using crib notes in school to make a better mark 
on a test, don’t you? You do? Well, a cheat sheet is sort of like that. It provides 
you with some special notes about tasks that you can do with Python, machine 
learning, and data science that not every other person knows. You can find the 
cheat sheet by going to www.dummies.com, searching this book’s title, and 
scrolling down the page that appears. The cheat sheet contains really neat 
information such as the most common programming mistakes that cause 
people woe when using Python.

 » Updates: Sometimes changes happen. For example, we might not have seen 
an upcoming change when we looked into our crystal ball during the writing 
of this book. In the past, this possibility simply meant that the book became 
outdated and less useful, but you can now find updates to the book by 
searching this book’s title at www.dummies.com.

In addition to these updates, check out the blog posts with answers to reader 
questions and demonstrations of useful book-related techniques at http://
blog.johnmuellerbooks.com/.

 » Companion files: Hey! Who really wants to type all the code in the book and 
reconstruct all those neural networks manually? Most readers would prefer to 
spend their time actually working with Python, performing machine learning 
or deep learning tasks, and seeing the interesting things they can do, rather 
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than typing. Fortunately for you, the examples used in the book are available 
for download, so all you need to do is read the book to learn Python for deep 
learning usage techniques. You can find these files at www.dummies.com. 
Search this book’s title, and on the page that appears, scroll down to the 
image of the book cover and click it. Then click the More about This Book 
button and on the page that opens, go to the Downloads tab.

Where to Go from Here
It’s time to start your Python for deep learning adventure! If you’re completely 
new to Python and its use for deep learning tasks, you should start with Chapter 1 
and progress through the book at a pace that allows you to absorb as much of the 
material as possible.

If you’re a novice who’s in an absolute rush to get going with Python for deep 
learning as quickly as possible, you can skip to Chapter 3 with the understanding 
that you may find some topics a bit confusing later. Skipping to Chapter 4 is okay 
if you already have Anaconda (the programming product used in the book) 
installed, but be sure to at least skim Chapter 3 so that you know what assump-
tions we made when writing this book.

This book relies on a combination of TensorFlow and Keras to perform deep 
 learning tasks. Even if you’re an advanced reader, you need to go to Chapter 4 to 
discover how to configure the environment used for this book. Failure to configure 
the environment according to instructions will almost certainly cause failures 
when you try to run the code.
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1Discovering 
Deep Learning



IN THIS PART . . .

Understand how deep learning impacts the world 
around us.

Consider the relationship between deep learning and 
machine learning.

Create a Python setup of your own.

Define the need for a framework in deep learning.
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Chapter 1
Introducing Deep 
Learning

You have probably heard a lot about deep learning. The term appears all over 
the place and seems to apply to everything. In reality, deep learning is a sub-
set of machine learning, which in turn is a subset of artificial intelligence (AI). 

The first goal of this chapter is to help you understand what deep learning is really 
all about and how it applies to the world today. You may be surprised to learn that 
deep learning isn’t the only game in town; other methods of analyzing data exist. In 
fact, deep learning meets a specific set of needs when it comes to data analysis, so 
you might be using other methods and not even know it.

Deep learning is just a subset of AI, but it’s an important subset. You see deep 
learning techniques used for a number of tasks, but not every task. In fact, some 
people associate deep learning with tasks that it can’t perform. The next step in 
discovering deep learning is to understand what it can and can’t do for you.

As part of working with deep learning in this book, you write applications that rely 
on deep learning to process data and then produce a desired output. Of course, you 
need to know a little about the programming environment before you can do 
much. Even though Chapter 3 discusses how to install and configure Python, the 
language used to demonstrate deep learning in this book, you first need to know 
a little more about the options available to you.

IN THIS CHAPTER

 » Understanding deep learning

 » Working with deep learning

 » Developing deep learning 
applications

 » Considering deep learning limitations
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The chapter closes with a discussion of why deep learning shouldn’t be the only 
data processing technique in your toolkit. Yes, deep learning can perform amazing 
tasks when used appropriately, but it can also cause serious problems when applied 
to problems that it doesn’t support well. Sometimes you need to look to other tech-
nologies to perform a given task, or figure out which technologies to use with deep 
learning to provide a more efficient and elegant solution to specific problems.

Defining What Deep Learning Means
An understanding of deep learning begins with a precise definition of terms. 
Otherwise, you have a hard time separating the media hype from the realities of 
what deep learning can actually provide. Deep learning is part of both AI and 
machine learning, as shown in Figure 1-1. To understand deep learning, you must 
begin at the outside — that is, you start with AI, and then work your way through 
machine learning, and then finally define deep learning. The following sections 
help you through this process.

Starting from Artificial Intelligence
Saying that AI is an artificial intelligence doesn’t really tell you anything mean-
ingful, which is why so many discussions and disagreements arise over this term. 
Yes, you can argue that what occurs is artificial, not having come from a natural 

FIGURE 1-1: 
Deep learning  

is a subset 
of machine 

learning which 
is a subset of AI.
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source. However, the intelligence part is, at best, ambiguous. People define intel-
ligence in many different ways. However, you can say that intelligence involves 
certain mental exercises composed of the following activities:

 » Learning: Having the ability to obtain and process new information.

 » Reasoning: Being able to manipulate information in various ways.

 » Understanding: Considering the result of information manipulation.

 » Grasping truths: Determining the validity of the manipulated information.

 » Seeing relationships: Divining how validated data interacts with other data.

 » Considering meanings: Applying truths to particular situations in a manner 
consistent with their relationship.

 » Separating fact from belief: Determining whether the data is adequately 
supported by provable sources that can be demonstrated to be consistently 
valid.

The list could easily get quite long, but even this list is relatively prone to interpre-
tation by anyone who accepts it as viable. As you can see from the list, however, 
intelligence often follows a process that a computer system can mimic as part of a 
simulation:

1. Set a goal based on needs or wants.

2. Assess the value of any currently known information in support of the goal.

3. Gather additional information that could support the goal.

4. Manipulate the data such that it achieves a form consistent with existing 
information.

5. Define the relationships and truth values between existing and new 
information.

6. Determine whether the goal is achieved.

7. Modify the goal in light of the new data and its effect on the probability of 
success.

8. Repeat Steps 2 through 7 as needed until the goal is achieved (found true) 
or the possibilities for achieving it are exhausted (found false).

Even though you can create algorithms and provide access to data in support of 
this process within a computer, a computer’s capability to achieve intelligence is 
severely limited. For example, a computer is incapable of understanding anything 
because it relies on machine processes to manipulate data using pure math in a 
strictly mechanical fashion. Likewise, computers can’t easily separate truth from 
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mistruth. In fact, no computer can fully implement any of the mental activities 
described in the list that describes intelligence.

When thinking about AI, you must consider the goals of the people who develop 
an AI. The goal is to mimic human intelligence, not replicate it. A computer doesn’t 
truly think, but it gives the appearance of thinking. However, a computer actually 
provides this appearance only in the logical/mathematical form of intelligence. 
A  computer is moderately successful in mimicking visual-spatial and bodily- 
kinesthetic intelligence. A computer has a low, passable capability in interper-
sonal and linguistic intelligence. Unlike humans, however, a computer has no way 
to mimic intrapersonal or creative intelligence.

Considering the role of AI
As described in the previous section, the first concept that’s important to 
understand is that AI doesn’t really have anything to do with human intelligence. 
Yes, some AI is modeled to simulate human intelligence, but that’s what it is: a 
simulation. When thinking about AI, notice that an interplay exists between goal 
seeking, data processing used to achieve that goal, and data acquisition used to 
better understand the goal. AI relies on algorithms to achieve a result that may or 
may not have anything to do with human goals or methods of achieving those 
goals. With this in mind, you can categorize AI in four ways:

 » Acting humanly: When a computer acts like a human, it best reflects the 
Turing test, in which the computer succeeds when differentiation between 
the computer and a human isn’t possible (see http://www.turing.org.uk/
scrapbook/test.html for details). This category also reflects what the media 
would have you believe that AI is all about. You see it employed for technolo-
gies such as natural language processing, knowledge representation, auto-
mated reasoning, and machine learning (all four of which must be present to 
pass the test).

The original Turing Test didn’t include any physical contact. The newer, Total 
Turing Test does include physical contact in the form of perceptual ability 
interrogation, which means that the computer must also employ both com-
puter vision and robotics to succeed. Modern techniques include the idea of 
achieving the goal rather than mimicking humans completely. For example, 
the Wright brothers didn’t succeed in creating an airplane by precisely copying 
the flight of birds; rather, the birds provided ideas that led to aerodynamics, 
which in turn eventually led to human flight. The goal is to fly. Both birds and 
humans achieve this goal, but they use different approaches.

 » Thinking humanly: When a computer thinks as a human, it performs tasks 
that require intelligence (as contrasted with rote procedures) from a human 

http://www.turing.org.uk/scrapbook/test.html
http://www.turing.org.uk/scrapbook/test.html
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to succeed, such as driving a car. To determine whether a program thinks like 
a human, you must have some method of determining how humans think, 
which the cognitive modeling approach defines. This model relies on three 
techniques:

• Introspection: Detecting and documenting the techniques used to achieve 
goals by monitoring one’s own thought processes.

• Psychological testing: Observing a person’s behavior and adding it to a 
database of similar behaviors from other persons given a similar set of 
circumstances, goals, resources, and environmental conditions (among 
other things).

• Brain imaging: Monitoring brain activity directly through various mechani-
cal means, such as Computerized Axial Tomography (CAT), Positron 
Emission Tomography (PET), Magnetic Resonance Imaging (MRI), and 
Magnetoencephalography (MEG).

After creating a model, you can write a program that simulates the model. 
Given the amount of variability among human thought processes and the 
difficulty of accurately representing these thought processes as part of a 
program, the results are experimental at best. This category of thinking 
humanly is often used in psychology and other fields in which modeling the 
human thought process to create realistic simulations is essential.

 » Thinking rationally: Studying how humans think using some standard 
enables the creation of guidelines that describe typical human behaviors. 
A person is considered rational when following these behaviors within certain 
levels of deviation. A computer that thinks rationally relies on the recorded 
behaviors to create a guide as to how to interact with an environment based 
on the data at hand. The goal of this approach is to solve problems logically, 
when possible. In many cases, this approach would enable the creation of a 
baseline technique for solving a problem, which would then be modified to 
actually solve the problem. In other words, the solving of a problem in 
principle is often different from solving it in practice, but you still need a 
starting point.

 » Acting rationally: Studying how humans act in given situations under 
specific constraints enables you to determine which techniques are both 
efficient and effective. A computer that acts rationally relies on the recorded 
actions to interact with an environment based on conditions, environmental 
factors, and existing data. As with rational thought, rational acts depend on a 
solution in principle, which may not prove useful in practice. However, rational 
acts do provide a baseline upon which a computer can begin negotiating the 
successful completion of a goal.



14      PART 1  Discovering Deep Learning

You find AI used in a great many applications today. The only problem is that the 
technology works so well that you don’t even know it exists. In fact, you might be 
surprised to find that many devices in your home already make use of this tech-
nology. The uses for AI number in the millions — all safely out of sight even when 
they’re quite dramatic in nature. Here are just a few of the ways in which you 
might see AI used:

 » Fraud detection: You get a call from your credit card company asking whether 
you made a particular purchase. The credit card company isn’t being nosy; it’s 
simply alerting you to the fact that someone else could be making a purchase 
using your card. The AI embedded within the credit card company’s code 
detected an unfamiliar spending pattern and alerted someone to it.

 » Resource scheduling: Many organizations need to schedule the use of 
resources efficiently. For example, a hospital may have to determine where 
to put a patient based on the patient’s needs, availability of skilled experts, 
and the amount of time the doctor expects the patient to be in the hospital.

 » Complex analysis: Humans often need help with complex analysis because 
there are literally too many factors to consider. For example, the same set of 
symptoms could indicate more than one problem. A doctor or other expert 
might need help making a diagnosis in a timely manner to save a patient’s life.

 » Automation: Any form of automation can benefit from the addition of AI 
to handle unexpected changes or events. A problem with some types of 
automation today is that an unexpected event, such as an object in the 
wrong place, can actually cause the automation to stop. Adding AI to the 
automation can allow the automation to handle unexpected events and 
continue as though nothing happened.

HUMAN VERSUS RATIONAL PROCESSES
Human processes differ from rational processes in their outcome. A process is rational 
if it always does the right thing based on the current information, given an ideal perfor-
mance measure. In short, rational processes go by the book and assume that “the book” 
is actually correct. Human processes involve instinct, intuition, and other variables that 
don’t necessarily reflect the book and may not even consider the existing data. As an 
example, the rational way to drive a car is to always follow the laws. However, traffic 
isn’t rational. If you follow the laws precisely, you end up stuck somewhere because 
other drivers aren’t following the laws precisely. To be successful, a self-driving car must 
therefore act humanly, rather than rationally.
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 » Customer service: The customer service line you call today may not even 
have a human behind it. The automation is good enough to follow scripts 
and use various resources to handle the vast majority of your questions. With 
good voice inflection (provided by AI as well), you may not even be able to tell 
that you’re talking with a computer.

 » Safety systems: Many of the safety systems found in machines of various 
sorts today rely on AI to take over the vehicle in a time of crisis. For example, 
many automatic braking systems rely on AI to stop the car based on all the 
inputs that a vehicle can provide, such as the direction of a skid.

 » Machine efficiency: AI can help control a machine in such a manner as to 
obtain maximum efficiency. The AI controls the use of resources so that the 
system doesn’t overshoot speed or other goals. Every ounce of power is used 
precisely as needed to provide the desired services.

Focusing on machine learning
Machine learning is one of a number of subsets of AI and the only one this book 
discusses. In machine learning, the goal is to create a simulation of human learn-
ing so that an application can adapt to uncertain or unexpected conditions. To 
perform this task, machine learning relies on algorithms to analyze huge datasets.

Currently, machine learning can’t provide the sort of AI that the movies present 
(a machine can’t intuitively learn as a human can); it can only simulate specific 
kinds of learning, and only in a narrow range at that. Even the best algorithms 
can’t think, feel, present any form of self-awareness, or exercise free will. 
Characteristics that are basic to humans are frustratingly difficult for machines to 
grasp because of these limits in perception. Machines aren’t self-aware.

What machine learning can do is perform predictive analytics far faster than any 
human can. As a result, machine learning can help humans work more efficiently. 
The current state of AI, then, is one of performing analysis, but humans must still 
consider the implications of that analysis: making the required moral and ethical 
decisions. The essence of the matter is that machine learning provides just the 
learning part of AI, and that part is nowhere near ready to create an AI of the sort 
you see in films.

The main point of confusion between learning and intelligence is that people 
assume that simply because a machine gets better at its job (it can learn), it’s also 
aware (has intelligence). Nothing supports this view of machine learning. The 
same phenomenon occurs when people assume that a computer is purposely 
causing problems for them. The computer can’t assign emotions and therefore 
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acts only upon the input provided and the instruction contained within an 
application to process that input. A true AI will eventually occur when computers 
can finally emulate the clever combination used by nature:

 » Genetics: Slow learning from one generation to the next

 » Teaching: Fast learning from organized sources

 » Exploration: Spontaneous learning through media and interactions with 
others

To keep machine learning concepts in line with what the machine can actually do, 
you need to consider specific machine learning uses. It’s useful to view uses of 
machine learning outside the normal realm of what many consider the domain of AI. 
Here are a few uses for machine learning that you might not associate with an AI:

 » Access control: In many cases, access control is a yes-or-no proposition. An 
employee smartcard grants access to a resource in much the same way as 
people have used keys for centuries. Some locks do offer the capability to set 
times and dates that access is allowed, but such coarse-grained control 
doesn’t really answer every need. By using machine learning, you can 
determine whether an employee should gain access to a resource based on 
role and need. For example, an employee can gain access to a training room 
when the training reflects an employee role.

 » Animal protection: The ocean might seem large enough to allow animals and 
ships to cohabitate without problem. Unfortunately, many animals get hit by 
ships each year. A machine learning algorithm could allow ships to avoid animals 
by learning the sounds and characteristics of both the animal and the ship. (The 
ship would rely on underwater listening gear to track the animals through their 
sounds, which you can actually hear a long distance from the ship.)

 » Predicting wait times: Most people don’t like waiting when they have no idea 
of how long the wait will be. Machine learning allows an application to 
determine waiting times based on staffing levels, staffing load, complexity of 
the problems the staff is trying to solve, availability of resources, and so on.

Moving from machine learning  
to deep learning
Deep learning is a subset of machine learning, as previously mentioned. In both 
cases, algorithms appear to learn by analyzing huge amounts of data (however, 
learning can occur even with tiny datasets in some cases). However, deep learning 
varies in the depth of its analysis and the kind of automation it provides. You can 
summarize the differences between the two like this:
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 » A completely different paradigm: Machine learning is a set of many 
different techniques that enable a computer to learn from data and to use 
what it learns to provide an answer, often in the form of a prediction. Machine 
learning relies on different paradigms such as using statistical analysis, finding 
analogies in data, using logic, and working with symbols. Contrast the myriad 
techniques used by machine learning with the single technique used by deep 
learning, which mimics human brain functionality. It processes data using 
computing units, called neurons, arranged into ordered sections, called layers. 
The technique at the foundation of deep learning is the neural network.

 » Flexible architectures: Machine learning solutions offer many knobs 
(adjustments) called hyperparameters that you tune to optimize algorithm 
learning from data. Deep learning solutions use hyperparameters, too, but 
they also use multiple user-configured layers (the user specifies number and 
type). In fact, depending on the resulting neural network, the number of layers 
can be quite large and form unique neural networks capable of specialized 
learning: Some can learn to recognize images, while others can detect and 
parse voice commands. The point is that the term deep is appropriate; it refers 
to the large number of layers potentially used for analysis. The architecture 
consists of the ensemble of different neurons and their arrangement in layers 
in a deep learning solution.

 » Autonomous feature definition: Machine learning solutions require human 
intervention to succeed. To process data correctly, analysts and scientist use a 
lot of their own knowledge to develop working algorithms. For instance, in a 
machine learning solution that determines the value of a house by relying on 
data containing the wall measures of different rooms, the machine learning 
algorithm won’t be able to calculate the surface of the house unless the 
analyst specifies how to calculate it beforehand. Creating the right information 
for a machine learning algorithm is called feature creation, which is a time-
consuming activity. Deep learning doesn’t require humans to perform any 
feature-creation activity because, thanks to its many layers, it defines its own 
best features. That’s also why deep learning outperforms machine learning in 
otherwise very difficult tasks such as recognizing voice and images, 
understanding text, or beating a human champion at the Go game (the digital 
form of the board game in which you capture your opponent’s territory).

You need to understand a number of issues with regard to deep learning solutions, 
the most important of which is that the computer still doesn’t understand 
anything and isn’t aware of the solution it has provided. It simply provides a form 
of feedback loop and automation conjoined to produce desirable outputs in less 
time than a human could manually produce precisely the same result by manipu-
lating a machine learning solution.
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The second issue is that some benighted people have insisted that the deep learn-
ing layers are hidden and not accessible to analysis. This isn’t the case. Anything 
a computer can build is ultimately traceable by a human. In fact, the General Data 
Protection Regulation (GDPR) (https://eugdpr.org/) requires that humans 
 perform such analysis (see the article at https://www.pcmag.com/commentary/ 
361258/how-gdpr-will-impact-the-ai-industry for details). The requirement 
to perform this analysis is controversial, but current law says that someone must 
do it.

The third issue is that self-adjustment goes only so far. Deep learning doesn’t 
always ensure a reliable or correct result. In fact, deep learning solutions can 
go  horribly wrong (see the article at https://www.theverge.com/2016/3/24/ 
11297050/tay-microsoft-chatbot-racist for details). Even when the applica-
tion code doesn’t go wrong, the devices used to support the deep learning can (see 
the article at https://www.pcmag.com/commentary/361918/learning-from- 
alexas-mistakes?source=SectionArticles for details). Even so, with these 
problems in mind, you can see deep learning used for a number of extremely 
popular applications, as described at https://medium.com/@vratulmittal/top- 
15-deep-learning-applications-that-will-rule-the-world-in-2018-and- 
beyond-7c6130c43b01.

Using Deep Learning in the Real World
Make no mistake: People do use deep learning in the real world to perform a broad 
range of tasks. For example, many automobiles today use a voice interface. The 
voice interface can perform basic tasks, even right from the outset. However, the 
more you talk to it, the better the voice interface performs. The interface learns as 
you talk to it  — not only the manner in which you say things, but also your 
personal preferences. The following sections give you a little information on how 
deep learning works in the real world.

Understanding the concept of learning
When humans learn, they rely on more than just data. Humans have intuition, 
along with an uncanny grasp of what will and what won’t work. Part of this inborn 
knowledge is instinct, which is passed from generation to generation through 
DNA. The way humans interact with input is also different from what a computer 
will do. When dealing with a computer, learning is a matter of building a database 
consisting of a neural network that has weights and biases built into it to ensure 
proper data processing. The neural network then processes data, but not in a 
manner that’s even remotely the same as what a human will do.

https://eugdpr.org/
https://www.pcmag.com/commentary/361258/how-gdpr-will-impact-the-ai-industry
https://www.pcmag.com/commentary/361258/how-gdpr-will-impact-the-ai-industry
https://www.theverge.com/2016/3/24/11297050/tay-microsoft-chatbot-racist
https://www.theverge.com/2016/3/24/11297050/tay-microsoft-chatbot-racist
https://www.pcmag.com/commentary/361918/learning-from-alexas-mistakes?source=SectionArticles
https://www.pcmag.com/commentary/361918/learning-from-alexas-mistakes?source=SectionArticles
https://medium.com/@vratulmittal/top-15-deep-learning-applications-that-will-rule-the-world-in-2018-and-beyond-7c6130c43b01
https://medium.com/@vratulmittal/top-15-deep-learning-applications-that-will-rule-the-world-in-2018-and-beyond-7c6130c43b01
https://medium.com/@vratulmittal/top-15-deep-learning-applications-that-will-rule-the-world-in-2018-and-beyond-7c6130c43b01
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Performing deep learning tasks
Humans and computers are best at different tasks. Humans are best at reasoning, 
thinking through ethical solutions, and being emotional. A computer is meant to 
process data — lots of data — really fast. You commonly use deep learning to solve 
problems that require looking for patterns in huge amounts of data — problems 
whose solution is nonintuitive and not immediately noticeable. The article at 
http://www.yaronhadad.com/deep-learning-most-amazing-applications/ 
tells you about 30 different ways in which people are currently using deep learning 
to perform tasks. In just about every case, you can sum up the problem and its 
solution as processing huge amounts of data quickly, looking for patterns, and 
then relying on those patterns to discover something new or to create a particular 
kind of output.

Employing deep learning in applications
Deep learning can be a stand-alone solution, as illustrated in this book, but it’s 
often used as part of a much larger solution and mixed with other technologies. For 
example, mixing deep learning with expert systems is not uncommon. The article 
at https://www.sciencedirect.com/science/article/pii/0167923694900213 
describes this mixture to some degree. However, real applications are more than 
just numbers generated from some nebulous source. When working in the real 
world, you must also consider various kinds of data sources and understand how 
those data sources work. A camera may require a different sort of deep learning 
solution to obtain information from it, while a thermometer or proximity detector 
may output simple numbers (or analog data that requires some sort of processing 
to use). Real-world solutions are messy, so you need to be prepared with more 
than one solution to problems in your toolkit.

Considering the Deep Learning 
Programming Environment

You may automatically assume that you must jump through a horrid set of hoops 
and learn esoteric programming skills to delve into deep learning. It’s true that 
you gain flexibility by writing applications using one of the programming  languages 
that work well for deep learning needs. However, Deep Learning Studio (see the 
article at https://towardsdatascience.com/is-deep-learning-without-pro 
gramming-possible-be1312df9b4a for details) and other products like it are 
enabling people to create deep learning solutions without programming. Essen-
tially, such solutions involve describing what you want as output by defining a 

http://www.yaronhadad.com/deep-learning-most-amazing-applications/
https://www.sciencedirect.com/science/article/pii/0167923694900213
https://towardsdatascience.com/is-deep-learning-without-programming-possible-be1312df9b4a
https://towardsdatascience.com/is-deep-learning-without-programming-possible-be1312df9b4a
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model graphically. These kinds of solutions work well for straightforward prob-
lems that others have already had to solve, but they lack the flexibility to do some-
thing completely different — a task that requires something more than simple 
analysis.

Deep learning solutions in the cloud, such as that provided by Amazon Web 
 Services (AWS) (https://aws.amazon.com/deep-learning/), can give you addi-
tional flexibility. These environments also tend to make the development 
 environment simpler by providing as much or little support as you want. In fact, 
AWS provides support for various kinds of serverless computing (https://aws.
amazon.com/serverless/) in which you don’t worry about any sort of infrastruc-
ture. However, these solutions can become quite expensive. Even though they give 
you greater flexibility than using a premade solution, they still aren’t as flexible 
as using an actual development environment.

You have other nonprogramming solutions to consider as well. For example, if you 
want power and flexibility, but don’t want to program to get it, you could rely on 
a product such as MATLAB (https://www.mathworks.com/help/deeplearning/ 
ug/deep-learning-in-matlab.html), which provide a deep learning toolkit. 
MATLAB and certain other environments do focus more on the algorithms you 
want to use, but to gain full functionality from them, you need to write scripts as 
a minimum, which means that you’re dipping your toe into programming to some 
extent. A problem with these environments is that they can also be lacking in the 
power department, so some solutions may take longer than you expect.

At some point, no matter how many other solutions you try, serious deep learning 
problems will require programming. When reviewing the choices online, you 
often see AI, machine learning, and deep learning all lumped together. However, 
just as the three technologies work at different levels, so do the programming 
languages that you require. A good deep learning solution will require the use of 
multiprocessing, preferably using a Graphics Processing Unit (GPU) with lots of 
cores. Your language of choice must also support the GPU through a compatible 
library or package. So, just choosing a language usually isn’t enough; you need to 
investigate further to ensure that the language will actually meet your needs. With 
this caution in mind, here are the top languages (in order of popularity, as of this 
writing) for deep learning use (as defined at https://www.datasciencecentral.
com/profiles/blogs/which-programming-language-is-considered-to-be-best- 
for-machine):

 » Python

 » R

 » MATLAB (the scripting language, not the product)

 » Octave

https://aws.amazon.com/deep-learning/
https://aws.amazon.com/serverless/
https://aws.amazon.com/serverless/
https://www.mathworks.com/help/deeplearning/ug/deep-learning-in-matlab.html
https://www.mathworks.com/help/deeplearning/ug/deep-learning-in-matlab.html
https://www.datasciencecentral.com/profiles/blogs/which-programming-language-is-considered-to-be-best-for-machine
https://www.datasciencecentral.com/profiles/blogs/which-programming-language-is-considered-to-be-best-for-machine
https://www.datasciencecentral.com/profiles/blogs/which-programming-language-is-considered-to-be-best-for-machine
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The only problem with this list is that other developers have other opinions. 
Python and R normally appear at the top of everyone’s lists, but after that you can 
find all sorts of opinions. The article at https://www.geeksforgeeks.org/top- 
5-best-programming-languages-for-artificial-intelligence-field/ gives 
you some alternative ideas. When choosing a language, you usually have to 
consider these issues:

 » Learning curve: Your experiences have a lot to say about what you find 
easiest to learn. Python is probably the best choice for someone who has 
programmed for a number of years, but R might be the better choice for 
someone who has already experienced functional programming. MATLAB or 
Octave might work best for a math professional.

 » Speed: Any sort of deep learning solution will require a lot of processing 
power. Many people say that because R is a statistical language, it offers 
more in the way of statistical support and usually provides a faster result. 
Actually, Python’s support for great parallel programming probably offsets 
this advantage when you have the required hardware.

 » Community support: Many forms of community support exist, but the 
two that are most important for deep learning are help in defining a 
 solution and access to a wealth of premade programming aids. Of the 
four, Octave probably provides the least in the way of community support; 
Python provides the most.

 » Cost: How much a language costs depends on the kind of solution you 
choose and where you run it. For example, MATLAB is a proprietary product 
that requires purchase, so you have something invested immediately when 
using MATLAB. However, even though the other languages are free at the 
outset, you can find hidden costs, such as running your code in the cloud to 
gain access to GPU support.

 » DNN Frameworks support: A framework can make working with your 
language significantly easier. However, you have to have a framework 
that works well with all other parts of your solution. The two most popular 
frameworks are TensorFlow and PyTorch. Oddly enough, Python is the only 
language that supports both, so it offers you the greatest flexibility. You use 
Caffe with MATLAB and TensorFlow with R.

 » Production ready: A language has to support the kind of output needed 
for your project. In this regard, Python shines because it’s a general-purpose 
language. You can create any sort of application needed with it. However, 
the more specific environments provided by the other languages can be 
incredibly helpful with some projects, so you need to consider all of them.

https://www.geeksforgeeks.org/top-5-best-programming-languages-for-artificial-intelligence-field/
https://www.geeksforgeeks.org/top-5-best-programming-languages-for-artificial-intelligence-field/
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Overcoming Deep Learning Hype
Previous parts of this chapter discuss some issues with the perception of deep 
learning, such as some people’s belief that it appears everywhere and does 
everything. The problem with deep learning is that it has been a victim of its own 
media campaign. Deep learning solves specific sorts of problems. The following 
sections help you avoid the hype associated with deep learning.

Discovering the start-up ecosystem
Using a deep learning solution is a lot different from creating a deep learning 
solution of your own. The infographic at https://www.analyticsvidhya.com/
blog/2018/08/infographic-complete-deep-learning-path/ gives you some 
ideas on how to get started with Python (a process this book simplifies for you). 
The educational requirements alone can take a while to fulfill. However, after you 
have worked through a few projects on your own, you begin to realize that the 
hype surrounding deep learning extends all the way to the start of setup. Deep 
learning isn’t a mature technology, so trying to use it is akin to building a village 
on the moon or deep diving the Marianas Trench. You’re going to encounter 
issues, and the technology will constantly change on you.

Some of the methods used to create deep learning solutions need work, too. The 
concept of a computer actually learning anything is false, as is the idea that 
computers have any form of sentience at all. The reason that Microsoft, Amazon, 
and other vendors have problems with deep learning is that even their engineers 
have unrealistic expectations. Deep learning comes down to math and pattern 
matching — really fancy math and pattern matching, to be sure, but the idea that 
it’s anything else is simply wrong.

Knowing when not to use deep learning
Deep learning is only one way to perform analysis, and it’s not always the best 
way. For example, even though expert systems are considered old technology, you 
can’t really create a self-driving car without one for the reasons described at 
https://aitrends.com/ai-insider/expert-systems-ai-self-driving-cars- 
crucial-innovative-techniques/. A deep learning solution turns out to be way 
too slow for this particular need. Your car will likely contain a deep learning 
solution, but you’re more likely to use it as part of the voice interface.

https://www.analyticsvidhya.com/blog/2018/08/infographic-complete-deep-learning-path/
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AI in general and deep learning in particular can make the headlines when the 
technology fails to live up to expectations. For example, the article at https://
www.techrepublic.com/article/top-10-ai-failures-of-2016/ provides a list 
of AI failures, some of which relied on deep learning as well. It’s a mistake to think 
that deep learning can somehow make ethical decisions or that it will choose 
the right course of action based on feelings (which no machine has). Anthropo-
morphizing the use of deep learning will always be a mistake. Some tasks simply 
require a human.

Speed and the capability to think like a human are the top issues for deep learning, 
but there are many more. For example, you can’t use deep learning if you don’t 
have sufficient data to train it. In fact, the article at https://www.sas.com/en_us/ 
insights/articles/big-data/5-machine-learning-mistakes.html offers a 
list of five common mistakes that people make when getting into machine learn-
ing and deep learning environments. If you don’t have the right resources, deep 
learning will never work.

https://www.techrepublic.com/article/top-10-ai-failures-of-2016/
https://www.techrepublic.com/article/top-10-ai-failures-of-2016/
https://www.sas.com/en_us/insights/articles/big-data/5-machine-learning-mistakes.html
https://www.sas.com/en_us/insights/articles/big-data/5-machine-learning-mistakes.html
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Chapter 2
Introducing the Machine 
Learning Principles

As discussed in Chapter 1, the concept of learning for a computer is different 
from the concept of learning for humans. However, Chapter  1 doesn’t 
really describe machine learning, the kind of learning a computer uses, in 

any depth. After all, what you’re really looking at is an entirely different sort of 
learning that some people would view as a combination of math, pattern matching, 
and data storage. This chapter begins by pointing the way to a deeper understanding 
of how machine learning works.

However, an explanation of machine learning doesn’t completely help you 
understand what’s going on when you work with it. How machine learning works 
is also important, which is the subject of the next section of the chapter. In this 
section, you discover that no perfect methods exist for performing analysis. You 
may have to experiment with your analysis to get the expected output. In addition, 
different approaches to machine learning are available, and each has advantages 
and disadvantages.

The third part of the chapter takes what you’ve discovered in the previous two 
parts and helps you apply it. No matter how you shape your data and perform 
analysis on it, machine learning is the wrong approach in some cases and will 
never provide you with useful output. Knowing the right uses for machine learning 

IN THIS CHAPTER

 » Considering what machine learning 
involves

 » Understanding the methods used to 
achieve machine learning

 » Using machine learning for the 
correct reasons
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is essential if you want to receive consistent output that helps you perform 
interesting tasks. The whole purpose of machine learning is to learn something 
interesting from the data and then to do something interesting with it.

Defining Machine Learning
Here’s a short definition of machine learning: It’s an application of AI that can 
automatically learn and improve from experience without being explicitly pro-
grammed to do so. The learning occurs as a result of analyzing ever increasing 
amounts of data, so the basic algorithms don’t change, but the code’s internal 
weights and biases used to select a particular answer do. Of course, nothing is quite 
this simple. The following sections discuss more about what machine learning is 
so that you can understand its place within the world of AI and what deep learning 
acquires from it.

Data scientists often refer to the technology used to implement machine learning 
as algorithms. An algorithm is a series of step-by-step operations, usually 
computations, that can solve a defined problem in a finite number of steps. In 
machine learning, the algorithms use a series of finite steps to solve the problem 
by learning from data.

Understanding how machine 
learning works
Machine learning algorithms learn, but it’s often hard to find a precise meaning 
for the term learning because different ways exist to extract information from 
data, depending on how the machine learning algorithm is built. Generally,  
the learning process requires huge amounts of data that provides an expected 
response given particular inputs. Each input/response pair represents an example 
and more examples make it easier for the algorithm to learn. That’s because each 
input/response pair fits within a line, cluster, or other statistical representation 
that defines a problem domain. Learning is the act of optimizing a model, which 
is a mathematical, summarized representation of data itself, such that it can pre-
dict or otherwise determine an appropriate response even when it receives input 
that it hasn’t seen before. The more accurately the model can come up with cor-
rect responses, the better the model has learned from the data inputs provided. An 
algorithm fits the model to the data, and this fitting process is training.

Figure  2-1 shows an extremely simple graph that simulates what occurs in 
machine learning. In this case, starting with input values of 1, 4, 5, 8, and 10 and 
pairing them with their corresponding outputs of 7, 13, 15, 21, and 25, the machine 
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learning algorithm determines that the best way to represent the relationship 
between the input and output is the formula 2x + 5. This formula defines the 
model used to process the input data — even new, unseen data —to calculate a 
corresponding output value. The trend line (the model) shows the pattern formed 
by this algorithm, such that a new input of 3 will produce a predicted output of 11. 
Even though most machine learning scenarios are much more complicated than 
this (and the algorithm can’t create rules that accurately map every input to a pre-
cise output), the example gives provides you a basic idea of what happens. Rather 
than have to individually program a response for an input of 3, the model can 
compute the correct response based on input/response pairs that it has learned.

Understanding that it’s pure math
The central idea behind machine learning is that you can represent reality by using 
a mathematical function that the algorithm doesn’t know in advance, but which it 
can guess after seeing some data (always in the form of paired inputs and outputs). 
You can express reality and all its challenging complexity in terms of unknown 
mathematical functions that machine learning algorithms find and make available 
as a modification of their internal mathematical function. That is, every machine 
learning algorithm is built around a modifiable math function. The function can be 
modified because it has internal parameters or weights for such a purpose. As a 
result, the algorithm can tailor the function to specific information taken from 
data. This concept is the core idea for all kinds of machine learning algorithms.

Learning in machine learning is purely mathematical, and it ends by associating 
certain inputs with certain outputs. It has nothing to do with understanding what 

FIGURE 2-1: 
Visualizing a basic 
machine learning 

scenario.
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the algorithm has learned. (When humans analyze data, we build an understand-
ing of the data to a certain extent.) The learning process is often described as 
training because the algorithm is trained to match the correct answer (the output) 
to every question offered (the input). (Machine Learning For Dummies, by John Paul 
Mueller and Luca Massaron, [Wiley], describes how this process works in detail.)

In spite of lacking deliberate understanding and of being a mathematical process, 
machine learning can prove useful in many tasks. It provides many AI applications 
the power to mimic rational thinking given a certain context when learning occurs 
by using the right data.

Learning by different strategies
Machine learning offers a number of different ways to learn from data. Depending 
on your expected output and on the type of input you provide, you can categorize 
algorithms by learning style. The style you choose depends on the sort of data you 
have and the result you expect. The four learning styles used to create algorithms are

 » Supervised

 » Unsupervised

 » Self-supervised

 » Reinforcement

The following sections discuss learning styles.

Supervised
When working with supervised algorithms, the input data is labeled and has a 
specific expected result. You use training to create a model that an algorithm fits 
to the data. As training progresses, the predictions or classifications become more 
accurate. Here are some examples of supervised learning algorithms:

 » Linear or Logistic regression

 » Support Vector Machines (SVMs)

 » Naïve Bayes

 » K-Nearest Neighbors (KNN)

You need to distinguish between regression problems, whose target is a numeric 
value, and classification problems, whose target is a qualitative variable, such as 
a class or tag. A regression task could determine the average prices of houses in 
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the Boston area, while an example of a classification task is distinguishing between 
kinds of iris flowers based on their sepal and petal measures. Here are some 
examples of supervised learning:

Data Input (X) Data Output (y) Real-World Application

History of customers’ 
purchases

A list of products that  
customers have never 
bought

Recommender system

Images A list of boxes labeled with 
an object name

Image detection and 
recognition

English text in the 
form of questions

English text in the form of 
answers

Chatbot, a software application 
that can converse

English text German text Machine language translation

Audio Text transcript Speech recognition

Image, sensor data Steering, braking, or 
accelerating

Behavioral planning for  
autonomous driving

Unsupervised
When working with unsupervised algorithms, the input data isn’t labeled and the 
results aren’t known. In this case, analysis of structures in the data produces  
the required model. The structural analysis can have a number of goals, such as to 
reduce redundancy or to group similar data. Examples of unsupervised learning are

 » Clustering

 » Anomaly detection

 » Neural networks

Self-Supervised
You’ll find all sorts of kinds of learning described online, but self-supervised 
learning is in a category of its own. Some people describe it as autonomous 
supervised learning, which gives you the benefits of supervised learning but 
without all the work required to label data.

Theoretically, self-supervised could solve issues with other kinds of learning that 
you may currently use. The following list compares self-supervised learning with 
other sorts of learning that people use.

 » Supervised learning: The closest form of learning associated with self- 
supervised learning is supervised learning because both kinds of learning 
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rely on pairs of inputs and labeled outputs. In addition, both forms of learning 
are associated with regression and classification. However, the difference is 
that self-supervised learning doesn’t require a person to label the output. 
Instead, it relies on correlations, embedded metadata, or domain knowledge 
embedded within the input data to contextually discover the output label.

 » Unsupervised learning: Like unsupervised learning, self-supervised learn-
ing requires no data labeling. However, unsupervised learning focuses on 
data structure — that is, patterns within the data. Therefore, you don’t use 
self-supervised learning for tasks such as clustering, grouping, dimensionality 
reduction, recommendation engines, or the like.

 » Semi-supervised learning: A semi-supervised learning solution works like 
an unsupervised learning solution in that it looks for data patterns. However, 
semi-supervised learning relies on a mix of labeled and unlabeled data to 
perform its tasks faster than is possible using strictly unlabeled data. Self-
supervised learning never requires labels and uses context to perform its 
task, so it would actually ignore the labels when supplied.

Reinforcement
You can view reinforcement learning as an extension of self-supervised learning 
because both forms use the same approach to learning with unlabeled data to 
achieve similar goals. However, reinforcement learning adds a feedback loop to 
the mix. When a reinforcement learning solution performs a task correctly, it 
receives positive feedback, which strengthens the model in connecting the target 
inputs and output. Likewise, it can receive negative feedback for incorrect 
solutions. In some respects, the system works much the same as working with a 
dog based on a system of rewards.

Training, validating, and testing data
Machine learning is a process, just as everything is a process in the world of 
computers. To build a successful machine learning solution, you perform these 
tasks as needed, and as often as needed:

 » Training: Machine learning begins when you train a model using a particular 
algorithm against specific data. The training data is separate from any other 
data, but it must also be representative. If the training data doesn’t truly 
represent the problem domain, the resulting model can’t provide useful 
results. During the training process, you see how the model responds to the 
training data and make changes, as needed, to the algorithms you use and 
the manner in which you massage the data prior to input to the algorithm.
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 » Validating: Many datasets are large enough to split into a training part and 
a testing part. You first train the model using the training data, and then 
you validate it using the testing data. Of course, the testing data must 
again represent the problem domain accurately. It must also be statistically 
compatible with the training data. Otherwise, you won’t see results that 
reflect how the model will actually work.

 » Testing: After a model is trained and validated, you still need to test it using 
real-world data. This step is important because you need to verify that the 
model will actually work on a larger dataset that you haven’t used for either 
training or testing. As with the training and validation steps, any data you use 
during this step must reflect the problem domain you want to interact with 
using the machine learning model.

Training provides a machine learning algorithm with all sorts of examples of the 
desired inputs and outputs expected from those inputs. The machine learning 
algorithm then uses this input to create a math function. In other words, training 
is the process whereby the algorithm works out how to tailor a function to the 
data. The output of such a function is typically the probability of a certain output 
or simply a numeric value as output.

To give an idea of what happens in the training process, imagine a child learning 
to distinguish trees from objects, animals, and people. Before the child can do so 
in an independent fashion, a teacher presents the child with a certain number of 
tree images, complete with all the facts that make a tree distinguishable from 
other objects of the world. Such facts could be features, such as the tree’s material 
(wood), its parts (trunk, branches, leaves or needles, roots), and location (planted 
in the soil). The child builds an understanding of what a tree looks like by con-
trasting the display of tree features with the images of other, different examples, 
such as pieces of furniture that are made of wood, but do not share other charac-
teristics with a tree.

A machine learning classifier works the same. A classifier algorithm provides you 
with a class as output. For instance, it could tell you that the photo you provide as 
an input matches the tree class (and not an animal or a person). To do so, it builds 
its cognitive capabilities by creating a mathematical formulation that includes all 
the given input features in a way that creates a function that can distinguish one 
class from another.

Looking for generalization
To be useful, a machine learning model must represent a general view of the data 
provided. If the model doesn’t follow the data closely enough, it’s underfitted —  
that is, not fitted enough because of a lack of training. On the other hand, if the 
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model follows the data too closely, it’s overfitted, following the data points like a 
glove because of too much training. Underfitting and overfitting both cause 
problems because the model isn’t generalized enough to produce useful results. 
Given unknown input data, the resulting predictions or classifications will contain 
large error values. Only when the model is correctly fitted to the data will it provide 
results within a reasonable error range.

This whole issue of generalization is also important in deciding when to use 
machine learning. A machine learning solution always generalizes from specific 
examples to general examples of the same sort. How it performs this task depends 
on the orientation of the machine learning solution and the algorithms used to 
make it work.

The problem for data scientists and others using machine learning and deep 
learning techniques is that the computer won’t display a sign telling you that the 
model correctly fits the data. Often, it’s a matter of human intuition to decide 
when a model is trained enough to provide a good generalized result. In addition, 
the solution creator must choose the right algorithm out of the thousands that 
exist. Without the right algorithm to fit the model to the data, the results will be 
disappointing. To make the selection process work, the data scientist must possess

 » A strong knowledge of the available algorithms

 » Experience dealing with the kind of data in question

 » An understanding of the desired output

 » A desire to experiment with various algorithms

The last requirement is the most important because there are no hard-and-fast 
rules that say a particular algorithm will work with every kind of data in every 
possible situation. If this were the case, so many algorithms wouldn’t be available. 
To find the best algorithm, the data scientist often resorts to experimenting with 
a number of algorithms and comparing the results.

Getting to know the limits of bias
Your computer has no bias. It has no goal of world domination or of making your 
life difficult. In fact, computers don’t have goals of any kind. The only thing a 
computer can provide is output based on inputs and processing technique. 
However, bias still gets into the computer and taints the results it provides in a 
number of ways:

 » Data: The data itself can contain mistruths or simply misrepresentations. For 
example, if a particular value appears twice as often in the data as it does in 
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the real world, the output from a machine learning solution is tainted, even 
though the data itself is correct.

 » Algorithm: Using the wrong algorithm will cause the machine learning 
solution to fit the model to the data incorrectly.

 » Training: Too much or too little training changes how the model fits the data 
and therefore the result.

 » Human interpretation: Even when a machine learning solution outputs a 
correct result, the human using that output can misinterpret it. The results 
are every bit as bad as, and perhaps worse than, when the machine learn-
ing solution fails to work as anticipated. (The article at https://thenextweb.
com/artificial-intelligence/2018/04/10/human-bias-huge-problem- 
ai-heres-going-fix/ offers some insights about this issue.)

You need to consider the effects of bias no matter what sort of machine learning 
solution you create. It’s important to know what sorts of limits these biases place 
on your solution and whether the solution is reliable enough to provide useful 
output.

Keeping model complexity in mind
Simpler is always better when it comes to machine learning. Many different 
algorithms may provide you with useful output from your machine learning 
solution, but the best algorithm to use is the one that’s easiest to understand and 
provides the most straightforward results. Occam’s Razor (http://math.ucr. 
edu/home/baez/physics/General/occam.html) is generally recognized as the 
best strategy to follow. Basically, Occam’s Razor tells you to use the simplest 
solution that will solve a particular problem. As complexity increases, so does the 
potential for errors.

Considering the Many Different  
Roads to Learning

The learning part of machine learning makes it dynamic — that is, able to change 
itself when it receives additional data. The capability to learn makes machine 
learning different from other sorts of AI, such as knowledge graphs and expert 
systems. It doesn’t make machine learning better than other AI (as described in 
Chapter 1), but simply useful for a certain set of problems. Of course, the problem 
with quantifying what learning entails is that humans and computers view 

https://thenextweb.com/artificial-intelligence/2018/04/10/human-bias-huge-problem-ai-heres-going-fix/
https://thenextweb.com/artificial-intelligence/2018/04/10/human-bias-huge-problem-ai-heres-going-fix/
https://thenextweb.com/artificial-intelligence/2018/04/10/human-bias-huge-problem-ai-heres-going-fix/
http://math.ucr.edu/home/baez/physics/General/occam.html
http://math.ucr.edu/home/baez/physics/General/occam.html
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learning differently. In addition, computers use different learning techniques 
than humans do and some humans may not see the learning part of machine 
learning as learning at all. The following sections discuss the methods that 
machine learning algorithms use to learn so that you can better understand that 
machine learning and human learning are inherently different.

Understanding there is no free lunch
You may have heard the common myth that you can have everything in the way of 
computer output without putting much effort into deriving the solution. Unfortu-
nately, no absolute solution exists to any problem, and better answers are often quite 
costly. When working with algorithms, you quickly discover that some algorithms 
perform better than others in solving certain problems, but that there also isn’t a 
single algorithm that works best on every problem. This is because of the math 
behind algorithms. Certain math functions are good at representing some problems 
but may hit a wall on certain other problems. Each algorithm has its specialty.

Discovering the five main approaches
Algorithms come in various forms and perform various tasks. One way to 
categorize algorithms is by school of thought  — the method that a group of 
likeminded thinkers believed would solve a particular kind of problem. Of course, 
other ways to categorize algorithms exist, but this approach has the advantage of 
helping you understand algorithm uses and orientations better. The following 
sections provide an overview of the five main algorithmic techniques.

Symbolic reasoning
A group called the symbologists relies on algorithms that use symbolic reasoning 
to find a solution to problems. The term inverse deduction commonly appears as 
induction. In symbolic reasoning, deduction expands the realm of human 
knowledge, while induction raises the level of human knowledge. Induction 
commonly opens new fields of exploration, and deduction explores those fields. 
However, the most important consideration is that induction is the science portion 
of this type of reasoning, while deduction is the engineering. The two strategies 
work hand in hand to solve problems by first opening a field of potential exploration 
to solve the problem and then exploring that field to determine whether it does, in 
fact, solve it.

As an example of this strategy, deduction would say that if a tree is green and that 
green trees are alive, the tree must be alive. When thinking about induction, you 
would say that the tree is green and that the tree is also alive; therefore, green 
trees are alive. Induction provides the answer to what knowledge is missing given 
a known input and output.
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Neural networks
Neural networks are the brainchild of a group called the connectionists. This 
group of algorithms strives to reproduce the brain’s functions using silicon instead 
of neurons. Essentially, each of the neurons (created as an algorithm that models 
the real-world counterpart) solves a small piece of the problem, and the use of 
many neurons in parallel solves the problem as a whole.

A neural network can provide a method of correction for errant data, and the most 
popular of these methods is backpropagation. (The two-part article at http://www.
breloff.com/no-backprop/ and http://www.breloff.com/no-backprop-part2/ 
discusses backpropagation alternatives.) The use of backpropagation, or backward 
propagation of errors, seeks to determine the conditions under which errors are 
removed from networks built to resemble the human neurons by changing the 
weights (how much a particular input figures into the result) and biases (which 
features are selected) of the network. The goal is to continue changing the weights 
and biases until such time as the actual output matches the target output.

At this point, the artificial neuron fires and passes its solution along to the next 
neuron in line. The solution created by each individual neuron is only part of the 
whole solution. Each neuron continues to pass information to the next neuron in 
line until the group of neurons creates a final output.

Evolutionary algorithms
A group called the evolutionaries relies on the principles of evolution to solve 
problems. This strategy is based on the survival of the fittest, removing any 
solutions that don’t match the desired output. A fitness function determines the 
viability of each function in solving a problem.

Using a tree structure, the solution method looks for the best solution based 
on function output. The winner of each level of evolution gets to build the next level 
of functions. The next level will get closer to solving the problem but may not solve 
it completely, which means that another level is needed. This particular algorithmic 
type relies heavily on recursion (see https://www.cs.cmu.edu/~adamchik/15-121/ 
lectures/Recursions/recursions.html for an explanation of recursion) and lan-
guages that strongly support recursion to solve problems. An interesting output of 
this strategy has been algorithms that evolve themselves: One generation of algo-
rithms actually builds the next generation.

Bayesian inference
The Bayesians use various statistical methods to solve problems. Given that 
statistical methods can create more than one apparently correct solution, the 
choice of a function becomes one of determining which function has the highest 

http://www.breloff.com/no-backprop/
http://www.breloff.com/no-backprop/
http://www.breloff.com/no-backprop-part2/
https://www.cs.cmu.edu/~adamchik/15-121/lectures/Recursions/recursions.html
https://www.cs.cmu.edu/~adamchik/15-121/lectures/Recursions/recursions.html
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probability of succeeding. For example, when using these techniques, you might 
accept a set of symptoms as input. An algorithm will compute the probability that 
a particular disease will result from the symptoms as output. Given that multiple 
diseases have the same symptoms, the probability is important because a user will 
see some situations in which a lower probability output is actually the correct 
output for a given circumstance.

Ultimately, Bayesian algorithms rely on the idea of never quite trusting any 
hypothesis (a result that someone has given you) completely without seeing the 
evidence used to make it (the input the other person used to make the hypothesis). 
Analyzing the evidence proves or disproves the hypothesis that it supports. 
Consequently, you can’t determine which disease someone has until you test all 
the symptoms. One of the most recognizable outputs from this group of algorithms 
is the spam filter.

Systems that learn by analogy
The analogizers use kernel machines to recognize patterns in data. By recogniz-
ing the pattern of one set of inputs and comparing it to the pattern of a known 
output, you can create a problem solution. The goal is to use similarity to deter-
mine the best solution to a problem. It’s the kind of reasoning that determines 
that using a particular solution worked in a given circumstance at some previous 
time; therefore, using that solution for a similar set of circumstances should also 
work. One of the most recognizable outputs from this group of algorithms is rec-
ommender systems. For example, when you get on Amazon and buy a product, 
the recommender system comes up with other, related, products that you might 
also want to buy.

Delving into some different approaches
It helps to have several views of algorithms so that you understand what they do 
and why they do it. The previous section looks at algorithms based on the groups 
that created them. However, you have other approaches you can use to categorize 
algorithms. The following list categorizes some popular algorithms by similarity:

 » Artificial neural network: Models the structure or function of biological 
neural networks (or sometimes it does both). The goal is to perform pattern 
matching for regression and classification problems. However, the technique 
mimics the approach used by biological organisms rather than strictly relying 
on a true math-based approach. Here are examples of artificial neural 
network algorithms:

• Perceptron

• Feed-forward Neural Network
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• Hopfield Network

• Radial Basis Function Network (RBFN)

• Self-Organizing Map (SOM)

 » Association rule: Extracts rules that help explain the relationships between 
variables in data. You can use these rules to discover useful associations 
within huge datasets that are ordinarily easy to miss. Here are the more 
popular association-rule algorithms:

• Apriori algorithm

• Eclat algorithm

 » Bayesian: Applies Bayes’ Theorem to probability problems. This form of 
algorithm sees use for classification and regression problems. Here are 
examples of Bayesian algorithms:

• Naïve Bayes

• Gaussian Naïve Bayes

• Multinomial Naïve Bayes

• Bayesian Belief Network (BBN)

• Bayesian Network (BN)

 » Clustering: Describes a model for organizing data by class or other criteria. 
The results are often centroid or hierarchical in nature. What you see are data 
relationships in a way that helps make sense of the data — that is, how the 
values affect each other. The following list contains examples of clustering 
algorithms:

• K-means

• K-medians

• Expectation Maximisation (EM)

• Hierarchical Clustering

 » Decision tree: Constructs a model of decisions based on the actual values  
found in data. The resulting tree structure enables you to perform comparisons 
between new data and existing data very quickly. This form of algorithm often 
sees use for classification and regression problems. The following list shows 
some of the common decision-tree algorithms:

• Classification and Regression Tree (CART)

• Iterative Dichotomiser 3 (ID3)
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• C4.5 and C5.0 (different versions of a powerful approach)

• Chi-squared Automatic Interaction Detection (CHAID)

 » Deep learning: Provides an update to artificial neural networks that rely on 
multiple layers to exploit even larger datasets and build complex neural 
networks. This particular group of algorithms works well with semisupervised 
learning problems in which the amount of labeled data is minimal. Here are 
some examples of deep learning algorithms:

• Deep Boltzmann Machine (DBM)

• Deep Belief Networks (DBN)

• Convolutional Neural Network (CNN)

• Recurrent Neural Network (RNN)

• Stacked Auto-Encoders

 » Dimensionality reduction: Seeks and exploits similarities in the structure  
of data in a manner similar to clustering algorithms, but using unsupervised 
methods. The purpose is to summarize or describe data using less information 
so that the dataset becomes smaller and easier to manage. In some cases, 
people use these algorithms for classification or regression problems. Here  
is a list of common dimensionality reduction algorithms:

• Principal Component Analysis (PCA)

• Factor Analysis (FA)

• Multidimensional Scaling (MDS)

• t-Distributed Stochastic Neighbor Embedding (t-SNE)

 » Ensemble: Composes a group of multiple weaker models into a cohesive 
whole whose individual predictions are combined in some manner to define 
an overall prediction. Using an ensemble can solve certain problems faster, 
more efficiently, or with reduced errors. Here are some common ensemble 
algorithms:

• Boosting

• Bootstrapped Aggregation (Bagging)

• AdaBoost

• Random Forest

• Gradient Boosting Machines (GBM)
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 » Instance-based: Defines a model for decision problems in which the training 
data consists of examples that are later used for comparison purposes. A 
similarity measure helps determine when new examples compare favorably 
to existing examples within the database. Some people call these algorithms 
winner-take-all or memory-based learning because of the manner in which 
they work. The following list provides some common algorithms associated 
with this category:

• K-Nearest Neighbors (KNN)

• Learning Vector Quantization (LVQ)

 » Regression: Models the relationship among variables. This relationship is 
iteratively refined using an error measure. This category sees heavy use in 
statistical machine learning. The following list shows the algorithms normally 
associated with this kind of algorithm:

• Ordinary Least Squares Regression (OLSR)

• Logistic Regression

 » Regularization: Regulates other algorithms by penalizing complex solutions 
and favoring simpler ones. This kind of algorithm often sees use with 
regression methods. The goal is to ensure that the solution doesn’t become 
lost in its own complexity and delivers solutions within a given time frame 
using the least number of resources. Here are examples of regularization 
algorithms:

• Ridge Regression

• Least Absolute Shrinkage and Selection Operator (LASSO)

• Elastic Net

• Least-Angle Regression (LARS)

 » Support Vector Machines (SVM): Supervised learning algorithms that solve 
classification and regression problems by separating only a few data examples 
(called supports, hence the name of the algorithm) from the rest of the data 
using a function. After separating these supports, the prediction becomes easier. 
The form of analysis depends on the function type (called a kernel): linear, 
polynomial, or radial basis. Here are examples of SVM algorithms.

• Linear Support Vector Machines

• Radial Basis Function Support Vector Machines

• One-Class Support Vector Machines (for unsupervised learning)
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 » Other: You have many other algorithms from which to choose. This list 
contains major algorithm categories. Some of the categories not found in 
this list belong to those used for feature selection, algorithm accuracy, 
performance measures, and specialty subfields of machine learning. 
For example, whole categories of algorithms are devoted to the topic of 
Computer Vision (CV) and Natural Language Processing (NLP). As you 
read through this book, you find many other categories of algorithms and 
may begin to wonder how a data scientist can make any choice, much less 
the right one.

Awaiting the next breakthrough
Breakthroughs require patience because computers are inherently based on math. 
You may not see them as such when working with a higher-level language like 
Python, but everything that goes on beneath the hood requires an extreme 
understanding of math and the data it manipulates. Consequently, you can expect 
to see new uses for machine learning and deep learning in the future as scientists 
continue to find new ways to process data, create algorithms, and use those 
algorithms to define data models.

Unfortunately, working with what is available today isn’t enough to create the 
applications of tomorrow (despite what the movies might have you believe). In the 
future, you can expect advances in hardware to make applications that aren’t 
feasible today quite doable. It’s not just a matter of additional computing power or 
larger memories. Tomorrow’s computer will have access to sensors that aren’t 
available today; processors that do things that today’s processors can’t; and 
methods of viewing how computers think that haven’t been envisioned yet. What 
the world needs most now is experience, and experience always takes time to 
accumulate.

Pondering the True Uses  
of Machine Learning

The fact that you have a number of options to choose from when it comes to AI 
means that machine learning isn’t the only technology you should consider to 
solve any given problem. Machine learning does excel at helping you solve specific 
categories of problems. To determine where machine learning works best, you 
must begin by considering how an algorithm learns and then applying that 
knowledge to problem classes that you need to solve. Remember that machine 



CHAPTER 2  Introducing the Machine Learning Principles      41

learning is about generalization, so it doesn’t work particularly well in these 
scenarios:

 » The result must provide a precise answer, such as calculating a trip to Mars.

 » You can solve the problem using generalization but other techniques are 
simpler, such as developing software to compute a factorial of a number.

 » You don’t have a good generalization of the problem because the problem is 
misunderstood, no specific relationship exists between inputs and results, or 
the problem domain is too complex.

The following sections discuss the true uses of machine learning from the 
perspective of how it learns and then defines the benefits of machine learning 
given specific problem domains.

Understanding machine learning benefits
How you can benefit from machine learning depends partly on your environment 
and partly on what you expect from it. For example, if you spend time on Amazon 
buying products, you might expect machine learning to make useful 
recommendations based on past purchases at some point. These recommendations 
are for products that you might not have otherwise known about. Recommending 
products that you already use or don’t need isn’t particularly useful, which is 
where the machine learning part comes into play. As Amazon builds more data 
about your purchasing habits, the recommendations should become more useful, 
although not even the best machine learning algorithm will ever guess your needs 
correctly every time.

Of course, machine learning benefits you in many other ways. A developer can use 
machine learning to add an NLP capability to an application. A researcher could 
use it to help find the next cure for cancer. You may already use it for spam  
filtering for your e-mail or rely on it when you get into your car as part of a voice 
interface. With this in mind, the following benefits likely fit more of a business 
perspective for using machine learning effectively, but keep in mind that many 
other ways exist as well:

 » Simplify product marketing: One of the issues that any organization faces  
is determining what to sell and when, based on customer preferences. Sales 
campaigns are expensive, so having one fail usually isn’t an option. In addition, 
an organization might find odd bits of information: Customers may like products 
in red but not in green. Knowing what the customer wants is incredibly difficult 
unless you can analyze huge amounts of buying data, which is something that 
machine learning does well.
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 » Predict future sales accurately: Being in business can seem a little like 
gambling because you can’t be quite sure that your bets will pay off. A 
machine learning solution can follow sales minute by minute and track 
trends before they become obvious. The capability to perform this kind of 
tracking means that you can more accurately tune sales channels to deliver 
optimal results and ensure that stores have enough of the right products to 
sell. It isn’t precisely like gazing into a crystal ball, but it’s close.

 » Forecast medical and other employee downtime: Oddly enough, some 
organizations end up having problems because employees choose the worst 
possible times to be absent from work. In some cases, these absences seem 
unpredictable, such as medical needs, while in others you could possibly 
predict them, such as a sudden need for personal time. By tracking various 
trends from easily available data sources, you can track both medical-type and 
personal-type absences for your industry as a whole, location as a whole, and 
your organization in particular to ensure that you have enough people to get 
the job done at any given time.

 » Reduce data entry errors: Some kinds of data entry errors are relatively 
easy to avoid by using form features correctly or incorporating a spell checker 
into your application. In addition, adding certain kinds of pattern matching 
can help reduce capitalization errors or incorrect phone numbers. Machine 
learning can take error reduction to another level by correctly identifying 
complex patterns that other techniques will miss. For example, a customer 
order may need one of part A and two of part B to create a whole unit. The 
pattern matching for these kinds of sales can be elusive, but machine learning 
can make it possible, reducing errors that are particularly different to find and 
eradicate.

 » Improve financial rule and modeling precision: Keeping the finances 
straight can prove difficult in an organization of any size. Machine learning 
enables you to perform tasks such as portfolio management, algorithmic 
trading, loan underwriting, and fraud detection with greater precision. 
You can’t eliminate human participating in such cases, but the human and 
machine working together can become an incredibly efficient combination 
that won’t allow many errors to pass unnoticed.

 » Foresee maintenance needs: Any system that consists of something 
physical likely requires maintenance of various sorts. For example, machine 
learning can help predict when a system will need cleaning based on past 
performance and environmental monitoring. You can also do things like plan 
for replacement or repair of certain equipment based on past repairs and 
equipment statistics. A machine learning solution can even enable you to 
determine whether replacement or repair is the better option.
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 » Augment customer interaction and improve satisfaction: Customers like 
to feel special; in fact, everyone does. However, trying to create a custom plan 
for each customer manually would prove impossible. You can find a wealth of 
information about customers through online sources, including everything 
from recent purchases to consistent buying habits. By combining all this data 
with a good machine learning solution and customer support personnel who 
have discerning eyes, you can appear to have personally created a special 
solution for each customer, even though the time required to do so is minimal.

Discovering machine learning limits
The limits of a technology are often hard to quantify completely because these 
limits are often the result of a lack of imagination on the part of the creator or 
consumer of that technology. However, machine learning does have some distinct 
limits that you need to consider before using this technology to perform any given 
task. The following list isn’t complete. In fact, you may not even completely agree 
with it, but it does provide a good starting point.

 » Massive amounts of training data are needed: Unlike programmed 
solutions of the past, a machine learning solution relies on massive amounts 
of data to train it. As problem complexity increases, the number of data points 
required to model a particular problem increases, making even more data 
necessary. Although humans generate increasingly larger amounts of data in 
specific problem domains and the computing power needed to process this 
data also increases daily, some problem domains simply lack enough data or 
enough processing power to make machine learning effective.

 » Labeling data is tedious and error prone: When using the supervised 
learning technique (see the “Learning by different strategies” section, earlier 
in this chapter, for details), someone must label the data to provide the output 
value. The labeling process for huge amounts of data is both tedious and time 
consuming, making machine learning difficult at times. The problem is that a 
human can look at any number of examples of something like a stop sign and 
know that they’re all stop signs, but a computer must have every stop sign 
individually labelled.

 » Machines can’t explain themselves: As machine learning solutions become 
more flexible and capable; the amount of hidden functionality becomes greater 
as well. In fact, when dealing with deep learning solutions, you find that the 
solution contains one or usually more hidden layers that the solution creates 
but that humans haven’t taken the time to explore. Consequently, both machine 
learning (to some extent) and deep learning (to a greater extent) encounter 
issues for which transparency is valued and counter to some laws, such as the 



44      PART 1  Discovering Deep Learning

General Data Protection Regulation, or GDPR (https://eugdpr.org/). Because 
the process becomes opaque, a human must now analyze a process that is 
supposed to be automatic. A potential solution for this problem may come 
in the form of new strategies, such as Local Interpretable Model-Agnostic 
Explanations (LIME) (see https://homes.cs.washington.edu/~marcotcr/
blog/lime/ for details).

 » Bias makes the results less usable: An algorithm can’t tell when data 
contains various mistruths in it (Artificial Intelligence For Dummies, by John 
Paul Mueller and Luca Massaron [Wiley], explains this issue in detail). 
Consequently, it regards all data as being unbiased and completely truthful. 
As a result, any analysis performed by an algorithm trained using this data 
is suspect. The problem becomes even greater when the algorithm itself is 
biased. You can find countless examples online of algorithms misidentifying 
common objects like stop signs because of the combination of data containing 
mistruths and biased algorithms.

 » Machine learning solutions can’t cooperate: One of the most impor-
tant advantages of being human is the ability to collaborate with others. 
Knowledge potential increases exponentially as each party to a potential 
solution submits its piece of knowledge to create a whole that is much 
greater than the sum of its parts. A single machine learning solution remains 
a single machine learning solution because of it can’t generalize knowledge 
and thereby contribute to a comprehensive solution with multiple cooperative 
parties.

https://eugdpr.org/
https://homes.cs.washington.edu/~marcotcr/blog/lime/
https://homes.cs.washington.edu/~marcotcr/blog/lime/
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Chapter 3
Getting and Using 
Python

Deep learning requires the use of code, and you have numerous language 
choices available to you. However, this book relies on Python because it 
works on many different platforms and enjoys significant support in the 

developer community. In fact, according to the Tiobe Index (https://www.tiobe.
com/tiobe-index/) available at the time of writing, Python is the fourth-ranked 
language in the world and the one that will work best for deep learning, according 
to multiple sources (see https://www.analyticsindiamag.com/top-10-pro 
gramming-languages-data-scientists-learn-2018/ for details).

Before you can do too much with Python or use it to solve deep problems, you need 
a workable installation. You also need access to the datasets and code used for this 
book. Downloading the sample code and installing it on your system is the best 
way to get a good learning experience from the book. This chapter helps you get 
your system set up so that you can easily follow the examples in the remainder of 
the book. It also explores potential alternatives, such as Google Colaboratory 
(https://colab.research.google.com/notebooks/welcome.ipynb), also called 
simply Colab, in case you want to work on an alternative device, such as a tablet.

Using the downloadable source doesn’t prevent you from typing the examples on 
your own, following them using a debugger, expanding them, or working with the 
code in all sorts of ways. The downloadable source is there to help you get a good 
start with your deep learning and Python learning experience. After you see how the 

IN THIS CHAPTER

 » Obtaining a copy of Python

 » Interacting with Jupyter Notebook

 » Creating basic Python code

 » Working in the cloud

https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/
https://www.analyticsindiamag.com/top-10-programming-languages-data-scientists-learn-2018/
https://www.analyticsindiamag.com/top-10-programming-languages-data-scientists-learn-2018/
https://colab.research.google.com/notebooks/welcome.ipynb
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code works when it’s correctly typed and configured, you can try to create the exam-
ples on your own. If you make a mistake, you can compare what you’ve typed with 
the downloadable source and discover precisely where the error exists. You can find 
the downloadable source for this chapter in the DL4D_03_Sample.ipynb, DL4D_03_ 
Dataset_Load.ipynb, DL4D_03_Indentation.ipynb, and DL4D_03_Comments.ipynb 
files. (The Introduction tells you where to download the source code for this book.)

Working with Python in this Book
The Python environment changes constantly. As the Python community continues 
to improve Python, the language experiences breaking changes —those that create 
new behaviors while reducing backward compatibility. These changes might not 
be major, but they’re a distraction that will reduce your ability to discover deep 
learning programming techniques. Obviously, you want to discover deep learning 
with as few distractions as possible, so having the correct environment is essential. 
Here is what you need to use Python with this book:

 » Jupyter Notebook version 5.5.0

 » Anaconda 3 environment version 5.2.0

 » Python version 3.6.7

If you don’t have this setup, you may find that the examples don’t work as 
intended. The screenshots will most likely differ and the procedures may not work 
as planned.

As you go through the book, you need to install various Python packages to make 
the code work. Like the Python environment you configure in this chapter, these 
packages have specific version numbers. If you use a different version of a package, 
the examples may not execute at all. In addition, you may become frustrated 
trying to work through error messages that have nothing to do with the book’s 
code but instead result from using the wrong version number. Make sure to 
exercise care when installing Anaconda, Jupyter Notebook, Python, and all the 
packages needed to make your deep learning experience as smooth as possible.

Obtaining Your Copy of Anaconda
Before you can move forward, you need to obtain and install a copy of Anaconda. 
Yes, you can obtain and install Jupyter Notebook separately, but then you lack 
various other applications that come with Anaconda, such as the Anaconda 
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Prompt, which appears in various parts of the book. The best idea is to install 
Anaconda using the instructions that appear in the following sections for your 
particular platform (Linux, MacOS, or Windows).

Getting Continuum Analytics Anaconda
The basic Anaconda package is a free download from https://repo.anaconda.
com/archive/ to obtain the 5.2.0 version used in this book. Simply click one of the 
Python 3.6 Version links to obtain access to the free product. The filename you 
want begins with Anaconda3-5.2.0- followed by the platform and 32-bit or 64-bit 
version, such as Anaconda3-5.2.0-Windows-x86_64.exe for the Windows 64-bit 
version. Anaconda supports the following platforms:

 » Windows 32-bit and 64-bit (The installer may offer you only the 64-bit or 32-bit 
version, depending on which version of Windows it detects.)

 » Linux 32-bit and 64-bit

 » Mac OS X 64-bit

The free product is all you need for this book. However, when you look on the  
site, you see that many other add-on products are available. These products can 
help you create robust applications. For example, when you add Accelerate to the 
mix, you obtain the capability to perform multicore and GPU-enabled operations. 
The use of these add-on products is outside the scope of this book, but the  
Anaconda site provides details on using them.

Installing Anaconda on Linux
You use the command line to install Anaconda on Linux; no graphical installation 
option exists. Before you can perform the install, you must download a copy of the 
Linux software from the Continuum Analytics site. You can find the required 
download information in the “Getting Continuum Analytics Anaconda” section of 
this chapter. The following procedure should work fine on any Linux system, 
whether you use the 32-bit or the 64-bit version of Anaconda:

1. Open a copy of Terminal.

The Terminal window appears.

2. Change directories to the downloaded copy of Anaconda on your system.

The name of this file varies, but normally it appears as Anaconda3-5.2.0- 
Linux-x86.sh for 32-bit systems and Anaconda3-5.2.0-Linux-x86_64.sh 
for 64-bit systems. The version number is embedded as part of the filename.  

https://repo.anaconda.com/archive/
https://repo.anaconda.com/archive/
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In this case, the filename refers to version 5.2.0, which is the version used for 
this book. If you use some other version, you may experience problems with 
the source code and need to make adjustments when working with it.

3. Type bash Anaconda3-5.2.0-Linux-x86 (for the 32-bit version) or Anaconda 
3-5.2.0-Linux-x86_64.sh (for the 64-bit version) and press Enter.

An installation wizard starts that asks you to accept the licensing terms for 
using Anaconda.

4. Read the licensing agreement and accept the terms using the method 
required for your version of Linux.

The wizard asks you to provide an installation location for Anaconda. The book 
assumes that you use the default location of ~/anaconda. If you choose some 
other location, you may have to modify some procedures later in the book to 
work with your setup.

5. Provide an installation location (if necessary) and press Enter (or click 
Next).

You see the application extraction process begin. After the extraction is 
complete, you see a completion message.

6. Add the installation path to your PATH statement using the method 
required for your version of Linux.

You’re ready to begin using Anaconda.

Installing Anaconda on MacOS
The Mac OS X installation comes in only one form: 64-bit. Before you can perform 
the install, you must download a copy of the Mac software from the Continuum 
Analytics site. You can find the required download information in the “Getting 
Continuum Analytics Anaconda” section, earlier in this chapter. The following 
steps help you install Anaconda 64-bit on a Mac system:

1. Locate the downloaded copy of Anaconda on your system.

The name of this file varies, but normally it appears as Anaconda3-5.2. 
0-MacOSX-x86_64.pkg. The version number is embedded as part of the 
filename. In this case, the filename refers to version 5.2.0, which is the 
version used for this book. If you use some other version, you may experi-
ence problems with the source code and need to make adjustments when 
working with it.

2. Double-click the installation file.

You see an introduction dialog box.
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3. Click Continue.

The wizard asks whether you want to review the Read Me materials. You can 
read these materials later. For now, you can safely skip the information.

4. Click Continue.

The wizard displays a licensing agreement. Be sure to read through the 
licensing agreement so that you know the terms of usage.

5. Click I Agree if you agree to the licensing agreement.

The wizard asks you to provide a destination for the installation. The 
destination controls whether the installation is for an individual user or a 
group.

You may see an error message stating that you can’t install Anaconda on the 
system. The error message occurs because of a bug in the installer and has 
nothing to do with your system. To get rid of the error message, choose the 
Install Only for Me option. You can’t install Anaconda for a group of users on a 
Mac system.

6. Click Continue.

The installer displays a dialog box containing options for changing the 
installation type. Click Change Install Location if you want to modify where 
Anaconda is installed on your system. (The book assumes that you use the 
default path of ~/anaconda.) Click Customize if you want to modify how the 
installer works. For example, you can choose not to add Anaconda to your 
PATH statement. However, the book assumes that you have chosen the default 
install options, and you don’t have a good reason to change them unless you 
have another copy of Python installed somewhere else.

7. Click Install.

You see the installation begin. A progress bar tells you how the installation 
process is progressing. When the installation is complete, you see a completion 
dialog box.

8. Click Continue.

You’re ready to begin using Anaconda.

Installing Anaconda on Windows
Anaconda comes with a graphical installation application for Windows, so getting 
a good install means using a wizard, much as you would for any other installation. 
Of course, you need a copy of the installation file before you begin, and you can 
find the required download information in the “Getting Continuum Analytics 
Anaconda” section, earlier in this chapter. The following procedure should work 



50      PART 1  Discovering Deep Learning

fine on any Windows system, whether you use the 32-bit or the 64-bit version of 
Anaconda:

1. Locate the downloaded copy of Anaconda on your system.

The name of this file varies, but normally it appears as Anaconda3-5.2.0- 
Windows-x86.exe for 32-bit systems and Anaconda3-5.2.0-Windows- 
x86_64.exe for 64-bit systems. The version number is embedded as part 
of the filename. In this case, the filename refers to version 5.2.0, which is the 
version used for this book. If you use some other version, you may experience 
problems with the source code and need to make adjustments when working 
with it.

2. Double-click the installation file.

(You may see an Open File – Security Warning dialog box that asks whether 
you want to run this file. Click Run if you see this dialog box pop up.) You see 
an Anaconda 5.2.0 Setup dialog box similar to the one shown in Figure 3-1. 
The exact dialog box you see depends on which version of the Anaconda 
installation program you download. If you have a 64-bit operating system, it’s 
always best to use the 64-bit version of Anaconda so that you obtain the best 
possible performance. This first dialog box tells you when you have the 64-bit 
version of the product.

3. Click Next.

The wizard displays a licensing agreement. Be sure to read through the 
licensing agreement so that you know the terms of usage.

FIGURE 3-1: 
The setup 

process begins by 
telling you 

whether you have 
the 64-bit version.
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4. Click I Agree if you agree to the licensing agreement.

You’re asked what sort of installation type to perform, as shown in Figure 3-2. 
In most cases, you want to install the product just for yourself. The exception is 
if you have multiple people using your system and they all need access to 
Anaconda. The selection of Just Me or All Users will affect the installation 
destination folder in the next step.

5. Choose one of the installation types and then click Next.

The wizard asks where to install Anaconda on disk, as shown in Figure 3-3. The 
book assumes that you use the default location, which will generally install the 
product in your C:\Users\<User Name>\Anaconda3 folder. If you choose 
some other location, you may have to modify some procedures later in the 
book to work with your setup. You may be asked whether you want to create 
the destination folder. If so, simply allow the folder creation.

6. Choose an installation location (if necessary) and then click Next.

You see the Advanced Installation Options, shown in Figure 3-4. These options 
are selected by default and you have no good reason to change them in most 
cases. You might need to change them if Anaconda won’t provide your default 
Python 3.6 setup. However, the book assumes that you’ve set up Anaconda 
using the default options.

The Add Anaconda to My PATH Environment Variable option is deselected 
by default, and you should leave it deselected. Adding it to the PATH environ-
ment variable does offer the ability to locate the Anaconda files when using a 
standard command prompt, but if you have multiple versions of Anaconda 

FIGURE 3-2: 
Tell the wizard 
how to install 
Anaconda on 
your system.
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installed, only the first version that you installed is accessible. Opening an 
Anaconda Prompt instead is far better so that you gain access to the version 
you expect.

7. Change the advanced installation options (if necessary) and then click Install.

You see an Installing dialog box with a progress bar. The installation process 
can take a few minutes, so get yourself a cup of coffee and read the comics for 
a while. When the installation process is over, you see a Next button enabled.

8. Click Next.

The wizard tells you that the installation is complete.

FIGURE 3-4: 
Configure the 

advanced 
installation 

options.

FIGURE 3-3: 
Specify an 

installation 
location.
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9. Click Next.

Anaconda offers you the chance to integrate Visual Studio code support. You 
don’t need this support for this book and adding it might change the way that 
the Anaconda tools work. Unless you absolutely need Visual Studio support, 
you want to keep the Anaconda environment pure.

10. Click Skip.

You see a completion screen. This screen contains options to discover more 
about Anaconda Cloud and to obtain information about starting your first 
Anaconda project. Selecting these options (or deselecting them) depends on 
what you want to do next, and the options don’t affect your Anaconda setup.

11. Select any required options. Click Finish.

You’re ready to begin using Anaconda.

A WORD ABOUT THE SCREENSHOTS
As you work your way through the book, you’ll use an IDE of your choice to open the 
Python and Jupyter Notebook files containing the book’s source code. Every screenshot 
that contains IDE-specific information relies on Anaconda because Anaconda runs on all 
three platforms supported by the book. The use of Anaconda doesn’t imply that it’s the 
best IDE or that the authors are making any sort of recommendation for it — Anaconda 
simply works well as a demonstration product.

When you work with Anaconda, the name of the graphical (GUI) environment, Jupyter 
Notebook, is precisely the same across all three platforms, and you won’t even see any 
significant difference in the presentation. The differences you do see are minor, and 
you should ignore them as you work through the book. With this in mind, the book does 
rely heavily on Windows 7 screenshots. When working on a Linux, Mac OS X, or other 
Windows-version platform, you should expect to see some differences in presentation, 
but these differences shouldn’t reduce your ability to work with the examples. This book 
doesn’t use Windows 10 because of the serious issues it can present in making Python 
installations work as described at http://blog.johnmuellerbooks.com/2015/10/ 
30/python-and-windows-10/. Some readers do successfully use Windows 10, but for 
the best result, continue to rely on Windows 7.

If you’re using Google Colab or another cloud-based product, the screenshots you see 
will match a combination of your browser and the cloud environment. The screenshots 
you see in the book won’t match what you see on your screen at all. However, the 
content should be the same, so look for content rather than a precise GUI presentation. 
In addition, because Colab can’t perform some tasks that Notebook does, you may find 
that some content is missing or that you see an error message in place of the content.

http://blog.johnmuellerbooks.com/2015/10/30/python-and-windows-10/
http://blog.johnmuellerbooks.com/2015/10/30/python-and-windows-10/
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Downloading the Datasets 
and Example Code

This book is about using Python to perform deep learning tasks. Of course, you can 
spend all your time creating the example code from scratch, debugging it, and 
only then discovering how it relates to deep learning, or you can take the easy way 
and download the prewritten code so that you can get right to work. Likewise, 
creating datasets large enough for deep learning purposes would take quite a 
while. Fortunately, you can access standardized, precreated datasets quite easily 
using features provided in some of the data science libraries. The following sec-
tions help you download and use the example code and datasets so that you can 
save time and get right to work with data science–specific tasks.

Using Jupyter Notebook
To make working with the relatively complex code in this book easier, you use 
Jupyter Notebook. This interface lets you easily create Python notebook files that 
can contain any number of examples, each of which can run individually. The 
program runs in your browser, so which platform you use for development doesn’t  
matter; as long as it has a browser, you should be okay.

Starting Jupyter Notebook
Most platforms provide an icon to access Jupyter Notebook. You simply need to 
open this icon to access Jupyter Notebook. For example, on a Windows system, 
you choose Start ➪ All Programs ➪ Anaconda3 ➪ Jupyter Notebook. Figure  3-5 
shows how the interface looks when viewed in a Firefox browser. The precise 
appearance on your system depends on the browser you use and the kind of plat-
form you have installed.

If you use a platform that doesn’t offer easy access through an icon, you can use 
these steps to access Jupyter Notebook:

1. Open an Anaconda Prompt, Command Prompt, or Terminal Window on 
your system.

The window opens so that you can type commands.

2. Change directories to the \Anaconda3\Scripts directory on your 
machine.

Most systems let you use the CD command for this task.

3. Type ..\python Jupyter-script.py notebook and press Enter.

The Jupyter Notebook page opens in your browser.
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THE DIFFERENCE BETWEEN A NOTEBOOK 
AND AN IDE
A notebook differs from a text editor in that it focuses on a technique advanced by 
Stanford computer scientist Donald Knuth called literate programming, which you use to 
create a kind of presentation of code, notes, math equations, and graphics. In short, you 
wind up with a scientist’s notebook full of everything needed to understand the code 
completely. You commonly see literate programming techniques used in high-priced 
packages such as Mathematica and MATLAB. Notebook development excels at

• Demonstration

• Collaboration

• Research

• Teaching objectives

• Presentation

This book uses the Anaconda tool collection because it not only provides you with a 
great Python coding experience but also helps you discover the enormous potential of 
literate programming techniques. If you spend a lot of time performing scientific tasks, 
Anaconda and products like it are essential. In addition, Anaconda is free, so you get 
the benefits of the literate programming style without the cost of other packages.

FIGURE 3-5: 
Jupyter Notebook 
provides an easy 
method to create 

data science 
examples.
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Stopping the Jupyter Notebook server
No matter how you start Jupyter Notebook (or just Notebook, as it appears in the 
remainder of the book), the system generally opens a command prompt or termi-
nal window to host Notebook. This window contains a server that makes the 
application work. After you close the browser window when a session is complete, 
select the server window and press Ctrl+C or Ctrl+Break to stop the server.

Defining the code repository
The code you create and use in this book will reside in a repository on your hard 
drive. Think of a repository as a kind of filing cabinet where you put your code. 
Notebook opens a drawer, takes out the folder, and shows the code to you. You can 
modify it, run individual examples within the folder, add new examples, and sim-
ply interact with your code in a natural manner. The following sections get you 
started with Notebook so that you can see how this whole repository concept 
works.

Defining the book’s folder
You use folders to hold your code files for a particular project. The project for this 
book is DL4D (which standa for Deep Learning For Dummies). The following steps 
help you create a new folder for this book:

1. Choose New ➪ Folder.

Notebook creates a new folder for you. The name of the folder can vary, but 
for Windows users it’s simply listed as Untitled Folder. You may have to scroll 
down the list of available folders to find the folder in question.

2. Select the box next to Untitled Folder.

3. Click Rename at the top of the page.

You see the Rename Directory dialog box, shown in Figure 3-6.

4. Type DL4D and press Enter.

Notebook renames the folder for you.

Creating a new notebook
Every new notebook is like a file folder. You can place individual examples within 
the file folder, just as you would sheets of paper into a physical file folder. Each 
example appears in a cell. You can put other sorts of things in the file folder, too, 
but you see how these things work as the book progresses. Use these steps to 
create a new notebook:
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1. Click the DL4D entry on the Home page.

You see the contents of the project folder for this book, which will be blank if 
you’re performing this exercise from scratch.

2. Choose New ➪ Python 3.

A new tab opens in the browser with the new notebook, as shown in Figure 3-7. 
Notice that the notebook contains a cell and that Notebook has highlighted the 
cell so that you can begin typing code in it. The title of the notebook is Untitled 
right now. That’s not a particularly helpful title, so you need to change it.

FIGURE 3-6: 
Create a folder to 

use to hold the 
book’s code.

FIGURE 3-7: 
A notebook 

contains cells that 
you use to hold 

code.
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3. Click Untitled on the page.

Notebook asks what you want to use as a new name, as shown in Figure 3-8.

4. Type DL4D_03_Sample and press Enter.

The new name tells you that this is a file for Deep Learning For Dummies, 
Chapter 3, Sample.ipynb. Using this naming convention will make it easy for 
you to differentiate these files from other files in your repository.

Exporting a notebook
Creating notebooks and keeping them all to yourself isn’t much fun. At some 
point, you want to share them with other people. To perform this task, you must 
export your notebook from the repository to a file. You can then send the file to 
someone else, who will import it into his or her repository.

The previous section shows how to create a notebook named DL4D_03_Sample. 
You can open this notebook by clicking its entry in the repository list. The file 
reopens so that you can see your code again. To export this code, choose 
File ➪ Download As ➪ Notebook (.ipynb). What you see next depends on your 
browser, but you generally see some sort of dialog box for saving the notebook as 
a file. Use the same method for saving the Jupyter Notebook file as you use for any 
other file you save using your browser.

FIGURE 3-8: 
Provide a new 
name for your 

notebook.
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Saving a notebook
You eventually want to save your notebook so that you can review the code later 
and impress your friends by running it after you ensure that it doesn’t contain any 
errors. Notebook periodically saves your notebook for you automatically. How-
ever, to save it manually, you choose File ➪ Save and Checkpoint.

Closing a notebook
You definitely shouldn’t just close the browser window when you finish working 
with your notebook. Doing so will likely cause data loss. You must perform an 
orderly closing of your file, which includes stopping the kernel used to run the 
code in the background. After you save your notebook, you can close it by choosing 
File ➪ Close and Halt. You see your notebook entered in the list of notebooks for 
your project folder, as shown in Figure 3-9.

Removing a notebook
Sometimes notebooks get outdated or you simply don’t need to work with them 
any longer. Rather than allow your repository to get clogged with files you don’t 
need, you can remove these unwanted notebooks from the list. Use these steps to 
remove the file:

1. Select the check box next to the DL4D_03_Sample.ipynb entry.

2. Click the Delete (trash can) icon.

A Delete notebook warning message appears, like the one shown in Figure 3-10.

FIGURE 3-9: 
Your saved 
notebooks 

appear in a list in 
the project folder.
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3. Click Delete.

Notebook removes the notebook file from the list.

Importing a notebook
To use the source code from this book, you must import the downloaded files into 
your repository. The source code comes in an archive file that you extract to a 
location on your hard drive. The archive contains a list of .ipynb (IPython Note-
book) files containing the source code for this book (see the Introduction for 
details on downloading the source code). The following steps tell how to import 
these files into your repository:

1. Click the Upload on the Notebook DL4D page.

What you see depends on your browser. In most cases, you see some type of 
File Upload dialog box that provides access to the files on your hard drive.

2. Navigate to the directory containing the files that you want to import 
into Notebook.

3. Highlight one or more files to import and then click the Open (or other, 
similar) button to begin the upload process.

You see the file added to an upload list, as shown in Figure 3-11. The file isn’t 
part of the repository yet — you’ve simply selected it for upload.

4. Click Upload.

Notebook places the file in the repository so that you can begin using it.

FIGURE 3-10: 
Notebook warns 

you before 
removing any 
files from the 

repository.
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Getting and using datasets
This book uses a number of datasets, some of which you download directly from 
the web while others appear in Python packages such as the Scikit-learn library. 
These datasets demonstrate various ways in which you can interact with data, and 
you use them in the examples to perform a variety of tasks. The following list 
provides a quick overview of the functions used to import the datasets from Scikit-
learn into your Python code:

 » load_boston(): Regression analysis with the Boston house prices dataset

 » load_iris(): Classification with the Iris dataset

 » load_digits([n_class]): Classification with the digits dataset

 » fetch_20newsgroups(subset=’train’): Data from 20 newsgroups

The technique for loading each of these datasets is the same across examples. The 
following example shows how to load the Boston house prices dataset. You can 
find the code in the DL4D_03_Dataset_Load.ipynb notebook.

from sklearn.datasets import load_boston

Boston = load_boston()

print(Boston.data.shape)

FIGURE 3-11: 
The files you 

want to add to 
the repository 

appear as part of 
an upload list.
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To see how the code works, click Run Cell. The output from the print call is  
(506, 13). You can see the output shown in Figure 3-12. (Be patient; the dataset 
load can require a few seconds to complete.)

Creating the Application
The “Creating a new notebook” section shows how to create an empty notebook, 
which is nice but not helpful. You want to use the notebook to hold an application 
that you can use to discover the inner workings of deep learning. The following 
sections show how to work with notebook in a manner that lets you create a sim-
ple application for any purpose you need. However, before you begin, make sure 
that you have the DL4D_03_Sample.ipynb file open for use because you need it to 
explore Notebook.

Understanding cells
If Notebook were a standard IDE, you wouldn’t have cells. What you’d have is a 
document containing a single, contiguous series of statements. To separate vari-
ous coding elements, you need separate files. Cells are different because each cell 
is separate. Yes, the results of things you do in previous cells matter, but if a cell 
is meant to work alone, you can simply go to that cell and run it. To see how  
this works for yourself, type the following code into the first cell of the DL4D_03_ 
Sample file:

myVar = 3 + 4
print(myVar)

FIGURE 3-12: 
The Boston object 

contains the 
loaded dataset.
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Now click Run (the right-pointing arrow). The code executes, and you see the out-
put, as shown in Figure 3-13. The output is 7, as expected. However, notice the  
In [1]: entry. This entry tells you that this is the first cell executed.

Now place the cursor in the second cell — the one that is currently blank — and 
type print("This is myVar: ", myVar). Click Run. The output in Figure 3-14 shows 
that the cells have executed individually (because the In [2]: entry shows the 
 separate execution), but that myVar is global to the notebook. What you do in other 
cells with data affects every other cell, no matter what order the execution takes 
place.

Adding documentation cells
Cells come in a number of different forms. This book doesn’t use them all. How-
ever, knowing how to use the documentation cells can come in handy. Select the 
first cell (the one currently marked with a 1). Choose Insert ➪ Insert Cell Above. 

FIGURE 3-13: 
Cells execute 

individually in 
Notebook.

FIGURE 3-14: 
Data changes do 

affect every cell 
that uses the 

modified variable.
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You see a new cell added to the notebook. Note the drop-down list that currently 
has Code in it. This list allows you to choose the kind of cell to create. Select Mark-
down from the list and type # Creating the Application (to create a level 1 heading).  
Click Run (which may seem like an extremely odd thing to do, but give it a try). 
You see the heading turn into an actual heading with darker, larger text.

About now, you may be thinking that these special cells act just like HTML pages, 
and you’d be right. Choose Insert ➪ Insert Cell Below, select Markdown in the 
drop-down list, and then type ## Understanding cells (to create a level 2 head-
ing). Click Run. As you can see in Figure 3-15, the number of hash signs (#) you 
add to the text affects the heading level, but the hash signs don’t show up in the 
actual heading. (You can find complete Markdown documentation for Notebook at 
https://www.ibm.com/support/knowledgecenter/en/SSGNPV_1.1.3/dsx/
markd-jupyter.html, among other places online.)

Using other cell types
This chapter (and book) doesn’t demonstrate all the kinds of cell content that you 
can see by using Notebook. However, you can add other items, such as graphics, 
to your notebooks as well. When the time comes, you can output (print) your 
notebook as a report and use it in presentations of all sorts. The literate program-
ming technique is different from what you may have used in the past, but it has 
definite advantages, as you see in upcoming chapters.

FIGURE 3-15: 
Using heading 
levels provides 

emphasis for cell 
content.

https://www.ibm.com/support/knowledgecenter/en/SSGNPV_1.1.3/dsx/markd-jupyter.html
https://www.ibm.com/support/knowledgecenter/en/SSGNPV_1.1.3/dsx/markd-jupyter.html
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Understanding the Use of Indentation
As you work through the examples in this book, you see that certain lines are 
indented. In fact, the examples also provide a fair amount of white space (such as 
extra lines between lines of code). Python ignores any indentation in your appli-
cation. The main reason to add indentation is to provide visual cues about your 
code. In the same way that indentation is used for book outlines, indentation in 
code shows the relationships between various code elements.

The various uses of indentation will become more familiar as you work your way 
through the examples in the book. However, you should know at the outset why 
indentation is used and how it gets put in place. To that end, it’s time for another 
example. The following steps help you create a new example that uses indentation 
to make the relationship among application elements a lot more apparent and 
easier to figure out later.

1. Choose New ➪ Python3.

Jupyter Notebook creates a new notebook for you. The downloadable source 
uses the filename DL4D_03_Indentation.ipynb, but you can use any name 
desired.

2. Type print(“This is a really long line of text that will ” +.

You see the text displayed normally onscreen, just as you expect. The plus sign 
(+) tells Python that there is additional text to display. Adding text from multiple 
lines together into a single long piece of text is called concatenation. You learn 
more about using this feature later in the book, so you don’t need to worry 
about it now.

3. Press Enter.

The insertion point doesn’t go back to the beginning of the line, as you might 
expect. Instead, it ends up directly under the first double quote. This feature, 
called automatic indention, is one of the features that differentiates a regular 
text editor from one designed to write code.

4. Type “appear on multiple lines in the source code file.”) and press Enter.

Notice that the insertion point goes back to the beginning of the line. When 
Notebook senses that you have reached the end of the code, it automatically 
outdents the text to its original position.

5. Click Run.

You see the output shown in Figure 3-16. Even though the text appears on 
multiple lines in the source code file, it appears on just one line in the output. 
The line does break because of the size of the window, but it’s actually just 
one line.
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Adding Comments
People create notes for themselves all the time. When you need to buy groceries, 
you look through your cabinets, determine what you need, and write it down on a 
list or speak it into an app on your phone. When you get to the store, you review 
your list to remember what you need. Using notes comes in handy for all sorts of 
needs, such as tracking the course of a conversation between business partners or 
remembering the essential points of a lecture. Humans need notes to jog their 
memories. Comments in source code are just another form of note. You add them 
to the code so that you can remember what task the code performs later. The fol-
lowing sections describe comments in more detail. You can find these examples in 
the DL4D_03_Comments.ipynb file in the downloadable source.

FIGURE 3-16: 
Concatenation 

makes multiple 
lines of code text 

appear on a 
single output line.

HEADINGS VERSUS COMMENTS
You may find headings and comments a bit confusing at first. Headings appear in 
separate cells; comments appear with the source code. They serve different purposes. 
Headings serve to tell you about an entire code grouping, and individual comments tell 
you about individual code steps or even lines of code. Even though you use both of 
them for documentation, each serves a unique purpose. Comments are generally more 
detailed than headings.
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Understanding comments
Computers need some special way to determine that the text you’re writing is a 
comment, not code to execute. Python provides two methods of defining text as a 
comment and not as code. The first method is the single-line comment. It uses 
the number sign (#), like this:

# This is a comment.
print("Hello from Python!") #This is also a comment.

A single-line comment can appear on a line by itself or after executable code. It 
appears on only one line. You typically use a single-line comment for short 
descriptive text, such as an explanation of a particular bit of code. Notebook shows 
comments in a distinctive color (usually blue) and in italics.

Python doesn’t actually support a multiline comment directly, but you can create 
one using a triple-quoted string. A multiline comment both starts and ends with 
three double quotes (""") or three single quotes (''') like this:

"""
   Application: Comments.py
   Written by: John
   Purpose: Shows how to use comments.
"""

These lines aren’t executed. Python won’t display an error message when they 
appear in your code. However, Notebook treats them differently, as shown in 
Figure 3-17. Note that the actual Python comments, those preceded by a hash sign 
(#) in cell 1, don’t generate any output. The triple-quote strings, however, do 
generate output. In addition, unlike standard comments, triple-quoted text 
appears in red (depending on the editor), rather than in blue, and the text isn’t in 
italics. If you plan to output your notebook as a report, you need to avoid using 
triple-quoted strings. (Some IDEs, such as IDLE, ignore the triple-quoted strings 
completely.)

You typically use multiline comments for longer explanations of who created an 
application, why it was created, and what tasks it performs. Of course, no hard 
rules exist regarding precisely how you use comments. The main goal is to tell the 
computer precisely what is and isn’t a comment so that it doesn’t try to interact 
with the comment as it would code.
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Using comments to leave 
yourself reminders
A lot of people don’t really understand comments and don’t quite know what to do 
with notes in code. Keep in mind that you might write a piece of code today and 
then not look at it for years. You need notes to jog your memory so that you 
remember what task the code performs and why you wrote it. In fact, here are 
some common reasons to use comments in your code:

 » Remind yourself about what the code does and why you wrote it

 » Tell others how to maintain your code

 » Make your code accessible to other developers

 » List ideas for future updates

 » Provide a list of documentation sources you used to write the code

 » Maintain a list of improvements you’ve made

You can use comments in a lot of other ways, too, but these are the most common 
ways. Look at how comments are used in the examples in the book, especially as 
you get to later chapters where the code becomes more complex. As your code 
becomes more complex, you need to add more comments and make the comments 
pertinent to what you need to remember about it.

FIGURE 3-17: 
Multiline 

comments do 
work, but they 

also provide 
output.
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Using comments to keep  
code from executing
Developers also sometimes use the commenting feature to keep lines of code from 
executing (referred to as commenting out). You might need to do this to determine 
whether a line of code is causing your application to fail. As with any other 
comment, you can use either single-line commenting or multiline commenting. 
However, when using multiline commenting, you do see the code that isn’t 
executing as part of the output (and it can actually be helpful to see where the code 
affects the output).

Getting Help with the Python Language
This book doesn’t teach you the Python language, which would require a whole 
book in itself. Of course, you could always use Beginning Programming with Python 
For Dummies, by John Paul Mueller (Wiley), to obtain what you need. You have 
many other options for getting help with the Python language as well. In fact, so 
many options are available that covering them all in this chapter isn’t possible. 
Here are the best methods for obtaining help:

 » Choose one of the options on the Help menu of Notebook.

 » Open an Anaconda prompt, start a copy of Python, and use text commands to 
search for help.

 » Download the Python documentation from https://docs.python.
org/3.6/download.html.

 » View the online documentation at https://docs.python.org/3.6/.

 » Use any of the following tutorials:

• The official tutorial: https://docs.python.org/3.6/

• TutorialsPoint: https://www.tutorialspoint.com/python/

• W3Schools: https://www.w3schools.com/python/

• learnpython.org: https://www.learnpython.org/

• Codecademy: https://www.codecademy.com/learn/learn-python

The point is that this book assumes that you already know how to program in 
Python. This chapter provides you with some tool-related aids to ease your 
transition from whatever tools you have used in the past to the tools used in this 
book.

https://docs.python.org/3.6/download.html
https://docs.python.org/3.6/download.html
https://docs.python.org/3.6/
https://docs.python.org/3.6/
https://www.tutorialspoint.com/python/
https://www.w3schools.com/python/
https://www.learnpython.org/
https://www.codecademy.com/learn/learn-python
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Working in the Cloud
Even though this chapter has presented a local processing approach, you may find 
a need to interact with cloud resources to perform certain tasks. The following 
sections discuss two cloud-related activities that you may perform while using 
this book. The first is to access cloud resources for various needs. The second is to 
use Google Colaboratory to work with the examples on your tablet instead of a 
desktop system.

Using the Kaggle datasets and kernels
Kaggle (https://www.kaggle.com/) is a huge community of data scientists and 
others who need to work with large datasets to obtain the information needed to 
meet various goals. You can create new projects on Kaggle, view the work done by 
others on completed projects, or participate in one of its ongoing competitions. 
However, Kaggle is more than simply a community of really smart people who like 
to play with data; it’s also a place where you can obtain resources needed to learn 
all about deep learning and to create projects of your own.

The best place to find out how Kaggle can help you discover more about deep 
learning is at https://www.kaggle.com/m2skills/datasets-and-tutorial- 
kernels-for-beginners. This site lists the various datasets and tutorial kernels 
that Kaggle provides. A dataset is simply a kind of database of information used to 
perform standardized tests on application code. A tutorial kernel is a kind of project 
you use to learn how to analyze data in various ways. For example, you can find a 
tutorial kernel about mushroom classification at https://www.kaggle.com/ 
uciml/mushroom-classification.

Using the Google Colaboratory
Colaboratory (https://colab.research.google.com/notebooks/welcome.ipynb), 
or Colab for short, is a Google cloud-based service that replicates Jupyter Notebook in 
the cloud. This is a custom implementation, so you may find times when Colab and 
Notebook are out of sync — features in one may not always work in the other. You 
don’t have to install anything on your system to use it. In most respects, you use 
Colab as you would a desktop installation of Jupyter Notebook. The main reason to 
learn more about Colab is if you want to use a device other than a standard desktop 
setup to work through the examples in this book. If you want a fuller tutorial of 
Colab, you can find one in Chapter  4 of Python For Data Science For Dummies,  
2nd Edition, by John Paul Mueller and Luca Massaron (Wiley). For now, this section 
gives you the basics of using existing files. Figure 3-18 shows the opening Colab 
display.

https://www.kaggle.com/
https://www.kaggle.com/m2skills/datasets-and-tutorial-kernels-for-beginners
https://www.kaggle.com/m2skills/datasets-and-tutorial-kernels-for-beginners
https://www.kaggle.com/uciml/mushroom-classification
https://www.kaggle.com/uciml/mushroom-classification
https://colab.research.google.com/notebooks/welcome.ipynb
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You can open existing notebooks found in local storage, on Google Drive, or on 
GitHub. You can also open any of the Colab examples or upload files from sources 
that you can access, such as a network drive on your system. In all cases, you 
begin by choosing File ➪ Open Notebook. The default view shows all the files  
you opened recently, regardless of location. The files appear in alphabetical  
order. You can filter the number of items displayed by typing a string into Filter 
Notebooks. Across the top are other options for opening notebooks.

Even if you’re not logged in, you can still access the Colab example projects. These 
projects help you understand Colab but don’t allow you to do anything with your 
own projects. Even so, you can still experiment with Colab without logging into 
Google first. Here is a quick list of the ways to use files with Colab:

 » Using Drive for existing notebooks: Google Drive is the default location 
for many operations in Colab, and you can always choose it as a destination. 
When working with Drive, you see a listing of files. To open a particular file, 
you click its link in the dialog box. The file opens in the current tab of 
your browser.

 » Using GitHub for existing notebooks: When working with GitHub, you 
initially need to provide the location of the source code online. The location 
must point to a public project; you can’t use Colab to access your private 
projects. After you make the connection to GitHub, you see a list of repositories 
(which are containers for code related to a particular project) and branches 
(which represent particular implementations of the code). Selecting a reposi-
tory and branch displays a list of notebook files that you can load into Colab. 
Simply click the required link and it loads as if you were using Google Drive.

FIGURE 3-18: 
Colab makes 

using your 
Python projects 

on a tablet easy.
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 » Using local storage for existing notebooks: If you want to use the down-
loadable source for this book, or any local source, for that matter, you select 
the Upload tab of the dialog box. In the center, you see a single button called 
Choose File. Clicking this button opens the File Open dialog box for your 
browser. You locate the file you want to upload, just as you normally would 
for any file you want to open. Selecting a file and clicking Open uploads the 
file to Google Drive. If you make changes to the file, those changes appear on 
Google Drive, not on your local drive.
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Chapter 4
Leveraging a Deep 
Learning Framework

This chapter looks at deep learning frameworks because using a deep learn-
ing framework can greatly reduce the time, cost, and complexity of devel-
oping a deep learning solution. Of course, you must begin by defining the 

term framework, which is an abstraction that provides generic functionality that 
your application code modifies. Unlike a library that runs within your application, 
when you’re using a framework, your application runs within it. You can’t modify 
basic framework functionality, which means that you have a stable environment 
in which to work, but most frameworks offer some level of extensibility. 
Frameworks are generally specific to a particular need, such as the web frame-
works used to create online applications. Consequently, even though deep learn-
ing frameworks have many characteristics of frameworks in general, they also 
provide specific functionality that this chapter explores.

Not everyone uses the same ideas and concepts for running deep learning applica-
tions. In addition, not every organization wants to invest in a complex deep learn-
ing framework when a less expensive and simpler framework will do. Consequently, 
you find a lot of deep learning frameworks that can provide you with basic func-
tionality that you can use for experimentation and for simpler applications. This 
chapter explores some of these basic frameworks and compares them so that you 
have a better idea of what is available.

IN THIS CHAPTER

 » Understanding frameworks

 » Using a basic framework

 » Working with TensorFlow
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To provide the best possible learning environment, this book relies on the Tensor-
Flow framework for the examples. TensorFlow works better for the situations 
presented in this book than the other solutions covered earlier, and this chapter 
explains why. It also tells you precisely why TensorFlow is a good general solution 
to many deep learning scenarios.

You don’t have to type the source code for this chapter manually. In fact, it’s a 
lot easier if you use the downloadable source. The source code for this chapter 
appears in the DL4D_03_Comments.ipynb, DL4D_03_Dataset_Load.ipynb, DL4D_ 
03_Indentation.ipynb, and DL4D_03_Sample.ipynb source code files (see the 
Introduction for details on how to find that source file).

Presenting Frameworks
As mentioned in the introduction, your code runs within a framework. In a 
 framework environment, your code makes requests of the framework, which then 
fulfills the request for you. Consequently, frameworks provide a kind of structure 
for application development. Because of this structure, frameworks are domain 
specific, answering specific kinds of application development needs. The follow-
ing sections discuss frameworks both from an overview perspective and in more 
detail as a deep learning solution. It’s important to remember that these sections 
don’t provide you with complete information on frameworks, but they do help you 
understand deep learning frameworks well enough to make good decisions  
about them.

Defining the differences
The problem domain–specific nature of frameworks makes it necessary to locate 
the right sort of framework for your needs. (A problem domain is a description of 
the expertise and resources required to solve a problem. For example, you don’t go 
to a doctor to solve your plumbing problems —you go to a plumber instead.) Sim-
ply asking for a general framework won’t do you much good. Here are some 
examples of framework types, all of which have specific characteristics to meet 
the needs of their problem domain:

 » Application framework (of the sort used to create end-user applications)

 » Artistic (drawing, music, and other creative forms)

 » Cactus framework (high-performance scientific computing)
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 » Decision support system

 » Earth system modeling

 » Financial modeling

 » Web framework (including language-specific frameworks for languages like 
such as AJAX and JavaScript)

The diversity of software frameworks is amazing, and you’re unlikely to ever need 
them all. They do have two important things in common. In each case, the frame-
work defines a series of frozen spots that define the characteristics of the applica-
tion and that the developer can’t change. In addition, the framework defines hot 
spots that a developer does use to define the specifics to the target software. For 
example, a frozen spot in a web application might define the interface on which a 
user relies to make requests, while a hot spot might define how to fulfill that 
request. Someone designing a book search application would focus on the specif-
ics of book searches while disregarding the requirements of state management 
and request handling.

Explaining the popularity of frameworks
In thinking about software, you can easily see the progression of tools used to 
 create it. At one time, developers had to input their code using keypunch cards, 
which was extremely time consuming and error prone. Editors make the job easier 
because now you can type what you want done. The Integrated Development 
Environment (IDE) comes next. Using an IDE allows modeling, compilation, and 
testing of the code in a single environment, along with other things. The use 
of  libraries enables you to create large, complex applications quickly. So, a  
framework — which is an environment in which a developer needs to consider 
only the specifies of a particular application — is simply the next step in making 
developers more productive while also making applications more robust and less 
error prone. Hence the popularity of frameworks with developers.

However, a framework is much more than simply a means of creating code faster, 
with less effort and fewer errors. A framework lets you create a standardized envi-
ronment in which everyone uses the same libraries, tools, Application Program-
ming Interfaces (APIs), and other programs. The use of a standardized environment 
enables you to transfer code between systems without fear of introducing odd appli-
cation issues because of environmental inconsistencies. In addition, team develop-
ment issues are fewer because the collaboration environment is simplified.
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Because a framework handles all the low-level details, you must also consider 
the  makeup of an application team. In the past, the team might need people 
who were adept at interacting with the hardware or creating user interface basics. 
The use of a framework means that all these tasks are already completed,  
so a team is made up of subject-matter experts who can communicate effectively 
with each other, making a coherent approach to application development 
possible.

The most important reason that frameworks are so popular now relates to how 
coding is done today. At one time, developers needed to know how to interact with 
the hardware and software at an extremely low level. Today, frameworks make 
coding easy in an environment in which:

 » Most applications consist mainly of API calls strung together to achieve a 
specific purpose.

 » People need to understand how APIs perform, rather than what they do or 
how they do it. A developer needs to consider what data structures the API 
accepts and how well it processes data under pressure.

 » The immense installed base of existing software means keeping that code in 
place and finding fast, efficient methods to interact with it.

 » The focus is on architecture rather than details. Because most new applica-
tions rely heavily on existing code accessed through libraries or APIs, develop-
ers don’t spend as much time learning the idiosyncrasies of a language; it’s 
better to discover which pile of code can do the work without having to write 
any of the code yourself.

 » Getting the algorithm correct is what matters most.

 » Tools have become so smart that they often correct minor coding errors and 
interpret ambiguities in developer code correctly, so the emphasis is on 
getting ideas down rather than writing perfect code.

 » Visual languages, in which you drag and drop objects in a graphical environ-
ment, are becoming more common. At some point, code could actually 
disappear (at least, for most application developers).

 » Knowing a single platform isn’t enough. Most applications today must 
execute flawlessly on Windows, Linux, OS X, Android, most smartphones, 
and myriad other platforms because users want software in a form they 
understand.
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Defining the deep learning framework
When thinking about a deep learning framework, what you’re really considering 
is how the framework manages the frozen spots and the hot spots. In most cases, 
a deep learning framework provides frozen spots and hot spots in these areas:

 » Hardware access (such as using a GPU with ease)

 » Standard neural network layer access

 » Deep learning primitive access

 » Computational graph management

 » Model training

 » Model deployment

 » Model testing

CONSIDERING FRAMEWORK NEGATIVES
Depending on whom you talk to, a framework solution isn’t always the panacea that 
supporters would make it out to be. One of the bigger issues when using a framework is 
that the framework becomes its own application. A development team needs to learn 
both the framework and all the tools used to write the application. Consequently, if 
most of the team members on a development effort haven’t used the framework 
before, they’ll need additional time to overcome the framework’s learning curve. 
However, after they learn how to use a framework, they’ll easily gain back part of this 
initial investment in time through higher productivity overall.

Another problem with frameworks is their tendency to use resources inefficiently. The 
size of a framework application, framework included, is generally larger than an applica-
tion developed using libraries. Of course, monolithic applications are generally the most 
efficient because they can use only the resources required for that application. All the 
code bloat found in frameworks comes from trying to create a one-size-fits-all solution.

The frameworks discussed in this book are all public offerings. In fact, most of them are 
open source as well. However, some proponents of frameworks feel that every enter-
prise should have its own framework that is developed using the common code from 
applications in that enterprise. With that approach, the resulting framework has a con-
sistent look and feel that matches the pre-framework applications that the enterprise 
has to maintain. However, developing a custom framework for a particular enterprise is 
time consuming. Therefore, many people point out that a framework-based solution 
isn’t as useful or easy to learn as non-framework solutions.
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 » Graph building and presentation

 » Inference (forward propagation)

 » Automatic differentiation (backpropagation)

Frameworks address other issues, and the focus on specific issues determines the 
viability of a particular framework for a particular purpose. As with many forms of 
software development aid, you need to choose the framework you use carefully.

Choosing a particular framework
The previous sections in this chapter discuss the appeal of frameworks in general 
and trace how frameworks can create a significantly better work environment for 
developers. Also covered are features that make a deep learning framework spe-
cial. Of course, the amount of automation that a framework supplies and the 
number of typical features it supports are the starting point for finding a frame-
work that meets your needs. You also need to consider issues such as learning 
curve with regard to the ease of using the framework.

One of the more important considerations when choosing a framework is to 
remember that frameworks are domain specific, which means that if you need to 
create an application that spans domains, such as a deep learning application that 
includes a web interface, you need multiple frameworks. Getting frameworks that 
work well with each other can be critical. If you also host your application in the 
cloud, you need consider which frameworks work with the cloud vendor’s offer-
ing, too. For example, if you choose to use TensorFlow as your framework, you can 
also rely on Amazon Web Services (AWS) to host your application (see https://
aws.amazon.com/tensorflow/ for details).

As another option when using TensorFlow, you can go directly to Google Cloud (see 
https://cloud.google.com/tpu/ for details), where you can train your deep 
learning solution using GPUs or Tensor Processing Units (TPUs). The TPUs were 
developed by Google specifically for neural network machine learning use Tensor-
Flow. TPUs are Application-Specific Integrated Circuits (ASICs) optimized for a par-
ticular use. In this case, they’re for neural network processing using TensorFlow.

Application size and complexity also play a role in deep learning framework choice 
because you often need a higher-end framework to interact properly with large 
applications. The need to deal with applications of various sorts is offset by the 
usual cost and availability concerns. Many of the low-end deep learning frame-
works in this chapter will cost you nothing to try and could provide everything 
needed to get started.

https://aws.amazon.com/tensorflow/
https://aws.amazon.com/tensorflow/
https://cloud.google.com/tpu/
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Working with Low-End Frameworks
Low-end deep learning frameworks often come with a built-in trade-off. You 
must choose between cost and usage complexity, as well as the need to support 
large applications in challenging environments. The trade-offs you’re willing to 
endure will generally reflect what you can use to complete your project. With this 
in mind, the following sections discuss a number of low-end frameworks that are 
incredibly useful and work well with small to medium-size projects, but that 
come with trade-offs for you to consider as well.

Caffe2
Caffe2 (https://caffe2.ai/) is loosely based on Caffe, which was originally 
developed at the University of California, Berkeley. It’s written in C++ with a 
Python interface. One of the reasons people really like Caffe2 is that you can train 
and deploy a model without actually writing any code. Instead, you choose one of 
the prewritten models and add it to a configuration file (which looks amazingly 
like JSON code). In fact, a large selection of pretrained models appears as part of 
Model Zoo (https://github.com/BVLC/caffe/wiki/Model-Zoo) that you can 
rely on for many needs.

The original Caffe had a number of problems that make it less appealing than 
Caffe2 to data scientists. The current version of Caffe is still popular, but you 
really can’t use it for anything complex. Caffe2 improves on Caffe in the following 
ways:

 » Better support for large-scale distributed training

 » Mobile development

 » Added CPU support and support for GPUs through CUDA

MIGRATING CAFFE TO CAFFE2
Even though Caffe (http://caffe.berkeleyvision.org/ and https://github.
com/BVLC/caffe) is still around and many people use it, you might find that Caffe2 
is the product you really need. If you have some Caffe applications now, you can 
move them to Caffe2 using the techniques found at https://caffe2.ai/docs/
caffe-migration.html, so any investment you made in Caffe is still useful in Caffe2.

https://caffe2.ai/
https://github.com/BVLC/caffe/wiki/Model-Zoo
http://caffe.berkeleyvision.org/
https://github.com/BVLC/caffe
https://github.com/BVLC/caffe
https://caffe2.ai/docs/caffe-migration.html
https://caffe2.ai/docs/caffe-migration.html
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You can find other additions in the new version of Caffe. Another reason for 
Caffe2’s popularity is that it can process images quite quickly and without signifi-
cant scaling issues. It’s designed to be lightweight and speedy. Note that Caffe2 
and PyTorch are set to unite as a single product at some point in the future (see 
https://caffe2.ai/blog/2018/05/02/Caffe2_PyTorch_1_0.html for details).

Chainer
Chainer (https://chainer.org/) is a library written purely in Python that relies 
on the NumPy (http://www.numpy.org/) and CuPy (https://cupy.chainer.
org/) libraries. Preferred Networks (https://www.preferred-networks.jp/en/) 
leads the development of this library, but IBM, Intel, Microsoft, and NVIDIA also 
play a role. The main point with this library is that helps you use the CUDA capa-
bilities of your GPU by adding only a few lines of code. In other words, this library 
gives you a simple way to greatly enhance the speed of your code when working 
with huge datasets.

Many deep learning libraries today, such as Theano (discussed in the “Compiling 
Math Expressions Using Theano” section of Chapter 19) and TensorFlow  (discussed 
later in this chapter), use a static deep learning approach called define and run, in 
which you define the math operations and then perform training based on those 
operations. Unlike Theano and TensorFlow, Chainer uses a define-by-run 
approach, which relies on a dynamic deep learning approach in which the code 
defines math operations as the training occurs. Here are the two main advantages 
to this approach:

 » Intuitive and flexible approach: A define-by-run approach can rely on 
a language’s native capabilities rather than require you to create special 
operations to perform analysis.

 » Debugging: Because the define-by-run approach defines the operations 
during training, you can rely on the internal debugging features to locate the 
source of errors in a dataset or the application code.

TensorFlow 2.0 can also use define-by-run by relying on Chainer to provide eager 
execution.

PyTorch
PyTorch (https://pytorch.org/) is the successor to Torch (http://torch.ch/) 
written in the Lua (https://www.lua.org/) language. One of the core Torch 
libraries (the PyTorch autograd library) started as a fork of Chainer, which is 
described in the previous section. Facebook initially developed PyTorch, but many 

https://caffe2.ai/blog/2018/05/02/Caffe2_PyTorch_1_0.html
https://chainer.org/
http://www.numpy.org/
https://cupy.chainer.org/
https://cupy.chainer.org/
https://www.preferred-networks.jp/en/
https://pytorch.org/
http://torch.ch/
https://www.lua.org/
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other organizations use it today, including Twitter, Salesforce, and the University 
of Oxford. Here are the features that make PyTorch special:

 » Extremely user friendly

 » Efficient memory usage

 » Relatively fast

 » Commonly used for research

Some people like PyTorch because it’s easy to read like Keras, but the scientist 
doesn’t lose the ability to use complicated neural networks. In addition, PyTorch 
supports dynamic computational model graphing directly (see the “Grasping why 
TensorFlow is so good” section, later in the chapter, for more details on this 
issue), which makes it more flexible than TensorFlow without the addition of 
TensorFlow Fold.

MXNet
The biggest reason to use MXNet is speed. It might be hard to figure out whether 
MXNet (https://mxnet.apache.org/) or CNTK (https://www.microsoft.com/ 
en-us/cognitive-toolkit/) is faster, but both products are quite fast and are 
often used as a contrast to the slowness that some people experience when work-
ing with TensorFlow. (The whitepaper at https://arxiv.org/pdf/1608.07249v7.
pdf provides some details on benchmarking of deep learning code.)

MXNet is an Apache product that supports a host of languages including Python, 
Julia, C++, R, and JavaScript. Numerous large organizations use it, including 
Microsoft, Intel, and Amazon Web Services. Here are the aspects that make MXNet 
special:

 » Features advanced GPU support

 » Can be run on any device

 » Provides a high-performance imperative API

 » Offers easy model serving

 » Provides high scalability

It may sound like the perfect product for your needs, but MXNet does come with 
at least one serious failing — it lacks the level of community support that Tensor-
Flow provides. In addition, most researchers don’t look at MXNet favorably 
because it can become complex, and a researcher isn’t dealing with a stable model 
in most cases.

https://mxnet.apache.org/
https://www.microsoft.com/en-us/cognitive-toolkit/
https://www.microsoft.com/en-us/cognitive-toolkit/
https://arxiv.org/pdf/1608.07249v7.pdf
https://arxiv.org/pdf/1608.07249v7.pdf
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Microsoft Cognitive Toolkit/CNTK
As mentioned in the previous section, its speed is one of the reasons to use the 
Microsoft Cognitive Toolkit (CNTK). Microsoft uses CNTK for big datasets — really 
big ones. As a product, it supports the Python, C++, C#, and Java programming 
languages. Consequently, if you’re a researcher who relies on R, this isn’t the 
product for you. Microsoft has used this product in Skype, Xbox and Cortana. This 
product’s special features are

 » Great performance

 » High scalability

 » Highly optimized components

 » Apache Spark support

 » Azure Cloud support

As with MXNet, CNTK has a distinct problem in its lack of adequate community 
support. In addition, it tends not to provide much in the way of third-party sup-
port, either, so if the package doesn’t contain the features you need, you might 
not get them at all.

Understanding TensorFlow
At the moment, TensorFlow is at the top of the heap with regard to deep learning 
frameworks (see the chart at https://towardsdatascience.com/deep-learning- 
framework-power-scores-2018-23607ddf297a for details). TensorFlow’s success 
stems from many reasons, but mainly it comes from providing a robust environ-
ment in a relatively easy-to-use package. The following sections help you under-
stand why this book uses TensorFlow. You discover what makes TensorFlow so 
exciting and how add-ons make it even easier to use.

Grasping why TensorFlow is so good
A product has to offer quite a bit in terms of functionality, ease-of-use, and 
 reliability to make much of a dent in the market when people have many choices. 
Part of the reason for TensorFlow’s success is that it supports a number of the 
most popular languages: Python, Java, Go, and JavaScript. In addition, it’s quite 
extensible. Each extension is an op (as in operation), which you can read about at 
https://www.tensorflow.org/guide/extend/op. The point is that when a prod-
uct has great support for multiple languages and allows for significant extensibil-
ity, the product becomes popular because people can perform tasks in a manner 
that best suits them, rather than what the vendor thinks the user needs.

https://towardsdatascience.com/deep-learning-framework-power-scores-2018-23607ddf297a
https://towardsdatascience.com/deep-learning-framework-power-scores-2018-23607ddf297a
https://www.tensorflow.org/guide/extend/op
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The manner in which TensorFlow evaluates and executes code is important as 
well. Natively, TensorFlow supports only static computational graphs. However, 
the TensorFlow Fold extension (https://github.com/tensorflow/fold) sup-
ports dynamic graphs as well. A dynamic graph is one in which the structure of the 
computational graph varies as a function of the input data structure and changes 
dynamically as the application runs. Using dynamic batching, TensorFlow Fold 
can create a static graph from the dynamic graphs, which it can then feed into 
TensorFlow. This static graph represents the transformation of one or more 
dynamic graphs modeling uncertain data. Of course, you might not even need to 
build a computational graph because TensorFlow also supports eager execution 
(evaluating operations immediately without building a computational graph) so 
that it can evaluate Python code immediately (called dynamic execution). The inclu-
sion of this dynamic functionality makes TensorFlow extremely flexible in the 
data it can accommodate.

TENSORFLOW SUPPORT ON COLAB
Many developers today rely on online environments, such as Colab, to perform tasks 
because installing and configuring TensorFlow on a desktop machine can prove difficult, 
and you must have a GPU that TensorFlow supports (https://developer.nvidia.
com/cuda-gpus) if you want accelerated processing. In addition, you have all sorts of 
other issues to consider (https://www.tensorflow.org/install/gpu).

Colab appears to make things easy. To get CPU support, all you do is select a configura-
tion box. To ensure that you have the proper support, you simply run a little extra 
Colab-specific code (https://colab.research.google.com/notebooks/gpu.
ipynb). However, reality seldom works the same as theory. For one thing, you have 
to reinstall everything every time you start a new Colab session because the library sup-
port isn’t persistent (https://www.kdnuggets.com/2018/02/essential-google- 
colaboratory-tips-tricks.html). Of course, you may not have access to a GPU 
at all (it’s at Google’s discretion) or the GPU support may have limits (https://stack 
overflow.com/questions/48750199/google-colaboratory-misleading- 
information-about-its-gpu-only-5-ram-available).

To ensure that you have the best possible learning experience, this book uses an 
extremely simplified TensorFlow setup that avoids many of the pitfalls that other envi-
ronments experience. This environment will work for the book, any learning experience 
you’re likely to have in school, small experimental projects, and even projects for small 
to medium-sized businesses that use small to medium-sized datasets. You could never 
use this setup to run a Facebook-type project.

https://github.com/tensorflow/fold
https://developer.nvidia.com/cuda-gpus
https://developer.nvidia.com/cuda-gpus
https://www.tensorflow.org/install/gpu
https://colab.research.google.com/notebooks/gpu.ipynb
https://colab.research.google.com/notebooks/gpu.ipynb
https://www.kdnuggets.com/2018/02/essential-google-colaboratory-tips-tricks.html
https://www.kdnuggets.com/2018/02/essential-google-colaboratory-tips-tricks.html
https://stackoverflow.com/questions/48750199/google-colaboratory-misleading-information-about-its-gpu-only-5-ram-available
https://stackoverflow.com/questions/48750199/google-colaboratory-misleading-information-about-its-gpu-only-5-ram-available
https://stackoverflow.com/questions/48750199/google-colaboratory-misleading-information-about-its-gpu-only-5-ram-available
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In addition to various kinds of dynamic support, TensorFlow also enables you to 
use a GPU to speed calculations. You can actually use multiple GPUs and spread 
the computational model over several machines in a cluster. The capability to 
bring so much computing power to solving a problem makes TensorFlow faster 
than much of the competition. Speed is important because answers to questions 
often have a short life expectancy; getting an answer tomorrow for a question you 
have today won’t work in many scenarios. For example, a doctor who relies on the 
services of an AI to provide alternatives during a surgery needs answers immedi-
ately or the patient could die.

Computational features only help you obtain a solution to a problem. TensorFlow 
also helps you visualize the solution in various ways using the TensorBoard exten-
sion (https://www.tensorflow.org/guide/summaries_and_tensorboard). This 
extension helps you to

 » Visualize the computational graph

 » Plot graph execution metrics

 » Show additional data as needed

As with many products that include a lot of functionality, TensorFlow comes with 
a steep learning curve. However, it also enjoys considerable community support, 
provides access to a wealth of hands-on tutorials, has great third-party support 
for online courses, and offers many other aids to reduce the learning curve. You’ll 
want to start with the tutorial at https://www.tensorflow.org/tutorials/ and 
peruse the guide of offerings at https://www.tensorflow.org/guide/.

Making TensorFlow easier by using TFLearn
One of the major complaints people have about using TensorFlow directly is that 
the coding is both low level and difficult at times. The trade-off that you make 
with TensorFlow is that you gain additional flexibility and control by writing more 
code. However, not everyone needs the depth that TensorFlow can provide, which 
is why packages such as TFLearn (http://tflearn.org/), which stands for Ten-
sorFlow Learn, are so important. (You can find a number of packages on the mar-
ket that attempt to reduce the complexity; TFLearn is just one of them.)

TFLearn does make working with TensorFlow easier, but in specific ways:

 » A high-level Application Programming Interface (API) helps you to produce 
results with less code.

 » The high-level API reduces the amount of standardized (boilerplate) code 
you write.

https://www.tensorflow.org/guide/summaries_and_tensorboard
https://www.tensorflow.org/tutorials/
https://www.tensorflow.org/guide/
http://tflearn.org/
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 » Prototyping is faster, akin to the functionality found in Caffe2 (described 
earlier in this chapter).

 » Transparency with TensorFlow means that you can see how the functions 
work and use them directly without relying on TFLearn.

 » The use of helper functions automates many tasks that you normally need to 
perform manually.

 » The use of great visualization helps you see the various aspects of your 
application, including the computational model, with greater ease.

You get all this functionality, and more, without giving up the aspects that make 
TensorFlow such a great product. For example, you still have full access to Ten-
sorFlow’s capability to use CPUs, GPUs, and even multiple systems to bring more 
computing power to task on any problem.

Using Keras as the best simplifier
Keras is less of a framework and more of an API (a set of interface specifications 
that you can use with multiple frameworks as backends). It’s generally lumped in 
as a deep-learning framework, though, because that’s how people use it. To use 
Keras, you must also have a deep learning framework, such as TensorFlow, 
 Theano, MXNet, or CNTK. Keras is actually bundled with TensorFlow, which also 
makes it the easy solution for reducing TensorFlow complexity.

This book assumes that you use Keras with TensorFlow, but knowing that you can 
use Keras with other deep learning frameworks is an advantage. That’s why this 
book doesn’t use the Keras version incorporated into TensorFlow, but installs it 
separately (see https://medium.com/tensorflow/standardizing-on-keras- 
guidance-on-high-level-apis-in-tensorflow-2-0-bad2b04c819a for details). 
You can use the same interface with multiple frameworks, enabling you to use the 
framework that you need without having to deal with yet another learning curve. 
The biggest selling point of Keras is that it puts the process of creating applica-
tions using a deep learning framework into a paradigm that most people can 
understand well.

You can’t develop an application of any kind that is both easy to use and able to 
handle truly complex situations — all while being flexible as well. So Keras does-
n’t necessarily handle all situations well. For example, it’s a good product to use 
when your needs are simple, but not a good choice if you plan to develop a new 
kind of neural network.

The strength of Keras is that it lets you perform fast prototyping with little hassle. 
The API doesn’t get in your way while it tries to provide flexibility that you might 

https://medium.com/tensorflow/standardizing-on-keras-guidance-on-high-level-apis-in-tensorflow-2-0-bad2b04c819a
https://medium.com/tensorflow/standardizing-on-keras-guidance-on-high-level-apis-in-tensorflow-2-0-bad2b04c819a
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not need in the current project. In addition, because Keras simplifies how you 
 perform tasks, you can’t extend it as you can with other products, which limits 
your ability to add functionality to an existing environment.

More than a few people have complained about the sometimes ambiguous error 
reporting provided by Keras. However, Keras partially offsets this issue by provid-
ing strong community support. In addition, many of the people complaining  
about the error messages are also apparently trying to do something complex. 
Keeping the fast prototyping nature of Keras in mind could keep you from trying 
projects that might be too much for the product to handle.

Getting your copy of TensorFlow and Keras
Your copy of Python that comes with Anaconda doesn’t include a copy of Tensor-
Flow or Keras; you must install these products separately. To avoid problems with 
integrating TensorFlow with the Anaconda tools, don’t follow the instructions 
found at https://www.tensorflow.org/install/pip for installing the product 
using pip. Likewise, avoid using the Keras installation instructions at https://
keras.io/#installation. To ensure that your copy of TensorFlow and Keras are 
available with Notebook, you must open an Anaconda prompt, not a standard 
command prompt or a terminal window. Otherwise, you can’t ensure that you 
have the appropriate paths set up. The following steps will get you started with 
your installation.

1. At the Anaconda prompt, type python — version and press Enter.

You see the currently installed Python version, which should be version 3.6.5 
for this book, as shown in Figure 4-1. The path you see in the window is a 
function of your operating system, which is Windows in this case, but you may 
see a different path when using the Anaconda prompt.

The next step is to create an environment in which to execute code that relies 
on TensorFlow and Keras. The advantage of using an environment is that you 
maintain a pristine environment for later use with other libraries. You use 
conda, rather than another environment product such as virtualenv, to ensure 
that the software integrates with the Anaconda tools. If you use a product such 
as virtualenv, the resulting installation will work, but you’ll have to perform a lot 
of other steps to access it, and these steps don’t appear in the book. The name 
of the environment for this book is DL4Denv.

2. Type conda create -n DL4Denv python=3 anaconda=5.3.0 tensorflow=1.11.0 
keras=2.2.4 nb_conda and press Enter.

https://www.tensorflow.org/install/pip
https://keras.io/#installation
https://keras.io/#installation
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You may see a warning message about the availability of a newer version of 
conda. It’s safe to ignore this message (or you can choose to update conda 
using the command shown by the warning later, if desired). If necessary, type Y 
and press Enter to clear the message so that the creation process will proceed.

This step can require some time to execute because your system will have to 
download TensorFlow 1.11.0 and Keras 2.2.4 from an online source. After the 
download is complete, the setup needs to create a complete installation for 
you. You see the Anaconda prompt return after all of the required steps are 
complete. In the meantime, reading a good technical article or getting coffee 
will help pass the time.

3. Type conda activate DL4Denv and press Enter.

The prompt changes to show the DL4Denv environment rather than the base 
or root environment. Any tasks you perform now will affect the DL4D environ-
ment rather than the original base environment.

4. Type python -m pip install — upgrade pip and press Enter.

This step will require a little time, but not nearly as long as creating the 
environment. The purpose of this step is to ensure that you have the most 
current version of pip installed so that later commands (some of which appear 
in the book’s code) don’t fail.

5. Type conda deactivate and press Enter.

Deactivating an environment returns you to the base environment. You 
perform this step to ensure that you always end a session in the base 
environment.

FIGURE 4-1: 
Be sure to use 
the Anaconda 

prompt for the 
installation and 

check the Python 
version.
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6. Close the Anaconda Prompt.

Your TensorFlow and Keras installations are now ready for use.

Fixing the C++ build tools error in Windows
Many Python features require C++ build tools for compilation because the devel-
opers wrote the code in C++, rather than Python, to obtain the best speed in per-
forming certain kinds of processing. Fortunately, Linux and OS X both come with 
C++ build tools installed. So, you don’t have to do anything special to make Python 
build commands work.

Windows users, however, need to install a copy of the C++ 14 or higher build tools 
if they don’t already have them installed. In fact, the Notebook environment is 
actually quite picky — you need Visual C++ 14 or higher, rather than just any ver-
sion of C++ (such as GCC, https://www.gnu.org/software/gcc/). If you recently 
installed Visual Studio or another Microsoft development product, you may have 
the build tools installed and won’t need to install a second copy.

This book uses the most current tools available as of writing, which is C++ 17. Get-
ting just the build tools won’t cost you anything. The following steps show a short 
and easy method for getting your required build tools if you don’t already have C++ 
14 or above installed:

1. Download the offline build tools installer from https://aka.ms/vs/15/
release/vs_buildtools.exe.

Your download application downloads a copy of vs_buildtools.exe. Trying 
to use the online build tools often comes with too many options, and 
Microsoft, naturally, wants you to buy its product.

2. Locate the downloaded file on your hard drive and double-click vs_
buildtools.exe.

You see a Visual Studio Installer dialog box. Before you can install the build 
tools, you need to tell the installer what you want to install.

3. Click Continue.

The Visual Studio Installer downloads and installs some additional support 
files. After this installation is complete, it asks which Workload to install, as 
shown in Figure 4-2.

https://www.gnu.org/software/gcc/
https://aka.ms/vs/15/release/vs_buildtools.exe
https://aka.ms/vs/15/release/vs_buildtools.exe
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4. Check the Visual C++ Build Tools option and then click Install.

You don’t need to install anything more than the default features. The 
Installation Details pane on the right side of the Visual Studio Installer window 
contains a confusing array of options that you won’t need for this book. The 
download process of approximately 1.1GB begins immediately. You can get a 
cup of coffee while you wait. The Visual Studio Installer window displays the 
progress of the download and installation. At some point, you see a message 
saying that the installation succeeded.

5. Close the Visual Studio Installer window.

Your copy of the Visual C++ Build Tools is ready for use. You may need to 
restart your system after performing the installation, especially if you had 
Visual Studio installed previously.

Accessing your new environment in 
Notebook
When you open Notebook, it automatically selects the base or root environment — 
the default environment for the Anaconda tools. However, you need to access the 
DL4Denv environment to work with the code in this book. To make this happen, 
open Anaconda Navigator, rather than Jupyter Notebook as usual. In the resulting 
window, shown in Figure 4-3, you see an Applications On drop-down list. Choose 
the DL4Denv option from the drop-down list. You can then click Launch in the 
Jupypter Notebook panel to start Notebook using the DL4Denv environment.

FIGURE 4-2: 
Choose the Visual 

C++ Build Tools 
workload to 

support your 
Python setup.
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FIGURE 4-3: 
Select an 

environment to 
use in Anaconda 

Navigator.
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Chapter 5
Reviewing Matrix Math 
and Optimization

Chapter 1 of this book tells you about the basis of deep learning and why it’s 
important today. In Chapter 2, you delve a little deeper into the process of 
learning something from data through machine learning. A key point from 

both those chapters is that your computer doesn’t understand anything, but you 
can provide it with data and, in turn, it can help you understand something new 
from that data. For example, you can describe a math operation to it that helps you 
gain insight or understand your data in a way that you couldn’t otherwise. The 
computer becomes a tool for performing truly advanced math far faster than you 
could ever do it manually. The basis of these math operations is the use of specific 
data structures, including the matrix.

You need to understand scalar, vector, and matrix operations as part of discover-
ing how deep learning can make a significant difference in how you view the data 
that describes the world today. Combining data found in specific kinds of struc-
tures with algorithms designed to work with these structures is a basic element of 
deep learning. This chapter helps you understand the data, data structures used to 
contain it, and the manner in which you can perform simple tasks with those 
structures.

So far, you haven’t really seen anything that looks like learning of any kind. Just 
having data structures and appropriate operations to interact with them isn’t 

IN THIS CHAPTER

 » Defining the math requirements for 
simple deep learning

 » Performing scalar, vector, and matrix 
math tasks

 » Equating learning with optimization



94      PART 2  Considering Deep Learning Basics

enough to consider the process learning. The final section of this chapter helps 
you make the connection between performing these operations and performing 
them quickly using optimization. The act of optimizing operations performed on 
data is what constitutes learning: The computer is learning to avoid unnecessary 
delays in performing the analysis you need to complete your tasks.

You don’t have to type the source code for this chapter manually. Using the down-
loadable source is a lot easier. The source code for this chapter appears in the 
DL4D_05_Reviewing_Matrix_Math_and_Optimization.ipynb source code file 
(see the Introduction for details on how to find that source file).

Revealing the Math You Really Need
The world is an incredibly complex place, and trying to represent it using data and 
math makes this fact very clear. Data expresses the real world as an abstraction 
using numeric or other values as the means to quantify the abstraction. For exam-
ple, the color blue may become the value 1. Math is the means by which you manip-
ulate these values to understand them better and to recognize patterns that might 
otherwise be unclear. For example, you might find that a larger proportion of 
people living in a particular area prefer the color blue to any other color. The fol-
lowing sections help you understand the data and the math from the perspective 
of AI, which allows you to interact with the world in an automated fashion (such 
as by cleaning your carpet with a robot or asking your car’s navigation system to 
provide directions to a place you haven’t been before).

Working with data
Without data, it’s impossible to represent real world entities in a form that a com-
puter can help you understand and manage. The computer doesn’t understand the 
data; it simply stores the data and enables you to manipulate the data using math. 
The computer doesn’t understand the output, either. The output of the manipula-
tion requires interpretation by a human to have meaning. So data begins and ends 
with human interpretation of the real world presented as an abstraction.

When creating data, you must provide some consistent measure of the abstraction 
or else communication becomes impossible. For example, if one dataset presents 
the color blue as the integer 1, another dataset presents the color blue as the real 
number 2.0, and a third presents the color blue as the string blue, you can’t com-
bine the information unless you create another dataset containing the same val-
ues for each blue entry. Because humans are inconsistent, data can be inconsistent 
as well (assuming that it’s correct in the first place). The transformation of values 
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between datasets doesn’t change the fact that the humans interpreting it still see 
the color blue encoded in the abstraction that is data.

After you collect enough data, you can manipulate it in ways that allows a com-
puter to present you with patterns that you may not have seen before. As always, 
the computer has no understanding of the data or its interpretation, or even that 
it has created a pattern for you. The math defined by incredibly smart scientists 
manipulates the data into a pattern using math expressions.

From a deep learning perspective, then, what you have is a human interpreter 
providing data abstractions of real-world objects, a computer performing one or 
more manipulations of that data, and an output that again requires human inter-
pretation to have any meaning at all. Deep learning, for the purposes of this chapter,  
is simply the act of automating the data manipulation process using the same 
techniques that a human might use matched with the speed that a computer can 
provide. The act of learning means to discover how to perform manipulations suc-
cessfully so that useful patterns appear as part of the output.

Automation isn’t useful unless it’s controlled, and deep learning provides that 
control through matrix computations. A matrix computation is a series of multipli-
cations and summations of ordered sets of numbers. You need to understand how 
deep learning works mathematically so that you can

 » Dispel any fantasy that deep learning operates in the same way as a 
human brain

 » Define the tools needed later to create an example of a deep neural network

Creating and operating with a matrix
Ensuring that all the abstractions used for specific real-world objects are the same 
isn’t sufficient to create a meaningful model. Simply deciding that the integer 
value 1 represents the color blue doesn’t provide the necessary structure to per-
form math manipulation unless such manipulation is on a single value (a scalar). 
A group of related values can appear in a list (a vector), but only if each of the 
values represents the same kind of object. For example, you could create a list of 
colors, each of which has a specific value. To be truly useful, data must appear in 
a form that groups like entries in a form that enhances automated processing. 
Generally, the preferred form is a table (a matrix) that has specific object value 
types in the column and individual entries in rows.

You see matrixes used a lot in this book because they provide a convenient means 
of moving complex entries as a unit. A matrix of properties in Boston might 
include all sorts of related information, such as the price, number of rooms, 
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and  environmental characteristics for each house. In fact, you can find such a 
dataset (a file containing the essential data to present real-world entries) descrip-
tion at https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.
html. Even though you obtain the data in another form, an importing process that 
transforms it into a matrix is the first step in using the dataset to see useful pat-
terns by applying deep learning.

The math you need then comes down to these things:

 » The process, including math, used to transform all data elements 
into like form

 » The process, including math, used to place the data elements into a structure, 
such as a matrix, to aid in automatically processing the data

 » The math needed to manipulate the matrix so that useful patterns appear

 » The methodology, including math, uses to provide output for human interpre-
tation of the patterns

Understanding Scalar, Vector,  
and Matrix Operations

To perform useful work with Python, you often need to work with larger amounts 
of data that comes in specific forms. These forms have odd-sounding names, but 
the names are quite important. The three terms you need to know for this chapter 
are as follows:

 » Scalar: A single base data item. For example, the number 2 shown by itself 
is a scalar.

 » Vector: A one-dimensional array (essentially a list) of data items. For example, 
an array containing the numbers 2, 3, 4, and 5 would be a vector. You access 
items in a vector using a zero-based index, a pointer to the item you want. The 
item at index 0 is the first item in the vector, which is 2 in this case.

 » Matrix: An array of two or more dimensions (essentially a table) of data items. 
For example, an array containing the numbers 2, 3, 4, and 5 in the first row 
and 6, 7, 8, and 9 in the second row is a matrix. You access items in a matrix 
using a zero-based row-and-column index. The item at row 0, column 0 is the 
first item in the matrix, which is 2 in this case.

https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html
https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html
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Deep learning relies on matrices. The data sources you use have a row-and- 
column format to describe the attributes of a particular data element. For exam-
ple, to describe a person, the matrix may include attributes such as name, age, 
address, and number of a particular item purchased each year. By knowing these 
attributes, you can perform an analysis that yields new types of information and 
helps you make generalizations about a particular population.

Python provides an interesting assortment of features on its own, but you’d still 
need to do a lot of work to perform some tasks. To reduce the amount of work you 
do, you can rely on code written by other people and found in libraries. The fol-
lowing sections describe how to use the NumPy library to perform various tasks 
on matrixes.

Creating a matrix
Before you can do anything with a matrix, you must create it, which includes fill-
ing it with data. The easiest way to perform this task is to use the NumPy library, 
which you import as np using the following code:

import numpy as np

To create a basic matrix, you simply use the NumPy array function as you would 
with a vector, but you define additional dimensions. A dimension is a direction in 
the matrix. For example, a two-dimensional matrix contains rows (one direction) 
and columns (a second direction). The array call myMatrix = np.array([[1,2,3], 
[4,5,6], [7,8,9]]) produces a matrix containing three rows and three columns, 
like this:

array([[1, 2, 3],
       [4, 5, 6],
       [7, 8, 9]])

Note how you embed three lists within a container list to create the two dimen-
sions. To access a particular array element, you provide a row and column index 
value, such as myMatrix[0, 0] to access the first value of 1. You can produce 
matrixes with any number of dimensions using a similar technique. For example, 
myMatrix = np.array([[[1,2], [3,4]], [[5,6], [7,8]]]) produces a three- 
dimensional matrix with x, y, and z axis that looks like this:

array([[[1, 2],
        [3, 4]],
 
       [[5, 6],
        [7, 8]]])
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In this case, you embed two lists, within two container lists, within a single con-
tainer list that holds everything together. In this case, you must provide an x, y, 
and z index value to access a particular value. For example, myMatrix[0, 1, 1] 
accesses the value 4.

In some cases, you need to create a matrix that has certain start values. For exam-
ple, if you need a matrix filled with ones at the outset, you can use the ones func-
tion. The call to myMatrix = np.ones([4,4], dtype=np.int32) produces a 
matrix containing four rows and four columns filled with int32 values like this:

array([[1, 1, 1, 1],
       [1, 1, 1, 1],
       [1, 1, 1, 1],
       [1, 1, 1, 1]])

Likewise, a call to myMatrix = np.ones([4,4,4], dtype=np.bool) will create a 
three-dimensional array. This time, the matrix will contain Boolean values of 
True. Functions are also available for creating a matrix filled with zeros, the 
 identity matrix, and for meeting other needs. You can find a full listing of vector 
and matrix array-creation functions at https://docs.scipy.org/doc/numpy/ 
reference/routines.array-creation.html.

The NumPy library supports an actual matrix class. The matrix class supports 
special features that make performing matrix-specific tasks easier. You discover 
these features later in the chapter. For now, all you really need to know is how to 
create a matrix of the matrix data type. The easiest method is to make a call sim-
ilar to the one you use for the array function, but using the mat function instead, 
such as myMatrix = np.mat([[1,2,3], [4,5,6], [7,8,9]]), which produces 
the following matrix:

matrix([[1, 2, 3],
        [4, 5, 6],
        [7, 8, 9]])

You can also convert an existing array to a matrix using the asmatrix function. 
Use the asarray function to convert a matrix object back to an array form.

The only problem with the matrix class is that it works on only two-dimensional 
matrixes. If you attempt to convert a three-dimensional matrix to the matrix 
class, you see an error message telling you that the shape is too large to be a 
matrix.

https://docs.scipy.org/doc/numpy/reference/routines.array-creation.html
https://docs.scipy.org/doc/numpy/reference/routines.array-creation.html
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Performing matrix multiplication
Two common methods of multiplying a matrix are element by element and dot 
product. The element-by-element approach is straightforward. The following 
code produces an element-by-element multiplication of two matrixes:

a = np.array([[1,2,3],[4,5,6]])
b = np.array([[1,2,3],[4,5,6]])
 
print(a*b)

What you get in return is an array of the sort shown here:

[[ 1  4  9]
 [16 25 36]]

Note that a and b are the same shape: two rows and three columns. To perform an 
element-by-element multiplication, the two matrixes must be the same shape. 
Otherwise, you see an error message telling you that the shapes are wrong. As 
with vectors, the multiply function also produces an element-by-element result.

Unfortunately, an element-by-element multiplication can produce incorrect 
results when working with algorithms. In many cases, what you really need is a 
dot product, which is the sum of the products of two number sequences. The dis-
cussion at https://www.mathsisfun.com/algebra/vectors-dot-product.html 
tells you about dot products and helps you understand where they might fit in 
with algorithms. You can learn more about the linear algebra manipulation func-
tions for numpy at https://docs.scipy.org/doc/numpy/reference/routines. 
linalg.html.

When performing a dot product with a matrix, the number of columns in matrix a 
must match the number of rows in matrix b. However, the number of rows in 
matrix a can be any number, and the number of columns in matrix b can be any 
number as long as you create of dot product of a by b. For example, the following 
code produces a correct dot product:

a = np.array([[1,2,3],[4,5,6]])
b = np.array([[1,2,3],[3,4,5],[5,6,7]])
 
print(a.dot(b))

Here is what you receive as output in this case:

[[22 28 34]
 [49 64 79]]

https://www.mathsisfun.com/algebra/vectors-dot-product.html
https://docs.scipy.org/doc/numpy/reference/routines.linalg.html
https://docs.scipy.org/doc/numpy/reference/routines.linalg.html
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Note that the output contains the number of rows found in matrix a and the num-
ber of columns found in matrix b. So how does this all work? To obtain the value 
found in the output array at index [0,0] of 22, you sum the values of a[0,0]*b[0,0] 
(which is 1), a[0,1]*b[1,0] (which is 6), and a[0,2]*b[2,0] (which is 15) to obtain 
the value of 22. The other entries work in precisely the same way.

An advantage of using the numpy matrix class is that some tasks become more 
straightforward. For example, multiplication works precisely as you expect it 
should. The following code produces a dot product using the matrix class:

a = np.mat([[1,2,3],[4,5,6]])
b = np.mat([[1,2,3],[3,4,5],[5,6,7]])
 
print(a*b)

The output with the * operator is the same as using the dot function with an 
array. However, even though the output looks the same as when using the dot 
function, it’s not precisely the same. The output of the previous code is an array, 
while the output of this code is a matrix. This example also points out that you 
must know whether you’re using an array or a matrix object when performing 
tasks such as multiplying two matrixes.

To perform an element-by-element multiplication using two matrix objects, you 
must use the numpy multiply function.

Executing advanced matrix operations
This book takes you through all sorts of interesting matrix operations, but you use 
some of them commonly, which is why they appear in this chapter. When working 
with arrays, you sometimes get data in a shape that doesn’t work with the 
 algorithm. Fortunately, numpy comes with a special reshape function that lets you 
put the data into any shape needed. In fact, you can use it to reshape a vector into 
a matrix, as shown in the following code:

changeIt = np.array([1,2,3,4,5,6,7,8])
 
print(changeIt)
 
print(changeIt.reshape(2,4))
 
print(changeIt.reshape(2,2,2))
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This code produces the following outputs, which show the progression of changes 
produced by the reshape function:

[1 2 3 4 5 6 7 8]
 
[[1 2 3 4]
 [5 6 7 8]]
 
[[[1 2]
  [3 4]]
 
 [[5 6]
  [7 8]]]

The starting shape of changeIt is a vector, but using the reshape function turns 
it into a matrix. In addition, you can shape the matrix into any number of dimen-
sions that work with the data. However, you must provide a shape that fits with 
the required number of elements. For example, calling changeIt.reshape(2,3,2) 
will fail because there aren’t enough elements to provide a matrix of that size.

You may encounter two important matrix operations in some algorithm formula-
tions. They are the transpose and inverse of a matrix. Transposition occurs when a 
matrix of shape n x m is transformed into a matrix m x n by exchanging the rows 
with the columns. Most texts indicate this operation by using the superscript T, as 
in AT. You see this operation used most often for multiplication in order to obtain 
the right dimensions. When working with numpy, you use the transpose function 
to perform the required work. For example, when starting with a matrix that has 
two rows and four columns, you can transpose it to contain four rows with two 
columns each, as shown in this example:

changeIt = np.array([[1, 2, 3, 4], [5, 6, 7, 8]])
 
print(np.transpose(changeIt))

The output shows the effects of the transposition:

[[1 5]
 [2 6]
 [3 7]
 [4 8]]

You apply matrix inversion to matrixes of shape m x m, which are square matrixes 
that have the same number of rows and columns. This operation is quite impor-
tant because it allows the immediate resolution of equations involving matrix 
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multiplication, such as y=bX, where you have to discover the values in the  vector b. 
Because most scalar numbers (exceptions include zero) have a number whose 
multiplication results in a value of 1, the idea is to find a matrix inverse whose 
multiplication will result in a special matrix called the identity matrix. To see an 
identity matrix in numpy, use the identity function, like this:

print(np.identity(4))

Here’s the output from this function:

[[1. 0. 0. 0.]
 [0. 1. 0. 0.]
 [0. 0. 1. 0.]
 [0. 0. 0. 1.]]

Note that an identity matrix contains all ones on the diagonal. Finding the inverse 
of a scalar is quite easy (the scalar number n has an inverse of n–1 that is 1/n). It’s 
a different story for a matrix. Matrix inversion involves quite a large number of 
computations. The inverse of a matrix A is indicated as A–1. When working with 
numpy, you use the linalg.inv function to create an inverse. The following exam-
ple shows how to create an inverse, use it to obtain a dot product, and then com-
pare that dot product to the identity matrix by using the allclose function:

a = np.array([[1,2], [3,4]])
b = np.linalg.inv(a)
 
print(np.allclose(np.dot(a,b), np.identity(2)))

The output from this code is

True

Sometimes, finding the inverse of a matrix is impossible. When a matrix cannot 
be inverted, it is referred to as a singular matrix or a degenerate matrix. Singular 
matrixes aren’t the norm; they’re quite rare.

Extending analysis to tensors
A simple way of starting to look at tensors is that they begin as a generalized matrix 
that can be any number of dimensions. They can be 0-D (scalar), 1-D (a vector), or 
2-D (a matrix). In fact, tensors can have more dimensions than imaginable.  
Tensors have the number of dimensions needed to convey the meaning behind 
some object using data. Even though most humans view data as a 2-D matrix  
having rows containing individual objects and columns that have individual data 
elements that define those objects, in many cases a 2-D matrix won’t be enough. 
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For instance, you may need to process data that has a time element, creating a 2-D 
matrix for every observed instant. All these sequences of 2-D matrixes require a 
3-D structure to store because the third dimension is time.

However, tensors are more than simply a fancy sort of matrix. They represent a 
mathematical entity that lives in a structure filled with other mathematical enti-
ties. All these entities interact with each other such that transforming the entities 
as a whole means that individual tensors must follow a particular transformation 
rule. The dynamic nature of tensors distinguishes them from standard matrixes. 
Every tensor within a structure responds to changes in every other tensor that 
occurs as part of a transformation.

To think about how tensors work with regard to deep learning, consider that an 
algorithm could require three inputs to function, as expressed by this vector:

inputs = np.array([5, 10, 15])

These are single values based on a single event. Perhaps they represent a query 
about which detergent is best on Amazon. However, before you can feed these 
values into the algorithm, you must weight their values based on the training 
performed on the model. In other words, given the detergents bought by a large 
group of people, the matrix represents which one is actually best given specific 
inputs. It’s not that the detergent is best in every situation, just that it represents 
the best option given certain inputs.

The act of weighting the values helps reflect what the deep learning application 
has learned from analyzing huge datasets. For the sake of argument, you could see 
the weights in the matrix that follows as learned values:

weights = np.array([[.5,.2,-1], [.3,.4,.1], [-.2,.1,.3]])

Now that weighting is available for the inputs, you can transform the inputs based 
on the learning the algorithm performed in the past:

result = np.dot(inputs, weights)

The output of

[2.5 6.5 0.5]

transforms the original inputs so that they now reflect the effects of learning. The 
vector, inputs, is a hidden layer in a neural network and the output, result, is the 
next hidden layer in the same neural network. The transformations or other 
actions that occur at each layer determine how each hidden layer contributes to 
the whole neural network, which was weighting, in this case. Later chapters help 
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you understand the concepts of layers, weighting, and other activities within a 
neural network. For now, simply consider that each tensor interacts with the 
structure based on the activities of every other tensor.

Using vectorization effectively
Vectorization is a process in which an application processes multiple scalar values 
simultaneously, rather than one at a time. The main reason to use vectorization is 
to save time. In many cases, a processor will include a special instruction related 
to vectorization, such as the SSE instruction in x86 systems (https://docs. 
oracle.com/cd/E26502_01/html/E28388/eojde.html). Instead of performing 
single instructions within a loop, a vectorization approach will perform them as a 
group, making the process considerably faster.

When working with huge amounts of data, vectorization becomes important 
because you perform the same operation many different times. Anything you can 
do to keep the process out of a loop will make the code as a whole execute faster. 
Here is an example of a simple vectorization:

def doAdd(a, b):
    return a + b
 
vectAdd = np.vectorize(doAdd)
 
print(vectAdd([1, 2, 3, 4], [1, 2, 3, 4]))

When you execute this code, you get the following output:

[2 4 6 8]

The vectAdd function worked on all the values at one time, in a single call. Con-
sequently, the doAdd function, which allows only two scalar inputs, was extended 
to allow four inputs at one time. In general, vectorization offers these benefits:

 » Code that is concise and easier to read

 » Reduced debugging time because of fewer lines of code

 » The means to represent mathematical expressions more closely in code

 » A reduced number of inefficient loops

https://docs.oracle.com/cd/E26502_01/html/E28388/eojde.html
https://docs.oracle.com/cd/E26502_01/html/E28388/eojde.html
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Interpreting Learning as Optimization
So far, the chapter has discussed data as an abstraction, the transformation of 
data into useful forms, storage of the data in a matrix, and the basics of manipu-
lating that matrix once constructed. All these things lead toward the ability to 
automate data processing so that you can find useful patterns. For example, a set 
of pixels, the smallest element of an image, is simply a series of numbers within 
a matrix. Locating a specific face within that image requires manipulation of those 
numbers to find the specific sequences that equate to a face.

Before long, you realize that finding a pattern and then interpreting it correctly 
takes time, even for a computer, to perform with any accuracy. Of course, time is 
always a factor. Discovering that a criminal has entered an airport an hour after 
the fact isn’t useful — the discovery must occur as soon as possible. To make this 
happen, the data manipulation and pattern recognition must occur as quickly as 
possible, which means optimizing the process. Optimization simply means to find 
ways to perform the task faster without losing much or anything in the way of 
accuracy.

Learning, from the perspective of a computer, occurs when an application finds the 
means to perform optimization successfully. You have to keep in mind that com-
puter learning is different from human learning in that a computer doesn’t actu-
ally understand anything new when learning takes place. The computer simply 
can manipulate data with greater speed and accuracy to locate patterns of interest. 
The rest of this book explores the concept of optimization in detail, but the fol-
lowing sections give you a quick overview of what optimizing the manipulation 
means.

Exploring cost functions
Humans understand the idea of cost quite well. You go to one store and find that 
a product costs a certain amount. However, you know that another store sells pre-
cisely the same product for less. The products are the same in both cases, so you 
purchase the item from the store that sells it for less. The same cost principle 
applies to computer learning. A computer can provide multiple methods of finding 
the patterns you want, but only one of those methods will produce output of the 
desired accuracy in the required time frame. The method that performs best, the 
one that you’ll ultimately use, has the lowest cost.

For instance, you may need to predict a number or a class to solve a problem. It’s 
possible to transform each of these problems into a cost that the deep learning 
algorithm can use to determine whether its prediction is correct. This task is done 
using the cost function (also called the loss function) that measures the difference 
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between the correct answer and the answer provided by the deep learning algo-
rithm. The output of the cost function is the difference between the correct value 
and the predicted value as a number. The cost function is what truly drives the 
success of a deep learning, because it determines what the algorithm learns. You 
must choose the right cost function for your problem wisely. Here are the cost 
functions that you frequently see used with deep learning:

 » Mean squared error: Takes the square of the difference between a correct 
value and the value predicted by the algorithm. When the difference is great, 
the squared value is even greater, highlighting the algorithm error.

 » Cross entropy or log loss: Evaluates prediction errors employing a logarithm. 
Deep learning algorithms use probabilities to provide answers. (They don’t 
output the probability, but the output has a certain probability.) Probabilities 
are based on their correctness and are transformed into a numeric measure 
that represents the error.

Knowing the cost that a deep learning algorithm produces when guessing an out-
put is just one part of the process. Just as humans learn from errors when made 
aware of them, deep learning learns through the output of the cost function. Cost 
implies finding a method that performs tasks in an optimal manner. The word 
optimum is purposely imprecise because what may seem optimal in one situation 
may not be optimal in another. The optimal solution is the one that will continue to 
locate the required patterns in the minimum time with the specified accuracy over 
a large number of data items. Creating a method that works with the data you 
know about doesn’t pay. What you want is an optimal method for dealing with the 
data that you don’t know about today.

Descending the error curve
When a human makes a mistake and someone sees it, the other person provides 
feedback to help the first person understand the nature of the mistake and the 
correct resolution for it. A single feedback session may not suffice to help a person 
correct the error; therefore, repeating the feedback may be necessary to help a 
person gradually correct the mistake. Likewise, the automation provided by deep 
learning requires correction by subsequent corrections.

After detecting an error, the automation provides correction to the algorithms 
performing the processing. This feedback loop improves the responses given by 
the deep learning solution over time, which makes the solution more accurate in 
finding the correct patterns. As this process continues the error level measured by 
the cost function decreases, thus drawing a descending curve. The cost function 
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drives the process just described, but it needs other algorithms, such as optimiza-
tion and the error correction, to make actual changes. The cost function reports 
the error level only when a deep learning model outputs a prediction.

For the purposes of this book, different algorithms achieve different kinds of opti-
mization. Gradient Descent, Stochastic Gradient Descent, Momentum, Adagrad, 
RMSProp, Adadelta, and Adam are all variants of the same optimization concept 
that the book explores later. Error correction relies on a different algorithm called 
backpropagation. An error function sends feedback through the neural network in 
the form of weights that affect how the solution transforms data inputs to ensure 
the correct output.

Learning the right direction
Gradient descent is a widely used approach to determine what corrections are 
needed make a deep learning model perform better given a certain error. It always 
starts with an initial deep learning network configuration and translates the feed-
back of the cost function into a general correction to distribute to the deep learn-
ing network nodes. This process requires a number of iterations to complete — until 
the cost function output is in the desired range.

Figuratively, you can see gradient descent as the captain of a boat that has to nav-
igate a waterway to avoid numerous obstacles, such as rocks or icebergs. As the 
captain sees a danger (an error reported by the cost function), it provides a correc-
tion for the ship’s wheel that avoids the collision. Naturally, the captain transmits 
the correction to the crew. The crew uses this information to control the ship’s 
engines and rudders, the part of the story played by the backpropagation  algorithm 
(see Chapter 7, which also details the deep learning network internals).

Based on the cost function, the network also requires optimization to minimize 
the error. However, optimization occurs only on the training data. Unfortunately, 
a perfect training data optimization can lead to overfitting. Recognizing issues 
such as overfitting is where the art aspect of deep learning occurs; you have to 
optimize using the training data, but not optimize completely (overfitting) to 
make the resulting model perform well on test data as well. This balancing act of 
finding the right level of optimization is generalization. Fixing a limited number of 
optimization iterations or stopping the optimization when you notice that the 
model starts to perform poorly on test data that you separate from the training 
data (a process called early stopping) are common strategies to achieve deep 
learning optimization.
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One interesting point is that the series of corrections provided by the gradient 
descent algorithm may not be optimal in the end. Determining how to correct a 
single error successfully is simple; correcting many errors simultaneously may 
prove difficult. In many cases, the optimization algorithm gets stuck in a dead end 
and can’t find the correct way to improve neural network performance, as shown 
in Figure 5-1. This situation is a local minima, in which it the solution appears to 
be performing optimally even though it really isn’t because further corrections 
could continue to improve performance.

Figure 5-1 shows an example of an optimization process with many local minima 
(the minimum points on the curved marked with letters) where the optimization 
process may get struck and can’t continue its descent toward the deep minimum 
marked with an asterisk. In an optimization process for a deep learning model, 
you distinguish between different optimization outcomes. You can have a global 
minimum, a good model that outputs predictions with the lowest possible error for 
the problem, and many local minima, solutions that seem to provide the best error 
correction but actually don’t.

Apart from local minima, saddle points are other problems that you can encounter 
during optimization. In saddle points, you don’t have a minimum but your optimi-
zation slows down abruptly, inducing you to believe that the algorithm has 
reached a minimum. In reality, saddle points represent only an optimization 
pause. By insisting that the algorithm goes in a particular optimization direction, 
you ensure that it can easily escape saddle points and proceed with error reduc-
tion. Here are ways to improve your chances of obtaining algorithms that are 
optimized and perform well:

FIGURE 5-1: 
Optimization 

driving toward 
the global 
minimum.
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 » Prepare the learning data as needed to reflect the problem

 » Choose different optimization variants and set their learning as needed

 » Set other deep learning network key characteristics

Updating
Updating a neural network with weights can take one of two forms: stochastic and 
batch. When performing stochastic updates, each input generates a weight adjust-
ment individually. This approach has the advantage of reducing the risk that the 
algorithm could get stuck in a local minima. When performing batch updates,  
the error accumulates in some manner and the weight adjustment occurs  
when the batch is complete. The advantage of this approach is that learning occurs 
faster because the impact of the weight adjustments is greater.

The best way for a deep neural network to learn is to try to minimize the errors of 
all the examples at one time. This goal is not always possible because the data 
could be too large to fit into memory. Batch updates are the best strategy possible 
in many cases, with batch sizes being the largest possible for the hardware you are 
using.
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Chapter 6
Laying Linear Regression 
Foundations

The term linear regression may seem complicated, but it’s not, as you see in 
this chapter. A linear regression is essentially a straight line drawn through  
a series of x/y coordinates that determine the location of a data point. The 

data points may not always lie directly on the line, but the line shows where the 
data points would fall in a perfect world of linear coordinates. By using the line, 
you can predict a value of y (the criterion variable) given a value of x (the predictor 
variable). When you have just one predictor variable, you have a simple linear 
regression. As a contrast, when you have many predictors, you have a multiple  
linear regression, which doesn’t rely on a line but rather on a plane extending 
through multiple dimensions. Deep learning uses data inputs to guess the nonlin-
ear plane that will most correctly go through the middle of a set of data points in 
a more sophisticated manner than linear regression. It does share some key char-
acteristics with linear regression, which is the main topic of this chapter: To tell 
you about linear regression and provide you with useful ideas that you can later 
transfer to deep learning. The first part of this chapter discusses variables and 
how you work with them to create a linear regression.

Moving on, say that you’ve created a linear regression model, but that the line is 
separating two categories. Data points on one side of the line are one thing and 
data points on the other side of the line are another thing. A neural network can 
use linear regression to determine the probability of a data point’s being on one 

IN THIS CHAPTER

 » Performing various tasks with 
variables

 » Dealing with probabilities

 » Considering which features to use

 » Learning by using Stochastic Gradient 
Descent (SGD)
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side of the line or the other. By knowing what sort of object (as expressed by the 
data point) you’re dealing with, you can categorize the object — that is, determine 
what group of objects that it belongs to.

The essence of performing all this work is to develop a solution to a problem. For 
example, you may have a whole list of data points and need to know which group 
each data point belongs to, which would be an arduous task without some sort of 
automation. However, to create a valid solution to any given problem, you must 
have the right data, which means determining the correct inputs, or features, to 
use. The third part of this chapter discusses how to select features that will best 
answer the questions that you must consider.

Finally, this chapter uses what you’ve discovered so far to solve a simple problem 
using stochastic gradient descent (SGD). Putting everything together will make 
the use of linear regression in solving problems clear.

Combining Variables
Regression boasts a long history in different domains: statistics, economics, psy-
chology, social sciences, and political sciences. Apart from being capable of a large 
range of predictions involving numeric values, binary and multiple classes, prob-
abilities, and count data, linear regression also helps you understand group dif-
ferences, model consumer preferences, and quantify the importance of a feature 
in a model.

Stripped of most of its statistical properties, linear regression remains a simple, 
understandable, yet effective algorithm for the prediction of values and classes. 
Fast to train, easy to explain to nontechnical people, and simple to implement in 
any programming language, linear and logistic regression are the first choice of 
most deep learning practitioners when building models to compare with more 
sophisticated solutions (a baseline model). People also use them to determine  
the key features in a problem, to experiment, and to obtain insight into feature 
creation.

Working through simple linear regression
You need to differentiate between the statistical write-ups of linear regression 
that involve plotting coordinates and drawing a line through them from the algo-
rithm that deep learning uses to predict the location of that line in a plot. Linear 
regression works by combining numeric features through summation. Adding a 
constant number, called the bias, completes the summation. The bias represents 
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the prediction baseline when all the features have values of zero. Bias can play an 
important role in producing default predictions, especially when some of your 
features are missing (and so have a zero value). Here’s the common formula for a 
linear regression:

y = βX + α

In this expression, y is the vector of the response values. Possible response vectors 
are the prices of houses in a city or the sales of a product, which is simply any 
answer that is numeric, such as a measure or a quantity. The X symbol states the 
matrix of features to use to guess the y vector. X is a matrix that contains only 
numeric values. The Greek letter alpha (α) represents the bias, which is a con-
stant, whereas the letter beta (β) is a vector of coefficients that a linear regression 
model uses with the bias to create the prediction.

Using Greek letters alpha and beta in regression is widespread to the point that 
most practitioners call the vector of coefficients the regression beta.

You can make sense of this expression in different ways. To simplify, you can 
imagine that X is actually composed of a single feature (described as a predictor in 
statistical practice), so you can represent it as a vector named x. When only one 
predictor is available, the calculation is a simple linear regression. Now that you 
have a simpler formulation, your high school algebra and geometry tell you that 
the formulation y=bx+a is a line in a coordinate plane made of an x axis (the 
abscissa) and a y axis (the ordinate).

Advancing to multiple linear regression
The world seldom offers problems that have just one feature. When predicting 
house prices, you must consider all sorts of issues, such as the neighborhood and 
the number of rooms in the house. Otherwise, people could solve most problems 
without using automation such as deep learning. When you have more than one 
feature (a multiple linear regression), you can’t use a simple coordinate plane made 
of x and y anymore. The space now spans multiple dimensions, with each dimen-
sion being a feature. Now your formula is more intricate, composed of multiple x 
values, each weighted by its own beta. For instance, if you have four features (so 
that the space is four dimensional), the regression formulation, as explicated 
from matrix form, is

y = x1b1+x2b2+x3b3+x4b4+a

This complex formula, which exists in a multidimensional space, isn’t a line any-
more, but rather a plane with as many dimensions as the space. This is a 



114      PART 2  Considering Deep Learning Basics

hyperplane, and its surface individuates the response values for every possible 
combination of values in the feature dimensions.

This discussion explains regression in its geometrical meaning, but you can also 
view it as just a large weighted summation. You can decompose the response into 
many parts, each one referring to a feature and contributing to a certain portion. 
The geometric meaning is particularly useful for discussing regression properties, 
but the weighted summation meaning helps you understand practical examples 
better. For instance, if you want to predict a model for advertising expenditures, 
you can use a regression model and create a model like this:

sales = advertising*badv + shops*bshop + price*bprice + a

In this formulation, sales are the sum of advertising expenditures, the number of 
shops distributing the product, and the product’s price. You can quickly demystify 
linear regression by explaining its components. First, you have the bias, the con-
stant a, which acts as a starting point. Then you have three feature values, each 
one expressed in a different scale (advertising is a lot of money, price is some 
affordable value, and shops is a positive number), each one rescaled by its respec-
tive beta coefficient.

Each beta presents a numeric value that describes the intensity of the relationship 
to the response. It also has a sign that shows the effect of a change in feature. 
When a beta coefficient is near zero, the effect of the feature on the response is 
weak, but if its value is far from zero, either positive or negative, the effect is sig-
nificant and the feature is important to the regression model.

To obtain an estimate of the target value, you scale each beta to the measure of 
the feature. A high beta provides more or less effect on the response depending 
on the scale of the feature. A good habit is to standardize the features (by sub-
tracting the mean and dividing by standard deviation) to avoid being fooled by 
high beta values on small-scale features and to compare different beta coeffi-
cients. The resulting beta values are comparable, allowing you to determine which 
ones have the most impact on the response (those with the largest absolute value).

If beta is positive, increasing the feature will increase the response, whereas 
decreasing the feature will decrease the response. Conversely, if beta is negative, 
the response will act contrary to the feature: When one is increasing, the other is 
decreasing. Each beta in a regression represents an impact.
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Including gradient descent
Using the gradient descent algorithm discussed later in this chapter, linear regres-
sion can find the best set of beta coefficients (and bias) to minimize a cost func-
tion given by the squared difference between the predictions and the real values:

J w
n

Xw y( ) ( )1
2

2

This formula tells you the cost J as a function of w, the vector of coefficients of the 
linear model. The cost is the summed, squared difference of response values from 
predicted values (the multiplication Xw) divided by two times the number of 
observations (n). The algorithm strives to find the minimum possible solution 
values for the difference between the real target values and the predictions derived 
from the linear regression.

You can express the result of the optimization graphically as the vertical distances 
between the data points and the regression line. The regression line represents 
the response variable well when the distances are small, as shown in Figure 6-1 
(with a simple linear regression on the left and a multiple linear regression on the 
right). If you sum the squares of the distances (the length of the line connecting 
the data point to the regression line in the figure), the sum is always the  
minimum possible when you calculate the regression line correctly. (No other 
combination of beta will result in a lower error.)

In statistics, practitioners often indicate estimating the solution of a linear regres-
sion based on matrix calculus (that’s called solving by closed form). Using this 
approach isn’t always feasible, and computations are quite slow when the input 
matrix is large. In deep learning, you obtain the same results using the Gradient 
Descent Optimization (GDO), which handles larger amounts of data easier and 
faster, thus estimating a solution from any input matrix.

FIGURE 6-1: 
An example of 

visualizing errors 
of a regression 
line and plane.
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Seeing linear regression in action
The following Python example uses the Boston dataset from Scikit-learn to try to 
guess the Boston housing prices using a linear regression. The example also tries 
to determine which variables influence the result more. Beyond computational 
issues, standardizing the predictors proves quite useful if you want to determine 
the influential variables:

from sklearn.datasets import load_boston
from sklearn.preprocessing import scale
boston = load_boston()
X, y = scale(boston.data), boston.target

The regression class in Scikit-learn is part of the linear_model module. Because 
you previously scaled the X variables, you don’t need to decide any other prepara-
tions or special parameters when using this algorithm:

from sklearn.linear_model import LinearRegression
regression = LinearRegression()
regression.fit(X, y)

Now that the algorithm is fitted, you can use the score method to report the R2 
measure:

print('R2 %0.3f' % regression.score(X, y))
 
R2 0.741

UNDERSTANDING R2 A LITTLE BETTER
R2, also known as coefficient of determination, is a measure ranging from 0 to 1. It 
shows how using a regression model is better in predicting the response than using a 
simple mean. The coefficient of determination is derived from statistical practice and 
directly relates to the sum of squared errors. You can also understand R2 as the quan-
tity of information explained by the model (the same as the squared correlation), so get-
ting near 1 means being able to explain most of the data using the model.

Calculating the R2 on the same set of data used for the training is common in statistics. 
In data science and deep learning, you’re always better off to test scores on data not 
used for training. Complex algorithms can memorize the data rather than learn from it. 
In certain circumstances, this problem can also happen when you use simpler models, 
such as linear regression.
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To understand what drives the estimates in the multiple regression model, you 
have to look at the coefficients_ attribute, which is an array containing the 
regression beta coefficients. By printing the boston.DESCR attribute, you can 
understand the variable reference:

print([a + ':' + str(round(b, 1)) for a, b in
       zip(boston.feature_names, regression.coef_)])
 
['CRIM:-0.9', 'ZN:1.1', 'INDUS:0.1', 'CHAS:0.7',
 'NOX:-2.1', 'RM:2.7', 'AGE:0.0', 'DIS:-3.1',
 'RAD:2.7', 'TAX:-2.1', 'PTRATIO:-2.1',
 'B:0.9', 'LSTAT:-3.7']

The DIS variable, which contains the weighted distances to five employment cen-
ters, has the largest absolute unit change. In real estate, a house that’s too far 
away from people’s interests (such as work) lowers the value. Instead, AGE or 
INDUS, which are both proportions that describe the building’s age and whether 
nonretail activities are available in the area, don’t influence the result as much; 
the absolute value of their beta coefficients is much lower.

You may wonder why the chapter’s examples don’t use Keras and TensorFlow. 
Using these libraries is possible, but deep learning packages are most suited for 
deep learning solutions. Using them for simpler models means overcomplicating 
the solution. Scikit-learn offers clear and simple implementations of linear 
regression models that help you understand how these algorithms work better.

Mixing Variable Types
Quite a few problems arise with the effective, yet simple, linear regression tool. 
Sometimes, depending on the data you use, the problems are greater than the 
benefits of using this tool. The best way to determine whether linear regression 
will work is to use the algorithm and test its efficacy on your data.

Modeling the responses
Linear regression can model responses only as quantitative data. When you need 
to model categories as a response, you must turn to logistic regression. When 
working with predictors, you do best by using continuous numeric variables; 
although you can fit both ordinal numbers and, with some transformations, qual-
itative categories.
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A qualitative variable might express a color feature, such as the color of a product, 
or a feature that indicates the profession of a person. You have a number of options 
for transforming a qualitative variable by using a technique such as binary encod-
ing (the most common approach). When making a qualitative variable binary, you 
create as many features as classes in the feature. Each feature contains zero values 
unless its class appears in the data, when it takes the value of one. This procedure 
is called one-hot encoding. A simple Python example using the Scikit-learn pre-
processing module shows how to perform one-hot encoding:

from sklearn.preprocessing import OneHotEncoder
from sklearn.preprocessing import LabelEncoder
lbl = LabelEncoder()
enc = OneHotEncoder()
qualitative = ['red', 'red', 'green', 'blue',
               'red', 'blue', 'blue', 'green']
labels = lbl.fit_transform(qualitative).reshape(8,1)
print(enc.fit_transform(labels).toarray())
 
[[ 0.  0.  1.]
 [ 0.  0.  1.]
 [ 0.  1.  0.]
 [ 1.  0.  0.]
 [ 0.  0.  1.]
 [ 1.  0.  0.]
 [ 1.  0.  0.]
 [ 0.  1.  0.]]

In this case, you see what appears to be three columns: blue, green, and red. For 
example, notice that in array element [0, 2] you see a value of 1., which equates 
to a value of red in that position. Now look at the original array, where you see that 
qualitative[0] is indeed 'red'.

Modeling the features
In statistics, because you solve the linear regression using the closed form, when 
you want to make a binary variable out of a categorical one, you transform all the 
levels but one because you use the inverse matrix computation formula, which has 
quite a few limitations. In deep learning, you use gradient descent, so you instead 
transform all the levels.

If a data matrix is missing data and you don’t deal with it properly, the model will 
stop working. Consequently, you need to impute the missing values (for instance, 
by replacing a missing value with the mean value calculated from the feature 
itself). Another solution is to use a zero value for the missing case, and to create 
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an additional binary variable whose unit values point out missing values in the 
feature. In addition, outliers (values outside the normal range) disrupt linear 
regression because the model tries to minimize the square value of the errors (also 
called residuals). Outliers have large residuals, thus forcing the algorithm to focus 
more on them than on regular points.

Dealing with complex relations
The greatest linear regression limitation is that the model is a summation of inde-
pendent terms, because each feature stands alone in the summation, multiplied 
only by its own beta. This mathematical form is perfect for expressing a situation 
in which the features are unrelated. For instance, a person’s age and eye color are 
unrelated terms because they do not influence each other. Thus, you can consider 
them to be independent terms, and in a regression summation, having them stay 
separated makes sense.

Contrast unrelated terms with related terms. For example, a person’s age and hair 
color relate because aging causes hair to whiten. When you put these features in a 
regression summation, it’s like summing the same information. Because of this 
limitation, you can’t determine how to represent the effect of variable combina-
tions on the outcome. In other words, you can’t represent complex situations with 
your data. Because the model is made of simple combinations of weighted fea-
tures, its predictions are more affected by bias than variance. In fact, after fitting 
the observed outcome values, the solution proposed by linear models is always a 
proportionally rescaled mix of features.

Unfortunately, you can’t represent some relations between a response and a fea-
ture faithfully by using a proportionally rescaled mix of features. On many occa-
sions, the response depends on features in a nonlinear way: Some feature values 
act as hurdles, after which the response suddenly increases or decreases, strength-
ens or weakens, or even reverses. As an example, consider how human beings 
grow in height from childhood. If observed in a specific age range, the relation-
ship between age and height is somehow linear: the child gets taller as age 
increases. However, some children grow more (overall height) and some grow 
faster (growth in a certain amount of time). This observation holds when you 
expect a linear model to find an average answer. However, after a certain age, 
children stop growing and the height remains constant for a long part of life, 
slowly decreasing in older age. Clearly, a linear regression can’t grasp such a non-
linear relationship. (In the end, you can represent it as a kind of parabola.)

Because the relation between the target and each predictor variable is based on a 
single coefficient, you don’t have a way to represent complex relations like a 
parabola (a unique value of x maximizing or minimizing the response), an expo-
nential growth, or a more complex nonlinear curve unless you enrich the feature. 
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The easiest way to model complex relations is by employing mathematical trans-
formations of the predictors using polynomial expansion. Polynomial expansion, 
given a certain degree d, creates powers of each feature up to the d-power and 
d-combinations of all the terms. For instance, if you start with a simple linear 
model such as the following:

y = b1x1 + b2x2 + a

and then use a polynomial expansion of the second degree, that model becomes

y = b1x1 + b2x2 + a + b3x1**2+b4x2**2+b5x1x2

You make the addition to the original formulation (the expansion) using powers 
and combinations of the existing predictors. As the degree of the polynomial 
expansion grows, so does the number of derived terms.

When using polynomial expansion, you start putting the variables in relation to 
each other. That’s exactly what neural networks and deep learning do at a differ-
ent scale; they relate each variable to each other.

The following Python example uses the Boston dataset to check the technique’s 
effectiveness. If successful, the polynomial expansion will catch nonlinear rela-
tionships in data that require a curve, not a line, to predict correctly and overcome 
any difficulty in prediction at the expense of an increased number of predictors.

from sklearn.preprocessing import PolynomialFeatures
from sklearn.model_selection import train_test_split
from sklearn.metrics import r2_score
 
pf = PolynomialFeatures(degree=2)
poly_X = pf.fit_transform(X)
X_train, X_test, y_train, y_test = (
   train_test_split(poly_X,
                    y, test_size=0.33, random_state=42))
 
from sklearn.linear_model import Ridge
reg_regression = Ridge(alpha=0.1, normalize=True)
reg_regression.fit(X_train,y_train)
print ('R2: %0.3f'
   % r2_score(y_test,reg_regression.predict(X_test)))
 
R2: 0.819
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Because feature scales are enlarged by power expansion, standardizing the data 
after a polynomial expansion is a good practice.

Polynomial expansion doesn’t always provide the advantages demonstrated by 
the previous example. By expanding the number of features, you reduce the bias 
of the predictions at the expense of potentially overfitting.

Switching to Probabilities
Up to now, the chapter has considered only regression models, which express 
numeric values as outputs from data learning. Most problems, however, also 
require classification. The following sections discuss how you can address both 
numeric and classification output.

Specifying a binary response
A solution to a problem involving a binary response (the model has to choose from 
between two possible classes) would be to code a response vector as a sequence of 
ones and zeros (or positive and negative values). The following Python code proves 
both the feasibility and limits of using a binary response:

import numpy as np
 
a = np.array([0, 0, 0, 0, 1, 1, 1, 1])
b = np.array([1, 2, 3, 4, 5, 6, 7, 8]).reshape(8,1)
from sklearn.linear_model import LinearRegression
regression = LinearRegression()
regression.fit(b,a)
print (regression.predict(b)>0.5)
 
[False False False False  True  True  True  True]

In statistics, linear regression can’t solve classification problems because doing so 
would create a series of violated statistical assumptions. So, for statistics, using 
regression models for classification purposes is mainly a theoretical problem, not 
a practical one. In deep learning, the problem with linear regression is that it 
serves as a linear function that’s trying to minimize prediction errors; therefore, 
depending on the slope of the computed line, it may not be able to solve the data 
problem.
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When a linear regression is given the task of predicting two values, such as 0 and 
+1, which represent two classes, it tries to compute a line that provides results 
close to the target values. In some cases, even though the results are precise, the 
output is too far from the target values, which forces the regression line to adjust 
in order to minimize the summed errors. The change results in fewer summed 
deviance errors but more misclassified cases.

Linear regression doesn’t produce acceptable results when the priority is classifi-
cation accuracy, as shown in Figure 6-2 on the left. Therefore, it won’t work sat-
isfactorily in many classification tasks. Linear regression works best on a 
continuum of numeric estimates. However, for classification tasks, you need a 
more suitable measure, such as the probability of class ownership.

Transforming numeric estimates  
into probabilities
Thanks to the following formula, you can transform linear regression numeric 
estimates into probabilities that are more apt to describe how a class fits an 
observation:

p y
r
r

( )
exp( )

( exp( ))
1

1

In this formula, the target is the probability that the response y will correspond  
to the class 1. The letter r is the regression result, the sum of the variables weighted 
by their coefficients. The exponential function, exp(r), corresponds to Euler’s 
number e elevated to the power of r. A linear regression using this transformation 
formula (also called a link function) for changing its results into probabilities is a 
logistic regression.

Logistic regression (shown on the right in Figure 6-2) is the same as a linear regres-
sion except that the y data contains integer numbers indicating the class relative 
to the observation. So, using the Boston dataset from the Scikit-learn datasets 

FIGURE 6-2: 
Probabilities do 

not work as well 
with a straight 
line as they do 
with a sigmoid 

curve.
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module, you can try to guess what makes houses in an area overly expensive 
(median values >= 40):

from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
 
binary_y = np.array(y >= 40).astype(int)
X_train, X_test, y_train, y_test = train_test_split(X,
            binary_y, test_size=0.33, random_state=5)
logistic = LogisticRegression()
logistic.fit(X_train,y_train)
from sklearn.metrics import accuracy_score
print('In-sample accuracy: %0.3f' %
      accuracy_score(y_train, logistic.predict(X_train)))
print('Out-of-sample accuracy: %0.3f' %
      accuracy_score(y_test, logistic.predict(X_test)))
 
In-sample accuracy: 0.973
Out-of-sample accuracy: 0.958

The example splits the data into training and testing sets, enabling you to check 
the efficacy of the logistic regression model on data that the model hasn’t used for 
learning. The resulting coefficients tell you the probability of a particular class’s 
being in the target class (which is any class encoded using a value of 1). If a coef-
ficient increases the likelihood, it will have a positive coefficient; otherwise, the 
coefficient is negative.

for var,coef in zip(boston.feature_names,
                    logistic.coef_[0]):
        print ("%7s : %7.3f" %(var, coef))
 
   CRIM :  -0.006
     ZN :   0.197
  INDUS :   0.580
   CHAS :  -0.023
    NOX :  -0.236
     RM :   1.426
    AGE :  -0.048
    DIS :  -0.365
    RAD :   0.645
    TAX :  -0.220
PTRATIO :  -0.554
      B :   0.049
  LSTAT :  -0.803



124      PART 2  Considering Deep Learning Basics

Reading the results on your screen, you can see that in Boston, criminality (CRIM) 
has some effect on prices. However, the level of poverty (LSTAT), distance from 
work (DIS), and pollution (NOX) all have much greater effects. Moreover, contrary 
to linear regression, logistic regression doesn’t simply output the resulting class 
(in this case a 1 or a 0) but also estimates the probability of the observation’s being 
part of one of the two classes:

print('\nclasses:',logistic.classes_)
print('\nProbs:\n',logistic.predict_proba(X_test)[:3,:])
 
classes: [0 1]
 
Probs:
 [[ 0.39022779  0.60977221]
 [ 0.93856655  0.06143345]
 [ 0.98425623  0.01574377]]

In this small sample, only the first case has a 61 percent probability of being an 
expensive housing area. When you perform predictions using this approach, you 
also know the probability that your forecast is accurate and act accordingly, 
choosing only predictions with the right level of accuracy. (For instance, you 
might pick only predictions that exceed an 80 percent likelihood.)

Guessing the Right Features
Having many features to work with may seem to address the need for deep learn-
ing to understand a problem fully. However, just having features doesn’t solve 
anything; you need the right features to solve problems. The following sections 
discuss how to select the right features when performing deep learning tasks.

Defining the outcome of  
incompatible features
Unless you use cross-validation, error measures such as R2 can be misleading 
because the number of features can easily inflate it, even if the feature doesn’t 
contain relevant information. The following example shows what happens to R2 
when you add just random features:

from sklearn.model_selection import train_test_split
from sklearn.metrics import r2_score
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X_train, X_test, y_train, y_test = train_test_split(X,
                y, test_size=0.33, random_state=42)
check = [2**i for i in range(8)]
for i in range(2**7+1):
    X_train = np.column_stack((X_train,np.random.random(
        X_train.shape[0])))
    X_test = np.column_stack((X_test,np.random.random(
        X_test.shape[0])))
    regression.fit(X_train, y_train)
    if i in check:
        print ("Random features: %i -> R2: %0.3f" % (i,
           r2_score(y_train,regression.predict(X_train))))
 
Random features: 1 -> R2: 0.739
Random features: 2 -> R2: 0.740
Random features: 4 -> R2: 0.740
Random features: 8 -> R2: 0.743
Random features: 16 -> R2: 0.746
Random features: 32 -> R2: 0.762
Random features: 64 -> R2: 0.797
Random features: 128 -> R2: 0.859

What seems like an increased predictive capability is really just an illusion. You 
can reveal what happened by checking the test set and discovering that the model 
performance has decreased:

regression.fit(X_train, y_train)
print ('R2 %0.3f'
   % r2_score(y_test,regression.predict(X_test)))
# Please notice that the R2 result may change from run to
# run due to the random nature of the experiment
 
R2 0.474

Solving overfitting using selection  
and regularization
Regularization is an effective, fast, and easy solution to implement when you have 
many features and want to reduce the variance of the estimates because of multi-
collinearity between your predictors. It can also help if you have outliers and noise 
in your data. Regularization works by adding a penalty to the cost function. The 
penalization is a summation of the coefficients. If the coefficients are squared 
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(so that positive and negative values can’t cancel each other), it’s an L2 regulariza-
tion (also called the Ridge). When you use the coefficient absolute value, it’s an 
L1 regularization (also called the Lasso).

However, regularization doesn’t always work perfectly. L2 regularization keeps all 
the features in the model and balances the contribution of each of them. In an 
L2 solution, if two variables correlate well, each one contributes equally to the 
solution for a portion, whereas without regularization, their shared contribution 
would have been unequally distributed.

Alternatively, L1 brings highly correlated features out of the model by making 
their coefficient zero, thus proposing a real selection among features. In fact, set-
ting the coefficient to zero is just like excluding the feature from the model. When 
multicollinearity is high, the choice of which predictor to set to zero becomes a bit 
random, and, depending on your sample, you can get various solutions character-
ized by differently excluded features. Such solution instability may prove a nui-
sance, making the L1 solution less than ideal.

Scholars have found a fix by creating various solutions based on L1 regularization 
and then looking at how the coefficients behave across solutions. In this case, the 
algorithm picks only the stable coefficients (the ones that are seldom set to zero). 
You can read more about this technique on the Scikit-learn website at https://
scikit-learn.org/0.15/auto_examples/linear_model/plot_sparse_recovery.
html. The following example modifies the polynomial expansions example using L2 
regularization (Ridge regression) and reduces the influence of redundant coeffi-
cients created by the expansion procedure:

from sklearn.preprocessing import PolynomialFeatures
from sklearn.model_selection import train_test_split
 
pf = PolynomialFeatures(degree=2)
poly_X = pf.fit_transform(X)
X_train, X_test, y_train, y_test =
   train_test_split(poly_X,
                    y, test_size=0.33, random_state=42)
 
from sklearn.linear_model import Ridge
reg_regression = Ridge(alpha=0.1, normalize=True)
reg_regression.fit(X_train,y_train)
print ('R2: %0.3f'
   % r2_score(y_test,reg_regression.predict(X_test)))
 
R2: 0.819

https://scikit-learn.org/0.15/auto_examples/linear_model/plot_sparse_recovery.html
https://scikit-learn.org/0.15/auto_examples/linear_model/plot_sparse_recovery.html
https://scikit-learn.org/0.15/auto_examples/linear_model/plot_sparse_recovery.html
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Learning One Example at a Time
Finding the right coefficients for a linear model is just a matter of time and mem-
ory. However, sometimes a system won’t have enough memory to store a huge 
dataset. In this case, you must resort to other means, such as learning from one 
example at a time, rather than having all of them loaded into memory. The fol-
lowing sections demonstrate the one-example-at-a-time approach to learning.

Using gradient descent
The gradient descent finds the right way to minimize the cost function one itera-
tion at a time. After each step, it checks all the model’s summed errors and updates 
the coefficients to make the error even smaller during the next data iteration. The 
efficiency of this approach derives from considering all the examples in the sam-
ple. The drawback of this approach is that you must load all the data into memory.

Unfortunately, you can’t always store all the data in memory because some data-
sets are huge. In addition, learning using simple learners requires large amounts 
of data to build effective models (more data helps to correctly disambiguate mul-
ticollinearity). Getting and storing chunks of data on your hard disk is always 
possible, but it’s not feasible because of the need to perform matrix multiplica-
tion, which requires data swapping from disk to select rows and columns. Scien-
tists who have worked on the problem have found an effective solution. Instead of 
learning from all the data after having seen it all (which is called an iteration), the 
algorithm learns from one example at a time, as picked from storage using 
sequential access, and then goes on to learn from the next example. When the 
algorithm has learned all the examples, it starts from the beginning unless it 
meets some stopping criterion (such as completing a predefined number of 
iterations).

Understanding how SGD is different
Stochastic gradient descent (SGD) is a slight variation on the gradient descent 
algorithm. It provides an update procedure for estimating beta coefficients. Linear 
models are perfectly at ease with this approach.

In SGD, the formulation remains the same as in the standard version of gradient 
descent (called the batch version, in contrast to the online version), except for the 
update. In SGD, the update is executed a single instance at a time, allowing the 
algorithm to leave core data in storage and place just the single observation needed 
to change the coefficient vector in memory:

wj = wj – α(wx - y)xj
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As with the gradient descent algorithm, the algorithm updates the coefficient, w, 
of feature j by subtracting the difference between the prediction and the real 
response. It then multiplies the difference by the value of the feature j and by a 
learning factor alpha (which can reduce or increase the effect of the update on the 
coefficient).

SGD offers other subtle differences. The most important difference is the stochas-
tic term in the name of this online learning algorithm. In fact, SGD expects an 
example at a time, drawn randomly from the available examples (random sam-
pling). The problem with online learning is that example ordering changes the 
way the algorithm guesses beta coefficients. With partial optimization, one exam-
ple can change the way the algorithm reaches the optimum value, creating a dif-
ferent set of coefficients than would have happened without that example. As a 
practical example, SGD can learn the order in which it sees the examples. If the 
algorithm performs any kind of ordering (historical, alphabetical, or, worse, 
related to the response variable), it invariably learns it. Only random sampling 
allows you to obtain a reliable online model that works effectively on unseen data. 
When streaming data, you need to randomly re-order your data (data shuffling).

The SGD algorithm, contrary to batch learning, needs a much larger number of 
iterations to obtain the right global direction in spite of the contrary indications 
that come from single examples. In fact, the algorithm updates after each new 
example, and the consequent journey toward an optimum set of parameters is 
more erratic in comparison to an optimization made on a batch, which immedi-
ately tends to get the right direction because it’s derived from data as a whole, as 
shown in Figure 6-3.

FIGURE 6-3: 
Visualizing  

the different 
optimization 
paths on the 

same data 
problem.
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In this case, the learning rate has even more importance because it dictates how 
the SGD optimization procedure can resist bad examples. In fact, if the learning 
rate is high, an outlying example could derail the algorithm completely, prevent-
ing it from reaching a good result. On the other hand, high learning rates help to 
keep the algorithm learning from examples. A good strategy is to use a flexible 
learning rate, that is, starting with a flexible learning rate and making it rigid as 
the number of examples it has seen grows.

Both SGD classification and regression implementations in Scikit-learn feature 
different loss functions that you can apply to the stochastic gradient descent opti-
mization. Only two of those functions refer to the methods dealt with in this 
chapter:

 » loss='squared_loss': Ordinary least squares (OLS) for linear regression

 » loss='log': Classical logistic regression

To demonstrate the effectiveness of out-core learning, the following example sets 
up a brief experiment in Python using regression and squared_loss as the cost 
function. It relies on the Boston dataset after shuffling it and separating it into 
training and testing sets. The example demonstrates how beta coefficients change 
as the algorithm sees more examples. The example also passes the same data 
multiple times to reinforce data pattern learning. Using a test set guarantees a fair 
evaluation, providing measures of the capability of the algorithm to generalize to 
out-of-sample data. The output shows how long it takes before R2 increases and 
the value of coefficients stabilize:

from sklearn.model_selection import train_test_split
from sklearn.linear_model import SGDRegressor
 
X_train, X_test, y_train, y_test = train_test_split(X,
                    y, test_size=0.33, random_state=42)
SGD = SGDRegressor(penalty=None,
                   learning_rate='invscaling',
                   eta0=0.01, power_t=0.25,
                   max_iter=5, tol=None)
 
power = 17
check = [2**i for i in range(power+1)]
for i in range(400):
    for j in range(X_train.shape[0]):
        SGD.partial_fit(X_train[j,:].reshape(1,13),
                        y_train[j].reshape(1,))
        count = (j+1) + X_train.shape[0] * i
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        if count in check:
            R2 = r2_score(y_test,SGD.predict(X_test))
            print ('Example %6i R2 %0.3f coef: %s' %
            (count, R2, ' '.join(map(
              lambda x:'%0.3f' %x, SGD.coef_))))
 
Example 131072 R2 0.724 coef: -1.098 0.891 0.374 0.849
        -1.905 2.752 -0.371 -3.005 2.026 -1.396 -2.011
        1.102 -3.956

No matter the amount of data, you can always fit a simple but effective linear 
regression model using SGD online learning capabilities.
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Chapter 7
Introducing Neural 
Networks

You may have heard the term neural network in reference to artificial intel-
ligence. The first thing you need to know is that the correct term is Artificial 
Neural Network (ANN) because no one has discovered any method of recreat-

ing a real brain, which is where the concept of a neural network comes from. 
Chapter 2 of this book describes the various approaches to deep learning, of which 
ANNs are one. You find the term shortened in this book because everyone else is 
using the short term, but you need to know that ANN is actually the correct term 
and that they’re the work of the connectionist tribe. (See the “Discovering the five 
main approaches” section of Chapter  2 for a discussion of the five tribes of 
machine learning and the approaches they’ve developed to solving problems.)

After you get past the whole idea that your computer lacks a brain — at least a real 
brain — you can begin to appreciate the perceptron, which is the simplest type of 
neural network. The perceptron is the focus of many of the neural network pic-
tures you see online, but not all neural networks mimic the perceptron.

A neural network can work with complex data because of how it allows multiple 
inputs to flow through multiple layers of processing to produce myriad outputs. 
(The perceptron can only actually choose between two outputs.) The idea is that 
each of the paths fires only when it actually has a chance of answering whatever 

IN THIS CHAPTER

 » Considering the perceptron

 » Dealing with complex data

 » Developing strategies for overcoming 
overfitting
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question you pose with your inputs, based on the algorithms you choose. The next 
section of the chapter discusses some of these methods of dealing with complex 
data.

Because neural networks can model incredibly complex data in a manner that 
amazes some people, you might think it can correct for errors in processing, such 
as overfitting (see the “Looking for generalization” section of Chapter  2 for 
details). Unfortunately, computers really don’t have real brains, so overfitting is a 
problem that you need to solve. The final section of this chapter looks at some 
solutions for overfitting and discusses why it’s such a big problem in the first 
place.

Discovering the Incredible Perceptron
Even though this book is about deep learning, you still need to know something 
about the previous implementation levels of machine learning and AI. The per-
ceptron is actually a type (implementation) of machine learning for most people, 
but other sources will tell you that it’s a true form of deep learning. You can start 
the journey toward discovering how machine learning algorithms work by looking 
at models that figure out their answers using lines and surfaces to divide exam-
ples into classes or to estimate value predictions. These are linear models, and this 
chapter presents one of the earliest linear algorithms used in machine learning: 
the perceptron. Later chapters will help you discover other sorts of modeling sig-
nificantly more advanced than the perceptron. However, before you can advance 
to these other topics, you should understand the interesting history of the 
perceptron.

Understanding perceptron functionality
Frank Rosenblatt, of the Cornell Aeronautical Laboratory, devised the perceptron 
in 1957 under the sponsorship of the United States Naval Research. Rosenblatt was 
a psychologist and pioneer in the field of artificial intelligence. Proficient in cog-
nitive science, his idea was to create a computer that could learn by trial and error, 
just as a human does.

The idea was successfully developed, and at the beginning, the perceptron wasn’t 
conceived as just a piece of software; it was created as software running on dedi-
cated hardware. You can see it at https://blogs.umass.edu/comphon/2017/ 
06/15/did-frank-rosenblatt-invent-deep-learning-in-1962/. Using that 
combination allowed faster and more precise recognition of complex images than 
any other computer could do at the time. The new technology raised great 

https://blogs.umass.edu/comphon/2017/06/15/did-frank-rosenblatt-invent-deep-learning-in-1962/
https://blogs.umass.edu/comphon/2017/06/15/did-frank-rosenblatt-invent-deep-learning-in-1962/
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expectations and caused a huge controversy when Rosenblatt affirmed that the 
perceptron was the embryo of a new kind of computer that would be able to walk, 
talk, see, write, and even reproduce itself and be conscious of its existence. If true, 
it would have been a powerful tool, and it introduced the world to AI.

Needless to say, the perceptron didn’t realize the expectations of its creator. It 
soon displayed a limited capacity, even in its image-recognition specialization. 
The general disappointment ignited the first AI winter (a period of reduced fund-
ing and interest due to overhyping, for the most part) and the temporary aban-
donment of connectionism until the 1980s.

Connectionism is the approach to machine learning that is based on neuroscience 
as well as the example of biologically interconnected networks. You can retrace 
the root of connectionism to the perceptron.

The perceptron is an iterative algorithm that strives to determine, by successive 
and reiterative approximations, the best set of values for a vector, w, which is also 
called the coefficient vector. When the perceptron has achieved a suitable coefficient 
vector, it can predict whether an example is part of a class. For instance, one of the 
tasks the perceptron initially performed was to determine whether an image 
received from visual sensors resembled a boat (an image recognition example 
required by the United States Office of Naval Research, the sponsor of the research 
on the perceptron). When the perceptron saw the image as part of the boat class, 
it meant that it classified the image as a boat.

Vector w can help predict the class of an example when you multiply it by the 
matrix of features, X, containing the information in numeric valuesexpressed in 
numeric values relative to your example, and then add the result of the multipli-
cation to a constant term, called the bias, b. If the result of the sum is zero or posi-
tive, perceptron classifies the example as part of the class. When the sum is 
negative, the example isn’t part of the class. Here’s the perceptron formula, in 
which the sign function outputs 1 (when the example is part of the class) when the 
value inside the parenthesis is equal or above zero; otherwise, it outputs 0:

y = sign(Xw + b)

Note that this algorithm contains all the elements that characterize a deep neural 
network, meaning that all the building blocks enabling the technology were pres-
ent since the beginning:

 » Numeric processing of the input: X contains numbers, and no symbolic 
values are used as input until you process it as a number. For instance, you 
can’t input symbolic information such as red, green, or blue until you convert 
these color values to numbers.
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 » Weights and bias: The perceptron transforms X by multiplying by the weights 
and adding the bias.

 » Summation of results: Uses matrix multiplication when multiplying X by the 
w vector (an aspect of matrix multiplication covered in Chapter 5).

 » Activation function: The perceptron activates a result of the input being part 
of the class when the summation exceeds a threshold — in this case, when 
the resulting sum is zero or more.

 » Iterative learning of the best set of values for the vector w: The solution 
relies on successive approximations based on the comparison between the 
perceptron output and the expected result.

Touching the nonseparability limit
The secret to perceptron calculations is in how the algorithm updates the vector w 
values. Such updates happen by randomly picking one of the misclassified exam-
ples. You have a misclassified example when the perceptron determines that an 
example is part of the class, but it isn’t, or when the perceptron determines an 
example isn’t part of the class, but it is. The perceptron handles one misclassified 
example at a time (call it xt) and operates by changing the w vector using a simple 
weighted addition:

w = w + ŋ(xt * yt)

This formula is called the update strategy of the perceptron, and the letters stand 
for different numerical elements:

 » The letter w is the coefficient vectors, which is updated to correctly show 
whether the misclassified example t is part of the class or not.

 » The Greek letter eta (η) is the learning rate. It’s a floating number between 0 
and 1. When you set this value near zero, it can limit the capability of the 
formula to update the vector w almost completely, whereas setting the value 
near one makes the update process fully impact the w vector values. Setting 
different learning rates can speed up or slow down the learning process. 
Many other algorithms use this strategy, and lower eta is used to improve the 
optimization process by reducing the number of sudden w value jumps after 
an update. The trade-off is that you have to wait longer before getting the 
concluding results.

 » The xt variable refers to the vector of numeric features for the example t.

 » The yt variable refers to the ground truth of whether the example t is part of 
the class or not. For the perceptron algorithm, yt is numerically expressed with 
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+1 when the example is part of the class and with –1 when the example is not 
part of the class.

The update strategy provides intuition about what happens when using a percep-
tron to learn the classes. If you imagine the examples projected on a Cartesian 
plane, the perceptron is nothing more than a line trying to separate the positive 
class from the negative one. As you may recall from linear algebra, everything 
expressed in the form of y = xb+a is actually a line in a plane. The perceptron uses 
a formula of y = xw + b, which uses different letters but expresses the same form, 
the line in a Cartesian plane.

Initially, when w is set to zero or to random values, the separating line is just one 
of the infinite possible lines found on a plane, as shown in Figure 7-1. The updat-
ing phase defines it by forcing it to become nearer to the misclassified point. As 
the algorithm passes through the misclassified examples, it applies a series of 
corrections. In the end, using multiple iterations to define the errors, the algo-
rithm places the separating line at the exact border between the two classes.

In spite of being such a smart algorithm, the perceptron showed its limits quite 
soon. Apart from being capable of guessing two classes using only quantitative 
features, it had an important limit: If two classes had no border because of mix-
ing, the algorithm couldn’t find a solution and kept updating itself infinitively.

If you can’t divide two classes spread on two or more dimensions by any line or 
plane, they’re nonlinearly separable. Overcoming data’s being nonlinearly separa-
ble is one of the challenges that machine learning has to overcome in order to 
become effective against complex problems based on real data, not just on artifi-
cial data created for academic purposes.

FIGURE 7-1: 
The separating 

line of a 
perceptron 
across two 

classes.
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When the nonlinearly separability matter came under scrutiny and practitioners 
started losing interest in the perceptron, experts quickly theorized that they could 
fix the problem by creating a new feature space in which previously inseparable 
classes are tuned to become separable. Thus, the perceptron would be as fine as 
before. Unfortunately, creating new feature spaces is a challenge because it 
requires computational power that’s only partially available to the public today. 
Creating a new feature space is an advanced topic discussed later in the book when 
studying the learning strategies of algorithms, such as neural networks and sup-
port vector machines.

In recent years, the algorithm has had a revival thanks to big data: the perceptron, 
in fact, doesn’t need to work with all the data in memory, but it can do fine using 
single examples (updating its coefficient vector only when a misclassified case 
makes it necessary). It’s therefore a perfect algorithm for online learning, such as 
learning from big data an example at a time.

Hitting Complexity with Neural Networks
The previous section of the chapter helped you discover the neural network from 
the perspective of the perceptron. Of course, there is more to neural networks 
than that simple beginning. The capacity and other issues that plague the percep-
tron see at least partial resolution in newer algorithms. The following sections 
help you understand neural networks as they exist today.

Considering the neuron
The core neural network component is the neuron (also called a unit). Many neu-
rons arranged in an interconnected structure make up a neural network, with each 
neuron linking to the inputs and outputs of other neurons. Thus, a neuron can 
input features from examples or the results of other neurons, depending on its 
location in the neural network.

When the psychologist Rosenblatt conceived the perceptron, he thought of it as a 
simplified mathematical version of a brain neuron. A perceptron takes values as 
inputs from the nearby environment (the dataset), weights them (as brain cells 
do, based on the strength of the in-bound connections), sums all the weighted 
values, and activates when the sum exceeds a threshold. This threshold outputs a 
value of 1; otherwise, its prediction is 0. Unfortunately, a perceptron can’t learn 
when the classes it tries to process aren’t linearly separable. However, scholars 
discovered that even though a single perceptron couldn’t learn the logical opera-
tion XOR shown in Figure 7-2 (the exclusive or, which is true only when the inputs 
are dissimilar), two perceptrons working together could.
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Neurons in a neural network are a further evolution of the perceptron: they take 
many weighted values as inputs, sum them, and provide the summation as the 
result, just as a perceptron does. However, they also provide a more sophisticated 
transformation of the summation, something that the perceptron can’t do. In 
observing nature, scientists noticed that neurons receive signals but don’t always 
release a signal of their own. It depends on the amount of signal received. When a 
neuron acquires enough stimuli, it fires an answer; otherwise, it remains silent. In 
a similar fashion, algorithmic neurons, after receiving weighted values, sum them 
and use an activation function to evaluate the result, which transforms it in a non-
linear way. For instance, the activation function can release a zero value unless 
the input achieves a certain threshold, or it can dampen or enhance a value by 
nonlinearly rescaling it, thus transmitting a rescaled signal.

A neural network has different activation functions, as shown in Figure 7-3. The 
linear function (labeled Binary step) doesn’t apply any transformation, and it’s 
seldom used because it reduces a neural network to a regression with polynomial 
transformations. Neural networks commonly use the sigmoid (labeled Logistic) or 
the hyperbolic tangent (labeled TanH), or the ReLU (which is by far the more 
common today) activation functions. (The “Choosing the right activation func-
tion” section of Chapter 8 describes activation functions in more detail.)

FIGURE 7-2: 
Learning logical 

XOR using a 
single separating 

line isn’t possible.

FIGURE 7-3: 
Plots of different 

activation 
functions.



138      PART 2  Considering Deep Learning Basics

The figure shows how an input (expressed on the horizontal axis) can transform 
an output into something else (expressed on the vertical axis). The examples show 
a binary step, a logistic (also called sigmoid), and a tangent hyperbolic activation 
function (often referred to as tanh).

You learn more about activation functions later in the chapter, but note for now 
that activation functions clearly work well in certain ranges of x values. For this 
reason, you should always rescale inputs to a neural network using statistical 
standardization (zero mean and unit variance) or normalize the input in the range 
from 0 to 1 or from –1 to 1.

Activation functions are what make a neural network perform in a classification 
or regression; yet, the initial choice of the sigmoid or tanh activations for most 
networks pose a critical limit when using networks that are more complex, 
because both activations work optimally for a very restricted range of values.

Pushing data with feed-forward
In a neural network, you must consider the architecture, which is how the neural 
network components are arranged. Contrary to other algorithms, which have a 
fixed pipeline that determines how algorithms receive and process data, neural 
networks require you to decide how information flows by fixing the number of 
units (the neurons) and their distribution in layers, as shown in Figure 7-4.

The figure shows a simple neural architecture. Note how the layers filter informa-
tion in a progressive way. This is a feed-forward input because data feeds one way 
forward into the network. Connections exclusively link the units in one layer with 
the units in the following layer (information flow from left to right). No connec-
tions exist between units in the same layer or with units outside the next layer. 
Moreover, the information pushes forward (from the left to the right). Processed 
data never returns to previous neuron layers.

FIGURE 7-4: 
An example of 

the architecture 
of a neural 

network.



CHAPTER 7  Introducing Neural Networks      139

Using a neural network is like using a stratified filtering system for water: You 
pour the water from above and the water is filtered at the bottom. The water has 
no way to go back; it just goes forward and straight down, and never laterally. In 
the same way, neural networks force data features to flow through the network 
and mix with each other only according to the network’s architecture. By using 
the best architecture to mix features, the neural network creates new composed 
features at every layer and helps achieve better predictions. Unfortunately, there 
is no way to determine the best architecture without empirically trying different 
solutions and testing whether the output data helps predict your target values 
after flowing through the network.

The first and last layers play an important role. The first layer, called the input 
layer, picks ups the features from each data example processed by the network. 
The last layer, called the output layer, releases the results.

A neural network can process only numeric, continuous information; it can’t be 
constrained to work with qualitative variables (for example, labels indicating a 
quality such as red, blue, or green in an image). You can process qualitative vari-
ables by transforming them into a continuous numeric value, such as a series of 
binary values. When a neural network processes a binary variable, the neuron 
treats the variable as a generic number and turns the binary values into other 
values, even negative ones, by processing across units.

Note the limitation of dealing only with numeric values, because you can’t expect 
the last layer to output a nonnumeric label prediction. When dealing with a regres-
sion problem, the last layer is a single unit. Likewise, when you’re working with a 
classification and you have output that must choose from a number n of classes, 
you should have n terminal units, each one representing a score linked to the 
probability of the represented class. Therefore, when classifying a multiclass 
problem such as iris species, the final layer has as many units as species. For 
instance, in the archetypal Iris classification example, created by the famous stat-
istician Fisher, you have three classes: setosa, versicolor, and virginica. In a 
neural network based on the Iris dataset, you therefore have three units repre-
senting one of the three Iris species. For each example, the predicted class is the 
one that gets the higher score at the end.

Some neural networks have special final layers, collectively called softmax, which 
can adjust the probability of each class based on the values received from a previ-
ous layer. In classification, the final layer may represent both a partition of prob-
abilities thanks to softmax (a multiclass problem in which total probabilities sum 
to 100 percent) or an independent score prediction (because an example can have 
more classes, which is a multilabel problem in which summed probabilities can be 
more than 100 percent). When the classification problem is a binary classification, 
a single output suffices. Also, in regression, you can have multiple output units, 
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each one representing a different regression problem. (For instance, in forecast-
ing, you can have different predictions for the next day, week, month, and so on.)

Going even deeper into the rabbit hole
Neural networks have different layers, each one having its own weights. Because 
the neural network segregates computations by layers, knowing the reference 
layer is important because you can account for certain units and connections. You 
can refer to every layer using a specific number and generically talk about each 
layer using the letter l.

Each layer can have a different number of units, and the number of units located 
between two layers dictates the number of connections. By multiplying the  
number of units in the starting layer with the number in the following layer, you 
can determine the total number of connections between the two: number of 
connections(l) = units(l) * units(l+1).

A matrix of weights, usually named with the uppercase Greek letter Theta (θ), 
represents the connections. For ease of reading, the book uses the capital letter W, 
which is a fine choice because it is a matrix or a multi-dimensional array. Thus, 
you can use W1 to refer to the connection weights from layer 1 to layer 2, W2 for the 
connections from layer 2 to layer 3, and so on.

Weights represent the strength of the connection between neurons in the net-
work. When the weight of the connection between two layers is small, it means 
that the network dumps values flowing between them and signals that taking this 
route won’t likely influence the final prediction. Alternatively, a large positive or 
negative value affects the values that the next layer receives, thus changing cer-
tain predictions. This approach is analogous to brain cells, which don’t stand 
alone but connect with other cells. As someone grows in experience, connections 
between neurons tend to weaken or strengthen to activate or deactivate certain 
brain network cell regions, causing other processing or an activity (a reaction to a 
danger, for instance, if the processed information signals a life-threatening 
situation).

HIDDEN LAYERS
Outside this book, the layers between the input and the output are sometimes called 
hidden layers, and the layer count starts from the first hidden layer. This is just a differ-
ent convention from the one used in this book. The examples in the book always start 
counting from the input layer, so the first hidden layer is layer number 2.



CHAPTER 7  Introducing Neural Networks      141

Now that you know some conventions regarding layers, units, and connections, 
you can start examining the operations that neural networks execute in detail. To 
begin, you can call inputs and outputs in different ways:

 » a: The result stored in a unit in the neural network after being processed by 
the activation function (called g). This is the final output that is sent further 
along the network.

 » z: The multiplication between a and the weights from the W matrix. z repre-
sents the signal going through the connections, analogous to water in pipes 
that flows at a higher or lower pressure depending on the pipe diameter. In 
the same way, the values received from the previous layer get higher or lower 
values because of the connection weights used to transmit them.

Each successive layer of units in a neural network progressively processes the val-
ues taken from the features (picture a conveyor belt). As data transmits in the net-
work, it arrives at each unit as a value produced by the summation of the values 
present in the previous layer and weighted by connections represented in the 
matrix W. When the data with added bias exceeds a certain threshold, the activation 
function increases the value stored in the unit; otherwise, it extinguishes the signal 
by reducing it. After processing by the activation function, the result is ready to 
push forward to the connection linked to the next layer. These steps repeat for each 
layer until the values reach the end and you have a result, as shown in Figure 7-5.

The figure shows a detail of the process that involves two units pushing their 
results to another unit. This event happens in every part of the network. When you 
understand the passage from two neurons to one, you can understand the entire 
feed-forward process, even when more layers and neurons are involved. For more 
explanation, here are the seven steps used to produce a prediction in a neural net-
work made of four layers (refer to Figure 7-4):

1. The first layer (notice the superscript 1 on a) loads the value of each feature in 
a different unit:

a(1)= X

FIGURE 7-5: 
A detail of the 
feed-forward 

process in a 
neural network.
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2. The weights of the connections bridging the input layer with the second layer 
are multiplied by the values of the units in the first layer. A matrix multiplica-
tion weights and sums the inputs for the second layer together.

z(2)=W(1)a(1)

3. The algorithm adds a bias constant to layer two before running the activation 
function. The activation function transforms the second layer inputs. The 
resulting values are ready to pass to the connections.

a(2) = g(z(2) + bias(2))

4. The third layer connections weigh and sum the outputs of layer two.

z(3) = W(2)a(2)

5. The algorithm adds a bias constant to layer three before running the activation 
function. The activation function transforms the layer-three inputs.

a(3) = g(z(3) + bias(3))

6. The layer-three outputs are weighted and summed by the connections to the 
output layer.

z(4) = W(3)a(3)

7. Finally, the algorithm adds a bias constant to layer four before running the 
activation function. The output units receive their inputs and transform the 
input using the activation function. After this final transformation, the output 
units are ready to release the resulting predictions of the neural network.

a(4) = g(z(4) + bias(4))

The activation function plays the role of a signal filter, helping to select the rele-
vant signals and avoid the weak and noisy ones (because it discards values below 
a certain threshold). Activation functions also provide nonlinearity to the output 
because they enhance or damp the values passing through them in a nonpropor-
tional way.

The weights of the connections provide a way to mix and compose the features in 
a new way, creating new features in a way not too different from a polynomial 
expansion. The activation renders nonlinear the resulting recombination of the 
features by the connections. Both of these neural network components enable the 
algorithm to learn complex target functions that represent the relationship 
between the input features and the target outcome.
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Using backpropagation to adjust learning
From an architectural perspective, a neural network does a great job of mixing 
signals from examples and turning them into new features to achieve an approx-
imation of complex nonlinear functions (functions that you can’t represent as a 
straight line in the features’ space). To create this capability, neural networks 
work as universal approximators (for more details, go to https://www.techleer.
com/articles/449-the-universal-approximation-theorem-for-neural- 
networks/), which means that they can guess any target function. However, you 
have to consider that one aspect of this feature is the capacity to model complex 
functions (representation capability), and another aspect is the capability to learn 
from data effectively. Learning occurs in a brain because of the formation and 
modification of synapses between neurons, based on stimuli received by trial- 
and-error experience. Neural networks provide a way to replicate this process as 
a mathematical formulation called backpropagation.

Since its early appearance in the 1970s, the backpropagation algorithm has been 
given many fixes. Each neural network learning process improvement resulted in 
new applications and a renewed interest in the technique. In addition, the current 
deep learning revolution, a revival of neural networks, which were abandoned at 
the beginning of the 1990s, is due to key advances in the way neural networks 
learn from their errors. As seen in other algorithms, the cost function activates 
the necessity to learn certain examples better (large errors correspond to high 
costs). When an example with a large error occurs, the cost function outputs a 
high value that is minimized by changing the parameters in the algorithm. The 
optimization algorithm determines the best action for reducing the high outputs 
from the cost function.

In linear regression, finding an update rule to apply to each parameter (the vector 
of beta coefficients) is straightforward. However, in a neural network, things are 
a bit more complicated. The architecture is variable and the parameter coefficients 
(the connections) relate to each other because the connections in a layer depend 
on how the connections in the previous layers recombined the inputs. The solu-
tion to this problem is the backpropagation algorithm. Backpropagation is a smart 
way to propagate the errors back into the network and make each connection 
adjust its weights accordingly. If you initially feed-forward propagated informa-
tion to the network, it’s time to go backward and give feedback on what went 
wrong in the forward phase.

Backpropagation is how adjustments required by the optimization algorithm are 
propagated through the neural network. Distinguishing between optimization and 
backpropagation is important. In fact, all neural networks use backpropagation, 
but the next chapter discusses many different optimization algorithms.

https://www.techleer.com/articles/449-the-universal-approximation-theorem-for-neural-networks/
https://www.techleer.com/articles/449-the-universal-approximation-theorem-for-neural-networks/
https://www.techleer.com/articles/449-the-universal-approximation-theorem-for-neural-networks/
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Discovering how backpropagation works isn’t complicated, even though demon-
strating how it works using formulas and mathematics requires derivatives and 
the proving of some formulations, which is quite tricky and beyond the scope of 
this book. To get a sense of how backpropagation operates, start from the end of 
the network, just at the moment when an example has been processed and you 
have a prediction as an output. At this point, you can compare it with the real 
result and, by subtracting the two results, get an offset, which is the error. Now 
that you know the mismatch of the results at the output layer, you can progress 
backward in order to distribute it along all the units in the network.

The cost function of a neural network for classification is based on cross-entropy 
(as seen in logistic regression):

Cost = y * log(hW(X)) + (1 - y)*log(1 - hW(X))

This is a formulation involving logarithms. It refers to the prediction produced by 
the neural network and expressed as hW(X) (which reads as the result of the net-
work given connections W and X as input). To make things easier, when thinking 
of the cost, it helps to think of it as computing the offset between the expected 
results and the neural network output.

The first step in transmitting the error back into the network relies on backward 
multiplication. Because the values fed to the output layer are made of the contri-
butions of all units, proportional to the weight of their connections, you can redis-
tribute the error according to each contribution. For instance, the vector of errors 
of a layer n in the network, a vector indicated by the Greek letter delta (δ), is the 
result of the following formulation:

δ (n) = W(n)T * δ (n+1)

This formula says that, starting from the final delta, you can continue redistribut-
ing delta going backward in the network and using the weights you used to push 
forward the value to partition the error to the different units. In this way, you can 
get the terminal error redistributed to each neural unit, and you can use it to 
recalculate a more appropriate weight for each network connection to minimize 
the error. To update the weights W of layer l, you just apply the following formula:

W(l) = W(1) + η* δ (1) * g'(z(l))  *a(1)

The formula may appear puzzling at first sight, but it is a summation, and you can 
discover how it works by looking at its elements. First, look at the function g’. It’s 
the first derivative of the activation function g, evaluated by the input values z. In 
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fact, this is the gradient descent method. Gradient descent determines how to 
reduce the error measure by finding, among the possible combinations of values, 
the weights that most reduce the error.

The Greek letter eta (η), sometimes also called alpha (α) or epsilon (ε) depending 
on the textbook you consult, is the learning rate. As found in other algorithms, it 
reduces the effect of the update suggested by the gradient descent derivative. In 
fact, the direction provided may be only partially correct or just roughly correct. 
By taking multiple small steps in the descent, the algorithm can take a more pre-
cise direction toward the global minimum error, which is the target you want to 
achieve (that is, a neural network producing the least possible prediction error).

Different methods are available for setting the right eta value, because the opti-
mization largely depends on it. One method sets the eta value starting high and 
reduces it during the optimization process. Another method variably increases or 
decreases eta based on the improvements obtained by the algorithm: large 
improvements call a larger eta (because the descent is easy and straight); smaller 
improvements call a smaller eta so that the optimization will move slower, look-
ing for the best opportunities to descend. Think of it as being on a tortuous path 
in the mountains: You slow down and try not to be struck or thrown off the road 
as you descend.

Most implementations offer an automatic setting of the correct eta. You need to 
note this setting’s relevance when training a neural network because it’s one of 
the important parameters to tweak to obtain better predictions, together with the 
layer architecture. Weight updates can happen in different ways with respect to 
the training set of examples:

 » Online mode: The weight update happens after every example traverses the 
network. In this way, the algorithm treats the learning examples as a stream 
from which to learn in real time. This mode is perfect when you have to learn 
out of core, that is, when the training set can’t fit into RAM memory. However, 
this method is sensitive to outliers, so you have to keep your learning rate low. 
(Consequently, the algorithm is slow to converge to a solution.)

 » Batch mode: The weight update happens after processing all the examples in 
the training set. This technique makes optimization fast and less subject to 
having variance appear in the example stream. In batch mode, the backpropa-
gation considers the summed gradients of all examples.

 » Mini-batch (or stochastic) mode: The weight update happens after the 
network has processed a subsample of randomly selected training set 
examples. This approach mixes the advantages of online mode (low memory 
usage) and batch mode (a rapid convergence) while introducing a random 
element (the subsampling) to avoid having the gradient descent stuck in a 
local minima (a drop in value that isn’t the true minimum).
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Struggling with Overfitting
Given the neural network architecture, you can imagine how easily the algorithm 
could learn almost anything from data, especially if you added too many layers. In 
fact, the algorithm does so well that its predictions are often affected by a high 
estimate variance called overfitting. Overfitting causes the neural network to learn 
every detail of the training examples, which makes replicating them in the pre-
diction phase possible. But, apart from the training set, the network won’t ever 
correctly predict anything different. The following sections discuss some of the 
issues with overfitting in more detail.

Understanding the problem
When you use a neural network for a real problem, you become stricter and more 
cautious in an implementation than you do with other algorithms. Neural net-
works are frailer and more prone to relevant errors than other machine learning 
solutions.

You carefully split your data into training, validation, and test sets. Before the 
algorithm learns from data, you must evaluate the goodness of your parameters:

 » Architecture (the number of layers and nodes in them)

 » Activation functions

 » Learning parameter

 » Number of iterations

In particular, the architecture offers great opportunities to create powerful pre-
dictive models at a high risk of overfitting. The learning parameter controls how 
fast a network learns from data, but it may not suffice in preventing overfitting 
the training data. (See the “Looking for generalization” section of Chapter 2 for 
more details about why overfitting can cause problems.)

Opening the black box
You have two possible solutions to the problem of overfitting. The first is regular-
ization, as in linear and logistic regression. You can sum all connection coeffi-
cients, squared or in absolute value, to penalize models with too many coefficients 
with high values (achieved by L2 regularization) or with values different from 
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zero (achieved by L1 regularization). The second solution is also effective because 
it controls when overfitting happens. It’s called early stop and works by checking 
the cost function on the validation set as the algorithm learns from the training 
set. (The “Learning the right direction” section of Chapter 5 provides more details 
about early stopping.)

You may not realize when your model starts overfitting. The cost function 
 calculated using the training set keeps improving as optimization progresses. 
However, as soon as you start recording noise from the data and stop learning 
general rules, you can check the cost function on an out-of-sample data (the vali-
dation sample). At some point, you’ll notice that it stops improving and starts 
worsening, which means that your model has reached its learning limit.
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Chapter 8
Building a Basic 
Neural Network

Chapter  7 introduces neural networks using the simplest and most basic 
neural network of all: the perceptron. However, neural networks come in a 
number of forms, each of which has advantages. Fortunately, all the forms 

of neural networks follow a basic architecture and rely on certain strategies to 
accomplish what they need to do. If you learn how a basic neural network works, 
you can figure out how more complex architectures operate. The first part of this 
chapter discusses the basics of neural network functionality — that is, what you 
need to know to understand how a neural network performs useful work. It 
explains neural network functionality using a basic neural network that you can 
build from scratch using Python.

The second part of the chapter delves into some differences between neural net-
works. For example, you discover in Chapter 7 that individual neurons fire after 
reaching a particular threshold. An activation function determines when the input 
is sufficient for the neuron to fire, so knowing which activator functions are avail-
able is important to differentiate between neural networks. In addition, you need 
to know about the optimizer used to ensure that you get fast results that actually 
model the problem you want to solve. Finally, you need to decide how fast your 
neural network learns.

IN THIS CHAPTER

 » Considering the basic architecture

 » Defining the problem

 » Understanding the solution process
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Save yourself the time and mistakes of typing the code manually. You can find the 
downloadable source for this chapter in the DL4D_08_NN_From_Scratch.ipynb 
file. (The Introduction tells you where to download the source code for this book.)

Understanding Neural Networks
You can find many discussions about neural network architectures online  
(such as the one at https://www.kdnuggets.com/2018/02/8-neural-network- 
architectures-machine-learning-researchers-need-learn.html). The prob-
lem, however, is that they all quickly become insanely complex, making normal 
people want to pull out their hair. Some unwritten law seems to say that math has 
to become instantly abstract and so complicated that no mere mortal can under-
stand it, but anyone can understand a neural network. The material in Chapter 7 
gives you a good start. Even though Chapter 7 does rely a little on math to get its 
point across, the math is relatively simple. Now, in this chapter you learn by putt-
ing into Python code all the essential functionalities of a neural network.

What a neural network truly represents is a kind of filter. You pour data into the 
top, that data percolates through the various layers you create, and an output 
appears at the bottom. The things that differentiate neural networks are the same 
sorts of things you might look for in a filter. For example, the kind of algorithm 
you choose determines the kind of filtering the neural network will perform. You 
may want to filter the lead out of the water but leave the calcium and other benefi-
cial minerals intact, which means choosing a kind of filter to do that.

However, filters can come with controls. For example, you might choose to filter 
particles of one size but let particles of another size pass. The use of weights and 
biases in a neural network are simply a kind of control. You adjust the control to 
fine-tune the filtering you receive. In this case, because you’re using electrical 
signals modeled after those found in the brain, a signal is allowed to pass when it 
meets a particular condition — a threshold defined by an activation function. To 
keep things simple for now, though, just think about it as you would adjustments 
to any filter’s basic operation.

You can monitor the activity of your filter. However, unless you want to stand 
there all day looking at it, you probably rely on some sort of automation to ensure 
that the filter’s output remains constant. This is where an optimizer comes into 
play. By optimizing the output of the neural network, you see the results you need 
without constantly tuning it manually.

Finally, you want to allow a filter to work at a speed and capacity that allows it to 
perform its tasks correctly. Pouring water or some other substance through the 

https://www.kdnuggets.com/2018/02/8-neural-network-architectures-machine-learning-researchers-need-learn.html
https://www.kdnuggets.com/2018/02/8-neural-network-architectures-machine-learning-researchers-need-learn.html
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filter too quickly would cause it to overflow. If you don’t pour fast enough, the 
filter might clog or work erratically. Adjusting the learning rate of the optimizer 
of a neural network enables you to ensure that the neural network produces the 
output you want. It’s like adjusting the pouring rate of a filter.

Neural networks can seem hard to understand. The fact that much of what they do 
is shrouded in mathematical complexity doesn’t help matters. However, you don’t 
have to be a rocket scientist to understand what neural networks are all about. All 
you really need to do is break them down into manageable pieces and use the right 
perspective to look at them. The following sections demonstrate how to code each 
part of a basic neural network from scratch.

Defining the basic architecture
A neural network relies on numerous computation units, the neurons, arranged 
into hierarchical layers. Each neuron accepts inputs from all its predecessors and 
provides outputs to its successors until the neural network as a whole satisfies a 
requirement. At this point, the network processing ends and you receive the 
output.

All these computations occur singularly in a neural network. The network passes 
over each of them using loops for loop iterations. You can also leverage the fact 
that most of these operations are plain multiplications, followed by addition, and 
take advantage of the matrix calculations shown in the “Performing matrix mul-
tiplication” section of Chapter 5.

The example in this section creates a network with an input layer (whose dimen-
sions are defined by the input), a hidden layer with three neurons, and a single 
output layer that tells whether the input is part of a class (basically a binary 0/1 
answer). This architecture implies creating two sets of weights represented by 
two matrices (when you’re actually using matrices):

 » The first matrix uses a size determined by the number of inputs x 3, repre-
sents the weights that multiply the inputs, and sums them into three neurons.

 » The second matrix uses a size of 3 x 1, gathers all the outputs from the hidden 
layer, and makes that layer converge into the output.

Here’s the required Python script (which may take a while to complete running, 
depending on the speed of your system):

import numpy as np
from sklearn.datasets import make_moons
from sklearn.model_selection import train_test_split
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import matplotlib.pyplot as plt
%matplotlib inline
 
def init(inp, out):
    return np.random.randn(inp, out) / np.sqrt(inp)
 
def create_architecture(input_layer, first_layer,
                        output_layer, random_seed=0):
    np.random.seed(random_seed)
    layers = X.shape[1], 3 , 1
    arch = list(zip(layers[:-1], layers[1:]))
    weights = [init(inp, out) for inp, out in arch]
    return weights

The interesting point of this initialization is that it uses a sequence of matrices to 
automate the network calculations. How the code initializes them matters because 
you can’t use numbers that are too small — there will be too little signal for the 
network to work. However, you must also avoid numbers that are too big because 
the calculations become too cumbersome to handle. Sometimes they fail, which 
causes the exploding gradient problem or, more often, causes saturation of the 
neurons, which means that you can’t correctly train a network because all the 
neurons are always activated.

Initializing your network using all zeros is always a bad idea because if all the 
neurons have the same value, they will react in the same way to the training input. 
No matter how many neurons the architecture contains, they operate as a single 
neuron.

The simpler solution is to start with initial random weights which are in the range 
required for the activation functions, which are the transformation functions that 
add flexibility to solving problems using the network. A possible simple solution 
is to set the weights to zero mean and one standard deviation, which in statistics 
is called the standard normal distribution and in the code appears as the np.random.
radn command.

There are, however, smarter weight initializations for more complex networks, 
such as those found in this article: https://towardsdatascience.com/weight- 
initialization-techniques-in-neural-networks-26c649eb3b78.

Moreover, because each neuron accepts the inputs of all previous neurons, the 
code rescales the random normal distributed weights using the square root of the 
number of inputs. Consequently, the neurons and their activation functions 
always compute the right size for everything to work smoothly.

https://towardsdatascience.com/weight-initialization-techniques-in-neural-networks-26c649eb3b78
https://towardsdatascience.com/weight-initialization-techniques-in-neural-networks-26c649eb3b78


CHAPTER 8  Building a Basic Neural Network      153

Documenting the essential modules
The architecture is just one part of a neural network. You can imagine it as the 
structure of the network. Architecture explains how the network processes data 
and provides results. However, for any processing to happen, you also need to 
code the neural network’s core functionalities.

The first building block of the network is the activation function. Chapter 7 details 
a few activation functions used in neural networks without explaining them in 
much in detail. The example in this section provides code for the sigmoid func-
tion, one of the basic neural network activation functions. The sigmoid function is 
a step up from the Heaviside step function, which acts as a switch that activates at 
a certain threshold. A Heaviside step function outputs 1 for inputs above the 
threshold and 0 for inputs below it.

The sigmoid functions outputs 0 or 1, respectively, for small input values below 
zero or high values above zero. For input values in the range between –5 and +5, 
the function outputs values in the range 0–1, slowly increasing the output of 
released values until it reaches around 0.2 and then growing fast in a linear way 
until reaching 0.8. It then decreases again as the output rate approaches 1. Such 
behavior represents a logistic curve, which is useful for describing many natural 
phenomena, such as the growth of a population that starts growing slowly and 
then fully blossoms and develops until it slows down before hitting a resource 
limit (such as available living space or food).

In neural networks, the sigmoid function is particularly useful for modeling inputs 
that resemble probabilities, and it’s differentiable, which is a mathematical aspect 
that helps reverse its effects and works out the best backpropagation phase men-
tioned in the “Going even deeper into the rabbit hole” section of Chapter 7.

def sigmoid(z):
    return 1/(1 + np.exp(-z))
 
def sigmoid_prime(s):
    return s * (1 -s)

After you have an activation function, you can create a forward procedure, which is 
a matrix multiplication between the input to each layer and the weights of the 
connection. After completing the multiplication, the code applies the activation 
function to the results to transform them in a nonlinear way. The following code 
embeds the sigmoid function into the network’s feed-forward code. Of course, 
you can use any other activation function if desired.
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def feed_forward(X, weights):
    a = X.copy()
    out = list()
    for W in weights:
        z = np.dot(a, W)
        a = sigmoid(z)
        out.append(a)
    return out

By applying the feed forward to the complete network, you finally arrive at a result 
in the output layer. Now you can compare the output against the real values you 
want the network to obtain. The accuracy function determines whether the neural 
network is performing predictions well by comparing the number of correct 
guesses to the total number of predictions provided.

def accuracy(true_label, predicted):
    correct_preds = np.ravel(predicted)==true_label
    return np.sum(correct_preds) / len(true_label)

The backpropagation function comes next because the network is working, but all 
or some of the predictions are incorrect. Correcting predictions during training 
enables you to create a neural network that can take on new examples and provide 
good predictions. The training is incorporated into its connection weights as pat-
terns present in data that can help predict the results correctly.

To perform backpropagation, you first compute the error at the end of each layer 
(this architecture has two). Using this error, you multiply it by the derivative of the 
activation function. The result provides you with a gradient, that is, the change in 
weights necessary to compute predictions more correctly. The code starts by com-
paring the output with the correct answers (l2_error), and then computes the 
gradients, which are the necessary weight corrections (l2_delta). The code then 
proceeds to multiply the gradients by the weights the code must correct. The oper-
ation distributes the error from the output layer to the intermediate one (l1_error). 
A new gradient computation (l1_delta) also provides the weight corrections to 
apply to the input layer, which completes the process for a network with an input 
layer, a hidden layer, and an output layer.

def backpropagation(l1, l2, weights, y):
    l2_error = y.reshape(-1, 1) - l2
    l2_delta = l2_error * sigmoid_prime(l2)
    l1_error = l2_delta.dot(weights[1].T)
    l1_delta = l1_error * sigmoid_prime(l1)
    return l2_error, l1_delta, l2_delta
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This is a Python code translation, in simplified form, of the formulas in Chapter 7. 
The cost function is the difference between the network’s output and the correct 
answers. The example doesn’t add biases during the feed forward phase, which 
reduces the complexity of the backpropagation process and makes it easier to 
understand.

After backpropagation assigns each connection its part of the correction that 
should be applied over the entire network, you adjust the initial weights to repre-
sent an updated neural network. You do so by adding to the weights of each layer, 
the multiplication of the input to that layer, and the delta corrections for the layer 
as a whole. This is a gradient descent method step in which you approach the 
solution by taking repeated small steps in the right direction, so you may need to 
adjust the step size used to solve the problem. The alpha parameters help make 
changing the step size possible. Using a value of 1 won’t affect the impact of the 
previous weight correction, but values smaller than 1 effectively reduce it.

def update_weights(X, l1, l1_delta, l2_delta, weights, 
alpha=1.0):

    weights[1] = weights[1] + (alpha * l1.T.dot(l2_delta))
    weights[0] = weights[0] + (alpha * X.T.dot(l1_delta))
    return weights

A neural network is not complete if it can only learn from data, but not predict. 
The last predict function pushes new data using feed forward, reads the last out-
put layer, and transforms its values to problem predictions. Because the sigmoid 
activation function is so adept at modeling probability, the code uses a value half-
way between 0 and 1, that is, 0.5, as the threshold for having a positive or negative 
output. Such a binary output could help in classifying two classes or a single class 
against all the others if a dataset has three or more types of outcomes to classify.

def predict(X, weights):
    _, l2 = feed_forward(X, weights)
    preds = np.ravel((l2 > 0.5).astype(int))
    return preds

At this point, the example has all the parts that make a neural network work. You 
just need a problem that demonstrates how the neural network works.

Solving a simple problem
In this section, you test the neural network code you wrote by asking it to solve a 
simple, but not banal, data problem. The code uses the Scikit-learn package’s 
make_moons function to create two interleaving circles of points shaped as two 
half moons. Separating these two circles requires an algorithm capable of defining 
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a nonlinear separation function that generalizes to new cases of the same kind.  
A neural network, such as the one presented earlier in the chapter, can easily 
handle the challenge.

np.random.seed(0)
 
coord, cl = make_moons(300, noise=0.05)
X, Xt, y, yt = train_test_split(coord, cl,
                                test_size=0.30,
                                random_state=0)
 
plt.scatter(X[:,0], X[:,1], s=25, c=y, cmap=plt.cm.Set1)
plt.show()

The code first sets the random seed to produce the same result anytime you want 
to run the example. The next step is to produce 300 data examples and split them 
into a train and a test dataset. (The test dataset is 30 percent of the total.) The data 
consists of two variables representing the x and y coordinates of points on a Car-
tesian graph. Figure 8-1 shows the output of this process.

Because learning in a neural network happens in successive iterations (called 
epochs), after creating and initializing the sets of weights, the code loops 30,000 
iterations of the two half moons data (each passage is an epoch). On each itera-
tion, the script calls some of the previously prepared core neural network 
functions:

 » Feed forward the data through the entire network.

 » Backpropagate the error back into the network.

FIGURE 8-1: 
Two interleaving 

moon-shaped 
clouds of data 

points.
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 » Update the weights of each layer in the network, based on the backpropa-
gated error.

 » Compute the training and validation errors.

The following code uses comments to detail when each function operates:

weights = create_architecture(X, 3, 1)
 
for j in range(30000 + 1):
 
    # First, feed forward through the hidden layer
    l1, l2 = feed_forward(X, weights)
     
    # Then, error backpropagation from output to input
    l2_error, l1_delta, l2_delta = backpropagation(l1,
                                         l2, weights, y)
     
    # Finally, updating the weights of the network
    weights = update_weights(X, l1, l1_delta, l2_delta,
                             weights, alpha=0.05)
     
    # From time to time, reporting the results
    if (j % 5000) == 0:
        train_error = np.mean(np.abs(l2_error))
        print('Epoch {:5}'.format(j), end=' - ')
        print('error: {:0.4f}'.format(train_error),
              end= ' - ')
        train_accuracy = accuracy(true_label=y,
                                  predicted=(l2 > 0.5))
        test_preds = predict(Xt, weights)
        test_accuracy = accuracy(true_label=yt,
                                 predicted=test_preds)
        print('acc: train {:0.3f}'.format(train_accuracy),
              end= ' | ')
        print('test {:0.3f}'.format(test_accuracy))

Variable j counts the iterations. At each iteration, the code tries to divide j by 
5,000 and check whether the division leaves a module. When the module is zero, 
the code infers that 5,000 epochs have passed since the previous check, and sum-
marizing the neural network error is possible by examining its accuracy (how 
many times the prediction is correct with respect to the total number of predic-
tions) on the training set and on the test set. The accuracy on the training set 
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shows how well the neural network is fitting the data by adapting its parameters 
by the backpropagation process. The accuracy on the test set provides an idea of 
how well the solution generalized to new data and thus whether you can reuse it.

The test accuracy should matter the most because it shows the potential usability 
of the neural network with other data. The training accuracy just tells you how the 
network scores with the present data you are using.

Looking Under the Hood of 
Neural Networks

After you know how neural networks basically work, you need a better under-
standing of what differentiates them. Beyond the different architectures, the 
choice of the activation functions, the optimizers and the neural network’s learn-
ing rate can make the difference. Knowing basic operations isn’t enough because 
you won’t get the results you want. Looking under the hood helps you understand 
how you can tune your neural network solution to model specific problems. In 
addition, understanding the various algorithms used to create a neural network 
will help you obtain better results with less effort and in a shorter time. The fol-
lowing sections focus on three areas of neural network differentiation.

Choosing the right activation function
An activation function simply defines when a neuron fires. Consider it a sort of 
tipping point: Input of a certain value won’t cause the neuron to fire because it’s 
not enough, but just a little more input can cause the neuron to fire. A neuron is 
defined in a simple manner as follows:

y = ∑ (weight * input) + bias

The output, y, can be any value between + infinity and – infinity. The problem, 
then, is to decide on what value of y is the firing value, which is where an activa-
tion function comes into play. The activation function determines which value is 
high or low enough to reflect a decision point in the neural network for a partic-
ular neuron or group of neurons.

As with everything else in neural networks, you don’t have just one activation 
function. You use the activation function that works best in a particular scenario. 
With this in mind, you can break the activation functions into these categories:
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 » Step: A step function (also called a binary function) relies on a specific 
threshold for making the decision about activating or not. Using a step 
function means that you know which specific value will cause an activation. 
However, step functions are limited in that they’re either fully activated or fully 
deactivated —no shades of gray exist. Consequently, when attempting to 
determine which class is most likely correct based in a given input, a step 
function won’t work.

 » Linear: A linear function (A = cx) provides a straight-line determination of 
activation based on input. Using a linear function helps you determine which 
output to activate based on which output is most correct (as expressed by 
weighting). However, linear functions work only as a single layer. If you were 
to stack multiple linear function layers, the output would be the same as 
using a single layer, which defeats the purpose of using neural networks. 
Consequently, a linear function may appear as a single layer, but never as 
multiple layers.

 » Sigmoid: A sigmoid function (A = 1 / 1 + e-x), which produces a curve 
shaped like the letter C or S, is nonlinear. It begins by looking sort of like the 
step function, except that the values between two points actually exist on a 
curve, which means that you can stack sigmoid functions to perform classifica-
tion with multiple outputs. The range of a sigmoid function is between 0 and 
1, not – infinity to + infinity as with a linear function, so the activations are 
bound within a specific range. However, the sigmoid function suffers from a 
problem called vanishing gradient, which means that the function refuses to 
learn after a certain point because the propagated error shrinks to zero as it 
approaches far away layers.

 » Tanh: A tanh function (A = (2 / 1 + e-2x) – 1) is actually a scaled sigmoid 
function. It has a range of –1 to 1, so again, it’s a precise method for activating 
neurons. The big difference between sigmoid functions and tanh functions is 
that the tanh function gradient is stronger, which means that detecting small 
differences is easier, making classification more sensitive. Like the sigmoid 
function, tanh suffers from vanishing gradient issues.

 » ReLU: A ReLU, or Rectified Linear Units, function (A(x) = max(0, x)) 
provides an output in the range of 0 to infinity, so it’s similar to the linear 
function except that it’s also nonlinear, enabling you to stack ReLU functions. 
An advantage of ReLU is that it requires less processing power because fewer 
neurons fire. The lack of activity as the neuron approaches the 0 part of the 
line means that there are fewer potential outputs to look at. However, this 
advantage can also become a disadvantage when you have a problem called 
the dying ReLU. After a while, the neural network weights don’t provide the 
desired effect any longer (it simply stops learning) and the affected neurons 
die — they don’t respond to any input.
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Also, the ReLU has some variants that you should consider:

 » ELU (Exponential Linear Unit): Differs from ReLU when the inputs are 
negative. In this case, the outputs don’t go to zero but instead slowly decrease 
to –1 exponentially.

 » PReLU (Parametric Rectified Linear Unit): Differs from ReLU when the 
inputs are negative. In this case, the output is a linear function whose 
parameters are learned using the same technique as any other parameter 
of the network.

 » LeakyReLU: Similar to PReLU but the parameter for the linear side is fixed.

Relying on a smart optimizer
An optimizer serves to ensure that your neural network performs fast and cor-
rectly models whatever problem you want to solve by modifying the neural net-
work’s biases and weights. It turns out that an algorithm performs this task, but 
you must choose the correct algorithm to obtain the results you expect. As with all 
neural network scenarios, you have a number of optional algorithm types from 
which to choose (see https://keras.io/optimizers/):

 » Stochastic gradient descent (SGD)

 » RMSProp

 » AdaGrad

 » AdaDelta

 » AMSGrad

 » Adam and its variants, Adamax and Nadam

An optimizer works by minimizing or maximizing the output of an objective func-
tion (also known as an error function) represented as E(x). This function is depen-
dent on the model’s internal learnable parameters used to calculate the target 
values (Y) from the predictors (X). Two internal learnable parameters are weights 
(W) and bias (b). The various algorithms have different methods of dealing with 
the objective function.

You can categorize the optimizer functions by the manner in which they deal with 
the derivative (dy/dx), which is the instantaneous change of y with respect to x. 
Here are the two levels of derivative handling:

https://keras.io/optimizers/
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 » First order: These algorithms minimize or maximize the objective function 
using gradient values with respect to the parameters.

 » Second order: These algorithms minimize or maximize the object function 
using the second-order derivative values with respect to the parameters. The 
second-order derivative can give a hint as to whether the first-order derivative 
is increasing or decreasing, which provides information about the curvature of 
the line.

You commonly use first-order optimization techniques, such as Gradient Descent, 
because they require fewer computations and tend to converge to a good solution 
relatively fast when working on large datasets.

Setting a working learning rate
Each optimizer has completely different parameters to tune. One constant is fix-
ing the learning rate, which represents the rate at which the code updates the net-
work’s weights (such as the alpha parameter used in the example for this chapter). 
The learning rate can affect both the time the neural network takes to learn a good 
solution (the number of epochs) and the result. In fact, if the learning rate is too 
low, your network will take forever to learn. Setting the value too high causes 
instability when updating the weights, and the network won’t ever converge to a 
good solution.

Choosing a learning rate that works is daunting because you can effectively try 
values in the range from 0.000001 to 100. The best value varies from optimizer to 
optimizer. The value you choose depends on what type of data you have. Theory 
can be of little help here; you have to test different combinations before finding 
the most suitable learning rate for training your neural network successfully.

In spite of all the math surrounding them, tuning neural networks and having 
them work best is mostly a matter of empirical efforts in trying different combi-
nations of architectures and parameters.
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Chapter 9
Moving to Deep Learning

Chapters 7 and 8 look at AI from a machine learning perspective, with a little 
added information for deep learning. This chapter looks exclusively at deep 
learning, because you actually need deep learning solutions to work with 

today’s overabundance of data in a smart way. Although machine learning adds 
the capability to learn to the AI arsenal, it’s essential to realize from the outset 
that computers have limitations — they don’t actually understand what humans 
are doing. Algorithms, which are mathematical representations of various data 
interpretation processes, control everything. So the first part of this chapter looks 
at data from a deep learning perspective because you need huge amounts of data 
to perform pattern matching effectively.

As you move from AI to machine learning to deep learning, the computational 
requirements increase. In fact, one of the major reasons for AI winters in the past 
was a lack of processing power. Today, you can use GPUs, such as the NVIDIA 
Titan V (https://www.nvidia.com/en-us/titan/titan-v/), with 5,120 Compute  
Unified Device Architecture (CUDA) cores, to process data in ways that weren’t 
possible even a few years ago. Therefore, the second part of this chapter discusses 
how you can improve your deep learning experience by throwing more hardware 
at it or using other strategies currently employed by data scientists (among many 
others).

The third part of the chapter focuses on precisely how deep learning differs from 
machine learning — a difference that’s a constant source of problems for many 
people. Finding a precise definition that everyone can agree with is nearly 

IN THIS CHAPTER

 » Understanding the sources and uses 
of data

 » Processing data faster

 » Considering the deep learning 
difference

 » Defining smarter deep learning 
solutions

https://www.nvidia.com/en-us/titan/titan-v/
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impossible, so if you’re already a deep learning expert, you may not completely 
agree with everything this chapter has to say. Even so, this book relies on this def-
inition to present deep learning principles and examples, so you need to know this 
book’s particular way of viewing deep learning.

Finally, the fourth part of the chapter takes all the essentials that you discover in 
the first three parts and improves on them. You begin to realize that deep learning 
comes in many forms and that some forms are especially suited to solving partic-
ular problems. Currently, no single solution exists that solves every problem, even 
inadequately, so knowing the right set of solutions to solve a particular problem 
can save you a great deal of time and frustration.

Seeing Data Everywhere
Big data is more than a buzzword used by vendors to propose new ways to store 
data and analyze it. The big data revolution is an everyday reality and a driving 
force of our times. You may have heard big data mentioned in many specialized 
scientific and business publications and wondered what the term really means. 
From a technical perspective, big data refers to large and complex amounts of 
computer data, so large and intricate that applications can’t deal with the data by 
using additional storage or increasing computer power. The following sections 
help you understand what makes data a universal resource today.

Considering the effects of structure
Big data implies a revolution in data storage and manipulation. It affects what you 
can achieve with data in more qualitative terms (meaning that, in addition to 
doing more, you can perform tasks better). Computers store big data in different 
formats from a human perspective, but the computer sees data as a stream of ones 
and zeros (the core language of computers). You can view data as being one of two 
types, depending on how you produce and consume it:

 » Structured: You know exactly what it contains and where to find every piece 
of data. Typical examples of structured data are database tables, in which 
information is arranged into columns and each column contains a specific 
type of information. Data is often structured by design. You gather it selec-
tively and record it in its correct place. For example, you might want to place a 
count of the number of people buying a certain product in a specific column, 
in a specific table, in a specific database. As with a library, if you know what 
data you need, you can find it immediately.
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 » Unstructured: You have an idea of what it contains, but you don’t know 
exactly how it is arranged. Typical examples of unstructured data are images, 
videos, and sound recordings. You may use an unstructured form for text so 
that you can tag it with characteristics, such as size, date, or content type. 
Usually you don’t know exactly where data appears in an unstructured 
dataset because the data appears as sequences of ones and zeros that an 
application must interpret or visualize.

Transforming unstructured data into a structured form can cost lots of time and 
effort and can involve the work of many people. Most of the data of the big data 
revolution is unstructured and stored as it is unless someone renders it in struc-
tured form.

This copious and sophisticated data store didn’t appear suddenly overnight. The 
technology to store this amount of data took time to develop. Spreading the tech-
nology that generates and delivers data, namely computers, sensors, smart mobile 
phones, the Internet, and its World Wide Web services, took time as well.

Understanding Moore’s implications
In 1965, Gordon Moore, cofounder of Intel and Fairchild Semiconductor, wrote in 
an article entitled “Cramming More Components Onto Integrated Circuits” 
(https://ieeexplore.ieee.org/document/4785860/) that the number of com-
ponents found in integrated circuits would double every year for the next decade. 
At that time, transistors dominated electronics. Being able to stuff more transis-
tors into an Integrated Circuit (IC) meant being able to make electronic devices 
more capable and useful. This process is called integration and implies a strong 
process of electronics miniaturization (making the same circuit much smaller). 
Today’s computers aren’t all that much smaller than computers of a decade ago, 
yet they are decisively more powerful. The same goes for mobile phones. Even 
though they’re the same size as their predecessors, they have become able to per-
form more tasks.

What Moore stated in that article has actually been true for many years. The sem-
iconductor industry calls it Moore’s Law (see http://www.mooreslaw.org/ for 
details). Doubling did occur for the first ten years, as predicted. In 1975, Moore 
corrected his statement, forecasting a doubling every two years. Figure 9-1 shows 
the effects of this doubling. This rate of doubling is still valid, although now com-
mon opinion holds that it won’t persist beyond the end of the present decade (up 
to about 2020). Starting in 2012, a mismatch began to occur between expected 
speed increases and what semiconductor companies can achieve with regard to 
miniaturization.

https://ieeexplore.ieee.org/document/4785860/
http://www.mooreslaw.org/
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Physical barriers exist to integrating more circuits on an IC using the present 
silica components because you can make things only so small. However, innova-
tion continues, as described at https://www.nature.com/news/the-chips- 
are-down-for-moores-law-1.19338. In the future, Moore’s Law may not apply. 
That will happen because industry will switch to a new technology, such as mak-
ing components by using optical lasers instead of transistors (see the article at 
https://www.extremetech.com/extreme/187746-by-2020-you-could-have- 
an-exascale-speed-of-light-optical-computeron-your-desk for details 
about optical computing). Eventually, people will disregard Moore’s Law because 
industry won’t be able to keep up the pace as it did in the past (see the story on the 
MIT Technology Review at https://www.technologyreview.com/s/601441/
mooreslaw-is-dead-now-what/).

Considering what Moore’s Law changes
What matters to the data scientist and others interested in deep learning is that, 
since 1965, the doubling of components every two years has ushered in great 
advancements in digital electronics that have had far-reaching consequences in 
the acquisition, storage, manipulation, and management of data.

Moore’s Law has a direct effect on data. It begins with smarter devices. The 
smarter the device, the more people rely on it to interact with data in new ways 
(as evidenced by electronics being everywhere today). The greater the diffusion of 
this computing power, the lower the price becomes, creating an endless loop that 

FIGURE 9-1: 
Stuffing more and 

more transistors 
into a CPU.

https://www.nature.com/news/the-chips-are-down-for-moores-law-1.19338
https://www.nature.com/news/the-chips-are-down-for-moores-law-1.19338
https://www.extremetech.com/extreme/187746-by-2020-you-could-have-an-exascale-speed-of-light-optical-computeron-your-desk
https://www.extremetech.com/extreme/187746-by-2020-you-could-have-an-exascale-speed-of-light-optical-computeron-your-desk
https://www.technologyreview.com/s/601441/mooreslaw-is-dead-now-what/
https://www.technologyreview.com/s/601441/mooreslaw-is-dead-now-what/
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drives the use of powerful computing machines and small sensors everywhere. 
With large amounts of computer memory available and larger storage disks for 
data, the consequences are an expansion of data availability, such as websites, 
transaction records, measurements, digital images, and other sorts of data. With-
out these advancements, the Internet of today, wouldn’t be possible because its 
flow of data depends on such smarter devices.

The Internet now generates and distributes new data in large amounts, thanks to 
computers, mobile devices, and sensors interconnected with it. Some sources 
estimate the current daily data production at about 2.5 quintillion (a number with 
18 zeros) bytes, with the lion’s share going to unstructured data such as videos 
and audios (see the article at https://www.forbes.com/sites/bernardmarr/ 
2018/05/21/how-much-data-do-we-create-every-day-the-mind- 
blowing-stats-everyone-should-read/ for details). Most of this data relates to 
common human activities, feelings, experiences, and relations, accompanied by a 
growing share of data relative to the functioning of connected machines that 
range from complex industrial machineries to simple smart home lamps (lamps 
that you can control remotely through the Internet).

Discovering the Benefits of 
Additional Data

With the explosion of data availability on digital devices, data assumes new 
nuances of value and usefulness beyond its initial scope of instructing (training) 
and transmitting knowledge (transferring data). The abundance of data, when 
considered as part of data analysis, acquires new functions that distinguish it 
from the informative ones:

 » Data describes the world better by presenting a wide variety of facts and in 
more detail by providing nuances for each fact. It has become so abundant 
that it covers every aspect of reality. You can use it to unveil how even 
apparently unrelated things and facts actually relate to each other.

 » Data shows how facts associate with events. You can derive general rules  
and learn how the world will change or transform, given certain premises. 
When people act in a certain fashion, data provides a certain predictive 
capability as well.

The following sections discuss how having more data is usually better. By having 
more data to work with, your deep learning project can become more accurate, 
reliable, and, in some cases, feasible.

https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/
https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/
https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/
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Defining the ramifications of data
In some respects, data provides us with new superpowers. Chris Anderson, Wired’s 
previous editor-in-chief, discusses how large amounts of data can help scientific 
discoveries outside the scientific method (see the article at https://www.wired.
com/2008/06/pb-theory/). The author relies on the example of achievements of 
Google in the advertising and translation business sectors, in which Google 
achieved prominence not by using specific models or theories but rather by apply-
ing algorithms to learn from data.

As in advertising, scientific data (such as from physics or biology) can support 
innovation that allows scientists to approach problems without hypotheses, 
instead considering the variations found in large amounts of data and using dis-
covery algorithms. Galileo Galilei relied on the scientific method to create the 
foundations of modern physics and astronomy (see https://www.biography.
com/people/galileo-9305220). Most early advances rely on observations and 
controlled experiments that define reasons for how and why things happen. The 
capability to innovate by using data alone is a major breakthrough in the way we 
understand the world.

In the past, scientists took uncountable observations and made a multitude of 
deductions to describe the physics of the universe. This manual process allowed 
people to find underlying laws of the world we live in. Data analysis, by pairing 
observations expressed as inputs and outputs, allows you to determine how things 
work and to define, thanks to deep learning, approximate rules, or laws, of the 
world without having to resort to using manual observations and deductions. The 
process is now faster and more automatic.

Considering data timeliness and quality
More than simply powering deep learning, data makes deep learning possible. 
Some people would say that deep learning is the output of sophisticated algo-
rithms of elevated mathematical complexity, and that’s certainly true. Activities 
like vision and language understanding require algorithms that aren’t easily 
explained in layman’s terms and necessitate millions of computations to work. 
(Hardware plays a role here, too.)

Deep learning is more than algorithms, though. Dr. Alexander Wissner-Gross, an 
American research scientist, entrepreneur, and fellow at the Institute for Applied 
Computation Science at Harvard, offers his insights on deep learning in a recent 
interview at Edge (https://www.edge.org/response-detail/26587). The inter-
view reflects on why deep learning technology took so long to take off. Wissner-
Gross concludes that quality and availability of data might have been key factors 
rather than simply algorithmic availability. In other words, having powerful algo-
rithms is necessary but not sufficient if you don’t have the right data to run them.

https://www.wired.com/2008/06/pb-theory/
https://www.wired.com/2008/06/pb-theory/
https://www.biography.com/people/galileo-9305220
https://www.biography.com/people/galileo-9305220
https://www.edge.org/response-detail/26587
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Wissner-Gross reviews the timing of most breakthrough deep learning achieve-
ments in recent years, showing how data and algorithms contribute to the success 
of each breakthrough and highlighting how each of them was fresh at the time the 
AI community reached the milestone. Wissner-Gross shows how data is relatively 
new and always updated, whereas algorithms aren’t new discoveries but rather 
rely on consolidation of older technology.

For instance, when you consider recent deep learning achievements, the near-
human performance of the GoogleLeNet network in correctly classifying images 
into classes relies on an old algorithm run on recent data. It uses Convolutional 
Neural Networks for Visual Recognition, an algorithm developed in 1989 that 
could show its real effectiveness only after being trained using the ImageNet cor-
pus (http://www.image-net.org/) of more than 1.5 million images, spread over 
1,000 categories (the ImageNet corpus became available in 2010).

Another achievement to consider is the result of the team at Google DeepMind. 
The team deployed a deep neural network that achieves the same skillfulness as 
humans in playing 29 different Atari games. They relied on a 1992 algorithm, 
Q-Learning, which they could apply to Atari games only after 2013 when convo-
lutional neural networks become more common and a complete dataset of 50 Atari 
2600 games, called the Arcade Learning Environment (https://github.com/
mgbellemare/Arcade-Learning-Environment), became available.

Wissner-Gross provides other examples of the same kind of deep learning 
achievement, such as when IBM Deep Blue defeated Garry Kasparov and when 
IBM Watson become the world Jeopardy! champion. In all these cases, Wissner-
Gross concludes that, on average, the algorithm is usually 15 years older than the 
data. He points out that data is pushing deep learning’s achievements forward and 
leaves the reader wondering what could happen if feeding the presently available 
algorithms with better data in terms of quality and quantity is possible.

Improving Processing Speed
When you look inside deep learning, you may be surprised to find a lot of old tech-
nology, but amazingly, everything works as it never has before. Because research-
ers finally figured out how to make some simple, good-ol’ solutions work together, 
big data can automatically filter, process, and transform data. For instance, new 
activations such as ReLU aren’t all that new; they’ve been known since the per-
ceptron (which dates back to 1957; see Chapter 7).

The image-recognition capabilities that initially made deep learning so popular 
aren’t new, either. Initially, deep learning achieved great momentum thanks to 

http://www.image-net.org/
https://github.com/mgbellemare/Arcade-Learning-Environment
https://github.com/mgbellemare/Arcade-Learning-Environment
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Convolutional Neural Networks (CNN). Discovered in the 1980s by the French sci-
entist Yann LeCun (whose personal home page is at http://yann.lecun.com/), 
such networks now bring about astonishing results because they use many neural 
layers and lots of data.

The same goes for technology that allows a machine to understand human speech 
or translate from one language to another. In every case, the solution relies on 
decades old technology that a researcher revisited and got to work in the new deep 
learning paradigm. The only problem is that all this data processing requires a 
great many processing cycles, so the sections that follow discuss how to improve 
processing speed so that you can actually see the result of analyzing data in a rea-
sonable amount of time.

Leveraging powerful hardware
The use of incredible amounts of data makes the difference in algorithm perfor-
mance today. To process so much data, scientists of various types rely on the 
increased usage of GPUs and computer networking to get answers quickly. 
Together with parallelism (more computers put in clusters and operating in par-
allel), GPUs allow you to create larger networks and successfully train them on 
more data. In fact, a GPU can perform certain operations 70 times faster than any 
CPU, allowing a cut in training times for neural networks from weeks to days or 
even hours. (The article at https://www.quora.com/Why-are-CPUs-still- 
being-made-when-GPUs-are-so-much-faster tells you why you need both CPUs 
and GPUs to create an effective deep learning system.)

GPUs are powerful matrix and vector calculation computing units necessary for 
backpropagation. These technologies make training neural networks achievable in 
a shorter time and accessible to more people. Research also opened a world of new 
applications. Neural networks can learn from huge amounts of data and take 
advantage of big data (images, text, transactions, and social media data), creating 
models that continuously perform better, depending on the flow of data you feed 
them.

For more information about how much a GPU can empower machine learning by 
using a neural network, peruse this technical paper on the topic: https://icml.
cc/2009/papers/218.pdf.

Making other investments
Big players such as Google, Facebook, Microsoft, and IBM spotted the new trend 
and since 2012 have started acquiring companies and hiring experts in the new 
fields of deep learning. Two of these experts are Geoffrey Hinton, who is most 

http://yann.lecun.com/
https://www.quora.com/Why-are-CPUs-still-being-made-when-GPUs-are-so-much-faster
https://www.quora.com/Why-are-CPUs-still-being-made-when-GPUs-are-so-much-faster
https://icml.cc/2009/papers/218.pdf
https://icml.cc/2009/papers/218.pdf
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noted for his work on applying the backpropagation algorithm to multilayer neu-
ral networks and now works with Google, and Yann LeCun, the creator of Convo-
lutional Neural Networks, who now leads Facebook AI research.

Today, everyone can access networks, and people can access tools that help create 
deep learning networks as well. This access goes beyond reading publicly available 
scientific papers that explain how deep learning works; it also includes the tools 
for programming networks.

In the early days of deep learning, scientists built every network from scratch 
using languages such as C++. Unfortunately, developing applications in such a 
low-level language limits data access to a few well-trained specialists. Scripting 
capabilities today (for instance, using Python; go to https://www.python.org) 
are better because of a large array of open source deep learning frameworks, such 
as TensorFlow by Google (https://www.tensorflow.org/) or PyTorch by Face-
book (https://pytorch.org/). These frameworks allow the replication of the 
most recent advances in deep learning using straightforward commands.

Explaining Deep Learning Differences  
from Other Forms of AI

Given the embarrassment of riches that pertain to AI as a whole, such as large 
amounts of data, new and powerful computational hardware available to every-
one, and plenty of private and public investments, you may be skeptical about the 
technology behind deep learning, which consists of neural networks that have 
more neurons and hidden layers than in the past. Deep networks contrast with the 
simpler, shallower networks of the past, which featured one or two hidden layers 
at best. Many solutions that render deep learning today possible are not at all new, 
but deep learning uses them in new ways.

Deep learning isn’t simply a rebranding of an old technology, the perceptron, 
discovered in 1957 by Frank Rosenblatt at the Cornell Aeronautical Laboratory (see 
Chapter  7 for more details about the perceptron). Deep learning works better 
because of the extra sophistication it adds through the full use of powerful com-
puters and the availability of better (not just more) data. Deep learning also 
implies a profound qualitative change in the capabilities offered by the technology 
along with new and astonishing applications. The presence of these capabilities 
modernizes old but good neural networks, transforming them into something 
new. The following sections describe just how deep learning achieves its task.

https://www.python.org
https://www.tensorflow.org/
https://pytorch.org/
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Adding more layers
You may wonder why deep learning has blossomed only now when the technology 
used as the foundation of deep learning existed long ago. As mentioned earlier in 
this chapter, computers are more powerful today, and deep learning can access 
huge amounts of data. However, these answers point only to important problems 
with deep learning in the past, and lower computing power along with less data 
weren’t the only insurmountable obstacles. Until recently, deep learning also suf-
fered from a key technical problem that kept neural networks from having enough 
layers to perform truly complex tasks.

Because it can use many layers, deep learning can solve problems that are out of 
reach of machine learning, such as image recognition, machine translation, and 
speech recognition. When fitted with only a few layers, a neural network is a per-
fect universal function approximator, which is a system that can recreate any possi-
ble mathematical function. When fitted with many more layers, a neural network 
becomes capable of creating, inside its internal chain of matrix multiplications, a 
sophisticated system of representations to solve complex problems. To under-
stand how a complex task like image recognition works, consider this process:

1. A deep learning system trained to recognize images (such as a network 
capable of distinguishing photos of dogs from those featuring cats) defines 
internal weights that have the capability to recognize a picture topic.

2. After detecting each single contour and corner in the image, the deep learning 
network assembles all such basic traits into composite characteristic features.

3. The network matches such features to an ideal representation that provides 
the answer.

In other words, a deep learning network can distinguish dogs from cats using its 
internal weights to define a representation of what, ideally, a dog and a cat should 
resemble. It then uses these internal weights to match any new image you provide 
it with.

One of the earliest achievements of deep learning that made the public aware of 
its potentiality is the cat neuron. The Google Brain team, run at that time by Andrew 
Ng and Jeff Dean, put together 16,000 computers to calculate a deep learning net-
work with more than a billion weights, thus enabling unsupervised learning from 
YouTube videos. The computer network could even determine by itself, without 
any human intervention, what a cat is, and Google scientists managed to dig out 
of the network a representation of how the network itself expected a cat should 
look (see the Wired article at https://www.wired.com/2012/06/google-x- 
neural-network/).

https://www.wired.com/2012/06/google-x-neural-network/
https://www.wired.com/2012/06/google-x-neural-network/
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During the time that scientists couldn’t stack more layers into a neural network 
because of the limits of computer hardware, the potential of the technology 
remained buried, and scientists ignored neural networks. The lack of success 
added to the profound skepticism that arose around the technology during the last 
AI winter. However, what really prevented scientists from creating something 
more sophisticated was the problem with vanishing gradients.

A vanishing gradient occurs when you try to transmit a signal through a neural 
network and the signal quickly fades to near zero values; it can’t get through the 
activation functions. This happens because neural networks are chained multipli-
cations. Each below-zero multiplication decreases the incoming values rapidly, 
and activation functions need large enough values to let the signal pass. The far-
ther neuron layers are from the output, the higher the likelihood that they’ll get 
locked out of updates because the signals are too small and the activation func-
tions will stop them. Consequently, your network stops learning as a whole, or it 
learns at an incredibly slow pace.

Every attempt at putting together and testing complex networks ended in failure 
because the backpropagation algorithm couldn’t update the layers nearer the 
input, thus rendering any learning from complex data, even when such data was 
available at the time, almost impossible. Today, deep networks are possible thanks 
to the studies of scholars from the University of Toronto in Canada, such as Geof-
frey Hinton (https://www.utoronto.ca/news/artificial-intelligence-u-t), 
who insisted on working on neural networks even when they seemed to most to 
be an old-fashioned machine learning approach.

Professor Hinton, a veteran of the field of neural networks (he contributed to 
defining the backpropagation algorithm), and his team in Toronto devised a few 
methods to circumvent the problem of vanishing gradients. He opened the field to 
rethinking new solutions that made neural networks a crucial tool in machine 
learning and AI again.

Professor Hinton and his team are memorable also for being among the first to 
test GPU usage in order to accelerate the training of a deep neural network. In 
2012, they won an open competition, organized by the pharmaceutical company 
Merck and Kaggle (the latter a website for data science competitions), using their 
most recent deep learning discoveries. This event brought great attention to their 
work. You can read all the details of the Hinton team’s revolutionary achievement 
with neural network layers from this Geoffrey Hinton interview: http://blog.
kaggle.com/2012/11/01/deep-learning-how-i-did-it-merck-1st- 
place-interview/.

https://www.utoronto.ca/news/artificial-intelligence-u-t
http://blog.kaggle.com/2012/11/01/deep-learning-how-i-did-it-merck-1st-place-interview/
http://blog.kaggle.com/2012/11/01/deep-learning-how-i-did-it-merck-1st-place-interview/
http://blog.kaggle.com/2012/11/01/deep-learning-how-i-did-it-merck-1st-place-interview/
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Changing the activations
Geoffrey Hinton’s team (see preceding section) was able to add more layers to a 
neural architecture because of two solutions that prevented trouble with 
backpropagation:

 » They prevented the exploding gradients problem by using smarter network 
initialization. An exploding gradient differs from a vanishing gradient because it 
can make a network blow up as the exploding gradient becomes too large 
to handle.

Your network can explode unless you correctly initialize the network to 
prevent it from computing large weight numbers. Then you solve the problem 
of vanishing gradients by changing the network activations.

 » The team realized that passing a signal through various activation layers 
tended to damp the backpropagation signal until it becomes too faint to pass 
anymore after examining how a sigmoid activation worked. They used a new 
activation as the solution for this problem. The choice of which algorithm to 
use fell toward an old activation type of ReLU, which stands for rectified linear 
units (see Chapter 7 for more about RELU). An ReLU activation stopped the 
received signal if it was below zero assuring the non-linearity characteristic of 
neural networks and letting the signal pass as it was if above zero. (Using this 
type of activation is an example of combining old but still good technology 
with current technology.) Figure 9-2 shows how this process works.

FIGURE 9-2: 
How the ReLU 

activation 
function works 

receiving and 
releasing signals.
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The ReLU worked incredibly well and let the backpropagation signal arrive at the 
initial deep network layers. When the signal is positive, its derivative is 1. You can 
also find proof of the ReLU derivative in looking at Figure 9-2. Note that the rate 
of change is constant and equivalent to a unit when the input signal is positive 
(whereas when the signal is negative, the derivative is 0, thus preventing the sig-
nal from passing).

You can calculate the ReLU function using f(x)=max(0,x). The use of this algo-
rithm increased training speed a lot, allowing fast training of even deeper net-
works without incurring any dead neurons. A dead neuron is one that the network 
can’t activate because the signals are too faint.

Adding regularization by dropout
The other introduction to deep learning made by Hinton’s team (see preceding 
sections in this chapter) to complete the initial deep learning solution aimed at 
regularizing the network. A regularized network limits the network weights, which 
keeps the network from memorizing the input data and generalizing the wit-
nessed data patterns.

Previous discussions in this chapter note that certain neurons memorize specific 
information and force the other neurons to rely on this stronger neuron, causing 
the weak neurons give up learning anything useful themselves (a situation called 
co-adaptation). To prevent co-adaptation, the code temporary switches off the 
activation of a random portion of neurons in the network.

As you see from the left side of Figure 9-3, the weights normally operate by mul-
tiplying their inputs into outputs for the activations. To switch off activation, the 
code multiplies a mask made of a random mix of ones and zeros with the results. 
If the neuron is multiplied by one, the network passes its signal. When a neuron 
is multiplied by zero, the network stops its signal, forcing others neurons not to 
rely on it in the process.

Dropout works only during training and doesn’t touch any part of the weights. It 
simply masks and hides part of the network, forcing the unmasked part to take a 
more active role in learning data patterns. During prediction time, dropout doesn’t 
operate, and the weights are numerically rescaled to take into account the fact 
that they didn’t work all together during training.
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Finding Even Smarter Solutions
Deep learning influences AI’s effectiveness in solving problems in image recogni-
tion, machine translation, and speech recognition. These problems were initially 
tackled by classic AI and machine learning. In addition, deep learning presents 
new and advantageous solutions in the following areas:

 » Continuous learning using online learning

 » Reusable solutions using transfer learning

 » Simple straightforward solutions using end-to-end learning

The following sections help you understand what online learning, transfer learn-
ing, and end-to-end learning are all about.

Using online learning
Neural networks are more flexible than other machine learning algorithms, and 
they can continue to train as they work on producing predictions and classifica-
tions. This capability comes from optimization algorithms that allow neural net-
works to learn, which can work repeatedly on small samples of examples (called 
batch learning) or even on single examples (called online learning). Deep learning 
networks can build their knowledge step by step and remain receptive to new 
information that may arrive (like a baby’s mind, which is always open to new 
stimuli and to learning experiences).

FIGURE 9-3: 
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For instance, a deep learning application on a social media website can train on cat 
images. As people post photos of cats, the application recognizes them and tags 
them with an appropriate label. When people start posting photos of dogs on the 
social network, the neural network doesn’t need to restart training; it can con-
tinue by learning images of dogs as well. This capability is particularly useful for 
coping with the variability of Internet data. A deep learning network can be open 
to novelty and adapt its weights to deal with it.

Transferring learning
Flexibility is handy even when a network completes its training, but you must 
reuse it for purposes different from the initial learning. Networks that distinguish 
objects and correctly classify them require a long time and a lot of computational 
capacity to learn what to do. Extending a network’s capability to new kinds of 
images that weren’t part of the previous learning means transferring the knowl-
edge to this new problem (transfer learning).

For instance, you can transfer a network that’s capable of distinguishing between 
dogs and cats to perform a job that involves spotting dishes of macaroni and 
cheese. You use the majority of the layers of the network as they are (you freeze 
them) and then work on the final, output layers (fine-tuning). In a short time, and 
with fewer examples, the network will apply what it learned in distinguishing 
dogs and cats to macaroni and cheese. It will perform even better than a neural 
network trained only to recognize macaroni and cheese.

Transfer learning is something new to most machine learning algorithms and 
opens up a possible market for transferring knowledge from one application to 
another, from one company to another. Google is already doing that, actually 
sharing its immense data repository by making public the networks that it built on 
it (as detailed in this post: https://techcrunch.com/2017/06/16/object- 
detection-api/). This is a step in democratizing deep learning by allowing 
everyone to access its potentiality.

Learning end to end
Finally, deep learning allows end-to-end learning, which means that it solves 
problems in an easier and more straightforward way than previous deep learning 
solutions. This flexibility might result in a greater impact when solving problems.

You may want to solve a difficult problem, such as having the AI recognize known 
faces or drive a car. When using the classical AI approach, you had to split the 
problem into more manageable subproblems to achieve an acceptable result in a 

https://techcrunch.com/2017/06/16/object-detection-api/
https://techcrunch.com/2017/06/16/object-detection-api/
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feasible time. For instance, if you wanted to recognize faces in a photo, previous 
AI systems arranged the problem into parts, as follows:

1. Find the faces in the photo.

2. Crop the faces from the photo.

3. Process the cropped faces to have a pose similar to an ID card photo.

4. Feed the processed cropped faces as learning examples to a neural network 
for image recognition.

Today, you can feed the photo to a deep learning architecture, guide it to learn to 
find faces in the images, and then use the deep learning architecture to classify 
them. You can use the same approach for language translation, speech recogni-
tion, or even self-driving cars. In all cases, you simply pass the input to a deep 
learning system and obtain the wanted result.
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Chapter 10
Explaining Convolutional 
Neural Networks

When you look inside deep learning, you may be surprised to find a lot of 
old technology, but amazingly, everything works as it never has before 
because researchers finally know how to make some simple, older solu-

tions work together. As a result, big data can automatically filter, process, and 
transform data.

For instance, novel activations like Rectified Linear Units (ReLU), discussed in 
previous chapters, aren’t new, but you see them used in new ways. ReLU is a neu-
ral networks function that leaves positive values untouched and turns negative 
ones into zero; you can find a first reference to ReLU in a scientific paper by 
Hahnloser and others from 2000. Also, the image recognition capabilities that 
made deep learning so popular a few years ago aren’t new, either.

In recent years, deep learning achieved great momentum thanks to the ability to 
code certain properties into the architecture using Convolutional Neural Networks 
(CNNs), which are also called ConvNets. The French scientist Yann LeCun and 
other notable scientists devised the idea of CNNs at the end of the 1980s, and they 
fully developed their technology during the 1990s. But only now, about 25 years 
later, are such networks starting to deliver astonishing results, even achieving 
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better performance than humans do in particular recognition tasks. The change 
has come because it’s possible to configure such networks into complex architec-
tures that can refine their learning from lots of useful data.

CNNs have strongly fueled the recent deep learning renaissance. The following 
sections discuss how CNNs help in detecting image edges and shapes for tasks 
such as deciphering handwritten text, exactly locating a certain object in an image, 
or separating different parts of a complex image scene.

Save yourself the time and mistakes of typing this chapter’s example code by 
hand. You can find the downloadable source for this chapter in the DL4D_10_
LeNet5.ipynb file. (The Introduction tells you where to download the source code 
for this book.)

Beginning the CNN Tour with  
Character Recognition

CNNs aren’t a new idea. They appeared at the end of the 1980s as the solution for 
character recognition problems. Yann LeCun devised CNNs when he worked at 
AT&T Labs Research, together with other scientists such as Yoshua Bengio, Leon 
Bottou, and Patrick Haffner on a network named LeNet5. Before delving into the 
technology of these specialized neural networks, this chapter spends time under-
standing the problem of image recognition.

Digital images are everywhere today because of the pervasive presence of digital 
cameras, webcams, and mobile phones with cameras. Because capturing images 
has become so easy, a new, huge stream of data is provided by images. Being able 
to process images opens the doors to new applications in fields such as robotics, 
autonomous driving, medicine, security, and surveillance.

Understanding image basics
Processing an image for use by a computer transforms it into data. Computers 
send images to a monitor as a data stream composed of pixels, so computer images 
are best represented as a matrix of pixels values, with each position in the matrix 
corresponding to a point in the image.

Modern computer images represent colors using a series of 32 bits (8 bits apiece 
for red, blue, green, and transparency — the alpha channel). You can use just 24 
bits to create a true color image, however. The article at http://www.rit-mcsl.
org/fairchild/WhyIsColor/Questions/4-5.html explains this process in more 

http://www.rit-mcsl.org/fairchild/WhyIsColor/Questions/4-5.html
http://www.rit-mcsl.org/fairchild/WhyIsColor/Questions/4-5.html
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detail. Computer images represent color using three overlapping matrices, each 
one providing information relative to one of three colors: Red, Green, or Blue  
(also called RGB). Blending different amounts of these three colors enables you to 
represent any standard human-viewable color, but not those seen by people with 
extraordinary perception. (Most people can see a maximum of 1,000,000 colors, 
which is well within the color range of the 16,777,216 colors offered by 24-bit 
color. Tetrachromats can see 100,000,000 colors, so you couldn’t use a computer 
to analyze what they see. The article at http://nymag.com/scienceofus/2015/02/
what-like-see-a-hundred-million-colors.html tells you more about 
tetrachromats.)

Generally, an image is therefore manipulated by a computer as a three-dimensional 
matrix consisting of height, width, and the number of channels — which is three 
for an RGB image, but could be just one for a black-and-white image. (Grayscale is 
a special sort of RGB image for which each of the three channels is the same num-
ber; see https://introcomputing.org/image-6-grayscale.html for a discussion 
of how conversions between color and grayscale occurs.) With a grayscale image, a 
single matrix can suffice by having a single number represent the 256-grayscale 
colors, as demonstrated by the example in Figure 10-1. In that figure, each pixel of 
an image of a number is quantified by its matrix values.

Given the fact that images are pixels (represented as numeric inputs), neural net-
work practitioners initially achieved good results by connecting an image directly 
to a neural network. Each image pixel connected to an input node in the network. 
Then one or more following hidden layers completed the network, finally result-
ing in an output layer. The approach worked acceptably for small images and to 
solve small problems, giving way to different approaches for solving image recog-
nition. As an alternative, researchers used other machine learning algorithms or 

FIGURE 10-1: 
Each pixel is read 
by the computer 
as a number in a 

matrix.

http://nymag.com/scienceofus/2015/02/what-like-see-a-hundred-million-colors.html
http://nymag.com/scienceofus/2015/02/what-like-see-a-hundred-million-colors.html
https://introcomputing.org/image-6-grayscale.html
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applied intensive feature creation to transform an image into newly processed 
data that could help algorithms recognize the image better. An example of image 
feature creation is the Histograms of Oriented Gradients (HOG), which is a com-
putational way to detect patterns in an image and turn them into a numeric 
matrix. (You can explore how HOG works by viewing this tutorial from the Skim-
age package: http://scikit-image.org/docs/dev/auto_examples/features_ 
detection/plot_hog.html.)

Neural network practitioners found image feature creation to be computationally 
intensive and often impractical. Connecting image pixels to neurons was difficult 
because it required computing an incredibly large number of parameters and the 
network couldn’t achieve translation invariance, which is the capability to deci-
pher a represented object under different conditions of size, distortion, or position 
in the image, as shown in Figure 10-2.

A neural network, which is made of dense layers as described in the previous 
chapters, can detect only images that are similar to those used for training — 
those that it has seen before — because it learns by spotting patterns at certain 
image locations. Also, a neural network can make many mistakes. Transforming 
an image before feeding it to the neural network can partially solve the problem 
by resizing, moving, cleaning the pixels, and creating special chunks of informa-
tion for better network processing. This technique, called feature creation, 
requires expertise on the necessary image transformations, as well as many 

FIGURE 10-2: 
Only by transla-
tion invariance, 

an algorithm can 
spot the dog and 

its variations.

http://scikit-image.org/docs/dev/auto_examples/features_detection/plot_hog.html
http://scikit-image.org/docs/dev/auto_examples/features_detection/plot_hog.html
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computations in terms of data analysis. Because of the intense level of custom 
work required, image recognition tasks are more the work of an artisan than a 
scientist. However, the amount of custom work has decreased over time as the 
base of libraries automating certain tasks has increased.

Explaining How Convolutions Work
Convolutions easily solve the problem of translation invariance because they offer 
a different image-processing approach inside the neural network. The idea started 
from a biological point of view by observing what happens in the human visual 
cortex.

A 1962 experiment by Nobel Prize winners David Hunter Hubel and Torsten Wiesel 
demonstrated that only certain neurons activate in the brain when the eye sees 
certain patterns, such as horizontal, vertical, or diagonal edges. In addition, the 
two scientists found that the neurons organize vertically, in a hierarchy, suggest-
ing that visual perception relies on the organized contribution of many single, 
specialized neurons. (You can find out more about this experiment by reading the 
article at https://knowingneurons.com/2014/10/29/hubel-and-wiesel-the- 
neural-basis-of-visual-perception/.) Convolutions simply take this idea and, 
by using mathematics, apply it to image processing in order to enhance the capa-
bilities of a neural network to recognize different images accurately.

Understanding convolutions
To understand how convolutions work, you start from the input. The input is an 
image composed of one or more pixel layers, called channels, and the image uses 
values from 0, which means that the individual pixel is fully switched off, to 255, 
which means that the individual pixel is switched on. (Usually, the values are 
stored as integers to save memory.) As mentioned in the preceding section of this 
chapter, RGB images have individual channels for red, green, and blue colors. 
Mixing these channels generates the palette of colors as you see them on the 
screen.

A convolution works by operating on small image chunks across all image chan-
nels simultaneously. (Picture a slice of layer cake, with, each piece showing all the 
layers). Image chunks are simply a moving image window: The convolution win-
dow can be a square or a rectangle, and it starts from the upper left of the image 
and moves from left to right and from top to bottom. The complete tour of the 
window over the image is called a filter and implies a complete transformation of 
the image. Also important to note is that when a new chunk is framed by the 

https://knowingneurons.com/2014/10/29/hubel-and-wiesel-the-neural-basis-of-visual-perception/
https://knowingneurons.com/2014/10/29/hubel-and-wiesel-the-neural-basis-of-visual-perception/
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window, the window then shifts a certain number of pixels; the amount of the 
slide is called a stride. A stride of 1 means that the window is moving one pixel 
toward right or bottom; a stride of 2 implies a movement of two pixels; and so on.

Every time the convolution window moves to a new position, a filtering process 
occurs to create part of the filter described in the previous paragraph. In this pro-
cess, the values in the convolution window are multiplied by the values in the 
kernel (a small matrix used for blurring, sharpening, embossing, edge detection, 
and more — you choose the kernel you need for the task in question). (The article 
at http://setosa.io/ev/image-kernels/ tells you more about various kernel 
types.) The kernel is the same size as the convolution window. Multiplying each 
part of the image with the kernel creates a new value for each pixel, which in a 
sense is a new processed feature of the image. The convolution outputs the pixel 
value and when the sliding window has completed its tour across the image, you 
have filtered the image. As a result of the convolution, you find a new image having 
the following characteristics:

 » If you use a single filtering process, the result is a transformed image of a 
single channel.

 » If you use multiple kernels, the new image has as many channels as the 
number of filters, each one containing specially processed new feature values. 
The number of filters is the filter depth of a convolution.

 » If you use a stride of 1, you get an image of the same dimensions as the 
original.

 » If you use strides of a size above 1, the resulting convoluted image is smaller 
than the original (a stride of size two implies halving the image size).

 » The resulting image may be smaller depending on the kernel size, because the 
kernel has to start and finish its tour on the image borders. When processing 
the image, a kernel will eat up its size minus one. For instance, a kernel of 3 x 
3 pixels processing a 7-x-7-pixel image will eat up 2 pixels from the height and 
width of the image, and the result of the convolution will be an output of size 
5 x 5 pixels. You have the option to pad the image with zeros at the border 
(meaning, in essence, to put a black border on the image) so that the convolu-
tion process won’t reduce the final output size. This strategy is called same 
padding. If you just let the kernel reduce the size of your starting image, it’s 
called valid padding.

Image processing has relied on the convolution process for a long time. Convolu-
tion filters can detect an edge or enhance certain characteristics of an image.  
Figure 10-3 provides an example of some convolutions transforming an image.

http://setosa.io/ev/image-kernels/
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The problem with using convolutions is that they are human made and require 
effort to figure out. When using a neural network convolution instead, you just set 
the following:

 » The number of filters (the number of kernels operating on an image that is its 
output channels)

 » The kernel size (set just one side for a square; set width and height for a 
rectangle)

 » The strides (usually 1- or 2-pixel steps)

 » Whether you want the image black bordered (choose valid padding or same 
padding)

After determining the image-processing parameters, the optimization process 
determines the kernel values used to process the image in a way to allow the best 
classification of the final output layer. Each kernel matrix element is therefore a 
neural network neuron and modified during training using backpropagation for 
the best performance of the network itself.

Another interesting aspect of this process is that each kernel specializes in finding 
specific aspects of an image. For example, a kernel specialized in filtering features 
typical of cats can find a cat no matter where it is in an image and, if you use 
enough kernels, every possible variant of an image of a kind (resized, rotated, 
translated) is detected, rendering your neural network an efficient tool for image 
classification and recognition.

FIGURE 10-3: 
A convolution 

processes a 
chunk of an 

image by matrix 
multiplication.
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borders of an image are easily detected after a 3-x-3-pixel kernel is applied. This 
kernel specializes in finding edges, but another kernel could spot different image 
features. By changing the values in the kernel, as the neural network does during 
backpropagation, the network finds the best way to process images for its regres-
sion or classification purpose.

The kernel is a matrix whose values are defined by the neural network optimiza-
tion, multiplied by a small patch of the same size moving across the image, but it 
can be intended as a neural layer whose weights are shared across the different 
input neurons. You can see the patch as an immobile neural layer connected to the 
many parts of the image always using the same set of weights. It is exactly the 
same result.

Keras offers a convolutional layer, Conv2D, out of the box. This Keras layer can 
take both the input directly from the image (in a tuple, you have to set the input_
shape the width, height, and number of channels of your image) or from another 
layer (such as another convolution). You can also set filters, kernel_size, 
strides, and padding, which are the basic parameters for any convolutional lay-
ers, as described earlier in the chapter.

When setting a Conv2D layer, you may also set many other parameters, which are 
actually a bit too technical and maybe not necessary for your first experiments 
with CNNs. The only other parameters you may find useful now are activation, 
which can add an activation of your choice, and name, which sets a name for the 
layer.

FIGURE 10-4: 
The borders of an 

image are 
detected after 

applying a 
3-x-3-pixel kernel.
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Simplifying the use of pooling
Convolutional layers transform the original image using various kinds of filtering. 
Each layer finds specific patterns in the image (particular sets of shapes and col-
ors that make the image recognizable). As this process continues, the complexity 
of the neural network grows because the number of parameters grows as the net-
work gains more filters. To keep the complexity manageable, you need to speed 
the filtering and reduce the number of operations.

Pooling layers can simplify the output received from convolutional layers, thus 
reducing the number of successive operations performed and using fewer convo-
lutional operations to perform filtering. Working in a fashion similar to convolu-
tions (using a window size for the filter and a stride to slide it), pooling layers 
operate on patches of the input they receive and reduce a patch to a single num-
ber, thus effectively downsizing the data flowing through the neural network.

Figure 10-5 represents the operations done by a pooling layer, receiving as input the 
filtered data represented by the left 4-x-4 matrix: operating on it using a window 
of size 2 pixels and moving by a stride of 2 pixels. As a result, the pooling layer pro-
duces the right output: a 2-x-2 matrix. The network applies the pooling operation 
on four patches represented by four different colored parts of the matrix. For each 
patch, the pooling layer computes the maximum value and saves it as an output.

The current example relies on the max pooling layer because it uses the max 
transformation on its sliding window. You actually have access to four principal 
types of pooling layers:

 » Max pooling

 » Average pooling

FIGURE 10-5: 
A max pooling 

layer operating 
on chunks of a 

reduced image.
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 » Global max pooling

 » Global average pooling

In addition, these four pooling layer types have different versions, depending on 
the dimensionality of the input they can process:

 » 1-D pooling: Works on vectors. Thus, 1-D pooling is ideal for sequence data 
such as temporal data (data representing events following each other in time) 
or text (represented as sequences of letters or words). It takes the maximum 
or the average of contiguous parts of the sequence.

 » 2-D pooling: Fits spatial data that fits a matrix. You can use 2-D pooling for a 
grayscale image or each channel of an RBG image separately. It takes the 
maximum or the average of small patches (squares) of the data.

 » 3-D pooling: Fits spatial data represented as spatial-temporal data. You could 
use 3-D pooling for images taken across time. A typical example is to use 
magnetic resonance imagining (MRI) for a medical examination. Radiologists 
use an MRI to examine body tissues with magnetic fields and radio waves. 
(See the article from Stanford AI for healthcare to learn more about the 
contribution of deep learning: https://medium.com/stanford-ai-for- 
healthcare/dont-just-scan-this-deep-learning-techniques-for- 
mri-52610e9b7a85.) This kind of pooling takes the maximum or the average 
of small chunks (cubes) from the data.

You can find all these layers described in the Keras documentation, together with 
all their parameters, at https://keras.io/layers/pooling/.

Describing the LeNet architecture
You may have been amazed by the description of a CNN in the preceding section, 
and about how its layers (convolutions and max pooling) work, but you may be 
even more amazed at discovering that it’s not a new technology; instead, it 
appeared in the 1990s. The following sections describe the LeNet architecture in 
more detail.

Considering the underlying functionality
The key person behind this innovation was Yann LeCun, who was working at 
AT&T Labs Research as head of the Image Processing Research Department. LeCun 
specialized in optical character recognition and computer vision. Yann LeCun is a 

https://medium.com/stanford-ai-for-healthcare/dont-just-scan-this-deep-learning-techniques-for-mri-52610e9b7a85
https://medium.com/stanford-ai-for-healthcare/dont-just-scan-this-deep-learning-techniques-for-mri-52610e9b7a85
https://medium.com/stanford-ai-for-healthcare/dont-just-scan-this-deep-learning-techniques-for-mri-52610e9b7a85
https://keras.io/layers/pooling/
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French computer scientist who created convolutional neural networks with Léon 
Bottou, Yoshua Bengio, and Patrick Haffner. At present, he is the Chief AI Scientist 
at Facebook AI Research (FAIR) and a Silver Professor at New  York University 
(mainly affiliated with the NYU Center for Data Science). His personal home page 
is at http://yann.lecun.com/.

In the late 1990s, AT&T implemented LeCun’s LeNet5 to read ZIP codes for the 
United States Postal Service. The company also used LeNet5 for ATM check read-
ers, which can automatically read the check amount. The system doesn’t fail,  
as reported by LeCunn at https://pafnuty.wordpress.com/2009/06/13/ 
yann-lecun/. However, the success of the LeNet passed almost unnoticed at the 
time because the AI sector was undergoing an AI winter: both the public and inves-
tors were significantly less interested and attentive to improvements in neural 
technology than they are now.

Part of the reason for an AI winter is that many researchers and investors lost 
their faith in the idea that neural networks would revolutionize AI. Data of the 
time lacked the complexity for such a network to perform well. (ATMs and the 
USPS were notable exceptions because of the quantities of data they handled.) 
With a lack of data, convolutions only marginally outperform regular neural net-
works made of connected layers. In addition, many researchers achieved results 
comparable to LeNet5 using brand-new machine learning algorithms such as 
Support Vector Machines (SVMs) and Random Forests, which were algorithms 
based on mathematical principles different from those used for neural networks.

You can see the network in action at http://yann.lecun.com/exdb/lenet/ or  
in this video, in which a younger LeCun demonstrates an earlier version of the 
network: https://www.youtube.com/watch?v=FwFduRA_L6Q. At that time, hav-
ing a machine able to decipher both typewritten and handwritten numbers was 
quite a feat.

As shown in Figure  10-6, the LeNet5 architecture consists of two sequences of 
convolutional and average pooling layers that perform image processing. The last 
layer of the sequence is then flattened; that is, each neuron in the resulting series 
of convoluted 2-D arrays is copied into a single line of neurons. At this point, two 
fully connected layers and a softmax classifier complete the network and provide 
the output in terms of probability. The LeNet5 network is really the basis of all the 
CNNs that follow. Recreating the architecture using Keras will explain it layer-by- 
layer and demonstrate how to build your own convolutional networks.

http://yann.lecun.com/
https://pafnuty.wordpress.com/2009/06/13/yann-lecun/
https://pafnuty.wordpress.com/2009/06/13/yann-lecun/
http://yann.lecun.com/exdb/lenet/
https://www.youtube.com/watch?v=FwFduRA_L6Q
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Building your own LeNet5 network
This network will be trained on a relevant amount of data (the digits dataset pro-
vided by Keras, consisting of more than 60,000 examples). You could therefore 
have an advantage if you run it on Colab, as explained in Chapter 3, or on your 
local machine if you have a GPU available. After opening a new notebook, you start 
by importing the necessary packages and functions from Keras using the follow-
ing code:

import keras
import numpy as np
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Conv2D, AveragePooling2D
from keras.layers import Dense, Flatten
from keras.losses import categorical_crossentropy

After importing the necessary tools, you need to collect the data:

(X_train, y_train), (X_test, y_test) = mnist.load_data()

The first time you execute this command, the mnist command will download  
all the data from the Internet, which could take a while. The downloaded data 
consists of single-channel 28-x-28-pixel images representing handwritten 
numbers from zero to nine. As a first step, you need to convert the response vari-
able (y_train for the training phase and y_test for the test after the model is 
completed) into something that the neural network can understand and work on:

num_classes = len(np.unique(y_train))
print(y_train[0], end=' => ')
y_train = keras.utils.to_categorical(y_train, 10)
y_test = keras.utils.to_categorical(y_test, 10)
print(y_train[0])

FIGURE 10-6: 
The architecture 

of LeNet5, a 
neural network 
for handwritten 

digits recognition.
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This code snippet translates the response from numbers to vectors of numbers, 
where the value at the position corresponding to the number the network will 
guess is 1 and the others are 0. The code will also output the transformation for 
the first image example in the train set:

5 => [0. 0. 0. 0. 0. 1. 0. 0. 0. 0.]

Notice that the output is 0 based and that the 1 appears at the position corre-
sponding to the number 5. This setting is used because the neural network needs 
a response layer, which is a set of neurons (hence the vector) that should become 
activated if the provided answer is correct. In this case, you see ten neurons, and 
in the training phase, the code activates the correct answer (the value at the cor-
rect position is set to 1) and turns the others off (their values are 0). In the test 
phase, the neural network uses its database of examples to turn the correct neu-
ron on, or at least turn on more than the correct one. In the following code, the 
code prepares the training and test data:

X_train = X_train.astype(np.float32) / 255
X_test = X_test.astype(np.float32) / 255
img_rows, img_cols = X_train.shape[1:]
X_train = X_train.reshape(len(X_train),
                          img_rows, img_cols, 1)
X_test = X_test.reshape(len(X_test),
                        img_rows, img_cols, 1)
input_shape = (img_rows, img_cols, 1)

The pixel numbers, which range from 0 to 255, are transformed into a decimal 
value ranging from 0 to 1. The first two lines of code optimize the network to work 
properly with large numbers that could cause problems. The lines that follow 
reshape the images to have height, width, and channels.

The following line of code defines the LeNet5 architecture. You start by calling the 
sequential function that provides an empty model:

lenet = Sequential()

The first layer added is a convolutional layer, named “”:

lenet.add(Conv2D(6, kernel_size=(5, 5), activation='tanh',
      input_shape=input_shape, padding='same', name='C1'))

The convolution operates with a filter size of 6 (meaning that it will create six new 
channels made by convolutions) and a kernel size of 5 x 5 pixels.
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The activation for all the layers of the network but the last one is tanh (Hyperbolic 
Tangent function), a nonlinear function that was the state of the art for activation 
at the time Yann LeCun created LetNet5. The function is outdated today, but the 
example uses it in order to build a network that resembles the original LetNet5 
architecture. To use such a network for your own projects, you should replace it 
with a modern ReLU (see https://www.kaggle.com/dansbecker/rectified- 
linear-units-relu-in-deep-learning for details). The example adds a pooling 
layer, named S2, which uses a 2-x-2-pixel kernel:

lenet.add(AveragePooling2D(pool_size=(2, 2), strides=(1, 1), 
padding='valid'))

At this point, the code proceeds with the sequence, always performed with a con-
volution and a pooling layer but this time using more filters:

lenet.add(Conv2D(16, kernel_size=(5, 5), strides=(1, 1),
                 activation='tanh', padding='valid'))
lenet.add(AveragePooling2D(pool_size=(2, 2), strides=(1, 1), 

padding='valid'))

The LeNet5 closes incrementally using a convolution with 120 filters. This convo-
lution doesn’t have a pooling layer but rather a flattening layer, which projects the 
neurons into the last convolution layer as a dense layer:

lenet.add(Conv2D(120, kernel_size=(5, 5), activation='tanh', 
name='C5'))

lenet.add(Flatten())

The closing of the network is a sequence of two dense layers that process the con-
volution’s outputs using the tanh and softmax activation. These two layers pro-
vide the final output layers where the neurons activate an output to signal the 
predicted answer. The softmax layer is actually the output layer as specified by 
name='OUTPUT':

lenet.add(Dense(84, activation='tanh', name='FC6'))
lenet.add(Dense(10, activation='softmax', name='OUTPUT'))

When the network is ready, you need Keras to compile it. (Behind all the Python 
code is some C language code.) Keras compiles it based on the SGD optimizer:

lenet.compile(loss=categorical_crossentropy, optimizer='SGD', 
metrics=['accuracy'])

lenet.summary()

https://www.kaggle.com/dansbecker/rectified-linear-units-relu-in-deep-learning
https://www.kaggle.com/dansbecker/rectified-linear-units-relu-in-deep-learning
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At this point, you can run the network and wait for it to process the images:

batch_size = 64
epochs = 50
history = lenet.fit(X_train, y_train,
                      batch_size=batch_size,
                      epochs=epochs,
                      validation_data=(X_test,
                                       y_test))

Completing the run takes 50 epochs, each epoch processing batches of 64 images 
at one time. (An epoch is the passing of the entire dataset through the neural 
 network one time, while a batch is a part of the dataset, which means breaking the 
dataset into 64 chunks in this case.) With each epoch (lasting about 8 seconds if 
you use Colab), you can monitor a progress bar telling you the time required to 
complete that epoch. You can also read the accuracy measures for both the train-
ing set (the optimistic estimate of the goodness of your model, see https://
towardsdatascience.com/measuring-model-goodness-part-1-a24ed4d62f71 
for details on what precisely goodness means) and the test set (the more realistic 
view). At the last epoch, you should read that a LeNet5 built in a few steps achieves 
an accuracy of 0.989, meaning that out every 100 handwritten numbers that it 
tries to recognize, the network should guess about 99 correctly.

Detecting Edges and Shapes from Images
Convolutions process images automatically and perform better than a densely 
connected layer because they learn image patterns at a local level and can retrace 
them in any other part of the image (a characteristic called translation invariance). 
On the other hand, traditional dense neural layers can determine the overall 
 characteristics of an image in a rigid way without the benefit of translation 
 invariance. It’s like the difference between learning a book by memorizing the 
text in meaningful chunks or memorizing it word by word. The student (the con-
volutions) who learned chunk by chunk can better abstract the book content and 
is ready to apply that knowledge to similar cases. The student (the dense layer) 
who learned it word by word struggles to extract something useful.

CNNs are not magic, nor are they a black box. You can understand them through 
image processing and leverage their functionality to extend their capabilities to 
new problems. This feature helps solve a series of computer vision problems that 
data scientists deemed too hard to crack using older strategies.

https://towardsdatascience.com/measuring-model-goodness-part-1-a24ed4d62f71
https://towardsdatascience.com/measuring-model-goodness-part-1-a24ed4d62f71
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Visualizing convolutions
A CNN uses different layers to perform specific tasks in a hierarchical way. Yann 
LeCun (see the “Beginning the CNN Tour with Character Recognition” section, 
early in this chapter) noticed how LeNet first processed edges and contours, and 
then motifs, and then categories, and finally objects. Recent studies further unveil 
how convolutions really work:

 » Initial layers: Discover the image edges

 » Middle layers: Detect complex shapes (created by edges)

 » Final layers: Uncover distinctive image features characteristic of the image 
type that you want the network to classify (for instance, the nose of a dog or 
the ears of a cat)

This hierarchy of patterns discovered by convolutions also explains why deep 
convolutional networks perform better than shallow ones: the more stacked con-
volutions there are, the better the network can learn more and more complex and 
useful patterns for successful image recognition. Figure 10-7 provides an idea of 
how things work. The image of a dog is processed by convolutions, and the first 
layer grasps patterns. The second layer accepts these patterns and assembles 
them into a cat. If the patterns processed by the first layer seem too general to be 
of any use, the patterns unveiled by the second layer recreate more characteristic 
dog features that provide an advantage to the neural network in recognizing dogs.

FIGURE 10-7: 
Processing a dog 

image using 
convolutions.
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The difficulty in determining how a convolution works is in understanding how 
the kernel (matrix of numbers) creates the convolutions and how they work on 
image patches. When you have many convolutions working one after the other, 
determining the result through direct analysis is difficult. However, a technique 
designed for understanding such networks builds images that activate the most 
convolutions. When an image strongly activates a certain layer, you have an idea 
of what that layer perceives the most.

Analyzing convolutions helps you understand how things work, both to avoid bias 
in prediction and to devise new ways to process images. For instance, you may 
discover that your CNN is distinguishing dogs from cats by activating on the back-
ground of the image because the images you used for the training represents dogs 
outdoors and cats indoors.

A 2017 paper called “Feature Visualization,” by Chris Olah, Alexander Mordvint-
sev, and Ludwig Schubert from the Google Research and Google Brain Team 
explains this process in detail (https://distill.pub/2017/feature- 
visualization/). You can even inspect the images yourself by clicking and point-
ing at the layers of GoogleLeNet, a CNN built by Google at https://distill.
pub/2017/feature-visualization/appendix/. The images from the Feature 
Visualization may remind you of deepdream images, if you had occasion to see 
some when they were a hit on the web (read the original deepdream paper and 
glance at some images at https://ai.googleblog.com/2015/06/inceptionism- 
going-deeper-into-neural.html). It’s the same technique, but instead of look-
ing for images that activate a layer the most, you pick a convolutional layer and let 
it transform an image.

You can also copy the style of works from a great artist of the past, such as Picasso 
or van Gogh, using a similar technique based on using convolutions to transform 
an existing image, a process called artistic style transfer. The resulting picture is 
modern, but the style isn’t. You can get some interesting examples of artistic  
style transfer from the original paper, “A Neural Algorithm of Artistic Style,”  
by Leon Gatys, Alexander Ecker, and Matthias Bethge: https://arxiv.org/
pdf/1508.06576.pdf.

In Figure 10-8, the original image is transformed in style by applying the drawing 
and color characteristics found in the Japanese Ukiyo-e “The Great Wave off 
Kanagawa,” a woodblock print by the Japanese artist Katsushika Hokusai, who 
lived from 1760 to 1849.

https://distill.pub/2017/feature-visualization/
https://distill.pub/2017/feature-visualization/
https://distill.pub/2017/feature-visualization/appendix/
https://distill.pub/2017/feature-visualization/appendix/
https://ai.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
https://ai.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
https://arxiv.org/pdf/1508.06576.pdf
https://arxiv.org/pdf/1508.06576.pdf


196      PART 2  Considering Deep Learning Basics

Unveiling successful architectures
In recent years, data scientists have achieved great progress thanks to deeper 
investigation of how CNNs work. Other methods have also added to the progress 
in how CNNs work. Image competitions have played a major role by challenging 
researchers to improve their networks, which has made large quantities of images 
available.

The architecture update process started during the last AI winter. Fei-Fei Li, a 
computer science professor at the University of Illinois at Urbana Champaign (and 
now chief scientist at Google Cloud as well as professor at Stanford) decided to 
provide more real-world datasets to better test algorithms for neural networks. 
She started amassing an incredible number of images representing a large num-
ber of object classes. She and her team performed such a huge task by using Ama-
zon’s Mechanical Turk, a service that you use to ask people to do microtasks for 
you (such as classifying an image) for a small fee.

The resulting dataset, completed in 2009, was called ImageNet and initially con-
tained 3.2 million labeled images (it now contains more than 10 million images) 
arranged into 5,247 hierarchically organized categories. If interested, you can 
explore the dataset at http://www.image-net.org/ or read the original paper at 
http://www.image-net.org/papers/imagenet_cvpr09.pdf.

ImageNet soon appeared at a 2010 competition in which neural networks, using 
convolutions (hence the revival and further development of the technology devel-
oped by Yann LeCun in the 1990s), proved their capability in correctly classifying 
images arranged into 1,000 classes. In seven years of competition (the challenge 
closed in 2017), the winning algorithms improved the accuracy of predicting 
images from 71.8 percent to 97.3 percent, which surpasses human capabilities 
(humans make mistakes in classifying objects). Here are some notable CNN archi-
tectures that were devised for the competition:

FIGURE 10-8: 
The content of an 

image is 
transformed by 

style transfer.

http://www.image-net.org/
http://www.image-net.org/papers/imagenet_cvpr09.pdf
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 » AlexNet (2012): Created by Alex Krizhevsky from the University of Toronto. It 
used CNNs with an 11-x-11-pixel filter, won the competition, and introduced 
the use of GPUs for training neural networks, together with the ReLU activa-
tion to control overfitting.

 » VGGNet (2014): This appeared in two versions, 16 and 19. It was created by 
the Visual Geometry Group at Oxford University and defined a new 3-x-3 
standard in filter size for CNNs.

 » ResNet (2015): Created by Microsoft. This CNN not only extended the idea of 
different versions of the network (50, 101, 152) but also introduced skip layers, 
a way to connect deeper layers with shallower ones to prevent the vanishing 
gradient problem (see Chapters 8 and 9 for more about this problem) and 
allow much deeper networks that are more capable of recognizing patterns in 
images.

You can take advantage of all the innovations introduced by the ImageNet compe-
tition and even use each of the neural networks. This accessibility allows you to 
replicate the network performance seen in the competitions and successfully 
extend them to myriad other problems.

Discussing transfer learning
Networks that distinguish objects and correctly classify them require a lot of 
images, a long processing time, and vast computational capacity to learn what to 
do. Adapting a network’s capability to new image types that weren’t part of the 
initial training means transferring existing knowledge to the new problem. This 
process of adapting a network’s capability is called transfer learning, and the net-
work you are adapting is often referred to as a pretrained network. You can’t apply 
transfer learning to other machine learning algorithms; only deep learning has 
the capability of transferring what it learned on one problem to another.

Transfer learning is something new to most machine learning algorithms and 
opens a possible market for transferring knowledge from one application to 
another, and from one company to another. Google is already doing that; it is 
sharing its immense data repository by making public the networks it built on TF 
Hub (https://www.tensorflow.org/hub).

For instance, you can transfer a network that’s capable of distinguishing between 
dogs and cats to perform a job that involves spotting dishes of macaroni and 
cheese. From a technical point of view, you achieve this task in different ways, 
depending on how similar the new image problem is to the previous one and how 
many new images you have for training. (A small image dataset amounts to a few 
thousands of images, sometimes even less.)

https://www.tensorflow.org/hub


198      PART 2  Considering Deep Learning Basics

If your new image problem is similar to the old one, your network may know all 
the convolutions necessary (edge, shape, and high-level feature layers) to deci-
pher similar images and classify them. In this case, you don’t need to put too 
many images into training, add much computational power, or adapt your pre-
trained network too deeply. This type of transfer is the most common application 
of transfer learning, and you usually apply it by leveraging a network trained dur-
ing the ImageNet competition (because those networks were trained on so many 
images that you probably have all the convolutions needed to transfer the knowl-
edge to other tasks).

Say that the task you want to extend involves not only spotting dogs in images but 
also in determining the dog’s breed. You use the majority of the layers of an Ima-
geNet network such as VGG16 as they are, without further adjustment. In transfer 
learning, you freeze the values of the pretrained coefficients of the convolutions 
so that they are not affected by any further training and the network won’t overfit 
to the data you have, if it is too little.

With the new images, you then train the output layers set on the new problem (a 
process known as fine-tuning). In a short time and with just a few examples, the 
network will apply what it learned in distinguishing dogs and cats to breeds of 
dogs. It will perform even better than a neural network trained only to recognize 
breeds of dogs because in fine-tuning, it is leveraging what the network has 
learned before from millions of images.

A neural network will identify only objects that it has been trained to identify. 
Consequently, if you train a CNN to recognize major breeds of dogs such as a Lab-
rador Retriever or a Husky, the CNN won’t recognize mixes of those two breeds, 
such as a Labsky. Instead, the CNN will output the closest match based on the 
internal weights it develops during training.

If the task you have to transfer to the existing neural network is different from the 
task it was trained to do, which is spotting dishes of macaroni and cheese starting 
from a network used to identify dogs and cats, you have some options:

 » If you have little data, you can freeze the first and middle layers of the 
pretrained network and discard the final layers because they contain high-
level features that probably aren’t useful for your problem. Instead of the final 
convolutions, you then add a response layer suitable to your problem. The 
fine-tuning will work out the best coefficients for the response layer, given the 
pretrained convolutional layers available.
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 » If you have lots of data, you add the suitable response layer to the pretrained 
network, but you don’t freeze the convolutional layers. You use the pretrained 
weights as a starting point and let the network fit your problem in the best 
way because you can train on lots of data.

The Keras package offers a few pretrained models that you can use for transfer 
learning. You can read about all the available models and their architectures at 
https://keras.io/applications/. The model descriptions also talk about some 
of the award winning networks mentioned earlier in the chapter: VGG16, VGG19, 
and ResNet50. Chapter 12 demonstrates how to use these networks in practice and 
how to transfer the coefficients learned from the ImageNet competition to other 
problems.

https://keras.io/applications/
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Chapter 11
Introducing Recurrent 
Neural Networks

This chapter explores how deep learning can deal with information that 
flows. Reality is not simply changeable, but is changeable in a progressive 
way that is made predictable by observing the past. If a picture is a static 

snapshot of a moment in time, a video, consisting of a sequence of related images, 
is flowing information, and a film can tell you much more than a single photo or 
a series of photos can. Likewise for short and long textual data (from tweets to 
entire documents or books) and for all numeric series that represent something 
occurring along a timeline (for instance, a series the about sales of a product or 
the quality of the air by day in a city).

This chapter explains a series of new layers, the recurrent networks, and all their 
improvements, such as the LSTM and GRU layers. These technologies are behind 
the most astonishing deep learning applications that you can experiment with 
today. You commonly see them used on your mobile phone or at home. For exam-
ple, you use this kind of application when chatting with smart speakers such as 
Siri, Google Home, or Alexa. Another application is translating your conversation 
into another language using Google Translate.

IN THIS CHAPTER

 » Understanding the importance of 
learning data in sequence

 » Creating image captions and 
translating languages using deep 
learning

 » Discovering the long short-term 
memory (LSTM) technology

 » Knowing about possible alternatives 
to LSTM
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Behind each of these technologies are a distinctive neural architecture and  
application-specific data used for training — some public and some proprietary. 
Even with these differences in data source and technique, the layers that make 
everything possible are precisely the same layers that you import from Tensor-
Flow and Keras (Chapter 4 tells you about these two deep learning frameworks) 
and use when coding your applications.

Introducing Recurrent Networks
Neural networks provide a transformation of your input into a desired output. 
Even in deep learning, the process is the same, although the transformation is 
more complex. In contrast to a simpler neural network made up of few layers, 
deep learning relies on more layers to perform complex transformations. The out-
put from a data source connects to the input layer of the neural network, and the 
input layer starts processing the data. The hidden layers map the patterns and 
relate them to a specific output, which could be a value or a probability. This pro-
cess works perfectly for any kind of input, and it works especially well for images, 
as described in Chapter 10.

After each layer processes its data, it outputs the transformed data to the next 
layer. That next layer processes the data with complete independence from the 
previous layers. The use of this strategy implies that if you are feeding a video to 
your neural network, the network will process each image singularly, one after the 
other, and the result won’t change at all even if you shuffled the order of the pro-
vided images. When running a network in such a fashion, using the architectures 
described in previous chapters of this book, you won’t get any advantage from the 
order of the information processing.

However, experience also teaches that to understand a process, you sometimes 
have to observe events in sequence. When you use the experience gained from a 
previous step to explore a new step, you can reduce the learning curve and lessen 
the time and effort needed to understand each step.

Modeling sequences using memory
The kind of neural architectures seen so far don’t allow you to process a sequence 
of elements simultaneously using a single input. For instance, when you have a 
series of monthly product sales, you accommodate the sales figures using twelve 
inputs, one for each month, and let the neural network analyze them at one time. 
It follows that when you have longer sequences, you need to accommodate them 
using a larger number of inputs, and your network becomes quite huge because 
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each input should connect with every other input. You end up having a network 
characterized by a large number of connections (which translates into many 
weights), too.

Recurrent Neural Networks (RNNs) are an alternative to the solutions found in 
previous chapters, such as the perceptron in Chapter 7 and CNNs in Chapter 10. 
They first appeared in the 1980s, and various researchers have worked to improve 
them until they recently gained popularity thanks to the developments in deep 
learning and computational power. The idea behind RNNs is simple, they examine 
each element of the sequence once and retain memory of it so they can reuse it 
when examining the next element in the sequence. It’s akin to how the human 
mind works when reading text: a person reads letter by letter the text but under-
stands words by remembering each letter in the word. In a similar fashion, an RNN  
can associate a word to a result by remembering the sequence of letters it receives. 
An extension of this technique makes it possible ask an RNN to determine whether 
a phrase is positive or negative—a widely used analysis called sentiment analysis. 
The network connects a positive or negative answer to certain word sequences it 
has seen in training examples.

You represent an RNN graphically as a neural unit (also known as a cell) that con-
nects an input to an output but also connects to itself, as shown in Figure 11-1. 
This self-connection represents the concept of recursion, which is a function 
applied to itself until it achieves a particular output. One of the most commonly 
used examples of recursion is computing a factorial, as described at https://www.
geeksforgeeks.org/recursion/. The figure shows a specific RNN example using 
a letter sequence to make the word jazz. The right side of the figure depicts a rep-
resentation of the RNN unit behavior receiving jazz as an input, but there is actu-
ally only the one unit, as shown on the left.

Figure 11-1 shows a recursive cell on the left and expands it as an unfolded series 
of units that receives the single letters of the word jazz on the right. It starts with 
j, followed by the other letters. As this process occurs, the RNN emits an output 
and modifies its internal parameters. By modifying its internal parameters, the 
unit learns from the data it receives and from the memory of the previous data. 
The sum of this learning is the state of the RNN cell.

FIGURE 11-1: 
A folded and 

unfolded RNN cell 
processing a 

sequence input.

https://www.geeksforgeeks.org/recursion/
https://www.geeksforgeeks.org/recursion/


204      PART 2  Considering Deep Learning Basics

When discussing neural networks in previous chapters, this book talks solely 
about weights. With RNNs, you also need to know the term state. The weights help 
process the input into an output in an RNN, but the state contains the traces of the 
information the RNN has seen so far, so the state affects the functioning of the 
RNN. The state is a kind of short-term memory that resets after a sequence com-
pletes. As an RNN cell gets pieces of a sequence, it does the following:

1. Processes them, changing the state with each input.

2. Emits an output.

3. After seeing the last output, the RNN learns the best weights for mapping the 
input into the correct output using backpropagation.

Recognizing and translating speech
The capability to recognize and translate between languages becomes more impor-
tant each day as economies everywhere become increasingly globalized. Language 
translation is an area in which AI has a definite advantage over humans  — so 
much so that articles like https://www.digitalistmag.com/digital-economy/ 
2018/07/06/artificial-intelligence-is-changing-translation-industry- 
but-will-it-work-06178661 and https://www.forbes.com/sites/bernardmarr/ 
2018/08/24/will-machine-learning-ai-make-human-translators-an- 
endangered-species/#535ec9703902 are beginning to question how long the 
human translator will remain viable.

Of course, you must make the translation process viable using deep learning. 
From a neural architecture perspective, you have a couple of choices:

 » Keep all the outputs provided by the RNN cell

 » Keep the last RNN cell output

The last output is the output of the entire RNN because it’s produced after com-
pleting the sequence examination. However, you can use the previous outputs if 
you need to predict another sequence or you intend to stack more RNN cells after 
the current one, such as when working with Convolutional Neural Networks 
(CNNs). Staking RNNs vertically enables the network to learn complex sequence 
patterns and become more effective in producing predictions.

You can also stack RNNs horizontally in the same layer. Allowing multiple RNNs 
to learn from a sequence can help it get more from the data. Using multiple RNNs 
is similar to CNNs, in which each single layer uses depths of convolutions to learn 
details and patterns from the image. In the multiple RNNs case, a layer can grasp 
different nuances of the sequence they are examining.

https://www.digitalistmag.com/digital-economy/2018/07/06/artificial-intelligence-is-changing-translation-industry-but-will-it-work-06178661
https://www.digitalistmag.com/digital-economy/2018/07/06/artificial-intelligence-is-changing-translation-industry-but-will-it-work-06178661
https://www.digitalistmag.com/digital-economy/2018/07/06/artificial-intelligence-is-changing-translation-industry-but-will-it-work-06178661
https://www.forbes.com/sites/bernardmarr/2018/08/24/will-machine-learning-ai-make-human-translators-an-endangered-species/#535ec9703902
https://www.forbes.com/sites/bernardmarr/2018/08/24/will-machine-learning-ai-make-human-translators-an-endangered-species/#535ec9703902
https://www.forbes.com/sites/bernardmarr/2018/08/24/will-machine-learning-ai-make-human-translators-an-endangered-species/#535ec9703902
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Designing grids of RNNs, both horizontally and vertically, improves predictive 
performances. However, deciding how to use the output determines what a deep 
learning architecture powered by RNNs can achieve. The key is the number of ele-
ments used as inputs and the sequence length expected as output. As the deep 
learning network synchronizes the RNN outputs, you get your desired outcome.

You have a few possibilities when using multiple RNNs, as depicted in 
Figure 11-2:

 » One to one: When you have one input and expect one output. The examples 
in this book so far use this approach. They take one case, made up of a certain 
number of informative variables, and provide an estimate, such as a number 
or probability.

 » One to many: Here you have one input and you expect a sequence of 
outputs as a result. Automatic captioning neural networks use this approach: 
You input a single image and produce a phrase describing image content.

 » Many to one: The classic example for RNNs. For example, you input a textual 
sequence and expect a single result as output. You see this approach used for 
producing a sentiment analysis estimate or another classification of the text.

 » Many to many: You provide a sequence as input and expect a resulting 
sequence as output. This is the core architecture for many of the most 
impressive deep learning–powered AI applications. This approach is used for 
machine translation (such as a network that can automatically translate a 
phrase from English to German), chatbots (a neural network that can answer 
your questions and argue with you), and sequence labeling (classifying each of 
the images in a video).

Machine translation is the capability of a machine to translate, correctly and mean-
ingfully, one human language into another one. This capability is something that 
scientists have striven to achieve for long time, especially for military purposes. 
You can read the fascinating story of all the attempts to perform machine 

FIGURE 11-2: 
Different RNNs 

input/output 
configurations.
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translation by U.S. and Russian scientists in the article at http://vas3k.com/
blog/machine_translation/ by Vasily Zubarev. The real breakthrough happened 
only after Google launched its Google Neural Machine Translation (GNMT), which 
you can read more about on the Google AI blog: https://ai.googleblog.
com/2016/09/a-neural-network-for-machine.html. GNMT relies on a series of 
RNNs (using the many-to-many paradigm) to read the word sequence in the lan-
guage you want to translate from (called the encoder layer) and return the results 
to another RNN layer (the decoder layer) that transforms it into translated output.

Neural machine translation needs two layers because the grammar and syntax of 
one language can be different from another. A single RNN can’t grasp two lan-
guage systems at the same time, so the encoder-decoder couple is needed to han-
dle the two languages. The system isn’t perfect, but it’s an incredible leap forward 
from the previous solutions described in Vasily Zubarev’s article, greatly reducing 
errors in word order, lexical mistakes (the chosen translation word), and gram-
mar (how words are used).

Moreover, performance depends on the training set, the differences between the 
languages involved, and their specific characteristics. For instance, because of 
how sentence structure is built in Japanese, the Japanese government is now 
investing in a real-time voice translator to help during the Tokyo Olympic  
Games in 2020 and to boost tourism by developing an advanced neural network 
solution (see https://www.japantimes.co.jp/news/2015/03/31/reference/ 
translation-tech-gets-olympic-push/ for details).

RNNs are the reason your voice assistant can answer you or your automatic trans-
lator can give you a foreign language translation. Because an RNN is simply a 
recurring operation of multiplication and summation, deep learning networks 
can’t really understand any meaning; they simply process words and phrases 
based on what they learned during training.

Placing the correct caption on pictures
Another possible application of RNNs using the many-to-many approach is cap-
tion generation, which involves providing an image to a neural network and receiv-
ing a text description that explains what’s happening in the image. In contrast to 
chatbots and machine translators, whose output is consumed by humans, caption 
generation works with robotics. It does more than simply generate image or video 
descriptions. Caption generation can help people with impaired vision perceive 
their environment using devices like the Horus wearable (https://horus.tech/
horus/?l=en_us) or build a bridge between images and knowledge bases (which 
are text based) for robots — allowing them to understand their surroundings bet-
ter. You start from specially devised datasets such as the Pascal Sentence Dataset 
(see it at http://vision.cs.uiuc.edu/pascal-sentences/); the Flickr 30K 

http://vas3k.com/blog/machine_translation/
http://vas3k.com/blog/machine_translation/
https://ai.googleblog.com/2016/09/a-neural-network-for-machine.html
https://ai.googleblog.com/2016/09/a-neural-network-for-machine.html
https://www.japantimes.co.jp/news/2015/03/31/reference/translation-tech-gets-olympic-push/
https://www.japantimes.co.jp/news/2015/03/31/reference/translation-tech-gets-olympic-push/
https://horus.tech/horus/?l=en_us
https://horus.tech/horus/?l=en_us
http://vision.cs.uiuc.edu/pascal-sentences/
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(http://shannon.cs.illinois.edu/DenotationGraph/), which consists of 
Flickr images annotated by crowd sourcing; or the MS Coco dataset (http://
cocodataset.org). In all these datasets, each image includes one or more phrases 
explaining the image content. For example, in the MS Coco dataset sample num-
ber 5947 (http://cocodataset.org/#explore?id=5947) you see four flying air-
planes that you could correctly caption as:

 » Four airplanes in the sky overhead on an overcast day

 » Four single-engine planes in the air on a cloudy day

 » A group of four planes flying in formation

 » A group of airplanes flying through the sky

 » A fleet of planes flying through the sky

A well-trained neural network should be able to produce analogous phrases, if 
presented with a similar photo. Google first published a paper on the solution for 
this problem, named the Show and Tell network or Neural Image Caption (NIC), in 
2014, and then updated it one year later (see the article at https://arxiv.org/
pdf/1411.4555.pdf).

Google has since open sourced the NIC and offered it as part of the TensorFlow 
framework. As a neural network, it consists of a pretrained CNN (such as Google 
LeNet, the 2014 winner of the ImageNet competition; see the “Describing the 
LeNet architecture” section of Chapter 10 for details) that processes images simi-
larly to transfer learning. An image is turned into a sequence of values represent-
ing the high-level image features detected by the CNN.  During training, the 
embedded image passes to a layer of RNNs that memorize the image characteris-
tics in their internal state. The CNN compares the results produced by the RNNs to 
all the possible descriptions provided for the training image and an error is com-
puted. The error then backpropagates to the RNN’s part of the network to adjust 
the RNN’s weights and help it learn how to caption images correctly. After repeat-
ing this process many times using different images, the network is ready to see 
new images and provide its description of these new images.

Explaining Long Short-Term Memory
The use of short-term memory in RNNs may seem to be able to solve every pos-
sible deep learning problem. However, RNNs don’t come entirely without flaws. 
The problem with RNNs arises from their key characteristic, which is the recur-
sion of the same information over time. The same information, passing many 

http://shannon.cs.illinois.edu/DenotationGraph/
http://cocodataset.org
http://cocodataset.org
http://cocodataset.org/#explore?id=5947
https://arxiv.org/pdf/1411.4555.pdf
https://arxiv.org/pdf/1411.4555.pdf
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times through the same cells, can become progressively dampened and then dis-
appear if the cell weights are too small. This is the so-called vanishing gradient 
problem, when a backpropagated error-correcting signal disappears when passed 
through a neural network. Because of the vanishing gradient problem, you can’t 
stack too many layers of RNNs or updating them becomes difficult.

RNNs experience problems that are even more difficult. In backpropagation, the 
gradient (a correction) deals with the error correction that the networks produce 
when predicting. The layers before the prediction distribute the gradient to the 
input layers, and they provide the correct weight update. Layers reached by a 
small gradient update effectively stop learning.

In fact, the internally backpropagated signals of RNNs tend to disappear after a 
few recursions, so the sequences that the neural network updates and learns bet-
ter are the most recent ones. The network forgets early signals and can’t relate 
previously seen signals to more recent input. An RNN, therefore, can easily become 
too shortsighted, and you can’t successfully apply it to problems that require a 
longer memory.

Backpropagation in an RNN layer operates both through the layer toward other 
layers and internally, inside each RNN cell, adjusting its memory. Unfortunately, 
no matter how strong the signal is, after a while the gradient dampens and 
vanishes.

Short memory and the vanishing gradient make it hard for RNNs to learn longer 
sequences. Applications like image captioning or machine translation need a keen 
memory on all the parts of the sequence. Consequently, most applications require 
an alternative, and basic RNNs have been replaced by different recurrent cells.

Defining memory differences
Two scientists studied the vanishing gradient problem in RNNs and published a 
milestone paper in 1997 that proposed a solution for RNNs. Sepp Hochreiter, a 
computer scientist who made many contributions to the fields of machine learning, 
deep learning, and bioinformatics, and Jürgen Schmidhuber, a pioneer in the field 
of artificial intelligence, published “Long Short-Term Memory” in the MIT Press 
Journal Neural Computation.(http://www.bioinf.at/publications/older/2604.
pdf). The article introduced a new recurrent cell concept that now serves as the 
foundation of all the incredible deep learning applications using sequences. Origi-
nally refused because it was too innovative (ahead of its time), the new cell concept 
proposed by the article, named LSTM (short for long short-term memory) is used 
today to perform more than 4 billion neural operations per day, according to 
Schmidhuber’s personal home page (http://people.idsia.ch/~juergen/). LTSM 
is considered the standard for machine translation and chatbots.

http://www.bioinf.at/publications/older/2604.pdf
http://www.bioinf.at/publications/older/2604.pdf
http://people.idsia.ch/~juergen/
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Google, Apple, Facebook, Microsoft, and Amazon have all developed products 
around the LSTM technology devised by Hochreiter and Schmidhuber. Products 
such as smart voice assistants and machine translators would work differently if 
LSTM were not invented.

The core idea behind LSTM is for the RNN to discriminate the state between short 
and long term. The state is the memory of the cell, and LSTM separates into dif-
ferent channels:

 » Short term: Input data directly mixes with data arriving from the sequence

 » Long term: Picks up from short-term memory only the elements that need to 
be retained for a long time

Moreover, the channel for long-term memory has fewer parameters to tune. 
Long-term memory uses some additions and multiplications with the elements 
arriving from the short-term memory and nothing more, making it an almost 
direct information highway. (The vanishing gradient can’t stop the flow of 
information.)

Walking through the LSTM architecture
LSTMs are arranged around gates, which are internal mechanisms that use sum-
mation, multiplication, and an activation function to regulate the flow of infor-
mation inside the LSTM cell. By regulating the flow, a gate can maintain, enhance, 
or discard the information that has arrived from a sequence in both short- and 
long-term memory. This flow is reminiscent of an electric circuit. Figure  11-3 
shows how an LSTM is structured internally.

FIGURE 11-3: 
The internal 

structure of an 
LSTM, with the 

two memory 
flows and gates.
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The different roots and gates may seem a bit complicated at first, but the follow-
ing sequence of steps helps you understand them:

1. The short-term memory arriving from a previous state (or from random 
values) meets the newly inputted part of the sequence and they mix together, 
creating a first derivation.

2. The short-term memory signal, carrying both the exiting signal and the newly 
inputted signal, tries to reach the long-term memory by passing through the 
forget gate, which is used to forget certain data. (Technically, you see branching 
where the signal is duplicated.)

3. The forget gate decides what short-term information it should discard before 
passing it to the long-term memory. A sigmoid activation cancels the signals 
that aren’t useful and enhances what instead seems important to keep and 
remember.

4. Information passing through the forget gate arrives at the long-term memory 
channel carrying the information from the previous states.

5. The values of the long-term memory and the output from the forget gate are 
multiplied together.

6. The short-term memory that didn’t pass through the forget gate is duplicated 
again and takes another branch; that is, one part proceeds to the output gate 
and the other one faces the input gate.

7. At the input gate, the short-term memory data passes separately through a 
sigmoid function and a tanh function. The outputs of these two functions are 
then first multiplied together, and then added to the long-term memory. The 
effect on long-term memory depends on the sigmoid, which acts in order to 
forget or remember if the signal is deemed important.

8. After the addition with the outputs from the input gate, the long-term memory 
doesn’t change. Being made of selected inputs from short-term memory, the 
long-term memory carries information longer in the sequence and doesn’t 
react to a temporal gap between.

9. Long-term memory provides information directly to the next state. It’s also 
sent to the output gate, where the short-term memory also converges. This 
last gate normalizes the data from long-term memory using tanh activation 
and filters the short-term memory using the sigmoid function. The two results 
are multiplied by one another and then sent to the next state.

LSTMs use both sigmoid and tanh activations for their gates. The principle to 
remember is that a tanh function normalizes its input between –1 and 1, and a 
sigmoid function reduces it between 0 and 1. Therefore, whereas a tanh activation 
function keeps the input between a workable range of values, a sigmoid can switch 



CHAPTER 11  Introducing Recurrent Neural Networks      211

the input off because it pushes weaker signals toward zero, extinguishing them. 
In other words, the sigmoid function helps remembering (enhancing the signal) 
and forgetting (dampening the signal).

Discovering interesting variants
LSTM has some variants, all called with additional numbers or letters in the name, 
such as LSTM4, LSTM4a, LSTM5, LSTM5a, and LSMT6, to show that they have a 
modified architecture although the core concepts of the solution remain. A popu-
lar and relevant modification that you find in these variants is the use of peephole 
connections, which are simply data pipelines that allow all or some of the gate lay-
ers to look at the long-term memory (in RNN terms, the cell’s state). By allowing 
peeping at long-term memory, the RNN can base decisions for the short term on 
previously seen patterns that were consolidated in the run. On Keras, you can find 
the regular LSTM implementation using the keras.layers.LSTM command 
(keras.layers.CuDNNLST is the GPU version), which suffices for most applica-
tions. If you need to test the peephole variants, you can explore the TensorFlow 
implementation (see https://www.tensorflow.org/api_docs/python/tf/nn/
rnn_cell/LSTMCell) that offers more options at the architecture level of the 
LSTM cell.

Another variant is more radical. The Gated Recurrent Units (also known as GRUs) 
first appeared in the paper called “Learning Phrase Representations using RNN 
Encoder-Decoder for Statistical Machine Translation” at https://arxiv.org/
pdf/1406.1078.pdf. GRUs act as a simplification of the LSTM architecture. In 
fact, they operate using information gates whose parameters are learnable in the 
same fashion as LSTM. Overall, the flow of information in a GRU cell takes a linear 
route because GRU uses only a working memory (equivalent to the long-term 
memory in LSTM terms). This working memory is refreshed by an update gate 
using the present information provided to the network. The updated information 
is then summed again with the original working memory in a gate combining the 
two, which is called a reset gate because it selects the working memory informa-
tion to effectively retain a memory of the data being released to the next sequence 
step. You can see a simple schema of the flow in Figure 11-4.

Contrary to the LSTM, GRUs use a reset gate that stops the information that should 
be forgotten. GRUs also use an update gate that maintains the useful signals. GRUs 
have a unique memory, with no distinction between a long and short one.

You can use both GRUs and LSTM layers in your networks without changing the 
code too much. Import the layer using keras.layers.GRU (or keras.layers.
CuDNNGRU for the GPU-only version that relies on the NVIDIA CuDNN library; see 

https://www.tensorflow.org/api_docs/python/tf/nn/rnn_cell/LSTMCell
https://www.tensorflow.org/api_docs/python/tf/nn/rnn_cell/LSTMCell
https://arxiv.org/pdf/1406.1078.pdf
https://arxiv.org/pdf/1406.1078.pdf
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https://developer.nvidia.com/cudnn for details) and interact with it as an 
LSTM layer. You specify the parameter units by defining the number of GRU units 
needed in one layer. Switching from LSTM to GRU provides these advantages as 
well as some trade-offs:

 » GRUs treat the signals as LSTMs do and potentially avoid the vanishing 
gradient problem, but they don’t distinguish between long and short memory 
because they rely on a single working memory — a cell state processed 
repeatedly through a GRU cell.

 » GRUs are less complex than LSTMs, but they are also less capable of remem-
bering past signals, thus LSTMs have an advantage when dealing with longer 
sequences.

 » GRUs train faster than LSTMs (they have fewer parameters to adjust).

 » GRUs perform better than LSTMs when you have less training data, because 
they are less likely to overfit the information they receive.

Getting the necessary attention
When reading about LSTM and GRU layers applied to language problems, fre-
quently you find the attention mechanism mentioned as the most effective way to 
solve complex problems, such as

 » Asking a neural network answer questions

 » Classifying phrases

 » Translating a text from one language into another

FIGURE 11-4: 
The internal 

structure of a 
GRU, with a single 

memory flow a 
two gates.

https://developer.nvidia.com/cudnn
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The attention mechanism is considered the state-of-the-art solution for solving 
these complex problems and, in spite of being absent from presently available 
layers in the TensorFlow and Keras packages, finding a working open source 
implementation of it or even programming one yourself isn’t difficult.

You can start to create your own attention mechanism by looking at the open 
source implementation developed by Philippe Rémy, a research engineer, at 
https://github.com/philipperemy/keras-attention-mechanism.

First exposed in the paper “Neural machine translation by jointly learning to align 
and translate,” by Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio in 
2014 (https://arxiv.org/abs/1409.0473v7), attention layers that implement 
an attention mechanism are vectors of weights expressing the importance of an 
element in a set processed by a deep neural network. Often the set of elements 
includes a sequence processed by RNNs, but it could also be an image. In fact, an 
attention layer can solve two kinds of problems:

 » When processing long sequences of words, related words might appear far 
apart in the sequence. For instance, pronouns are typically difficult for RNNs 
to handle because they can’t relate the pronoun to elements passed previ-
ously in the sequence. An attention layer can highlight key elements in a 
phrase before the RNN starts processing the sequence.

 » When processing large images, many objects appearing in the picture can 
distract the neural network from learning how to classify target objects 
correctly. An example is when building a network to recognize landmarks in 
holiday photos. An attention layer can detect what portion of the photo the 
neural network should process and suggest that the RNN ignore irrelevant 
elements such as a person, dog, or car present in the picture.

In a neural network, the attention layer is usually placed following a recurrent 
layer such as an LSTM or a GRU. In 2017, researchers from Google created a stand-
alone attention mechanism that can work without relying on previous recurrent 
layers and that performs much better than previous solutions. They called such 
architecture a Transformer.

https://github.com/philipperemy/keras-attention-mechanism
https://arxiv.org/abs/1409.0473v7
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Chapter 12
Performing Image 
Classification

Understanding how convolutional layers work, as shown in Chapter 10, is 
just a starting point. Theory can only explain how things work, but it can’t 
adequately describe the success of deep neural network solutions in the 

image-recognition field. The great part of this technology’s success, especially in 
AI applications, comes from the availability of suitable data to train and test image 
networks, their application to different problems thanks to transfer learning, and 
further sophistication of the technology that allows it to answer complex ques-
tions about image content.

In this chapter, you delve into the topic of object classification and detection chal-
lenges to discover their contribution in the foundation of the present deep learn-
ing renaissance. Competitions, such as those based on the ImageNet dataset, not 
only provide the right data to train reusable networks for different purposes 
(thanks to transfer learning, as previously discussed in Chapter 10) but also push 
researchers to find smarter new solutions for increasing the capability of neural 
network to understand images. Local response normalization and inception mod-
ules are technological solutions too complex to discuss in this book, but you 
should be aware that they’re revolutionary. All were introduced by neural net-
works that won the ImageNet competition: AlexNet (in 2012), GoogleLeNet (in 
2014), and ResNet (in 2015).

IN THIS CHAPTER

 » Recognizing the key contributions of 
image recognition challenges

 » Discovering the importance of image 
augmentation

 » Using the German Traffic Sign 
Benchmark dataset

 » Creating your own CNN capable of 
classifying traffic signs
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Thanks to the German Traffic Sign Benchmark dataset, provided by the Institute 
für NeuroInformatik at Ruhr-Universität Bochum in Germany, the chapter closes 
with an example of how to use an image dataset. Using the dataset, you build your 
own CNN for recognizing traffic signs using image augmentation and weighting 
for balancing the frequency of different classes in the examples.

You don’t have to type the source code for this chapter manually. In fact, using the 
downloadable source is a lot easier. The source code for this chapter appears in the 
DL4D_12_German_Traffic_Sign_Benchmark.ipynb source code file (see the 
Introduction for details on how to find that source file).

Using Image Classification Challenges
The CNN layers for image recognition were first conceived by Yann LeCun and a 
team of researchers. AT&T actually implemented LeNet5 (the neural network for 
handwritten numbers described in Chapter 10) into ATM check readers. However, 
the invention didn’t prevent another AI winter that started in 1990s, with many 
researchers and investors losing faith again that computers could achieve any 
progress toward having a meaningful conversation with humans, translating 
from different languages, understanding images, and reasoning in the manner of 
human beings.

Actually, expert systems had already undermined public confidence. Expert systems 
are a set of automatic rules set by humans to allow computers to perform certain 
operations. Nevertheless, the new AI winter prevented neural networks from 
being developed in favor of different kinds of machine learning algorithms. At the 
time, computers lacked computational power and had certain limits, such as the 
vanishing gradient problem. (Chapter  9 discusses the vanishing gradient and 
other limitations that prevented deep neural architectures.) The data also lacked 
complexity at the time, and consequently a complex and revolutionary CNN like 
LeNet5, which already worked with the technology and limitations of the time, 
had little opportunity to show its true power.

Only a handful of researchers, such as Geoffrey Hinton, Yann LeCun, Jürgen 
Schmidhuber, and Yoshua Bengio, kept developing neural network technologies 
striving to get a breakthrough that would have ended the AI winter. Meanwhile, 
2006 saw an effort by Fei-Fei Li, a computer science professor at the University of 
Illinois Urbana-Champaign (now an associate professor at Stanford, as well as the 
director of the Stanford Artificial Intelligence Lab and the Stanford Vision Lab) to 
provide more real-world datasets to better test algorithms. She started amassing 
an incredible number of images, representing a large number of object classes. 
You can read about this effort in the “Unveiling successful architectures” section 
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of Chapter 10. The proposed classes range through different types of objects, both 
natural (for instance, 120 dog breeds) and human made (such as means of trans-
portation). You can explore all of them at http://image-net.org/challenges/
LSVRC/2014/browse-synsets. By using this huge image dataset for training, 
researchers noticed that their algorithms started working better (nothing like 
ImageNet existed at that time) and then they started testing new ideas and 
improved neural network architectures.

Delving into ImageNet and MS COCO
The impact and importance of the ImageNet competition (also known as Ima-
geNet Large Scale Visual Recognition Challenge, or ILSVRC; http://image-net.
org/challenges/LSVRC/) on the development of deep learning solutions for 
image recognition can be summarized in three key points:

 » Helping establish a deep neural network renaissance: The AlexNet CNN 
architecture (developed by Alex Krizhevsky Ilya Sutskever, and Geoffrey 
Hinton) won the 2012 ILSVRC challenge by a large margin over other solutions.

 » Pushing various teams of researchers to develop more sophisticated 
solutions: ILSVRC advanced the performance of CNNs. VGG16, VGG19, 
ResNet50, Inception V3, Xception, and NASNet are all neural networks tested 
on ImageNet images that you can find in the Keras package (https://keras.
io/applications/). Each architecture represents an improvement over the 
previous architectures and introduces key deep learning innovations.

 » Making transfer learning possible: The ImageNet competition helped make 
the set of weights that made them work available. The 1.2 million ImageNet 
training images, distributed over 1,000 separate classes, helped create 
convolutional networks whose upper layers can actually generalize to 
problems other than ImageNet.

Recently, a few researchers started suspecting that the more recent neural archi-
tectures are overfitting the ImageNet dataset. After all, the same test set has been 
used for many years to select the best networks, as researchers Benjamin Recht, 
Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar speculate at https://
arxiv.org/pdf/1806.00451.pdf.

Other researchers from the Google Brain team (Simon Kornblith, Jonathon Shlens, 
and Quoc V.Le) have discovered a correlation between the accuracy obtained on 
ImageNet and the performance obtained by transfer learning of the same network 
on other datasets. They published their findings in the paper “Do Better ImageNet 
Models Transfer Better?” (https://arxiv.org/pdf/1805.08974.pdf). Interest-
ingly, they also pointed out that if a network is overtuned on ImageNet, it could 

http://image-net.org/challenges/LSVRC/2014/browse-synsets
http://image-net.org/challenges/LSVRC/2014/browse-synsets
http://image-net.org/challenges/LSVRC/
http://image-net.org/challenges/LSVRC/
https://keras.io/applications/
https://keras.io/applications/
https://arxiv.org/pdf/1806.00451.pdf
https://arxiv.org/pdf/1806.00451.pdf
https://arxiv.org/pdf/1805.08974.pdf
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experience problems generalizing. It is therefore a good practice to test transfer 
learning based on the most recent and best performing network found on Ima-
geNet, but not to stop there. You may find that some less performing networks are 
actually better for your problem.

Other objections about using ImageNet is that common pictures in everyday 
scenes contain more objects and that these objects may not be clearly visible when 
partially obstructed by other objects or because they mix with the background. If 
you want to use an ImageNet pretrained network in an everyday context, such as 
when creating an application or a robot, the performance may disappoint you. 
Consequently, since the ImageNet competition stopped (claiming that improving 
performance by continuing to work on the dataset wouldn’t be possible), research-
ers have increasingly focused on using alternative public datasets to challenge 
one’s own CNNs and improve the state-of-the-art in image recognition. Here are 
the alternatives so far:

 » PASCAL VOC (Visual Object Classes) http://host.robots.ox.ac.uk/
pascal/VOC/: Developed by the University of Oxford, this dataset sets a 
neural network training standard for labeling multiple objects in the same 
picture, the PASCAL VOC xml standard. The competition associated with this 
dataset was halted in 2012.

 » SUN https://groups.csail.mit.edu/vision/SUN/: Created by the 
Massachusetts Institute of technology (MIT), this dataset provides benchmarks 
to help you determine your CNN performance. No competition is associated 
with it.

 » MS COCO http://cocodataset.org/: Prepared by Microsoft Corporation, 
this dataset offers a series of active competitions.

In particular, the Microsoft Common Objects in the Context dataset (hence the 
name MS COCO) offers fewer training images for your model than you find in 
ImageNet, but each image contains multiple objects. In addition, all objects appear 
in realistic positions (not staged) and settings (often in the open air and in public 
settings such as roads and streets). To distinguish the objects, the dataset pro-
vides both contours in pixel coordinates and labeling in the PASCAL VOC XML 
standard, having each object defined not just by a class but also by its coordinates 
in the images (a picture rectangle that shows where to find it). This rectangle is 
called a bounding box, defined in a simple way using four pixels, in contrast to the 
many pixels necessary for defining an object by its contours.

The ImageNet dataset has recently started offering, in at least one million images, 
multiple objects to detect and their bounding boxes.

http://host.robots.ox.ac.uk/pascal/VOC/
http://host.robots.ox.ac.uk/pascal/VOC/
https://groups.csail.mit.edu/vision/SUN/
http://cocodataset.org/
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Learning the magic of data augmentation
Even if you have access to large amounts of data for your deep learning model, 
such as the ImageNet and MS COCO datasets, that may be not enough because of 
the multitude of parameters found in most complex neural architectures. In fact, 
even if you use techniques such as dropout (as explained in the “Adding regular-
ization by dropout” section of Chapter 9), overfitting is still possible. Overfitting 
occurs when the network memorizes the input data and learns no generally useful 
data patterns. Apart from dropout, other techniques that could help a network 
fight overfitting are LASSO, Ridge, and ElasticNet. However, nothing is as effec-
tive for enhancing your neural network’s predictive capabilities as adding more 
examples to your training schedule.

Originally, LASSO, Ridge, and ElasticNet were ways to constrain the weights of a 
linear regression model, which is a statistical algorithm for computing regression 
estimates. In a neural network, they work in a similar way by forcing the total sum 
of the weights in a network to be the lowest possible without harming the correct-
ness of predictions. LASSO strives to put many weights down to zero, thus achiev-
ing a selection of the best weights. By contrast, Ridge instead tends to dampen all 
the weights, avoiding higher weights that can generate overfitting. Finally, Elas-
ticNet is a mix of the LASSO and Ridge approaches, amounting to a trade-off 
between the selection and dampening strategies.

Image augmentation provides a solution to the problem of a lack of examples to 
feed a neural network to artificially create new images from existing ones. Image 
augmentation consists of different image-processing operations that are carried 
out separately or conjointly to produce an image different from the initial one. The 
result helps the neural network learn its recognition task better.

For instance, if you have training images that are too bright or too blurry, image 
processing modifies the existing images into darker and sharper versions. These 
new versions exemplify the characteristics that the neural network must focus on, 
rather than provide examples that focus on image quality. In addition, turning, 
cutting, or bending the image, as shown in Figure 12-1, could help because, again, 
they force the network to learn useful image features, no matter how the object 
appears.

The most common image augmentation procedures, as shown in Figure 12-1, are

 » Flip: Flipping your image on its axis tests the algorithm’s capability to find it 
regardless of perspective. The overall sense of your image should hold even 
when flipped. Some algorithms can’t find objects when upside down or even 
mirrored, especially if the original contains words or other specific signs.
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 » Rotation: Rotating your image allows algorithm testing at certain angles; 
simulating different perspectives or imprecisely calibrated visuals.

 » Random crop: Cropping your image forces the algorithm to focus on an 
image component. Cutting an area and expanding it to the same size of a 
standard image enables you to test for recognition of partially hidden image 
features.

 » Color shift: Changing the nuances of image colors generalizes your example 
because the colors can change or be recorded differently in the real world.

 » Noise addition: Adding random noise tests the algorithm’s capability to 
detect an object even when object quality is less than perfect.

 » Information loss: Randomly removing parts of an image simulates visual 
obstruction. It also helps the neural network rely on general image features, 
not on particulars (which could be randomly eliminated).

 » Contrast change: Changing the luminosity makes the neural network less 
sensible to the light conditions (for instance, to daylight or to artificial light).

You don’t need to specialize in image processing to leverage this powerful image-
augmentation technique. Keras offers a way to easily incorporate augmentation 
into any training using the ImageDataGenerator function (https://faroit.
github.io/keras-docs/1.2.2/preprocessing/image/).

FIGURE 12-1: 
Some common 

image 
augmentations.

https://faroit.github.io/keras-docs/1.2.2/preprocessing/image/
https://faroit.github.io/keras-docs/1.2.2/preprocessing/image/
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The ImageDataGenerator’s main purpose is to generate batches of inputs to feed 
your neural network. This means that you can get your data as chunks from a 
NumPy array using the .flow method. In addition, you don’t need to have all the 
training data in memory because the .flow_from_directory method can get it 
for you directly from disk. As ImageDataGenerator pulls the batches of images, it 
can transform them using rescaling (images are made of integers, ranging from 0 
to 255, but neural networks work best with floats ranging from zero to one) or by 
applying some transformations, such as:

 » Standardization: Getting all your data on the same scale by setting the mean 
to zero and the standard deviation to one (as the statistical standardization), 
based on the mean and standard deviation of the entire dataset (feature-wise) 
or separately for each image (sample-wise).

 » ZCA whitening: Removing any redundant information from the image while 
maintaining the original image resemblance.

 » Random rotation, random shifts, and random flips: Orienting, shifting, and 
flipping the image so that objects appear in a different pose than the original.

 » Reordering dimensions: Matching the dimensions of data between images. 
For instance, converting BGR images (a color image format previously popular 
among camera manufacturers) into standard RGB.

When you use ImageDataGenerator to process batches of images, you’re not 
bound by the size of computer memory on your system, but rather by your storage 
size (for instance, the size of your hard disk) and its speed of transfer. You could 
even get the data you need on the fly from the Internet, if your connection is fast 
enough.

You can get even more powerful image augmentations using a package such as 
albumentations (https://github.com/albu/albumentations). Alexander Bus-
laev, Alex Parinov, Vladimir I.  Iglovikov, and Evegene Khvedchenya created it 
based on their experience with many image-detection challenges. The package 
offers an incredible array of possible image processing tools based on the task to 
accomplish and the kind of neural network you use.

Distinguishing Traffic Signs
After discussing the theoretical grounds and characteristics of CNNs, you can try 
building one. TensorFlow and Keras can construct an image classifier for a specific 
delimited problem. Specific problems don’t imply learning a large variety of image 
features to accomplish the task successfully. Therefore, you can easily solve them 

https://github.com/albu/albumentations


224      PART 3  Interacting with Deep Learning

using simple architectures, such as LeNet5 (the CNN that revolutionized neural 
image recognition, discussed in Chapter 10) or something similar. This example per-
forms an interesting, realistic task using the German Traffic Sign Recognition 
Benchmark (GTSRB) found at this Institute für NeuroInformatik at Ruhr-Universität 
Bochum page: http://benchmark.ini.rub.de/?section=gtsrb.

Reading traffic signs is a challenging task because of differences in visual appear-
ance in real-world settings. The GTSRB provides a benchmark to evaluate different 
machine learning algorithms applied to the task. You can read about the construc-
tion of this database in the paper by J. Stallkampand others called “Man vs. com-
puter: Benchmarking machine learning algorithms for traffic sign recognition” at 
https://www.ini.rub.de/upload/file/1470692859_c57fac98ca9d02ac701c/
stallkampetal_gtsrb_nn_si2012.pdf.

The GTSRB dataset offers more than 50,000 images arranged in 42 classes (traffic 
signs), which allows you to create a multiclass classification problem. In a multi-
class classification problem, you state the probability of the image’s being part of 
a class and take the highest probability as the correct answer. For instance, an 
“Attention: Construction Site” sign will cause the classification algorithm to gen-
erate high probabilities for all attention signs. (The highest probability should 
match its class.) Blurriness, image resolution, different lighting, and perspective 
conditions make the task challenging for a computer (as well as sometimes for a 
human), as you can see from some of the examples extracted from the dataset in 
Figure 12-2.

Preparing image data
The example begins by configuring the model, setting the optimizer, preprocess-
ing the images, and creating the convolutions, the pooling, and the dense layers, 
as shown in the following code. (See Chapter 4 for how to work with TensorFlow 
and Keras.)

FIGURE 12-2: 
Some examples 

from the German 
Traffic Sign 

Recognition 
Benchmark.

http://benchmark.ini.rub.de/?section=gtsrb
https://www.ini.rub.de/upload/file/1470692859_c57fac98ca9d02ac701c/stallkampetal_gtsrb_nn_si2012.pdf
https://www.ini.rub.de/upload/file/1470692859_c57fac98ca9d02ac701c/stallkampetal_gtsrb_nn_si2012.pdf
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import numpy as np
import zipfile
import pprint
from skimage.transform import resize
from skimage.io import imread
import matplotlib.pyplot as plt
% matplotlib inline
 
import warnings
warnings.filterwarnings("ignore")
 
from keras.models import Sequential
from keras.optimizers import Adam
from keras.preprocessing.image import ImageDataGenerator
from keras.utils import to_categorical
from keras.layers import Conv2D, MaxPooling2D
from keras.layers import (Flatten, Dense, Dropout)

The dataset comprises more than 50,000 images, and the associated neural net-
work can achieve a near-human level of accuracy in recognizing traffic signs. 
Such an application will require a large amount of computer calculations, and 
running this code locally could take a long time on your computer, depending on 
the kind of computer you have. Likewise, Colab can take longer depending on the 
resources that Google makes available to you, including whether you actually have 
access to a GPU, as mentioned in Chapter 4. Timing this initial application on your 
setup will help you know whether your local machine or Colab is the fastest envi-
ronment in which to run larger datasets. However, the best environment is the 
one that produces the most consistent and reliable results. You may not have a 
solid Internet connection to use, making Colab a poorer choice.

At this point, the example retrieves the GTSRB dataset from its location on the 
Internet (the INI Benchmark website, at the Ruhr-Universität Bochum specified 
before). The following code snippet downloads it to the same directory as the 
Python code. Note that the download process can take a little time to complete, so 
now might be a good time to refill your teacup.

import urllib.request
url = "http://benchmark.ini.rub.de/Dataset/\
GTSRB_Final_Training_Images.zip"
filename = "./GTSRB_Final_Training_Images.zip"
urllib.request.urlretrieve(url, filename)

After retrieving the dataset as a .zip file from the Internet, the code sets an image 
size. (All images are resized to square images, so the size represents the sides in 



226      PART 3  Interacting with Deep Learning

pixels.) The code also sets the portion of data to keep for testing purposes, which 
means excluding certain images from training to have a more reliable measure of 
how the neural network works.

A loop through the files stored in the downloaded .zip file retrieves individual 
images, resizes them, stores the class labels, and appends the images to two sep-
arate lists: one for the training and one for testing purposes. The sorting uses a 
hash function, which translates the image name into a number and, based on that 
number, decides where to append the image.

IMG_SIZE = 32
TEST_SIZE = 0.2
X, Xt, y, yt = list(), list(), list(), list()
 
archive = zipfile.ZipFile(
                 './GTSRB_Final_Training_Images.zip', 'r')
file_paths = [file for file in archive.namelist()
              if '.ppm' in file]
 
for filename in file_paths:
    img = imread(archive.open(filename))
    img = resize(img,
                 output_shape=(IMG_SIZE, IMG_SIZE),
                 mode='reflect')
    img_class = int(filename.split('/')[-2])
     
    if (hash(filename) % 1000) / 1000 > TEST_SIZE:
        X.append(img)
        y.append(img_class)
    else:
        Xt.append(img)
        yt.append(img_class)
 
archive.close()

After the job is completed, the code reports the consistency of the train and test 
examples.

test_ratio = len(Xt) / len(file_paths)
print("Train size:{} test size:{} ({:0.3f})".format(len(X),
                len(Xt),
                test_ratio))
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The train size is more than 30,000 images, and the test almost is 8,000 (20 per-
cent of the total):

Train size:31344 test size:7865 (0.201)

Your results may vary a little from those shown. For example, another run of the 
example produced a train size of 31,415 and a test size of 7,794. Neural networks 
can learn multiclass problems better when the classes are numerically similar or 
they tend to concentrate their attention on learning just the more populated 
classes. The following code checks the distribution of classes:

classes, dist = np.unique(y+yt, return_counts=True)
NUM_CLASSES = len(classes)
print ("No classes:{}".format(NUM_CLASSES))
 
plt.bar(classes, dist, align='center', alpha=0.5)
plt.show()

Figure  12-3 shows that the classes aren’t balanced. Some traffic signs appear 
more frequently than others do (for instance, while driving, stop signs are 
encountered more frequently than a deer crossing sign).

As a solution, the code computes a weight, which is a ratio based on frequencies of 
classes that the neural network uses to increase the signal it receives from rarer 
examples and to dump the more frequent ones:

class_weight = {c:dist[c]/np.sum(dist) for c in classes}

FIGURE 12-3: 
Distribution of 

classes.
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Running a classification task
After setting the weights, the code defines the image generator, the part of the 
code that retrieves the images in batches (samples of a predefined size) for train-
ing and validation, normalizes their values, and applies augmentation to fight 
overfitting by slightly shifting and rotating them. Notice that the following code 
applies augmentation only on the training image generator, not the validation 
generator, because it’s necessary to test the original images only.

batch_size = 256
tgen=ImageDataGenerator(rescale=1./255,
                        rotation_range=5,
                        width_shift_range=0.10,
                        height_shift_range=0.10)
 
train_gen = tgen.flow(np.array(X),
                      to_categorical(y),
                      batch_size=batch_size)
 
vgen=ImageDataGenerator(rescale=1./255)
 
val_gen = vgen.flow(np.array(Xt),
                    to_categorical(yt),
                    batch_size=batch_size)

The code finally builds the neural network:

def small_cnn():
    model = Sequential()
    model.add(Conv2D(32, (5, 5), padding='same',
                     input_shape=(IMG_SIZE, IMG_SIZE, 3),
                     activation='relu'))
    model.add(Conv2D(64, (5, 5), activation='relu'))
    model.add(Flatten())
    model.add(Dense(768, activation='relu'))
    model.add(Dropout(0.4))
    model.add(Dense(NUM_CLASSES, activation='softmax'))
    return model
 
model = small_cnn()
model.compile(loss='categorical_crossentropy',
              optimizer=Adam(),
              metrics=['accuracy'])
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The neural network consists of two convolutions, one with 32 channels, the other 
with 64, both working with a kernel of size (5,5). The convolutions are followed 
by a dense layer of 768 nodes. Dropout (dropping 40 percent of the nodes) regu-
larizes this last layer and softmax activates it (thus the sum of the output proba-
bilities of all classes will sum to 100 percent).

CONSIDERING THE COST OF  
REALISTIC OUTPUT
As mentioned a few times in this book already, deep learning training can take a consid-
erable amount of time to complete. Whenever you see a fit function in the code, such as 
model.fit_generator, you’re likely asking the system to perform training. The exam-
ple code will always strive to provide you with realistic output — that is, what a scientist 
in the real world would consider acceptable.

Unfortunately, realistic output may cost you too much in the way of time. Not everyone 
has access to the latest high-technology system, and not everyone will get a GPU on 
Colab. The example in this chapter consumes a great deal of time to train in some 
cases. For example, in testing the code on Colab, it required a little over 16 hours to 
complete when Colab didn’t provide a GPU. The same example might run in as little as 
an hour if Colab does provide a GPU. (Chapter 4 tells you more about the GPU issue.) 
Likewise, using a CPU-only system, a 16-core Xeon system required 4 hours and  
23 minutes to complete training, but an Intel i7 processor with 8 cores required a little  
over 9 hours to do the same thing.

One way around this issue is to change the number of epochs used to train your model. 
The epochs=100 setting used for the example in this chapter provides an output accu-
racy of a little over 99 percent. However, if time is a factor, you may want to use a lower 
epochs setting when running this example to reduce the time you wait for the example 
to complete.

Another alternative for avoiding the problem is using GPU support on your local 
machine. However, to use this alternative, you must have a display adapter with the 
right kind of chip. Because the setup is complex and you’re not likely to have the right 
GPU, this book takes the CPU-only route. However, you can certainly install the correct 
support by using Chapter 4 as a starting point and then adding CUDA support. The  
article at https://towardsdatascience.com/tensorflow-gpu-installation-
made-easy-use-conda-instead-of-pip-52e5249374bc provides additional details.

https://towardsdatascience.com/tensorflow-gpu-installation-made-easy-use-conda-instead-of-pip-52e5249374bc
https://towardsdatascience.com/tensorflow-gpu-installation-made-easy-use-conda-instead-of-pip-52e5249374bc
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On the optimization side, the loss to minimize is the categorical crossentropy. The 
code measures success on accuracy, which is the percentage of correct answers 
provided by the algorithm. (The traffic sign class with the highest predicted prob-
ability is the answer.)

history = model.fit_generator(train_gen,
                   steps_per_epoch=len(X) // batch_size,
                   validation_data=val_gen,
                   validation_steps=len(Xt) // batch_size,
                   class_weight=class_weight,
                   epochs=100,
                   verbose=2)

Using the fit_generator on the model, the batches of images start being ran-
domly extracted, normalized, and augmented for the training phase. After pulling 
out all the training images, the code sees an epoch (a training iteration using a full 
pass on the dataset) and computes a validation score on the validation images. 
After reading 100 epochs, the training and the model are completed.

If you don’t use any augmentation, you can train your model in just about 30 
epochs and reach a performance of your model that is almost comparable to a 
driver’s skill in recognizing the different kinds of traffic signs (which is about 
98.8 percent accuracy). The more aggressive the augmentation you use, the more 
epochs necessary for the model to reach its top potential, although accuracy per-
formances will be higher, too. At this point, the code plots a graph depicting how 
the training and validation accuracy behaved during training:

print("Best validation accuracy: {:0.3f}"
       .format(np.max(history.history['val_acc'])))
 
plt.plot(history.history['acc'])
plt.plot(history.history['val_acc'])
plt.ylabel('accuracy'); plt.xlabel('epochs')
plt.legend(['train', 'test'], loc='lower right')
plt.show()

The code will report to you the best validation accuracy recorded and plot the 
accuracy curves achieved on train and validation data during the increasing epochs 
of learning, as shown in Figure 12-4. Notice how the training and validation accu-
racies are nearly similar at the end of training, although the validation is always 
better than the training. That’s easily explained because the validation images are 
actually “easier” to guess than the training images because no augmentation is 
applied to them.
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Given the code can initialize the neural network in different ways, you may see 
different best results at the end of the training optimization. However, by the end 
of the 100 epochs set in the code, the validation accuracy should exceed 99 percent 
(sample runs achieved up to 99.5 percent on Colab).

A difference exists between the performance you obtain on the train data (which 
is often less) and on your validation subset, because train data is more complex 
and variable than validation data, given the image augmentations that the code 
sets up.

You should consider this result to be quite an excellent one based on the state-of- 
the-art benchmarks that you can read about in the paper called “HALOI, Mrinal. 
Traffic sign classification using deep inception based convolutional networks 
(https://arxiv.org/pdf/1511.02992.pdf). The paper hints at what can be eas-
ily achieved in terms of image recognition on limited problems using clean data 
and readily available tools such as TensorFlow and Keras.

FIGURE 12-4: 
Training and 

validation errors 
compared.

https://arxiv.org/pdf/1511.02992.pdf
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Chapter 13
Learning Advanced 
CNNs

Deep learning solutions for image recognition have become so impressive 
in their human-level performance that you see them used in developing 
or  already marketed applications, such as self-driving cars and video- 

surveillance appliances. The video-surveillance appliances already perform tasks, 
such as automatic satellite image monitoring, facial detection, and people 
 localization and counting. Yet you can’t imagine a complex application when your 
network labels an image with only a single prediction. Even a simple dog or cat 
detector may not prove useful when the photos you analyze contain multiple dogs 
and cats. The real world is messy and complex. You can’t expect, except in limited 
and controlled cases, laboratory style images that consist of single, clearly depicted 
objects.

The need to handle complex images paved the way for variants of Convolutional 
Neural Networks (CNNs). Such variants offer sophistication that’s still being 
developed and refined, such as multiple-object detection and localization.  
Multiple-object detection can deal with many different objects at a time. Localiza-
tion can tell you where they are in the picture and segmentation can find their 
exact contours. These new capabilities require complex neural architectures and 
image processing more advanced than the basic CNNs discussed in previous 

IN THIS CHAPTER

 » Understanding the importance of 
object detection

 » Distinguishing between detection, 
localization, and segmentation

 » Testing object detection by RetinaNet 
from a GitHub implementation

 » Realizing the weak spots of CNNs 
that could be exploited
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chapters. This chapter illustrates the fundamentals of how these solutions work, 
names key approaches and architectures, and finally tests one of the best per-
forming object detection implementations.

The chapter closes by unveiling an expected weakness in an otherwise unbelievable 
technology. Someone could maliciously trick CNNs to report misleading  detections 
or ignore seen objects using appropriate image-manipulation techniques. This 
puzzling discovery opens a new research front that shows that deep learning per-
formance must also consider security for private and public use.

Distinguishing Classification Tasks
CNNs are the building blocks of deep learning–based image recognition, yet they 
answer only a basic classification need: Given a picture, they can determine 
whether its content can be associated with a specific image class learned through 
previous examples. Therefore, when you train a deep neural network to recognize 
dogs and cats, you can feed it a photo and obtain output that tells you whether the 
photo contains a dog or cat. If the last network layer is a softmax layer, the net-
work outputs the probability of the photo containing a dog or a cat (the two classes 
you trained it to recognize) and the output sums to 100 percent. When the last 
layer is a sigmoid-activated layer, you obtain scores that you can interpret as 
probabilities of content belonging to each class, independently. The scores won’t 
necessarily sum to 100 percent. In both cases, the classification may fail when the 
following occurs:

 » The main object isn’t what you trained the network to recognize, such as 
presenting the example neural network with a photo of a raccoon. In this 
case, the network will output an incorrect answer of dog or cat.

 » The main object is partially obstructed. For instance, your cat is playing hide 
and seek in the photo you show the network, and the network can’t spot it.

 » The photo contains many different objects to detect, perhaps including 
animals other than cats and dogs. In this case, the output from the network 
will suggest a single class rather than include all the objects.

Figure 13-1 shows image 47780 (http://cocodataset.org/#explore?id=47780) 
taken from the MS Coco dataset (released as part of the open source Creative 
Commons Attribution 4.0 License). The series of three outputs shows how a CNN 
has detected, localized, and segmented the objects appearing in the image (a kit-
ten and a dog standing on a field of grass). A plain CNN can’t reproduce the exam-
ples in Figure 13-1 because its architecture will output the entire image as being of 
a certain class. To overcome this limitation, researchers extend the basic CNNs 
capabilities to make them capable of the following:

http://cocodataset.org/#explore?id=47780
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 » Detection: Determining when an object is present in an image. Detection is 
different from classification because it involves just a portion of the image, 
implying that the network can detect multiple objects of the same and of 
different types. The capability to spot objects in partial images is called 
instance spotting.

 » Localization: Defining exactly where a detected object appears in an image. 
You can have different types of localizations. Depending on granularity, they 
distinguish the part of the image that contains the detected object.

 » Segmentation: Classification of objects at the pixel level. Segmentation takes 
localization to the extreme. This kind of neural model assigns each pixel of the 
image to a class or even an entity. For instance, the network marks all the 
pixels in a picture relative to dogs and distinguishes each one using a different 
label (called instance segmentation).

Performing localization
Localization is perhaps the easiest extension that you can get from a regular 
CNN. It requires that you train a regressor model alongside your deep learning 
classification model. A regressor is a model that guesses numbers. Defining object 
location in an image is possible using corner pixel coordinates, which means that 
you can train a neural network to output key measures that make it easy to 
 determine where the classified object appears in the picture using a bounding box. 
Usually a bounding box uses the x and y coordinates of the lower-left corner, 
together with the width and the height of the area that encloses the object.

Classifying multiple objects
A CNN can detect (predicting a class) and localize (by providing coordinates) only 
a single object in an image. If you have multiple objects in an image, you may still 

FIGURE 13-1: 
Detection, 

localization and 
segmentation 

example from the 
Coco dataset.
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use a CNN and locate each object present in the picture by means of two old  
image-processing solutions:

 » Sliding window: Analyzes only a portion (called a region of interest) of the 
image at a time. When the region of interest is small enough, it likely contains 
only a single object. The small region of interest allows the CNN to correctly 
classify the object. This technique is called sliding window because the 
software uses an image window to limit visibility to a particular area (the way 
a window in a home does) and slowly moves this window around the image. 
The technique is effective but could detect the same image multiple times, or 
you may find that some objects go undetected based on the window size that 
you decide to use to analyze the images.

 » Image pyramids: Solves the problem of using a window of fixed size because 
it generates increasingly smaller resolutions of the image. Therefore, you can 
apply a small sliding window. In this way, you transform the objects in the 
image, and one of the reductions may fit exactly into the sliding window used.

These techniques are computationally intensive. To apply them, you have to resize 
the image multiple times and then split it into chunks. You then process each 
chunk using your classification CNN. The number of operations for these activities 
is so large that rendering the output in real time is impossible.

The sliding window and image pyramid have inspired deep learning researchers 
to discover a couple of conceptually similar approaches that are less computation-
ally intensive. The first approach is one-stage detection. It works by dividing the 
images into grids, and the neural network makes a prediction for every grid cell, 
predicting the class of the object inside. The prediction is quite rough, depending 
on the grid resolution (the higher the resolution, the more complex and slower the 
deep learning network). One-stage detection is very fast, having almost the same 
speed as a simple CNN for classification. The results have to be processed to gather 
the cells representing the same object together, and that may lead to further inac-
curacies. Neural architectures based on this approach are Single-Shot Detector 
(SSD), You Only Look Once (YOLO), and RetinaNet. One-stage detectors are very 
fast, but not so precise.

The second approach is two-stage detection. This approach uses a second neural 
network to refine the predictions of the first one. The first stage is the proposal 
network, which outputs its predictions on a grid. The second stage fine-tunes 
these proposals and outputs a final detection and localization of the objects. 
R-CNN, Fast R-CNN, and Faster R-CNN are all two-stage detection models that 
are much slower than their one-stage equivalents, but more precise in their 
predictions.
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Annotating multiple objects in images
To train deep learning models to detect multiple objects, you need to provide more 
information than in simple classification. For each object, you provide both a clas-
sification and coordinates within the image using the annotation process, which 
contrasts with the labeling used in simple image classification.

Labeling images in a dataset is a daunting task even in simple classification. Given 
a picture, the network must provide a correct classification for the training and 
test phases. In labeling, the network decides on the right label for each picture, 
and not everyone will perceive the depicted image in the same way. The people 
who created the ImageNet dataset used the classification provided by multiple 
users from the Amazon Mechanical Turk crowdsourcing platform (ImageNet used 
the Amazon service so much that in 2012, it turned out to be Amazon’s most 
important academic customer.)

In a similar way, you rely on the work of multiple people when annotating an 
image using bounding boxes. Annotation requires that you not only label each 
object in a picture but also must determine the best box with which to enclose 
each object. These two tasks make the annotation even more complex than label-
ing and more prone to producing erroneous results. Performing annotation cor-
rectly requires the work of more people who can provide a consensus on the 
accuracy of the annotation.

Some open source software can help in annotation for image detection (as well as 
for image segmentation, discussed in the following section). Two tools are partic-
ularly effective:

 » LabelImg, created by TzuTa Lin (https://github.com/tzutalin/labelImg) 
with a tutorial at https://www.youtube.com/watch?v=p0nR2YsCY_U).

 » LabelMe (https://github.com/wkentaro/labelme) is a powerful tool for 
image segmentation that provides an online service.

 » FastAnnotationTool, based on the computer vision library OpenCV (https://
github.com/christopher5106/FastAnnotationTool). The package is less 
well maintained but still viable.

Segmenting images
Semantic segmentation predicts a class for each pixel in the image, which is a 
 different perspective from either labeling or annotation. Some people also call this 
task dense prediction because it makes a prediction for every pixel in an image. 

https://github.com/tzutalin/labelImg
https://www.youtube.com/watch?v=p0nR2YsCY_U
https://github.com/wkentaro/labelme
https://github.com/christopher5106/FastAnnotationTool
https://github.com/christopher5106/FastAnnotationTool
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The task doesn’t specifically distinguish different objects in the prediction. For 
instance, a semantic segmentation can show all the pixels that are of the class cat, 
but it won’t provide any information about what the cat (or cats) are doing in the 
picture. You can easily get all the objects in a segmented image by post-processing, 
because after performing the prediction, you can get the object pixel areas and 
distinguish between different instances of them, if multiple separated areas exist 
under the same class prediction.

Different deep learning architectures can achieve image segmentation. Fully 
Convolutional Networks (FCNs) and U-NETs are among the most effective. FCNs 
are built for the first part (called the encoder), which is the same as CNNs. After 
the initial series of convolutional layers, FCNs end with another series of CNNs 
that operate in a reverse fashion as the encoder (making them a decoder). The 
decoder is constructed to recreate the original input image size and output as 
pixels the classification of each pixel in the image. In such a fashion, the FCN 
achieves the semantic segmentation of the image. FCN are too computationally 
intensive for most real-time applications. In addition, they require large training 
sets to learn their tasks well; otherwise, their segmentation results are often 
coarse.

Finding the encoder part of the FCN pretrained on ImageNet, which accelerates 
training and improves learning performance, is common.

U-NETs are an evolution of FCN devised by Olaf Ronneberger, Philipp Fischer, 
and Thomas Brox in 2015 for medical purposes (see https://lmb.informatik.
uni-freiburg.de/people/ronneber/u-net/). U-NETs present advantages 
compared to FCNs. The encoding (also called contraction) and the decoding parts 
(also referred to as expansion) are perfectly symmetric. In addition, U-NETs use 
shortcut connections between the encoder and the decoder layers. These short-
cuts allow the details of objects to pass easily from the encoding to the decoding 
parts of the U-NET, and the resulting segmentation is precise and fine- 
grained.

Building a segmentation model from scratch can be a daunting task, but you don’t 
need to do that. You can use some pretrained U-NET architectures and immedi-
ately start using this kind of neural network by leveraging the segmentation  
model zoo (a term used to describe the collection of pretrained models offered by 
many frameworks; see https://modelzoo.co/ for details) offered by  segmentation 
models, a package offered by Pavel Yakubovskiy. You can find installation instruc-
tions, the source code, and plenty of usage examples at https://github.com/
qubvel/segmentation_models. The commands from the package seamlessly 
integrate with Keras.

https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/
https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/
https://modelzoo.co/
https://github.com/qubvel/segmentation_models
https://github.com/qubvel/segmentation_models
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Perceiving Objects in Their Surroundings
Integrating vision capabilities into the sensing system of a self-driving car could 
enhance how confidently and safely it drives. A segmentation algorithm could 
help the car distinguish lanes from sidewalks, as well as from other obstacles the 
car should notice. The car could even feature a complete end-to-end system, such 
as NVIDIA’s, that controls steering, acceleration, and braking in a reactive manner 
based on its visual inputs. (NVIDIA is a major player in deep learning, and the 
book mentions it in Chapters 4, 9, and 11 as well. You can learn more about the 
NVIDIA self-driving car efforts at https://www.nvidia.com/en-us/self- 
driving-cars/.) A visual system could spot certain objects on the road relevant to 
driving, such as traffic signs and traffic lights. It could visually track the trajecto-
ries of other cars. In all cases, a deep learning network could provide the solution.

The “Distinguishing Classification Tasks” section discusses how object detection 
improves upon single-object classification offered by CNNs. That section also 
clarifies the architectures and current models of the two main approaches: one-
stage detection (or one-shot detection) and two-stage detection (also known as 
region proposal). This section tells how a one-stage detection system works and 
provides help for an autonomous vehicle.

Programming such a detection system from scratch would be a daunting task, one 
requiring an entire book of its own. Fortunately, you can employ open source 
projects on GitHub such as Keras-RetinaNet (https://github.com/fizyr/
keras-retinanet). Keras-RetinaNet is the Keras implementation of the Reti-
naNet model proposed by Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, 
and Piotr Dollár in the paper “Focal Loss for Dense Object Detection” published in 
August 2017 at https://arxiv.org/abs/1708.02002.

Isaac Newton stated, “If I have seen further, it is by standing on the shoulders of 
Giants.” Likewise, you can achieve more in deep learning when you make use of 
existing neural architectures and pretrained networks. For instance, you can find 
many models on GitHub (www.github.com) such as the TensorFlow model zoo 
(https://github.com/tensorflow/models).

Discovering how RetinaNet works
The RetinaNet is a sophisticated and interesting object-detection model that 
strives to be as fast as other one-stage detection models while also achieving the 
accuracy of bounding box predictions of two-stage detection systems like Faster 
R-CNN (the top-performing model). Thanks to its architecture, RetinaNet 
achieves its goals, using techniques similar to the U-NET architecture discussed 
for semantic segmentation. RetinaNet is part of a group of models called Feature 
Pyramid Networks (FPN).

https://www.nvidia.com/en-us/self-driving-cars/
https://www.nvidia.com/en-us/self-driving-cars/
https://github.com/fizyr/keras-retinanet
https://github.com/fizyr/keras-retinanet
https://arxiv.org/abs/1708.02002
http://www.github.com
https://github.com/tensorflow/models
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RetinaNet owes its performance to its authors, Tsung-Yi Lin, Priya Goyal, Ross 
Girshick, Kaiming He, and Piotr Dollár, who noted that one-stage detection  
models don’t always detect objects precisely because they are affected by the 
overwhelming presence of distracting elements in the images used for training. 
Their paper, “Focal Loss for Dense Object Detection (https://arxiv.org/ 
pdf/1708.02002.pdf), provides details of the techniques RetinaNet uses. The 
problem is that the images present few objects of interest to detect. In fact, one-
stage detection networks are trained to guess the class of each cell in an image 
divided by a fixed grid, where the majority of cells are empty of objects of interest.

In semantic segmentation, the targets of the classification are single pixels. In 
one-stage detection, the targets are sets of contiguous pixels, performing a simi-
lar task to semantic segmentation but at a different granularity level.

Here’s what happens when you have such a predominance of null examples in 
images and are using a training approach that examines all available cells as 
examples. The network will be more likely to predict that nothing is in a processed 
image cell than to provide a correctly predicted class. Neural networks always take 
the most efficient route to learn, and in this case it’s easier to predict the  
background than anything else. In this situation, which goes under the name of 
unbalanced learning, many objects are undetected by the neural network using a 
single-shot object detection approach.

In machine learning, when you want to predict two numerically different classes 
(one is the majority class, and the other one is the minority class), you have an 
unbalanced classification problem. Most algorithms don’t perform properly when 
the classes are unbalanced because they tend to prefer the majority class. A few 
solutions are available for this problem:

 » Sampling: Selecting some examples and discarding others.

 » Downsample: Reducing the effect of the majority class by choosing to use 
only a part of it, which balances the majority and minority predictions. In 
many cases, this is the easiest approach.

 » Upsample: Increasing the effect of the minority class by replicating its 
examples many times until the minority class has the same number of 
examples as the majority class.

The creators of RetinaNet take a different route, as they note in their paper Focal 
Loss for Dense Object Detection mentioned earlier in this section. They discount the 
majority class examples that are easier to classify and concentrate on the cells that 
are difficult to classify. The result is that the network cost function focuses more 

https://arxiv.org/pdf/1708.02002.pdf
https://arxiv.org/pdf/1708.02002.pdf
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on adapting its weights to recognize background objects. This is the focal loss solu-
tion and represents a smart way to make one-stage detection perform more cor-
rectly, yet speedily, which is a real-time application requirement, such as for 
obstacle or object detection in self-driving cars, or processing large quantities of 
images in video surveillance.

Using the Keras-RetinaNet code
Released under the open source Apache License 2.0, Keras-RetinaNet is a project 
sponsored by the Dutch robotic company Fitz and made possible by many con-
tributors (the top contributors are Hans Gaiser and Maarten de Vries). It’s an 
implementation of the RetinaNet neural network written in Python using Keras 
(https://github.com/fizyr/keras-retinanet/). You find Keras-RetinaNet 
used successfully used by many projects — the most notable and impressive of 
which is the winning model for the NATO Innovation Challenge, a competition 
whose task was to detect cars in aerial images. (You can read the narrative from the 
winning team in this blog post: https://medium.com/data-from-the-trenches/
object-detection-with-deep-learning-on-aerial-imagery-2465078db8a9.)

Object detection network code is too complex to explain in a few pages, plus you 
can use an existing network to set up deep learning solutions, so this section 
demonstrates how to download and use Keras-RetinaNet on your computer. 
Before you try this process, ensure that you have configured your computer as 
described in Chapter 4, and consider the trade-offs involved in using various exe-
cution options described in the “Considering the cost of realistic output” sidebar 
in Chapter 12.

As a first step, you upload the necessary packages and start downloading the 
zipped version of the GitHub repository. This example uses the 0.5.0 version of 
Keras-RetinaNet, which was the most recent version available at the time of 
writing.

import os
import zipfile
import urllib.request
import warnings
warnings.filterwarnings("ignore")
url = "https://github.com/lmassaron/\
dl4dummies/releases/download/0.5.1/0.5.1.zip"
urllib.request.urlretrieve(url, './'+url.split('/')[-1])

https://github.com/fizyr/keras-retinanet/
https://medium.com/data-from-the-trenches/object-detection-with-deep-learning-on-aerial-imagery-2465078db8a9
https://medium.com/data-from-the-trenches/object-detection-with-deep-learning-on-aerial-imagery-2465078db8a9
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After downloading the zipped code, the example code automatically extracts it 
using these commands:

zip_ref = zipfile.ZipFile('./0.5.1.zip', 'r')
for name in zip_ref.namelist():
  zip_ref.extract(name, './')
zip_ref.close()

The execution creates a new directory called keras-retinanet-0.5.0, which 
contains the code for setting up the neural network. The code then executes the 
compilation and installation of the package using the pip command:

os.chdir('./keras-retinanet-0.5.1')
!python setup.py build_ext --inplace
!pip install .

All these commands have just retrieved the code that builds the architecture of the 
network. The example now needs the pretrained weights and relies on weights 
trained on the MS Coco dataset using the ResNet50 CNN, the neural network that 
Microsoft used to win the 2015 ImageNet competition.

os.chdir('../')
url = "https://github.com/fizyr/\
        keras-retinanet/releases/download/0.5.1/\
        resnet50_coco_best_v2.1.0.h5"
urllib.request.urlretrieve(url, './'+url.split('/')[-1])

Downloading all the weights takes a while, so now it would be a good time to refill 
your coffee. After this step completes, the example is ready to import all the  
necessary commands and to initialize the RetinaNet model using the pretrained 
weights retrieved from the Internet. This step also sets a dictionary to convert the 
numeric network results into understandable classes. The selection of classes is 
useful for the detector on a self-driving car or any other solution that has to 
understand images taken from a road or an intersection.

import os
import numpy as np
from collections import defaultdict
import keras
from keras_retinanet import models
from keras_retinanet.utils.image import (read_image_bgr,
           preprocess_image, resize_image)
from keras_retinanet.utils.visualization import (draw_box,
           draw_caption)
from keras_retinanet.utils.colors import label_color
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import matplotlib.pyplot as plt
%matplotlib inline
 
model_path = os.path.join('.',
           'resnet50_coco_best_v2.1.0.h5')
 
model = models.load_model(model_path,
           backbone_name='resnet50')
 
labels_to_names = defaultdict(lambda: 'object',
          {0: 'person', 1: 'bicycle', 2: 'car',
           3: 'motorcycle', 4: 'airplane', 5: 'bus',
           6: 'train', 7: 'truck', 8: 'boat',
           9: 'traffic light', 10: 'fire hydrant',
           11: 'stop sign', 12: 'parking meter',
           25: 'umbrella'})

To make the example useful, you need a sample image to test the RetinaNet model. 
The example relies on a free image from Wikimedia representing an intersection 
with people expecting to cross the road, some stopped vehicles, traffic lights, and 
traffic signs.

url = "https://upload.wikimedia.org/wikipedia/commons/\
thumb/f/f8/Woman_with_blue_parasol_at_intersection.png/\
640px-Woman_with_blue_parasol_at_intersection.png"
urllib.request.urlretrieve(url, './'+url.split('/')[-1])

After completing the image download, it’s time to test the neural network. In the 
code snippet that follows this explanation, the code reads the image from disk and 
then switches the blue with red image channels (because the image is uploaded in 
BGR format, but RetinaNet works with RGB images). Finally, the code prepro-
cesses and resizes the image. All these steps complete using the provided func-
tions and require no special settings.

The model will output the detected bounding boxes, the level of confidence (a 
probability score that the network truly detected something), and a code label that 
will convert into text using the previously defined dictionary of labels. The loop 
filters the boxes printed on the image by the example. The code uses a confidence 
threshold of 0.5, implying that the example will keep any detection whose confi-
dence is at least at 50 percent. Using a lower confidence threshold results in more 
detections, especially of those objects that appear small in the image, but also 
increases wrong detections (for instance, some shadows may start being detected 
as objects).
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Depending on your objectives using RetinaNet, you may decide that using a lower 
confidence threshold is fine. You’ll notice that as you lower the confidence, the 
proportion of the resulting exact guesses (those with near 100 percent confidence) 
will diminish. Such a proportion is called the precision of the detection, and by 
deciding what precision you can tolerate, you can set the best confidence for your 
purposes.

image = read_image_bgr('640px-Woman_with_blue_parasol_at_ 
intersection.png')

draw = image.copy()
draw[:,:,0], draw[:,:,2] = image[:,:,2], image[:,:,0]
 
image = preprocess_image(image)
image, scale = resize_image(image)
 
boxes, scores, labels = model.predict_on_batch(np.expand_

dims(image, axis=0))
boxes /= scale
 
for box, score, label in zip(boxes[0], scores[0], labels[0]):
    if score > 0.5:
      color = label_color(label)
      b = box.astype(int)
      draw_box(draw, b, color=color)
      caption = "{} {:.3f}".format(labels_to_names[label], 

score)
      draw_caption(draw, b, caption.upper())
     
plt.figure(figsize=(12, 6))
plt.axis('off')
plt.imshow(draw)
plt.show()

It may take a while the first time you run the code, but after some computations, 
you should obtain the output reproduced in Figure 13-2.

The network can successfully detect various objects, some extremely small (such 
as a person in the background), some partially shown (such as the nose of a car on 
the right of the image). Each detected object is delimited by its bounding box, 
which creates a large range of possible applications.
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For instance, you could use the network to detect that an umbrella — or some 
object — is being used by a person. When processing the results, you can relate 
the fact that two bounding boxes are overlapping, with one being an umbrella and 
the other one being a person, and that the first box is positioned on top of the 
second in order to infer that a person is holding an umbrella. This is called visual 
relationship detection. In the same way, by the overall setting of detected objects 
and their relative positions, you can train a second deep learning network to infer 
an overall description of the scene.

Overcoming Adversarial Attacks  
on Deep Learning Applications

As deep learning finds many applications in self-driving cars, such as detecting 
and interpreting traffic signs and lights; detecting the road and its lanes; detect-
ing crossing pedestrians and other vehicles; controlling the car by steering and 
braking in an end-to-end approach to automatic driving; and so on, questions 
may arise about the safety of a self-driving car. driving isn’t the only common 
activity that’s undergoing a revolution. because of deep learning applications. 
Recently introduced applications that are accessible by the public include facial 
recognition for security access. (You can read about this use in ATMs in China at 
https://www.telegraph.co.uk/news/worldnews/asia/china/11643314/
China-unveils-worlds-first-facial-recognition-ATM.html.) Another exam-
ple of a deep learning application is in speech recognition used for Voice 

FIGURE 13-2: 
Object detection 

resulting from 
Keras-RetinaNet.

https://www.telegraph.co.uk/news/worldnews/asia/china/11643314/China-unveils-worlds-first-facial-recognition-ATM.html
https://www.telegraph.co.uk/news/worldnews/asia/china/11643314/China-unveils-worlds-first-facial-recognition-ATM.html
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Controllable Systems (VCSs), as provided by a plethora of companies such as 
Apple, Amazon, Microsoft, and Google in a wide variety of applications that 
include Siri, Alexa, and Google Home.

Some of these deep learning applications may cause economic damage or even be 
life threatening when they fail to provide the correct answer. Therefore, you may 
be surprised to discover that hackers can intentionally trick deep neural networks 
and guide them into failing predictions by using particular techniques called 
adversarial examples.

An adversarial example is a handcrafted piece of data that is processed by a neural 
network as training or test inputs. A hacker modifies the data to force the algo-
rithm to fail in its task. Each adversarial example bears modifications that are 
indeed slight, subtle, and deliberately made imperceptible to humans. The modi-
fications, while ineffective on humans, are still quite effective in reducing the 
effectiveness and usefulness of a neural network. Often, such malicious examples 
aim at leading a neural network to fail in a predictable way to create some illegal 
advantage for the hacker. Here are just a few malicious uses of adversarial exam-
ples (the list is far from exhaustive):

 » Misleading a self-driving car into a accident

 » Obtaining money from an insurance fraud by having fake claim photos 
trusted as true ones by automatic systems

 » Tricking a facial recognition system to recognize the wrong face and grant 
access to money in a bank account or personal data on a mobile device

Chapter  16 discusses generative adversarial networks (GANs) and adversarial 
training, which have a completely different purpose than adversarial examples. 
These techniques are a way to train a deep neural network to generate new exam-
ples of any kind from it.

Tricking pixels
First made known by the paper “Intriguing Properties of Neural Networks” (go to 
https://arxiv.org/pdf/1312.6199.pdf), adversarial examples have attracted 
much attention in recent years, and successful (and shocking) discoveries in the 
field have led many researchers to devise faster and more effective ways of creat-
ing such examples than the original paper pointed out.

https://arxiv.org/pdf/1312.6199.pdf
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Adversarial examples are still confined to deep learning research laboratories. For 
this reason, you find many scientific papers quoted in these paragraphs when 
referring to various kinds of examples. However, you should never discount 
adversarial examples as being some kind of academic diversion because their 
potential for damage is high.

DISCOVERING THAT A MUFFIN  
IS NOT A CHIHUAHUA
Sometimes deep learning image classification fails to provide the right answer because 
the target image is inherently ambiguous or rendered to puzzle observers. For instance, 
some images are so misleading that they can even mystify a human examiner for a 
while, such as the Internet memes Chihuahua versus Muffin (see https://imgur.com/
QWQiBYU) or Labradoodle versus Fried Chicken (see https://imgur.com/5EnWOJU).  
A neural network can misunderstand confusing images if its architecture isn’t adequate 
to the task and its training hasn’t been exhaustive in terms of seen examples. The AI 
technology columnist Mariya Yao has compared different computer vision APIs at 
https://medium.freecodecamp.org/chihuahua-or-muffin-my-search- 
for-the-best-computer-vision-api-cbda4d6b425d) and found that even  
full-fledged vision products can be tricked by ambiguous pictures.

Recently, other studies have challenged deep neural networks by proposing unexpected 
perspectives of known objects. In the paper called “Strike (with) a Pose: Neural Networks 
Are Easily Fooled by Strange Poses of Familiar Objects at https://arxiv.org/
pdf/1811.11553.pdf, researchers found that simple ambiguity can trick state-of-the-
art image classifiers and object detectors trained on large-scale image datasets. Often, 
objects are learned by neural networks from pictures taken in canonical poses (which 
means in common and usual situations). When faced with an object in an unusual pose 
or outside its usual environment, some neural networks can’t categorize the resulting 
object. For instance, you expect a school bus to be running on the road, but if you rotate 
and twist it in the air and then land it in the middle of the road, a neural network can 
easily see it as a garbage truck, a punching bag, or even a snowplow. You may argue 
that the misclassification occurs because of learning bias (teaching a neural network 
using only images in canonical poses). Yet that implies that at present, you shouldn’t rely 
such technology under all circumstances, especially, as the authors of the paper pointed 
out, in self-driving car applications because objects may suddenly appear on the road in 
new poses or circumstances.

https://imgur.com/QWQiBYU
https://imgur.com/QWQiBYU
https://imgur.com/5EnWOJU
https://medium.freecodecamp.org/chihuahua-or-muffin-my-search-for-the-best-computer-vision-api-cbda4d6b425d
https://medium.freecodecamp.org/chihuahua-or-muffin-my-search-for-the-best-computer-vision-api-cbda4d6b425d
https://arxiv.org/pdf/1811.11553.pdf
https://arxiv.org/pdf/1811.11553.pdf
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At the foundations of all these approaches the idea that mixing some numeric 
information, called a perturbation, with the image can lead a neural network to 
behave differently from expectations, although in a controlled way. When you 
create an adversarial example, you add some specially devised noise (looking as 
what appears to be random numbers) to an existing image, and that’s enough to 
trick most CNNs (because often the same trick works with different architectures 
when trained by the same data). Generally, you can discover such perturbations by 
having access to the model (its architecture and weights). You then exploit its 
backpropagation algorithm to systematically discover the best set of numeric 
information to add to an image so that you can mutate one predicted class into 
another one.

You can create the perturbation effect by changing a single pixel in an image. 
Researchers have obtained perfectly working adversarial examples using this 
approach, as discovered by researchers from Kyushu University and described in 
their paper “One Pixel Attack for Fooling Deep Neural Networks” (https://
arxiv.org/pdf/1710.08864.pdf).

Hacking with stickers and other artifacts
Most adversarial examples are laboratory experiments on vision robustness, and 
those examples can demonstrate all their capabilities because they are produced 
by directly modifying data inputs and tested images during the training phase. 
However, many applications based on deep learning operate in the real world, and 
the use of laboratory techniques don’t prevent malicious attacks. Such attacks 
don’t need access to the underlying neural model to be effective. Some examples 
may take the form of a sticker or an inaudible sound that the neural network 
doesn’t know how to handle.

A paper called “Adversarial Examples in the Physical World” (found at https://
arxiv.org/pdf/1607.02533.pdf) demonstrates that various attacks are also 
possible in a nonlaboratory setting. All you need is to print the adversarial exam-
ples and show them to the camera feeding the neural network (for instance, by 
using the camera in a mobile phone). This approach demonstrates that the effi-
cacy of an adversarial example is not strictly due to the numerical input fed into a 
neural network. It’s the ensemble of shapes, colors, and contrast present in the 
image that achieves the trick, and you don’t need any direct access to the neural 
model to find out what ensemble works best. You can see how a network could 
mistake the image of a washing machine for a safe or a loudspeaker directly from 
this video made by the authors who tricked the TensorFlow camera demo, an 
application for mobile devices that performs on-the-fly image classification: 
https://www.youtube.com/watch?v=zQ_uMenoBCk.

https://arxiv.org/pdf/1710.08864.pdf
https://arxiv.org/pdf/1710.08864.pdf
https://arxiv.org/pdf/1607.02533.pdf
https://arxiv.org/pdf/1607.02533.pdf
https://www.youtube.com/watch?v=zQ_uMenoBCk
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Other researchers from Carnegie Mellon University have found a way to trick face 
detection into believing a person is a celebrity by fabricating eyeglass frames that 
can affect how a deep neural network recognizes instances. As automated security 
systems become widespread, the ability to trick the system by using simple 
 add-ons like eyeglasses could turn into a serious security threat. A paper called 
“Accessorize to a Crime: Real and Stealthy Attacks on State-of-the-Art Face Rec-
ognition” (https://www.cs.cmu.edu/~sbhagava/papers/face-rec-ccs16.pdf) 
describes how accessories could allow both dodging personal recognition and 
impersonation.

Finally, another disturbing real-world use of an adversarial example appears in the 
paper “Robust Physical-World Attacks on Deep Learning Visual Classification” 
(https://arxiv.org/pdf/1707.08945.pdf). Plain black-and-white stickers placed 
on a stop sign can affect how a self-driving car understands the signal, misunder-
standing it for another road indication. When you use more colorful (but also more 
noticeable) stickers, such as the ones described in the paper “Adversarial Patch” 
(https://arxiv.org/pdf/1712.09665.pdf), you can guide the predictions of a 
neural network in a particular direction by having it ignore anything but the sticker 
and its misleading information. As explained in the paper, a neural network could 
predict a banana to be anything else just by placing a proper deceitful sticker nearby.

At this point, you may wonder whether any defense against adversarial examples 
is possible, or if sooner or later they will destroy the public confidence in deep 
learning applications, especially in the self-driving car field. By intensely study-
ing how to mislead a neural network, researchers are also finding how to protect 
it against any misuse. First, neural networks can approximate any function. If the 
neural networks are complex enough, they can also determine by themselves how 
to rule out adversarial examples when taught by other examples. Second, novel 
techniques such as constraining the values in a neural network or reducing the 
neural network size after training it (a technique called distillation, used previously 
to make a network viable on devices with little memory) have been successfully 
tested against many different kinds of adversarial attacks.

https://www.cs.cmu.edu/~sbhagava/papers/face-rec-ccs16.pdf
https://arxiv.org/pdf/1707.08945.pdf
https://arxiv.org/pdf/1712.09665.pdf
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Chapter 14
Working on Language 
Processing

Acomputer can’t understand language; it only processes language for spe-
cific applications. In addition, a computer can’t process language unless 
it’s highly formal and precise, such as a programming language. Rigid 

syntax rules and grammar enables a computer to turn a program written by a 
developer in a computer language like Python into the machine language that 
determines what tasks the computer will perform. Human language is not at all 
similar to a computer’s language. Human language often lacks a precise structure 
and is full of errors, contradictions, and ambiguities, yet it works well for humans, 
with some effort on the part of the hearer, to serve human society and the prog-
ress of knowledge.

Programming a computer to process human language is therefore a daunting 
task, which is only recently possible using Natural Language Processing (NLP), 
deep learning Recurrent Neural Networks (RNNs), and word embeddings. Word 
embeddings is the name of the language-modeling and feature-learning technique 
in NLP that maps vocabulary to real number vectors using products like Word-
2vec, GloVe, and fastText. You also see it used in pretrained networks such as 
Google’s open-sourced BERT. In this chapter, you start with the basics needed to 
understand NLP and see how it can serve you in building better deep learning 
models for language problems. The chapter then explains word embeddings, how 

IN THIS CHAPTER

 » Discovering Natural Language 
Processing

 » Finding out how to turn words into 
numbers in deep learning

 » Mapping words and their meanings 
into word embeddings

 » Creating a sentiment analysis system 
using deep learning RNNs
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pretrained networks will revolutionize deep learning, and how computers can 
communicate through chatbots. The chapter closes with an example of a deep 
learning model applied sentiment analysis that discovers opinions in text.

You don’t have to type the source code for this chapter manually. In fact, it’s a lot 
easier if you use the downloadable source. The source code for this chapter appears 
in the DL4D_14_Processing_Language.ipynb and DL4D_14_Movie_Sentiment.
ipynb source code files (see the Introduction for details on how to find those 
source files).

Processing Language
As a simplification, you can view language as a sequence of words made of letters 
(as well as punctuation marks, symbols, emoticons, and so on). Deep learning 
processes language best by using layers of RNNs, such as LSTM or GRU (see 
 Chapter 11). However, knowing to use RNNs doesn’t tell you how to use sequences 
as inputs; you need to determine the kind of sequences. In fact, deep learning 
networks accept only numeric input values. Computers encode letter sequences 
that you understand into numbers according to a protocol, such as Unicode 
 Transformation Format-8 bit (UTF-8). UTF-8 is the most widely used encoding. 
(You can read the primer about encodings at https://www.alexreisner.com/
code/character-encoding.)

Deep learning can also process textual data using Convolutional Neural Networks 
(CNNs) instead of RNNs by representing sequences as matrices (similar to image 
processing). Keras supports CNN layers, such as the Conv1D (https://keras.io/
layers/convolutional/), which can operate on ordered features in time — that 
is, sequences of words or other signals. The 1D convolution output is usually fol-
lowed by a MaxPooling1D layer that summarizes the outputs. CNNs applied to 
sequences find a limit in their insensitivity to the global order of the sequence. 
(They tend to spot local patterns.) For this reason, they’re best used in sequence 
processing in combination with RNNs, not as their replacement.

Natural Language Processing (NLP) consists of a series of procedures that improve 
the processing of words and phrases for statistical analysis, machine learning 
algorithms, and deep learning. NLP owes its roots to computational linguistics 
that powered AI rule-based systems, such as expert systems, which made deci-
sions based on a computer translation of human knowledge, experience, and way 
of thinking. NLP digested textual information, which is unstructured, into more 
structured data so that expert systems could easily manipulate and evaluate it. 
Deep learning has taken the upper hand today, and expert systems are limited to 
specific applications in which interpretability and control of decision processes 

https://www.alexreisner.com/code/character-encoding
https://www.alexreisner.com/code/character-encoding
https://keras.io/layers/convolutional/
https://keras.io/layers/convolutional/
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are paramount (for instance, in medical applications and driving behavior  
decision systems on some self-driving cars). Yet, the NLP pipeline is still quite 
relevant for many deep learning applications.

Defining understanding as tokenization
In an NLP pipeline, the first step is to obtain raw text. Usually you store it in mem-
ory or access it from disk. When the data is too large to fit in memory, you maintain 
a pointer to it on disk (such as the directory name and the filename). In the follow-
ing example, you use three documents (represented by string variables) stored in a 
list (the document container is the corpus in computational linguistics):

import numpy as np
 
texts = ["My dog gets along with cats",
         "That cat is vicious",
         "My dog is happy when it is lunch"]

After obtaining the text, you process it. As you process each phrase, you extract 
the relevant features from the text (you usually create a bag-of-words matrix) and 
pass everything to a learning model, such as a deep learning algorithm. During 
text processing, you can use different transformations to manipulate the text 
(with tokenization being the only mandatory transformation):

 » Normalization: Remove capitalization.

 » Cleaning: Remove nontextual elements such as punctuation and numbers.

 » Tokenization: Split a sentence into individual words.

 » Stop word removal: Remove common, uninformative words that don’t add 
meaning to the sentence, such as the articles the and a. Removing negations 
such as not could be detrimental if you want to guess the sentiment.

 » Stemming: Reduce a word to its stem (which is the word form before adding 
inflectional affixes, as you can read here: https://www.thoughtco.com/
stem-word-forms-1692141). An algorithm, called a stemmer, can do this 
based on a series of rules.

 » Lemmatization: Transform a word into its dictionary form (the lemma). It’s 
an alternative to stemming, but it’s more complex because you don’t use an 
algorithm. Instead, you use a dictionary to convert every word into its lemma.

 » Pos-tagging: Tag every word in a phrase with its grammatical role in the 
sentence (such as tagging a word as a verb or as a noun).

https://www.thoughtco.com/stem-word-forms-1692141
https://www.thoughtco.com/stem-word-forms-1692141
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 » N-grams: Associate every word with a certain number (the n in n-gram), of 
following words and treat them as a unique set. Usually, bi-grams (a series of 
two adjacent elements or tokens) and tri-grams (a series of three adjacent 
elements or tokens) work the best for analysis purposes.

To achieve these transformations, you may need a specialized Python package 
such as NLTK (http://www.nltk.org/api/nltk.html) or Scikit-learn (see the 
tutorial at https://scikit-learn.org/stable/tutorial/text_analytics/
working_with_text_data.html). When working with deep learning and a large 
number of examples, you need only basic transformations: normalization, clean-
ing, and tokenization. The deep learning layers can determine what information 
to extract and process. When working with few examples, you do need to provide 
as much NLP processing as possible to help the deep learning network determine 
what to do in spite of the little guidance provided by the few examples.

Keras offers a function, keras.preprocessing.text.Tokenizer, that normalizes 
(using the lower parameter set to True), cleans (the filters parameter contains a 
string of the characters to remove, usually these: ’!"#$%&()*+,-./:;<=>?@
[\]^_`{|}~ ’) and tokenizes.

Putting all the documents into a bag
After processing the text, you have to extract the relevant features, which means 
transforming the remaining text into numeric information for the neural network 
to process. This is commonly done using the bag-of-words approach, which is 
obtained by frequency encoding or binary encoding the text. This process equates 
to transforming each word into a matrix column as wide as the number of words 
you need to represent. The following example shows how to achieve this process 
and what it implies. The example uses the texts list instantiated earlier in the 
chapter. As a first step, you prepare a basic normalization and tokenization using 
a few Python commands to determine the word vocabulary size for processing:

unique_words = set(word.lower() for phrase in texts for
                   word in phrase.split(" "))
print(f"There are {len(unique_words)} unique words")

The code reports 14 words. You now proceed to load the Tokenizer function from 
Keras and set it to process the text by providing the expected vocabulary size:

from keras.preprocessing.text import Tokenizer
vocabulary_size = len(unique_words) + 1
tokenizer = Tokenizer(num_words=vocabulary_size)

http://www.nltk.org/api/nltk.html
https://scikit-learn.org/stable/tutorial/text_analytics/working_with_text_data.html
https://scikit-learn.org/stable/tutorial/text_analytics/working_with_text_data.html
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Using a vocabulary_size that’s too small may exclude important words from the 
learning process. One that’s too large may uselessly consume computer memory. 
You need to provide Tokenizer with a correct estimate of the number of distinct 
words contained in the list of texts. You also always add 1 to the vocabulary_size 
to provide an extra word for the start of a phrase (a term that helps the deep 
learning network). At this point, Tokenizer maps the words present in the texts 
to indexes, which are numeric values representing the words in text:

tokenizer.fit_on_texts(texts)
print(tokenizer.index_word)

The resulting indexes are as follows:

{1: 'is', 2: 'my', 3: 'dog', 4: 'gets', 5: 'along',
 6: 'with', 7: 'cats', 8: 'that', 9: 'cat', 10: 'vicious',
 11: 'happy', 12: 'when', 13: 'it', 14: 'lunch'}

The indexes represent the column number that houses the word information:

  print(tokenizer.texts_to_matrix(texts))

Here’s the resulting matrix:

[[0. 0. 1. 1. 1. 1. 1. 1. 0. 0. 0. 0. 0. 0. 0.]
 [0. 1. 0. 0. 0. 0. 0. 0. 1. 1. 1. 0. 0. 0. 0.]
 [0. 1. 1. 1. 0. 0. 0. 0. 0. 0. 0. 1. 1. 1. 1.]]

The matrix consists of 15 columns (14 words plus the start of phrase pointer) and 
three rows, representing the three processed texts. This is the text matrix to  process 
using a shallow neural network (RNNs require a different format, as discussed 
later), which is always sized as vocabulary_size by the number of texts.

The numbers inside the matrix represent the number of times a word appears in 
the phrase. This isn’t the only representation possible, though. Here are the 
others:

 » Frequency encoding: Counts the number of word appearances in 
the phrase.

 » one-hot encoding or binary encoding: Notes the presence of a word in a 
phrase, no matter how many times it appear.

 » Term Frequency-Inverse Document Frequency (TF-IDF) score: Encodes a 
measure relative to how many times a word appears in a document relative to 
the overall number of words in the matrix. (Words with higher scores are 
more distinctive; words with lower scores are less informative.)
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You can use the TF-IDF transformation from Keras directly. The Tokenizer offers 
a method, texts_to_matrix, that by default encodes your text and transforms it 
into a matrix in which the columns are your words, the rows are your texts, and 
the values are the word frequency within a text. If you apply the transformation 
by specifying mode='tfidf’, the transformation uses TF-IDF instead of word fre-
quencies to fill the matrix values:

print(np.round(tokenizer.texts_to_matrix(texts,
                               mode='tfidf'), 1))

Note that by using a matrix representation, no matter whether you use binary, 
frequency, or the more sophisticated TF-IDF, you have lost any sense of word 
ordering that exists in the phrase. During processing, the words scatter in differ-
ent columns, and the neural network can’t guess the word order in a phrase. This 
lack of order is why you call it a bag-of-words approach. The bag-of-words 
approach is used in many machine learning algorithms, often with results rang-
ing from good to fair, and you can apply it to a neural network using dense archi-
tecture layers. Transformations of words encoded into n_grams (discussed in the 
previous paragraph as an NLP processing transformation) provide some more 
information, but again, you can’t relate the words.

RNNs keep track of sequences, so they still use one-hot encoding, but they don’t 
encode the entire phrase, rather, they individually encode each token (which could 
be a word, a character, or even a bunch of characters). For this reason, they expect 
a sequence of indexes representing the phrase:

print(tokenizer.texts_to_sequences(texts))

As each phrase passes to a neural network input as a sequence of index numbers, 
the number is turned into a one-hot encoded vector. The one-hot encoded vectors 
are then fed into the RNN’s layers one at a time, making them easy to learn. For 
instance, here’s the transformation of the first phrase in the matrix:

[[0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.]]

In this representation, you get a distinct matrix for each piece of text. Each matrix 
represents the individual texts as distinct words using columns, but now the rows 
represent the word appearance order. (The first row is the first word, the second 
row is the second word, and so on.)
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Memorizing Sequences that Matter
Working with TF-IDF and n-grams (either of letters or words) enables you to cre-
ate language models using few examples. Encoding phrases as sequences of single 
word one-hot encodings helps you effectively use RNNs. However, a better way to 
process textual data with greater speed (a way that creates powerful deep learning 
models) is by using embeddings.

Embeddings have a long history. The concept of embeddings appeared in statisti-
cal multivariate analysis under the name of multivariate correspondence analysis. 
Since the 1970s, Jean-Paul Benzécri, a French statistician and linguist, along with 
many other French researchers from the French School of Data Analysis discov-
ered how to map a limited set of words into low-dimensional spaces (usually 2-D 
representations, such as a topographic map). This process turns words into mean-
ingful numbers and projections, a discovery that brought about many applications 
in linguistics and in the social sciences and paved the way for the recent advance-
ments in language processing using deep learning.

Understanding semantics by word 
embeddings
Neural networks are incredibly fast at processing data and finding the right 
weights to achieve the best predictions, and so are all the deep learning layers 
discussed so far: from CNNs to RNNs. These neural networks have effectiveness 
limits based on the data they have to process, such as normalizing data to allow a 
neural network to work properly or forcing its range of input values between 0 to 
+1 or –1 to +1 to reduce trouble when updating network weights.

Normalization is done internally to the network by using activation functions like 
tanh, which squeezes values to appear in the range from –1 to +1 (https://tex.
stackexchange.com/questions/176101/plotting-the-graph-of-hyperbolic- 
tangent), or by using specialized layers like BatchNormalization (https://
keras.io/layers/normalization/), which apply a statistical transformation on 
values transferred from one layer to another.

Another kind of problematic data that a neural network finds difficult to handle is 
sparse data. You have sparse data when your data mostly consists of zero values, 
which is exactly what happens when you process textual data using frequency or 
binary encoding, even if you don’t use TF-IDF. When working with sparse data, 
not only will the neural network have difficulties finding a good solution (as tech-
nically explained in these Quora answers: https://www.quora.com/Why-are- 
deep-neural-networks-so-bad-with-sparse-data), but you’ll also need to have 

https://tex.stackexchange.com/questions/176101/plotting-the-graph-of-hyperbolic-tangent
https://tex.stackexchange.com/questions/176101/plotting-the-graph-of-hyperbolic-tangent
https://tex.stackexchange.com/questions/176101/plotting-the-graph-of-hyperbolic-tangent
https://keras.io/layers/normalization/
https://keras.io/layers/normalization/
https://www.quora.com/Why-are-deep-neural-networks-so-bad-with-sparse-data
https://www.quora.com/Why-are-deep-neural-networks-so-bad-with-sparse-data
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a huge number of weights for the input layer because sparse matrices are usually 
quite wide (they have many columns).

Sparse data problems motivated the use of word embeddings, which is a way to 
transform a sparse matrix into a dense one. Word embeddings can reduce the 
number of columns in the matrix from hundreds of thousands to a few hundred. 
Also, they allow no zero values inside the matrix. The word embedding process 
isn’t done randomly but is devised so that words get similar values when they 
have the same meaning or are found within the same topics. In other words, it’s a 
complex mapping; each embedding column is a specialty map (or a scale, if you 
prefer) and the similar or related words gather near each other.

Word embeddings aren’t the only advanced technique that you can use to make 
deep learning solutions shine with unstructured text. Recently, a series of pre-
trained networks appeared that make it even easier to model language problems. 
For instance, one of the most promising is the Google Bidirectional Encoder  
Representations from Transformers (BERT). Here’s a link to the Google AI blog 
post describing the technique: https://ai.googleblog.com/2018/11/open- 
sourcing-bert-state-of-art-pre.html.

As another example, you can have an embedding that transforms the name of dif-
ferent foods into columns of numeric values, which is a matrix of embedded 
words. On that matrix, the words that show fruits can have a similar score on a 
particular column. On the same column, vegetables can get different values, but 
not too far from those of fruit. Finally, the names of meat dishes can be far away 
in value from fruits and vegetables. An embedding performs this work by convert-
ing words into values in a matrix. The values are similar when the words are syn-
onymous or refer to a similar concept. (This is called semantic similarity, with 
semantic referring to the meaning of words.)

Because the same semantic meaning can occur across languages, you can use 
carefully built embeddings to help you translate from one language to another: A 
word in one language will have the same embedded scores as the same word in 
another language. Researchers at Facebook AI Research (FAIR) lab have found a 
way to synchronize different embeddings and leverage them to provide multilin-
gual applications based on deep learning (go to https://code.fb.com/ml- 
applications/under-the-hood-multilingual-embeddings/ for details).

An important aspect to keep in mind when working with word embeddings is that 
they are a product of data and thus reflect the content of the data used to create 
them. Because word embeddings require large amounts of text examples for 
proper generation, the content of texts fed into the embeddings during the 

https://ai.googleblog.com/2018/11/open-sourcing-bert-state-of-art-pre.html
https://ai.googleblog.com/2018/11/open-sourcing-bert-state-of-art-pre.html
https://code.fb.com/ml-applications/under-the-hood-multilingual-embeddings/
https://code.fb.com/ml-applications/under-the-hood-multilingual-embeddings/
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training is often retrieved automatically from the web and not fully scrutinized. 
The use of unverified input may lead to word embedding biases. For instance, you 
may be surprised to discover that the word embeddings create improper associa-
tions between words. You should be aware of such a risk and test your application 
carefully because the consequence is adding the same unfair biases to the deep 
learning applications you create.

For now, the most popular word embeddings commonly used for deep learning 
applications are

 » Word2vec: Created by a team of researchers led by Tomáš Mikolov at Google 
(you can read the original paper about this patented method here: https://
arxiv.org/pdf/1301.3781.pdf). It relies on two shallow neural network 
layers that attempt to learn to predict a word by knowing the words that 
precede and follow it. Word2vec comes in two versions: one based on 
something like a bag of words model (called continuous bag-of-words, or 
CBOW), which is less sensitive to word order; and another based on n-grams 
(called continuous skip-gram), which is more sensitive to the order. Word2vec 
learns to predict a word given its context using distributional hypothesis, which 
means that similar words appear in similar contexts of words. By learning 
what words should appear in different contexts, Word2vec internalizes the 
contexts. Both versions are suitable for most applications, but the skip-gram 
version is actually better at representing infrequent words.

 » GloVe (Global Vectors): Developed as an open source project at Stanford 
University (https://nlp.stanford.edu/projects/glove/), the GloVe 
approach is similar to statistical linguist methods. It takes word-word 
 co-occurrence statistics from a corpus and reduces the resulting sparse 
matrix to a dense one using matrix factorization, which is an algebraic 
method widely used in multivariate statistics.

 » fastText: Created by Facebook’s AI Research (FAIR) lab, fastText (https://
fasttext.cc/) is a word embedding, available in multiple languages that 
works with word subsequences instead of single words. It breaks a word 
down into many chunks of letters and embeds them. This technique has 
interesting implications because fastText offers a better representation of 
rare words (which are often composed of subsequences that aren’t rare) 
and determines how to project misspelled words. The capability to handle 
misspellings and errors allows an effective use of the embedding with text 
coming from social networks, e-mails, and other sources people don’t usually 
use a spell checker with.

https://arxiv.org/pdf/1301.3781.pdf
https://arxiv.org/pdf/1301.3781.pdf
https://nlp.stanford.edu/projects/glove/
https://fasttext.cc/
https://fasttext.cc/
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EXPLAINING WHY (KING – MAN) +  
WOMAN = QUEEN
Word embeddings translate a word into a series of numbers representing its position in 
the embedding itself. This series of numbers is the word vector. It’s usually made up of 
about 300 vectors (the number of vectors Google used in their model trained on the 
Google news dataset), and neural networks use it to process textual information better 
and more effectively. In fact, words with similar meaning or that are used in similar con-
texts have similar word vectors; therefore, neural networks can easily spot words with 
similar meaning. In addition, neural networks can work with analogies by manipulating 
vectors, which means that you can obtain amazing results such as

• king – man + woman = queen

• paris – france + poland = warsaw

It may seem like magic but it’s simple mathematics. You can see how things work by 
looking at the following figure, which represents two Word2vec vectors.

Each vector in Word2vec represents a different semantic; it could be food type, quality of a 
person, nationality, or gender. There are many semantics and they aren’t predefined; the 
embedding training created them automatically based on the presented examples. The 
figure shows two vectors from Word2vec: one representing the quality of a person; 
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Using AI for Sentiment Analysis
Sentiment analysis computationally derives from a written text using the writer’s 
attitude (whether positive, negative, or neutral), toward the text topic. This kind 
of analysis proves useful for people working in marketing and communication 
because it helps them understand what customers and consumers think of a prod-
uct or service and thus, act appropriately (for instance, trying to recover unsatis-
fied customers or deciding to use a different sales strategy). Everyone performs 
sentiment analysis. For example, when reading text, people naturally try to deter-
mine the sentiment that moved the person who wrote it. However, when the num-
ber of texts to read and understand is too huge and the text constantly accumulates, 
as in social media and customer e-mails, automating the task is important.

The upcoming example is a test run of RNNs using Keras and TensorFlow that 
builds a sentiment analysis algorithm capable of classifying the attitudes expressed 
in a film review. The data is a sample of the IMDb dataset that contains 50,000 
reviews (split in half between train and test sets) of movies accompanied by a 
label expressing the sentiment of the review (0=negative, 1=positive). IMDb 
(https://www.imdb.com/) is a large online database containing information 
about films, TV series, and video games. Originally maintained by a fan base, it’s 
now run by an Amazon subsidiary. On IMDb, people find the information they 
need about their favorite show as well as post their comments or write a review for 
other visitors to read.

Keras offers a downloadable wrapper for IMDb data. You prepare, shuffle, and 
arrange this data into a train and a test set. This dataset appears among other use-
ful datasets at https://keras.io/datasets/. In particular, the IMDb textual 
data offered by Keras is cleansed of punctuation, normalized into lowercase, and 
transformed into numeric values. Each word is coded into a number representing 
its ranking in frequency. Most frequent words have low numbers; less frequent 
words have higher numbers.

another representing the gender of a person. The first vector defines roles, starting with 
king and queen with higher scores, passing through actor and actress, and finally ending 
with man and woman having lower scores. If you add this vector to the gender vector, you 
see that the male and female variants separate by different scores on that vector. Now, 
when you subtract man and add woman to king, you are simply moving away from the 
coordinates of king and shifting along the gender vector until you reach the position of 
queen. This simple trick of coordinates, which doesn’t imply any understanding of words 
by Word2vec, is possible because all the vectors of a word embedding are synchronized, 
representing the meaning of a language, and you can meaningfully shift from one coordi-
nate to another as you were shifting concepts in reasoning.

https://www.imdb.com/
https://keras.io/datasets/
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As a starter point, the code imports the imdb function from Keras and uses it to 
retrieve the data from the Internet (about a 17.5MB download). The parameters 
that the example uses encompass just the top 10,000 words, and Keras should 
shuffle the data using a specific random seed. (Knowing the seed makes it possible 
to reproduce the shuffle as needed.) The function returns two train and test sets, 
both made of text sequences and the sentiment outcome.

from keras.datasets import imdb
 
top_words = 10000
((x_train, y_train),
 (x_test, y_test)) = imdb.load_data(num_words=top_words,
                                    seed=21)

After the previous code completes, you can check the number of examples using 
the following code:

print("Training examples: %i" % len(x_train))
print("Test examples: %i" % len(x_test))

After inquiring about the number of cases available for use in the training and test 
phase of the neural network, the code outputs an answer of 25,000 examples for 
each phase. (This dataset is a relatively small one for a language problem; clearly 
the dataset is mainly for demonstration purposes.) In addition, the code deter-
mines whether the dataset is balanced, which means it has an almost equal num-
ber of positive and negative sentiment examples.

import numpy as np
print(np.unique(y_train, return_counts=True))

The result, array([12500, 12500]), confirms that the dataset is split evenly 
between positive and negative outcomes. Such a balance between the response 
classes is exclusively because of the demonstrative nature of the dataset. In the 
real world, you seldom find balanced datasets. The next step creates some Python 
dictionaries that can convert between the code used in the dataset and the real 
words. In fact, the dataset used in this example is preprocessed and provides 
sequences of numbers representing the words, not the words themselves. (LSTM 
and GRU algorithms that you find in Keras expect sequences of numbers as 
numbers.)

word_to_id = {w:i+3 for w,i in imdb.get_word_index().items()}
id_to_word = {0:'<PAD>', 1:'<START>', 2:'<UNK>'}
id_to_word.update({i+3:w for w,i in imdb.get_word_index().

items()}) 
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def convert_to_text(sequence):
    return ' '.join([id_to_word[s] for s in sequence if s>=3])
 
print(convert_to_text(x_train[8]))

The previous code snippet defines two conversion dictionaries (from words to 
numeric codes and vice versa) and a function that translates the dataset examples 
into readable text. As an example, the code prints the ninth example: “this movie 
was like a bad train wreck as horrible as it was . . .”. From this excerpt, you can 
easily anticipate that the sentiment for this movie isn’t positive. Words such as 
bad, wreck, and horrible convey a strong negative feeling, and that makes guessing 
the correct sentiment easy.

In this example, you receive the numeric sequences and turn them back into 
words, but the opposite is common. Usually, you get phrases made up of words 
and turn them into sequences of integers to feed to a layer of RNNs. Keras offers a 
specialized function, Tokenizer (see https://keras.io/preprocessing/text/# 
tokenizer), which can do that for you. It uses the methods fit_on_text, to learn 
how to map words to integers from training data, and texts_to_matrix, to trans-
form text into a sequence.

However, in other phrases, you may not find such revealing words. The feeling is 
expressed in a more subtle or indirect way, and understanding the sentiment early 
in the text may not be possible because revealing phrases and words may appear 
much later in the discourse. For this reason, you also need to decide how much of 
the phrase you want to analyze. Conventionally, you take an initial part of the text 
and use it as representative of the entire review. Sometimes you just need a few 
initial words — for instance the first 50 words — to get the sense; sometimes you 
need more. Especially long texts don’t reveal their orientation early. It is therefore 
up to you to understand the type of text you are working with and decide how 
many words to analyze using deep learning. This example considers only the first 
200 words, which should suffice.

You have noticed that the code starts giving code to words beginning with the 
number 3, thus leaving codes from 0 to 2. Lower numbers are used for special 
tags, such as signaling the start of the phrase, filling empty spaces to have the 
sequence fixed at a certain length, and marking the words that are excluded 
because they’re not frequent enough. This example picks up only the most fre-
quent 10,000 words. Using tags to point out start, end, and notable situations is a 
trick that works with RNNs, especially for machine translation.

https://keras.io/preprocessing/text/#tokenizer
https://keras.io/preprocessing/text/#tokenizer
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from keras.preprocessing.sequence import pad_sequences
 
max_pad = 200
x_train = pad_sequences(x_train,
                        maxlen=max_pad)
 
x_test = pad_sequences(x_test,
                       maxlen=max_pad)
 
print(x_train[0])

By using the pad_sequences function from Keras with max_pad set to 200, the 
code takes the first two hundred words of each review. In case the review contains 
fewer than two hundred words, as many zero values as necessary precede the 
sequence to reach the required number of sequence elements. Cutting the 
sequences to a certain length and filling the voids with zero values is called input 
padding, an important processing activity when using RNNs like deep learning 
algorithms. Now the code designs the architecture:

from keras.models import Sequential
from keras.layers import Bidirectional, Dense, Dropout
from keras.layers import GlobalMaxPool1D, LSTM
from keras.layers.embeddings import Embedding
 
embedding_vector_length = 32
model = Sequential()
model.add(Embedding(top_words,
                    embedding_vector_length,
                    input_length=max_pad))
 
model.add(Bidirectional(LSTM(64, return_sequences=True)))
model.add(GlobalMaxPool1D())
model.add(Dense(16, activation="relu"))
model.add(Dense(1, activation="sigmoid"))
 
model.compile(loss='binary_crossentropy',
              optimizer='adam',
              metrics=['accuracy'])
 
print(model.summary())

The previous code snippet defines the shape of the deep learning model, where it 
uses a few specialized layers for natural language processing from Keras. The 
example also has required a summary of the model (model.summary() command) 
to determine what is happening with architecture by using different neural layers.
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You have the Embedding layer, which transforms the numeric sequences into a 
dense word embedding. That type of word embedding is more suitable for being 
learned by a layer of RNNs, as discussed in the previous paragraph in this chapter. 
Keras provides an Embedding layer, which, apart from necessarily having to be the 
first layer of the network, can accomplish two tasks:

 » Applying pretrained word embedding (such as Word2vec or GloVe) to the 
sequence input. You just need to pass the matrix containing the embedding 
to its parameter weights.

 » Creating a word embedding from scratch, based on the inputs it receives.

In this second case, Embedding just needs to know:

 » input_dim: The size of the vocabulary expected from data

 » output_dim: The size of the embedding space that will be produced (the 
so-called dimensions)

 » input_length: The sequence size to expect

After you determine the parameters, Embedding will find the better weights to 
transform the sequences into a dense matrix during training. The dense matrix 
size is given by the length of sequences and the dimensionality of the embedding.

If you use The Embedding layer provided by Keras, you have to remember that the 
function provides only a weight matrix of the size of the vocabulary by the dimen-
sion of the desired embedding. It maps the words to the columns of the matrix and 
then tunes the matrix weights to the provided examples. This solution, although 
practical for nonstandard language problems, is not analogous to the word embed-
dings discussed previously, which are trained in a different way and on millions of 
examples.

The example uses Bidirectional wrapping  — an LSTM layer of 64 cells. 
 Bidirectional transforms a normal LSTM layer by doubling it: On the first side, 
it applies the normal sequence of inputs you provide; on the second, it passes the 
reverse of the sequence. You use this approach because sometimes you use words 
in a different order, and building a bidirectional layer will catch any word pattern, 
no matter the order. The Keras implementation is indeed straightforward: You 
just apply it as a function on the layer you want to render bidirectionally.

The bidirectional LSTM is set to return sequences (return_sequences=True); that 
is, for each cell, it returns the result provided after seeing each element of the 
sequence. The results, for each sequence, is an output matrix of 200 x 128, where 
200 is the number of sequence elements and 128 is the number of LSTM cells used 
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in the layer. This technique prevents the RNN from taking the last result of each 
LSTM cell. Hints about the sentiment of the text could actually appear anywhere 
in the embedded words sequence.

In short, it’s important not to take the last result of each cell, but rather the best 
result of it. The code therefore relies on the following layer, GlobalMaxPool1D, to 
check each sequence of results provided by each LSTM cell and retain only the 
maximum result. That should ensure that the example picks the strongest signal 
from each LSTM cell, which is hopefully specialized by its training to pick some 
meaningful signals.

After the neural signals are filtered, the example has a layer of 128 outputs, one 
for each LSTM cell. The code reduces and mixes the signals using a successive 
dense layer of 16 neurons with ReLU activation (thus making only positive signals 
pass through; see the “Choosing the right activation function” section of  Chapter 8 
for details). The architecture ends with a final node using sigmoid activation, 
which will squeeze the results into the 0–1 range and make them look like prob-
abilities. Having defined the architecture, you can now train the network. Three 
epochs (passing the data three times through the network to have it learn the 
patterns) will suffice. The code uses batches of 256 reviews each time, which 
allows the network to see enough variety of words and sentiments each time 
before updating its weights using backpropagation. Finally, the code focuses on 
the results provided by the validation data (which isn’t part of the training data). 
Getting a good result from the validation data means the neural net is processing 
the input correctly. The code reports on validation data just after each epoch 
finishes.

history = model.fit(x_train, y_train,
                    validation_data=(x_test, y_test),
                    epochs=3, batch_size=256)

Getting the results takes a while, but if you are using a GPU, it will complete in the 
time you take to drink a cup of coffee. At this point, you can evaluate the results, 
again using the validation data. (The results shouldn’t have any surprises or dif-
ferences from what the code reported during training.)

loss, metric = model.evaluate(x_test, y_test, verbose=0)
print("Test accuracy: %0.3f" % metric)

The final accuracy, which is the percentage of correct answers from the deep neu-
ral network, will be a value of around 85—86 percent. The result will change 
slightly each time you run the experiment because of randomization when 
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building your neural network. That’s perfectly normal given the small size of the 
data you are working with. If you start with the right lucky weights, the learning 
will be easier in such a short training session.

In the end, your network is a sentiment analyzer that can guess the sentiment 
expressed in a movie review correctly about 85 percent of the time. Given even 
more training data and more sophisticated neural architectures, you can get 
results that are even more impressive. In marketing, a similar tool is used to auto-
mate many processes that require reading text and taking action. Again, you could 
couple a network like this with a neural network that listens to a voice and turns 
it into text. (This is another application of RNNs, now powering Alexa, Siri, Google 
Voice, and many other personal assistants.) The transition allows the application 
to understand the sentiment even in vocal expressions, such as a phone call from 
a customer.
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Chapter 15
Generating Music 
and Visual Art

You can find considerable discussions online about whether computers can 
be creative by employing deep learning. The dialogue goes to the very 
essence of what it means to be creative. Philosophers and others have dis-

cussed the topic endlessly throughout human history without arriving at a con-
clusion as to what, precisely, creativity means. Consequently, a single chapter in 
a book written in just a few months won’t solve the problem for you.

However, to provide a basis for the discussions in this chapter, this book defines 
creativity as the ability to define new ideas, patterns, relationships, and so on. The 
emphasis is on new: the originality, progressiveness, and imagination that 
humans provide. It doesn’t include copying someone else’s style and calling it 
one’s own. Of course, this definition will almost certainly raise the ire of some 
while garnering the accepting nods of others, but to make the discussion work at 
all, you need a definition. Mind you, this definition doesn’t exclude creativity by 
nonhumans. For example, some people can make a case for creative apes (see 
http://www.bbc.com/future/story/20140723-are-we-the-only-creative- 
species for more details).

This chapter does help you understand how creativity and computers can come 
together in a fascinating collaboration. First, you must consider that computers 

IN THIS CHAPTER

 » Discovering how to imitate creativity

 » Understanding that deep learning 
can’t create

 » Developing art based on established 
styles

 » Composing music based on 
established styles

http://www.bbc.com/future/story/20140723-are-we-the-only-creative-species
http://www.bbc.com/future/story/20140723-are-we-the-only-creative-species
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rely on math to do everything, and art and music are no exception. A computer can 
transfer existing art or music patterns to a neural network and use the result to 
generate something that looks new but actually relies on the existing pattern. 
However, along with this revelation, a second consideration is that a human 
designed the algorithm used to perform the statistical analysis of the pattern and 
subsequently output the new art. In other words, the computer didn’t perform 
this task on its own; it relied on a human to provide the means to accomplish the 
task. Moreover, a human will decide on which style to mimic and define what sort 
of output might prove aesthetically pleasing. In short, the computer ends up being 
a tool in the hands of an exceptionally smart human to automate the process of 
creating what could be deemed as new, but really isn’t.

As part of the process of defining how some can see a computer as creative, the 
chapter also defines how computers mimic an established style. You can see for 
yourself that deep learning relies on math to perform a task generally not associ-
ated with math at all. An artist or musician doesn’t rely on calculations to create 
something new, but could rely on calculations to see how others performed their 
task. When an artist or musician employs math to study another style, the process 
is called learning, not creating. Of course, this entire book is about how deep 
learning performs learning tasks, and even that process differs greatly from how 
humans learn.

Learning to Imitate Art and Life
You have likely seen interesting visions of AI art, such as those mentioned in the 
article at https://news.artnet.com/art-world/ai-art-comes-to-market-is-it- 
worth-the-hype-1352011. The art undeniably has aesthetic appeal. In fact, the 
article mentions that Christie’s, one of the most famous auction houses in the 
world, originally expected to sell the piece of art for $7,000 to $10,000 but it actu-
ally sold for $432,000, according to the Guardian (https://www.theguardian.
com/ artanddesign/shortcuts/2018/oct/26/call-that-art-can-a-computer-
be-a-painter) and the New York Times (https://www.nytimes.com/2018/10/25/
arts/design/ai-art-sold-christies.html). So not only is type of art appeal-
ing, it can also generate a lot of money. However, in every unbiased story you 
read, the question remains as to whether the AI art actually is art at all. The 
 following sections help you understand that computer generation doesn’t corre-
late to creative—it translates to amazing algorithms employing the latest in 
statistics.

https://news.artnet.com/art-world/ai-art-comes-to-market-is-it-worth-the-hype-1352011
https://news.artnet.com/art-world/ai-art-comes-to-market-is-it-worth-the-hype-1352011
https://www.theguardian.com/artanddesign/shortcuts/2018/oct/26/call-that-art-can-a-computer-be-a-painter
https://www.theguardian.com/artanddesign/shortcuts/2018/oct/26/call-that-art-can-a-computer-be-a-painter
https://www.theguardian.com/artanddesign/shortcuts/2018/oct/26/call-that-art-can-a-computer-be-a-painter
https://www.nytimes.com/2018/10/25/arts/design/ai-art-sold-christies.html
https://www.nytimes.com/2018/10/25/arts/design/ai-art-sold-christies.html
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Transferring an artistic style
One of the differentiators of art is the artistic style. Even when someone takes a 
photograph and displays it as art (http://www.wallartprints.com.au/blog/ 
artistic-photography/), the method in which the photograph is taken, pro-
cessed, and optionally touched up all define a particular style. In many cases, 
depending on the skill of the artist, you can’t even tell that you’re looking at a 
photograph because of its artistic elements (https://www.pinterest.com/ 
lorimcneeartist/artistic-photography/?lp=true).

Some artists become so famous for their particular style that others take time to 
study it in depth to improve their own technique. For example, Vincent van Gogh’s 
unique style is often mimicked (https://www.artble.com/artists/vincent_van_ 
gogh/more_information/style_and_technique). Van Gogh’s style — his use of 
colors, methods, media, subject matter, and a wealth of other considerations — 
requires intense study for humans to replicate. Humans improvise, so the adjec-
tive suffix esque often appears as a descriptor of a person’s style. A critic might say 
that a particular artist uses a van Goghesque methodology.

To create art, the computer relies on a particular artistic style to modify the 
appearance of a source picture. In contrast to a human, a computer can perfectly 
replicate a particular style given enough consistent examples. Of course, you 
could create a sort of mixed style by using examples from various periods in the 
artist’s life. The point is that the computer isn’t creating a new style, nor is it 
improvising. The source image isn’t new, either. You see a perfectly copied style 
and a perfectly copied source image when working with a computer, and you 
transfer the style to the source image to create something that looks a little like 
both.

The process used to transfer the style to the source picture and produce an output 
is complex and generates a lot of discussion. For example, considering where 
source code ends and elements such as training begin is important. The article at 
https://www.theverge.com/2018/10/23/18013190/ai-art-portrait- 
auction-christies-belamy-obvious-robbie-barrat-gans discusses one such 
situation that involves the use of existing code but different training from the 
original implementation, which has people wondering over issues such as attri-
bution when art is generated by computer. Mind you, all the discussion focuses on 
the humans who create the code and perform the training of the computer; the 
computer itself doesn’t figure in to the discussion because the computer is simply 
crunching numbers.

http://www.wallartprints.com.au/blog/artistic-photography/
http://www.wallartprints.com.au/blog/artistic-photography/
https://www.pinterest.com/lorimcneeartist/artistic-photography/?lp=true
https://www.pinterest.com/lorimcneeartist/artistic-photography/?lp=true
https://www.artble.com/artists/vincent_van_gogh/more_information/style_and_technique
https://www.artble.com/artists/vincent_van_gogh/more_information/style_and_technique
https://www.theverge.com/2018/10/23/18013190/ai-art-portrait-auction-christies-belamy-obvious-robbie-barrat-gans
https://www.theverge.com/2018/10/23/18013190/ai-art-portrait-auction-christies-belamy-obvious-robbie-barrat-gans
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Reducing the problem to statistics
Computers can’t actually see anything. Someone takes a digital image of a real-
world object or creates a fanciful drawing like the one in Figure 15-1, and each 
pixel in that image appears as tuples of numbers representing the red, blue, and 
green values of each pixel, as shown in Figure 15-2. These numbers, in turn, are 
what the computer interacts with using an algorithm. The computer doesn’t 
understand that the numbers form a tuple — that’s a human convention. All it 
knows is that the algorithm defines the operations that must take place on the 
series of numbers. In short, the art becomes a matter of manipulating numbers 
using a variety of methods, including statistics.

OTHER SORTS OF GENERATED ART
Keep in mind that this book discusses a particular kind of computer art — the sort gener-
ated by a deep learning network. You can find all sorts of other computer generated art 
that doesn’t necessarily rely on deep learning. One of the earlier examples of generated 
art is the fractal (http://www.arthistory.net/fractal-art/), created by using  
an equation. The first of these fractals is the Mandelbrot set (http://mathworld. 
wolfram.com/MandelbrotSet.html) created in 1980 by Benoit B. Mandelbrot, a Polish 
mathematician. Some fractals today are quite beautiful (https://www.creativebloq.
com/computer-arts/5-eye-popping-examples-fractal-art-71412376) and even 
incorporate some real world elements. Even so, the creativity belongs not to the com-
puter, which is simply crunching numbers, but to the mathematician or artist who 
designs the algorithm used to generate the fractal.

A next step in generated art is Computer Generated Imagery (CGI). You have likely seen 
some amazing examples of CGI art in movies, but it appears just about everywhere today 
(https://www.vice.com/en_us/topic/cgi-art). Some people restrict CGI to 3-D art 
and some restrict it to 3-D dynamic art of the sort used for video games and movies. No 
matter what restrictions you place on CGI art, the process is essentially the same. An artist 
decides on a series of transformations to create effects on the computer screen, such  
as water that looks wet and fog that looks misty (https://www.widewalls.ch/cgi- 
artworks/). CGI also sees use in building models based on designs, such as architectural 
drawings (https://archicgi.com/3d-modeling-things-youve-got-know/ and 
https://oceancgi.com/). These models help you visualize what the finished product 
will look like long before the first spade of earth is turned. However, in the end what you 
see is the creativity of an artist, architect, mathematician, or other individual in telling the 
computer to perform various kinds of calculations to transform design into something 
that looks real. The computer understands nothing in all this.

http://www.arthistory.net/fractal-art/
http://mathworld.wolfram.com/MandelbrotSet.html
http://mathworld.wolfram.com/MandelbrotSet.html
https://www.creativebloq.com/computer-arts/5-eye-popping-examples-fractal-art-71412376
https://www.creativebloq.com/computer-arts/5-eye-popping-examples-fractal-art-71412376
https://www.vice.com/en_us/topic/cgi-art
https://www.widewalls.ch/cgi-artworks/
https://www.widewalls.ch/cgi-artworks/
https://archicgi.com/3d-modeling-things-youve-got-know/
https://oceancgi.com/
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Deep learning relies on a number of algorithms to manipulate the pixels in a 
source drawing in a variety of ways to reflect the particular style you want to use. 
In fact, you can find a dizzying array of such algorithms because everyone appears 
to have a different idea of how to force a computer to create particular kinds of art. 
The point is that all these methods rely on algorithms that act on a series of num-
bers to perform the task; the computer never takes brush in hand to actually  create 
something new. Two methods appear to drive the current strategies, though:

 » Convolutional Neural Networks (CNNs): See Chapter 10 for an overview; 
also see the “Defining a new piece based on a single artist” section, later in this 
chapter, for the artistic perspective

 » Generative Adversarial Networks (GANs): See Chapter 16 for an overview; 
also check out the “Visualizing how neural networks dream” section, later in 
this chapter, again for the artistic perspective

FIGURE 15-1: 
A human might 

see a fanciful 
drawing.

FIGURE 15-2: 
The computer 

sees a series  
of numbers.
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Understanding that deep learning  
doesn’t create
For art created by deep learning, the images are borrowed, the computer doesn’t 
understand them at all, and the computer relies on algorithms to perform the task 
of modifying the images. Deep learning doesn’t even choose the method of learn-
ing about the images — a human does that. In short, deep learning is an interest-
ing method of manipulating images created by someone else using a style that 
another person also created.

Whether deep learning can create something isn’t the real question to ask. The 
question that matters is whether humans can appreciate the result of the deep 
learning output. Despite its inability to understand or create, deep learning can 
deliver some amazing results. Consequently, creativity is best left to humans, but 
deep learning can give everyone an expressive tool, even people who aren’t artis-
tic. For example, you could use deep learning to create a van Gogh version of a 
loved one to hang on your wall. The fact that you participated in the process and 
that you have something that looks professionally drawn is the point to  
consider — not whether the computer is creative.

Mimicking an Artist
Deep learning helps you mimic a particular artist. You can mimic any artist you 
want because the computer doesn’t understand anything about style or drawing. 
The deep learning algorithm will faithfully reproduce a style based on the inputs 
you provide. Consequently, mimicking is a flexible way to produce a particular 
output, as described in the following sections.

Defining a new piece based  
on a single artist
Convolutional Neural Networks (CNNs) appear in a number of uses for deep 
learning applications. For example, they’re used for self-driving cars and facial 
recognition systems. Chapter 10 provides some additional examples of how CNNs 
do their job, but the point is that a CNN can perform recognition tasks well given 
enough training.

Interestingly, CNNs work particularly well in recognizing art style. So you can 
combine two pieces of art into a single piece. However, those two pieces supply 
two different kinds of input for the CNN:



CHAPTER 15  Generating Music and Visual Art      275

 » Content: The image that defines the desired output. For example, if you 
provide a content image of a cat, the output will look like a cat. It won’t be the 
same cat you started with, but the content defines the desired output with 
regard to what a human will see.

 » Style: The image that defines the desired modification. For example, if you 
provide an example of a van Gogh painting, the output will reflect this style.

In general, you see CNNs that rely on a single content image and a single style 
image. Using just the two images like this lets you see how content and style work 
together to produce a particular output. The example at https://medium.com/
mlreview/making-ai-art-with-style-transfer-using-keras-8bb5fa44b216 
provides a method for combining two images in this manner.

Of course, you need to decide how to combine the images. In fact, this is where  
the statistics of deep learning come into play. To perform this task, you use a  
neural style transfer, as outlined in the paper “A Neural Algorithm of Artistic  
Style” by Leon A.  Gatys, Alexander S.  Ecker, and Matthias Bethge (https://
arxiv.org/pdf/1508.06576.pdf or https://www.robots.ox.ac.uk/~vgg/rg/
papers/1508.06576v2.pdf).

The algorithm works with these kinds of images: a content image, which depicts 
the object you want to represent; a style image, which provides the art style you 
want to mimic; and an input image, which is the image to transform. The input 
image is usually a random image or the same image as the content image. Trans-
ferring the style implies preserving the content (that is, if you start with a photo 
of a dog, the result will still depict a dog). However, the transformed input image 
is nearer to the style image in presentation. The algorithm you use will define two 
loss measures:

 » Content loss: Determines the amount of the original image that the CNN 
uses to provide output. A greater loss here means that the output will better 
reflect the style you provide. However, you can reach a point at which the loss 
is so great that you can no longer to see the content.

 » Style loss: Determines the manner in which the style is applied to the content. 
A higher level of loss means that the content retains more of its original style. 
The style loss must be low enough for you to end up with a new piece of art 
that reflects the desired style.

Having just two images doesn’t allow for extensive training, so you use a pre-
trained deep learning network, such as VGG-19 (the 2014 winner of the ImageNet 
challenge created by the Visual Geometry Group, VGG, at Oxford University). The 
pretrained deep learning network already knows how to process an image into 
image features of different complexity. The algorithm for neural style transfer 

https://medium.com/mlreview/making-ai-art-with-style-transfer-using-keras-8bb5fa44b216
https://medium.com/mlreview/making-ai-art-with-style-transfer-using-keras-8bb5fa44b216
https://arxiv.org/pdf/1508.06576.pdf
https://arxiv.org/pdf/1508.06576.pdf
https://www.robots.ox.ac.uk/~vgg/rg/papers/1508.06576v2.pdf
https://www.robots.ox.ac.uk/~vgg/rg/papers/1508.06576v2.pdf
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picks the CNN of a VGG-19, excluding the final fully connected layers. In this way, 
you have the network that acts as a processing filter for images. When you send in 
an image, VGG-19 transforms it into a neural network representation, which 
could be completely different from the original. However, when you use only the 
top layers of the network as image filters, the network transforms the resulting 
image but doesn’t completely change it.

Taking advantage of such transformative neural network properties, the neural 
transfer style doesn’t use all the convolutions in the VGG-19. Instead, it monitors 
them using the two loss measures to assure that, in spite of the transformations 
applied to the image, the network maintains the content and applies the style. In 
this way, when you pass the input image through VGG-19 several times, its 
weights adjust to accomplish the double task of content preservation and style 
learning. After a few iterations, which actually require a lot of computations and 
weight updates, the network transforms your input image into the anticipated 
image and art style.

You often see the output of a CNN referred to as a pastiche. It’s a fancy word that 
generally means an artistic piece composed of elements borrowed from motifs or 
techniques of other artists. Given the nature of deep learning art, the term is 
appropriate.

Combining styles to create new art
If you really want to get fancy, you can create a pastiche based on multiple style 
images. For example, you could train the CNN using multiple Monet works so that 
the pastiche looks more like a Monet piece in general. Of course, you could just as 
easily combine the styles of multiple impressionist painters to create what appears 
to be a unique piece of art that reflects the impressionist style in general. The 
actual method for performing this task varies, but the article at https://
ai.googleblog.com/2016/10/supercharging-style-transfer.html offers ideas 
for accomplishing the task.

Visualizing how neural networks dream
Using a CNN is essentially a manual process with regard to choosing the loss 
functions. The success or failure of a CNN depends on the human setting the var-
ious values. A GAN takes a different approach. It relies on two interactive deep 
networks to automatically adjust the values to provide better output. You can see 
these two deep networks having these names:

https://ai.googleblog.com/2016/10/supercharging-style-transfer.html
https://ai.googleblog.com/2016/10/supercharging-style-transfer.html
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 » Generator: Creates an image based on the inputs you provide. The image 
needs to retain the original content, but with the appropriate level of style to 
produce a pastiche that is hard to distinguish from an original.

 » Discriminator: Determines whether the generator output is real enough to 
pass as an original. If not, the discriminator provides feedback telling the 
generator what is wrong with the pastiche.

To make this setup work, you actually train two models: one for the generator and 
another for the discriminator. The two act in concert, with the generator creating 
new samples and the discriminator telling the generator what is wrong with each 
sample. The process goes back and forth between generator and discriminator 
until the pastiche achieves a specific level of perfection. In Chapter 16, you can 
find an even more detailed explanation about how GANs work.

This approach is advantageous because it provides a greater level of automation 
and a higher probability of good results than using a CNN. The disadvantage is 
that this approach also requires considerable time to implement, and the process-
ing requirements are much greater. Consequently, using the CNN approach is 
often better to achieve a result that’s good enough. You can see an example of the 
GAN approach at https://towardsdatascience.com/gan-by-example-using- 
keras-on-tensorflow-backend-1a6d515a60d0.

Using a network to compose music
This chapter focuses mainly on visual art because you can easily judge the subtle 
changes that occur to it. However, the same techniques also work with music. You 
can use CNNs and GANs to create music based on a specific style. Computers can’t 
see visual art, nor can they hear music. The musical tones become numbers that 
the computer manipulates just as it manipulates the numbers associated with 
pixels. The computer doesn’t see any difference at all.

However, deep learning does detect a difference. Yes, you use the same algorithms 
for music as for visual art, but the settings you use are different, and the training 
is unique as well. In addition, some sources say that training for music is a lot 
harder than for art (see https://motherboard.vice.com/en_us/article/
qvq54v/why-is-ai-generated-music-still-so-bad for details). Of course, part 
of the difficulty stems from the differences among the humans listening to the 
music. As a group, humans seem to have a hard time defining aesthetically pleas-
ing music, and even people who like a particular style or particular artists rarely 
like everything those artists produce.

https://towardsdatascience.com/gan-by-example-using-keras-on-tensorflow-backend-1a6d515a60d0
https://towardsdatascience.com/gan-by-example-using-keras-on-tensorflow-backend-1a6d515a60d0
https://motherboard.vice.com/en_us/article/qvq54v/why-is-ai-generated-music-still-so-bad
https://motherboard.vice.com/en_us/article/qvq54v/why-is-ai-generated-music-still-so-bad
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In some respects, the tools used to compose music using AI are more formalized 
and mature than those used for visual art. This doesn’t mean that the music com-
position tools always produce great results, but it does mean that you can easily 
buy a package to perform music composition tasks. Here are the two most popular 
offerings today:

 » Amper: https://www.ampermusic.com/

 » Jukedeck: https://www.jukedeck.com/

AI music composition is different from visual art generation because the music 
tools have been around for a longer time, according to the article at https://www.
theverge.com/2018/8/31/17777008/artificial-intelligence-taryn- 
southern-amper-music. The late songwriter and performer David Bowie used an 
older application called Verbasizer (https://motherboard.vice.com/en_us/
article/xygxpn/the-verbasizer-was-david-bowies-1995-lyric- writing- 
mac-app) in 1995 to aid in his work. The key idea here is that this tool aided in, 
rather than produced, work. The human being is the creative talent; the AI serves 
as a creative tool to produce better music. Consequently, music takes on a collab-
orative feel, rather than giving the AI center stage.

https://www.ampermusic.com/
https://www.jukedeck.com/
https://www.theverge.com/2018/8/31/17777008/artificial-intelligence-taryn-southern-amper-music
https://www.theverge.com/2018/8/31/17777008/artificial-intelligence-taryn-southern-amper-music
https://www.theverge.com/2018/8/31/17777008/artificial-intelligence-taryn-southern-amper-music
https://motherboard.vice.com/en_us/article/xygxpn/the-verbasizer-was-david-bowies-1995-lyric-writing-mac-app
https://motherboard.vice.com/en_us/article/xygxpn/the-verbasizer-was-david-bowies-1995-lyric-writing-mac-app
https://motherboard.vice.com/en_us/article/xygxpn/the-verbasizer-was-david-bowies-1995-lyric-writing-mac-app
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Chapter 16
Building Generative 
Adversarial Networks

Deep learning has turned into a hot technology, and new research produces 
ever more impressive discoveries all the time. Discoveries always appear at 
an even faster rate during the Neural Information Processing Systems 

(NeurIPS) conference (https://neurips.cc/), which serves as the stage for 
everything related to deep learning. The conference is held every year at a differ-
ent location around the world (most recently, before this book’s publication, in 
Montréal, Canada).

The conference always makes new technologies available for people to see, but a 
few fields have received all the attention. Among the impressive variety of appli-
cations and new technologies related to deep learning recently introduced at the 
conference, here are the ones to pay the most attention to: Natural Language Pro-
cessing (especially for pretrained embeddings like BERT discussed in Chapter 14); 
Reinforcement Learning (the topic of the next chapter); and Generative Adversar-
ial Networks (GANs). GANs are a thinking-outside--the box idea. Yann LeCun, 
now Director of Facebook AI, defines it as “the most interesting idea in the last ten 
years in machine learning”.

This chapter describes what GANs are and demonstrates how they’re capable of 
generating new data, especially images, from preexisting ones. The chapter com-
pletes the overview of GANs by building a network using Keras and TensorFlow. 

IN THIS CHAPTER

 » Introducing how neural networks can 
create credible data

 » Creating a GAN that can generate 
handwritten numbers

 » Presenting image and music 
applications where GANs shine

https://neurips.cc/
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After you see a GAN in action, the chapter goes on to discuss the most interesting 
developments and achievements of GANs.

Save yourself the time and mistakes of typing the code manually. You can find the 
downloadable source for this chapter in the DL4D_16_MNIST_GAN.ipynb file. (The 
Introduction tells you where to download the source code for this book.)

Making Networks Compete
In 2014, at the Department d’informatique et de recherche opérationnelle at the 
University of Montreal, Ian Goodfellow and other researchers (among whom is 
Yoshua Bengio, one of Canada’s most noted scientists working on artificial neural 
networks and deep learning) published the first paper on GANs. You can read the 
work at https://arxiv.org/pdf/1406.2661v1.pdf or https://papers.nips.
cc/paper/5423-generative-adversarial-nets.pdf. In the following months, 
the paper attracted attention and was deemed innovative for its proposed mix of 
deep learning and game theory. The idea became widespread because of its acces-
sibility in terms of neural network architecture: You can train a working GAN 
using standard a computer. (The technique works better if you can invest a lot of 
computational power.)

Contrary to other deep learning neural networks that classify images or sequences, 
the specialty of GANs is their capability to generate new data by deriving inspira-
tion from training data. This capability becomes particularly impressive when 
dealing with image data, because well-trained GANs can generate new pieces of 
art that people sell at auctions (such as the artwork sold at Christie’s for nearly 
half a million dollars, mentioned in Chapter  15: https://www.dezeen.
com/2018/10/29/christies-ai-artwork-obvious-portrait-edmond- 
de-belamy-design/). This feat is even more incredible because previous results 
obtained using other mathematical and statistical techniques were far from  
credible or usable.

Finding the key in the competition
The GAN name contains the term adversarial in it because the key idea behind 
GANs is the competition between two networks, which play as adversaries against 
each other. Ian Goodfellow, the principal author of the original paper on GANs, 
used a simple metaphor to describe how everything works. Goodfellow described 
the process as an endless challenge between a forger and a detective: the forger 
has to create a fake piece of art by copying some real art masterpiece, so he starts 
painting something. After the forger completes the fake painting, a detective 

https://arxiv.org/pdf/1406.2661v1.pdf
https://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
https://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
https://www.dezeen.com/2018/10/29/christies-ai-artwork-obvious-portrait-edmond-de-belamy-design/
https://www.dezeen.com/2018/10/29/christies-ai-artwork-obvious-portrait-edmond-de-belamy-design/
https://www.dezeen.com/2018/10/29/christies-ai-artwork-obvious-portrait-edmond-de-belamy-design/
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examines it and decides whether the forger created a real piece of art or simply a 
fake. If the detective sees a fake, the forger receives notice that something is 
wrong with the work (but not where the fault lies). When the forger shows that 
the art is real despite the negative feedback of the detective, the detective receives 
notice of the mistake and changes the detection technique to avoid failure during 
the next attempt. As the forger continues attempts to fool the detective, both the 
forger and the detective grow in expertise of their respective duties. Given time, 
the art produced by the forger becomes extremely high in quality and is almost 
undistinguishable from the real thing except by someone with an expert eye.

Figure 16-1 illustrates the story of GANs as a simple schema, in which inputs and 
neural architectures interact together in closed loop of reciprocal feedbacks. The 
generator network plays the part of the forger and a discriminator network plays 
the detective. GANs use the term discriminator because of the similarity in purpose 
to electronic circuits that accept or reject signals based on their characteristics. 
The discriminator in a GAN accepts (wrongly) or refuses (correctly) the work cre-
ated by the generator. The interesting aspect of this architecture is that the gen-
erator never sees a single training example. Only the discriminator accesses such 
data in its training. The generator receives random inputs (noise) to provide a 
random starting point each time, which forces it to produce a different result.

The generator may seem take all the glory (after all it, generates the data product). 
However, the real powerhouse of the architecture is the discriminator. The dis-
criminator computes errors that are backpropagated to its own network to learn 
how best to distinguish between real and fake data. The errors also propagate to 
the generator, which optimizes itself to cause the discriminator to fail during the 
next round.

FIGURE 16-1: 
How a GAN 

operates.
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GANs may seem creative. However, a more correct term would be that they are 
generative: They learn from examples how data varies and they can generate new 
samples as if they were taken from the same data. A GAN learns to mimic a previ-
ously existing data distribution; it can’t create something new. As stated in other 
chapters, deep learning isn’t creative.

Achieving more realistic results
Even if the concept of a GAN is clear, its architecture may initially appear to be 
complicated. Creating a basic GAN example has become quite accessible using 
Keras with TensorFlow, and learning by doing is a good way to explain details of 
the technology that would otherwise remain theoretical. The process has a few 
tricky parts, but in the end, everything is exactly as described in the previous 
paragraphs using the Ian Goodfellow metaphor.

In the following pages, you build a simple GAN that learns how to recreate hand-
written numbers from zero to nine after learning them from the MNIST dataset. 
The MNIST dataset is a set of digitized, normalized, 28-x-28-pixel, handwritten 
samples (written by both high school students and employees of the American 

THE PROBLEM WITH FAKE DATA
Just as a GAN can generate impressive art, so it can generate fake people. Look at 
https://www.thispersondoesnotexist.com/ to see a person who doesn’t exist. 
Unless you know where to look, the pictures are really quite convincing. However, little 
details give them away for now:

• The backgrounds look muddy or lack that real feel in some manner.

• Those who have watched the movie The Matrix will be familiar with the episodic 
glitches that appear in some images.

• The foreground pixel texture may not be quite right. For example, you might see 
moiré patterns (https://photographylife.com/what-is-moire) where they 
aren’t expected

However, recognizing these sorts of issues requires a human. In addition, the various 
problems will eventually go away when GANs improve. GANs can fake more than just 
pictures,. You could create a completely fake human identity in an incredibly short time 
with little effort. GANs could have all the right records in all the right places. The technol-
ogy exists today to create fake human identities that could possibly appear in places 
where it would be extremely inconvenient to root them out. This is the sort of problem 
that you need to be aware of — not killer robots.

https://www.thispersondoesnotexist.com/
https://photographylife.com/what-is-moire
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Census Bureau) that are often used for training image systems. You can find the 
dataset on Yann LeCun’s website at http://yann.lecun.com/exdb/mnist/.

The example starts by importing the necessary functions and classes. You don’t 
need anything fancy for the task, and you have already dealt with or even already 
tested everything the code imports: 

import numpy as np
from keras.datasets import mnist
from keras.models import Sequential, Model
from keras.layers import Input, Dense, Dropout
from keras.layers import BatchNormalization
from keras.layers.advanced_activations import LeakyReLU
from keras.optimizers import Adam
import matplotlib.pyplot as plt
%matplotlib inline

Note that the code downloads the MNIST dataset using the Keras mnist function. 
The distinct 28-x-28-pixel image arrays and expresses pixel values from 0 to 255. 
The code processes them to make them useful for a deep learning network using 
these steps:

1. Make them a vector, that is, a list of values, by reshaping the data.

2. Convert their values to the floating-point type using the 32-bit precision 
suitable for GPUs because the 64 bit version is only applicable to CPU 
processing.

3. Rescale their values in the range 0–1.

Normalization is the process of transforming image data before deep learning pro-
cessing. You can use different kinds of normalization, such as rescaling the range 
from 0 to 1 to –1 to 1, or applying statistical normalization by subtracting the 
mean and dividing by the standard deviation. Usually, rescaling all values in the 
range from 0 to 1 is a good working solution. 

def normalize(X):
    X = X.reshape(len(X), 784)
    X = X.astype('float32')/255
    return X
 
(X_train, Y_train), (X_test, Y_test) = mnist.load_data()
X_train = normalize(X_train)

http://yann.lecun.com/exdb/mnist/
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Having prepared the dataset for the neural network to learn, you can start prepar-
ing the GAN architecture. You begin by defining a few parameters, such as the type 
of data input provided to the GAN to generate its images. A good choice for this 
project is to use a list of random numbers. Imagine these random numbers as 
instructions provided to the GAN to decide what to represent. You have little con-
trol of what the GAN does with the numbers, but on other models, you can effec-
tively use the inputs and obtain a desired output.

You also set the optimizer (the Adam optimizer in this case) and define the first 
part of the architecture, the generator. The generator takes the random input and 
passes it through a series of four dense layers. The only notable aspect of this 
process is that, except for the last layer, LeakyReLU powers all the layers, which is 
an activation that dampens negative inputs. BatchNormalization controls the dis-
tribution of outputs by applying statistical normalization to them. Using this 
approach avoids the situation that occurs when an extreme number pops up dur-
ing training.

Notably, the last layer is different; it uses a sigmoid activation to generate outputs 
from zero to one. This last layer releases the image produced by the GAN, making 
it the generator part of the architecture. Because it produces 784 outputs whose 
values range from 0 to 1, the outputs could be easily reshaped and rescaled into 
28-x-28-pixel arrays with values ranging from 0 to 255 (that is a MNIST image).

input_dim = 100
np.random.seed(42)
optimizer = Adam(lr=0.0002, beta_1=0.5)
 
gen = Sequential()
gen.add(Dense(256, input_dim=input_dim))
gen.add(LeakyReLU(alpha=0.2))
gen.add(BatchNormalization())
gen.add(Dense(512))
gen.add(LeakyReLU(alpha=0.2))
gen.add(BatchNormalization())
gen.add(Dense(1024))
gen.add(LeakyReLU(alpha=0.2))
gen.add(BatchNormalization())
gen.add(Dense(784, activation='sigmoid'))
gen.compile(loss='binary_crossentropy', 
            optimizer=optimizer)

The second part of the architecture, the discriminator, is similar in construction 
to the generator. It has four dense layers again, and all but the last one is  
powered by LeakyReLU activation functions. The discriminator doesn’t use  
BatchNormalization, but it has Dropout to avoid overfitting because this part 
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performs a supervised classification task. In fact, the output is a single node that 
outputs a probability value from 0 to 1. The purpose of this part of the neural net-
work is to differentiate the fake images produced by the generator part from the 
real images. 

dsc = Sequential()
dsc.add(Dense(1024, input_dim=784))
dsc.add(LeakyReLU(alpha=0.2))
dsc.add(Dropout(0.3))
dsc.add(Dense(512))
dsc.add(LeakyReLU(alpha=0.2))
dsc.add(Dropout(0.3))
dsc.add(Dense(256))
dsc.add(LeakyReLU(alpha=0.2))
dsc.add(Dropout(0.3))
dsc.add(Dense(1, activation='sigmoid')) 
dsc.compile(loss='binary_crossentropy', 
            optimizer=optimizer)

At this point, you have the tricky part done, you’ve put the first and second half of 
the network together and ensured that they work together. Using the Keras func-
tional API (see https://keras.io/getting-started/functional-api-guide/ 
for details), you set architectures that are more complex than the sequential 
architectures used earlier in this section. In sum, the generator part processes the 
input and outputs the result to the discriminator part. The discriminator acts like 
a mathematical function applied to other functions — that is, it’s a function dis-
criminator (function generator [input]). In this way, you also control the network 
optimization because you can freeze part of it using the make_trainable function 
def make_trainable(dnn, flag). (In fact, you do train the generator and dis-
criminator toward maximizing different objectives.)

    dnn.trainable = flag
    for l in dnn.layers:
        l.trainable = flag
 
make_trainable(dsc, False)
inputs = Input(shape=(input_dim, ))
hidden = gen(inputs)
output = dsc(hidden)
gan = Model(inputs, output)
gan.compile(loss='binary_crossentropy',
            optimizer=optimizer)

https://keras.io/getting-started/functional-api-guide/
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Now you can test the setup. You prepare two useful, handy functions for generat-
ing the input noise and plotting the results of the generator:

def create_noise(n, z):
    return np.random.normal(0, 1, size=(n, z))
 
def plot_sample(n, z):
    samples = gen.predict(create_noise(n, z))
    plt.figure(figsize=(15,3))
    for i in range(n):
        plt.subplot(1, n, (i+1))
        plt.imshow(samples[i].reshape(28, 28), 
                   cmap='gray_r')
        plt.axis('off')
    plt.show()

The actual test begins by configuring the code for 100 epochs of training and set-
ting the training batch to 128 images. The code starts iterating through the num-
ber of epochs and batches necessary to pass all the training images to the GAN. As 
with other examples in the book, this one takes a while to run. If you can gain 
access to a GPU, you’re better off running it on Google Colab or on a computer 
with a GPU card. When you can obtain access to a GPU, plan on waiting for half an 
hour for it to run on Google Colab. (Your own local GPU setup may do better.) The 
sample example could well exceed several hours to complete on a CPU system.

epochs = 100
batch_size = 128
batch_no = int(len(X_train) / batch_size)
gen_errors, dsc_errors = (list(), list())
 
for i in range(0, epochs):
    for j in range(batch_no): 
  
        # Drawing a random sample of the training set
        rand_sample = np.random.randint(0, len(X_train),
           size=batch_size)
        image_batch = X_train[rand_sample]
        
        # Creating noisy inputs for the generator
        input_noise = create_noise(batch_size, input_dim)
 
        # Generating fake images from the noisy input
        generated_images = gen.predict(input_noise)
        X = np.concatenate((image_batch, 
           generated_images))  
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        # Creating somehow noisy labels
        y = np.concatenate([[0.9]*batch_size,
          [0.0]*batch_size])
 
        # Training discriminator to distinguish fakes from 
        # real ones
        make_trainable(dsc, True)
        dsc_loss = dsc.train_on_batch(X, y)
        make_trainable(dsc, False)
 
        # Trainining generating fakes
        input_noise = create_noise(batch_size, input_dim)
        fakes = np.ones(batch_size)
        for _ in range(4):
          gen_loss = gan.train_on_batch(input_noise,
            fakes)
 
    # Recording the losses
    gen_errors.append(gen_loss)
    dsc_errors.append(dsc_loss)
 
    # Showing intermediate results
    if i % 10 == 0:
      print("Epoch %i" % i)
      plot_sample(10, input_dim)

As the code completes running through the many calculations, it can revise the 
steps that it takes:

1. Generate a bunch of fake images by calling the generator function alone. 
Because this is a simple prediction, with no learning involved, the output 
images from the generator will appear completely random at the beginning.

2. Concatenate the fake images with a batch of real images.

3. Feed the images to the discriminator to determine whether the discriminator 
can separate the fake images from the real ones. This is a training activity, and 
the discriminator learns to separate the state-of-the-art images from the 
generator from the true source images.

4. Freeze the discriminator after it finishes learning so that the code can run it 
together with the generator, but this time only the generator will learn. During 
this step, the code feeds a few random inputs through the generator to 
transform into images and then pass the fakes to the discriminator to determine 
whether the discriminator can be fooled into believing that they are real images. 
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When the discriminator can determine that these images are the product of the 
generator, the code will use the discriminator score as an error for the generator 
to learn from (the success of the discriminator is a failure for the generator).

The code contains a couple of tricks to ensure that the GAN always produces good 
results:

 » When training the discriminator, you provide some uncertainty to the labels of 
the true, thereby making the discriminator less severe.

 » Every time you train the discriminator, you also train the generator four times. 
That’s because learning to generate images is actually a longer process, and 
using this approach accelerates the process.

These are the two most effective tricks, but you can read about even more of them 
at this page maintained by Soumith Chintala at https://github.com/soumith/
ganhacks. Clearly, deep learning is still more of an art (an explainable one) than a 
science. Plotting some of the results as shown in the following code reveals that 
the GAN has learned how to generate almost credible handwritten numbers, 
though they are not perfect. Looking at Figure 16-2, you can see what a GAN can 
achieve in such a short learning time.

# Plotting the final result
plot_sample(10, input_dim)

You can also observe the errors that the two networks composing the GAN pro-
duced during the training. Use the following code (Figure 16-3 shows the output):

# Plotting the errors
plt.figure(figsize=(15, 5))
plt.plot(dsc_errors, label='discriminitive loss')
plt.plot(gen_errors, label='generative loss')
plt.legend()
plt.show()

FIGURE 16-2: 
Some results 

from the trained 
GAN after 100 

epochs.

https://github.com/soumith/ganhacks
https://github.com/soumith/ganhacks
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Figure 16-3 shows that errors are on a different scale because the discriminator 
error is always lower than the generator error. In addition, the discriminator error 
tends to decrease because seeing more examples helps the discriminator separate 
fake images from the real ones, even if the generator improves its ability. As for 
the generator, the errors are at first strongly reduced but then tend to build up 
again because the discriminator gains experience in detection. If you run more 
epochs, you will see the generator error taking on a sinusoidal shape as it regu-
larly increases its error rate for a while (as the generator becomes more skillful) 
and then decreases again (after finding out some new trick to fool the discrimina-
tor). It’s an endless struggle between the two parts of the GAN network  — a 
struggle that always produces more realistic images as the training continues.

Considering a Growing Field
After starting with a plain-vanilla implementation, similar to the one just com-
pleted, researchers have grown the GAN idea into a large number of variants that 
achieve tasks more complex than simply creating new images. The list of GANs 
and their applications grows every day, and keeping up is difficult. Avinash 
Hindupur has built a “GAN Zoo” by tracking all the variants, a task that’s becom-
ing more difficult daily. (You can see the most recent updates at https://github.
com/hindupuravinash/the-gan-zoo.) Zheng Liu favors a historical approach 
instead, and you can see the GAN timeline he maintains at https://github.com/ 
dongb5/GAN-timeline. No matter how you approach GANs, seeing how each new 
idea sprouts from previous ones is a useful exercise.

Inventing realistic pictures of celebrities
The chief application of GANs is to create images. The first GAN network that 
evolved from the original paper by Goodfellow and others is the DCGAN, which 
was based on convolutional layers. The example in this chapter does produce 

FIGURE 16-3: 
The training 

errors of a GAN’s 
generator and 
discriminator 

network.

https://github.com/hindupuravinash/the-gan-zoo
https://github.com/hindupuravinash/the-gan-zoo
https://github.com/dongb5/GAN-timeline
https://github.com/dongb5/GAN-timeline
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credible simple images, but it relies on using dense layers, not CNNs, which per-
form better when working on image data.

DCGAN greatly improved the generative capabilities of the original GANs, and they 
soon impressed everyone when they created fake images of faces by taking examples 
from photos of celebrities. Of course, not all the DCGAN-created faces were realistic, 
but the effort was just the starting point of a rush to create more realistic images. 
EBGAN-PT, BEGAN, and Progressive GAN are all improvements that achieve a higher 
degree of realism. You can read the NVIDIA paper prepared on Progressive GANs to 
gain a more precise idea of the quality reached by such state-of-the-art techniques: 
https://research.nvidia.com/publication/2017-10_Progressive-Growing-of.

Another great enhancement to GANs is the conditional GAN (CGAN). Although 
having a network produce realistic images of all the kinds is interesting, it’s of 
little use when you can’t control the type of output you receive in some way. 
CGANs manipulate the input and the network to suggest to the GAN what it should 
produce. Now, for instance, you have networks that produce images of faces of 
persons that don’t exist, based on your preferences of how hair, eyes, and other 
details appear, as shown by this demonstrative video by NVIDIA: https://www.
youtube.com/watch?v=kSLJriaOumA.

Enhancing details and image translation
Producing images of higher quality and possibly controlling the output generated 
has opened the way to more applications. This chapter doesn’t have room to dis-
cuss them all, but the following list offers an overview of what you can find:

 » Cycle GAN: Applied to neural transfer style (as discussed in Chapter 10). For 
example, you can turn a horse into a zebra or a Monet painting into one that 
appears to come from van Gough. By exploring the project at https://
github.com/junyanz/CycleGAN, you can see how it works and consider the 
kind of transformations it can apply to images.

 » Super Resolution GAN (SRGAN): Transforms images by making blurred, 
low-resolution images into clear, high-resolution ones. The application of this 
technique to photography and cinema is interesting because it improves 
low-quality images at nearly no cost. You can find the paper describing the 
technique and the results here: https://arxiv.org/pdf/1609.04802.pdf.

 » Pose Guided Person Image Generation: Controls the pose of the person 
depicted in the created image. The paper at https://arxiv.org/
pdf/1705.09368.pdf describes practical uses in the fashion industry to 
generate more poses of a model, but you might be surprised to know that the 
same approach can create videos of one person dancing exactly the same as 
another one: https://www.youtube.com/watch?v=PCBTZh41Ris

https://research.nvidia.com/publication/2017-10_Progressive-Growing-of
https://www.youtube.com/watch?v=kSLJriaOumA
https://www.youtube.com/watch?v=kSLJriaOumA
https://github.com/junyanz/CycleGAN
https://github.com/junyanz/CycleGAN
https://arxiv.org/pdf/1609.04802.pdf
https://arxiv.org/pdf/1705.09368.pdf
https://arxiv.org/pdf/1705.09368.pdf
https://www.youtube.com/watch?v=PCBTZh41Ris
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 » Pix2Pix: Translates sketches and maps into real images and vice versa. You 
can use this application to transform architectural sketches into a picture of a 
real building or to convert a satellite photo into a drawn map. The paper at 
https://arxiv.org/pdf/1611.07004.pdf discusses more of the possibili-
ties offered the Pix2Pix network.

 » Image repairing: Repairs or modifies an existing image by determining what’s 
missing, cancelled, or obscured: https://github.com/pathak22/
context-encoder.

 » Face Aging: Determines how a face will age. You can read about it at 
https://arxiv.org/pdf/1702.01983.pdf.

 » Midi Net: Creates music in your favorite style, as described at https://
arxiv.org/pdf/1703.10847.pdf.

https://arxiv.org/pdf/1611.07004.pdf
https://github.com/pathak22/context-encoder
https://github.com/pathak22/context-encoder
https://arxiv.org/pdf/1702.01983.pdf
https://arxiv.org/pdf/1703.10847.pdf
https://arxiv.org/pdf/1703.10847.pdf
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Chapter 17
Playing with Deep 
Reinforcement Learning

Apart from the example of GANs, you may be tempted to identify deep 
learning with supervised learning predictions. However, you also use deep 
learning for unsupervised learning and reinforcement learning (RL). 

Unsupervised learning supports a number of established techniques, such as 
autoencoders and self-organizing maps (SOMs), which this book doesn’t cover. 
Unsupervised techniques can help you to segment your data into homogeneous 
groups or to detect anomalies in your variables.

RL techniques are even more popular than unsupervised learning techniques 
among practitioners. Recently the object of intense research, RL achieves smarter 
solutions for problems such as parking a car, learning to drive in as little as twenty 
minutes (as this paper illustrates: https://arxiv.org/abs/1807.00412), control-
ling an industrial robot, and more. (This article by Yuxi Li provides a complete list 
of applications: https://medium.com/@yuxili/rl-applications-73ef685c07eb.) 
This chapter tells you about some of these techniques, including one called AlphaGo, 
which was featured on the news after becoming the first algorithm to beat a human 
professional player at Go (an ancient Chinese board game) in an even game.

You also get some practical experience by working with some examples, which 
introduce you to OpenAI Gym (https://gym.openai.com/), a complete toolkit  

IN THIS CHAPTER

 » Presenting reinforcement learning

 » Using OpenAI Gym for 
experimentation

 » Determining how a Deep Q-Network 
(DQN) works

 » Working with AlphaGo, AlphaGo Zero, 
and Alpha Zero

https://arxiv.org/abs/1807.00412
https://medium.com/@yuxili/rl-applications-73ef685c07eb
https://gym.openai.com/
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for experimenting with deep learning, and to keras-rl (https://github.com/ 
keras-rl/keras-rl), a ready-to-use implementation of the state-of-the-art RL 
algorithms, such as Google’s Deep Q-Network (DQN). DQN is the algorithm used 
to play vintage Atari 2600 games at expert human level and win. DQN is just one 
of the possible applications of this technique, which Google DeepMind has pat-
ented). After showing you how to build a working deep learning example network 
capable of successfully playing a simple game, the chapter explores how AlphaGo 
works and why its victory is such a milestone for deep learning and AI in general.

Save yourself the time and mistakes of typing the code manually. You can find the 
downloadable source for this chapter in the DL4D_17_Reinforcement_Learning.
ipynb file. (The Introduction tells you where to download the source code for this 
book.)

Playing a Game with Neural Networks
As a toddler, you may have enjoyed discovering the world around you and taking 
risks to test your abilities under the vigilant eye of your parents. Only later did you 
replace knowledge built on direct experience with knowledge received from oth-
ers. Just as a supervised machine learning algorithm resembles a student learning 
about the world from someone else’s past experiences described in books (in this 
metaphor, experiences are the data), an RL algorithm is more like a toddler — a 
clean whiteboard that accumulates knowledge by trying something and testing 
whether that knowledge provides a reward or a penalty.

RL provides a compact way of learning without gathering large masses of data, 
but it also involves complex interaction with the external world. Because RL begins 
without any data, interacting with the external world and receiving feedback 
defines the method used to obtain the data it requires. You could use this approach 
for a robot, moving in the physical world, or for a bot, wandering in the digital 
one. In particular, RL seems alluring for problems that aren’t easy to crack using 
static (provided) data alone. Examples of such problems are teaching a computer 
to play a game by itself or working out the best possible outcome in uncertain 
situations, such as online advertising optimization. Advertising is one of the best 
examples because the application has to deliver the right campaigns to the right 
audience, but previous experience is lacking (for static or existing data) because 
all the campaigns are new.

Introducing reinforcement learning
In RL, you have an agent (which could be a robot in the real world or a bot in the 
digital one) interacting with an environment that could include a virtual or other 

https://github.com/keras-rl/keras-rl
https://github.com/keras-rl/keras-rl
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sort of world with its own rules. The agent can receive information from the envi-
ronment (called the state) and can act on it, sometimes changing it. More impor-
tant, the agent can receive an input from the environment, a positive or negative 
one, based on its sequence of actions or inactions. The input is a reward even when 
negative. The purpose of RL is to have the agent learn how to behave to maximize 
the total sum of rewards received during its experience inside the environment.

You can determine the relationship between the agent and the environment from 
Figure 17-1. Note the time subscripts. If you consider the present instant in time 
as t, the previous instant is t–1. At time t–1, the agent acts and then receives both 
a state and a reward from the environment. Based on the sets of values relative to 
the action at time t, state at time t–1, and reward at time t, an RL algorithm can 
learn the action to obtain a certain environmental state.

Ian Goodfellow, the AI research scientist behind the creation of GANs, believes 
that better integration between RL and deep learning is among the top priorities 
for further deep learning advances. Better integration leads to smarter robots (see 
https://www.forbes.com/sites/quora/2017/07/21/whats-next-for-deep- 
learning/#36131b871002 for details). Integration is now a hot topic, but until 
recently, RL typically had stronger bonds to statistics and algorithms than neural 
networks. Some people attempted to make the two operate together at an earlier 
time. In the early 1990s, Gerald Tesauro, at IBM Research Center, devised a way 
for a computer to learn to play Backgammon (one of the oldest board games 
known: http://www.bkgm.com/rules.html) and defeat a world (human) cham-
pion. He successfully used a neural network to power an RL algorithm by crafting 
a computer program that he called TD-Gammon. TD-Gammon raised widespread 
interest on the application of neural networks to RL problems, so many people 
tried after Tesauro to show some other possible use for the technique, but they all 
failed, and the idea died.

Later, some researchers noticed that Backgammon is a game based partly on 
chance. Other games (such as chess or Go) and real-world problems that didn’t 
respond well to a combination of deep learning and RL aren’t dependent on luck. 
The lack of a luck component only partially explains the problem with getting 

FIGURE 17-1: 
A schema of how 
an agent and an 

environment 
relate in RL.

https://www.forbes.com/sites/quora/2017/07/21/whats-next-for-deep-learning/#36131b871002
https://www.forbes.com/sites/quora/2017/07/21/whats-next-for-deep-learning/#36131b871002
http://www.bkgm.com/rules.html
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deep learning to work well with some games (for instance, poker is a game of 
chance but it has been beyond reach of RL and deep learning for a while). In spite 
of this insight (that is, deep learning works better with uncertainty), scientists 
still couldn’t find a solution that allows neural networks to support RL on new 
problems until a few years later, when the Google deep learning research team 
proved the contrary.

At Google DeepMind, they took a well-known RL technique called Q-learning and 
made it work with deep learning rather than the classical computation algorithm. 
The new variant, named Deep Q-Learning, uses both convolutions and regular 
dense layers to obtain problem input and process it. This solution not only put 
deep learning and RL together again but also resulted in superhuman capabilities 
for playing some Atari 2600 games (see https://www.youtube.com/
watch?v=V1eYniJ0Rnk). The algorithm learned to play in a relatively short time 
and found clever strategies that only the most skilled game players use.

The DeepMind team also published a paper entitled “Human-level control through 
deep reinforcement learning” (https://storage.googleapis.com/deepmind- 
media/dqn/DQNNaturePaper.pdf). In spite of its highly technical topic, the paper 
is quite readable. It illustrates why Deep Q-Learning works with certain games 
and performs badly with others. The problem occurs when the neural network 
needs to develop complex and long-term strategies.

Simulating game environments
Even if you don’t work with preconstituted datasets when working with RL 
(meaning that you don’t have to gather and label data), you have to consider 
interactions between the algorithm and the external world, which is a different 
challenge. For instance, if you want to build an RL algorithm that can beat you at 
chess, you first have to build a chess computer game that incorporates all the 
game rules. The algorithm will interface to this set of rules as part of its input.

To allow more researchers and practitioners to advance with this prerequisite, 
OpenAI (https://openai.com/), a nonprofit AI research company, has developed 
the open source Gym package. (You can find the code at https://github.com/
openai/gym and the paper describing the solution at https://arxiv.org/
pdf/1606.01540.pdf.) Gym is a complete a toolkit to help everyone develop RL 
algorithms applied to both basic and challenging problems by offering ready- 
to-use environments.

OpenAI Gym lets you verify whether your algorithms are general in scope because 
all environments use the same command interface. You just change the environ-
ment name to test your RL solution within another situation.

https://www.youtube.com/watch?v=V1eYniJ0Rnk
https://www.youtube.com/watch?v=V1eYniJ0Rnk
https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf
https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf
https://openai.com/
https://github.com/openai/gym
https://github.com/openai/gym
https://arxiv.org/pdf/1606.01540.pdf
https://arxiv.org/pdf/1606.01540.pdf
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The package also has a website where you can post your scores, comparing how 
your RL algorithm fares against other solutions. You easily install the gym package 
and its prerequisites on your local computer (the package h5py) from the Ana-
conda shell using these commands (pip will connect to the Internet to obtain the 
packages and install them locally):

pip install h5py
pip install gym
conda install -c menpo ffmpeg

In contrast to other book examples, the examples in this chapter can’t run on 
Google Colab for technical reasons — the procedures are too complex. You need to 
run the code on your local computer.

Using Gym, you don’t have to worry about the environment anymore. Different 
environments are available, some presenting algorithmic tasks (such as learning 
to copy a sequence), some text based, some robotic related (like controlling a 
robot’s arm), and a larger number based on the old Atari arcade games, such as 
Space Invaders or Breakout. You can see all the environments available at https://
gym.openai.com/envs/. You start with a classic environment, as described in the 
RL scientific literature, but you can also explore the other possibilities offered by 
the package.

Studying how to solve games using RL also helps you devise better solutions for 
real-world problems. At Uber, a transportation network company, engineers study 
RL algorithms, contemplate how RL operates, and reverse engineer how RL makes 
decisions to develop trust and confidence in AI, as you can read in Uber’s engineer-
ing blog at https://eng.uber.com/atari-zoo-deep-reinforcement-learning/.

Gym is structured around the core principles of RL, so you find functions and 
methods to describe the agent and the environment. You can also have the agent 
perform an action or inaction inside the environment. The environment will 
answer by providing feedback in two forms: a new state, which you can use to 
summarize the new situation within the environment; and a reward, which is a 
score showing success or failure. The only part you need to code is the RL, and you 
can start a basic example using a few lines of Python.

The environment for the RL experiment is the CartPole problem (see https://
gym.openai.com/envs/CartPole-v1/ for details). A pole attaches freely to a cart 
that moves along a track (you don’t account for friction). The pendulum starts 
upright, in unstable equilibrium, and the goal of the environment is to prevent it 
from falling over (which requires an angle greater than 15 degrees from vertical). 
For actions, you determine whether to increase or decrease the cart’s velocity in 
one direction or another.

https://gym.openai.com/envs/
https://gym.openai.com/envs/
https://eng.uber.com/atari-zoo-deep-reinforcement-learning/
https://gym.openai.com/envs/CartPole-v1/
https://gym.openai.com/envs/CartPole-v1/
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Figure 17-2 shows a representation of the environment provided by the OpenAI 
Gym package. You can also see an example of how to balance a CartPole in this 
real-world experiment by the Department of Engineering of the Technological 
Educational Institute of Creteat https://www.youtube.com/watch?v=XWhGjxdug0o.

The CartPole environment operates by reporting observations of these states:

 » Cart position

 » Cart velocity

 » Pole angle

 » Pole velocity at tip

You can manipulate the environment based on the these states by

 » Pushing the cart to the left

 » Pushing the cart to the right

The following code creates the environment and tests some random commands 
with it:

import numpy as np
import gym
env = gym.make('CartPole-v0')

FIGURE 17-2: 
The CartPole 

environment in 
OpenAI Gym.

https://www.youtube.com/watch?v=XWhGjxdug0o
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np.random.seed(42), env.seed(42)
nb_actions = env.action_space.n
input_shape = (1, env.observation_space.shape[0])

You create the environment using a single make command that returns a Python 
class used for getting general information about the environment (for instance, 
about actions you can perform using the env.action_space), controlling the flow 
of time, or performing some specific action inside the environment.

The next few lines reset the environment just created. Everything is restarted at 
an initial position (some environmental aspects are randomly decided). The code 
uses a loop of 200 iterations to perform various random actions sampled from the 
range of the possible available actions (a force applied on the cart, ranging from -1  
to +1). When the iterations complete, the game ends in failure (when the pole is 
more than 15 degrees from vertical), or the cart moves more than 2.4 units from 
the center, the done variable becomes true and the experiment concludes (the 
number of steps will vary because it’s a random process of choices).

observation = env.reset()
for t in range(200):
  env.render()
  act = env.action_space.sample()
  obs, rwrd, done, info = env.step(act)
  if done:
     print("Episode concluded after %i timesteps" % (t+1))
     break
env.close()

Presenting Q-learning
Building an RL solution based on deep learning requires quite a coding effort, but 
you can leverage an existing package, keras-rl (https://github.com/keras-rl/ 
keras-rl), which contains the most recent state-of-the-art RL algorithms. This 
package, developed by Matthias Plappert, a Research Scientist working at OpenAI, 
can seamlessly integrate with neural networks built with Keras and the OpenAI 
environments. You install the package by issuing this command on a shell:

pip install keras-rl

After you install keras-rl, you import the necessary functions from Keras (you use 
a neural network for your RL solution) and keras-rl specialized functions for cre-
ating an RL agent. (The details about how they work appear later in the chapter.)

https://github.com/keras-rl/keras-rl
https://github.com/keras-rl/keras-rl
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from keras.models import Sequential
from keras.layers import Dense, Activation
from keras.layers import Flatten, Dropout
from keras.optimizers import Adam
from rl.agents.dqn import DQNAgent
from rl.policy import EpsGreedyQPolicy
from rl.memory import SequentialMemory

The first step is building a network capable of figuring out the outcome in terms 
of a reward from a certain environmental state. This is the value-based learning 
approach, and it’s the idea behind Deep Q-Network and Deep Q-Learning: to 
approximately determine the reward after taking a certain action, given the pres-
ent state. This technique doesn’t directly consider past actions and the associated 
state, or the complete sequence of actions that an agent should take, yet it works 
effectively for many problems by pointing out the best single action to take among 
the alternatives.

model = Sequential()
model.add(Flatten(input_shape=input_shape))
model.add(Dense(12))
model.add(Activation('relu'))
model.add(Dense(nb_actions))
model.add(Activation('linear'))
 
print(model.summary())

The neural network that the code creates is simple, made of three layers of 
decreasing numbers of neurons. All the layers are activated by an ReLU function, 
but the final layer activates linearly to get an output value that’s used as the action 
the bot will take.

The DQN algorithm doesn’t understand how the environment works. In a human 
sense, the algorithm simply associates state and actions to expected rewards, 
which is done using a mathematical function. The algorithm, therefore, can’t 
understand whether it’s playing a particular game; its understanding of the envi-
ronment is limited to the knowledge of the reported state deriving from taken 
actions.

This neural network feeds into the DQN algorithm, together with a policy (a policy 
is a function that chooses a sequence of actions), and a memory of previous actions 
and states. The memory is necessary to allow the example to train a neural net-
work. It records previous agent experiences with the environment, and the code 
can sample it to extract a series of actions given a state. The neural network uses 
the memory to learn how to estimate the likely reward from an action taken in  
a state.
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For the policy, Eps Greedy Q policy does either of the following:

 » Takes a random action with probability epsilon

 » Takes a current best action with probability (1 – epsilon)

The two policies show the exploration/exploitation trade-off. When the Eps 
Greedy Q policy function chooses randomly to take a random action, the algorithm 
is exploring because it could decide on an unexpected action, and that action could 
lead to an interesting result. For instance, in the Atari Breakthrough game, dig-
ging a hole in the wall and having the ball run amok, destroying the wall from 
above, is clearly a strategy that emerged randomly by exploration and that the RL 
algorithm recorded and learned as being extremely useful.

policy = EpsGreedyQPolicy(eps=0.3)
memory = SequentialMemory(limit=50000,
                          window_length=1)
 
dqn = DQNAgent(model=model,
               nb_actions=nb_actions,
               memory=memory,
               nb_steps_warmup=50,
               target_model_update=0.01,
               policy=policy)
 
dqn.compile(Adam(lr=0.001))
 
training = dqn.fit(env, nb_steps=30000,
                   visualize=False, verbose=1)

The system trains itself using the same approach used by other deep learning 
networks. After completing its learning from 30,000 examples, it’s ready to test:

env = gym.make('CartPole-v0')
mon = gym.wrappers.Monitor(env,
                           "./gym-results",
                           force=True)
mon.reset()
dqn.test(mon, nb_episodes=1, visualize=True)
mon.close()
env.close()

The test should end up in a high reward (the expected result is about 200, but it 
could be different because the test has a random training element). You can review 
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the behavior of the cart using the DQN directives found in the video that recorded 
during the test:

import io
import base64
from IPython.display import HTML
 
template =
  './gym-results/openaigym.video.%s.video000001.mp4'
video = io.open(template % mon.file_infix, 'r+b').read()
encoded = base64.b64encode(video)
HTML(data='''
<video width="520" height="auto" alt="test" controls>
<source src="data:video/mp4;base64,{0}"
 type="video/mp4"/>
</video>'''.format(encoded.decode('ascii')))

Explaining Alpha-Go
Chess and Go are both popular board games that share characteristics, such as 
being played by two players who move in turns and lack a random element (no 
dice are thrown as in Backgammon). Apart from that, they have different game 
rules and complexity. In chess, each player has 16 pieces to move on the board 
according to type, and the game ends when the king piece is stalemated 
(checked) — unable to move further. Experts calculate that about 10123 different 
chess games are possible, which is a large number when you consider that scien-
tists estimate the number of atoms in the known universe at about 1080. Yet, com-
puters can master a single game of chess by determining the future possible 
moves far enough ahead to have an advantage against any human opponent. In 
1997, Deep Blue, an IBM supercomputer designed for playing chess, defeated 
Garry Kasparov, the world chess champion.

A computer cannot prefigure a complete game of chess using brute force (calcu-
lating every possible move from beginning to end of the game). It uses some heu-
ristics and its ability to look into a certain number of future moves. Deep Blue was 
a computer with high computational performance that could anticipate more 
future moves in the game than any previous computer.

In Go, you have a 19-x-19 grid of lines containing 361 spots on which each player 
places a stone (usually black or white color) each time a player takes a turn. The 
purpose of the game is to enclose in stones a larger portion of the board than one’s 
opponent’s. Considering that, on average, each player has about 250 possible 
moves at each turn, and that a game consists of about 150 moves, a computer 



CHAPTER 17  Playing with Deep Reinforcement Learning      303

would need enough memory to hold 150250 games, which is on the order of 10360 
boards. From a resource perspective, Go is more complex than chess, and experts 
used to believe that no computer software would be able to beat a human Go mas-
ter within the next decade using the same approach as Deep Blue. Yet, AlphaGo 
accomplished it using RL techniques.

DeepMind, a research center in London owned by Google, developed a computer 
system named AlphaGo in 2016 that featured Go playing skills never attained 
before by any hardware and software solution. After setting up the system, Deep-
Mind had AlphaGo test itself against the strongest Go champion living in Europe, 
Fan Gui, who had been the European Go champion three times. DeepMind chal-
lenged him in a closed-door match, and AlphaGo won all the games, leaving Fan 
Gui amazed by the game style displayed by the computer.

Then, after Fan Gui helped refine the AlphaGo skills, the DeepMind team, led by 
their CEO Demis Hassabis and chief scientist David Silver, challenged Lee Sedol, a 
South Korean professional Go player ranked at the ninth dan, the highest level a 
master can attain. AlphaGo won a series of four games against Lee Sedol and lost 
only one. Apart from the match it lost because of an unexpected move from the 
champion, it actually led the other games and amazed the champion by playing 
unexpected, impactful moves. In fact, both players, Fan Gui and Lee Sedol, felt 
that playing against AlphaGo was like playing against a contestant coming from 
another reality: AlphaGo moves resembled nothing they had seen before.

The story behind AlphaGo is so fascinating that someone made a film out of it. It’s 
well worth seeing: https://www.imdb.com/title/tt6700846/.

Determining if you’re going to win
In chess, you can explore future moves and go far with the right computer. The 
number of pieces, their limited movements, and the state of the board all make 
determining what could happen easier. Moreover, you can get a measure of how 
well the game is progressing or how a move could rate because of the nature of the 
game itself (chess pieces have a value, for instance). In Go, you can’t make these 
determinations because the number of possible moves explodes just a few moves 
ahead. In addition, you can’t determine the move value because you have to see 
the game completed before understanding how each move contributed to the end 
of the game.

Because the underlying strategy of Go differs from chess, computer programs 
playing Go use another approach to determine which moves to make. That 
approach is called Monte Carlo Tree Search (MCTS). In MCTS, the computer simu-
lates many complete games from the existing state of the board, first using ran-
dom moves and then using the most successful moves that it finds during random 

https://www.imdb.com/title/tt6700846/
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play. This isn’t too different from the exploration/exploitation approach in 
RL. Using this approach, a computer can determine whether a move in Go is good 
or not by simulating enough games to obtain a reliable answer.

AlphaGo uses MCTS but supports the algorithm’s processing using neural net-
works. The system is made of two components:

 » A look at a future move system: A forecasting method similar to the one 
used by Deep Blue. It’s a tree search system because it branches through 
possible games and relies on MCTS to do so.

 » Some CNNs: Provide the guidance to the tree search system.

The deep learning networks are of two kinds: policy networks and value networks. 
Both networks process the board image, looking for local and general patterns like 
those used in image processing used to differentiate between a dog and a cat. The 
roles of two policy networks (one slower but more precise, one faster but rougher) 
are to guide action selection. These policy networks output a probability for each 
possible move, so MCTS can simulate realistic games based on their suggestions, 
not randomly. The value network provides a likelihood of winning, given the 
board state.

By using both value networks, which provide an intuition of the game situation, 
and the policy network, which helps the computer prefigure future moves, 
AlphaGo can deliver the best strategy and moves during game play.

Given that such an architecture isn’t really end-to-end because it involves so 
many different systems, engineers at Deep Mind first trained AlphaGo using 
games played by strong amateurs to kick-start the neural networks. (They used 
160,000 amateur games collected from an online Go community.) Finally, they let 
AlphaGo play against itself to learn how to improve and refine its playing skills. 
Here, RL techniques had a key role: They taught computers to play Backgammon, 
chess, poker, Scrabble, and finally Go by having AlphaGo challenge itself millions 
of times, working in the kind of fast and intense experience-building environ-
ment that humans can’t handle.

David Silver, the AlphaGo project chief researcher, declared that self-learning is 
so effective in building smart systems because the opponent these systems face is 
always at the right level of skill — never too low or too high. Letting a system 
learn by playing itself is something seen in TD-Gammon in 1992, as well as in the 
WOPR computer in the 1983 WarGames film. (In this sense, the WOPR computer is 
as emblematic for AI as HAL9000 in 2001: A Space Odyssey is.)
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Applying self-learning at scale
The DeepMind team that created AlphaGo didn’t stop after the success of its solu-
tion; it retired AlphaGo and created even more incredible systems. First, the team 
built up AlphaGo Zero, which is AlphaGo trained by playing against itself. Then it 
created Alpha Zero, which is a general program that can learn to play chess and 
shogi, the Japanese chess game, by itself.

If AlphaGo demonstrated how to solve a problem deemed impossible for comput-
ers, AlphaGo Zero demonstrated that computers can attain super-capabilities 
using self-learning (which is RL in its essence). In the end, its results were even 
better than from those starting from human experience: AlphaGo Zero has chal-
lenged AlphaGo and won 100 matches without losing one.

GRASPING THE IMPORTANCE OF 
ALPHA ZERO
The Alpha Zero feat is even more important than what AlphaGo achieved. This book fre-
quently mentions the role of data in opening the way for deep learning to perform well. 
More data with a simple model can beat a clever algorithm using less data. However, 
Alpha Zero managed to reach the pinnacle of performance starting with zero data. This 
capability goes beyond the idea that data can achieve every AI target (as Alon Halevy, 
Peter Norvig, and Fernando Pereira stated just a few years ago in the whitepaper at 
https://static.googleusercontent.com/media/research.google.com/it//
pubs/archive/35179.pdf). Alpha Zero is possible because we know the generative 
processes used by Go game players, and DeepMind researchers were able to recreate a 
perfect Go environment.

In terms of laws, many more situations than Go can be defined. For instance, scientists 
know the basic laws of how the physical world works because humans spent centuries 
investigating them, with the brightest minds endeavoring to understanding them — from 
Isaac Newton to Albert Einstein and Stephen Hawking. This knowledge opens the door to 
creating generative models that can replicate and simulate the thought processes used 
to create the data needed by deep learning and AI models to learn. If this process sounds 
really advanced, take note: It’s already here. People are already discussing how a video 
game could help build better self-driving cars, as you can read in the  article at https://
www.inverse.com/article/26307-grand-theft-auto-open-ai.

https://static.googleusercontent.com/media/research.google.com/it//pubs/archive/35179.pdf
https://static.googleusercontent.com/media/research.google.com/it//pubs/archive/35179.pdf
https://www.inverse.com/article/26307-grand-theft-auto-open-ai
https://www.inverse.com/article/26307-grand-theft-auto-open-ai
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A paper published in Nature (and accessible on the DeepMind website at https://
deepmind.com/research/publications/mastering-game-go-without-human- 
knowledge/) explains that AlphaGo Zero started learning by making random 
moves. This activity is similar to how the reinforcement algorithm DQN learned to 
balance a cart in the coding example. In about 29 million self-playing games, 
AlphaGo Zero reached a level exceeding the previous AlphaGo system. Moreover, 
AlphaGo Zero is both less complex in terms of deep learning models and hardware 
it requires. It needs a single computer and four of Google’s custom TPU chips, 
whereas the original AlphaGo required several machines and 48 TPUs.

AlphaGo, AlphaGo Zero, and Alpha Zero represent the new frontier of RL as well 
as hope for future applications. In fact, apart from playing Go, chess, and shogi, 
these systems aren’t capable of anything else. Like Deep Blue, these systems con-
centrate on a single task that they can execute at a qualitatively super-human 
level. Researchers at DeepMind envision further possible applications that are 
now difficult and challenging for humans, such as protein folding, optimizing 
energy consumption in a network, or discovering new materials in chemistry.

https://deepmind.com/research/publications/mastering-game-go-without-human-knowledge/
https://deepmind.com/research/publications/mastering-game-go-without-human-knowledge/
https://deepmind.com/research/publications/mastering-game-go-without-human-knowledge/
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Consider real-world applications that use deep learning.

Find some of the best tools for deep learning tasks.

Discover an occupation that relies on deep learning.
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Chapter 18
Ten Applications that 
Require Deep Learning

This chapter is too short. It can’t even begin to describe the ways in which 
deep learning will affect you in the future. Consider this chapter to be offer-
ing a tantalizing tidbit  — an appetizer that can whet your appetite for 

exploring the world of deep learning further. The applications you see listed in 
this chapter are already common in some cases. You probably used at least one of 
them today, and quite likely more than just one. After reading this chapter, you 
might want to take the time to consider all the ways in which deep learning cur-
rently affects your life. Although the technology has begun to see widespread 
usage, it’s really just the beginning. We’re at the start of something, and AI is 
actually quite immature at this point.

This chapter doesn’t discuss killer robots, dystopian futures, AI run amok, or any 
of the sensational scenarios that you might see in the movies. This chapter is 
about real life, discussing existing AI applications that you can interact with 
today.

IN THIS CHAPTER

 » Interacting with people directly

 » Determining the effectiveness of 
green technologies

 » Employing probability to tell the 
future

 » Mimicking creative processes
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Restoring Color to Black-and-White  
Videos and Pictures

You probably have some black-and-white videos or pictures of family members or 
special events that you’d love to see in color. Color consists of three elements: hue 
(the actual color), value (the darkness or lightness of the color), and saturation (the 
intensity of the color). You can read more about these elements at http://learn.
leighcotnoir.com/artspeak/elements-color/hue-value-saturation/. Oddly 
enough, many artists are color-blind and make strong use of color value in their 
creations (read https://www.nytimes.com/2017/12/23/books/a-colorblind- 
artist-illustrator-childrens-books.html as one of many examples). So  
having hue missing (the element that black-and-white art lacks) isn’t the end of 
the world. Quite the contrary, some artists view it as an advantage (see https://
www.artsy.net/article/artsy-editorial-the-advantages-of-being-a- 
colorblind-artist for details).

When viewing something in black and white, you see value and saturation but not 
hue. Colorization is the process of adding the hue back in. Artists generally perform 
this process using a painstaking selection of individual colors, as described at 
https://fstoppers.com/video/how-amazing-colorization-black-and-white- 
photos-are-done-5384 and https://www.diyphotography.net/know-colors- 
add-colorizing-black-white-photos/. However, AI has automated this process 
using Convolutional Neural Networks (CNNs), as described at https://emerj.com/
ai-future-outlook/ai-is-colorizing-and-beautifying-the-world/.

The easiest way to use CNN for colorization is to find a library to help you. The 
Algorithmia site at https://demos.algorithmia.com/colorize-photos/ offers 
such a library and shows some example code. You can also try the application by 
pasting a URL into the supplied field. The article at https://petapixel.
com/2016/07/14/app-magically-turns-bw-photos-color-ones/ describes just 
how well this application works. It’s absolutely amazing!

Approximating Person Poses in Real Time
Person poses don’t tell you who is in a video stream, but rather what elements of 
a person are in the video stream. For example, using a person pose could tell you 
whether the person’s elbow appears in the video and where it appears. The article 
at https://medium.com/tensorflow/real-time-human-pose-estimation-in- 
the-browser-with-tensorflow-js-7dd0bc881cd5 tells you more about how this  
whole visualization technique works. In fact, you can see how the system works 
through a short animation of one person in the first case and three people in the 
second case.

http://learn.leighcotnoir.com/artspeak/elements-color/hue-value-saturation/
http://learn.leighcotnoir.com/artspeak/elements-color/hue-value-saturation/
https://www.nytimes.com/2017/12/23/books/a-colorblind-artist-illustrator-childrens-books.html
https://www.nytimes.com/2017/12/23/books/a-colorblind-artist-illustrator-childrens-books.html
https://www.artsy.net/article/artsy-editorial-the-advantages-of-being-a-colorblind-artist
https://www.artsy.net/article/artsy-editorial-the-advantages-of-being-a-colorblind-artist
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Person poses can have all sorts of useful purposes. For example, you could use a 
person pose to help people improve their form for various kinds of sports  — 
everything from golf to bowling. A person pose could also make new sorts of video 
games possible. Imagine being able to track a person’s position for a game with-
out the usual assortment of cumbersome gear. Theoretically, you could use person 
poses to perform crime-scene analysis or to determine the possibility of a person 
committing a crime.

Another interesting application of pose detection is for medical and rehabilitation 
purposes. Software powered by deep learning could tell you whether you’re doing 
your exercises correctly and track your improvements. An application of this sort 
could support the work of a professional rehabilitator by taking care of you when 
you aren’t in a medical facility (an activity called telerehabilitation; see https://
matrc.org/telerehabilitation-telepractice for details).

Fortunately, you can at least start working with person poses today using the  
tfjs-models (PoseNet) library at https://github.com/tensorflow/tfjs-models/ 
tree/master/posenet. You can see it in action with a webcam, complete with 
source code, at https://ml5js.org/docs/posenet-webcam. The example takes a 
while to load, so you need to be patient.

Performing Real-Time Behavior Analysis
Behavior analysis goes a step beyond what the person poses analysis described in 
the previous section does. When you perform behavior analysis, the question still 
isn’t a matter of whom, but how. This particular AI application affects how vendors 
design products and websites. Articles such as the one at https://amplitude.
com/blog/2016/06/14/10-steps-behavioral-analytics go to great lengths to 
fully define and characterize the use of behavior analysis. In most cases, behavior 
analysis helps you see how the process the product designer expected you to follow 
doesn’t match the process you actually use.

Behavior analysis has a role to play in other areas of life as well. For example, it 
can help people in the medical profession identify potential issues with people 
who have specific medical conditions, such as autism, and help the patient  
overcome those issues (see https://www.autismspeaks.org/applied- behavior- 
analysis-aba-0 for details). Behavior analysis may also help teachers of physical 
arts show students how to hone their skills. You might also see it used in the legal 
profession to help ascertain motive. (The guilt is obvious, but why a person does 
something is essential to fair remediation of an unwanted behavior.)

https://matrc.org/telerehabilitation-telepractice
https://matrc.org/telerehabilitation-telepractice
https://github.com/tensorflow/tfjs-models/tree/master/posenet
https://github.com/tensorflow/tfjs-models/tree/master/posenet
https://ml5js.org/docs/posenet-webcam
https://amplitude.com/blog/2016/06/14/10-steps-behavioral-analytics
https://amplitude.com/blog/2016/06/14/10-steps-behavioral-analytics
https://www.autismspeaks.org/applied-behavior-analysis-aba-0
https://www.autismspeaks.org/applied-behavior-analysis-aba-0


312      PART 4  The Part of Tens

Fortunately, you can already start performing behavior analysis with Python. For 
example, the site at https://rrighart.github.io/GA/ discusses the technique 
(and provides source code as well) with regard to web analytics.

Translating Languages
The Internet has created an environment that can keep you from knowing whom 
you’re really talking to, where that person is, or sometimes even when the person 
is talking to you. One thing hasn’t changed, however: the need to translate one 
language to another when the two parties don’t speak a common language. In a 
few cases, mistranslation can be humorous, assuming that both parties have a 
sense of humor. However, mistranslation has also led to all sorts of serious  
consequences, including war (see https://unbabel.com/blog/translation- 
errors-war-iraq-hiroshima-vietnam/). Consequently, even though translation 
software is extremely accessible on the Internet, careful selection of which prod-
uct to use is important. One of the most popular of these applications is Google 
Translate (https://translate.google.com/), but many other applications are 
available, such as, DeepL (https://www.deepl.com/en/translator). According 
to Forbes, machine translation is one area in which AI excels (see https://www.
forbes.com/sites/bernardmarr/2018/08/24/will-machine-learning- 
ai-make-human-translators-an-endangered-species/#114274573902).

Translation applications generally rely on Bidirectional Recurrent Neural  
Networks (BRNNs) as described at https://blog.statsbot.co/machine-  
learning-translation-96f0ed8f19e4. You don’t have to create your own BRNN 
because you have many existing APIs to choose from. For example, you can get 
Python access to the Google Translate API using the library found at https://
pypi.org/project/googletrans/. The point is that translation is possibly one of 
the more popular deep learning applications and one that many people use  
without even thinking about it.

Estimating Solar Savings Potential
Trying to determine whether solar energy will actually work in your location is dif-
ficult unless a lot of other people are also using it. In addition, it’s even harder to 
know what level of savings you might enjoy. Of course, you don’t want to install 
solar energy if it won’t satisfy your goals for using it, which may not actually include 
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long-term cost savings (although generally it does). Some deep reinforcement 
learning projects now help you take the guesswork out of solar energy, including 
Project Sunroof found at https://www.google.com/get/sunroof. Fortunately, you 
can also get support for this kind of prediction in your Python application at https://
github.com/ColasGael/Machine-Learning-for-Solar-Energy-Prediction.

Beating People at Computer Games
The AI-versus-people competition continues to attract interest. From winning at 
chess to winning at Go, AI seems to have become unbeatable — at least, unbeat-
able at one game. Unlike humans, AI specializes, and an AI that can win at Go is 
unlikely to do well at chess. Even so, 2017 is often hailed as the beginning of the 
end for humans over AI in games, as described at https://newatlas.com/ 
ai-2017-beating-humans-games/52741/. Of course, the competition has been 
going on for some time, And you can likely find competitions that the AI won far 
earlier than 2017. Indeed, some sources (https://en.wikipedia.org/wiki/
AlphaGo) place the date for a Go win as early as October 2015. The article at 
https://interestingengineering.com/11-times-ai-beat-humans-at-games- 
art-law-and-everything-in-between describes 11 other times that the AI won.

The problem is to custom create an AI that can win a particular game and realize 
that in specializing at that game, the AI may not do well at other games. The pro-
cess of building an AI for just one game can look difficult. The article at https://
medium.freecodecamp.org/simple-chess-ai-step-by-step-d55a9266977 
describes how to build a simple chess AI, which actually won’t defeat a chess mas-
ter but could do well with an intermediate player.

However, it’s actually a bit soon to say that people are out of the game. In the 
future, people may compete against the AI with more than one game. Examples of 
this sort of competition already abound, such as people who perform in a triathlon 
of games, which consists of three sporting events, rather than one. The competi-
tion would then become one of flexibility: the AI couldn’t simply hunker down and 
learn only one game, so the human would have a flexibility edge. This sort of AI 
use demonstrates that humans and AI may have to cooperate in the future, with 
the AI specializing in specific tasks and the human providing the flexibility needed 
to perform all required tasks.
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Generating Voices
Your car may already speak to you; many cars speak regularly to people now. 
Oddly, the voice generation is often so good that it’s hard to tell the generated 
voice from a real one. Articles such as the one at https://qz.com/1165775/
googles-voice-generating-ai-is-now-indistinguishable-from-humans/ 
talk about how the experience of finding computer voices that sound quite real are 
becoming more common. The issue attracts enough attention now that many call 
centers tell you that you’re speaking to a computer rather than a person.

Although call output relies on scripted responses, making it possible to generate 
responses with an extremely high level of confidence, voice recognition is a little 
harder to perform (but it has greatly improved). To work with voice recognition 
successfully, you often need to limit your input to specific key terms. By using 
keywords that the voice recognition is designed to understand, you avoid the need 
for a user to repeat a request. This need for specific terms gives it away that you’re 
talking to a computer — simply ask for something unexpected and the computer 
won’t know what to do with it.

The easy way to implement your own voice system is to rely on an existing API, 
such as Cloud Speech to Text (https://cloud.google.com/speech-to-text/). 
Of course, you might need something that you can customize. In this case, using 
an API will prove helpful. The article at https://medium.com/@sundarstyles89/
create-your-own-google-assistant-voice-based-assistant-using-python-
94b577d724f9 tells how to build your own voice-based application using Python.

Predicting Demographics
Demographics, those vital or social statistics that group people by certain charac-
teristics, have always been part art and part science. You can find any number of 
articles about getting your computer to generate demographics for clients (or 
potential clients). The use of demographics is wide ranging, but you see them used 
for things like predicting which product a particular group will buy (versus that of 
the competition). Demographics are an important means of categorizing people and 
then predicting some action on their part based on their group associations. Here 
are the methods that you often see cited for AIs when gathering demographics:

 » Historical: Based on previous actions, an AI generalizes which actions you 
might perform in the future.

 » Current activity: Based on the action you perform now and perhaps other 
characteristics, such as gender, a computer predicts your next action.
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 » Characteristics: Based on the properties that define you, such as gender, 
age, and area where you live, a computer predicts the choices you are likely  
to make.

You can find articles about AI’s predictive capabilities that seem almost too good 
to be true. For example, the article at https://medium.com/@demografy/ 
artificial-intelligence-can-now-predict-demographic-characteristics- 
knowing-only-your-name-6749436a6bd3 says that AI can now predict your dem-
ographics based solely on your name. The company in that article, Demografy 
(https://demografy.com/), claims to provide gender, age, and cultural affinity 
based solely on name. Even though the site claims that it’s 90 to 95 percent accu-
rate (see the Is Demografy Accurate answer at https://demografy.com/faq for 
details), this statistic is unlikely because some names are gender ambiguous, such 
as Renee, and others are assigned to one gender in some countries and another 
gender in others. In fact, the answer on the Demografy site seems to acknowledge 
this issue by saying the outcome “heavily depends on your particular list and may 
show considerably different results than these averages”. Yes, demographic pre-
diction can work, but exercise care before believing everything that these sites 
tell you.

If you want to experiment with demographic prediction, you can find a number of 
APIs online. For example, the DeepAI API at https://deepai.org/machine- 
learning-model/demographic-recognition promises to help you predict age, 
gender, and cultural background based on a person’s appearance in a video. Each 
of the online APIs do specialize, so you need to choose the API with an eye toward 
the kind of input data you can provide.

Creating Art from Real-World Pictures
Chapter 15 provides you with some good ideas on how deep learning can use the 
content of a real-world picture and an existing master for style to create a combi-
nation of the two. In fact, some pieces of art generated using this approach are 
commanding high prices on the auction block. You can find all sorts of articles on 
this particular kind of art generation, such as the Wired article at https://www.
wired.com/story/we-made-artificial-intelligence-art-so-can-you/.

However, even though pictures are nice for hanging on the wall, you might want 
to produce other kinds of art. For example, you can create a 3-D version of your 
picture using products like Smoothie 3-D.  The articles at https://styly.cc/
tips/smoothie-3d/ and https://3dprint.com/38467/smoothie-3d-software/ 
describe how this software works. It’s not the same as creating a sculpture; rather, 
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you use a 3-D printer to build a 3-D version of your picture. The article at https://
thenextweb.com/artificial-intelligence/2018/03/08/try-this-ai- 
experiment-that-converts-2d-images-to-3d/ offers an experiment that you 
can perform to see how the process works.

The output of an AI doesn’t need to consist of something visual, either. For exam-
ple, deep learning enables you to create music based on the content of a picture, 
as described at https://www.cnet.com/news/baidu-ai-creates-original- 
music-by-looking-at-pictures-china-google/. This form of art makes the 
method used by AI clearer. The AI transforms content that it doesn’t understand 
from one form to another. As humans, we see and understand the transformation, 
but all the computer sees are numbers to process using clever algorithms created 
by other humans.

Forecasting Natural Catastrophes
People have been trying to predict natural disasters for as long as there have been 
people and natural disasters. No one wants to be part of an earthquake, tornado, 
volcanic eruption, or any other natural disaster. Being able to get away quickly is 
the prime consideration in this case given that humans can’t control their envi-
ronment well enough yet to prevent any natural disaster.

Deep learning provides the means to look for extremely subtle patterns that bog-
gle the minds of humans. These patterns can help predict a natural catastrophe, 
according to the article on Google’s solution at http://www.digitaljournal.
com/tech-and-science/technology/google-to-use-ai-to-predict-natural- 
disasters/article/533026. The fact that the software can predict any disaster at 
all is simply amazing. However, the article at http://theconversation.com/ai- 
could-help-us-manage-natural-disasters-but-only-to-an-extent-90777 
warns that relying on such software exclusively would be a mistake. Overreliance 
on technology is a constant theme throughout this book, so don’t be surprised that 
deep learning is less than perfect in predicting natural catastrophes as well.
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Chapter 19
Ten Must-Have Deep 
Learning Tools

Deep learning is a complex task, and if you try to write every last bit of code 
you need, you won’t ever have time to perform any analysis, which takes 
considerable time by itself. Consequently, you need tools that will help you 

get the job done with less effort. Throughout the book, you have seen a number of 
tools described and used. However, except for TensorFlow and Keras, the tools 
described previously are generally a good starting point, or something to consider 
to ease the learning curve. The tools in this chapter are special. They help you 
accomplish a variety of tasks with professional results.

Compiling Math Expressions Using Theano
Theano (http://deeplearning.net/software/theano/) is a Python library that 
makes it easier for you to work with various math expressions quickly. You can 
replace the copy of TensorFlow you installed in the “Getting your copy of Tensor-
Flow and Keras” section of Chapter 4 with Theano when desired. The choice of which 
to use can be quite complicated, as shown by the discussions at https://www. 
analyticsindiamag.com/tensorflow-vs-theano-researchers-prefer- artificial- 
intelligence-framework/ and https://www.reddit.com/r/MachineLearning/
comments/4ekywt/tensorflow_vs_theano_which_to_learn/. However, Theano’s 
fast speed doesn’t seem to be in question.

IN THIS CHAPTER

 » Augmenting your development 
environment

 » Creating specialty environments

 » Performing business tasks

 » Accessing specialized hardware
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After training a few models in this book, you already know that speed is 
 important — even essential. For example, the Chapter  12 code really could use 
some speeding up, and libraries like this one could help you make that happen 
(see the “Considering the cost of realistic output” sidebar in Chapter 12 for a dis-
cussion of speed issues). Here are the underlying features that make Theano so 
incredibly fast:

 » Transparent GPU use

 » Dynamic C-code generation

 » Specialized optimizations

Theano is currently the fourth most-used framework (as shown at https://
towardsdatascience.com/deep-learning-framework-power-scores- 
2018-23607ddf297a), which is why it appears in this chapter. However, as stated 
at https://groups.google.com/forum/m/#!msg/theano-users/7Poq8BZutbY/
rNCIfvAEAwAJ, the Theano developers aren’t doing anything more with it. You can 
see the final update notes at http://www.deeplearning.net/software/theano/
NEWS.html and read developer reactions to the loss at https://www.quora.com/
Is-Theano-deep-learning-library-dying. Many developers still make a strong 
case for using it, as discussed at https://www.reddit.com/r/MachineLearning/
comments/47qh90/is_there_a_case_for_still_using_torch_theano/.

Augmenting TensorFlow Using Keras
Chapter 4 and various other chapters in this book describe using Keras (https://
keras.io/) with TensorFlow. The “Getting your copy of TensorFlow and Keras” 
section of Chapter 4 tells you how to obtain a copy of these products and install 
them. Many of the book examples won’t run without Keras, so you may have 
already seen a smidgen of what Keras can do for you.

Fortunately, if you choose to go the Theano route instead of working with Tensor-
Flow, you still have the option of using Keras alongside it. You can also use the 
built-in version of Keras with TensorFlow (see https://www.tensorflow.org/
api_docs/python/tf/keras for details). The connection between Keras and  
TensorFlow will only get stronger when TensorFlow 2.0 is finally released (see 
https://medium.com/tensorflow/standardizing-on-keras-guidance-on- 
high-level-apis-in-tensorflow-2-0-bad2b04c819a for details).

Oddly enough, you can also use Keras with your Microsoft Cognitive Toolkit 
(CNTK) installation. Keras supports all three through a backend, as described at 
https://keras.io/backend/. You simply need to use a different underlying tool-
kit to make a change to a configuration file. As a result, you can experiment to see 
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which toolkit serves your needs best, and your Keras code will remain the same. 
One caveat, however: You must write your code using the abstract Keras backend 
API for it to be compatible with multiple underlying toolkits. This book doesn’t 
show you how to use the abstract Keras backend API, so this technique would 
require additional learning time on your part.

Dynamically Computing Graphs 
with Chainer

At one time, you might have used a library such as Pylearn2 (which is built on 
TensorFlow; (see http://deeplearning.net/software/pylearn2/ for details) to 
bridge the gap between algorithms and deep learning. However, new products, 
such as Chainer (https://chainer.org/) have taken the stage for reasons such 
as those discussed at https://www.quora.com/Which-is-better-for-deep- 
learning-TensorFlow-or-Chainer. The emphasis is on making it easier to access 
the functionality that most systems can provide today or access through online 
hosts. Consequently, you can look to Chainer to provide these features:

 » CUDA support for GPU access

 » Multiple GPU support with little effort

 » Support for a variety of networks including feed-forward nets, CNNs, recur-
rent nets, and recursive nets

 » Per-batch architecture support

 » Control of flow statements in forward computation without losing 
backpropagation

 » Significant debugging functionality to make finding errors easier

Creating a MATLAB-Like  
Environment with Torch

To get optimal performance from deep learning solutions, you need GPU support, 
which is where Torch (http://torch.ch/) comes into play. It puts the GPU first 
when you develop solutions, which allows you to get the additional cores and 
optimized processing features that GPUs can provide. To offer maximum speed, 
Torch relies on the LuaJIT compiler (http://luajit.org/) to compile your 

http://deeplearning.net/software/pylearn2/
https://chainer.org/
https://www.quora.com/Which-is-better-for-deep-learning-TensorFlow-or-Chainer
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http://torch.ch/
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320      PART 4  The Part of Tens

application instead of interpreting it. (Interpreters can make applications run 
slower.) It also has an underlying C language and CUDA (https://www.geforce.
com/hardware/technology/cuda) implementation that turns your high-level 
code into a low-level language to run as quickly as possible.

Torch comes with some features that are similar to those found in NumPy, but 
with an emphasis on deep learning. (You can find the package documentation at 
http://torch.ch/docs/package-docs.html.) For example, you’ll find:

 » N-dimensional arrays

 » Matrix manipulation features

 » Linear algebra routines

In addition to these features, you find some that are specifically devoted to AI 
needs, including deep learning:

 » Neural network models

 » Energy-based models

 » Numeric optimization routines

 » Fast and reliable GPU support

Performing Tasks Dynamically 
with PyTorch

PyTorch (https://pytorch.org/) is a serious competitor for TensorFlow. One 
item on the main page that will likely pique your attention is that you can click 
various options to be shown the required installation instructions for your plat-
form using the technique you really want to use. In fact, of all of the products you 
find online, this one might be the easiest to install. The ease of installation extends 
to other aspects of this product as well, such as debugging, as described at 
https://medium.com/@NirantK/the-silent-rise-of-pytorch-ecosystem- 
693e74b33f1e. Note that this article also describes a few missing elements and 
how to fix them.

You use PyTorch much as you would TensorFlow and Keras, but there are differ-
ences that you need to know about, as described at https://hub.packtpub.com/
what-is-pytorch-and-how-does-it-work/. These differences aren’t bad, and 

https://www.geforce.com/hardware/technology/cuda
https://www.geforce.com/hardware/technology/cuda
http://torch.ch/docs/package-docs.html
https://pytorch.org/
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https://hub.packtpub.com/what-is-pytorch-and-how-does-it-work/
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you could easily argue that they have contributed to PyTorch’s fast growth (see 
https://venturebeat.com/2018/10/16/github-facebooks-pytorch- 
and-microsofts-azure-have-the-fastest-growing-open-source-projects/ 
for details). Many developers pair PyTorch with other products such as Fastai, 
which is described at https://twimlai.com/twiml-talk-186-the-fastai-v1-deep- 
learning-framework-with-jeremy-howard/.

Accelerating Deep Learning 
Research Using CUDA

You can find CUDA (https://developer.nvidia.com/how-to-cuda-python) in 
various forms for various languages and a range of needs. For example, the C/C++ 
version appears at https://developer.nvidia.com/cuda-math-library. This 
section looks at the Python offering, but other versions exist as well, and their 
features differ from the version discussed in this section. No matter what form it 
takes, CUDA is about using GPUs, specially the GPUs on NVIDIA devices, such as 
the Titan V (https://www.nvidia.com/en-us/titan/titan-v/).

You don’t actually need a GPU in your system to use CUDA. Instead, you can access 
the GPUs on any of a number of hosted sites, including Amazon AWS, Microsoft 
Azure, and IBM SoftLayer. In fact, your installation comes with the NVIDIA-
maintained CUDA Amazon Machine Image (AMI) on AWS, so you don’t even have 
to work very hard to access this support.

CUDA gives you a great deal of flexibility in using a variety of GPU sources.  
Flexibility comes with the price of a higher learning curve and additional coding 
in most cases because you can’t make as many assumptions about package use. 
Consequently, before you even install this package, make sure to read the blog 
post at https://devblogs.nvidia.com/numba-python-cuda-acceleration/ that  
tells you more about how to use CUDA to perform real-world tasks. However, after 
you get past the learning curve, you find that you can perform an incredible array 
of tasks that you might not be able to do otherwise.

When working with CUDA, many developers couple it with the CUDA Deep Neu-
ral Network (cuDNN) library (https://developer.nvidia.com/cudnn). This is 
a special library of optimized routines that support using CUDA for deep learn-
ing needs.

https://venturebeat.com/2018/10/16/github-facebooks-pytorch-and-microsofts-azure-have-the-fastest-growing-open-source-projects/
https://venturebeat.com/2018/10/16/github-facebooks-pytorch-and-microsofts-azure-have-the-fastest-growing-open-source-projects/
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CONSIDERING THE ETHICS OF AI
It would be easy to write an entire book on ethics and AI because the technology has such 
an incredible potential for misuse. For example, the recent article at https://medium.
com/futuresin/facebooks-suicide-algorithms-is-invasive-25e4ef33beb5 
discusses the use of suicide prevention algorithms by Facebook to monitor its users. In 
fact, Facebook regularly uses algorithms to monitor people using the service and it feels 
that doing so without permission is perfectly acceptable. CEO Mark Zuckerberg feels  
that privacy is dead and everyone should get used to it (see the article at http://www. 
nbcnews.com/id/34825225/ns/technology_and_science-tech_and_gadgets/t/
privacy-dead-facebook-get-over-it/#.XFh14FVKhpg for details).

Books like 1984 by George Orwell have seen a surge in sales (see https://www.nytimes.
com/2017/01/25/books/1984-george-orwell-donald-trump.html) partly because 
of people’s feelings of insecurity over their personal information. The tendency of Facebook 
to keep your information in public view forever is one of the reasons that it’s losing  
users, according to the article at https://www.recode.net/2018/2/12/16998750/ 
facebooks-teen-users-decline-instagram-snap-emarketer. All these articles 
share the realization that people know that a company is misusing a technology in a big 
way and aren’t happy about it.

The problem comes when people aren’t aware of what a company is doing. Keeping up 
with all the technology changes today isn’t possible because technology moves so 
quickly. In this case, employees of the organization need to bring their concerns before 
the organization, as happened when Amazon employees took Jeff Bezos to task over 
the sale of Rekognition (https://aws.amazon.com/rekognition/) to law enforce-
ment, who would be using it to perform mass surveillance through facial recognition 
(https://www.pcmag.com/commentary/366229/
the-ai-industrys-year-of-ethical-reckoning).

After WWII, society became progressively more complex but also more frail. To protect 
people from dangers appearing inside and outside the state, military and law enforce-
ment have sometimes leveraged these new technologies for surveillance, control, and 
influence. If scientists don’t complain and regulate the use of the new technologies for 
such purposes, their extensive and indiscriminate use may erode people’s rights and 
even create a totalitarian state akin to the one in 1984. Only the ethical behavior of sci-
entists who are aware of how their technology is used will help mitigate this decidedly 
unethical behavior.
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Supporting Business Needs 
with Deeplearning4j

Businesses could be viewed as boring because they perform the same repetitive 
tasks with different parameters when it comes to data. Using a neural network to 
deal with a business’s data needs is tricky, though, because the various tasks  
differ too much for a single neural network model to fit all situations. The Deep-
learning4J (https://deeplearning4j.org/) lets you combine various shallow 
nets (layers) to create a deep neural net. This approach greatly reduces the time 
required to train a deep neural net, and time is something that businesses usually 
have in extremely short supply.

This particular solution is written in Java and will work with any JVM-compatible 
language, including Scala, Clojure, or Kotlin. The underlying computations are 
written in C and CUDA, so you can also use this solution with those languages if 
all you want to do is access the underlying computations. To use this solution with 
Python, you need to run it on Keras. The example at https://www. javacodegeeks.
com/2018/11/deep-learning-apache-kafka-keras.html demonstrates what is 
involved in creating a solution in this environment. Make sure to spend some time 
reviewing it before you take the plunge.

Mining Data Using Neural Designer
Many of the products listed in this chapter don’t feel quite finished; they have that 
rough feel that researchers and experimenters love. However, some people just 
need a solution that works. Neural Designer (https://www.neuraldesigner.
com/) is that solution, and it performs a variety of tasks, including:

 » Discovering complex relationships

 » Recognizing unknown patterns

 » Predicting trends

 » Recognizing associations from data

Unlike many of the other solutions you find, Neural Designer also places specific 
emphasis on particular industries. You can find specific information for the 
following:

 » Banking and insurance (https://www.neuraldesigner.com/solutions/
solutions-banking-insurance)

https://deeplearning4j.org/
https://www.javacodegeeks.com/2018/11/deep-learning-apache-kafka-keras.html
https://www.javacodegeeks.com/2018/11/deep-learning-apache-kafka-keras.html
https://www.neuraldesigner.com/
https://www.neuraldesigner.com/
https://www.neuraldesigner.com/solutions/solutions-banking-insurance
https://www.neuraldesigner.com/solutions/solutions-banking-insurance


324      PART 4  The Part of Tens

 » Engineering and manufacturing (https://www.neuraldesigner.com/
solutions/solutions-engineering-manufacturing)

 » Retail and consumer (https://www.neuraldesigner.com/solutions/
solutions-retail)

 » Healthcare (https://www.neuraldesigner.com/solutions/
solutions-health)

Training Algorithms Using Microsoft 
Cognitive Toolkit (CNTK)

Microsoft Cognitive Toolkit (CNTK) (https://www.microsoft.com/en-us/ 
cognitive-toolkit/) is another back-end framework used for deep learning, much 
like TensorFlow and Theano. You can run Keras on any of the three. Consequently, 
people constantly compare the three to see which performs best, such as this com-
parison between CNTK and TensorFlow at https://minimaxir.com/2017/06/
keras-cntk/. You can get a quick overview of all three back ends at http:// 
kaggler.com/keras-backend-benchmark-theano-vs-tensorflow-vs-cntk/.

Besides comparing the three frameworks’ speed and other performance issues, 
you also need to look at features. Obviously, all three will run Keras — usually 
with some modifications (see the “Augmenting TensorFlow Using Keras” section 
of this chapter for details). However, each of the three back ends also sport some 
special functionality. For example, if you want to use Azure, CNTK is probably 
your best solution because the Microsoft scientists are the most familiar with cur-
rent and upcoming Azure features. Of course, you’d expect this sort of function-
ality from CNTK.

One of the nicer features of CNTK is the extensive model gallery at https://www.
microsoft.com/en-us/cognitive-toolkit/features/model-gallery/. You find 
examples in multiple languages, with some of the examples specific to one lan-
guage and other examples supporting multiple languages. Look carefully at this 
page and you see that it includes models for C++, C#, and .NET in general, which 
you might be hard pressed to find with other back ends.

https://www.neuraldesigner.com/solutions/solutions-engineering-manufacturing
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Exploiting Full GPU Capability  
Using MXNet

MXNet (https://mxnet.apache.org/) has some interesting features that are 
good for experimenting with at this point, but the product probably isn’t ready for 
a production because the site tells you that it’s still incubating. This product pro-
vides some amazing models that will significantly reduce the time required to 
create many deep learning applications.

To work with MXNet, you rely on Gluon (you can theoretically also use the module 
API, but it looks a little painful at this point). Gluon is the imperative interface 
described at https://beta.mxnet.io/guide/crash-course/index.html (note 
again that this is a beta site, not a finished site). When going through the crash 
course, the first thing you notice is that Gluon really does look easy. To use  
Gluon with Python, you want to read about the Python package at https://mxnet.
incubator.apache.org/api/python/gluon/gluon.html. The information at 
https://beta.mxnet.io/ will help you get a reasonably good install, albeit with 
some fuss.

Fortunately, the MXNet documentation for Gluon is great (https://mxnet.
apache.org/api/python/gluon/model_zoo.html), and you can find additional 
resources on Medium (https://medium.com/apache-mxnet). Most impressive is 
the huge number of models that this product already supports. In addition, you 
can find a considerable number of examples to ease your learning curve (https://
github.com/apache/incubator-mxnet/tree/master/example) and tutorials as 
well (https://mxnet.apache.org/versions/master/tutorials/index.html). 
Overall, this is a product to watch because of its significant potential for reducing 
your workload.

https://mxnet.apache.org/
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Chapter 20
Ten Types of 
Occupations that Use 
Deep Learning

This books covers a lot of different uses for deep learning — everything from 
the voice-activated features of your digital assistant to self-driving cars. 
Using deep learning to improve your daily life is nice, of course, but most 

people need other reasons to embrace a technology, such as getting a job. 
Fortunately, deep learning doesn’t just affect your ability to locate information 
faster but also offers some really interesting job opportunities, and with the “wow” 
factor that only deep learning can provide. This chapter gives you an overview of 
ten interesting occupations that rely on deep learning to some extent today. This 
material represents only the tip of the iceberg, though; more occupations than can 
fit in this book are already using deep learning, and more are added every day.

Managing People
A terrifying movie called The Circle (https://www.amazon.com/exec/obidos/
ASIN/B071GB3P5N/datacservip0f-20/) would have you believe that modern 
technology will be even more invasive than Big Brother in the book 1984, by George 

IN THIS CHAPTER

 » Working with people

 » Developing new technologies

 » Analyzing data

 » Performing research

https://www.amazon.com/exec/obidos/ASIN/B071GB3P5N/datacservip0f-20/
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Orwell. Part of the movie’s story involves installing cameras everywhere — even 
in bedrooms. The main character wakes up every morning to greet everyone who 
is watching her. Yes, it can give you the willies if you let it.

However, real deep learning isn’t about monitoring and judging people, for the 
most part. It’s more like Oracle’s Global Human Resources Cloud (https://
cloud.oracle.com/en_US/global-human-resources-cloud). Far from being 
scary, this particular technology can make you look smart and on top of all the 
activities of your day, as shown in the video at https://www.youtube.com/
watch?v=NMm_cIHeEZ0&list=PL2Gxt-CBX-Ep2n5ytNGkl3bRUnUKAMI1Z. The video 
is a little over the top, but it gives you a good idea of how deep learning can cur-
rently make your job easier.

The idea behind this technology is to make success easier for people. If you look at 
Oracle’s video and associated materials, you find that the technology helps man-
agement suggest potential paths to employees’ goals within the organization. In 
some cases, employees like their current situation, but the software can still sug-
gest ways to make their work more engaging and fun. The software keeps employ-
ees from getting lost in the system and helps to manage the employee at a custom 
level so that each employee receives individualized input.

Improving Medicine
Deep learning is affecting the practice of medicine in many ways, as you can see when 
you go to the doctor or spend time at a hospital. Deep learning assists with diagnos-
ing illnesses (https://www.cio.com/article/3305951/health-care-industry/ 
the-promise-of-artificial-intelligence-in-diagnosing-illness.html) and 
finding their correct cure (https://emerj.com/ai-sector-overviews/machine- 
learning-medical-diagnostics-4-current-applications/). Deep learning is 
even used to improve the diagnostic process for hard-to-detect issues, including 
those of the eye (https://www.theverge.com/2018/8/13/17670156/deepmind- 
ai-eye-disease-doctor-moorfields). However, one of the most important uses  
for deep learning in medicine is in research.

The seemingly simple act of finding the correct patients to use for research pur-
poses isn’t really that simple. The patients must meet strict criteria or any testing 
results may prove invalid. Researchers now rely on deep learning to perform tasks 
like finding the right patient (https://emerj.com/ai-sector-overviews/ai- 
machine-learning-clinical-trials-examining-x-current-applications/), 
designing the trial criteria, and optimizing the results. Obviously, medicine will 
need a lot of people who are trained both in medicine and in the use of deep 
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learning techniques for medicine (https://healthitanalytics.com/features/
what-is-deep-learning-and-how-will-it-change-healthcare) to continue 
achieving advances at their current pace.

Developing New Devices
Innovation in some areas of computer technology, such as the basic system, which 
is now a commodity, has slowed down over the years. However, innovation in areas 
that only recently became viable has greatly increased. An inventor today has more 
possible outlets for new devices than ever before. One of these new areas is the 
means to perform deep learning tasks (https://www.oreilly.com/ideas/ 
specialized-hardware-for-deep-learning-will-unleash-innovation). To create  
the potential for performing deep learning tasks of greater complexity, many  
organizations now use specialized hardware that exceeds the capabilities of GPUs — 
the currently preferred processing technology for deep learning.

This book talks a lot about various deep learning technologies, but the technology 
is in its infancy, so a smart inventor could come up with something interesting 
without really working all that hard. The article at https://blog.adext.com/en/
artificial-intelligence-technologies-2019 tells about new AI technologies, 
but even these technologies don’t begin to plumb the depths of what could happen.

Deep learning is attracting the attention of both inventors and investors because of 
its potential to upend current patent law and the manner in which people create 
new things (https://marketbrief.edweek.org/marketplace-k-12/artificial- 
intelligence-attracting-investors-inventors-academic-researchers- 
worldwide/). An interesting part of most of the articles of this sort is that they pre-
dict a significant increase in jobs that revolve around various kinds of deep learn-
ing, most of which involve creating something new. Essentially, if you can make use 
of deep learning in some way and couple it with a current vibrant occupation, you 
can find a job or develop a business of your own.

Providing Customer Support
Many of the discussions in this book refer to chatbots (see Chapters 1, 2, 11, and 14) 
and other forms of customer support, including translation services. In case 
you’re curious, you can have an interactive experience with a chatbot at https://
pandorabots.com/mitsuku/. The use of chatbots and other customer support 
technologies have stirred up concern, however.
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Some consumer groups that say human customer support is doomed, as in the 
article at https://www.forbes.com/sites/christopherelliott/2018/08/27/
chatbots-are-killing-customer-service-heres-why/. However, if you have 
ever had to deal with a chatbot to perform anything complex, you know the 
experience is less than appealing. So the new paradigm is the human and  
chatbot combination, as described at https://chatbotsmagazine.com/bot- 
human-hybrid-the-new-era-of-customer-support-346e1633e910.

Much of the technology you see used today supposedly replaces a human, but in 
most cases, it can’t. For the time being, you should expect to see many situations 
that have humans and bots working together as a team. The bot reduces the strain 
of performing physically intense tasks as well as the mundane, boring chores. The 
human will do the more interesting things and provide creative solutions to unex-
pected situations. Consequently, people need to obtain training required to work 
in these areas and feel secure that they’ll continue to have gainful employment.

Seeing Data in New Ways
Look at a series of websites and other data sources and you notice one thing: They 
all present data differently. A computer doesn’t understand differences in presen-
tation and isn’t swayed by one look or another. It doesn’t actually understand 
data; it looks for patterns. Deep learning is enabling applications to collect more 
data on their own by ensuring that the application can see appropriate patterns, 
even when those patterns differ from what the application has seen before (see 
https://www.kdnuggets.com/2018/09/data-capture-deep-learning-way.
html for details). Even though deep learning will enhance and speed up data col-
lection, however, a human will still need to interpret the data. In fact, humans still 
need to ensure that the application collects good data because the application truly 
understands nothing about data.

Another way to see data in new ways is to perform data augmentation (https://
medium.com/nanonets/how-to-use-deep-learning-when-you-have- 
limited-data-part-2-data-augmentation-c26971dc8ced). Again, the applica-
tion does the grunt work, but it takes a human to determine what sort of augmen-
tation to provide. In other words, the human does the creative, interesting part, 
and the application just trudges along, ensuring that things work.

These first two deep learning uses are interesting and they’ll continue to generate 
jobs, but the most interesting using of deep learning is for activities that don’t 
exist yet. A creative human can look at ways that others are using deep learning 
and come up with something new. This article describe some interesting uses of 
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AI, machine learning, and deep learning that are just now becoming practical: 
https://www.wordstream.com/blog/ws/2017/07/28/machine- 
learning-applications.

Performing Analysis Faster
When most people speak of analysis, they think about a researcher, some sort of 
scientist, or a specialist. However, deep learning is becoming entrenched in some 
interesting places that will require human participation to see full use, such as 
predicting traffic accidents: https://www.hindawi.com/journals/jat/2018/ 
3869106/.

Imagine a police department allocating resources based on traffic flow patterns so 
that an officer is already waiting at the site of an expected accident. The police 
lieutenant would need to know how to use an application of this sort. Of course, 
this particular use hasn’t happened yet, but it very likely could because it’s already 
feasible using existing technology. So performing analysis will no longer be a job 
for those with “Dr.” in front of their names; it will be for everyone.

Analysis, by itself, isn’t all that useful. It’s the act of combining the analysis with 
a specific need in a particular environment that becomes useful. What you do with 
analysis defines the effect of that analysis on you and those around you. A human 
can understand the concept of analysis with a purpose; a deep learning solution 
can only perform the analysis and provide an output.

Creating a Better Work Environment
This book discusses how deep learning works, but what it all really means is that 
deep learning will make your life better and your employment more enjoyable if 
you happen to have skills that allow you to interact successfully with an AI. The 
article at https://www.siliconrepublic.com/careers/future-ai-workplace-
office describes how AI could change the workplace in the future. An important 
element of this discussion is to make work more inviting.

At one point in human history, work was actually enjoyable for most people. It’s 
not that they ran around singing and laughing all the time, but many people did 
look forward to starting each day. Later, during the industrial revolution, other 
people put the drudge into work, making every day away from work the only plea-
sure that some people enjoyed. The problem has become so severe that you can 
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https://www.wordstream.com/blog/ws/2017/07/28/machine-learning-applications
https://www.hindawi.com/journals/jat/2018/3869106/
https://www.hindawi.com/journals/jat/2018/3869106/
https://www.siliconrepublic.com/careers/future-ai-workplace-office
https://www.siliconrepublic.com/careers/future-ai-workplace-office


332      PART 4  The Part of Tens

find popular songs about it, like “Working for the Weekend” (https://www. 
youtube.com/watch?v=ahvSgFHzJIc). By removing the drudge from the workplace,  
deep learning has the potential to make work enjoyable again.

Deep learning will strongly affect the work environment in a number of ways, and 
not just the actual performance of work. For example, technologies based on deep 
learning have the potential to improve your health (https://www.entrepreneur.
com/article/317047) and therefore your productivity. It’s a win for everyone 
because you’ll enjoy life and work more, while your boss gets more of that hidden 
potential from your efforts.

One of the things that you don’t see mentioned often is the effect on productivity 
of a falling birth rate in developed countries. The article at https://www. 
mckinsey.com/featured-insights/future-of-work/ai-automation-and-the-future- 
of-work-ten-things-to-solve-for takes this issue on to some extent and  
provides a chart showing the potential impact of deep learning on various indus-
tries. If the current trend continues, having fewer available workers will mean a 
need for augmentation in the workplace.

However, you might wonder about your future if you worry that you might not be 
able to adapt to the new reality. The problem is that you might not actually know 
whether you’re safe. In Artificial Intelligence For Dummies, by John Paul Mueller and 
Luca Massaron [Wiley], you see discussions of AI-safe occupations and new occu-
pations that AI will create. You can even discover how you might end up working 
in space at some point. Unfortunately, not everyone wants to make that sort of 
move, much as the Luddites didn’t during the industrial revolution (see https://
www.history.com/news/industrial-revolution-luddites-workers for details). 
Certainly, what AI promises is going to have consequences even greater than the 
industrial revolution did (read about the effects of the industrial revolution at 
https://www.britishmuseum.org/research/publications/online_research_ 
catalogues/paper_money/paper_money_of_england__wales/the_industrial_ 
revolution.aspx) and will be even more disruptive. Some politicians, such as 
Andrew Wang (https://www.yang2020.com/policies/), are already looking at 
short-term fixes like basic universal income. These policies, if enacted, would help 
reduce the impact of AI, but they won’t provide a long-term solution. At some 
point, society will become significantly different from what it is today as a result 
of AI — much as the industrial revolution has already changed society.
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Researching Obscure or Detailed 
Information

Computers can do one thing — pattern matching — exceptionally well (and much 
better than humans. If you’ve ever had the feeling that you’re floating in informa-
tion and none of it relates to your current need, you’re not alone. Information 
overload has been a problem for many years and worsens every year. You can find 
a lot of advice on dealing with information overload, such as the site at https://
www.interaction-design.org/literature/article/information-overload- 
why-it-matters-and-how-to-combat-it. The problem is that you’re still drown-
ing in information. Deep learning enable you to find the needle in a haystack, and 
in a reasonable amount of time. Instead of months, a good deep learning solution 
could find the information you need in a matter of hours in most cases.

However, knowing that the information exists is usually not sufficient. You need 
information that’s detailed enough to fully answer your question, which often 
means locating more than one source and consolidating the information. Again, a 
deep learning solution could find patterns and mash the data together for you so 
that you don’t have to combine the input from multiple sources manually.

After AI finds the data and combines the multiple sources into a single cohesive 
report (you hope), it has done everything it can for you. It’s still up to the human 
to make sense of the information and determine a way to use it successfully. The 
computer won’t remove the creative part of the task; it removes the drudgery of 
finding the resources required to perform the creative part of the task. As infor-
mation continues to increase, expect to see an increase in the number of people 
who specialize in locating detailed or obscure information.

The information broker is becoming an essential part of society and represents an 
interesting career path that many people haven’t even heard about. The article at 
https://www1.cfnc.org/Plan/For_A_Career/Career_Profile/Career_ 
Profile.aspx?id=edMrqnSJebpXYIKXsDcurwXAP3DPAXXAP3DPAX offers a good 
summary of what information brokers do.

Designing Buildings
Most people view architecture as a creative trade. Imagine designing the next 
Empire State Building or some other edifice that will that will stand the test of 
time. In the past, designing such a building took years. Oddly enough, the con-
tractor actually built the Empire State Building in just a little over a year (see 
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http://www.designbookmag.com/empirestatebuilding.htm for details), but 
this isn’t usually the case. Deep learning and computer technology can help reduce 
the time to design and build buildings considerably by allowing things like virtual 
walkthroughs (https://pdf.wondershare.com/real-estate/virtual-tour- 
software-for-real-estate.html). In fact, the use of deep learning is improving 
the lives of architects in significant ways, as stated at https://www.autodesk.
com/redshift/machine-learning-in-architecture/.

However, turning a design into a virtual tour isn’t even the most impressive feat 
of deep learning in this field. Using deep learning enables designers to locate 
potential engineering problems, perform stress testing, and ensure safety in other 
ways before the design ever leaves the drawing board. These capabilities minimize 
the number of issues that occur after a building becomes operational, and the 
architect can enjoy the laurels of a success rather than the scorn and potential 
tragedy of a failure.

Enhancing Safety
Accidents happen! However, deep learning can help prevent accidents from  
happening — at least for the most part. By analyzing complex patterns in real 
time, deep learning can assist people who are involved in various aspects of safety 
assurance. For example, by tracking various traffic patterns and predicting the 
potential for an accident well in advance, a deep learning solution could provide 
safety experts with suggestions for preventing the accident from happening at all. 
A human couldn’t perform the analysis because of too many variables. However, a 
deep learning solution can perform the analysis and then provide output to a 
human for potential implementation.

As with every other occupation that involves deep learning, the human acts as the 
understanding part of the solution. Various kinds of accidents will defy the capa-
bility of any deep learning solution to provide precise solutions every time. 
Humans aren’t predictable, but other humans can reduce the odds of something 
terrible happening given the right information. The deep learning solution pro-
vides that correct information, but it requires human foresight and intuition to 
interpret the information correctly.
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