

Data Science
Essentials

by Lillian Pierson, PE

Data Science Essentials For Dummies®

Published by: John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, www.wiley.com

Copyright © 2025 by John Wiley & Sons, Inc. All rights reserved, including rights for text and
data mining and training of artificial technologies or similar technologies.

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise,
except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without
the prior written permission of the Publisher. Requests to the Publisher for permission should be
addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ
07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, Dummies.com, Making Everything
Easier, and related trade dress are trademarks or registered trademarks of John Wiley & Sons,
Inc. and may not be used without written permission. All other trademarks are the property of
their respective owners. John Wiley & Sons, Inc. is not associated with any product or vendor
mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF
THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING
WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY
MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE
AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS
WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN
RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL
ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE
SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING
HEREFROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK
AS A CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN
THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION
OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS
SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR
DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care
Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-
4002. For technical support, please visit https://hub.wiley.com/community/support/dummies.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some
material included with standard print versions of this book may not be included in e-books or in
print-on-demand. If this book refers to media such as a CD or DVD that is not included in the
version you purchased, you may download this material at http://booksupport.wiley.com.
For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2024949382

ISBN 978-1-394-29700-9 (pbk); ISBN 978-1-394-29702-3 (ebk); ISBN 978-1-394-29701-6 (ebk)

http://www.wiley.com
http://www.wiley.com/go/permissions
http://Dummies.com
https://hub.wiley.com/community/support/dummies
http://booksupport.wiley.com
http://www.wiley.com

Table of Contents iii

Table of Contents
INTRODUCTION ... 1

About This Book ... 2
Foolish Assumptions .. 3
Icons Used in This Book ... 3
Where to Go from Here ... 4

CHAPTER 1: Wrapping Your Head Around Data Science 5
Seeing Who Can Make Use of Data Science 6
Inspecting the Pieces of the Data Science Puzzle 8

Collecting, querying, and consuming data................................... 9
Applying mathematical modeling to data science tasks 11
Deriving insights from statistical methods 11
Coding, coding, coding — it’s just part of the game 12
Applying data science to a subject area 12
Communicating data insights .. 14

CHAPTER 2: Tapping into Critical Aspects
of Data Engineering ... 15
Defining the Three Vs .. 15

Grappling with data volume .. 16
Handling data velocity .. 16
Dealing with data variety ... 17

Identifying Important Data Sources ... 18
Grasping the Differences among Data Approaches 18

Defining data science ... 19
Defining machine learning engineering 20
Defining data engineering ... 20
Comparing machine learning engineers, data scientists,
and data engineers ... 21

Storing and Processing Data for Data Science 22
Storing data and doing data science directly in the cloud 22
Processing data in real-time .. 27

Recognizing the Impact of Generative AI .. 27
The reshaping of data engineering ... 28
Tools and frameworks for supporting AI workloads 28

iv Data Science Essentials For Dummies

CHAPTER 3: 	Using	a	Machine	to Learn	from	Data 29
Defining Machine Learning and Its Processes 29

Walking through the steps of the machine
learning process .. 30
Becoming familiar with machine learning terms 30

Considering Learning Styles .. 31
Learning with supervised algorithms ... 31
Learning with unsupervised algorithms 32
Learning with reinforcement ... 32

Seeing What You Can Do ... 32
Selecting algorithms based on function..................................... 33
Generating real-time analytics with Spark 36

CHAPTER 4: Math, Probability, and Statistical Modeling 39
Exploring Probability and Inferential Statistics 40

Probability distributions ... 42
Conditional probability with Naïve Bayes 44

Quantifying Correlation ... 45
Calculating correlation with Pearson’s r 45
Ranking variable pairs using Spearman’s
rank correlation ... 47

Reducing Data Dimensionality with Linear Algebra 48
Decomposing data to reduce dimensionality 48
Reducing dimensionality with factor analysis 52
Decreasing dimensionality and removing
outliers with PCA ... 53

Modeling Decisions with Multiple Criteria Decision-Making......... 54
Turning to traditional MCDM... 55
Focusing on fuzzy MCDM ... 57

Introducing Regression Methods ... 57
Linear regression .. 57
Logistic regression .. 59
Ordinary least squares regression methods 60

Detecting Outliers .. 60
Analyzing extreme values .. 60
Detecting outliers with univariate analysis 61
Detecting outliers with multivariate analysis 62

Introducing Time Series Analysis.. 64
Identifying patterns in time series .. 64
Modeling univariate time series data ... 65

Table of Contents v

CHAPTER 5: Grouping Your Way into Accurate
Predictions .. 67
Starting with Clustering Basics ... 68

Getting to know clustering algorithms 69
Examining clustering similarity metrics 71

Identifying Clusters in Your Data .. 72
Clustering with the k-means algorithm 72
Estimating clusters with kernel density estimation 74
Clustering with hierarchical algorithms 75
Dabbling in the DBScan neighborhood 77

Categorizing Data with Decision Tree and Random
Forest Algorithms ... 79
Drawing a Line between Clustering and Classification 80

Introducing instance-based learning classifiers 81
Getting to know classification algorithms 81

Making Sense of Data with Nearest Neighbor Analysis 84
Classifying Data with Average Nearest Neighbor Algorithms 86
Classifying with K-Nearest Neighbor Algorithms 89

Understanding how the k-nearest neighbor
algorithm works .. 90
Knowing when to use the k-nearest neighbor algorithm 91
Exploring common applications of k-nearest neighbor
algorithms .. 92

Solving Real-World Problems with Nearest
Neighbor Algorithms .. 92

Seeing k-nearest neighbor algorithms in action 92
Seeing average nearest neighbor algorithms in action 93

CHAPTER 6: Coding Up Data Insights and
Decision Engines ... 95
Seeing Where Python Fits into Your Data Science Strategy 95
Using Python for Data Science ... 96

Sorting out the various Python data types 98
Putting loops to good use in Python ..101
Having fun with functions ..103
Keeping cool with classes ..104
Checking out some useful Python libraries107

vi Data Science Essentials For Dummies

CHAPTER 7: Generating Insights with Software
Applications ...115
Choosing the Best Tools for Your Data Science Strategy116
Getting a Handle on SQL and Relational Databases118
Investing Some Effort into Database Design123

Defining data types ...123
Designing constraints properly ...124
Normalizing your database ...124

Narrowing the Focus with SQL Functions127
Making Life Easier with Excel ..131

Using Excel to quickly get to know your data132
Reformatting and summarizing with PivotTables137
Automating Excel tasks with macros ..139

CHAPTER 8: Telling Powerful Stories with Data143
Data Visualizations: The Big Three ...144

Data storytelling for decision-makers145
Data showcasing for analysts ..145
Designing data art for activists ..146

Designing to Meet the Needs of Your Target Audience146
Step 1: Brainstorm (All about Eve) ..147
Step 2: Define the purpose ..148
Step 3: Choose the most functional visualization type
for your purpose ...149

Picking the Most Appropriate Design Style150
Inducing a calculating, exacting response150
Eliciting a strong emotional response151

Selecting the Appropriate Data Graphic Type152
Standard chart graphics ...154
Comparative graphics ..157
Statistical plots ..161
Topology structures ..162
Spatial plots and maps ...164

Testing Data Graphics ..167
Adding Context ...168

Creating context with data ..169
Creating context with annotations ...169
Creating context with graphical elements169

Table of Contents vii

CHAPTER 9: 	 Ten	Free	or	Low-Cost	Data	Science	
Libraries	and	Platforms ..171
Scraping the Web with Beautiful Soup ..171
Wrangling Data with pandas ...172
Visualizing Data with Looker Studio ...172
Machine Learning with scikit-learn ..172
Creating Interactive Dashboards with Streamlit173
Doing Geospatial Data Visualization with Kepler.gl173
Making Charts with Tableau Public ..173
Doing Web-Based Data Visualization with RAWGraphs174
Making Cool Infographics with Infogram174
Making Cool Infographics with Canva..174

INDEX ..175

Introduction 1

Introduction

This book was written as much for expert data scientists as it
was for aspiring ones. Its content represents a new approach
to doing data science — one that puts business vision and

profitably at the heart of our work as data scientists.

Data science and artificial intelligence (AI) have disrupted the
business world so radically that it’s nearly unrecognizable com-
pared to what things were like just 10 or 15 years ago. The good
news is that most of these changes have made everyone’s lives
and businesses more efficient, more fun, and dramatically more
interesting. The bad news is that if you don’t yet have at least a
modicum of data science competence, your business and employ-
ment prospects are growing dimmer by the moment.

Since 2014, when this book was first written (throughout the first
several editions), I’ve harped on this same point. Lots of people
listened! So much has changed about data science over the years,
however, that this book has needed two full rewrites since it was
originally published. What changed? The math and scientific
approach that underlie data science haven’t changed one bit. But
over the years, with all the expansion of AI adoption across busi-
ness and with the remarkable increase in the supply of data sci-
ence workers, the data science landscape has seen a hundredfold
increase in diversity with respect to what people and businesses
are using data science to achieve.

The original idea behind this book when it was first published was
to provide “a reference manual to guide you through the vast and
expansive areas encompassed by data science.” At the time, not
too much information out there covered the breadth of data sci-
ence in one resource. That’s changed!

Data scientist as a title only really began to emerge in 2012. Most of
us practitioners in the field back then were all new and still find-
ing our way. In 2014, I didn’t have the perspective or confidence
I needed to write a book like the one you’re reading now. Thank
you so much to all the readers who have read this book previously,
shared positive feedback, and applied what they learned to create
better lives for themselves and better outcomes for their compa-
nies. The positive transformation of my readers is a big part of

2 Data Science Essentials For Dummies

what keeps me digging deep to produce the very best version of
this book that I possibly can.

The internet is full of information for the sake of information —
information that lacks the depth, context, and relevance that
are needed to transform that information to true meaning in the
lives of its consumers. Publishing more of this type of content
doesn’t help people — it confuses them, overwhelms them, and
wastes their precious time! When writing this book for a third
time, I took a radical stance against “information for the sake of
information.”

I also want to make three further promises about the content in
this book: It’s meaningful, it’s actionable, and it’s relevant. If it
isn’t one of these three adjectives, I’ve made sure it hasn’t made
its way into this book.

In this book, I detail what data science actually is and what its
theoretical underpinnings are. You’ll find references to ancillary
materials that directly support what you’re learning within these
pages. All these support materials are hosted on the companion
website for this book: https://businessgrowth.ai. I highly rec-
ommend you take advantage of those assets — I’ve donated many
of them from my archived bank of limited-edition paid products.

Note: If you want me to show you how to implement the data
science that’s discussed in this book, I have two Python for
Data Science Essential Training courses on LinkedIn Learning.
You’re most welcome to follow up by taking those courses. You
can access them both directly through my course author page on
LinkedIn Learning: www.linkedin.com/learning/instructors/
lillian-pierson-p-e.

About This Book
In keeping with the For Dummies brand, this book is organized
in a modular, easy-to-access format that allows you to use the
book as an owner’s manual. The book’s chapters are structured
to walk you through a clear process, so reading them in order
may make the most sense. You don’t absolutely have to read the
book from cover to cover, however — you can glean a great deal

https://businessgrowth.ai/
https://www.linkedin.com/learning/instructors/lillian-pierson-p-e
https://www.linkedin.com/learning/instructors/lillian-pierson-p-e

Introduction 3

from jumping around, although now and then you may miss some
important context by doing so.

Within this book, you may note that some web addresses break
across two lines of text. If you’re reading this book in print and
want to visit one of these web pages, simply key in the web
address exactly as it’s noted in the text, pretending as though
the line break doesn’t exist. If you’re reading this as an e-book,
you’ve got it easy — just click the web address to be taken directly
to the web page.

Foolish Assumptions
In writing this book, I’ve assumed that you’re comfortable with
advanced tasks in Microsoft Excel — pivot tables, grouping, sort-
ing, plotting, and the like. Having strong skills in algebra, basic
statistics, or even business calculus helps as well. Foolish or not,
it’s my high hope that all readers have subject matter expertise
to which they can apply the skills presented in this book. Because
data scientists need to know the implications and applications of
the data insights they derive, subject matter expertise is a major
requirement for data science.

Icons Used in This Book
As you make your way through this book, you see the following
icons in the margins:

The Tip icon marks tips (duh!) and shortcuts you can use to make
subject mastery easier.

The Remember icon marks information that’s especially impor-
tant to know. To siphon off the most important information in
each chapter, just skim the material next to these icons.

The Warning icon tells you to watch out! It marks important
information that may save you headaches.

4 Data Science Essentials For Dummies

Where to Go from Here
If you’re new to data science, you’re best off starting from
Chapter 1 and reading the book from beginning to end. If you
already know the data science basics, I suggest that you read the
last part of Chapter 1, skim Chapter 2, and then dig deep into the
rest of the book.

This book is unlike any other data science book or course on the
market. How do I know? Because I created it from scratch based
on my own unique experience and perspective. That perspective is
based on nearly 20 years of consulting experience within the data,
technology, and engineering domains. This book is not a remake
of what some other expert wrote in their book — it’s an original
work of art and a labor of love for me. If you enjoy the contents
of this book, please reach out to me at lillian@data-mania.com
and let me know.

Helping readers like you is my mission in life!

mailto:lillian@data-mania.com

CHAPTER 1 Wrapping Your Head Around Data Science 5

Chapter 1

IN THIS CHAPTER

 » Deploying data science methods across
various industries

 » Piecing together the core data science
components

 » Identifying viable data science solutions
to business challenges

 » Exploring data science career
alternatives

Wrapping Your Head
Around Data Science

For over a decade now, everyone has been absolutely deluged
by data. It’s coming from every computer, every mobile
device, every camera, and every imaginable sensor — and

now it’s even coming from watches and other wearable tech-
nologies. Data is generated in every social media interaction we
humans make, every file we save, every picture we take, and every
query we submit; data is even generated when we do something
as simple as ask a favorite search engine for directions to the
closest ice cream shop.

If you’re anything like I was, you may have wondered, “What’s
the point of all this data? Why use valuable resources to generate
and collect it?” Although even just two decades ago, no one was
in a position to make much use of most of the data that’s gen-
erated, the tides today have definitely turned. Specialists known
as data engineers are constantly finding innovative and powerful
new ways to capture, collate, and condense unimaginably mas-
sive volumes of data. Other specialists known as data scientists
are leading change by deriving valuable and actionable insights
from that data.

6 Data Science Essentials For Dummies

In its truest form, data science represents the optimization of
processes and resources. Data science produces data insights —
actionable, data-informed conclusions or predictions that you
can use to understand and improve your business, your invest-
ments, your health, and even your lifestyle and social life. Using
data science insights is like being able to see in the dark. For any
goal or pursuit you can imagine, you can find data science meth-
ods to help you predict the most direct route from where you are
to where you want to be — and to anticipate every pothole in the
road between both places.

In this chapter, I explain the difference between data science and
data engineering.

Seeing Who Can Make Use
of Data Science

The terms data science and data engineering are often misused and
confused, so let me start off by clarifying that these two fields are,
in fact, separate and distinct domains of expertise. Data science
is the computational science of extracting meaningful insights
from raw data and then effectively communicating those insights
to generate value. Data engineering, on the other hand, is an
engineering domain that’s dedicated to building and maintain-
ing systems that overcome data processing bottlenecks and data
handling problems for applications that consume, process, and
store large volumes, varieties, and velocities of data.

In both data science and data engineering, you commonly work
with the following types of data:

 » Structured data: Data that is stored, processed, and
manipulated in a traditional relational database management
system (RDBMS). An example of this type of data can be seen
in the tabular schema of rows and columns you’d commonly
encounter when working with corporate databases.

 » Unstructured data: Data that is commonly generated from
human activities and doesn’t fit into a structured database
format. Examples of unstructured data are data that
comprises email documents, Microsoft Word documents
or audio or video files.

CHAPTER 1 Wrapping Your Head Around Data Science 7

 » Semistructured data: Data that doesn’t fit into a structured
database system but is nonetheless organizable by tags that
are useful for creating a form of order and hierarchy in the
data. XML and JSON files are examples of data that comes in
semistructured form.

In the past, only large tech companies with massive funding had
the skills and computing resources required to implement data
science methodologies to optimize and improve their business,
but that hasn’t been the case for quite a while now. The prolifera-
tion of data has created a demand for insights, and this demand
is embedded in many aspects of modern culture — from the
Uber passenger who expects the driver to show up exactly at the
time and location predicted by the Uber app to the online shop-
per who expects the Amazon platform to recommend the best
product alternatives for comparing similar goods before mak-
ing a purchase. Data and the need for data-informed insights are
ubiquitous. Because organizations of all sizes are beginning to
recognize that they’re immersed in a sink-or-swim, data-driven,
competitive environment, data know-how has emerged as a core
and requisite function in almost every line of business.

What does this mean for the average knowledge worker? It means
that everyday employees are increasingly expected to support a
progressively advancing set of technological and data require-
ments. Why? Because almost all industries are reliant on data
technologies and the insights they spur. Consequently, many
people are in continuous need of upgrading their data skills, or
else they face the real possibility of being replaced by a more
data-savvy employee.

The good news is that upgrading data skills doesn’t usually require
people to go back to college or earn a university degree in statis-
tics, computer science, or data science. The bad news is that, even
with professional training or self-teaching, it always takes extra
work to stay industry-relevant and tech-savvy. In this respect,
the data revolution isn’t so different from any other change that
has hit industry in the past. The fact is, in order to stay relevant,
you need to take the time and effort to acquire the skills that keep
you current. When you’re learning how to do data science, you can
take some courses, educate yourself using online resources, read
books like this one, and attend events where you can learn what
you need to know to stay on top of the game.

8 Data Science Essentials For Dummies

Who can use data science? You can. Your organization can. Your
employer can. Anyone who has a bit of understanding and training
can begin using data insights to improve their lives, their careers,
and the well-being of their businesses. Data science represents
a change in the way you approach the world. When determining
outcomes, people once used to make their best guess, act on that
guess, and then hope for the desired result. With data insights,
however, people now have access to the predictive vision that they
need to truly drive change and achieve the results they want.

Here are some examples of ways you can use data insights to
make the world, and your company, a better place:

 » Develop key performance indicators (KPIs) for your
business systems. Use KPIs to track performance and
optimize the return on investment (ROI) for measurable
business activities.

 » Develop your marketing strategy. Use data insights and
predictive analytics to identify marketing strategies that
work, eliminate underperforming efforts, and test new
marketing strategies.

 » Keep communities safe. Predictive policing applications
help law enforcement personnel predict and prevent local
criminal activities.

 » Help make the world a better place for those less
fortunate. Data scientists in developing nations are using
social data, mobile data, and data from websites to generate
real-time analytics that improve the effectiveness of
humanitarian responses to disasters, epidemics, food
scarcity issues, and more.

Inspecting the Pieces of the Data
Science Puzzle

To practice data science, in the true meaning of the term, you
need the analytical know-how of math and statistics, the coding
skills necessary to work with data, and an area of subject matter
expertise. Without this expertise, you may as well call yourself a
mathematician or a statistician. Similarly, a programmer without

CHAPTER 1 Wrapping Your Head Around Data Science 9

subject matter expertise and analytical know-how may better
be considered a software engineer or developer, but not a data
scientist.

The need for data-informed business and product strategy has
been increasing exponentially for about a decade now, forcing all
business sectors and industries to adopt a data science approach.
As such, different flavors of data science have emerged. The fol-
lowing are just a few titles under which experts of every discipline
are required to know and regularly do data science:

 » Clinical biostatistician

 » Data and tech policy analyst

 » Data scientist–geospatial and agriculture analyst

 » Data scientist–health care

 » Digital banking product owner

 » Director of data science–advertising technology

 » Geotechnical data scientist

 » Global channel ops–data excellence lead

Nowadays, it’s almost impossible to differentiate between a proper
data scientist and a subject matter expert (SME) whose success
depends heavily on their ability to use data science to generate
insights. Looking at a person’s job title may or may not be help-
ful, simply because many roles are titled data scientist when they
may as well be labeled data strategist or product manager, based
on the actual requirements. In addition, many knowledge work-
ers are doing daily data science and not working under the title of
data scientist. It’s an overhyped, often misleading label that’s not
always helpful if you’re trying to find out what a data scientist
does by looking at online job boards.

To shed some light, in the following sections I spell out the key
components that are part of any data science role, regardless of
whether that role is assigned the data scientist label.

Collecting, querying,
and consuming data
Data engineers have the job of capturing and collating large
volumes of structured, unstructured, and semistructured big data

10 Data Science Essentials For Dummies

(an outdated term that’s used to describe data that exceeds the
processing capacity of conventional database systems because it’s
too big, it moves too fast, or it lacks the structural requirements
of traditional database architectures).

Data engineering tasks are separate from the work that’s per-
formed in data science, which focuses more on analysis, predic-
tion, and visualization. Despite this distinction, whenever data
scientists collect, query, and consume data during the analysis
process, they perform work similar to that of the data engineer
(the role I tell you about earlier in this chapter).

Although valuable insights can be generated from a single data
source, often the combination of several relevant sources delivers
the contextual information required to drive better data-informed
decisions. A data scientist can work from several datasets that
are stored in a single database, or even in several different data
storage environments. At other times, source data is stored and
processed on a cloud-based platform built by software and data
engineers.

No matter how the data is combined or where it’s stored, if you’re
a data scientist, you almost always have to query data — in other
words, write commands to extract relevant datasets from data
storage systems. Most of the time, you use Structured Query
Language (SQL) to query data. (Chapter 7 is all about SQL, so if
the acronym scares you, jump ahead to that chapter now.)

Whether you’re using a third-party application or doing custom
analyses by using a programming language such as R or Python,
you can choose from a number of universally accepted file formats:

 » Comma-separated values (CSV): Almost every brand of
desktop and web-based analysis application accepts this file
type, as do commonly used scripting languages such as
Python and R.

 » Script: Most data scientists know how to use Python to
analyze and visualize data. These script files end with the
extension .ply or .ipynb (Python).

 » Application: Excel is useful for quick-and-easy, spot-
check analyses on small- to medium-size datasets. These
application files have the .xls or .xlsx extension.

CHAPTER 1 Wrapping Your Head Around Data Science 11

 » Web programming: If you’re building custom, web-based
data visualizations, you may be working in D3.js — or
data-driven documents, a JavaScript library for data
visualization. When you work in D3.js, you use data to
manipulate web-based documents using .html, .svg,
and .css files.

Applying mathematical modeling
to data science tasks
Data science relies heavily on a practitioner’s math skills (and
statistics skills, as described in the following section) precisely
because these are the skills needed to understand your data and
its significance. These skills are also valuable in data science
because you can use them to carry out predictive forecasting,
decision modeling, and hypotheses testing.

Mathematics uses deterministic methods to form a quantitative
(or numerical) description of the world; statistics is a form of sci-
ence that’s derived from mathematics, but it focuses on using
a stochastic (probabilities) approach and inferential methods to
form a quantitative description of the world. (I tell you more
about math and statistics in Chapter 4.) Data scientists use math-
ematical methods to build decision models, generate approxima-
tions, and make predictions about the future. Chapter 4 presents
many mathematical approaches that are useful when working in
data science.

In this book, I assume that you have a fairly solid skill set in
basic math — you’ll benefit if you’ve taken college-level calculus
or even linear algebra. I try hard, however, to meet you where
you are. I realize that you may be working based on a limited
mathematical knowledge (advanced algebra or maybe business
calculus), so I convey advanced mathematical concepts using a
plain-language approach that’s easy for everyone to understand.

Deriving insights from
statistical methods
In data science, statistical methods are useful for better under-
standing your data’s significance, for validating hypotheses, for
simulating scenarios, and for making predictive forecasts of future
events. Advanced statistical skills are somewhat rare, even among

12 Data Science Essentials For Dummies

quantitative analysts, engineers, and scientists. If you want to go
places in data science, though, take some time to get up to speed
in a few basic statistical methods, like linear and logistic regres-
sion, Naïve Bayes classification, and time series analysis. (These
methods are covered in Chapter 4.)

Coding, coding, coding — it’s just
part of the game
Coding is unavoidable when you’re working in data science. You
need to be able to write code so that you can instruct the computer
on how to manipulate, analyze, and visualize your data. Program-
ming languages like Python are important for writing scripts for
data manipulation, analysis, and visualization. SQL, on the other
hand, is useful for data querying.

Although coding is a requirement for data science, it doesn’t have
to be this big, scary thing that people make it out to be. Your cod-
ing can be as fancy and complex as you want it to be, but you can
also take a rather simple approach. Although these skills are par-
amount to success, you can pretty easily learn enough coding to
practice high-level data science. I’ve dedicated Chapters 6 and 7
to helping you get to know the basics of what’s involved in getting
started in Python and querying in SQL, respectively.

Applying data science to a subject area
Statisticians once exhibited some measure of obstinacy in accept-
ing the significance of data science. Many statisticians have cried
out, “Data science is nothing new — it’s just another name for
what we’ve been doing all along!” Although I can sympathize with
their perspective, I’m forced to stand with the camp of data scien-
tists who markedly declare that data science is separate, and defi-
nitely distinct, from the statistical approaches that comprise it.

My position on the unique nature of data science is based to
some extent on the fact that data scientists often use computer
languages not used in traditional statistics and take approaches
derived from the field of mathematics. But the main point of dis-
tinction between statistics and data science is the need for subject
matter expertise.

Because statisticians usually have only a limited amount of exper-
tise in fields outside of statistics, they’re almost always forced to

CHAPTER 1 Wrapping Your Head Around Data Science 13

consult with an SME to verify exactly what their findings mean
and to determine the best direction in which to proceed. Data
scientists, on the other hand, should have a strong subject mat-
ter expertise in the area in which they’re working. Data scientists
generate deep insights and then use their domain-specific exper-
tise to understand exactly what those insights mean with respect
to the area in which they’re working.

Here are a few ways in which today’s knowledge workers are cou-
pling data science skills with their respective areas of expertise in
order to amplify the results they generate:

 » Clinical informatics scientists combine their health-care
expertise with data science skills to produce personalized
health-care treatment plans. They use health-care
informatics to predict and preempt future health problems
in at-risk patients.

 » Marketing data scientists combine data science with
marketing expertise to predict and preempt customer churn
(the loss of customers from a product or service to that of
a competitor’s). They also optimize marketing strategies,
build recommendation engines, and fine-tune marketing
mix models.

 » Data journalists scrape websites (extract data in bulk
directly from the pages on a website) for fresh data in order
to discover and report the latest breaking-news stories.
(I talk more about data storytelling in Chapter 8.)

 » Directors of data science bolster their technical project
management capabilities with an added expertise in data
science. Their work includes leading data projects and
working to protect the profitability of the data projects for
which they’re responsible. They also act to ensure transpar-
ent communication between C-suite executives, business
managers, and the data personnel on their team who
actually do the implementation work.

 » Data product managers supercharge their product
management capabilities with the power of data science.
They use data science to generate predictive insights that
better inform decision-making around product design,
development, launch, and strategy.

14 Data Science Essentials For Dummies

 » Machine learning engineers combine software engineering
superpowers with data science skills to build predictive
applications. This is a classic data implementation role,
more of which I discuss in Chapter 2.

Communicating data insights
As a data scientist, you must have sharp verbal communication
skills. If a data scientist can’t communicate, all the knowledge
and insight in the world does nothing for the organization. Data
scientists need to be able to explain data insights in a way that
staff members can understand. Not only that, but data scien-
tists need to be able to produce clear and meaningful data visu-
alizations and written narratives. Most of the time, people need
to see a concept for themselves in order to truly understand it.
Data scientists must be creative and pragmatic in their means
and methods of communication. (I cover the topics of data visu-
alization and data-driven storytelling in much greater detail
in Chapter 8.)

CHAPTER 2 Tapping into Critical Aspects of Data Engineering 15

Chapter 2

IN THIS CHAPTER

 » Unraveling the data story

 » Looking at important data sources

 » Differentiating data science from data
engineering

 » Storing data on-premises or in a cloud

 » Exploring other data engineering
solutions

Tapping into Critical
Aspects of Data
Engineering

Though data and artificial intelligence (AI) are extremely
interesting topics in the eyes of the public, most laypeople
aren’t aware of what data really is or how it’s used to

improve people’s lives.

This chapter tells the full story of modern data ecosystems;
explains where data comes from and how it’s used; and outlines
the roles that machine learning engineers, data engineers, and
data scientists play. In this chapter, I introduce the fundamental
concepts related to storing and processing data for data science so
this information can serve as the basis for laying out your plans
for leveraging data science to improve business performance.

Defining the Three Vs
If companies want to stay competitive, they must be proficient
and adept at infusing data insights into their processes and prod-
ucts, as well as their growth and management strategies. This

16 Data Science Essentials For Dummies

is especially true in light of the digital adoption explosion that
occurred as a direct result of the COVID-19 pandemic. Whether
your data volumes rank on the terabyte or petabyte scales, data-
engineered solutions must be designed to meet requirements for
the data’s intended destination and use.

Three characteristics — also called “the three Vs” — are the
key identifiers by which you can understand your data: volume,
velocity, and variety. Because the three Vs of data are continually
expanding, newer, more innovative technologies must continu-
ously be developed to manage these problems.

Grappling with data volume
In its raw form, most data is low value — in other words, the
value-to-data-quantity ratio is low in raw data. Much data is
composed of huge numbers of very small transactions that come
in a variety of formats. These incremental components produce
true value only after they’re aggregated and analyzed. Roughly
speaking, data engineers have the job of aggregating data, and
data scientists have the job of analyzing it.

Handling data velocity
Most data is created by using automated processes and instru-
mentation nowadays, and because data storage costs are rela-
tively inexpensive, system velocity is, many times, the limiting
factor. Keep in mind that raw data is low value. Consequently, you
need systems that are able to ingest a lot of it, on short order, to
generate timely and valuable insights.

In engineering terms, data velocity is data volume per unit time.
Latency is a characteristic of all data systems, and it quantifies
the system’s delay in moving data after it has been instructed to
do so. Many data-engineered systems are required to have latency
less than 100 milliseconds, measured from the time the data is
created to the time the system responds.

Throughput is a characteristic that describes a system’s capac-
ity for work per unit time. Throughput requirements can easily
be as high as 1,000 messages per second in data systems! High-
velocity, real-time moving data presents an obstacle to timely
decision-making. The capabilities of data-handling and data-
processing technologies often limit data velocities.

CHAPTER 2 Tapping into Critical Aspects of Data Engineering 17

Tools that intake data into a system — otherwise known as data
ingestion tools — come in a variety of flavors.

Dealing with data variety
The data explanation gets even more complicated when you add
unstructured and semistructured data to structured data sources.
This high-variety data comes from a multitude of sources. The
most salient point about it is that it’s composed of a combina-
tion of datasets with differing underlying structures (structured,
unstructured, or semistructured). Heterogeneous, high-variety
data is often composed of any combination of graph data, JSON
files, XML files, social media data, structured tabular data, weblog
data, and data that’s generated from user clicks on a web page —
otherwise known as click-streams.

Structured data can be stored, processed, and manipulated in a
relational database management system (RDBMS) — an example
of this type of system would be a PostgreSQL database that uses a
tabular schema of rows and columns, making it easier to identify
specific values within data that’s stored within the database. This
data, which can be generated by humans or machines, is derived
from all sorts of sources — from click-streams and web-based
forms to point-of-sale transactions and sensors. Unstructured
data comes completely unstructured — it’s commonly generated
from human activities and doesn’t fit into a structured database
format; such data can be derived from blog posts, emails, and
Microsoft Word documents. Semistructured data doesn’t fit into a
structured database system but is nonetheless structured by tags
that are useful for creating a form of order and hierarchy in the
data. Semistructured data is commonly found in databases and file
systems. It can be stored as log files, XML files, or JSON data files.

Become familiar with the term data lake. It’s used by practitio-
ners in the industry to refer to a nonhierarchical data storage
system that’s used to hold huge volumes of multistructured,
raw data within a flat storage architecture — in other words,
a collection of records that come in uniform format and that
are not cross-referenced in any way. You can use the Amazon
Simple Storage Service (S3) platform — or a similar cloud stor-
age solution — to meet the same requirements on the cloud. (The
Amazon S3 platform is one of the more popular cloud architec-
tures available for storing data.)

18 Data Science Essentials For Dummies

Although both the terms data lake and data warehouse are used
to refer to storing data, the terms refer to different types of sys-
tems. Data lake is defined in the preceding paragraph; a data ware-
house is a centralized data repository that you can use to store and
access only structured data. A more traditional data warehouse
system commonly employed in business intelligence solutions is
a data mart — a storage system (for structured data) that you can
use to store one particular focus area of data, belonging to only
one line of business in the company.

Identifying Important Data Sources
Vast volumes of data are continually generated by humans,
machines, and sensors everywhere. Typical sources include data
from social media, financial transactions, health records, click-
streams, log files, and the internet of things (IoT) — a web of digi-
tal connections that joins together the ever-expanding array of
devices that consumers use in their everyday lives.

Grasping the Differences among
Data Approaches

Data science, machine learning engineering, and data engineering
cover different functions within the data paradigm — an approach
wherein huge velocities, varieties, and volumes of structured,
unstructured, and semistructured data are being captured, pro-
cessed, stored, and analyzed using a set of techniques and tech-
nologies that are completely novel compared to those that were
used in decades past.

All these functions are useful for deriving knowledge and action-
able insights from raw data. All are essential elements for any
comprehensive decision-support system, and all are extremely
helpful when formulating robust strategies for future business
growth. Although the terms data science and data engineering are
often used interchangeably, they’re distinct domains of expertise.
Over the past five years, the role of machine learning engineer has
risen up to bridge a gap that exists between data science and data
engineering.

CHAPTER 2 Tapping into Critical Aspects of Data Engineering 19

In the following sections, I introduce concepts that are funda-
mental to data science and data engineering, as well as the hybrid
machine learning engineering role. Then I show you how these
roles function in an organization’s data team.

Defining data science
If science is a systematic method by which people study and explain
domain-specific phenomena that occur in the natural world, you
can think of data science as the scientific domain that’s dedicated
to knowledge discovery via data analysis.

Data scientists use mathematical techniques and algorithmic
approaches to derive solutions to complex business and scientific
problems. Data science practitioners use its predictive methods to
derive insights that are otherwise unattainable. In business and in
science, data science methods can provide more robust decision-
making capabilities:

 » In business, the purpose of data science is to empower
businesses and organizations with the data insights they
need in order to optimize organizational processes for
maximum efficiency and revenue generation.

 » In science, data science methods are used to derive results
and develop protocols for achieving the specific scientific
goal at hand.

Data science is a vast and multidisciplinary field. To call yourself
a true data scientist, you need to have expertise in math and sta-
tistics, computer programming, and your own domain-specific
subject matter.

Using data science skills, you can do cool things like the following:

 » Use machine learning (the practice of applying algorithms to
learn from — and make automated predictions from —
data) to optimize energy usage and lower corporate carbon
footprints.

 » Optimize tactical strategies to achieve goals in business
and science.

 » Predict for unknown contaminant levels from sparse
environmental datasets.

20 Data Science Essentials For Dummies

 » Design automated theft- and fraud-prevention systems
to detect anomalies and trigger alarms based on
algorithmic results.

 » Craft site-recommendation engines for use in land acquisi-
tions and real estate development.

 » Implement and interpret predictive analytics and forecasting
techniques for net increases in business value.

Data scientists must have extensive and diverse quantitative
expertise to be able to solve these types of problems.

Defining machine learning engineering
A machine learning engineer is essentially a software engineer who
is skilled enough in data science to deploy advanced data science
models within the applications they build, thus bringing machine
learning models into production in a live environment like a soft-
ware as a service (SaaS) product or even just a web page.

Contrary to what you may have guessed, the role of machine
learning engineer is a hybrid between a data scientist and a soft-
ware engineer, not a data engineer. A machine learning engineer
is, at their core, a well-rounded software engineer who also has a
solid foundation in machine learning and AI. This person doesn’t
need to know as much data science as a data scientist, but they
should know much more about computer science and software
development than a typical data scientist.

Defining data engineering
If engineering is the practice of using science and technology to
design and build systems that solve problems, you can think of
data engineering as the engineering domain that’s dedicated to
building and maintaining data systems for overcoming data pro-
cessing bottlenecks and data handling problems that arise from
handling the high volume, velocity, and variety of data.

Data engineers use skills in computer science and software engi-
neering to design systems for, and solve problems with, handling
and manipulating datasets. Data engineers often have experience
working with (and designing) real-time processing frameworks,
as well as with RDBMSs. They generally code in Java, C++, Python,
or Scala. They know how to deploy Spark to handle, process, and

CHAPTER 2 Tapping into Critical Aspects of Data Engineering 21

refine raw data into datasets with more manageable sizes. Simply
put, with respect to data science, the purpose of data engineer-
ing is to engineer large-scale data solutions by building coherent,
modular, and scalable data processing platforms from which data
scientists can subsequently derive insights.

Most engineered systems are built systems — they’re constructed
or manufactured in the physical world. Data engineering is dif-
ferent, though. It involves designing, building, and implementing
software solutions to problems in the data world — a world that
can seem abstract when compared to the physical reality of the
Golden Gate Bridge or the Aswan High Dam.

Using data engineering skills, you can, for example:

 » Integrate data pipelines with the natural language
processing (NLP) services that were built by data scientists
at your company.

 » Build mission-critical data platforms capable of processing
more than 10 billion transactions per day.

 » Tear down data silos by finally migrating your company’s
data from a legacy on-premises data storage environment
to a cutting-edge cloud warehouse.

 » Enhance and maintain existing data infrastructure and data
pipelines.

Data engineers need solid skills in computer science, database
design, and software engineering to be able to perform this
type of work.

Comparing machine learning
engineers, data scientists,
and data engineers
The roles of data scientist, machine learning engineer, and data
engineer are frequently conflated by hiring managers. If you look
around at most position descriptions for companies that are hir-
ing, they often mismatch the titles and roles or simply expect
applicants to be the Swiss Army knife of data skills and be able
to do them all.

22 Data Science Essentials For Dummies

If you’re hiring someone to help make sense of your data, be
sure to define the requirements clearly before writing the posi-
tion description. Because data scientists must also have subject
matter expertise in the particular areas in which they work, this
requirement generally precludes data scientists from also hav-
ing much expertise in data engineering. And, if you hire a data
engineer who has data science skills, that person generally won’t
have much subject matter expertise outside of the data domain.
Be prepared to call in a subject matter expert (SME) to help out.

Because many organizations combine and confuse roles in their
data projects, data scientists are sometimes stuck having to learn
to do the job of a data engineer — and vice versa. To come up with
the highest-quality work product in the least amount of time,
hire a data engineer to store, migrate, and process your data; a
data scientist to make sense of it for you; and a machine learning
engineer to bring your machine learning models into production.

Lastly, keep in mind that data engineer, machine learning engi-
neer, and data scientist are just three small roles within a larger
organizational structure. Managers, midlevel employees, and
business leaders also play a huge part in the success of any data-
driven initiative.

Storing and Processing Data
for Data Science

In the following sections, I explain the basics of what’s involved
in both cloud and on-premises data storage and processing.

Storing data and doing data science
directly in the cloud
After you’ve realized the upside potential of storing data in the
cloud, it’s hard to look back. Storing data in a cloud environment
offers serious business advantages:

 » Faster time to market (TTM): Many cloud service providers
take care of the bulk of the work that’s required to configure,
maintain, and provision the computing resources that are
required to run jobs within a defined system — also known

CHAPTER 2 Tapping into Critical Aspects of Data Engineering 23

as a compute environment. This dramatically increases ease
of use and ultimately allows for faster TTM for data products.

 » Enhanced flexibility: Cloud services are extremely flexible
with respect to usage requirements. If you set up in a cloud
environment and then your project plan changes, you can
simply turn off the cloud service with no further charges
incurred. This isn’t the case with on-premises storage,
because after you purchase the server, you own it. Your only
option from then on is to extract the best possible value
from a noncancelable resource.

 » Security: If you go with reputable cloud service providers —
like Amazon Web Services (AWS), Google Cloud, or Microsoft
Azure — your data is likely to be a whole lot more secure in
the cloud than it would be on-premises. That’s because of
the sheer number of resources that these megalith players
dedicate to protecting and preserving the security of the
data they store. I can’t think of a multinational company that
would have more invested in the security of its data infra-
structure than Amazon, Google, or Microsoft.

A lot of different technologies have emerged in the wake of the
cloud computing revolution. The next sections examine a few of
these new technologies.

Using serverless computing to execute
data science
When we talk about serverless computing, the term serverless is
quite misleading because the computing, indeed, takes place on
a server. Serverless computing really refers to computing that’s
executed in a cloud environment rather than on your desktop or
on-premises at your company. The physical host server exists,
but it’s 100 percent supported by the cloud computing provider
retained by you or your company.

One great tragedy of modern-day data science is the amount of
time data scientists spend on non-mission-critical tasks like
data collection, data cleaning and reformatting, data operations,
and data integration. By most estimates, only 10 percent of a
data scientist’s time is spent on predictive model building; the
rest of it is spent trying to prepare the data and the data infra-
structure for that mission-critical task they’ve been retained to
complete. Serverless computing has been a game changer for the

24 Data Science Essentials For Dummies

data science industry because it decreases the downtime that data
scientists spend in preparing data and infrastructure for their
predictive models.

Earlier in this chapter, I talk a bit about SaaS. Serverless com-
puting offers something similar: function as a service (FaaS), a
containerized cloud computing service that makes it much faster
and simpler to execute code and predictive functions directly in
a cloud environment, without the need to set up complicated
infrastructure around that code. With serverless computing, your
data science model runs directly within its container, as a sort of
stand-alone function. Your cloud service provider handles all the
provisioning and adjustments that need to be made to the infra-
structure to support your functions.

Examples of popular serverless computing solutions are AWS
Lambda, Google Cloud Run functions, and Azure Functions.

Containerizing predictive applications
within Kubernetes
Kubernetes is an open-source software suite that manages,
orchestrates, and coordinates the deployment, scaling, and man-
agement of containerized applications across clusters of worker
nodes. One particularly attractive feature about Kubernetes is that
you can run it on data that sits in on-premises clusters, in the
cloud, or in a hybrid cloud environment.

The chief focus of Kubernetes is helping software developers build
and scale apps quickly. Though it does provide a fault-tolerant,
extensible environment for deploying and scaling predictive
applications in the cloud, Kubernetes also requires quite a bit of
data engineering expertise to set them up correctly.

A system is fault tolerant if it’s built to continue successful opera-
tions despite the failure of one or more of its subcomponents. This
requires redundancy in computing nodes. A system is described as
extensible if it’s flexible enough to be extended or shrunk in size
without disrupting its operations.

To overcome this obstacle, Kubernetes released its Kubeflow
product, a machine learning toolkit that makes it simple for data
scientists to directly deploy predictive models within Kubernetes
containers, without the need for outside data engineering support.

CHAPTER 2 Tapping into Critical Aspects of Data Engineering 25

Sizing up popular cloud-warehouse
solutions
You have a number of products to choose from when it comes to
cloud-warehouse solutions. Here are the most popular options:

 » Amazon Redshift (https://aws.amazon.com/redshift):
A popular data warehousing service that runs atop data
sitting within the Amazon cloud, Redshift is most notable for
the incredible speed at which it can handle data analytics
and business intelligence workloads. Because it runs on the
AWS platform, Redshift’s fully managed data warehousing
service has the incredible capacity to support petabyte-scale
cloud storage requirements. If your company is already
using other AWS products — like Amazon EMR, Amazon
Athena, or Amazon Kinesis — Redshift is the natural choice
to integrate nicely with your existing technology. Redshift
offers both pay-as-you-go and on-demand pricing structures
that you’ll want to explore further on its website.

 » Snowflake (www.snowflake.com): This SaaS solution
provides powerful, parallel-processing analytics capabilities
for both structured and semistructured data stored in the
cloud on Snowflake’s servers. Snowflake is the ultimate
three-in-one solution, with its cost-effective data storage,
analytical processing capabilities, and all the built-in cloud
services you may need. Snowflake integrates well with
analytics tools like Qlik and Tableau, as well as with technolo-
gies like Apache Kafka, Apache Spark, and Pentaho, but it
wouldn’t make sense if you’re already relying mostly on
Amazon services. Pricing for Snowflake is based on the
amount of data you store, as well as on the execution time
for compute resources you consume on the platform.

 » Google BigQuery (https://cloud.google.com/bigquery):
Touted as a serverless data warehouse solution, BigQuery is a
relatively cost-effective solution for generating analytics from
data sources stored in the Google Cloud. Similar to Snowflake
and Redshift, BigQuery provides fully managed cloud services
that make it fast and simple for data scientists and analytics
professionals to use the tool without the need for assistance
from in-house data engineers. Analytics can be generated on
petabyte-scale data. BigQuery integrates with Google Data
Studio, Looker, Power BI, and Tableau for ease of use when it
comes to post-analysis data storytelling. Pricing for BigQuery is

https://aws.amazon.com/redshift
https://www.snowflake.com/
https://cloud.google.com/bigquery

26 Data Science Essentials For Dummies

based on the amount of data you store, as well as on the
compute resources you consume on the platform, as repre-
sented by the amount of data your queries return from
the platform.

Introducing NoSQL databases
An RDBMS is designed to handle only relational datasets con-
structed of data that is stored in clean rows and columns and,
thus, is capable of being queried via Structured Query Language
(SQL). RDBMSs are incapable of handling unstructured and sem-
istructured data. Plus, RDBMSs simply lack the processing and
handling capabilities that are needed for meeting data volume and
velocity requirements.

This is where NoSQL comes in — its databases are nonrelational,
distributed database systems that were designed to rise to the
challenges involved in storing and processing data. They can be
run on-premises or in a cloud environment. NoSQL databases
step out past the relational database architecture and offer a much
more scalable, efficient solution. NoSQL systems facilitate non-
SQL data querying of nonrelational or schema-free, semistruc-
tured and unstructured data. In this way, NoSQL databases are
able to handle the structured, semistructured, and unstructured
data sources that are common in data systems.

NoSQL offers four categories of nonrelational databases: graph
databases, document databases, key-values stores, and column
family stores. Because NoSQL offers native functionality for each
of these separate types of data structures, it offers efficient stor-
age and retrieval functionality for most types of nonrelational
data. This adaptability and efficiency makes NoSQL an increas-
ingly popular choice for handling data and for overcoming pro-
cessing challenges that come along with it.

NoSQL applications like Apache Cassandra and MongoDB are used
for data storage and real-time processing. Apache Cassandra is a
popular type of key-value store NoSQL database, and MongoDB is
the most-popular document-oriented type of NoSQL database. It
uses dynamic schemas and stores JSON-esque documents.

CHAPTER 2 Tapping into Critical Aspects of Data Engineering 27

Processing data in real-time
A real-time processing framework is — as its name implies — a
framework that processes data in real time (or near real time) as
the data streams and flows into the system. Real-time frame-
works process data in microbatches — they return results in a
matter of seconds rather than the hours or days it typically takes
batch-processing frameworks like MapReduce. Real-time pro-
cessing frameworks do one of the following:

 » Increase the overall time efficiency of the system.
Solutions in this category include Apache Flink and Apache
Spark for near-real-time stream processing.

 » Deploy innovative querying methods to facilitate the
real-time querying. Some solutions in this category are
Apache Drill, Google’s Dremel, Shark for Apache Hive, and
Apache Impala.

Apache Spark is an in-memory computing application that you
can use to query, explore, analyze, and even run machine learn-
ing algorithms on incoming streaming data in near real time. Its
power lies in its processing speed: The ability to process and make
predictions from streaming data sources in three seconds flat is
no laughing matter.

Real-time, stream-processing frameworks are quite useful in
a multitude of industries — from stock and financial market
analyses to e-commerce optimizations and from real-time fraud
detection to optimized order logistics. Regardless of the industry
in which you work, if your business is impacted by real-time data
streams that are generated by humans, machines, or sensors, a
real-time processing framework would be helpful to you in opti-
mizing and generating value for your organization.

Recognizing the Impact of Generative AI
Now that you’ve gotten an overview of traditional data storage
and processing methods, it’s time to explore some of the more
cutting-edge ways that AI technologies are reshaping the data
engineering landscape.

28 Data Science Essentials For Dummies

The reshaping of data engineering
When performed manually, data cleaning, augmentation, and
preprocessing tasks consume a substantial amount of time and
resources. These tasks are now being accelerated by the use of gen-
erative AI (GenAI) models to generate synthetic data that mimics
real-world datasets, thereby filling gaps in data or expanding the
volume of training data for machine learning models. This capa-
bility improves the quality and robustness of AI models while also
reducing the manual effort involved in data preparation.

GenAI is also useful for automatically generating code snippets,
such as SQL queries and data transformation scripts. This, of
course, streamlines the development of data pipelines and reduces
errors. By integrating GenAI into their workflows, data engineers
are achieving faster, more efficient data processing while signifi-
cantly fortifying their capacity to deploy machine learning mod-
els at scale.

Tools and frameworks for supporting
AI workloads
To fully harness the power of GenAI in data engineering, a range
of specialized tools and frameworks are available to support AI
workloads. Leading the charge are open-source libraries like
TensorFlow and PyTorch, which offer robust environments for
developing, training, and deploying complex AI models. These
frameworks are increasingly being integrated into data engineer-
ing pipelines, thereby enabling seamless processing and manipu-
lation of large datasets.

Additionally, frameworks like Hugging Face Transformers pro-
vide pretrained models and tools that simplify the deployment
of GenAI in various applications, including NLP and data genera-
tion. Cloud-based AI services like Amazon SageMaker, Google AI
Platform, and Microsoft Azure AI further enhance this ecosys-
tem by offering scalable, managed environments that cater to the
demands of training and deploying AI models in real time.

These services provide the computational power needed for inten-
sive AI workloads while also providing integrated tools for data
management. This, in turn, makes it easier for data engineers to
build and maintain AI-infused data pipelines.

CHAPTER 3 Using a Machine to Learn from Data 29

Chapter 3

IN THIS CHAPTER

 » Grasping the machine learning process

 » Exploring machine learning styles and
algorithms

 » Getting an overview of algorithms, deep
learning, and Apache Spark

Using a Machine
to Learn from Data

If you’ve been paying attention to the news over the past decade,
you’ve no doubt heard of a concept called machine learning —
often referenced when reporters are covering stories on the

newest amazing invention from artificial intelligence (AI). In this
chapter, you dip your toes into the area called machine learning.

Defining Machine Learning
and Its Processes

Machine learning is the practice of applying algorithmic models to
data over and over again so that your computer discovers hidden
patterns or trends that you can use to make predictions. Machine
learning has a vast and ever-expanding assortment of use cases,
including the following:

 » Real-time internet advertising

 » Internet marketing personalization

 » Internet search

30 Data Science Essentials For Dummies

 » Spam filtering

 » Recommendation engines

 » Natural language processing (NLP) and sentiment analysis

 » Automatic facial recognition

 » Customer churn prediction

 » Credit score modeling

 » Survival analysis for mechanical equipment

Walking through the steps
of the machine learning process
Three main steps are involved in machine learning: setup, learn-
ing, and application. Setup involves acquiring data, preprocessing
it, selecting the most appropriate variables for the task at hand
(called feature selection), and breaking the data into training and
test datasets. You use the training data to train the model, and
the test data to test the accuracy of the model’s predictions. The
learning step involves model experimentation, training, building,
and testing. The application step involves model deployment and
prediction.

Here’s a rule of thumb for breaking data into test and training
sets: Apply random sampling to two-thirds of the original dataset
in order to use that sample to train the model. Use the remain-
ing one-third of the data as test data, for evaluating the model’s
predictions.

Becoming familiar with machine
learning terms
Before diving too deeply into a discussion of machine learning
methods, you need to know about the (sometimes confusing)
vocabulary associated with the field. Because machine learning
is an offshoot of both traditional statistics and computer science,
it has adopted terms from both fields and added a few of its own.
Here’s what you need to know:

 » Instance: The same as a row (in a data table), an observation
(in statistics), and a data point. Machine learning practitioners
are also known to call an instance a case.

CHAPTER 3 Using a Machine to Learn from Data 31

 » Feature: The same as a column or field (in a data table) and a
variable (in statistics). In regression methods, a feature is also
called an independent variable (IV).

 » Target variable: The same as a predictant or dependent
variable (DV) in statistics.

In machine learning, feature selection is a somewhat straightfor-
ward process for selecting appropriate variables; for feature engi-
neering, you need substantial domain expertise and strong data
science skills to manually design input variables from the under-
lying dataset. You use feature engineering in cases where your
model needs a better representation of the problem being solved
than is available in the raw dataset.

Although machine learning is often referred to in the context
of data science and AI, these terms are all separate and distinct.
Machine learning is a practice within data science, but there’s
more to data science than just machine learning. AI often, but
not always, involves data science and machine learning. AI is a
term that describes autonomously acting agents. In some cases,
AI agents are robots; in others, they’re software applications. If
the agent’s actions are triggered by outputs from an embedded
machine learning model, then the AI is powered by data sci-
ence and machine learning. On the other hand, if the AI’s actions
are governed by a rules-based decision mechanism, you can
have AI that doesn’t actually involve machine learning or data
science at all.

Considering Learning Styles
Machine learning can be applied in three main styles: supervised,
unsupervised, and semisupervised. Supervised and unsupervised
methods are behind most modern machine learning applications,
and semisupervised learning is an up-and-coming star.

Learning with supervised algorithms
Supervised learning algorithms require that input data has labeled
features. These algorithms learn from known features of that data
to produce an output model that successfully predicts labels for
new incoming, unlabeled data points. You use supervised learning
when you have a labeled dataset composed of historical values that

32 Data Science Essentials For Dummies

are good predictors of future events. Use cases include survival
analysis and fraud detection, among others. Logistic regression is
a type of supervised learning algorithm, and you see a little more
about it in the “Selecting algorithms based on function” section.

Learning with unsupervised algorithms
Unsupervised learning algorithms accept unlabeled data and
attempt to group observations into categories based on underly-
ing similarities in input features, as shown in Figure 3-1. Princi-
pal component analysis, k-means clustering, and singular value
decomposition are all examples of unsupervised machine learning
algorithms. Popular use cases include recommendation engines,
facial recognition systems, and customer segmentation.

Learning with reinforcement
Reinforcement learning is a behavior-based learning model. It’s
based on a mechanic similar to how humans and animals learn.
The model is given “rewards” based on how it behaves, and it
subsequently learns to maximize the sum of its rewards by adapt-
ing the decisions it makes to earn as many rewards as possible.

Seeing What You Can Do
Whether you’re just becoming familiar with the algorithms that
are involved in machine learning or you’re looking to find out
more about what’s happening in cutting-edge machine learning

FIGURE 3-1: Unsupervised machine learning breaks down unlabeled data
into subgroups.

CHAPTER 3 Using a Machine to Learn from Data 33

advancements, this section has something for you. First, I give
you an overview of machine learning algorithms, broken down
by function; then I describe more about the advanced areas
of machine learning that are embodied by deep learning and
Apache Spark.

Selecting algorithms based on function
When you need to choose a class of machine learning algorithms,
it’s helpful to consider each model class based on its functionality:

 » Regression: You can use this model type to describe and
quantify the relationships between independent variables
and a dependent variable. This model helps you to identify
how changes in the features influence an outcome and it’s a
very commonly used approach for making predictions. You
can read more on linear and logistic regression methods and
ordinary least squares in Chapter 4.

 » Association rule learning: This type of algorithm is a
rule-based set of methods that you can use to discover
associations between features in a dataset. For an in-depth
training and demonstration on how to use association rules
in Microsoft Excel, be sure to check out the companion
website to this book (https://businessgrowth.ai).

 » Instance-based: If you want to use observations in your
dataset to classify new observations based on similarity,
you can use this type. To model with instances, you can use
methods like k-nearest neighbor classification, covered in
Chapter 5.

 » Regularizing: You can use regularization to introduce added
information as a means by which to prevent model overfit-
ting or to solve an ill-posed problem. In case the term is new
to you, model overfitting is a situation in which a model is so
tightly fit to its underlying dataset, as well as its noise or
random error, that the model performs poorly as a predictor
for new observations.

 » Naïve Bayes: If you want to predict the likelihood of an
event’s occurrence based on some evidence in your data,
you can use this method, based on classification and
regression. Naïve Bayes is covered in Chapter 4.

 » Decision tree: A tree structure is useful as a decision
support tool. You can use it to build models that predict

https://businessgrowth.ai/

34 Data Science Essentials For Dummies

for potential downstream implications that are associated
with any given decision.

 » Clustering: You can use this type of unsupervised machine
learning method to uncover subgroups within an unlabeled
dataset. Both k-means clustering and hierarchical clustering
are covered in Chapter 5.

 » Dimension reduction: If you’re looking for a method to use
as a filter to remove redundant information, unexplainable
random variation, and outliers from your data, consider
dimension reduction techniques such as factor analysis and
principal component analysis. These topics are covered
in Chapter 4.

 » Neural network: A neural network mimics how the brain
solves problems by using a layer of interconnected neural
units as a means by which to learn — and infer rules — from
observational data. It’s often used in image recognition and
computer vision applications.

Imagine that you’re deciding whether you should go to the
beach. You never go to the beach if it’s raining, and you don’t
like going if it’s colder than 75°F outside. These are the two
inputs for your decision. Your preference to not go to the
beach when it’s raining is a lot stronger than your preference
to not go to the beach when it’s colder than 75°F, so you
weight these two inputs accordingly. For any given instance
where you decide whether you’re going to the beach, you
consider these two criteria, add up the results, and then
decide whether to go. If you decide to go, your decision
threshold has been satisfied. If you decide not to go, your
decision threshold was not satisfied. This is a simplistic
analogy for how neural networks work.

Now, for a more technical definition. The simplest type of
neural network is the perceptron. It accepts more than one
input, weights them, adds them up on a processor layer, and
then — based on the activation function and the threshold
you set for it — outputs a result. An activation function is a
mathematical function that transforms inputs into an output
signal. The processor layer is called a hidden layer. A neural
network is a layer of connected perceptrons that all work
together as a unit to accept inputs and return outputs that
signal whether some criteria is met. A key feature of neural
nets is that they’re self-learning — in other words, they adapt,

CHAPTER 3 Using a Machine to Learn from Data 35

learn, and optimize per changes in input data. Figure 3-2 is
a schematic layout that depicts how a perceptron is
structured.

 » Deep learning method: This method incorporates tradi-
tional neural networks in successive layers to offer deep-
layer training for generating predictive outputs. I tell you
more about this topic in the next section.

 » Ensemble algorithm: You can use ensemble algorithms to
combine machine learning approaches to achieve results
that are better than would be available from any single
machine learning method on its own.

Visit the companion website to this book (https://business
growth.ai) to get a quick-start guide to selecting the best deep
learning network for your most immediate needs.

If you use Gmail, you must be enjoying its autoreply functional-
ity (the three one-line messages from which you can choose an
autoreply to a message someone sent you). This autoreply func-
tionality within Gmail is called Smart Reply, and it’s built on deep
learning algorithms. Another innovation built on deep learning
is Facebook DeepFace, the Facebook feature that automatically
recognizes and suggests tags for the people who appear in your
Facebook photos. Figure 3-3 is a schematic layout that depicts
how a deep learning network is structured.

FIGURE 3-2: Neural networks are connected layers of artificial
neural units.

https://businessgrowth.ai/
https://businessgrowth.ai/

36 Data Science Essentials For Dummies

Deep learning is a machine learning method that uses hierarchical
neural networks to learn from data in an iterative and adaptive
manner. It’s an ideal approach for learning patterns from unla-
beled and unstructured data. It’s essentially the same concept as
the neural network, except that deep learning algorithms have two
or more hidden layers. In fact, computer vision applications —
like those that support facial recognition for images uploaded to
Facebook, or the self-driving cars produced by Tesla — have been
known to implement more than 150 hidden layers in a single deep
neural network. The more hidden layers there are, the more
complex a decision the algorithm can make.

Generating real-time analytics
with Spark
Apache Spark is an in-memory distributed computing applica-
tion that you can use to deploy machine learning algorithms on
large volumes of data that are moving in near real time. From
there, generating analytics from these streaming sources is rather
straightforward. Whew!

Because it processes data in microbatches, with 3-second cycle
times, you can use it to significantly decrease time-to-insight
in cases where time is of the essence. It can be run on data that
sits in a wide variety of storage architectures, including Amazon
Redshift, Amazon Web Services (AWS), Apache Cassandra,
Apache Solr, Hadoop Distributed File System (HDFS), and
MongoDB. Spark is composed of the following submodules:

FIGURE 3-3: A deep learning network is a neural network with more than
one hidden layer.

CHAPTER 3 Using a Machine to Learn from Data 37

 » Spark SQL: You use this module to work with and query
structured data using Spark. Within Spark, you can query
data using Spark’s built-in Structured Query Language (SQL)
package: SparkSQL. You can also query structured data using
Hive, but then you’d use the HiveQL language and run the
queries using the Spark processing engine.

 » GraphX: The GraphX library is how you store and process
network data from within Spark.

 » Streaming: The Streaming module is where the data
processing takes place. This module basically breaks a
continuously streaming data source into much smaller data
streams, called Dstreams (discreet data streams, in other
words). Because the Dstreams are small, these batch cycles
can be completed within three seconds, which is why it’s
called microbatch processing.

 » MLlib: The MLlib submodule is where you analyze data,
generate statistics, and deploy machine learning algorithms
from within the Spark environment. MLlib has application
programming interfaces (APIs) for Java, Python, R, and Scala.
The MLlib module allows data professionals to work within
Spark to build machine learning models in Python or R, and
those models will then pull data directly from the requisite
data storage repository, whether that be on-premises, in a
cloud, or even in a multicloud environment. This helps
reduce the reliance that data scientists sometimes have
on data engineers. Plus, computations are known to be
100 times faster when processed in-memory using Spark as
opposed to the traditional MapReduce framework.

You can deploy Spark on-premises by downloading the open-
source framework from the Apache Spark website, at https://
spark.apache.org/downloads.html. Another option is to
run Spark on the cloud via the Apache Databricks service, at
www.databricks.com.

https://spark.apache.org/downloads.html
https://spark.apache.org/downloads.html
https://www.databricks.com/

CHAPTER 4 Math, Probability, and Statistical Modeling 39

Chapter 4

IN THIS CHAPTER

 » Introducing the core basics of statistical
probability

 » Quantifying correlation

 » Reducing dataset dimensionality

 » Building decision models with multiple
criteria decision-making

 » Diving into regression methods

 » Detecting outliers

 » Talking about time series analysis

Math, Probability, and
Statistical Modeling

Math and statistics are not the scary monsters that many
people make them out to be. In data science, the need for
these quantitative methods is simply a fact of life — and

nothing to be alarmed about. Although you need to have a handle
on the math and statistics that are necessary to solve a problem,
you don’t need to study for degrees in those fields.

Contrary to what many pure statisticians would have you believe,
the data science field isn’t the same as the statistics field. Data
scientists have substantive knowledge in one field or several
fields, and they use statistics, math, coding, and strong commu-
nication skills to help them discover, understand, and communi-
cate data insights that lie within raw datasets related to their field
of expertise. Statistics is a vital component of this formula, but
not more vital than the others.

In this chapter, I introduce you to the basic ideas behind probability,
correlation analysis, dimensionality reduction, decision modeling,
regression analysis, outlier detection, and time series analysis.

40 Data Science Essentials For Dummies

Exploring Probability
and Inferential Statistics

Probability is one of the most fundamental concepts in statistics.
To get started making sense of your data by using statistics, you
need to be able to identify something as basic as whether you’re
looking at descriptive statistics or inferential statistics. You also need
a firm grasp of the basics of probability distribution.

A statistic is a result that’s derived from performing a mathemati-
cal operation on numerical data. In general, you use statistics in
decision-making. Statistics come in two flavors:

 » Descriptive: Descriptive statistics provide a description
that illuminates some characteristic of a numerical dataset,
including dataset distribution, central tendency (such as
mean, min, or max), and dispersion (as in standard deviation
and variance). For clarification, the mean of a dataset is the
average value of its data points, the min of a dataset is the
minimum value of its data points, and the max of a dataset
is the maximum value of its data points. Descriptive statistics
are not meant to illustrate any causal claims.

Descriptive statistics can highlight relationships between
X and Y, but they do not posit that X causes Y.

 » Inferential: Instead of focusing on pertinent descriptions of
a dataset, inferential statistics carve out a smaller section of
the dataset and try to deduce significant information about
the larger dataset. Unlike descriptive statistics, inferential
methods, such as regression analysis, do try to predict by
studying causation. Use inferential statistics to derive
information about a real-world measure in which you’re
interested.

Descriptive statistics describe the characteristics of a numerical
dataset, but that doesn’t tell you why you should care. In fact,
most data scientists are interested in descriptive statistics only
because of what they reveal about the real-world measures they
describe. For example, a descriptive statistic is often associated
with a degree of accuracy, indicating the statistic’s value as an esti-
mate of the real-world measure.

CHAPTER 4 Math, Probability, and Statistical Modeling 41

To better understand this concept, imagine that a business owner
wants to estimate the upcoming quarter’s profits. The owner
may take an average of the past few quarters’ profits to use as an
estimate of how much profit they’ll make during the next quar-
ter. But if the previous quarters’ profits varied widely, a descrip-
tive statistic that estimated the variation of this predicted profit
value (the amount by which this dollar estimate could differ from
the actual profits earned) would indicate just how far the pre-
dicted value could be from the actual one. (Not bad information
to have, right?)

You can use descriptive statistics in many ways — to detect out-
liers, for example, or to plan for feature preprocessing require-
ments or to quickly identify which features you may want (or not
want) to use in an analysis.

Like descriptive statistics, inferential statistics are used to reveal
something about a real-world measure. Inferential statistics do
this by providing information about a small data selection, so you
can use this information to infer something about the larger data-
set from which it was taken. In statistics, this smaller data selec-
tion is known as a sample, and the larger, complete dataset from
which the sample is taken is called the population.

If your dataset is too big to analyze in its entirety, pull a smaller
sample of this dataset, analyze it, and then make inferences about
the entire dataset based on what you learn from analyzing the
sample. You can also use inferential statistics in situations where
you simply can’t afford to collect data for the entire population.
In this case, you’d use the data you do have to make inferences
about the population at large. At other times, you may find your-
self in situations where complete information for the population
isn’t available. In these cases, you can use inferential statistics
to estimate values for the missing data based on what you learn
from analyzing the data that’s available.

For an inference to be valid, you must select your sample care-
fully so you form a true representation of the population. Even if
your sample is representative, the numbers in the sample data-
set will always exhibit some noise (random variation) indicating
that the sample statistic isn’t exactly identical to its correspond-
ing population statistic. For example, if you’re constructing a
sample of data based on the demographic makeup of the popu-
lation of Chicago, you would want to ensure that proportions of

42 Data Science Essentials For Dummies

racial/ethnic groups in your sample match up to proportions in
the population overall.

Probability distributions
Imagine that you’ve just rolled into Las Vegas and settled into
your favorite roulette table over at the Bellagio. When the roulette
wheel spins off, you intuitively understand that there is an equal
chance that the ball will fall into any of the slots of the cylinder
on the wheel. The slot where the ball lands is totally random, and
the probability (likelihood) of the ball landing in any one slot over
another is the same. Because the ball can land in any slot, with
equal probability, there is an equal probability distribution, or a
uniform probability distribution — the ball has an equal probability
of landing in any of the slots in the wheel.

But the slots of the roulette wheel aren’t all the same — the wheel
has 18 black slots and 20 slots that are either red or green.

Probability black() .18
38 4736

Because of this arrangement, the probability that your ball will
land on a black slot is 47.36 percent.

Your net winnings here can be considered a random variable,
which is a measure of a trait or value associated with an object, a
person, or a place (something in the real world) that is unpredict-
able. Just because this trait or value is unpredictable, however,
doesn’t mean that you know nothing about it. What’s more, you
can use what you do know about this thing to help you in your
decision-making.

A weighted average is an average value of a measure over a very
large number of data points. If you take a weighted average of
your winnings (your random variable) across the probability dis-
tribution, this would yield an expectation value — an expected
value for your net winnings over a successive number of bets. (An
expectation can also be thought of as the best guess, if you had to
guess.) To describe it more formally, an expectation is a weighted
average of some measure associated with a random variable. If
your goal is to model an unpredictable variable so that you can
make data-informed decisions based on what you know about
its probability in a population, you can use random variables and
probability distributions to do this.

CHAPTER 4 Math, Probability, and Statistical Modeling 43

When considering the probability of an event, you must know
what other events are possible. Always define the set of events
as mutually exclusive — only one can occur at a time. (Think of
the six possible results of rolling a die.) Probability has these two
important characteristics:

 » The probability of any single event never goes below 0.0
or exceeds 1.0.

 » The probability of all events always sums to exactly 1.0.

Probability distribution is classified per these two types:

 » Discrete: A random variable where values can be counted
by groupings

 » Continuous: A random variable that assigns probabilities
to a range of values

To understand discrete and continuous distribution, think of two
variables from a dataset describing cars. A color variable would
have a discrete distribution because cars have only a limited range
of colors (black, red, or blue, for example). The observations
would be countable per the color grouping. A variable describing
cars’ miles per gallon (mpg) would have a continuous distribution
because each car could have its own, separate value for mpg that
it gets on average.

 » Normal distributions (numeric continuous): Represented
graphically by a symmetric bell-shaped curve, these distribu-
tions model phenomena that tend toward some most-likely
observation (at the top of the bell in the bell curve); observa-
tions at the two extremes are less likely.

 » Binomial distributions (numeric discrete): These distribu-
tions model the number of successes that can occur in a
certain number of attempts when only two outcomes are
possible (the old heads-or-tails coin-flip scenario, for
example). Binary variables — variables that assume only
one of two values — have a binomial distribution.

 » Categorical distributions (non-numeric): These represent
either non-numeric categorical variables or ordinal variables
(ordered categorical variables). For example, the level of
service offered by most airlines is ordinal because they offer
first class, business class, and economy class seats.

44 Data Science Essentials For Dummies

Conditional probability
with Naïve Bayes
You can use the Naïve Bayes machine learning method, which
was borrowed straight from the statistics field, to predict the
likelihood that an event will occur, given evidence defined in
your data features — something called conditional probability.
Naïve Bayes, which is based on classification and regression, is
especially useful if you need to classify text data.

To better illustrate this concept, consider the Spambase
dataset that’s available from University of California, Irvine’s
machine learning repository (https://archive.ics.uci.edu/
ml/datasets/Spambase). That dataset contains 4,601 records
of emails and, in its last field, designates whether each email is
spam. From this dataset, you can identify common characteristics
between spam emails. After you’ve defined common features that
indicate spam email, you can build a Naïve Bayes classifier that
reliably predicts whether an incoming email is spam, based on
the empirical evidence supported in its content. In other words,
the model predicts whether an email is spam — the event — based
on features gathered from its content — the evidence.

Naïve Bayes comes in these three popular flavors:

 » MultinomialNB: Use this version if your variables
(categorical or continuous) describe discrete frequency
counts, like word counts. This version of Naïve Bayes
assumes a multinomial distribution, as is often the case
with text data. It doesn’t accept negative values.

 » BernoulliNB: If your features are binary, you can use
multinomial Bernoulli Naïve Bayes to make predictions.
This version works for classifying text data but isn’t generally
known to perform as well as MultinomialNB. If you want to
use BernoulliNB to make predictions from continuous
variables, that will work, but you first need to subdivide the
variables into discrete interval groupings (also known
as binning).

 » GaussianNB: Use this version if all predictive features are
normally distributed. It’s not a good option for classifying
text data, but it can be a good choice if your data contains
both positive and negative values (and if your features have
a normal distribution, of course).

https://archive.ics.uci.edu/ml/datasets/Spambase
https://archive.ics.uci.edu/ml/datasets/Spambase

CHAPTER 4 Math, Probability, and Statistical Modeling 45

Before building a Bayes classifier naïvely, consider that the model
holds an a priori assumption — meaning that its predictions
are based on an assumption that past conditions still hold true.
Predicting future values from historical ones generates incorrect
results when present circumstances change.

Quantifying Correlation
Many statistical and machine learning methods assume that your
features are independent. To test whether they’re independent,
though, you need to evaluate their correlation (the extent to which
variables demonstrate interdependency). In this section, you get
a brief introduction to Pearson correlation and Spearman’s rank
correlation.

Correlation is quantified per the value of a variable called r, which
ranges between –1 and 1. The closer the r-value is to 1 or –1, the
more correlation there is between two variables. If two variables
have an r-value that’s close to 0, it could indicate that they’re
independent variables.

Calculating correlation with Pearson’s r
If you wanted to uncover dependent relationships between con-
tinuous variables in a dataset, you’d use statistics to estimate
their correlation. The simplest form of correlation analysis is the
Pearson correlation, which assumes the following:

 » Your data is normally distributed.

 » You have continuous, numeric variables.

 » Your variables are linearly related. You can identify a linear
relationship by plotting the data points on a chart and looking to
see if there is a clear increasing or decreasing trend within the
values of the data points, such that a straight line can be drawn
to summarize that trend. Figure 4-1 is an illustration of what a
linear relationship looks like.

Because the Pearson correlation has so many conditions, use it
only to determine whether a relationship between two variables
exists, but not to rule out possible relationships. If you were to
get an r-value close to 0, it would indicate that there is no linear

46 Data Science Essentials For Dummies

relationship between the variables but that a nonlinear relation-
ship between them still could exist.

To use the Pearson’s r to test for linear correlation between two
variables, you’d simply plug your data into the following formula
and calculate the result:

r
y

x y

x x y

x y
2 2

 » x = mean of x variable

 » y = mean of y variable

 » r = Pearson r coefficient of correlation

After you get a value for your Pearson r, you’d interpret its value
according to the following standards:

 » If r is close to +1, there is a strong positive correlation
between the variables.

 » If r = 0, the variables are not linearly correlated.

 » If r is close to –1, there is a strong negative correlation
between the variables.

FIGURE 4-1: An example of a linear relationship between months and
YouTube subscribers.

CHAPTER 4 Math, Probability, and Statistical Modeling 47

Ranking variable pairs using
Spearman’s rank correlation
The Spearman’s rank correlation is a popular test for determining
correlation between ordinal variables. By applying Spearman’s
rank correlation, you’re converting numeric variable pairs into
ranks by calculating the strength of the relationship between
variables and then ranking them per their correlation.

The Spearman’s rank correlation assumes the following:

 » Your variables are ordinal.

 » Your variables are related nonlinearly. You can identify
nonlinearity between variables by looking at a graph. If the
graph between two variables produces a curve (like the one
shown in Figure 4-2), then the variables have a nonlinear
relationship. This curvature occurs because, with variables
related in a nonlinear manner, a change in the value of x
doesn’t necessarily correspond to the same change in
dataset’s y-value.

 » Your data is nonnormally distributed.

To use Spearman Rank to test for correlation between ordinal
variables, you’d simply plug the values for your variables into the
following formula and calculate the result:

1 6
1

2

2

d
n n

FIGURE 4-2: An example of a nonlinear relationship between watch time and
percent viewership.

48 Data Science Essentials For Dummies

 » ρ = Spearman’s rank correlation coefficient

 » d = difference between the two ranks of each data point

 » n = total number of data points in the dataset

Reducing Data Dimensionality
with Linear Algebra

Any intermediate-level data scientist should have a good under-
standing of linear algebra and how to do math using matri-
ces. Array and matrix objects are the primary data structure in
analytical computing. You need them in order to perform math-
ematical and statistical operations on large and multidimensional
datasets (datasets with many different features to be tracked
simultaneously).

In this section, you see exactly what’s involved in using linear
algebra and machine learning methods to reduce a dataset’s
dimensionality — in other words, to reduce a dataset’s feature
count, without losing the important information the dataset con-
tains, by compressing its features’ information into synthetic
variables that you can subsequently utilize to make predictions or
as input into another machine learning model.

Decomposing data to reduce
dimensionality
Okay, what can you do with all this theory? Well, for starters,
using a linear algebra method called singular value decomposition
(SVD), you can reduce the dimensionality of your dataset — in
other words, reduce the number of features that you track when
carrying out an analysis. Dimension reduction algorithms are
ideal if you need to compress your dataset while also remov-
ing redundant information and noise. In data science, SVD is
applied to analyze principal components from large, noisy, sparse
datasets — an approach machine learning folks call principal
component analysis (PCA). Because the linear algebra involved in
PCA is rooted in SVD, let’s look at how SVD works.

CHAPTER 4 Math, Probability, and Statistical Modeling 49

The SVD linear algebra method decomposes the data matrix into
the three resultant matrices shown in Figure 4-4. The product
of these matrices, when multiplied together, gives you back your
original matrix. SVD is handy when you want to compress or clean
your dataset. Using SVD enables you to uncover latent variables
(inferred variables hidden within your dataset that affect how
that dataset behaves). Here are the two main ways to use the SVD
algorithm:

 » Compressing sparse matrices: If you have a clean yet
sparse dataset, you don’t want to remove any of the
information that the dataset holds, but you do need to
compress that information down into a manageable
number of variables, so you can use them to make predic-
tions. A handy thing about SVD is that it allows you to set the
number of variables, or components, it creates from your
original dataset. And if you don’t remove any of those
components, you’ll reduce the size of your dataset without
losing any of its important information. This process is
illustrated in Figure 4-3.

 » Cleaning and compressing dirty data: In other cases, you
can use SVD to do an algorithmic cleanse of a dirty, noisy
dataset. In this case you’d apply SVD to uncover your
components, and then decide which of them to keep by
looking at their variance. The industry standard is that
explained variance of the components you keep should add
up to at least 75 percent or more. This ensures that at least
75 percent of the dataset’s original information has been
retained within the components you’ve kept. This process is
shown in Figure 4-4.

If the sum of the explained variance — or cumulative variance
explained (CVE) — for the components you keep is less than
95 percent, don’t use the components as derived features fur-
ther downstream in other machine learning models. In this case,
the information lost within these derived features will cause the
machine learning model to generate inaccurate, unreliable predic-
tions. These derived components are, however, useful as a source
for descriptive statistics or for building more general descriptive
analytics — in other words, analytics that describe what hap-
pened in the past, and answer questions like “What happened?,”
“When?,” “How many,?” and “Where?”

50 Data Science Essentials For Dummies

The lower the CVE, the more you should take your model’s results
with a grain of salt.

If you remove some components, then when you go to reconstruct
your matrix, you’ll probably notice that the resulting matrix isn’t
an exact match to your original dataset. Worry not! That’s the
data that remains after much of the information redundancy and
noise was filtered out by SVD and removed by you.

Getting a little nitty-gritty about SVD, let’s look at the formula for
SVD, but keep in mind: This is linear algebra not regular algebra,
so we’re looking at matrix math not regular math. To take it from
the beginning, you need to understand the concept of eigenvec-
tor. To do that, think of a matrix called A. Now consider a nonzero
vector called x and that Ax = λx for a scalar λ. In this scenario,
scalar λ is what’s called an eigenvalue of matrix A. It’s permit-
ted to take on a value of 0. Furthermore, x is the eigenvector that
corresponds to λ, and again, it’s not permitted to be a zero value.

FIGURE 4-3: Applying SVD to compress a sparse, clean dataset.

CHAPTER 4 Math, Probability, and Statistical Modeling 51

λ is simply the scale factor of the eigenvector. SVD decomposes the
matrix down into three resultant matrices shown in Figure 4-5.
The product of these matrices, when multiplied together, gives
you back your original matrix.

FIGURE 4-4: Applying SVD to clean and compress a sparse, dirty dataset.

FIGURE 4-5: You can use SVD to decompose data down to u, S, and V matrices.

52 Data Science Essentials For Dummies

Take a closer look at Figure 4-5:

A = u * S * v

 » A: This is the matrix that holds all your original data.

 » u: This is a left-singular vector (an eigenvector) of A, and it
holds all the important, nonredundant information about
your data’s observations.

 » v: This is a right-singular eigenvector of A. It holds all the
important, nonredundant information about columns in
your dataset’s features.

 » S: This is the square root of the eigenvalue of A. It contains
all the information about the procedures performed during
the compression.

Reducing dimensionality
with factor analysis
Factor analysis is along the same lines as SVD in that it’s a method
you can use for filtering out redundant information and noise
from your data. An offspring of the psychometrics field, this
method was developed to help you derive a root cause in cases
where a shared root cause results in shared variance — when a
variable’s variance correlates with the variance of other variables
in the dataset.

When you find shared variance in your dataset, that means infor-
mation redundancy is at play. You can use factor analysis or prin-
cipal component analysis to clear your data of this information
redundancy. You see more on principal component analysis in the
following section, but for now, focus on factor analysis and the
fact that you can use it to compress your dataset’s information
into a reduced set of meaningful, non-information-redundant
latent variables — meaningful inferred variables that underlie a
dataset but are not directly observable.

Factor analysis makes the following assumptions:

 » Your features are metric (numeric variables on which
meaningful calculations can be made).

CHAPTER 4 Math, Probability, and Statistical Modeling 53

 » Your features should be continuous or ordinal. (If you’re
not sure what ordinal is, refer back to the first class, busi-
ness class, and economy class analogy in the “Probability
distributions” section of this chapter.)

 » You have more than 100 observations in your dataset and
at least 5 observations per feature.

 » Your sample is homogenous.

 » There is r > 0.3 correlation between the features in your
dataset.

In factor analysis, you do a regression (a topic covered later in
this chapter) on features to uncover underlying latent variables,
or factors. You can then use those factors as variables in future
analyses to represent the original dataset from which they’re
derived. At its core, factor analysis is the process of fitting a model
to prepare a dataset for analysis by reducing its dimensionality
and information redundancy.

Decreasing dimensionality
and removing outliers with PCA
Principal component analysis (PCA) is another dimensionality
reduction technique that’s closely related to SVD: This unsuper-
vised statistical method finds relationships between features in
your dataset and then transforms and reduces them to a set of
non-information-redundant principal components — uncorrelated
features that embody and explain the information that’s contained
within the dataset (that is, its variance). These components act as
a synthetic, refined representation of the dataset, with the infor-
mation redundancy, noise, and outliers stripped out. You can then
use those reduced components as input for your machine learn-
ing algorithms to make predictions based on a compressed repre-
sentation of your data. (For more on outliers, see the “Detecting
Outliers” section, later in this chapter.)

The PCA model makes these two assumptions:

 » Multivariate normality (MVN) — or a set of real-valued,
correlated, random variables that are each clustered
around a mean — is desirable, but not required.

 » Variables in the dataset should be continuous.

54 Data Science Essentials For Dummies

Although PCA is like factor analysis, they have two major differ-
ences: One difference is that PCA does not regress to find some
underlying cause of shared variance, but instead decomposes a
dataset to succinctly represent its most important information in
a reduced number of features. The other key difference is that,
with PCA, the first time you run the model, you don’t specify the
number of components to be discovered in the dataset. You let the
initial model results tell you how many components to keep, and
then you rerun the analysis to extract those features.

Similar to the CVE discussion in the SVD part of this chapter, the
amount of variance you retain depends on how you’re applying
PCA, as well as the data you’re inputting into the model. Breaking
it down based on how you’re applying PCA, the following rules of
thumb become relevant:

 » Used for descriptive analytics: If PCA is being used for
descriptive purposes only (for example, when working to
build a descriptive avatar of your company’s ideal customer),
the CVE can be lower than 95 percent. In this case you can
get away with a CVE as low as 75 percent to 80 percent.

 » Used for diagnostic, predictive, or prescriptive analytics:
If principal components are meant for downstream models
that generate diagnostic, predictive, or prescriptive analytics,
CVE should be 95 percent or higher. Just realize that the
lower the CVE, the less reliable your model results will be
downstream. Each percentage of CVE that’s lost represents
a small amount of information from your original dataset
that won’t be captured by the principal components.

When using PCA for outlier detection, simply plot the principal
components on an x-y scatterplot and visually inspect for areas
that may have outliers. Those data points correspond to potential
outliers that are worth investigating.

Modeling Decisions with Multiple
Criteria Decision-Making

Life is complicated. We’re often forced to make decisions where
several different criteria come into play, and it often seems
unclear which criterion should have priority. Mathematicians,

CHAPTER 4 Math, Probability, and Statistical Modeling 55

being mathematicians, have come up with quantitative approaches
that you can use for decision support whenever you have several
criteria or alternatives on which to base your decision. You see those
approaches in Chapter 3, where I talk about neural networks and
deep learning — another method that fulfills this same decision-
support purpose is multiple criteria decision-making (MCDM).

Turning to traditional MCDM
You can use MCDM methods in anything from stock portfolio
management to fashion-trend evaluation, from disease outbreak
control to land development decision-making. Anywhere you have
two or more criteria on which you need to base your decision, you
can use MCDM methods to help you evaluate alternatives.

To use multiple criteria decision-making, the following two
assumptions must be satisfied:

 » Multiple criteria evaluation: You must have more than one
criterion to optimize.

 » Zero-sum system: Optimizing with respect to one criterion
must come at the sacrifice of at least one other criterion.
This means that there must be trade-offs between criteria —
to gain with respect to one means losing with respect to at
least one other.

Another important thing to note about MCDM is that it’s char-
acterized by binary membership. In mathematics, a set is a group
of numbers that share a similar characteristic. In traditional set
theory, membership is binary — in other words, an individual is
either a member of a set or it’s not. If the individual is a member,
it’s represented by the number 1, representing a “yes.” If it isn’t a
member, it’s represented by the number 0, for “no.”

The best way to gain a solid grasp on MCDM is to see how it’s
used to solve a real-world problem. MCDM is commonly used
in investment portfolio theory. Pricing of individual financial
instruments typically reflects the level of risk you incur, but
an entire portfolio can be a mixture of virtually riskless invest-
ments (U.S. government bonds, for example) and minimum-,
moderate-, and high-risk investments. Your level of risk
aversion dictates the general character of your investment port-
folio. Highly risk-averse investors seek safer and less lucrative

56 Data Science Essentials For Dummies

investments, and less risk-averse investors choose riskier, more
lucrative investments. In the process of evaluating the risk of a
potential investment, you’d likely consider the following criteria:

 » Earnings growth potential: Using a binary variable to
score the earnings growth potential, you could say that an
investment that falls under a specific earnings growth
potential threshold gets scored as 0 (as in “no — the
potential is not enough”); anything higher than that
threshold gets a 1 (for “yes — the potential is adequate”).

 » Earnings quality rating: Using a binary variable to score
earnings quality ratings, you could say that an investment
falling within a particular ratings class for earnings quality
gets scored as 1 (for “yes — the rating is adequate”);
otherwise, it gets scored as a 0 (as in “no — it’s earning
quality rating is not good enough”).

For you non–Wall Street types out there, earnings quality
refers to various measures used to determine how kosher
a company’s reported earnings are; such measures try to
answer the question, “Do these reported figures pass the
smell test?”

 » Dividend performance: Using a binary variable to score
dividend performance, you could say that when an invest-
ment fails to reach a set dividend performance threshold,
it gets a 0 (as in “no — it’s dividend performance is not good
enough”); if it reaches or surpasses that threshold, it gets
a 1 (for “yes — the performance is adequate”).

Imagine that you’re evaluating 20 different potential invest-
ments. In this evaluation, you’d score each criterion for each of
the investments. To eliminate poor investment choices, simply
sum the criteria scores for each of the alternatives and then dis-
miss any investments that don’t earn a total score of 3 — leaving
you with the investments that fall within a certain threshold of
earning growth potential, that have good earnings quality, and
whose dividends perform at a level that’s acceptable to you.

For some hands-on practice doing multiple criteria decision-
making, go to the companion website to this book (www.business
growth.ai) and check out the MCDM practice problem I’ve left
for you there.

http://www.businessgrowth.ai
http://www.businessgrowth.ai

CHAPTER 4 Math, Probability, and Statistical Modeling 57

Focusing on fuzzy MCDM
If you prefer to evaluate suitability within a range, rather than use
binary membership terms of 0 or 1, you can use fuzzy multiple criteria
decision-making (FMCDM) to do that. With FMCDM you can evalu-
ate all the same types of problems as you would with MCDM. The
term fuzzy refers to the fact that the criteria being used to evaluate
alternatives offer a range of acceptability — instead of the binary,
crisp set criteria associated with traditional MCDM. Evaluations
based on fuzzy criteria lead to a range of potential outcomes, each
with its own level of suitability as a solution.

One important feature of FMCDM: You’re likely to have a list of
several fuzzy criteria, but these criteria may not all hold the same
importance in your evaluation. To correct for this, simply assign
weights to criteria to quantify their relative importance.

Introducing Regression Methods
Machine learning algorithms of the regression variety were
adopted from the statistics field in order to provide data scientists
with a set of methods for describing and quantifying the relation-
ships between variables in a dataset. Use regression techniques if
you want to determine the strength of correlation between vari-
ables in your data.

As for using regression to predict future values from histori-
cal values, feel free to do it, but be careful: Regression meth-
ods assume a cause-and-effect relationship between variables,
but present circumstances are always subject to flux. Predicting
future values from historical ones will generate incorrect results
when present circumstances change.

In this section, I tell you all about linear regression, logistic
regression, and the ordinary least squares method.

Linear regression
Linear regression is a machine learning method you can use to
describe and quantify the relationship between your target vari-
able, y — the predictant, in statistics lingo — and the dataset
features you’ve chosen to use as predictor variables (commonly
designated as dataset X in machine learning). When you use just
one variable as your predictor, linear regression is as simple as

58 Data Science Essentials For Dummies

the middle school algebra formula y = mx + b. A classic example of
linear regression is its usage in predicting home prices, as shown
in Figure 4-6. You can also use linear regression to quantify cor-
relations between several variables in a dataset — called multi-
ple linear regression. Before getting too excited about using linear
regression, though, make sure you’ve considered its limitations:

 » Linear regression works with only numerical variables, not
categorical ones.

 » If your dataset has missing values, it will cause problems. Be
sure to address your missing values before attempting to
build a linear regression model.

 » If your data has outliers present, your model will produce
inaccurate results. Check for outliers before proceeding.

 » The linear regression model assumes that a linear relation-
ship exists between dataset features and the target variable.

 » The linear regression model assumes that all features are
independent of each other.

 » Prediction errors, or residuals, should be normally distributed.

FIGURE 4-6: Linear regression used to predict home prices based on the
number of rooms in a house.

Credit: Python for Data Science Essential Training Part 2, LinkedIn.com

http://LinkedIn.com

CHAPTER 4 Math, Probability, and Statistical Modeling 59

Don’t forget dataset size! A good rule of thumb is that you should
have at least 20 observations per predictive feature if you expect
to generate reliable results using linear regression.

Logistic regression
Logistic regression is a machine learning method you can use
to estimate values for a categorical target variable based on
your selected features. Your target variable should be numeric
and should contain values that describe the target’s class — or
category. One cool aspect of logistic regression is that, in addi-
tion to predicting the class of observations in your target vari-
able, it indicates the probability for each of its estimates. Though
logistic regression is like linear regression, its requirements are
simpler, in that:

 » There doesn’t need to be a linear relationship between the
features and target variable.

 » Residuals don’t have to be normally distributed.

 » Predictive features aren’t required to have a normal distribution.

When deciding whether logistic regression is a good choice for
you, consider the following limitations:

 » Missing values should be treated or removed.

 » Your target variable must be binary or ordinal.

Binary classification assigns a 1 for “yes” and a 0 for “no.”

 » Predictive features should be independent of each other.

Logistic regression requires a greater number of observations
than linear regression to produce a reliable result. The rule of
thumb is that you should have at least 50 observations per pre-
dictive feature if you expect to generate reliable results.

Predicting survivors on the Titanic is the classic practice problem
for newcomers to learn logistic regression. You can practice it and
see lots of examples of this problem worked out over on Kaggle
(www.kaggle.com/c/titanic).

https://www.kaggle.com/c/titanic

60 Data Science Essentials For Dummies

Ordinary least squares
regression methods
Ordinary least squares (OLS) is a statistical method that fits a linear
regression line to a dataset. With OLS, you do this by squaring the
vertical distance values that describe the distances between the
data points and the best-fit line, adding up those squared dis-
tances, and then adjusting the placement of the best-fit line so
that the summed squared distance value is minimized. Use OLS if
you want to construct a function that’s a close approximation to
your data.

As always, don’t expect the actual value to be identical to the value
predicted by the regression. Values predicted by the regression
are simply estimates that are most similar to the actual values in
the model.

OLS is particularly useful for fitting a regression line to models
containing more than one independent variable. In this way, you
can use OLS to estimate the target from dataset features.

When using OLS regression methods to fit a regression line that
has more than one independent variable, two or more of the
variables may be interrelated. When two or more independent
variables are strongly correlated with each other, this is called
multicollinearity. Multicollinearity tends to adversely affect the
reliability of the variables as predictors when they’re exam-
ined apart from one another. Luckily, however, multicollinear-
ity doesn’t decrease the overall predictive reliability of the model
when it’s considered collectively.

Detecting Outliers
Many statistical and machine learning approaches assume that
your data has no outliers. Outlier removal is an important part of
preparing your data for analysis. In this section, you see a variety
of methods you can use to discover outliers in your data.

Analyzing extreme values
Outliers are data points with values that are significantly differ-
ent from the majority of data points comprising a variable. It’s
important to find and remove outliers because, left untreated,

CHAPTER 4 Math, Probability, and Statistical Modeling 61

they skew variable distribution, make variance appear falsely
high, and cause a misrepresentation of intervariable correlations.

You can use outlier detection to spot anomalies that represent
fraud, equipment failure, or cybersecurity attacks. In other words,
outlier detection is a data preparation method and an analytical
method in its own right.

Outliers fall into the following three categories:

 » Point: Point outliers are data points with anomalous values
compared to the normal range of values in a feature.

 » Contextual: Contextual outliers are data points that are
anomalous only within a specific context. To illustrate, if
you’re inspecting weather station data from January in
Orlando, Florida, and you see a temperature reading of
23°F, this would be quite anomalous because the average
temperature there is 70°F in January. But consider if you
were looking at data from January at a weather station in
Anchorage, Alaska — a temperature reading of 23°F in this
context isn’t anomalous at all.

 » Collective: These outliers appear nearby one another, all
having similar values that are anomalous to the majority
of values in the feature.

You can detect outliers using either a univariate or a multivariate
approach, as spelled out in the next two sections.

Detecting outliers with
univariate analysis
Univariate outlier detection is where you look at features in your
dataset and inspect them individually for anomalous values. You
can choose from two simple methods for doing this:

 » Tukey outlier labeling

 » Tukey box plotting

Tukey box plotting is an exploratory data analysis technique
that’s useful for visualizing the distribution of data within a
numeric variable by visualizing that distribution with quartiles.
As you may guess, the Tukey box plot was named after its inven-
tor, John Tukey, an American mathematician who did most of his

62 Data Science Essentials For Dummies

work back in the 1960s and 1970s. Tukey outlier labeling refers to
labeling data points (that lie beyond the minimum and maximum
extremes of a box plot) as outliers.

Using the Tukey method to manually calculate, identify, and label
outliers is cumbersome, but if you want to do it, the trick is to
look at how far the minimum and maximum values are from the
25th and 75th percentiles. The distance between the first quartile
(at 25 percent) and the third quartile (at 75 percent) is called the
inter-quartile range (IQR), and it describes the data’s spread. When
you look at a variable, consider its spread, its Q1/Q3 values, and its
minimum and maximum values to decide whether the variable is
suspect for outliers.

Here’s a good rule of thumb:

a = Q1 – 1.5 * IQR

and

b = Q3 + 1.5 * IQR

If your minimum value is less than a, or your maximum value is
greater than b, the variable probably has outliers.

On the other hand, it’s quite easy to generate a Tukey box plot and
spot outliers using Python or R. Each box plot has whiskers that
are set at 1.5 * IQR. Any values that lie beyond these whiskers are
outliers. Figure 4-7 shows outliers as they appear within a Tukey
box plot that was generated in Python.

Detecting outliers with
multivariate analysis
Sometimes outliers show up only within combinations of data
points from disparate variables. These outliers wreak havoc on
machine learning algorithms, so it’s important to detect and
remove them. You can use multivariate analysis of outliers to do
this. A multivariate approach to outlier detection involves con-
sidering two or more variables at a time and inspecting them
together for outliers. You can use one of several methods:

 » A scatter-plot matrix

 » Box plotting

CHAPTER 4 Math, Probability, and Statistical Modeling 63

 » Density-based spatial clustering of applications with noise
(DBScan), as discussed in Chapter 5

 » Principal component analysis (PCA), as shown in Figure 4-8

FIGURE 4-7: Spotting outliers with a Tukey box plot.
Credit: Python for Data Science Essential Training Part 1, LinkedIn.com

FIGURE 4-8: Using PCA to spot outliers.

Credit: Python for Data Science Essential Training Part 2, LinkedIn.com

http://LinkedIn.com
http://LinkedIn.com

64 Data Science Essentials For Dummies

Introducing Time Series Analysis
A time series is just a collection of data on attribute values over
time. Time series analysis is performed to predict future instances
of the measure based on the past observational data. To forecast
or predict future values from data in your dataset, use time series
techniques.

Identifying patterns in time series
Time series exhibit specific patterns. Take a look at Figure 4-9 to
gain a better understanding of what these patterns are all about.
Constant time series remain at roughly the same level over time
but are subject to some random error. In contrast, trended series
show a stable linear movement up or down. Whether constant or
trended, time series may also sometimes exhibit seasonality —
predictable, cyclical fluctuations that reoccur seasonally through-
out a year. As an example of seasonal time series, consider how
many businesses show increased sales during the holiday season.

If you’re including seasonality in your model, incorporate it in
the quarterly, monthly, or even biannual period — wherever it’s
appropriate. Time series may show nonstationary processes —
unpredictable cyclical behavior that isn’t related to seasonality

FIGURE 4-9: A comparison of patterns exhibited by time series.

CHAPTER 4 Math, Probability, and Statistical Modeling 65

and that results from economic or industry-wide conditions
instead. Because they’re not predictable, nonstationary processes
can’t be forecasted. You must transform nonstationary data to
stationary data before moving forward with an evaluation.

Take a look at the solid lines shown earlier, in Figure 4-9. These
represent the mathematical models used to forecast points in the
time series. The mathematical models shown represent good,
precise forecasts because they’re a close fit to the actual data. The
actual data contains some random error, making it impossible to
forecast perfectly.

For help getting started with time series within the context of the
R programming language, be sure to visit the companion website
to this book (https://businessgrowth.ai), where you’ll find a
free training and coding demonstration of time series data visu-
alization in R.

Modeling univariate time series data
Similar to how multivariate analysis is the analysis of relation-
ships between multiple variables, univariate analysis is the quan-
titative analysis of only one variable at a time. When you model
univariate time series, you’re modeling time series changes that
represent changes in a single variable over time.

Autoregressive moving average (ARMA) is a class of forecast-
ing methods that you can use to predict future values from cur-
rent and historical data. As its name implies, the family of ARMA
models combines autoregression techniques (analyses that assume
that previous observations are good predictors of future values
and perform an autoregression analysis to forecast for those
future values) and moving average techniques (models that mea-
sure the level of the constant time series and then update the
forecast model if any changes are detected). If you’re looking for
a simple model or a model that will work for only a small dataset,
the ARMA model isn’t a good fit for your needs. An alternative
in this case may be to just stick with simple linear regression.
In Figure 4-10, you can see that the model forecast data and the
actual data are a close fit.

To use the ARMA model for reliable results, you need to have at
least 50 observations.

https://businessgrowth.ai/

66 Data Science Essentials For Dummies

FIGURE 4-10: An example of an ARMA forecast model.

CHAPTER 5 Grouping Your Way into Accurate Predictions 67

Chapter 5

IN THIS CHAPTER

 » Understanding the basics of clustering,
classification, and other grouping
algorithms

 » Clustering your data with the k-means
algorithm and kernel density estimation

 » Choosing between decision trees and
random forests

 » Getting to know hierarchical and
neighborhood clustering algorithms

 » Working through nearest neighbor
algorithms

Grouping Your Way into
Accurate Predictions

When it comes to making predictions from data, grouping
techniques can be a simple and powerful way to gener-
ate valuable insights quickly. Although grouping meth-

ods tend to be relatively simple, you can choose from quite a few
approaches. In this chapter, I introduce you to classification, and
clustering algorithms, as well as decision trees and random forests.

Data scientists use clustering to help them divide their unlabeled
data into subsets. If they’re starting with labeled data, they can
use classification methods to build predictive models that they can
then use to forecast the classification of future observations.
Classification is a form of supervised machine learning — the clas-
sification algorithm essentially learns from your labeled data.

Though the basics behind clustering and classification seem rela-
tively easy to understand at first, things get tricky fast when you
get into using some of the more advanced algorithms.

68 Data Science Essentials For Dummies

In this chapter, I start you out with the simplest approach —
clustering — and then lightly touch on decision trees and random
forests before I help you, lastly, tackle instance-based learning
classification algorithms.

Starting with Clustering Basics
To grasp advanced methods for use in clustering your data, first
take a few moments to grasp the basics that underlie all forms of
clustering. Clustering is a form of machine learning — the machine
in this case is your computer, and learning refers to an algorithm
that’s repeated over and over until a certain set of predetermined
conditions is met. Learning algorithms are generally run until the
point that the final analysis results won’t change, no matter how
many additional times the algorithm is passed over the data.

Clustering is one of the two main types of machine learning:
unsupervised machine learning. In unsupervised machine learning,
the data in the dataset is unlabeled. Because the data is unlabeled,
the algorithms must use inferential methods to discover pat-
terns, relationships, and correlations within the raw dataset. To
put clustering through its paces, I want to use a readily available
sample dataset from the World Bank’s open datasets on country
income and education. This data shows the percentage of income
earned by the bottom 10 percent of the population in each country
and the percentage of children who complete primary school in
each country.

In datasets about the percentage of children who complete pri-
mary school, some are reported at more than 100 percent. That’s
because some countries count this statistic at different ages, but
the data was normalized so that the percentage distribution is
proportionally scaled across the range of countries represented
in the dataset. In other words, although the total scale exceeds
100 percent, the values have been normalized so that they’re pro-
portional to one another and you’re getting an apples-to-apples
comparison. Thus, the fact that some countries report completion
rates greater than 100 percent has no adverse effect on the analy-
sis you make in this chapter.

CHAPTER 5 Grouping Your Way into Accurate Predictions 69

Getting to know clustering algorithms
You use clustering algorithms to subdivide unlabeled datasets
into clusters of observations that are most similar for a pre-
defined feature. If you have a dataset that describes multiple
features about a set of observations and you want to group
your observations by their feature similarities, use clustering
algorithms.

Over on the companion website to this book (https://business
growth.ai), you’ll find a free training-and-coding demonstra-
tion of how to use clustering in Python for a popular use case —
customer profiling and segmentation.

You can choose from various clustering methods, depending on
how you want your dataset to be divided. The two main types of
clustering algorithms are

 » Partitional: Algorithms that create only a single set
of clusters

 » Hierarchical: Algorithms that create separate sets of nested
clusters, each in its own hierarchical level

You can read about both approaches later in this chapter, but for
now, start by looking at Figure 5-1, a simple scatterplot of the
Country Income and Education datasets.

In unsupervised clustering, you start with this data and then pro-
ceed to divide it into subsets. These subsets, called clusters, are
composed of observations that are most similar to one another. In
Figure 5-1, it appears that the scatterplot has at least two clusters,
and probably three — one at the bottom with low income and
education, and then the high-education countries look like they
may be split between low and high incomes.

Figure 5-2 shows the result of eyeballing (making a visual esti-
mate of) clusters in this dataset.

Although you can generate visual estimates of clusters, you can
achieve much more accurate results when dealing with much
larger datasets by using algorithms to generate clusters for you.
Visual estimation is a rough method that’s useful only on smaller
datasets of minimal complexity. Algorithms produce exact, repeat-
able results, and you can use algorithms to generate clusters from
multiple dimensions of data within your dataset.

https://businessgrowth.ai/
https://businessgrowth.ai/

70 Data Science Essentials For Dummies

FIGURE 5-1: A simple scatterplot.

FIGURE 5-2: A simple scatterplot, showing eyeballed estimations of clustering.

CHAPTER 5 Grouping Your Way into Accurate Predictions 71

Clustering algorithms are appropriate in situations where the fol-
lowing characteristics are true:

 » You know and understand the dataset you’re analyzing.

 » Before running the clustering algorithm, you don’t have an
exact idea of the nature of the subsets (clusters). Often, you
don’t even know how many subsets are in the dataset before
you run the algorithm.

 » The subsets (clusters) are determined by only the single
dataset you’re analyzing.

 » Your goal is to determine a model that describes the subsets
in a single dataset and only this dataset.

If you add more data to your dataset after you’ve already built the
model, be sure to rebuild the model from scratch to produce more
complete and accurate model results.

Examining clustering similarity metrics
Clustering is based on calculating the similarity or difference
between two observations. If your dataset is numeric (com-
posed of only numerical features) and can be portrayed on an
n-dimensional plot, you can use various geometric metrics to
scale your multidimensional data.

An n-dimensional plot is a multidimensional scatterplot that you
can use to plot n number of dimensions of data.

Here are some popular geometric metrics, used for calculating
distances between observations:

 » Euclidean: A measure of the distance between points
plotted on a Euclidean plane.

 » Manhattan: A measure of the distance between points where
distance is calculated as the sum of the absolute value of the
differences between two points’ Cartesian coordinates.

 » Minkowski distance: A generalization of the Euclidean and
Manhattan distance metrics. Quite often, these metrics can
be used interchangeably.

 » Cosine similarity: The cosine metric measures the similarity
of two data points based on their orientation, as determined
by calculating the cosine of the angle between them.

72 Data Science Essentials For Dummies

Lastly, for nonnumeric data, you can use metrics like the Jaccard
distance metric, an index that compares the number of features
that two observations have in common. For example, to illustrate
a Jaccard distance, look at these two text strings:

Saint Louis de Ha-ha, Quebec
St-Louis de Ha!Ha!, QC

What features do these text strings have in common? And what
features are different between them? The Jaccard metric gener-
ates a numerical index value that quantifies the similarity between
text strings.

Identifying Clusters in Your Data
You can use many different algorithms for clustering, but the
speed and robustness of the k-means algorithm make it a popular
choice among experienced data scientists. As alternatives, kernel
density estimation methods, hierarchical algorithms, and neigh-
borhood algorithms are also available to help you identify clusters
in your dataset.

Clustering with the k-means algorithm
The k-means clustering algorithm is a simple, fast, unsupervised
learning algorithm that you can use to predict groupings within
a dataset. For getting started with k-means clustering, you first
need to be familiar with the concept of centroid. A centroid is the
most representative point within any given cluster group. With
k-means, you define the number of centroids the model should
find as it generates its prediction. The number of centroids is repre-
sented by k, and the clusters are formed by calculating the nearest
mean values to those centroids, measured by the Euclidean dis-
tance between observations.

Because the features of a dataset are usually on different scales,
the difference of scales can distort the results of this distance cal-
culation. To avoid this problem, scale your variables before using
k-means to predict data groupings.

The quality of the clusters is heavily dependent on the correct-
ness of the k value you specify. If your data is two- or three-
dimensional, a plausible range of k values may be visually

CHAPTER 5 Grouping Your Way into Accurate Predictions 73

determinable. In the eyeballed approximation of clustering from
the World Bank Income and Education data scatterplot (refer to
Figure 5-2), a visual estimation of the k value would equate to
three clusters, or k = 3.

When defining the k value, it may be possible to choose the num-
ber of centroids by looking at a scatterplot (if your dataset is
two- or three-dimensional) or by looking for obvious, signifi-
cant groupings within your dataset’s variables. You can pick the
number of centroids based on the number of groupings that you
know exist in the dataset or by the number of groupings that you
want to exist in the dataset. Whatever the case, use your subjec-
tive knowledge about the dataset when choosing the number of
clusters to be modeled.

If your dataset has more than three dimensions, however, you
can use computational methods to generate a good value for k.
One such method is the silhouette coefficient (a method that cal-
culates the average distance of each point from all other points
in a cluster and then compares that value with the average dis-
tance to every point in every other cluster). Luckily, because the
k-means algorithm is efficient, it doesn’t require much com-
puter processing power and you can easily calculate this coef-
ficient for a wide range of k values.

The k-means algorithm works by placing sample cluster centers
on an n-dimensional plot and then evaluating whether moving
them in any single direction would result in a new center with
higher density — with more observations closer to it, in other
words. The centers are moved from regions of lower density to
regions of higher density until all centers are within a region of
local maximum density (a true center of the cluster, where each
cluster has a maximum number of data points closest to its clus-
ter center). Whenever possible, try to place the centers yourself,
manually. If that’s impossible, simply place the centers randomly
and run the algorithm several times to see how often you end up
with the same clusters.

One weakness of the k-means algorithm is that it may pro-
duce incorrect results by placing cluster centers in areas of local
minimum density. This happens when centers get lost in low-
density regions (in other words, regions of the plot that have
relatively few points plotted in them) and the algorithm-driven
directional movement (the movement that’s meant to increase
point density) starts to bounce and oscillate between faraway

74 Data Science Essentials For Dummies

clusters. In these cases, the center gets caught in a low-density
space that’s located between two high-point density zones. This
results in erroneous clusters based around centers that converge
in areas of low, local minimum density. Ironically, this happens
most often when the underlying data is very well clustered, with
tight, dense regions that are separated by wide, sparse areas.

Get hands-on experience with the free k-means clustering
coding demo that’s hosted on the companion website for this
book: https://businessgrowth.ai.

To try things out for yourself, start clustering your data with
the k-means methods by using either R’s cluster package or
Python’s scikit-learn library. For more on R’s cluster pack-
age, check out https://cran.r-project.org/web/packages/
cluster/cluster.pdf; for more on scikit-learn, check out
https://scikit-learn.org.

Estimating clusters with kernel
density estimation
If the k-means algorithm doesn’t appeal to you, one alternative
way to identify clusters in your data is to use a density smoothing
function instead. Kernel density estimation (KDE) is that smooth-
ing method; it works by placing a kernel (a weighting function
that’s useful for quantifying density) on each data point in the
dataset and then summing the kernels to generate a kernel den-
sity estimate for the overall region. Areas of greater point density
will sum out with greater kernel density, and areas of lower point
density will sum out with less kernel density.

Because kernel smoothing methods don’t rely on cluster center
placement and clustering techniques to estimate clusters, they
don’t exhibit a risk of generating erroneous clusters by placing
centers in areas of local minimum density. Where k-means algo-
rithms generate hard-lined definitions between points in dif-
ferent clusters, KDE generates a plot of gradual density change
between observations. For this reason, it’s a helpful aid when eye-
balling clusters. Figure 5-3 shows what the World Bank Income
and Education scatterplot looks like after KDE has been applied.

In Figure 5-3, you can see that the white spaces between clusters
have been reduced. When you look at the figure, it’s fairly obvious
that you can see at least three clusters, and possibly more, if you
want to allow for small clusters.

https://businessgrowth.ai/
https://cran.r-project.org/web/packages/cluster/cluster.pdf
https://cran.r-project.org/web/packages/cluster/cluster.pdf
https://scikit-learn.org/

CHAPTER 5 Grouping Your Way into Accurate Predictions 75

Clustering with hierarchical algorithms
A hierarchical clustering algorithm is yet another alternative to
k-means clustering. In comparison to k-means clustering, the
hierarchical clustering algorithm is a slower, clunkier unsuper-
vised clustering algorithm. It predicts groupings within a dataset
by calculating the distance and generating a link between each
singular observation and its nearest neighbor. It then uses those
distances to predict subgroups within a dataset. If you’re carrying
out a statistical study or analyzing biological or environmental
data, hierarchical clustering may be your ideal machine learn-
ing solution.

To visually inspect the results of your hierarchical clustering,
generate a dendrogram (a visualization tool that depicts the simi-
larities and branching between groups in a data cluster). You can
use several different algorithms to build a dendrogram, and the
algorithm you choose dictates where and how branching occurs
within the clusters. Additionally, dendrograms can be built either
bottom-up (by assembling pairs of points and then aggregating
them into larger and larger groups) or top-down (by starting with
the full dataset and splitting it into smaller and smaller groups).

FIGURE 5-3: KDE smoothing of the World Bank’s Income and Education
data scatterplot.

76 Data Science Essentials For Dummies

Looking at the dendrogram results makes it easier to decide the
appropriate number of clusters for your dataset. In the den-
drogram example shown in Figure 5-4, the underlying dataset
appears to have either three or four clusters.

In hierarchical clustering, the distance between observations
is measured in three different ways: Euclidean, Manhattan,
or Cosine. Additionally, linkage is formed by three different
methods: Ward, Complete, and Average. When deciding what dis-
tance and linkage parameters to use, trial-and-error is an easy
approach. Just try each combination and then compare all your
model results. Go with the model that produces the most accurate
prediction.

Hierarchical clustering algorithms require more computing
resources than k-means algorithms because, with each iteration
of hierarchical clustering, many observations must be compared
to many other observations. The benefit, however, is that hier-
archical clustering algorithms are not subject to errors caused by

FIGURE 5-4: A schematic layout of a sample dendrogram.

CHAPTER 5 Grouping Your Way into Accurate Predictions 77

center convergence at areas of local minimum density (as exhib-
ited with the k-means clustering algorithms).

If you’re working with a large dataset, watch out! Hierarchical
clustering will probably be way too slow.

If you want to get started working with hierarchical clustering
algorithms, check out R’s hclust package or (again) Python’s
scikit-learn library. (If you’re curious about hclust, check
out this page: https://stat.ethz.ch/R-manual/R-patched/
library/stats/html/hclust.html.)

Neither k-means nor hierarchical clustering algorithms per-
form well when clusters are nonglobular (a configuration where
some points in a cluster are closer to points in a different cluster
than they are to points in the center of their own cluster). If your
dataset shows nonglobular clustering, you can use neighborhood
clustering algorithms, like DBScan, to determine whether each
point is closer to its neighbors in the same cluster or closer to
its neighboring observations in other clusters. Figure 5-5 shows
an example of using the DBScan neighborhood clustering algo-
rithm to detect outliers in the classical practice dataset called
“Iris,” and the next section covers neighborhood clustering in
greater detail.

Dabbling in the DBScan neighborhood
Density-based spatial clustering of applications with noise (DBScan)
is an unsupervised learning method that works by clustering core
samples (dense areas of a dataset) while simultaneously demark-
ing noncore samples (portions of the dataset that are comparatively
sparse). It’s a neighborhood clustering algorithm that’s ideal for
examining two or more variables together to identify outliers.
It’s particularly useful for identifying collective outliers (outliers
that appear nearby to one another, all having similar values that
are anomalous to most values in the variable). Figure 5-5 shows
DBScan at work.

With DBScan, you take an iterative, trial-and-error approach to
find the ideal number of outliers for inspection. When experi-
menting with the DBScan model, outliers should comprise
5 percent or less of the dataset’s observations. You must adjust
the model parameters until you’ve isolated this small select group
of observations.

https://stat.ethz.ch/R-manual/R-patched/library/stats/html/hclust.html
https://stat.ethz.ch/R-manual/R-patched/library/stats/html/hclust.html

78 Data Science Essentials For Dummies

Neighborhood clustering algorithms are generally effective, but
they’re subject to the following two weaknesses:

 » Neighborhood clustering can be computationally
expensive. With every iteration of this method, every data
point may have to be compared to every other data point in
the dataset.

 » With neighborhood clustering, you may have to provide
the model with empirical parameter values for expected
cluster size and cluster density. If you guess either of
these parameters incorrectly, the algorithm misidentifies
clusters, and you must start the whole long process over
again to fix the problem. If you choose to use the DBScan
method, you’re required to specify these parameters.
(As an alternative, you could try the average nearest
neighbor and k-nearest neighbor algorithms, discussed
later in this chapter.)

FIGURE 5-5: Using DBScan to detect outliers (in black) within the Iris dataset.

Credit: Python for Data Science Essential Training Part 2, LinkedIn.com

http://LinkedIn.com

CHAPTER 5 Grouping Your Way into Accurate Predictions 79

To avoid making poor guesses for the cluster size and cluster den-
sity parameters, you can first use a quick k-means algorithm to
determine plausible values.

Categorizing Data with Decision Tree
and Random Forest Algorithms

In cases where clustering algorithms fail, decision tree and ran-
dom forest algorithms may just offer you a perfect alternative
machine learning solution. At certain times, you can get stuck
trying to cluster and classify data from a non-numerical dataset.
It’s times like these that you can use a decision tree model to help
cluster and classify your data correctly.

A decision tree algorithm works by developing a set of yes-or-
no rules that you can follow for new data to see exactly how it
will be characterized by the model. But you must be careful when
using decision tree models, because they run the high risk of
error propagation, which occurs whenever one of the model rules
is incorrect. Errors are generated in the results of decisions that
are made based on that incorrect rule, and then propagated
through every other subsequent decision made along that branch
of the tree.

To illustrate this type of algorithm, consider a dataset that’s often
used in machine learning demonstrations — the list of passenger
names from the Titanic. Using a simple decision tree model, you
can predict that if a passenger were female or were a male child
with a large family, that person probably survived the catastro-
phe. Figure 5-6 illustrates this determination.

Lastly, random forest algorithms are a slower but more powerful
alternative. Instead of building a tree from the data, the algorithm
creates random trees and then determines which one best clas-
sifies the testing data. This method eliminates the risk of error
propagation that is inherent in decision tree models.

80 Data Science Essentials For Dummies

Drawing a Line between Clustering
and Classification

The purpose of both clustering and classification algorithms is
to make sense of, and extract value from, large sets of structured
and unstructured data. If you’re working with huge volumes of
unstructured data, it only makes sense to try to partition the data
into some sort of logical groupings before trying to analyze it.
Both clustering and classification methods allow you to take a
sweeping glance of your data all at once and then form some logi-
cal structures based on what you find there, before digging deeper
into the nuts-and-bolts analysis.

Although a plain-vanilla clustering algorithm — like the k-means
method discussed earlier in this chapter — can help you pre-
dict subgroups from within unlabeled datasets, there’s way more
to life than plain vanilla. I think it’s about time to take things
one step further, by exploring how we can make predictions by
grouping labeled data instead. Enter instance-based learning
classifiers!

FIGURE 5-6: A decision tree model predicts survival rates from
the Titanic catastrophe.

CHAPTER 5 Grouping Your Way into Accurate Predictions 81

Introducing instance-based
learning classifiers
Instance-based learning classifiers are supervised, lazy learners —
they have no training phase, and they simply memorize training
data to predict classifications for new data points. This type of
classifier looks at instances (observations within a dataset) and,
for each new observation, the classifier searches the training data
for observations that are most similar and then classifies the new
observation based on its similarity to instances in the training set.
Instance-based classifiers include

 » k-nearest neighbor (k-NN)

 » Self-organizing maps

 » Locally weighted learning

If you’re unsure about your dataset’s distribution, instance-based
classifiers may be a good option, but first make sure that you
know their limitations. These classifiers aren’t well-suited for

 » Noisy data (data with unexplainable random variation)

 » Datasets with unimportant or irrelevant features

 » Datasets with missing values

To simplify this introduction as much as possible, I stick to
explaining the k-NN classification algorithm. The concepts
involved in k-NN are a bit tricky, though, so first I introduce you
to the simpler average nearest neighbor methods before going
into the k-NN approach.

Getting to know classification
algorithms
You may have heard of classification and thought that it’s the
same concept as clustering. Many people do, but this isn’t the
case. In classification, your data is labeled, so before you analyze it,
you already know the number of classes into which it should be
grouped. You also already know which class you want assigned to
each data point. In contrast, with clustering methods, your data is
unlabeled, so you have no predefined concept of how many clus-
ters are appropriate. You must rely on the clustering algorithms
to sort and cluster the data in the most appropriate way.

82 Data Science Essentials For Dummies

With classification algorithms, you use what you know about an
existing labeled dataset to generate a predictive model for clas-
sifying future observations. If your goal is to use your dataset and
its known subsets to build a model for predicting the categori-
zation of future observations, you’ll want to use classification
algorithms. When implementing supervised classification, you
already know your dataset’s labels — the criteria you use to subset
observations into classes. Classification helps you see how well
your data fits into the dataset’s predefined classes so that you can
then build a predictive model for classifying future observations.

Figure 5-7 illustrates how it looks to classify the World Bank’s
Income and Education datasets geographically according to
continent.

In Figure 5-7, you can see that, in some cases, the subsets you
may identify with a clustering technique do correspond to the
Continent category, but in other cases, they don’t. For example,
look at the lone Asian country in the middle of the African obser-
vations. That’s Bhutan. You could use the data in this dataset to
build a model that would predict a Continent class for incoming
observations, but if you introduced a data point for a new country

FIGURE 5-7: Using the Continent feature to classify World Bank data.

CHAPTER 5 Grouping Your Way into Accurate Predictions 83

that showed statistics similar to those of Bhutan, the new country
could be categorized as being part of either the Asian continent or
the African continent, depending on how you define your model.

Now imagine a situation in which the original data doesn’t include
Bhutan and you use the model to predict Bhutan’s continent as
a new data point. In this scenario, the model would incorrectly
predict that Bhutan is part of the African continent. This is an
example of model overfitting — a situation in which a model is so
tightly fit to its underlying dataset, as well as its noise or ran-
dom error, that the model performs poorly as a predictor for new
observations.

To avoid overfitting your models, divide the data into a training
set and a test set. A typical ratio is to assign 70 percent (or more)
of the data to the training set and the remaining 30 percent to
the test set. Build your model with the training set, and then use
the test set to evaluate the model by pretending that the test set
observations are unknown. You can evaluate the accuracy of your
model by comparing the classes assigned to the test set observa-
tions to the true classes of these observations.

Model overgeneralization can also be a problem. Overgeneraliza-
tion is the opposite of overfitting: If you don’t train a machine
learning model enough, it will be underfit. As a result, it will make
inaccurate, overly general predictions. Naturally, it follows that
overly general models end up assigning every class a low degree
of confidence. To illustrate model overgeneralization, consider
again the World Bank Income and Education datasets. If the model
used the presence of Bhutan to cast doubt on every new data point
in its nearby vicinity, you’d end up with a wishy-washy model
that treats all nearby points as African, but with a low probability.
This model would be a poor predictive performer.

I can illustrate a good metaphor for overfitting and overgeneral-
ization by using this well-known maxim:

If it walks like a duck and talks like a duck, then it’s a duck.

Overfitting would turn the maxim into this statement:

It’s a duck if, and only if, it walks and quacks exactly in the
ways that I have personally observed a duck to walk and
quack. Because I’ve never observed the way an Australian

84 Data Science Essentials For Dummies

spotted duck walks and quacks, an Australian spotted duck
must not really be a duck at all.

In contrast, overgeneralization would say:

If it moves around on two legs and emits any high-pitched,
nasal sound, it’s a duck. Therefore, Fran Fine, who was Fran
Drescher’s character in the 1990s American sitcom The Nanny,
must be a duck.

Be aware of the constant danger of overfitting and overgeneral-
ization. Find a happy medium between the two.

When classifying data, keep these two points in mind:

 » Model predictions are only as good as the model’s
underlying data. In the World Bank data example, it
could be the case that, if other factors such as life expec-
tancy or energy use per capita were added to the model,
its predictive strength would increase.

 » Model predictions are only as good as the categorization
of the underlying dataset. For example, what do you
do with countries, like Russia, that span two continents?
Do you distinguish North Africa from sub-Saharan Africa? Do
you lump North America in with Europe because they tend
to share similar features? Do you consider Central America
to be part of North America or South America?

Making Sense of Data with Nearest
Neighbor Analysis

At their core, nearest neighbor methods work by taking the
value of an observation’s attribute (or feature) — also called an
attribute value — and then locating another observation whose
attribute value is numerically nearest to it. Because the nearest
neighbor technique is a classification method, you can use it to
perform tasks as scientifically oriented as deducing the molecular
structure of a vital human protein or uncovering key biological

CHAPTER 5 Grouping Your Way into Accurate Predictions 85

evolutionary relationships or as business-driven as designing
recommendation engines for e-commerce sites or building pre-
dictive models for consumer transactions. The applications are
limitless.

A good analogy for the nearest neighbor concept is illustrated
in GPS technology. Imagine that you’re in desperate need of a
Starbucks iced latte but you have no idea where the nearest store
is located. What to do? One easy solution is simply to ask your
smartphone where the nearest Starbucks is located.

When you do that, the system looks for businesses named
Starbucks within a reasonable proximity of your current loca-
tion. After generating a results listing, the system reports back
to you with the address of the Starbucks coffeehouse closest to
your current location — the one that is your nearest neighbor, in
other words.

As the term nearest neighbor implies, the primary purpose of
a nearest neighbor analysis is to examine your dataset and
find the observation that’s quantitatively most similar to your
observation. Note that similarity comparisons can be based
on any quantitative attribute, whether that is distance, age,
income, weight, or any other factor that can describe the obser-
vation you’re investigating. The simplest comparative attribute
is distance.

In my Starbucks analogy, the x, y, z coordinates of the store
reported to you by your smartphone are the most similar to the
x, y, z coordinates of your current location. In other words, its
location is closest in actual physical distance. The quantitative
attribute being compared is distance, your current location is the
observation, and the reported Starbucks coffeehouse is the most
similar observation.

Modern nearest neighbor analyses are almost always performed
using computational algorithms. The nearest neighbor algorithm
is known as a single-link algorithm — an algorithm that merges
clusters if the clusters share between them at least one connective
edge (a shared boundary line, in other words). In the following
sections, you can learn the basics of the average nearest neighbor
algorithm and the k-nearest neighbor algorithm.

86 Data Science Essentials For Dummies

Classifying Data with Average Nearest
Neighbor Algorithms

Average nearest neighbor algorithms are basic yet powerful clas-
sification algorithms. They’re useful for finding and classifying
observations that are most similar on average. Average nearest
neighbor algorithms are used in pattern recognition, in chemical
and biological structural analysis, and in spatial data modeling.
They’re most often used in biology, chemistry, engineering, and
geosciences.

In this section, you can find out how to use average nearest
neighbor algorithms to compare multiple attributes between
observations and, subsequently, identify which of your observa-
tions are most similar. You can also find out how to use average
nearest neighbor algorithms to identify significant patterns in
the dataset.

The purpose of using an average nearest neighbor algorithm is
to classify observations based on the average of the arithmetic
distances between them. If your goal is to identify and group
observations by average similarity, the average nearest neighbor
algorithm is a useful way to do that.

With respect to nearest neighbor classifiers, a dataset is com-
posed of observations, each of which has an x- and y-variable.
An x-variable represents the input value, or feature, and the
y-variable represents the data label, or target variable. To keep all
these terms straight, consider the following example.

Suppose your friendly neighborhood business analyst, Business
Analyst Stu, is using average nearest neighbor algorithms to per-
form a classification analysis of datasets in his organization’s
database. Stu is comparing employees based on the following
five features:

 » Age

 » Number of children

 » Annual income

 » Seniority

 » Eligibility to retire

CHAPTER 5 Grouping Your Way into Accurate Predictions 87

Here you can see that each employee in Stu’s organization is
represented by a five-dimensional tuple — a finite ordered list
(or sequence):

 » Employee Mike: (34, 1, 120000, 9, 0)

 » Employee Liz: (42, 0, 90000, 5, 0)

 » Employee Jin: (22, 0, 60000, 2, 0)

 » Employee Mary: (53, 3, 180000, 30, 1)

These tuples were created from the data in the dataset shown
in Table 5-1. Each tuple consists of data on the following five
features: Age, Number of Children, Annual Income, Seniority, and
Eligibility to Retire as predictive features. Business Analyst Stu
calculates the average arithmetic differences between each of the
employees. Figure 5-8 shows the calculated distances between
each of the employees.

After Business Analyst Stu has this arithmetic measure of distance
between the employees, he finds the average nearest neighbor
by taking an average of these separation distances. Figure 5-9
shows that average similarity.

Stu then groups the employees by the average separation distance
between them. Because the average separation distance values
between Mike, Liz, and Jin are the smallest, they’re grouped into
class 0. Mary’s average separation distances are quite unlike the
others, so she’s put into her own class — Class 1.

TABLE 5-1	 Business Analyst Stu’s Employee Data
Employee
Name Age

Number
of Children

Annual
Income Seniority

Eligibility
to Retire

Mike 34 1 $120,000 9 0

Liz 42 0 $90,000 5 0

Jin 22 0 $60,000 2 0

Mary 53 3 $180,000 30 1

88 Data Science Essentials For Dummies

Does this make sense? Well, you’re working with a labeled dataset
and you can see that the attribute Eligibility to Retire assumes
only one of two possible values. So, yes. If the algorithm predicts
two classifications within the data, that’s a reasonable prediction.
Plus, if Stu gets new incoming data points that are unlabeled with
respect to a person’s eligibility to retire, he could probably use
this algorithm to predict for that eligibility, based on the other
four features.

FIGURE 5-9: Finding the average similarity between employees.

FIGURE 5-8: The distances between the employees’ tuples.

CHAPTER 5 Grouping Your Way into Accurate Predictions 89

Classifying with K-Nearest
Neighbor Algorithms

The best way to define a k-nearest neighbor is to call it a super-
vised machine learning classifier that uses the observations it
memorizes from within a test dataset to predict classifications for
new, unlabeled observations. k-NN makes its predictions based
on similarity — the more similar the training observations are
to the new, incoming observations, the more likely it is that the
classifier will assign them both the same class. k-NN works best
if the dataset is

 » Low on noise

 » Free of outliers

 » Labeled

 » Composed only of relevant selected features

 » Composed of distinguishable groups

If you’re working with a large dataset, you may want to avoid
using k-NN, because it will probably take way too long to make
predictions from larger datasets.

Over on the companion website to this book (https://business
growth.ai), you’ll find a free training-and-coding demonstra-
tion of how to build a quick-and-easy k-nearest neighbor classi-
fier in Python.

In the larger context of machine learning, k-NN (like all instance-
based learning classifiers) is known as a lazy machine learning
algorithm — in other words, it has little to no training phase. It
simply memorizes training data and then uses that information
as the basis on which to classify new observations. The goal of the
k-NN is to estimate the class of the query point P based on the
classes of its k-nearest neighbors.

The k-NN algorithm is a generalization of the nearest neighbor
algorithm. Instead of considering the nearest neighbor, you con-
sider k numbers of nearest neighbors from within a dataset that
contains n number of data points — k defines how many near-
est neighbors will have an influence on the classification pro-
cess. In k-NN, the classifier classifies the query point P per the

https://businessgrowth.ai/
https://businessgrowth.ai/

90 Data Science Essentials For Dummies

classification labels found in a majority of k-nearest points sur-
rounding the query point.

If you know little about the distribution of your dataset, k-NN
is definitely a good classification method for you to use. What’s
more, if you do have a solid idea about your dataset’s distribution
and feature selection criteria (the criteria you’re using to identify
and remove noise in the dataset), you can leverage this infor-
mation to create significant enhancements in the algorithm’s
performance.

Even though k-NN is among the simplest and most easy-to-
implement classification methods, it nevertheless yields com-
petitive results when compared to some of the more sophisticated
machine learning methods. Probably because of its simplicity and
the competitive results it provides, the k-NN algorithm has been
ranked among the top ten most influential data mining algo-
rithms by the academic research community.

Understanding how the k-nearest
neighbor algorithm works
To use k-NN, you simply need to pick a query point — usually
called P — in the sample dataset and then compute the k-nearest
neighbors to this point. The query point P is classified with a label
that’s the same as the label of most k-nearest points that sur-
round it. (Figure 5-10 gives a bird’s-eye view of the process.)

k-nearest neighbors are quantified by either distance or similarity
based on another quantitative attribute.

Consider the following example: A dataset is given by [1, 1, 4, 3,
5, 2, 6, 2, 4], and point P is equal to 5. Figure 5-10 shows how
k-NN would be applied to this dataset. By specifying that k is
equal to 3, the figure shows that, based on distance, there are
three nearest neighbors to the point 5. Those neighbors are 4, 4,
and 6. So, based on the k-NN algorithm, query point P will be
classified as 4 because 4 is the majority number in the k number
of points nearest to it. Similarly, k-NN continues defining other
query points using the same majority principle.

When using k-NN, it’s crucial to choose a k value that minimizes
noise (unexplainable random variation). At the same time, you
must choose a k value that includes sufficient data points in the
selection process. If the data points aren’t uniformly distributed,

CHAPTER 5 Grouping Your Way into Accurate Predictions 91

it’s generally harder to predetermine a good k value. Be careful
to select an optimum k value for each dataset you’re analyzing.

Large k values tend to produce less noise and more boundary
smoothing (clearer definition and less overlap) between classes
than small k values do.

Knowing when to use the k-nearest
neighbor algorithm
k-NN is particularly useful for multi-label learning — supervised
learning where the algorithm is applied so that it automatically
learns from (detects patterns in) multiple sets of instances. Each
of these sets could potentially have several classes of its own.
With multi-label learning, the algorithm learns to predict mul-
tiple class labels for each new instance it encounters.

The problem with k-NN is that it takes a lot longer than other
classification methods to classify a sample. Nearest neigh-
bor classifier performance depends on calculating the distance

FIGURE 5-10: How k-NN works.

92 Data Science Essentials For Dummies

function, as well as on the value of the neighborhood parameter
k. You can try to speed things up by specifying optimal values
for k and n.

Exploring common applications
of k-nearest neighbor algorithms
k-NN is often used for internet database management purposes.
In this capacity, k-NN is useful for website categorization, web
page ranking, and other user dynamics across the web.

k-NN classification techniques are also quite beneficial in
customer relationship management (CRM), a set of processes
that ensure a business sustains improved relationships with
its clients while simultaneously experiencing increased busi-
ness revenues. Most CRM systems gain tremendous benefit from
using k-NN to data-mine customer information to find patterns
that are useful in boosting customer retention.

The method is so versatile that even if you’re a small-business
owner or a marketing department manager, you can easily use
k-NN to boost your own marketing return on investment. Simply
use k-NN to analyze your customer data for purchasing patterns,
and then use those findings to customize marketing initiatives
so that they’re more exactly targeted for your customer base.

Solving Real-World Problems with
Nearest Neighbor Algorithms

Nearest neighbor methods are used extensively to understand and
create value from patterns in retail business data. In the following
sections, I present two powerful cases where k-NN and average-
NN algorithms are being used to simplify management and secu-
rity in daily retail operations.

Seeing k-nearest neighbor
algorithms in action
Techniques associated with k-nearest neighbor algorithms are
often used for theft prevention in the modern retail business.
Of course, you’re accustomed to seeing closed-circuit television

CHAPTER 5 Grouping Your Way into Accurate Predictions 93

(CCTV) cameras around almost every store you visit, but most
people have no idea how the data gathered from these devices is
being used.

Maybe you imagine someone in the back room resolutely moni-
toring these cameras for suspicious activity for hours at a time —
and maybe that is how things were done in the past. But today
a modern surveillance system is intelligent enough to analyze
and interpret video data on its own, without the need for human
assistance. The modern systems can now use k-nearest neighbor
for visual pattern recognition to scan and detect hidden packages
in the bottom bin of a shopping cart at checkout. If an object is
detected that is an exact match with an object listed in the data-
base, the price of the spotted product can even automatically be
added to the customer’s bill. Though this automated billing prac-
tice isn’t used extensively now, the technology has been devel-
oped and is available for use.

Retail stores also use k-nearest neighbor to detect patterns in
credit card use. Many new transaction-scrutinizing software
applications use k-NN algorithms to analyze register data and spot
unusual patterns that indicate suspicious activity. For example, if
register data indicates that a lot of customer information is being
entered manually rather than by automated scanning and swip-
ing, it can indicate that the employee who’s using that register
is stealing a customer’s personal information. Or, if register data
indicates that a particular good is being returned or exchanged
multiple times, it can indicate that employees are misusing the
return policy or trying to make money from making fake returns.

Seeing average nearest neighbor
algorithms in action
Average nearest neighbor algorithm classification and point pat-
tern detection can be used in grocery retail to identify key patterns
in customer purchasing behavior, and subsequently increase sales
and customer satisfaction by anticipating customer behavior.
Consider the following story.

As with other grocery stores, buyer behavior at (the fictional)
Waldorf Food Co-op tends to follow fixed patterns. Managers have
even commented on the odd fact that members of a particular
age group tend to visit the store during the same particular time
window, and they even tend to buy the same types of products.

94 Data Science Essentials For Dummies

One day, Manager Mike became extremely proactive and decided
to hire a data scientist to analyze customer data and provide exact
details about some recent trends that were noticeably odd. Data
Scientist Danielle got in there and quickly uncovered a pattern
among employed middle-aged male adults: They tended to visit
the grocery store only during the weekends or at the end of the
day on weekdays, and if they entered the store on a Thursday,
they almost always bought beer.

Armed with these facts, Manager Mike quickly used this infor-
mation to maximize beer sales on Thursday evenings by offering
discounts, bundles, and specials. Not only was the store owner
happy with the increased revenues, but Waldorf Food Co-op’s
male customers were also happy because they got more of what
they wanted, when they wanted it.

CHAPTER 6 Coding Up Data Insights and Decision Engines 95

Chapter 6

IN THIS CHAPTER

 » Taking on Python programming for
data science

 » Exploring data science Python libraries

Coding Up Data Insights
and Decision Engines

Data science involves the skillful application of math, coding,
and subject matter expertise in ways that allow data scien-
tists to generate reliable and accurate predictions from

data. In this chapter, I introduce you to the fundamental concepts
of programming with Python (such as data types, functions, and
classes). The machine learning models you build with this lan-
guage can serve as the decision engines within artificial intelligence
(AI) software as a service (SaaS) products you build for your com-
pany. I also introduce some of the best Python libraries for manip-
ulating data, performing statistical computations, creating data
visualizations, and completing other data science tasks.

Seeing Where Python Fits into
Your Data Science Strategy

Would you be surprised to hear that not all data projects that are
out there trying to turn a profit necessarily require data science?
It may seem odd, but it’s true! Think about LinkedIn for a sec-
ond: Imagine how much less useful that platform would be if it
didn’t allow direct messaging between users. That feature directly

96 Data Science Essentials For Dummies

improves the user experience, keeping users returning more often
and keeping them more active on the platform for longer periods,
thus increasing the overall profitability of the LinkedIn platform.

The longer users stay active on the platform and the more often
they return, the more likely they are to generate revenues for
the platform — either by subscribing to LinkedIn Learning or
by using Open to Work, a LinkedIn designation that encourages
recruiters to contact them. (With Open to Work, the contacting of
users is paid for by the recruiter as a form of indirect monetiza-
tion of users on the platform.) The popular LinkedIn Premium
feature allows users to message others directly on the platform,
regardless of whether they know them. All these monetization
features rely directly on LinkedIn’s direct messaging product. And
do you know what it’s built on? It’s the data engineering technol-
ogy called Apache Kafka. Not advanced machine learning models,
not deep learning — just traditional, tried-and-tested data engi-
neering (see Chapter 2).

But for those for-profit data projects that involve data science,
you’ll want to make sure you have a well-formed and effective
data science strategy in place, governing project implementation.
A data science strategy is a technical plan that maps out each and
every element required to lead data science projects in ways that
increase the profitability of a business. Because Python is the life-
blood by which data science produces predictive insights designed
to increase profits, you’d be hard-pressed to find a place where
they don’t fit within an effective data science strategy.

Using Python for Data Science
Although popular programming languages like Java and C++ are
good for developing stand-alone desktop applications, Python’s
versatility makes it an ideal programming language for process-
ing, analyzing, and visualizing data. For this reason, Python has
earned a reputation of excellence in the data science field, where
it has been widely adopted over the past decade. Python’s status
as one of the more popular programming languages out there can
be linked to the fact that it’s relatively easy to learn and it allows
users to accomplish several tasks using just a few lines of code.

CHAPTER 6 Coding Up Data Insights and Decision Engines 97

Though this book wasn’t designed to teach readers either the
mechanics of programming or the implementation of machine
learning algorithms, I have included plenty of helpful coding
demonstrations and course recommendations over on this book’s
companion website (https://businessgrowth.ai). If you want
to learn to get started with using Python to implement data sci-
ence, you may want to check it out.

You can use Python to do anything, from simple mathematical
operations to data visualizations and even machine learning and
predictive analytics. Here’s an example of a basic math operation
in Python:

>>> 2.5+3
5.5

Figure 6-1 shows an example — taken from Python’s Matplotlib
library — of a more advanced output based on topographical data
sets created by the National Oceanic and Atmospheric Adminis-
tration (NOAA).

Regardless of the task at hand, you should always study the most
basic concepts of a language before trying to delve into its more
specialized libraries. So, to start you off, keep in mind that, because
Python is an object-oriented programming language, everything
in Python is considered an object. In Python, an object is anything

FIGURE 6-1: Sample output from Python’s Matplotlib library.

https://businessgrowth.ai/

98 Data Science Essentials For Dummies

that can be assigned to a variable or passed as an argument to
a function. The following items are all considered objects in the
Python programming language:

 » Numbers

 » Strings

 » Lists

 » Tuples

 » Sets

 » Dictionaries

 » Functions

 » Classes

Additionally, all these items (except for the last two in the list)
function as basic data types in plain ol’ Python, which is Python
with no external extensions added to it. (I introduce you to the
external Python libraries NumPy, SciPy, pandas, Matplotlib,
and scikit-learn in the later section “Checking out some useful
Python libraries.” When you add these libraries, additional data
types become available to you.)

In Python, functions do basically the same thing as they do in
plain math — they accept data inputs, process them, and output
the result. Output results depend wholly on the task the function
was programmed to do. Classes, on the other hand, are prototypes
of objects that are designed to output additional objects.

If your goal is to write fast, reusable, easy-to-modify code in
Python, you must use functions and classes. Doing so helps to
keep your code efficient and organized.

Sorting out the various
Python data types
If you do much work with Python, you need to know how to work
with different data types. Here are the main data types in Python
and the general forms they take:

 » Numbers: Plain ol’ numbers, obviously

 » Strings: '. . .' or ". . ."

CHAPTER 6 Coding Up Data Insights and Decision Engines 99

 » Lists: [. . .] or [. . ., . . ., . . .]

 » Tuples: (. . .) or (. . ., . . ., . . .)

 » Sets: Rarely used

 » Dictionaries: {'Key': 'Value', . . .}

Numbers and strings are the most basic data types. You can incor-
porate them inside other, more complicated data types. All Python
data types can be assigned to variables.

In Python, numbers, strings, lists, tuples, sets, and dictionaries
are classified as both object types and data types.

Numbers in Python
The numbers data type represents numeric values that you can use
to handle all types of mathematical operations. Numbers come in
the following types:

 » Integer: A whole-number format

 » Long: A whole-number format with an unlimited digit size

 » Float: A real-number format, written with a decimal point

 » Complex: An imaginary-number format, represented by the
square root of –1

Strings in Python
Strings are the most often used data type in Python — and in
every other programming language, for that matter. Simply put,
a string consists of one or more characters written inside single or
double quotes. The following code represents a string:

>>> variable1='This is a sample string'
>>> print(variable1)
This is a sample string

In this code snippet, the string is assigned to a variable and
the variable subsequently acts like a storage container for the
string value.

To print the characters contained inside the variable, simply use
the predefined print function.

100 Data Science Essentials For Dummies

Python coders often refer to lists, tuples, sets, and dictionaries
as data structures rather than data types. Data structures are basic
functional units that organize data so that it can be used effi-
ciently by the program or application you’re working with.

Lists, tuples, sets, and dictionaries are data structures, but keep in
mind that they’re still composed of one or more basic data types
(numbers and/or strings, for example).

Lists in Python
A list is a sequence of numbers and/or strings. To create a list, you
simply enclose the elements of the list (separated by commas)
within square brackets. Here’s an example of a basic list:

>>> variable2=["ID","Name","Depth","Latitude",
 "Longitude"]
>>> depth=[0,120,140,0,150,80,0,10]
>>> variable2[3]
'Latitude'

Every element of the list is automatically assigned an index num-
ber, starting from 0. You can access each element using this index,
and the corresponding value of the list is returned. If you need to
store and analyze long arrays of data, use lists — storing your
data inside a list makes it fairly easy to extract statistical informa-
tion. The following code snippet is an example of a simple compu-
tation to pull the mean value from the elements of the depth list
created in the preceding code example:

>>> sum(depth)/len(depth)
62.5

In this example, the average of the list elements is computed by
first summing up the elements, via the sum function, and then
dividing them by the number of the elements contained in the
list — a number you determine with the help of the len function,
which returns the length (the number of elements, in other words)
in a string, an array, or a list. The len function in the denominator
here is what’s returning the average value of items in the object.
See? it’s as simple as 1-2-3!

CHAPTER 6 Coding Up Data Insights and Decision Engines 101

Tuples in Python
Tuples are just like lists, except that you can’t modify their content
after you create them. Also, to create tuples, you need to use nor-
mal brackets instead of squared ones.

“Normal brackets” refers to parentheses in the form of (. . .)
or (. . ., . . ., . . .).

Here’s an example of a tuple:

>>> depth=(0,120,140,0,150,80,0,10)

In this case, you can’t modify any of the elements, as you would
with a list. To ensure that your data stays in a read-only format,
use tuples.

Sets in Python
A set is another data structure that’s similar to a list. In contrast
to lists, however, elements of a set are unordered. This disordered
characteristic of a set makes it impossible to index, so it’s not a
commonly used data type.

Dictionaries in Python
Dictionaries are data structures that consist of pairs of keys and
values. In a dictionary, every value corresponds to a certain key,
and consequently, each value can be accessed using that key. The
following code snippet shows a typical key/value pairing:

>>> variable4={"ID":1,"Name":"Valley City",
 "Depth":0,"Latitude":49.6,
 "Longitude":-98.01}
>>> variable4["Longitude"]
-98.01

Putting loops to good use in Python
When working with lists in Python, you typically access a list
element by using the element index number. In a similar man-
ner, you can access other elements of the list by using their

102 Data Science Essentials For Dummies

corresponding index numbers. The following code snippet illus-
trates this concept:

>>>variable2=["ID","Name","Depth","Latitude",
 "Longitude"]
>>> print(variable2[3])
Latitude
>>> print(variable2[4])
Longitude

Don’t let the index numbering system confuse you. Every ele-
ment of the list is automatically assigned an index number start-
ing from 0 — not starting from 1. That means the fourth element
in an index actually bears the index number 3.

When you’re analyzing considerable amounts of data and you
need to access each element of a list, this technique becomes
quite inefficient. In these cases, you should use a looping tech-
nique instead.

You can use looping to execute the same block of code multiple
times for a sequence of items. Consequently, instead of manu-
ally accessing all elements one by one, you simply create a loop
to automatically iterate (pass through in successive cycles) each
element of the list.

You can use two types of loops in Python: the for loop and the
while loop. The most often used looping technique is the for
loop — designed especially to iterate through sequences, strings,
tuples, sets, and dictionaries. The following code snippet illus-
trates a for loop iterating through the variable2 list created in
the preceding code snippet:

>>> for element in variable2:print(element)
ID
Name
Depth
Latitude
Longitude

The other available looping technique in Python is the while
loop. Use a while loop to perform actions while a given condi-
tion is true.

CHAPTER 6 Coding Up Data Insights and Decision Engines 103

Looping is crucial when you work with long arrays of data, such as
when you’re working with raster images. Looping lets you apply
certain actions to all data or apply those actions to only predefined
groups of data.

Having fun with functions
Functions (and classes, which I describe in the following sec-
tion) are the crucial building blocks of almost every programming
language. They provide a way to build organized, reusable code.
Functions are blocks of code that take an input, process it, and
return an output. Function inputs can be numbers, strings, lists,
objects, or other functions. Python has two types of functions:
built-in and custom.

Built-in functions are predefined inside Python. You can use
them by just typing their names. The following code snippet is an
example of the built-in print function:

>>> print("Hello")
Hello

This oft-used, built-in print function prints a given input. The
code behind print has already been written by the people who
created Python. Now that this code stands in the background, you
don’t need to know how to code it yourself — you simply call
the print function. The people who created the Python library
couldn’t guess every possible function to satisfy everyone’s needs,
but they managed to provide users with a way to create and reuse
their own functions when necessary.

In the section “Sorting out the various Python data types,” ear-
lier in this chapter, the following code snippet from that section
(listed again here) was used to sum up the elements in a list and
calculate the average:

>>> depth=[0,120,140,0,150,80,0,10]
>>> sum(depth)/len(depth)
62.5

The preceding data represents snowfall and snow depth records
from multiple point locations. As you can see, the points where
snow depth measurements were collected have an average depth

104 Data Science Essentials For Dummies

of 62.5 units. These are depth measurements taken at only one
time, though. In other words, all the data bears the same time
stamp. When modeling data using Python, you often see scenarios
in which sets of measurements were taken at different times —
known as time series data.

Here’s an example of time series data:

>>> december_depth=[0,120,140,0,150,80,0,10]
>>> january_depth=[20,180,140,0,170,170,30,30]
>>> february_depth=[0,100,100,40,100,160,40,40]

You could calculate December, January, and February average
snow depth in the same way you averaged values in the previous
list, but that would be cumbersome. This is where custom func-
tions come in handy:

>>> def average(any_list):return(sum(any_list)/
 len(any_list))

This code snippet defines the average function, which takes any
list as input and calculates the average of its elements. The func-
tion isn’t executed yet, but the code defines what the function
does when it later receives some input values. In this snippet,
any_list is just a variable that’s later assigned the given value
when the function is executed. To execute the function, all you
need to do is pass it a value. In this case, the value is a real list
with numerical elements:

>>> average(february_depth)
72.5

Executing a function is straightforward. You can use functions to
do the same thing repeatedly, as many times as you need, for dif-
ferent input values. The beauty here is that, after the functions
are constructed, you can reuse them without having to rewrite the
calculating algorithm.

Keeping cool with classes
Classes are blocks of code that put together functions and variables
to produce other objects. As such, they’re slightly different from
functions, which take an input and produce an output. The set of

CHAPTER 6 Coding Up Data Insights and Decision Engines 105

functions and classes tied together inside a class describes the
blueprint of a certain object. In other words, classes spell out what
has to happen in order for an object to be created. After you come
up with a class, you can generate the actual object instance by
calling a class instance. In Python, this is referred to as instantiat-
ing an object (creating an instance of that class).

Functions that are created inside a class are called methods, and
variables within a class are called attributes. Methods describe the
actions that generate the object, and attributes describe the actual
object properties.

To better understand how to use classes for more efficient data
analysis, consider the following scenario: Imagine that you have
snow depth data from different locations and times and you’re
storing it online on an FTP server. The dataset contains different
ranges of snow depth data, depending on the month of the year.
Now imagine that every monthly range is stored in a different
location on the FTP server.

Your task is to use Python to fetch all monthly data and then ana-
lyze the entire dataset, so you need to use different operations
on the data ranges. First, you need to download the data from
within Python by using an FTP handling library, such as ftplib.
Then, to be able to analyze the data in Python, you need to store
it in proper Python data types (in lists, tuples, or dictionaries, for
example). After you fetch the data and store it as recognizable
data types in a Python script, you can then apply more advanced
operations that are available from specialized libraries such as
NumPy, SciPy, pandas, Matplotlib, and scikit-learn.

In this scenario, you would want to create a class that creates a list
containing the snow depth data for each month. Every monthly
list would be an object instance generated by the class. The class
itself would tie together the FTP downloading functions and the
functions that store the downloaded records inside the lists. You
could then instantiate the class for as many months as you need
in order to carry out a thorough analysis. Here’s the code to do
something like this:

import ftplib

class Download:
 def __init__(self,site,dir,ftp=None,fileList

106 Data Science Essentials For Dummies

 =[]):
 self.ftp =ftp
 self.site=site
 self.dir=dir
 self.fileList=fileList
 self.login_ftp()
 self.fileList = self.store_in_list()
 def Login_ftp(self):
 self.ftp=ftplib.FTP(self.site)
 self.ftp.login()
 def store_in_list(self):
 self.fileList = []
 self.ftp.cwd("/")
 self.ftp.cwd(self.dir)
 self.ftp.retrlines('NLST',
 self.fileList.append)
 return self.fileList

Defining a class probably looks intimidating right now, but I sim-
ply want to give you a feeling for the basic structure and point out
the class methods involved.

Delving into the preceding code, the keyword class defines the
class, and the keyword def defines the class methods. The init
function is a default function that you should always define when
creating classes, because you use it to declare class variables. The
login_ftp method is a custom function that you define to log in
to the FTP server. After you log in using the login_ftp method
and set the required directory where the data tables are located,
you then store the data in a Python list using the custom function
store_in_list.

After you finish defining the class, you can use it to produce
objects. You just need to instantiate the class:

>>> Download("ftpexample.com","ftpdirectory")

And that’s it! With this brief snippet, you’ve just declared the par-
ticular FTP domain and the internal FTP directory where the data
is located. After you execute this last line, a list appears, giving
you data that you can manipulate and analyze as needed.

CHAPTER 6 Coding Up Data Insights and Decision Engines 107

Checking out some useful
Python libraries
In Python, a library is a specialized collection of scripts that were
written by someone else to perform specialized sets of tasks. To
use specialized libraries in Python, you must first complete the
installation process. After you install your libraries on your local
hard drive, you can import any library’s function into a project
simply by using the import statement. For example, if you want
to import the ftplib library, you write

>>> import ftplib

Be sure to import the library into your Python project before
attempting to call its functions in your code.

After you import the library, you can use its functionality inside
any of your scripts. Simply use dot notation (a shorthand way of
accessing modules, functions, and classes in one line of code) to
access the library. Here’s an example of dot notation:

>>> ftplib.any_ftp_lib_function

The dot notation you see here tells the computer to open the
“any_ftp_lib_function” that is found in the ftplib library.

Though you can choose from countless libraries to accomplish
different tasks in Python, the Python libraries most commonly
used in data science are Matplotlib, NumPy, pandas, scikit-learn,
and SciPy. The NumPy and SciPy libraries were specially designed
for scientific uses, pandas was designed for optimal data analysis
performance, and Matplotlib was designed for data visualization.
scikit-learn is Python’s premiere machine learning library.

Saying hello to the NumPy library
NumPy (https://numpy.org) is the Python package that pri-
marily focuses on working with n-dimensional array objects,
and SciPy, described next, extends the capabilities of the NumPy
library. When working with plain Python (Python with no external
extensions, such as libraries, added to it), you’re confined to stor-
ing your data in one-dimensional lists. If you extend Python by
using the NumPy library, however, you’re provided a basis from
which you can work with n-dimensional arrays. (Just in case you

https://numpy.org/

108 Data Science Essentials For Dummies

were wondering, n-dimensional arrays are arrays of one dimen-
sion or of multiple dimensions.)

To enable NumPy in Python, you must first install and import
the NumPy library. After that, you can generate multidimen-
sional arrays.

To see how generating n-dimensional arrays works in practice,
start by checking out the following code snippet, which shows
how you’d create a one-dimensional NumPy array:

import numpy
>>> array_1d=numpy.arange(8)
>>> print(array_1d)
[0 1 2 3 4 5 6 7]

The numpy.arange method returns evenly spaced values from
within a user specified interval. If you don’t specify a number for
numpy.arange to start with, it starts with 0. In this case, I speci-
fied that I want eight values, so numpy.arange returns [0 1 2
3 4 5 6 7].

After importing numpy, you can use it to generate n-dimensional
arrays, such as the one-dimensional array just shown. One-
dimensional arrays are referred to as vectors. You can also create
multidimensional arrays using the reshape method, like this:

>>> array_2d=numpy.arange(8).reshape(2,4)
>>> print(array_2d)
[[0 1 2 3]
[4 5 6 7]]

The preceding example is a two-dimensional array, otherwise
known as a 2 x 4 matrix. The only difference between this and
the preceding example is that I called the .reshape method, and
passed in a 2 and a 4 value — telling numpy to take the array and
transform it into a 2 x 4 matrix.

Standard matrix notation is m × n, where m is the number of rows
and n specifies the number of columns in the matrix.

Using the .arange and reshape method is just one way to create
NumPy arrays. You can also generate arrays from lists and tuples.

CHAPTER 6 Coding Up Data Insights and Decision Engines 109

In the snow dataset that I introduce in the earlier section “Hav-
ing fun with functions,” I store my snow depth data for different
locations inside three separate Python lists — one list per month:

>>> december_depth=[0,120,140,0,150,80,0,10]
>>> january_depth=[20,180,140,0,170,170,30,30]
>>> february_depth=[0,100,100,40,100,160,40,40]

It would be more efficient to have the measurements stored in
a better-consolidated structure. For example, you can easily put
all those lists in a single NumPy array by using the following
code snippet:

>>>depth=numpy.array([december_depth,
 january_depth,february_depth])
>>> print(depth)
[[0 120 140 0 150 80 0 10]
[20 180 140 0 170 170 30 30]
[0 100 100 40 100 160 40 40]]

Using this structure allows you to pull out certain measurements
more efficiently. For example, if you wanted to calculate the aver-
age of the snow depth for the first location in each of the three
months, you’d extract the first elements of each horizontal row
(values 0, 20, and 0, to be more precise). You can complete the
extraction in a single line of code by taking a slice of the dataset
and then calculating the mean by way of the NumPy mean func-
tion. The term slicing refers to taking a slice out of dataset. Here’s
an example:

>>> numpy.mean(depth[:,1])
133.33333333333334

With this code, I’ve instructed the computer to go to column index
position 1 and calculate the mean of the value in that column.
The values in the column at column index 1 are 120, 180, and 100.
When you calculate the mean value of the numbers, you get 133.3.

Beyond using NumPy to extract information from single matri-
ces, you can use it to interact with different matrices as well —
applying standard mathematical operations between matrices, for
example, or even applying nonstandard operators, such as matrix
inversion, summarize, and minimum/maximum operators.

110 Data Science Essentials For Dummies

Array objects have the same rights as any other objects in Python.
You can pass them as parameters to functions, set them as class
attributes, or iterate through array elements to generate ran-
dom numbers.

Getting up close and personal
with the SciPy library
SciPy (https://scipy.org) is a collection of mathematical algo-
rithms and sophisticated functions that extends the capabilities
of the NumPy library. The SciPy library adds some specialized sci-
entific functions to Python for more specific tasks in data science.
To use SciPy’s functions within Python, you must first install and
import the SciPy library.

SciPy offers functionalities and algorithms for a variety of tasks,
including vector quantization, statistical functions, discrete Fou-
rier transform algorithms, orthogonal distance regression, airy
functions, sparse eigenvalue solvers, maximum entropy fitting
routines, n-dimensional image operations, integration routines,
interpolation tools, sparse linear algebra, linear solvers, optimi-
zation tools, signal-processing tools, sparse matrices, and other
utilities that aren’t served by other Python libraries. Impressive,
right? Yet that’s not even a complete listing of the available SciPy
utilities. If you’re dying to get hold of a complete list, running the
following code snippet in Python opens an extensive help module
that explains the SciPy library:

>>> import scipy
>>> help(scipy)

You need to first download and install the SciPy library before you
can use this code.

The help function used in the preceding code snippet returns a
script that lists all utilities that comprise SciPy and documents
all of SciPy’s functions and classes. This information helps you
understand what’s behind the prewritten functions and algo-
rithms that make up the SciPy library.

Because SciPy is still under development and, therefore, chang-
ing and growing, regularly check the help function to see
what’s changed.

https://scipy.org/

CHAPTER 6 Coding Up Data Insights and Decision Engines 111

Peeking into the pandas offering
The pandas library (https://pandas.pydata.org) makes data
analysis much faster and easier with its accessible and robust
data structures. Its precise purpose is to improve Python’s perfor-
mance with respect to data analysis and modeling. It even offers
some data visualization functionality by integrating small por-
tions of the Matplotlib library. Here are the two main pandas data
structures:

 » Series: A Series object is an array-like structure that can
assume either a horizontal or vertical dimension. You can
think of a pandas Series object as being similar to one row
or one column from a Microsoft Excel spreadsheet.

 » DataFrame: A DataFrame object acts like a tabular data table
in Python. Each row or column in a DataFrame can be
accessed and treated as its own pandas Series object.

Indexing is integrated into both data structure types, making it
easy to access and manipulate your data. pandas offers function-
ality for reading in and writing out your data, which makes it easy
to use for loading, transferring, and saving datasets in whatever
formats you want. Lastly, pandas offers excellent functionality
for reshaping data, treating missing values, and removing outli-
ers, among other tasks. This makes pandas an excellent choice
for data preparation and basic data analysis tasks. If you want to
carry out more advanced statistical and machine learning meth-
ods, you’ll need to use the scikit-learn library. The good news is
that scikit-learn and pandas play well together.

Bonding with Matplotlib for
data visualization
Generally speaking, data science projects usually culminate in
visual representations of objects or phenomena. In Python, things
are no different. After taking baby steps (or some not-so-baby
steps) with NumPy and SciPy, you can use Python’s Matplot-
lib library (https://matplotlib.org) to create complex visual
representations of your dataset or data analysis findings. Mat-
plotlib, when combined with NumPy and SciPy, creates an excel-
lent environment in which to work when solving problems using
data science.

https://pandas.pydata.org/
https://matplotlib.org/

112 Data Science Essentials For Dummies

Looking more closely at Matplotlib, I can tell you that it’s a two-
dimensional plotting library you can use in Python to produce
figures from data. You can use Matplotlib to produce plots, histo-
grams, scatterplots, and a variety of other data graphics. What’s
more, because the library gives you full control of your visualiza-
tion’s symbology, line styles, fonts, and colors, you can even use
Matplotlib to produce publication-quality data graphics.

As is the case with all other libraries in Python, in order to work
with Matplotlib, you first need to install and import the library
into your script. After you complete those tasks, it’s easy to get
started producing graphs and charts.

To illustrate how to use Matplotlib, consider the following NumPy
array (which I came up with in the “Saying hello to the NumPy
library” section, earlier in this chapter):

>>> print(depth)
[[0 120 140 0 150 80 0 10]
[20 180 140 0 170 170 30 30]
[0 100 100 40 100 160 40 40]]

With the following few lines of code, using just a for loop and a
Matplotlib function — pyplot — you can easily plot all measure-
ments in a single graph within Python:

>>> import matplotlib.pyplot as plt
>>> for month in depth:
 plt.plot(month)
>>> plt.show()

This code snippet instantly generates the line chart you see in
Figure 6-2.

Each line in the graph represents the depth of snow at different
locations in the same month. The preceding code you use to build
this graph is simple; if you want to make a better representation,
you can add color or text font attributes to the plot function. Of
course, you can also use other types of data graphics, depending
on which types best show the data trends you want to display.
What’s important here is that you know when to use each of these
important libraries and that you understand how you can use the
Python programming language to make data analysis both easy
and efficient.

CHAPTER 6 Coding Up Data Insights and Decision Engines 113

Learning from data with scikit-learn
scikit-learn (https://scikit-learn.org) is far and away
Python’s best machine learning library. With it, you can execute
all sorts of machine learning methods, including classification,
regression, clustering, dimensionality reduction, and more. The
library also offers a preprocessing module that is wonderfully
supportive whenever you need to prepare your data for predic-
tive modeling. Lastly, scikit-learn offers a model selection mod-
ule that’s readily available with all sorts of metrics to help you
build your models and choose the best-performing model among
a selection.

FIGURE 6-2: Time series plot of monthly snow depth data.

https://scikit-learn.org/

CHAPTER 7 Generating Insights with Software Applications 115

Chapter 7

IN THIS CHAPTER

 » Monetizing data directly with no-code
and low-code

 » Getting a grip on relational
databases and SQL

 » Designing great relational databases

 » Doing data science tasks with
SQL functions

 » Using Microsoft Excel spreadsheets to
examine your data

 » Formatting and summarizing data in
spreadsheets

 » Automating tasks in Excel spreadsheets

Generating Insights with
Software Applications

In this day and age, when it seems that every company wants to
hire data scientists with extensive experience programming in
R and Python, it only makes sense for technology vendors to

offer tools that help democratize the data insights that are gener-
ated by data scientists. There simply aren’t enough data scientists
to go around, and even if there were, the whole world doesn’t
need to be a data scientist. We need to be able to show up and cre-
ate value in our own areas of expertise. The business world needs
that from us as well.

In this chapter, you see some incredibly powerful low-code or
no-code tools for generating more profits, faster, from the data
you’re already working with, without the downtime of needing to
learn to build complicated predictive models in R or Python.

116 Data Science Essentials For Dummies

Choosing the Best Tools for
Your Data Science Strategy

Data science strategy can best be described as a technical plan that
maps out each and every element required to lead data science
projects that increase the profitability of a business. In Chapter 6,
I talk about how Python is often part of the plan, which may make
you think that, when it comes to data science strategy, Python is
the obvious answer to this question: “Which tools do I need for
my strategy to succeed?” Is the obvious answer always the best
answer? I think not. A data strategy that relies only on data science
to improve profits from data is a limited one, cutting itself off at
the pass by insisting on the use of code to monetize data.

In recent years, no-code and low-code platforms have seen sig-
nificant advancements. They’ve incorporated more artificial
intelligence (AI) and machine learning (ML) capabilities to fur-
ther streamline data processing and automation. By making it
relatively straightforward for users to build sophisticated appli-
cations without writing code, platforms like Google AppSheet,
Make, and Airtable AI have positioned themselves at the forefront
of this revolution. These tools make it simple to build data-driven
applications that integrate seamlessly with popular cloud services
(like Amazon Web Services [AWS], Google Cloud, and Microsoft
Azure) and generative AI (GenAI) services (like OpenAI and Hug-
ging Face). As a result, these tools are powerful solutions for both
advanced analytics and AI automation.

For example, imagine that a human resources (HR) professional,
without needing to write even one line of code, is able to build
a software application that automatically collects applicant data,
reads that data into an applicants Structured Query Language
(SQL) database, and then executes an automated response to each
applicant based on the manual determination of the HR person-
nel who is processing employment applications. Where appropri-
ate, the software automatically moves candidates forward in the
hiring process. This no-code application eliminates the need for
manual data entry, data cleanup, email follow-up, and candidate
forwarding. That’s a lot of time (money, in other words) saved
right there.

CHAPTER 7 Generating Insights with Software Applications 117

Do you know of any prebuilt software whose vendor could come
in and configure it to create this type of system setup in-house?
Yes, you probably do, but that’s a lengthy, expensive, and inflex-
ible route to take, considering that the same outcome is now
possible within modern no-code environments like Airtable —
environments that are designed to act and work like both a
spreadsheet and a database simultaneously, and that provide a
collaborative, intuitive, cloud-based SQL-esque solution. In my
business, all our data warehousing and project management takes
place inside Airtable, where we can build applications while col-
laborating between team members, all for a minimal cost. By
leveraging AI-driven features and seamless cloud integration,
these platforms enable rapid development and deployment of
data applications, in turn democratizing data insights and
empowering knowledge workers to generate more value without
extensive technical expertise.

No-code is a type of development platform that leverages graphi-
cal user interfaces (GUIs) in a way that allows both coders and
noncoders alike to build their own software applications. If your
start-up or small business has no complex data architecture, it’s
entirely possible to house your company’s data in a no-code envi-
ronment and not have to worry about integrating that data and
platform with other data systems you may have.

If your company is larger and more mature, you may want to
look into low-code options — platforms that allow users to build
applications without needing to use any code whatsoever, but that
require a small bit of code to configure on the back end in order
to enable data integration with the rest of the company’s data
systems and sources. Commonly used low-code solutions are
Microsoft Power Platform (for application development, automa-
tion, and analytics), as well as Google Forms and Microsoft Access
for self-service data collection and integration.

With respect to data strategy, what we’re really talking about
here is leveraging low-code and no-code solutions to deploy and
directly monetize more of your company’s data, without needing
to train existing team members or hire experienced data scien-
tists. The idea is to equip all knowledge workers with intuitive
data technologies they can use right away to start getting bet-
ter results from data themselves, without the intervention of data
specialists — a true democratization of data and data monetiza-
tion across the business, in other words.

118 Data Science Essentials For Dummies

Bridging the gap between no-code, low-code, SQL, and spread-
sheets, SQL databases and spreadsheet applications such as
Excel and Google Sheets provide just the no-code and low-code
environments that knowledge workers can start using today to
increase the productivity and profitability of their company’s
data. These technologies are so accessible and represent so much
upside potential to modern businesses that I include high-level
coverage of them in the pages that follow.

Getting a Handle on SQL and
Relational Databases

Some data professionals are resistant to learning SQL because of
the steep learning curve involved. They think, “I’m not a coder,
and Structured Query Language sure sounds like a programming
language to me.” In the case of SQL, though, it’s not a program-
ming language, as you’ll soon see. As far as the upside potential
goes of learning to use SQL to query and access data, it’s worth
the small degree of hassle.

SQL is a standard for creating, maintaining, and securing rela-
tional databases. It’s a set of rules you can use to quickly and effi-
ciently query, update, modify, add, or remove data from large and
complex databases. You use SQL rather than Python or a spread-
sheet application to do these tasks because SQL is the simplest,
fastest way to get the job done. It offers a plain and standardized
set of core commands and methods that are easy to use when
performing these particular tasks. In this chapter, I introduce you
to basic SQL concepts and explain how you can use SQL to do cool
things like query, join, group, sort, and even text-mine struc-
tured datasets.

Although the SQL standard is lengthy, a user commonly needs
fewer than 20 commands, and the syntax is human-readable —
for example, if you need to pull data on employees in the finance
department who earn more than $50,000 per year in salary, you
could use an SQL statement like the one shown in Figure 7-1.
Making things even easier, SQL commands are written in all caps,
which helps to keep the language distinct and separate in your
mind from other programming languages.

CHAPTER 7 Generating Insights with Software Applications 119

Although you can use SQL to work with structured data that
resides in relational database management systems, you can’t
use standard SQL as a solution for unstructured or semistructured
data. I give you more solutions for handling these types of data in
Chapter 2, where I discuss data engineering and its components.
For now, suffice it to say that SQL is simply a tool you can use to
manipulate and edit structured data tables. It’s nothing exceed-
ingly innovative, but it can be helpful to use SQL for the data que-
rying and manipulation tasks that often arise in the practice of
data science. In this chapter, I introduce the basics of relational
databases, SQL, and database design.

Although the name Structured Query Language suggests that SQL
is a programming language, don’t be misled. SQL is not a pro-
gramming language, like R or Python. Instead, it’s a language of
commands and syntax that you can use to create, maintain, and
search relational database systems. SQL supports a few common
programming forms, like conditionals and loops, but to do any-
thing more complex, you’d have to import your SQL query results
into another programming platform and then do the more com-
plex work there.

One fundamental characteristic of SQL is that you can use it on
only structured data that sits in a relational database. SQL data-
base management systems (DBMSs) optimize their own structure
with minimal user input, which enables blazing-fast operational
performance.

An index is the lookup table. You create it in order to index, point
to, and “look up” data in tables of a database. Although SQL
DBMSs are known for their fast structured database querying
capabilities, this speed and effectiveness are heavily dependent on
good indexing. Good indexing is vital for fast data retrieval in SQL.

SELECT*FROM employees WHERE salary>50000 AND department=finance;

SELECT *
FROM employees
WHERE salary > 50000
 AND department = finance;

FIGURE 7-1: An example of how SQL is human-readable.

120 Data Science Essentials For Dummies

Similar to how different web browsers comply with, add to, and
ignore different parts of the HTML standard in different ways,
SQL rules are interpreted a bit differently, depending on whether
you’re working with open-source products or commercial vendor
software applications. Because not every SQL solution is the same,
it’s a good idea to know something about the benefits and draw-
backs of some of the more popular SQL solutions on the market.
Here are two popular open-source SQL implementations com-
monly used by data scientists:

 » MySQL: By far the most popular open-source version of SQL,
MySQL offers a complete and powerful version of SQL. It’s
used on the back end of millions of websites.

 » PostgreSQL: This software adds object-oriented elements to
SQL’s relational language, making it popular with program-
mers who want to integrate SQL objects into their own
platforms’ object model.

Other powerful commercial SQL implementations, such as Oracle
and Microsoft SQL Server, are great solutions as well, but they’re
designed for use in a more traditional business context rather
than as a data science tool.

As you may guess from the name, the most salient aspect of rela-
tional databases is that they’re relational — they’re composed of
related tables. To illustrate the idea of a relational database, first
imagine an Excel spreadsheet with rows, columns, and predefined
relationships between shared columns. Then imagine having an
Excel workbook with many worksheets (tables), in which every
worksheet has a column with the same name as a column in one
or more other worksheets. Because these worksheets have a shared
relationship, if you use SQL you can use that shared relationship
to look up data in all related worksheets. This type of relationship
is illustrated in Figure 7-2.

The primary key of a table is a column of values that uniquely
identifies every row in that table. A good example of primary keys
is the use of ISBNs for a table of books or employee ID numbers
for a table of employees. A foreign key is a column in one table that
matches the primary key of another and is used to link tables.

CHAPTER 7 Generating Insights with Software Applications 121

Keeping the focus on terminology, remember that proper data-
base science often associates particular meanings to particular
words, as you can see in this list:

 » Columns, called fields, keys, and attributes

 » Rows, called records

 » Cells, called values

Database science uses a lot of synonyms. For simplicity’s sake,
I try to stick to using the words column, row, and cell. And because
primary key and foreign key are standard terms, I use them to
describe these two special column types.

The main benefits of using relational database management sys-
tems (RDBMSs) is that they’re fast, they have large storage and
handling capacity (compared to spreadsheet applications such as
Excel), and they’re ideal tools to help you maintain data integrity
(the consistency and accuracy of data in your database). If you
need to make quick and accurate changes and updates to your
datasets, you can use SQL and an RDBMS.

Let the following scenario serve as an illustration. This data table
describes films and lists ratings from viewers:

id title genre rating timestamp rating

1 The Even Couple NULL 2011-08-03 16:04:23 4

FIGURE 7-2: A relationship between data tables that share a column.

122 Data Science Essentials For Dummies

2 The Fourth Man Drama 2014-02-19 19:17:16 5

2 The Fourth Man Drama 2010-04-27 10:05:36 4

3 All About Adam Drama 2011-04-05 21:21:05 4

3 All About Adam Drama 2014-02-21 00:11:07 3

4 Dr. Yes Thriller NULL

What happens if you find out that All About Adam is a comedy rather
than a drama? If the table were in a simple spreadsheet, you’d have
to open the data table, find all instances of the film, and then man-
ually change the genre value for that record. That’s not so difficult
in this sample table because only two records are related to that
film. But even here, if you forget to change one of these records,
this inconsistency would cause a loss of data integrity, which can
cause all sorts of unpredictable problems for you down the road.

In contrast, the relational database solution is simple and elegant.
Instead of one table for this example, you’d have three:

Film id title
 1 The Even Couple
 2 The Fourth Man
 3 All About Adam
 4 Dr. Yes

Genre id genre
 2 Drama
 3 Drama
 4 Thriller

Rating timestamp id rating
 2011-08-03 16:04:23 1 4
 2014-02-19 19:17:16 2 5
 2010-04-27 10:05:36 2 4
 2011-04-05 21:21:05 3 4
 2014-02-21 00:11:07 3 3

The primary key for the Film and Genre tables is id. The primary
key for the Rating table is timestamp — because a film can have
more than one rating, id is not a unique field, so it can’t be used
as a primary key. In this example, if you want to look up and
change the genre for All About Adam, you’d use Film.id as the

CHAPTER 7 Generating Insights with Software Applications 123

primary key and Genre.id as the foreign key. You’d simply use
these keys to query the records you need to change and then apply
the changes systematically. This systematic approach eliminates
the risk of stray errors.

Investing Some Effort
into Database Design

If you want to ensure that your database will be useful to you
for the foreseeable future, you need to invest time and resources
into excellent database design. If you want to create databases
that offer fast performance and error-free results, your database
design has to be flawless — or as flawless as you can manage.
Before you enter any data into a data table, first carefully consider
the tables and columns you want to include, the kinds of data
those tables will hold, and the relationships you want to create
between those tables.

Every hour you spend planning your database and anticipating
future needs can save you countless hours down the road, when
your database may hold a million records. Poorly planned data-
bases can easily turn into slow, error-ridden monstrosities —
avoid them at all costs.

Keep just a few concepts in mind when you design databases:

 » Data types

 » Constraints

 » Normalization

In the next few sections, I offer a closer look at each topic.

Defining data types
When creating a data table, one of the first things you have to do
is define the data type of each column. You have several data type
options to choose from:

 » Text: If your column is to contain text values, you can classify
it as a Character data type with a fixed length or a Text data
type of indeterminate length.

124 Data Science Essentials For Dummies

 » Numerical: If your column is to hold number values, you
can classify it as a Numerical data type. Numerical data types
can be stored as integers or floats.

 » Date: If your column is to hold date- or time-based values,
you can designate this as a Date data type or Date-Time
data type.

Text data types are handy, but they’re terrible for searches. When
you use a text field to do a search or select query, SQL will cause
the computer to call up each of the data objects individually,
instead of searching and sorting through them in-memory — in
other words, processing data within the computer’s memory,
without actually reading and writing its computational results
onto the disk.

Designing constraints properly
Think of constraints, in the context of SQL, as rules you use to
control the type of data that can be placed in a table. As such,
they’re an important consideration in any database design. When
you’re considering adding constraints, first decide whether each
column is allowed to hold a NULL value. (NULL isn’t the same as
blank or zero data; it indicates a total absence of data in a cell.)

For example, if you have a table of products you’re selling, you
probably don’t want to allow a NULL in the Price column. In the
Product Description column, however, some products may have
long descriptions, so you may allow some of the cells in this col-
umn to contain NULL values.

Within any data type, you can also constrain exactly what type
of input values the column accepts. Imagine that you have a text
field for Employee ID, which must contain values that are exactly
two letters followed by seven numbers, like this: SD0154919.
Because you don’t want your database to accept a typo, you’d
define a constraint that requires all values entered into the cells
of the Employee ID column to have exactly two letters followed by
seven numbers.

Normalizing your database
After you’ve defined the data types and designed constraints, you
need to deal with normalization (structuring your database so that

CHAPTER 7 Generating Insights with Software Applications 125

any changes, additions, or deletions to the data have to be made
only once and won’t result in anomalous, inconsistent data).
There are many different degrees and types of normalization (at
least seven), but a good, robust, normalized SQL database should
have at least the following properties:

 » Primary keys: Each table has a primary key, which is a
unique value for every row in that column.

 » Nonredundancy of columns: No two tables have the same
column, unless it’s the primary key of one and the foreign
key of the other.

 » No multiple dependencies: Every column’s value must
depend on only one other column whose value does not,
in turn, depend on any other column. Calculated values —
values such as the total for an invoice, for example — must,
therefore, be done on the fly for each query and should not
be hard-coded into the database. This means that zip codes
should be stored in a separate table because they depend
on three columns — address, city, and state.

 » Column indexes: As you may recall, in SQL an index is a
lookup table that points to data in tables of a database.
When you make a column index — an index of a particular
column — each record in that column is assigned a unique
key value that’s indexed in a lookup table. Column indexing
enables faster data retrieval from that column.

Creating a column index for frequent searches or to be used
as a search criterion is an excellent idea. The column index
takes up memory, but it increases your search speeds
tremendously. It’s easy to set up, too. Just tell your SQL
DBMS to index a certain column, and then the system
sets it up for you.

If you’re concerned that your queries are slow, first make
sure that you have all the indexes you need before trying
other, perhaps more involved, troubleshooting efforts.

 » Subject-matter segregation: Another feature of good
database design is that each table contains data for only
one kind of subject matter. This isn’t exactly a normalization
principle per se, but it helps to achieve a similar end.

126 Data Science Essentials For Dummies

Consider again the film rating example, from earlier in
this chapter:

Film id title

 1 The Even Couple

 2 The Fourth Man

 3 All About Adam

 4 Dr. Yes

Genre id genre

 2 Drama

 3 Drama

 4 Thriller

Rating timestamp id rating

 2011-08-03 16:04:23 1 4

 2014-02-19 19:17:16 2 5

 2010-04-27 10:05:36 2 4

 2011-04-05 21:21:05 3 4

 2014-02-21 00:11:07 3 3

• I could have designated Genre to be a separate column in
the Film table, but it’s better off in its own table because
that allows for the possibility of missing data values
(NULLs). Look at the Film table just shown. Film 1 has no
genre assigned to it. If the Genre column were included
in this table, then Film 1 would have a NULL value there.
Rather than have a column that contains a NULL value, it’s
much easier to make a separate Genre data table. The
primary keys of the Genre table don’t align exactly with
those of the Film table, but they don’t need to when you
go to join them.

CHAPTER 7 Generating Insights with Software Applications 127

NULL values can be quite problematic when you’re running a
SELECT query. When you’re querying based on the value of partic-
ular attribute, any records that have a NULL value for that attribute
won’t be returned in the query results. Of course, these records
would still exist, and they may even fall within the specified
range of values you’ve defined for your query, but if the record
has a NULL value, it’s omitted from the query results. In this case,
you’re likely to miss them in your analysis.

Any data scientist worth their salt must address many challenges
when dealing with either the data or the science. SQL takes some
of the pressure off when you’re dealing with the time-consuming
tasks of storing and querying data, saving precious time and effort.

Narrowing the Focus with SQL Functions
When working with SQL commands, you use functions to perform
tasks, and arguments to more narrowly specify those tasks. To
query a particular set from within your data tables, for example,
use the SELECT function. To combine separate tables into one, use
the JOIN function. To place limits on the data that your query
returns, use a WHERE argument. As I mention earlier in this chap-
ter, fewer than 20 commands are commonly used in SQL. This
section introduces SELECT, FROM, JOIN, WHERE, GROUP, MAX(),
MIN(), COUNT(), AVG(), and HAVING.

The most common SQL command is SELECT. You can use this
function to generate a list of search results based on designated
criteria. To illustrate, imagine the film-rating scenario mentioned
earlier in this chapter with a tiny database of movie ratings that
contains the three tables Film, Genre, and Rating.

To generate a printout of all data FROM the Rating table, use the
SELECT function. Any function with SELECT is called a query, and
SELECT functions accept different arguments to narrow down
or expand the data that is returned. An asterisk (*) represents
a wildcard, so the asterisk in SELECT * tells the interpreter (the
SQL component that carries out all SQL statements) to show every
column in the table. You can then use the WHERE argument to limit

128 Data Science Essentials For Dummies

the output to only certain values. For example, here is the com-
plete Rating table:

Rating timestamp id rating
 2011-08-03 16:04:23 1 4
 2014-02-19 19:17:16 2 5
 2010-04-27 10:05:36 2 4
 2011-04-05 21:21:05 3 4
 2014-02-21 00:11:07 3 3

If you want to limit your ratings to those made after a certain
time, you’d use code like the following:

SELECT * FROM Rating
WHERE Rating.timestamp >= date('2014-01-01')
timestamp id rating
2014-02-19 19:17:16 2 5
2014-02-21 00:11:07 3 3

Here, the DATE() function turns a string into a date that can then
be compared with the timestamp column.

You can also use SQL to join columns into a new data table. Joins
are made on the basis of shared (or compared) data in a particular
column (or columns). You can execute a join in SQL in several
ways, but the ones listed here are probably the most popular:

 » Inner join: The default JOIN type; returns all records that lie
in the intersecting regions between the tables being queried

 » Outer join: Returns all records that lie outside the overlap-
ping regions between queried data tables

 » Full outer join: Returns all records that lie both inside and
outside the overlapping regions between queried data
tables — in other words, returns all records for both tables

 » Left join: Returns all records that reside in the leftmost table

 » Right join: Returns all records that reside in the
rightmost table

Be sure to differentiate between an inner join and an outer join,
because these functions handle missing data in different ways.
As an example of a join in SQL, if you want a list of films that
includes genres, you use an inner join between the Film and Genre

CHAPTER 7 Generating Insights with Software Applications 129

tables to return only the results that intersect (overlap) between
the two tables.

To refresh your memory, here are the two tables you’re
interested in:

Film id title
 1 The Even Couple
 2 The Fourth Man
 3 All About Adam
 4 Dr. Yes

Genre id genre
 2 Drama
 3 Drama
 4 Thriller

Here’s how you’d use an inner join to find the informa-
tion you want:

SELECT Film.id, Film.title, Genre.genre
FROM Film
JOIN Genre On Genre.id=Film.id
id title genre
2 The Fourth Man Drama
3 All About Adam Drama
4 Dr. Yes Thriller

Here, I name specific columns (Film.title and Genre.genre)
after the SELECT command. I do this to avoid creating a dupli-
cate id column in the table that results from the JOIN — one id
from the Film table and one id from the Genre table. Because the
default for JOIN is inner, and inner joins return only records that
are overlapping or shared between tables, Film 1 is omitted from
the results (because of its missing Genre value).

If you want to return all rows, even ones with NULL values, simply
do a full outer join, like the one shown here:

SELECT Film.id, Film.title, Genre.genre
FROM Film
FULL JOIN Genre On Genre.id=Film.id
id title genre

130 Data Science Essentials For Dummies

1 The Even Couple NULL
2 The Fourth Man Drama
3 All About Adam Drama
4 Dr. Yes Thriller

To aggregate values so that you can figure out the average rating
for a film, use the GROUP statement. (GROUP statement commands
include MAX(), MIN(), COUNT(), or AVG().)

The following code shows one way you can aggregate values in
order to return the average rating of each film. The SELECT func-
tion uses the AS statement to rename the column to make sure it
was properly labeled. The Film and Ratings tables had to be joined
and, because Dr. Yes had no ratings and an inner join was used,
that film was left out.

SELECT Film.title, AVG(rating) AS avg_rating
FROM Film
JOIN Rating On Film.id=Rating.id
GROUP BY Film.title

title avg_rating
All About Adam 3.5
The Even Couple 4.0
The Fourth Man 4.5

To narrow the results even further, add a HAVING clause at the
end, as shown here:

SELECT Film.title, AVG(rating) AS avg_rating
FROM Film
JOIN Rating On Film.id=Rating.id
GROUP BY Film.title
HAVING avg_rating >= 4

title avg_rating
The Even Couple 4.0
The Fourth Man 4.5

This code limits the data your query returns so you get only records
of titles that have an average rating greater than or equal to 4.

CHAPTER 7 Generating Insights with Software Applications 131

Making Life Easier with Excel
Microsoft Excel holds a special place among data science tools.
It was originally designed to act as a simple spreadsheet. Over
time, however, it has become the people’s choice in data analysis
software. In response to user demands, Microsoft has added more
and more analysis and visualization tools with every release. As
Excel advances, so do its data munging and data science capa-
bilities. (Data munging involves reformatting and rearranging data
into more manageable formats that are usually required for con-
sumption by other processing applications downstream.) Excel
includes easy-to-use tools for charting, PivotTables, and macros.
It also supports scripting in Visual Basic so you can design scripts
to automate repeatable tasks.

The benefit of using Excel in a data science capacity is that it offers
a fast and easy way to get up close and personal with your data.
If you want to browse every data point in your dataset, you can
quickly and easily do this using Excel. Most data scientists start
in Excel and eventually add other tools and platforms when they
find themselves pushing against the boundaries of the tasks Excel
is designed to do. Still, even the best data scientists out there keep
Excel as an important tool in their tool belt. When working in data
science, you may not use Excel every day, but knowing how to use
it can make your job easier.

If you’re using Excel spreadsheets for data analysis but finding it
to be rather buggy and clunky, I recommend that you instead test
out Google Sheets — Google’s cloud-based version of a spread-
sheet application. It can be run offline on your computer, and
it offers an ease of use and a set of collaborative features that
simply aren’t available within the Microsoft Office environment
today. Google Sheets offers all the same functions discussed in
this chapter, using all the same commands as Excel spreadsheets,
but most users find Sheets to be a far more intuitive, extensible
tool for data analysis, visualization, and collaboration.

Although you have many different tools available to you when you
want to see your data as one big forest, Excel is a great first choice
when you need to look at the trees. Excel attempts to be many
different things to many different kinds of users. Its functionality
is well compartmentalized in order to avoid overwhelming new

132 Data Science Essentials For Dummies

users while still providing power users with the more advanced
functionality they crave.

In the following sections, I show you how you can use Excel to
quickly get to know your data. I also introduce Excel PivotTables
and macros and tell you how you can use them to greatly simplify
your data cleanup and analysis tasks.

Using Excel to quickly get to
know your data
If you’re just starting off with an unfamiliar dataset and you need
to spot patterns or trends as quickly as possible, use Excel. Excel
offers effective features for exactly these purposes. Its main fea-
tures for a quick-and-dirty data analysis are

 » Filters: Filters are useful for sorting out all records that are
irrelevant to the analysis at hand.

 » Conditional formatting: Specify a condition, and Excel flags
records that meet that condition. By using conditional
formatting, you can easily detect outliers and trends in your
tabular datasets.

 » Charts: Charts have long been used to visually detect
outliers and trends in data, so charting is an integral part of
almost all data science analyses.

To see how these features work in action, consider the sample
dataset shown in Figure 7-3, which tracks sales figures for three
employees over six months.

Filtering in Excel
To narrow your view of your dataset to only the data that matters
for your analysis, use Excel filters to filter out irrelevant data from
the data view. Simply select the data and click the Home tab’s Sort
& Filter button; then choose Filter from the options that appear. A
little drop-down option appears in the header row of the selected
data so you can select the classes of records you want to have
filtered from the selection. Using the Excel Filter functionality
allows you to quickly and easily sort or restrict your view to only
the subsets of the data that interest you the most.

CHAPTER 7 Generating Insights with Software Applications 133

Take another look at the full dataset shown in Figure 7-3. Say
you want to view only data related to Abbie’s sales figures. If you
select all records in the Salesperson column and then activate the
filter functionality (as just described), from the drop-down menu
that appears you can specify that the filter should isolate only all
records named Abbie, as shown in Figure 7-4. When filtered, the
table is reduced from 18 rows to only 6 rows. In this particular
example, that change doesn’t seem so dramatic, but when you
have hundreds, thousands, or even a million rows, this feature
comes in very, very handy.

FIGURE 7-3: The full dataset that tracks employee sales performance.

134 Data Science Essentials For Dummies

Excel lets you store only up to 1,048,576 rows per worksheet.

Using conditional formatting
To quickly spot outliers in your tabular data, use Excel’s Condi-
tional Formatting feature. Imagine after a data entry error that
Abbie’s March total sales showed $208,187.70 but was supposed
to be only $20,818.77. You’re not quite sure where the error is
located, but you know that it must be significant because the fig-
ures seem off by about $180,000.

To quickly show such an outlier, select all records in the Total
Sales column and then click the Conditional Formatting button on
the Ribbon’s Home tab. When the button’s menu appears, choose
the Data Bars option. Doing so displays the red data bar scales
shown in Figure 7-5. With data bars turned on, the bar in the
$208,187.70 cell is so much larger than any of the others that you
can easily see the error.

If you want to quickly discover patterns in your tabular data, you
can choose the Color Scales option (rather than the Data Bars
option) from the Conditional Formatting menu. After correcting
Abbie’s March Total Sales figure to $20,818.77, select all cells in
the Total Sales column and then activate the Color Scales ver-
sion of conditional formatting. Doing so displays the result shown
in Figure 7-6. From the red-white-blue heat map, you can see
that Abbie has the highest sales total and Brian has been selling
more than Chris. (Okay, you can’t see the red-white-blue in my
black-and-white figures, but you can see the light-versus-dark
contrast.) Now, if you only want to conditionally format Abbie’s
sales performance relative to her own total sales (but not Brian’s
and Chris’s sales), you can select only the cells for Abbie (and not
the entire column).

FIGURE 7-4: The sales performance dataset, filtered to show only Abbie’s
records.

CHAPTER 7 Generating Insights with Software Applications 135

Excel charting to visually identify
outliers and trends
Excel’s Charting tool gives you an incredibly easy way to visu-
ally identify both outliers and trends in your data. An XY (scatter)
chart of the original dataset (refer to Figure 7-3) yields the scat-
terplot shown in Figure 7-7. As you can see, the outlier is over-
whelmingly obvious when the data is plotted on a scatter chart.

Alternatively, if you want to visually detect trends in a dataset,
you can use Excel’s Line Chart feature. The data from Figure 7-6
is shown as a line chart in Figure 7-8. It’s worth mentioning, I’ve
fixed the outlier in this line graph, which is what allows the y-axis
to have a more readable scale compared to Figure 7-7.

As you can clearly see from the figure, Chris’s sales performance
is low — last place among the three salespeople but gaining
momentum. Because Chris seems to be improving, maybe man-
agement will want to wait a few months before making any firing
decisions based on sales performance data.

FIGURE 7-5: Spotting outliers in a tabular dataset with conditional formatting
data bars.

136 Data Science Essentials For Dummies

FIGURE 7-6: Spotting outliers in a tabular dataset with color scales.

FIGURE 7-7: Excel XY (scatter) plots provide a simple way to visually detect
outliers.

CHAPTER 7 Generating Insights with Software Applications 137

Reformatting and summarizing
with PivotTables
Excel developed the PivotTable to make it easier for users to
extract valuable insights from large sets of spreadsheet data. If
you want to generate insights by quickly restructuring or reclas-
sifying your data, use a PivotChart. One of the main differences
between a traditional spreadsheet and a dataset is that spread-
sheets tend to be wide (with a lot of columns) and datasets tend
to be long (with a lot of rows). Figure 7-9 clearly shows the dif-
ference between a long dataset and a wide spreadsheet.

FIGURE 7-8: Excel line charts make it easy to visually detect trends in data.

FIGURE 7-9: A long dataset and a wide spreadsheet.

138 Data Science Essentials For Dummies

A PivotTable is a table that’s derived from data that sits within
a spreadsheet. The pivot allows for grouping, rearrangement,
display, and summary of the raw data that’s stored within the
underlying spreadsheet.

The way that Excel is designed leads many users to intuitively
prefer the wide format — which makes sense because it’s a
spreadsheet application. To counter this preference, however,
Excel offers the PivotTable feature so that you can quickly con-
vert between long and wide formats. You can also use PivotTables
to quickly calculate subtotals and summary calculations on your
newly formatted and rearranged data tables.

Creating PivotTables is easy: Just select all cells that comprise the
table you want to analyze. Then click the PivotTable button on
the Insert tab. This action opens the Create PivotTable dialog box,
where you can define where you want Excel to construct the Piv-
otTable. Click OK, and Excel automatically generates a PivotField
Interface on the page you’ve specified. From this interface, you
can specify the fields you want to include in the PivotTable and
how you want them to be laid out.

The table shown in Figure 7-10 was constructed using the long-
format sales performance data shown in Figure 7-9. It’s an
example of the simplest possible PivotTable that can be con-
structed, but even at that, it automatically calculates subtotals
for each column and those subtotals automatically update when
you make changes to the data. What’s more, PivotTables come
with PivotCharts — data plots that automatically change when you
make changes to the PivotTable filters based on the criteria you’re
evaluating.

You can do a lot more sophisticated analytical work in Excel than
just creating PivotTables, although they are handy. On the com-
panion website to this book (https://businessgrowth.ai), I
give you some basic training in how to use Excel and XLMiner
to implement data science without needing to touch a single
line of code.

FIGURE 7-10: Creating a wide data table from the long dataset via a PivotTable.

https://businessgrowth.ai/

CHAPTER 7 Generating Insights with Software Applications 139

Automating Excel tasks with macros
Macros are prescripted routines written in Visual Basic for Appli-
cations (VBA). You can use macros to decrease the amount of
manual processing you need to do when working with data in
Excel. For example, within Excel, macros can act as a set of func-
tions and commands that you can use to automate a wide vari-
ety of tasks. If you want to save time (and hassle) by automating
Excel tasks that you routinely repeat, use macros.

To access macros, first activate Excel’s Developer tab from within
the Options menu on the File tab. (In other words, after opening
the Options menu, choose Customize Ribbon from your choices
on the left and then click to select the Developer check box in the
column on the right.) Using the Developer tab, you can record a
macro, import one that was created by someone else, or code your
own in VBA.

To illustrate macros in action, imagine that you have a column of
values and you want to insert an empty cell between each one of
the values, as shown in Figure 7-11. Excel has no easy, out-of-
the-box way to make this insertion. Using Excel macros, however,
you can ask Excel to record you while you step through the pro-
cess one time, and then assign a key command to this recording to
create the macro. After you create the macro, every time you need
to repeat the same task in the future, just run the macro by press-
ing the key command, and the script then performs all required
steps for you.

Macros have an Absolute mode and a Relative mode. The Absolute
mode refers to a macro’s routine that runs absolutely the way you
recorded it — all the way down to the spreadsheet cell positions
in which the routine was recorded. Relative mode macros run the
same routine you record but can be placed in whatever cell posi-
tion you need within the spreadsheet.

When you record a macro, it records in Absolute mode by default.
If you want it to record the macro in Relative mode instead, you
need to select the Use Relative References option before recording
the macro.

140 Data Science Essentials For Dummies

For a more formal definition of Absolute and Relative macros,
consider this:

 » Relative: Every action and movement you make is recorded
as relative to the cell that was selected when you began the
recording. When you run the macro in the future, it will run
in reference to the cell that’s selected, acting as though that
cell were the same cell you had initially selected when you
recorded the macro.

 » Absolute: After you start recording the macro, every action
and movement you make is repeated when you run the
macro in the future, and those actions or movements aren’t
made in any relative reference to whatever cell was active
when you started recording. The macro routine is repeated
exactly as you recorded it.

FIGURE 7-11: Using a macro to insert empty cells between values.

CHAPTER 7 Generating Insights with Software Applications 141

In the preceding example, the macro was recorded in Relative
mode. This enables the macro to be run continuously, anywhere,
and on top of results from any preceding macros run. Because, in
this scenario, the macro recorded only one iteration of the pro-
cess, if it had been recorded in Absolute mode, every time it was
run the macro would have kept adding a space between only the
one and two values. In other words, it would not have operated on
any cells other than the ones it was recorded on.

Macro commands aren’t entered into Excel’s Undo stack. If you use
a macro to change or delete data, you’re stuck with that change.

Test your macros first and save your worksheets before using
them so you can revert to the saved file if something goes wrong.

Excel power users often graduate to programming their own
macros using VBA. Because VBA is a full-fledged programming
language, the possibilities from pairing Excel with VBA are almost
endless. Still, ask yourself this question: If you’re going to invest
time in learning a programming language, do you need to work
within the confines of Excel’s spreadsheet structure? If not, you
may consider learning a scientific computing language, like R or
Python. These open-source languages have a more user-friendly
syntax and are much more flexible and powerful.

CHAPTER 8 Telling Powerful Stories with Data 143

Chapter 8

IN THIS CHAPTER

 » Laying out the basics of data
visualization and storytelling

 » Choosing the perfect data visualization
type for the needs of your audience

 » Picking the perfect design style

 » Crafting clear and powerful visual
messages with the right data graphic

 » Adding context

Telling Powerful
Stories with Data

Any standard definition of data science will specify that its
purpose is to help you extract meaning and value from raw
data. Finding and deriving insights from raw data is at the

crux of data science, but these insights mean nothing if you don’t
know how to communicate your findings to others. Data visual-
ization and storytelling are excellent means by which you can
visually communicate your data’s meaning. To design effective
data visualizations and stories, however, you must know and truly
understand the target audience and the core purpose for which
you’re communicating with members of that audience. You must
also understand the main types of data graphics that are available
to you, as well as the significant benefits and drawbacks of each
one. In this chapter, I present you with the core principles of data
visualization and data storytelling design.

A data visualization is a visual representation that’s designed for
the purpose of conveying the meaning and significance of data
and data insights. Because data visualizations are designed for
a whole spectrum of different audiences, different purposes,
and different skill levels, the first step to designing an effective
data visualization is to know your audience. Audiences come in all

144 Data Science Essentials For Dummies

shapes, forms, and sizes. You might design a data visualization
for the young and edgy readers of Wired magazine or convey sci-
entific findings to a research group. Your audience might consist
of board members and organizational decision-makers or a local
grassroots organization.

The one thing that’s consistent across all audiences, however, is the
process you should follow when creating your data visualization:

1. Determine the type of data visualization you’ll create,
based on your audience and the purpose of your
visualization.

2. Decide on a design style for your data visualization.

3. Choose which graphics make the most sense for
your audience.

4. Test out different types of data graphics with the data,
and then pick the ones that display the clearest and
most obvious answers.

5. Arrange your data graphics within the data visualization.

6. Where appropriate, add context to enhance the meaning
of the visualization.

In this chapter, I walk you through all these steps in sequen-
tial order.

Data Visualizations: The Big Three
Every audience is composed of a unique class of consumers, each
with unique data visualization needs, so you have to clarify for
whom you’re designing. Here are the types of data visualization
and which audiences they’re best for:

 » Data storytelling: Less-technical business decision-makers

 » Data showcasing: Data implementers, analysts, engineers,
scientists, or statisticians

 » Data art: Idealists, dreamers, and social change-makers

I cover each of these types of data visualization in greater detail in
the following sections.

CHAPTER 8 Telling Powerful Stories with Data 145

Data storytelling for decision-makers
Sometimes, you have to design data visualizations for a less
technical-minded audience, perhaps in order to help members of
this audience make better-informed business decisions. The pur-
pose of this type of visualization is to tell your audience the story
behind the data. In data storytelling, the audience depends on you
to make sense of the data behind the visualization and then turn
useful insights into visual stories that they can easily understand.

With data storytelling, your goal should be to use data visualiza-
tion, words, and presentation skills to create a narrative that
tells the story — the meaning, in other words — of the data
insights you seek to convey. With respect to the data visualiza-
tion you use within a data story, you want it to be a clutter-free,
highly focused visualization that enables your audience mem-
bers to quickly extract meaning without having to make much
effort. These visualizations are best delivered in the form of static
images, but more adept decision-makers may prefer to have an
interactive dashboard that they can use to do a bit of exploration
and what-if modeling.

Data storytelling involves more than just data visualization design,
though. You need to use words and presentation skills to commu-
nicate the data story as well. You’ll want to use words sparingly
within annotations on the data visualization itself. Maybe you
present the data story with an accompanying slideshow, or maybe
not — but you should present it with effective presentation skills.

Data showcasing for analysts
If you’re designing for a crowd of data implementers or other log-
ical, calculating analysts, you can create data visualizations that
are rather open-ended. The purpose of this type of visualization
is to help audience members visually explore the data and draw
their own conclusions.

When using data showcasing techniques, your goal should be to
display a lot of contextual information that supports audience
members as they make their own interpretations. These visual-
izations should include more contextual data and less conclusive
focus so that people can get in, analyze the data for themselves,
and then draw their own conclusions. These visualizations are best
delivered as static images or dynamic, interactive dashboards.

146 Data Science Essentials For Dummies

Designing data art for activists
You might design for an audience of idealists, dreamers, and
change-makers. When designing for this particular audience, you
want your data visualization to make a point! You can assume that
typical audience members aren’t overly analytical. What they lack
in math skills, however, they more than compensate for in solid
convictions.

These people look to your data visualization as a vehicle by which
to make a statement. When designing for this audience, data art
is the way to go. The main goal in using data art is to entertain, to
provoke, to annoy, or to do whatever it takes to make a loud, clear,
attention-demanding statement. Data art has little to no narrative
and offers no room for viewers to form their own interpretations.

Data scientists have an ethical responsibility to always represent
data accurately. A data scientist should never distort the message
of the data to fit what the audience wants to hear — not even for
data art! Nontechnical audiences don’t even recognize, let alone
see, the possible issues. They rely on the data scientist to provide
honest and accurate representations, thus amplifying the level of
ethical responsibility that the data scientist must assume.

Designing to Meet the Needs
of Your Target Audience

To make a functional data visualization, you must get to know
your target audience and then design precisely for their needs.
But to make every design decision with your target audience in
mind, you need to take a few steps to make sure that you truly
understand your data visualization’s target consumers.

To gain the insights you need about your audience and your pur-
pose, follow this process:

1. Brainstorm.

Think about a specific member of your audience and make as
many educated guesses as you can about that person’s
motivations.

CHAPTER 8 Telling Powerful Stories with Data 147

Give this (imaginary) audience member a name and a
few other identifying characteristics. I always imagine a
45-year-old divorced mother of two named Eve.

2. Define the purpose of your visualization.

Narrow the purpose of the visualization by deciding exactly
what action or outcome you want audience members to
make as a result of the visualization.

3. Choose a functional design.

Review the three main data visualization types (discussed
earlier in this chapter) and decide which type can best help
you achieve your intended outcome.

The following sections spell out this process in detail.

Step 1: Brainstorm (All about Eve)
To brainstorm properly, pull out a sheet of paper and picture an
imaginary audience member — “Eve,” for example. Let’s practice
together in creating a more functional and effective data visualiza-
tion. You’d want to start by answering the more important ques-
tions you could ask about Eve in order to better understand her
and, thus, better understand and design for your target audience.

Start by forming a picture of what Eve’s average day looks like —
what she does when she gets out of bed in the morning, what she
does over her lunch hour, and what her workplace is like. Also
consider how Eve will use your visualization. These things tell you
a little bit about her psychographics (the psychological characteris-
tics that drive her high-level needs and wants).

To form a more comprehensive view of who Eve is and how
you can best meet her needs, you can pull from the following
question bank:

 » Where does Eve work? What does she do for a living?

 » What kind of technical education or experience, if any,
does she have?

 » How old is Eve? Is she married? Does she have children?
What does she look like? Where does she live?

 » What social, political, cause-based, or professional issues
are important to Eve? What does she think of herself?

148 Data Science Essentials For Dummies

 » What problems and issues does Eve have to deal with
every day?

 » How does your data visualization help solve Eve’s work
problems or her family problems? How does it improve her
self-esteem?

 » Through what avenue will you present the visualization to
Eve (for example, over the internet or in a staff meeting)?

 » What does Eve need to be able to do with your data
visualization?

Because we’re doing this together, I’ll answer these questions for
you by telling you that Eve is the manager of the zoning depart-
ment in Irvine County. She is 45 years old and a divorced mother
of two children who are about to start college. She is deeply inter-
ested in local politics and eventually wants to be on the coun-
ty’s board of commissioners. To achieve that position, she has
to get some major “oomph” on her county management résumé.
Eve derives most of her feelings of self-worth from her job and
her keen ability to make good management decisions for her
department.

Until now, Eve has been forced to manage her department accord-
ing to her gut-level intuition, backed by a few disparate busi-
ness systems reports. She isn’t extraordinarily analytical, but
she knows enough to understand what she sees. The problem is
that Eve lacks the visualization tools she needs in order to dis-
play all the relevant data she should consider. She has neither the
time nor the skill to code something herself. Eve is excited that
you’ll attend next Monday’s staff meeting to present data insights
you’ve discovered that she hopes will enable her to make more
effective data-driven management decisions.

Step 2: Define the purpose
After you brainstorm about the typical audience member (see the
preceding section), you can much more easily pinpoint exactly
what you’re trying to achieve with your data visualization. Are you
trying to get consumers to feel a certain way about themselves or
the world around them? Are you trying to make a statement? Are
you seeking to influence organizational decision-makers to make
good business decisions? Or do you simply want to lay all the data

CHAPTER 8 Telling Powerful Stories with Data 149

out there, for all viewers to make sense of, and deduce from it
what they will?

Returning to the hypothetical Eve: What decisions or processes
are you trying to help her achieve? Well, you’d first need to make
sense of her data and uncover relevant data insights. Then you’d
need to present those data insights to her in a way that she can
clearly understand and use for improved decision-making. So,
looking at the data — what do you see that’s happening within
the inner mechanics of Eve’s department? After you’ve discovered
some clear trends and predictions, it’s time to use data visualiza-
tion skills to guide Eve into making the most prudent and effec-
tive management choices.

Step 3: Choose the most functional
visualization type for your purpose
Keep in mind that you have three main types of visualization
from which to choose: data storytelling, data art, and data show-
casing. Remember that, if you’re designing for organizational
decision-makers, you’ll most likely use data storytelling to
directly tell your audience what their data means with respect
to their line of business. If you’re designing for a social justice
organization or a political campaign, data art can best make a
dramatic and effective statement with your data. Lastly, if you’re
designing for analysts, engineers, scientists, or statisticians, stick
with data showcasing so that these analytical types have plenty of
room to figure things out on their own.

Back to Eve — because she’s not extraordinarily analytical and
because she’s depending on you to help her make excellent data-
driven decisions, you need to employ data storytelling techniques.
Create either a static or interactive data visualization with some,
but not too much, context. The visual elements of the design
should tell a clear story about her business unit, such that Eve
doesn’t have to work through tons of complexity to get the point
of what you’re trying to tell her about her department.

My best practices for effective dashboard design are available to
you over on https://businessgrowth.ai.

https://businessgrowth.ai/

150 Data Science Essentials For Dummies

Picking the Most Appropriate
Design Style

If you’re the analytical type, you might say that the only pur-
pose of a data visualization is to convey numbers and facts via
charts and graphs — no beauty or design is needed. But if you’re
a more artistic-minded person, you may insist that you have to
feel something in order to truly understand it. Truth be told, a
good data visualization is neither artless and dry nor completely
abstract in its artistry. Instead, its beauty and design lie some-
where on the spectrum between these two extremes.

To choose the most appropriate design style, you must first con-
sider your audience (discussed earlier in this chapter) and then
decide how you want them to respond to your visualization. If
you’re looking to entice the audience into taking a deeper, more
analytical dive into the visualization, employ a design style that
induces a calculating and exacting response in its viewers. But if
you want your data visualization to fuel your audience’s passion,
use an emotionally compelling design style instead.

Inducing a calculating, exacting
response
If you’re designing a data visualization for corporate types, engi-
neers, scientists, or organizational decision-makers, keep the
design simple and sleek, using the data showcasing or data sto-
rytelling visualization. To induce a logical, calculating feel in your
audience, include a lot of bar charts, scatterplots, and line charts.
Color choices here should be rather traditional and conservative.
The look and feel should scream “corporate chic” (see Figure 8-1).
Visualizations of this style are meant to quickly and clearly com-
municate what’s happening in the data — direct, concise, and
to the point. The best data visualizations of this style convey an
elegant look and feel.

If you’re looking for guidance on the best web applications for
data visualization and storytelling, be sure to check out my
Web-Based Data Visualization Design Tools: Top 10 Guide at https://
businessgrowth.ai.

https://businessgrowth.ai/
https://businessgrowth.ai/

CHAPTER 8 Telling Powerful Stories with Data 151

Eliciting a strong emotional response
If you’re designing a data visualization to influence or persuade
people, incorporate design artistry that invokes an emotional
response in your target audience. These visualizations usually
fall under the data art category, but an extremely creative data
storytelling piece can also inspire this sort of strong emotional
response. Emotionally provocative data visualizations often sup-
port the stance of one side of a social, political, or environmental
issue. These data visualizations include fluid, artistic design ele-
ments that flow and meander, as shown in Figure 8-2. Addition-
ally, rich, dramatic color choices can influence the emotions of
the viewer. This style of data visualization leaves a lot of room for
artistic creativity and experimentation.

Keep artistic elements relevant — and recognize when they’re
likely to detract from the impression you want to make, particu-
larly when you’re designing for analytical types.

FIGURE 8-1: This design style conveys a calculating and exacting feel.

152 Data Science Essentials For Dummies

Selecting the Appropriate
Data Graphic Type

Your choice of data graphic type can make or break a data visualiza-
tion. In case it’s unclear, a data graphic is the graphical element that
depicts your data insight in visual format (see Figure 8-3). Most
data visualizations have more than one data graphic within them.

FIGURE 8-2: This design style is intended to evoke an emotional response.

CHAPTER 8 Telling Powerful Stories with Data 153

Because you probably need to represent many different facets of
your data, you can mix and match among the different graphical
classes and types. Even among the same class, certain graphic
types perform better than others; therefore, it’s a good idea to
create several different mockups to see which graphic type con-
veys the clearest and most obvious message.

This book introduces only the most commonly used graphic types
(among hundreds that are available). Don’t wander too far off
the beaten path. The further you stray from familiar graphics,
the harder it becomes for people to understand the information
you’re trying to convey.

Pick the graphic type that most dramatically displays the data
trends you’re seeking to reveal. (Figure 8-4 lists some general
guidelines.) You can display the same data trend in many ways,
but some methods deliver a visual message more effectively than
others. The point is to deliver a clear, comprehensive visual mes-
sage to your audience so people can use the visualization to help
them make sense of the data presented.

Among the most useful types of data graphics are standard chart
graphics, comparative graphics, statistical plots, topology struc-
tures, and spatial plots and maps. The next few sections take a
look at each of these types.

FIGURE 8-3: Data visualization versus data graphics.

154 Data Science Essentials For Dummies

Standard chart graphics
When making data visualizations for an audience of nonanalytical
people, stick to standard chart graphics. The more complex your
graphics, the harder it is for nonanalytical people to understand
them. And not all standard chart types are boring. You have quite
a variety to choose from:

 » Area charts (see Figure 8-5) are a fun-yet-simple way to
visually compare and contrast attribute values. You can use
this type of chart to effectively tell a visual story when you’ve
chosen data storytelling and data showcasing. Not all area
charts are 3-D, like the one shown in Figure 8-5, but they all
represent numerical values by the proportion of area those
values consume visually on the chart.

FIGURE 8-4: Types of data graphics, broken down by audience and data
visualization type.

CHAPTER 8 Telling Powerful Stories with Data 155

 » Bar charts (see Figure 8-6) are a simple way to visually
compare and contrast values of parameters in the same
category. Bar charts are best for data storytelling and data
showcasing.

 » Line charts (see Figure 8-7) most commonly show changes
in time series data, but they can also plot relationships
between two, or even three, parameters. Line charts are
so versatile that you can use them in all data visualization
design types.

 » Pie charts (see Figure 8-8), which are among the most
commonly used, provide a simple way to compare values
of parameters in the same category. Their simplicity,
however, can be a double-edged sword; deeply analytical
people tend to scoff at them, precisely because they seem
so simple, so you may want to consider omitting them from
data-showcasing visualizations.

FIGURE 8-5: An area chart in three dimensions.
Source: Lynda.com, Python for DS

http://Lynda.com

156 Data Science Essentials For Dummies

FIGURE 8-6: A bar chart showing the area of U.S. states by their acreage, in
thousand acres.

FIGURE 8-7: A line chart.
Source: Lynda.com, Python for DS

http://Lynda.com

CHAPTER 8 Telling Powerful Stories with Data 157

Comparative graphics
A comparative graphic displays the relative value of multiple
parameters in a shared category or the relatedness of parameters
within multiple shared categories. The core difference between
comparative graphics and standard graphics is that comparative
graphics offer you a way to simultaneously compare more than
one parameter and category. Standard graphics, on the other hand,
provide a way to view and compare only the difference between
one parameter of any single category. Comparative graphics are
geared toward an audience that’s at least slightly analytical, so
you can easily use these graphics in either data storytelling or
data showcasing. Visually speaking, comparative graphics are
more complex than standard graphics.

This list shows a few different types of popular compara-
tive graphics:

 » Bubble plots (see Figure 8-9) use bubble size and color to
demonstrate the relationship between three parameters of
the same category.

 » Packed circle diagrams (see Figure 8-10) use both circle size
and clustering to visualize the relationships between
categories, parameters, and relative parameter values.

FIGURE 8-8: A pie chart.
Source: Lynda.com, Python for DS

http://Lynda.com

158 Data Science Essentials For Dummies

FIGURE 8-9: A bubble chart.

FIGURE 8-10: A packed circle diagram.

CHAPTER 8 Telling Powerful Stories with Data 159

 » Gantt charts (see Figure 8-11) are bar charts that use
horizontal bars to visualize scheduling requirements for
project management purposes. This type of chart is useful
when you’re developing a plan for project delivery. It’s also
helpful in determining the sequence in which tasks must be
completed in order to meet delivery timelines.

Choose Gantt charts for project management and scheduling.

 » Stacked charts (see Figure 8-12) are used to compare
multiple attributes of parameters in the same category.
To ensure that it doesn’t become difficult to make a visual
comparison, resist the urge to include too many parameters.

FIGURE 8-11: A Gantt chart.

FIGURE 8-12: A stacked chart.

160 Data Science Essentials For Dummies

 » Tree maps (see Figure 8-13) aggregate parameters of like
categories and then use area to show the relative size of
each category compared to the whole.

 » Word clouds (see Figure 8-14) use size and color to show the
relative difference in frequency of words used in a body of
text. Colors are generally employed to indicate classifications
of words by usage type.

FIGURE 8-13: A tree map.

FIGURE 8-14: A simple word cloud.

CHAPTER 8 Telling Powerful Stories with Data 161

Statistical plots
Statistical plots, which show the results of statistical analyses,
are usually useful only to a deeply analytical audience (and aren’t
useful for making data art). Here are your statistical plot choices:

 » Histograms (shown in Figure 8-15) are diagrams that plot a
variable’s frequency and distribution as rectangles on a
chart. A histogram can help you quickly get a handle on the
distribution and frequency of data in a dataset.

Get comfortable with histograms. You’ll see a lot of them in
the course of making statistical analyses.

 » Scatterplots (see Figure 8-16) plot data points according to
their x- and y-values in order to visually reveal any significant
patterns. A scatterplot is a terrific way to quickly uncover
significant trends and outliers in a dataset. If you use data
storytelling or data showcasing, start by generating a quick

FIGURE 8-15: A histogram.
Source: Lynda.com, Python for DS

http://Lynda.com

162 Data Science Essentials For Dummies

scatterplot to get a feel for areas in the dataset that may be
interesting — areas that can potentially uncover significant
relationships or yield persuasive stories.

 » Scatterplot matrixes (see Figure 8-17) place a number of
related scatterplots in a visual series that shows correlations
between multiple variables. A scatterplot matrix is a good
choice when you want to explore the relationships between
several variables. Discovering and verifying relationships
between variables can help you to identify clusters among
variables and identify oddball outliers in your dataset.

Topology structures
Topology is the practice of using geometric structures to describe
and model the relationships and connectedness between entities
and variables in a dataset. You need to understand basic topol-
ogy structures so you can accurately structure your visual display
to match the fundamental underlying structure of the concepts
you’re representing.

FIGURE 8-16: A scatterplot.
Source: Lynda.com, Python for DS

http://Lynda.com

CHAPTER 8 Telling Powerful Stories with Data 163

The following list describes a series of topological structures that
are popular in data science:

 » Linear topological structures (see Figure 8-18) represent a
pure one-to-one relationship. They’re often used in data
visualizations that depict time series flow patterns. Any
process that can occur only by way of a sequential series of
dependent events is linear, and you can effectively represent
it by using this underlying topological structure.

FIGURE 8-18: A linear topology.

FIGURE 8-17: A scatterplot matrix.
Source: Lynda.com, Python for DS

http://Lynda.com

164 Data Science Essentials For Dummies

 » Graph models (see Figure 8-19) underlie group communica-
tion networks and traffic flow patterns. You can use graph
topology to represent many-to-many relationships, like
those that form the basis of social media platforms.

In a many-to-many relationship structure, each variable or
entity has more than one link to the other variables or
entities in that same dataset.

 » Tree network topologies (see Figure 8-20) represent a
hierarchical classification, where a network is distributed in
top-down order — nodes act as receivers and distributors of
connections, and lines represent the connections between
nodes. End nodes act only as receivers and not as distribu-
tors. Hierarchical classification underlies clustering and
machine learning methodologies in data science. Tree
network structures can represent one-to-many relationships,
such as the ones that underlie a family tree or a taxonomy
structure.

Spatial plots and maps
Spatial plots and maps are two different ways of visualizing spa-
tial data. A map is just a plain figure that represents the loca-
tion, shape, and size of features on the face of the earth. A spatial
plot, which is visually more complex than a map, shows the values
for — and location distribution of — a spatial feature’s attributes.

FIGURE 8-19: A graph mesh network topology.

CHAPTER 8 Telling Powerful Stories with Data 165

Here are a few types of spatial plots and maps that are commonly
used in data visualization:

 » Cloropleth: Despite its fancy name, a Cloropleth map (see
Figure 8-21) is really just spatial data plotted out according to
area boundary polygons rather than by point, line, or raster
coverage. On the map in Figure 8-21, each state boundary
represents an area boundary polygon. The color and shade
of the area within each boundary represents the relative
value of the attribute for that state — where red areas have
a higher attribute value and blue areas have a smaller
attribute value.

 » Point: Composed of spatial data that is plotted out accord-
ing to specific point locations, a point map (see Figure 8-22)
presents data in a graphical point form rather than in a
polygon, line, or raster surface format.

 » Raster surface: A raster surface map (see Figure 8-23) can
be anything from a satellite image map to a surface coverage
with values that have been interpolated from underlying
spatial data points.

For a training on how to make maps from data using QGIS, an
open-source geographic information system (GIS) application,
visit https://businessgrowth.ai.

FIGURE 8-20: A hierarchical tree topology.

https://businessgrowth.ai/

166 Data Science Essentials For Dummies

Whether you’re a data visualization designer or a consumer, be
aware of some common pitfalls in data visualization. Simply put,
a data visualization can be misleading if it isn’t constructed cor-
rectly. Common problems include pie charts that don’t add up to

FIGURE 8-22: A point map.

FIGURE 8-21: A Cloropleth map.
Source: Lynda.com, Python for DS

http://Lynda.com

CHAPTER 8 Telling Powerful Stories with Data 167

100 percent, bar charts with a scale that starts in a strange place,
and multicolumn bar charts with vertical axes that don’t match.

Testing Data Graphics
Your data visualizations must convey clear and powerful visual
messages. To make that happen, you have to test various data
graphics and select only the most effective ones to include in the
final data visualization. For example, the two data graphics shown
in Figure 8-24 represent exactly the same statistic.

FIGURE 8-23: A raster surface map.

FIGURE 8-24: Here you see the importance of selecting effective data graphics.

168 Data Science Essentials For Dummies

Notice how the data graphic on the right does a much better job
of visually emphasizing the difference in numeric values? You
should always test different data graphics, to make sure that you
use the one that most clearly and effectively displays your data.
The graphic on the left is not effective. To choose only the most
effective data graphics for inclusion in your data visualization,
simply follow these four steps:

1. Make a list of the questions that your data is meant
to answer.

2. Determine the data visualization type: data storytelling,
data showcasing, or data art.

3. Select options from among appropriate data graphic
types for that type of data visualization.

4. Test those data graphics with your data — see for
yourself which graphic type displays the most clear and
obvious answers to your questions.

After testing different data graphics and deciding what you want
to use, arrange those graphics within your data visualization.
You can do that using either Python or R or a spreadsheet (see
Chapter 6). Alternatively, to create your data visualization using
an online data visualization design tool, you may find my guide
helpful: Web-Based Data Visualization Design Tools — Top 10. You can
find it at https://businessgrowth.ai.

Adding Context
After you know exactly which data graphics you’ll use, you need
to decide whether and how you’ll create the necessary context
to add more meaning to the data visualization. Adding context
helps people understand the value and relative significance of the
information your data visualization conveys. Adding context to
calculating, exacting data visualization styles helps to create a
sense of relative perspective, but in pure data art you may con-
sider omitting additional context. That’s because, with data art,
you’re only trying to make a single point and you don’t want to
add information that would distract from that point.

https://businessgrowth.ai/

CHAPTER 8 Telling Powerful Stories with Data 169

Creating context with data
In data showcasing, you should include relevant contextual data
for the key metrics shown in your data visualization — in a situa-
tion where you’re creating a data visualization that describes con-
version rates for e-commerce sales, for example. The key metric
would be represented by the percentage of users who convert to
customers by making a purchase. Contextual data that’s relevant
to this metric may include shopping cart abandonment rates,
average number of sessions before a user makes a purchase, aver-
age number of pages visited before making a purchase, or specific
pages that are visited before a customer decides to convert. This
sort of contextual information helps viewers understand the why
and how behind sales conversions.

Adding contextual data tends to decentralize the focus of a data
visualization, so add this data only in visualizations that are
intended for an analytical audience. These folks are in a better
position to assimilate the extra information and use it to draw
their own conclusions; with other types of audiences, context is
only a distraction.

Creating context with annotations
Sometimes, you can more appropriately create context by includ-
ing annotations that provide a header and a small description
of the context of the data that’s shown (see Figure 8-25). This
method of creating context is most appropriate for data storytell-
ing or data showcasing. Good annotation is helpful to both ana-
lytical and nonanalytical audiences alike.

Creating context with graphical
elements
Another effective way to create context in a data visualization is
to include graphical elements that convey the relative significance
of the data. Such graphical elements include moving average
trend lines, single-value alerts, target trend lines (as shown in
Figure 8-26), and predictive benchmarks.

170 Data Science Essentials For Dummies

FIGURE 8-26: Using graphical elements to create context.

FIGURE 8-25: Using annotation to create context.
Source: Lynda.com, Python for DS

http://Lynda.com

CHAPTER 9 Ten Free or Low-Cost Data Science Libraries and Platforms 171

Chapter 9

IN THIS CHAPTER

 » Using open-source tools for scraping,
collecting, and handling data

 » Exploring your data with free open-
source platforms

 » Getting creative with free and low-cost
data visualization tools

 » Having fun with infographics

Ten Free or Low-Cost
Data Science Libraries
and Platforms

Because data collection, analysis, and visualization comprise
the crux of the data scientist’s toolkit, it should come as no
surprise that you can use quite a few free libraries, tools,

and platforms to carry out these tasks with greater ease. In this
chapter, I present ten free or low-cost applications you can use to
complete data science tasks.

For a little extra guidance on how to use the Python librar-
ies discussed in this chapter, check out my LinkedIn Learning
courses, available at www.linkedin.com/learning/instructors/
lillian-pierson-p-e.

Scraping the Web with Beautiful Soup
Beautiful Soup (https://beautiful-soup-4.readthedocs.io/
en/latest) is a popular Python library that’s built to support
most web-scraping requirements. If you need to extract data from
websites, this is the library for you. It completely simplifies the

https://www.linkedin.com/learning/instructors/lillian-pierson-p-e
https://www.linkedin.com/learning/instructors/lillian-pierson-p-e
https://beautiful-soup-4.readthedocs.io/en/latest
https://beautiful-soup-4.readthedocs.io/en/latest

172 Data Science Essentials For Dummies

process of navigating, searching, and modifying web page con-
tent. Beautiful Soup is especially useful for tasks like collecting
large datasets from the web, gathering information for research,
or automating repetitive web data collection.

In web scraping, you set up automated programs and then let
those programs scour the web for the data you need.

Wrangling Data with pandas
Python’s pandas library (https://pandas.pydata.org) is a free
option that you can use to manipulate, clean, and analyze struc-
tured data. Whether you’re working with comma-separated values
(CSV) files, Microsoft Excel files, or data from Structured Query
Language (SQL) databases, pandas provides an intuitive way to
reshape, filter, and aggregate your data. With its large community
and extensive documentation, pandas is an excellent option for
any data-wrangling tasks you may find yourself up against.

Visualizing Data with Looker Studio
Looker Studio (https://lookerstudio.google.com), formerly
known as Google Data Studio, has evolved into a powerful data
analytics platform that enables users to analyze data from a wide
variety of sources, including databases, data warehouses, and
third-party applications — not just Google Analytics. It’s a free,
cloud-based data visualization and business intelligence tool that
you can use to turn raw data into insightful, shareable reports
and dashboards. If you’re looking to make data-driven decisions
with clear and interactive reports, be sure to explore what Looker
Studio can do for you.

Machine Learning with scikit-learn
Machine learning is the class of artificial intelligence (AI) that’s
dedicated to developing and applying algorithms to data so that
the algorithms can automatically learn and detect patterns in large
datasets. One of the most important libraries for machine learn-
ing is scikit-learn (https://scikit-learn.org), a user-friendly

https://pandas.pydata.org/
https://lookerstudio.google.com/
https://scikit-learn.org/

CHAPTER 9 Ten Free or Low-Cost Data Science Libraries and Platforms 173

and versatile Python library that simplifies the process of build-
ing, training, and evaluating machine learning models. It’s widely
used for traditional machine learning tasks like classification,
regression, clustering, and dimension reduction.

Creating Interactive Dashboards
with Streamlit

Streamlit (https://streamlit.io) is a powerful and easy-to-
use Python library for building interactive web applications and
data dashboards. You can use it to quickly transform Python
scripts into web-based applications, even if you don’t have web
development expertise. Streamlit’s simplicity and flexibility have
made it an increasingly popular choice for creating data sci-
ence prototypes, dashboards, and even machine learning model
demonstrations.

Doing Geospatial Data Visualization
with Kepler.gl

Kepler.gl (https://kepler.gl) is an open-source, high-
performance tool that was developed by Uber for visualizing
large-scale geospatial data. It makes it easy to explore, analyze,
and present data within a geographical context. The tool is espe-
cially good at processing and displaying large datasets. It provides
both flexibility and performance for working with spatial data.

Making Charts with Tableau Public
Tableau Public (www.tableausoftware.com/public), a free desk-
top application, aims to be a complete package for chart mak-
ing. As part of the freeware limitation, the application doesn’t let
you save files locally to your computer. All your work must be
uploaded to Tableau Public’s cloud server, unless you purchase
the software.

Tableau Public creates three levels of document: the worksheet,
the dashboard, and the story. In the worksheet, you can create

https://streamlit.io/
https://kepler.gl/
http://www.tableausoftware.com/public

174 Data Science Essentials For Dummies

individual charts from data you’ve imported from Access, Excel,
or a CSV file. You can then use Tableau Public to easily do things
such as choose between different data graphic types or drag col-
umns to different axes or subgroups.

Doing Web-Based Data Visualization
with RAWGraphs

You can use RAWGraphs (www.rawgraphs.io), a unique and
unusual web application, to make artistic and creative visual-
izations from your dataset. The RAWGraphs layout has a simple
drag-and-drop interface that you can use to make unique and
interesting data visualizations with just a few clicks of the mouse.
If you want to get funky and cool with your data visualization but
you lack the time or money it takes to learn how to code this sort
of thing for yourself, RAWGraphs is the perfect data visualization
alternative.

Making Cool Infographics with Infogram
You can use the online tool Infogram (https://infogram.com)
to make aesthetically appealing, vertically stacked card infographics
(visualizations that are composed of a series of cards, stacked
vertically on top of one another, each with its own set of data
graphics). Infogram offers a variety of trendy color schemes,
design schemes, and chart types. With Infogram, you can import
your own images to make an infographic that’s much more per-
sonalized. Infogram also provides you with sharing capabilities
so you can spread an infographic quickly and easily across social
channels or via private email. The freemium plan is robust enough
to supply all your more basic infographic-making needs.

Making Cool Infographics with Canva
Canva (www.canva.com) is a versatile tool that you can use to
design professional infographics, even if you don’t have advanced
design skills. Canva’s intuitive interface allows users to easily
create infographics by dragging and dropping elements like text,
images, and charts. No coding or design experience is required.

https://www.rawgraphs.io/
https://infogram.com/
https://www.canva.com/

Index 175

A
a priori assumption, 45
Absolute mode, for macros,

139, 140, 141
accessing macros, 139
activation function, 34
adding context, 168–170
AI (artificial intelligence). See

artificial intelligence (AI)
Airtable AI, 116
algorithms

classification, 81–84
clustering, 69–71
selecting based on function,

33–36
Amazon Athena, 25
Amazon EMR, 25
Amazon Kinesis, 25
Amazon Redshift, 25, 36
Amazon SageMaker, 28
Amazon Simple Storage

Service (S3) platform, 17
Amazon Web Services (AWS),

23, 25, 36, 116
analyzing extreme values,

60–61
annotations, creating context

with, 169, 170
Apache Cassandra, 26, 36
Apache Databricks service, 37
Apache Drill, 27
Apache Flink, 27
Apache Impala, 27
Apache Kafka, 25, 96
Apache Solr, 36
Apache Spark

about, 25, 27
generating real-time

analytics with, 36–37
website, 37

application file format, 10

application programming
interfaces (APIs), 37

area boundary, 165
area charts, 154–155
arguments, 127
ARMA (autoregressive moving

average) model, 65–66
.arrange method, 108
artificial intelligence (AI)

defined, 31
generative, 27–28
tools and frameworks for

supporting, 28
association rule learning,

selecting algorithms
for, 33

asterisk (*), 127
attributes/attribute value,

84, 105
audiences

about, 143–144
designing to meet needs of,

146–149
automating Excel tasks with

macros, 139–141
autoregression techniques, 65
autoregressive moving

average (ARMA) model,
65–66

Average method, 76
average nearest neighbor

algorithms, 86–88,
93–94

AVG() function, 127, 130
AWS (Amazon Web Services),

23, 25, 36, 116
AWS Lambda, 24

B
bar charts, 155, 156
Beautiful Soup, 171–172
BernoulliNB, 44

big data, 9–10
binning, 44
binomial distributions, 43
bottom-up build, 75–76
boundary smoothing, 91
box plotting, 62–63
brainstorming, 147–148
bubble plots, 157, 158
built systems, 21
built-in functions, 103–104
business, data science for, 19

C
calculating correlation with

Pearson’s r, 45–46
Canva, 174
case, 30
categorical distributions, 43
categorizing data with

decision trees and
random forest
algorithms, 79–80

centroid, 72
chart graphics, 154–157
charting, in Microsoft Excel,

132, 135–137
class keyword, 106
classes (Python), 104–106
classification

algorithms for, 81–84
clustering compared with,

80–84
methods for, 67

cleaning dirty data, 49
click-streams, 17
clinical informatics scientists,

data science for, 13
Cloropleth, 165, 166
cloud storage, 22–26
cloud-warehouse solutions,

25–26

Index

176 Data Science Essentials For Dummies

cluster package, 74
clustering

about, 67–68
algorithms, 69–71
average nearest neighbor

algorithms, 86–88
basics of, 68–72
categorizing data with

decision tree and
random forest
algorithms, 79–80

classification algorithms,
81–84

classification compared
with, 80–84

density-based spatial
clustering of
applications with noise
(DBScan), 77–79

estimating clusters
with kernel density
estimation, 74–75

with hierarchical algorithms,
75–77

identifying clusters in data,
72–79

instance-based learning
classifiers, 81

k-means algorithm, 72–74
k-nearest neighbor

algorithms, 89–92
nearest neighbor

algorithms, 92–94
nearest neighbor analysis,

84–85
selecting algorithms for, 34
similarity metrics, 71–72

clusters, 69
coding, 12
collecting data, 9–11
collective outliers, 61, 77
column indexes, 125
columns, nonredundancy

of, 125
comma-separated values

(CSV) file format, 10
communicating data insights,

14
community safety, 8

comparative graphics,
157–160

Complete method, 76
complex, as a number type,

99
compressing

dirty data, 49
sparse matrices, 49

compute environment, cloud
services and, 22–23

conditional formatting, in
Microsoft Excel, 132,
134–135

conditional probability, with
Naïve Bayes, 44–45

connective edge, 85
constant timeseries, 64
constraints, in databases, 124
consuming data, 9–11
containerizing predictive

applications within
Kubernetes, 24

context, adding, 168–170
contextual outliers, 61
continuous distribution, 43
continuous features, 53
core samples, 77
correlation

about, 45
calculating with Pearson’s

r, 45–46
quantifying, 45–48

Cosine similarity metric, 71,
76

COUNT() function, 127, 130
creating

context
with annotations, 169, 170
with data, 169
with graphical elements,

169, 170
data insights with software

applications, 115–141
PivotTables, 138
real-time analytics with

Apache Spark, 36–37
CRM (customer relationship

management), 92

CSV (comma-separated
values) file format, 10

cumulative variance
explained (CVE), 49–50

customer relationship
management (CRM), 92

D
D3.js, 11
data

approaches to, 18–22
big, 9–10
categorizing with decision

trees a random forest
algorithms, 79–80

collecting, 9–11
consuming, 9–11
creating context with, 169
decomposing to reduce

dimensionality, 48–52
dirty, 49
identifying clusters in, 72–79
noisy, 81
normalized, 68
processing

for data science, 22–27
in real-time, 27

querying, 9–11
semistructured, 7, 17
sources of, 18
storing for data science,

22–27
structured, 6, 17
test, 30
training, 30
unstructured, 6

data art, 144, 146
data dimensionality

decomposing data to
reduce, 48–52

reducing
with factor analysis, 52–53
with linear algebra, 48–54
with principal component

analysis (PCA), 53–54
data engineering

Index 177

about, 6, 15
critical aspects of, 15–28
defining, 20–21
differences among data

approaches, 18–22
identifying data sources, 18
impact of generative AI,

27–28
reshaping of, 28
storing and processing data

for data science, 22–27
tasks for, 10
the three Vs, 15–18

data engineers, 5, 21–22
data graphics, testing,

167–168
data ingestion tools, 16–17
data insights

about, 6, 95
communicating, 14
deriving from statistical

methods, 11–12
generating with software

applications, 115–141
data integrity, 121
data journalists, data science

for, 13
data lake, 17–18
data mart, 18
data munging, 131
data paradigm, 18
data point, 30
data product managers, data

science for, 13
data science

about, 5–6
applying

mathematical modeling to
tasks in, 11

to subject areas, 12–14
components of, 8–14
defining, 19–20
processing data for, 22–27
storing data for, 22–27
strategy

choosing tools for, 116–118
Python for, 95–96

tasks for, 10
users of, 6–8
using Python for, 96–113

data scientists
about, 5
defined, 1–2
role of, 21–22

data showcasing, 144, 145
data storytelling, 144, 145
data structures, 100
data types

for databases, 123–124
Python, 98–101

data variety, 17–18
data velocity, 16–17
data visualization

about, 143–144
choosing

design style, 150–152
types of, 149

designing to meet audience
needs, 146–149

MatPlotlib for, 111–113
types of, 144–146

data volume, 16
data warehouse, 18
database management

systems (DBMSs), 119
databases

constraints, 124
data types, 123–124
design of, 123–127
normalizing, 124–127

DataFrame object, 111
dataset X, 57
date data type, in databases,

124
DATE() function, 128
DBMSs (database

management systems),
119

DBScan (density-based
spatial clustering of
applications with noise),
77–79

decision engines, 95
decision trees

categorizing data with,
79–80

selecting algorithms for,
33–34

decision-making, multiple
criteria, 54–57

decomposing data to reduce
dimensionality, 48–52

deep learning method,
selecting algorithms
for, 35

defining
data engineering, 20–21
purpose, 148–149

dendogram, 75–76
density, 73
density-based spatial

clustering, 63
density-based spatial clustering

of applications with noise
(DBScan), 77–79

descriptive analytics, 49, 54
descriptive statistics, 40–41
design, of databases, 123–127
design style, choosing for data

visualization, 150–152
detecting outliers, 60–63
Developer tab (Excel), 139
developing nations, 8
diagnostic analytics, 54
dictionaries, in Python, 99,

101
dimension reduction, selecting

algorithms for, 34
directional movement, 73–74
directors of data science, data

science for, 13
dirty data, 49
discrete distribution, 43
distreams, 37
dividend performance, 56
dot notation, 107

E
earnings growth potential, 56
earnings quality rating, 56
eigenvalue, 50–52

178 Data Science Essentials For Dummies

enabling NumPy in Python, 108
ensemble algorithm, selecting

algorithms for, 35
error propagation, 79
estimating clusters with kernel

density estimation (KDE),
74–75

Euclidean metric, 71, 76
evidence, 44
Excel (Microsoft). See

Microsoft Excel
expectation, 42
expectation value, 42
extensible systems, 24
extreme values, analyzing,

60–61
eyeballing, 69

F
FaaS (function as a service), 24
Facebook DeepFace, 35–36
factor analysis, reducing data

dimensionality with,
52–53

factors, 53
feature engineering, 31
features

about, 31, 86
selection criteria of, 90
selection of, 30, 31

File tab (Excel), 139
filtering, in Microsoft Excel,

132–134
flexibility, of cloud services, 23
float, as a number type, 99
FMCDM (fuzzy multiple criteria

decision-making), 57
for loop, 102–103
foreign key, 120–123
FROM function, 127
full outer join, 128
function as a service (FaaS), 24
functions. See also specific

functions
built-in, 103–104
Python, 103–104

selecting algorithms based
on, 33–36

Structured Query Language
(SQL), 127–130

fuzzy multiple criteria decision-
making (FMCDM), 57

G
Gantt charts, 159
GaussianNB, 44
generative AI (GenAI)

about, 116
impact of, 27–28

Gmail, 35
Google AI Platform, 28
Google AppSheet, 116
Google BigQuery, 25–26
Google Cloud, 23, 25, 116
Google Cloud Run, 24
Google Data Studio, 25
Google Forms, 117
Google Sheets, 118, 131
Google’s Dremel, 27
graph models, 164
graphical elements, creating

context with, 169, 170
graphical user interfaces

(GUIs), 117
GraphX, 37
GROUP function, 127, 130

H
Hadoop Distributed File

System (HDFS), 36
HAVING function, 127, 130
hclust package, 77
help function, 110
hidden layer, 34
hierarchical algorithms, 69,

75–77
hierarchical classification, 164
high-variety data, 17
histograms, 161
HiveQL, 37
Hugging Face, 116

I
icons, explained, 3
import statement, 107
indexing, 111, 119
inferential statistics, 40–42
Infogram, 174
in-memory, 124
inner join, 128
instance, 30
instance-based, selecting

algorithms for, 33
instance-based learning

classifiers, 81
instances, 81
instantiating objects, 105
integer, 99
internet of things (IoT), 18
interpreter, 127
inter-quartile range

(IQR), 62
.ipynb file format, 10

J
Jaccard distance metric, 72
Java, 37
JOIN function, 127, 129

K
Kaggle, 59
Kepler.gl, 173
kernel, 74
kernel density estimation

(KDE), estimating
clusters with, 74–75

key performance indicators
(KPIs), 8

k-means algorithm, clustering
with, 72–74

k-nearest neighbor
algorithms (k-NN),
89–93

Kubeflow, 24
Kubernetes, containerizing

predictive applications
within, 24

Index 179

L
labeled data, 81–82
labeled datasets, 80
latent variables, 49
lazy machine learning, 89
learning, 68
learning styles, 31–32
left join, 128
len function, 100
libraries and platforms

about, 171
Beautiful Soup,

171–172
Canva, 174
Infogram, 174
Kepler.gl, 173
Looker Studio, 172
Pandas library, 172
Python, 107–113
RAWGraphs, 174
scikit-learn, 172–173
Streamlit, 173
Tableau Public,

173–174
line charts, 155, 156
linear algebra, reducing data

dimensionality with,
48–54

linear regression, 57–59
linear topological structures,

163
LinkedIn Learning, 96, 171
lists, in Python, 99, 100
local maximum density, 73
local minimum density, 73
login_ftp method, 106
logistic regression, 59
long, as a number

type, 99
Looker, 25
Looker Studio, 172
loops, in Python,

101–103
low value, of data, 16
low-code, 117
low-density regions, 73

M
machine learning

about, 19, 29–30, 68
learning styles, 31–32
processes of, 30
terminology for, 30–31
uses for, 32–37

machine learning engineers
about, 20
data science for, 14
role of, 21–22

machine learning repository,
44

macros, automating Excel
tasks with in Microsoft
Excel, 139–141

Make, 116
Manhattan metric, 71, 76
many-to-many relationship

structure, 164
MapReduce, 27, 37
marketing data scientists,

data science for, 13
marketing strategy, 8
mathematical modeling,

applying to data science
tasks, 11

Matplotlib library, 97,
111–113

matrices, compressing
sparse, 49

MAX() function, 127, 130
MCDM (multiple criteria

decision-making).
See multiple criteria
decision-making
(MCDM)

mean function, 109
meaning, 146
methods, 105. See also specific

methods
metric features, 52
Microsoft Access, 117
Microsoft Azure, 23, 24, 116
Microsoft Azure AI, 28
Microsoft Excel

about, 118, 131–132

automating tasks with
macros, 139–141

charting in, 135–137
filtering in, 132–134
getting to know data using,

132–137
reformatting using

PivotTables, 137–138
summarizing using

PivotTables, 137–138
using conditional

formatting, 134–135
Microsoft Power Platform, 117
Microsoft SQL Server, 120
MIN() function, 127, 130
Minkowski distance metric, 71
MLlib module (Apache Spark),

37
model overfitting, 33, 83–84
model overgeneralization,

83–84
modeling

decisions with multiple
criteria decision-making,
54–57

univariate time series data,
65–66

MongoDB, 26, 36
moving average techniques,

65
multicollinearity, 60
multidimensional datasets, 48
multi-label learning, 91
MultinomialNB, 44
multiple criteria decision-

making (MCDM)
about, 54–55
fuzzy, 57
traditional, 55–56

multiple dependencies, 125
multiple linear regression, 58
multivariate analysis,

detecting outliers with,
62–63

multivariate normality
(MVN), 53

mutually exclusive, 43
MySQL, 120

180 Data Science Essentials For Dummies

N
Naïve Bayes

conditional probability with,
44–45

selecting algorithms for, 33
n-dimensional arrays,

107–108
n-dimensional plot, 71
nearest neighbor analysis

about, 84–85
algorithms for, 92–94
average, 86–88

neural network, selecting
algorithms for, 34–35

no-code, 117
noise, 41, 90
noisy data, 81
noncore samples, 77
nonglobular, 77
nonredundancy of columns,

125
nonstationary processes,

64–65
normal brackets, 101
normal distributions, 43
normalized data, 68
normalized databases,

124–127
NoSQL databases, 26
number of centroids, 72
numbers, in Python, 98, 99
numeric datasets, 71
numerical data type, 11, 124
NumPy library, 107–110

O
observation, 30
Open to Work, 96
OpenAI, 116
open-source geographic

information system
(GIS) (QGIS), 165

Oracle, 120
ordinal features, 53
ordinal variables, 43

ordinary least squares (OLS),
60

outer join, 128
outliers

about, 60–61
analyzing extreme values,

60–61
collective, 77
detecting, 60–63

overgeneralization, 83–84

P
packed circle diagrams, 157,

158
Pandas library, 111, 172
parentheses, 101
partitional algorithms, 69
PCA (principal component

analysis), 48, 53–54, 63
Pearson’s r, calculating

correlation with, 45–46
Pentaho, 25
perceptron, 34
pie charts, 155, 157
Pierson, Lillian (author), contact

information for, 4
PivotTables, reformatting

and summarizing with,
137–138

platforms. See libraries and
platforms

plot function, 112
.ply file format, 10
point map, 165, 166
point outliers, 61
population, 41
PostgreSQL, 17, 120
Power BI, 25
predictant, 57
predictive analytics, 54
predictive applications,

containerizing within
Kubernetes, 24

prescriptive analytics, 54
primary key, 120–123, 125
principal component analysis

(PCA), 48, 53–54, 63

principal components, 53
print function, 99, 103
probability, 40–42
probability distributions,

42–43
processing, 22–27
purpose, designing, 148–149
pyplot function, 112
Python

about, 37
classes, 104–106
in data science strategy,

95–96
data types, 98–101
enabling NumPy in, 108
functions, 103–104
libraries, 107–113
loops in, 101–103
using for data science,

96–113
Python for Data Science

Essential Training
courses, 2

PyTorch, 28

Q
QGIS (open-source

geographic information
system (GIS)), 165

Qlik, 25
quantifying correlation,

45–48
quantitative data, 11
query, 127
querying data, 9–11

R
R

about, 37
cluster package, 74
hclust package, 77

random forest algorithms,
categorizing data with,
79–80

random variable, 42

Index 181

ranking variable pairs using
Spearman’s rank
correlation, 47–48

raster surface map, 165, 167
RAWGraphs, 174
RDBMS (relational database

management system), 6,
17, 26, 121

real-time analytics, generating
with Apache Spark, 36–37

real-time processing
framework, 27

recording macros, 139
reducing

data dimensionality with
factor analysis, 52–53

data dimensionality with
linear algebra, 48–54

data dimensionality with
principal component
analysis (PCA), 53–54

reformatting with PivotTables,
137–138

regression, selecting
algorithms for, 33

regression methods
about, 57
linear regression, 57–59
logistic regression, 59
ordinary least squares

(OLS), 60
regularizing, selecting

algorithms for, 33
reinforcement learning, 32
relational database

management system
(RDBMS), 6, 17, 26, 121

relational databases, 118–123
Relative mode, for macros,

139, 140, 141
Remember icon, 3
.reshape method, 108
right join, 128

S
S3 (Amazon Simple Storage

Service) platform, 17
sample, 41

Scala, 37
scatterplot matrix, 62–63, 162
scatterplots, 161–162
science, data science for, 19
scikit-learn, 113, 172–173
SciPy library, 107, 110
script file format, 10
seasonality, 64
security, cloud services and,

23
SELECT function, 127, 129, 130
selecting

algorithms based on
function, 33–36

data visualization types, 149
design style for data

visualization, 150–152
tools for data science

strategy, 116–118
self-learning, 34–35
semistructured data, 7, 17
Series object, 111
serverless computing, 23–24
sets, in Python, 99, 101
Shark for Apache Hive, 27
silhouette coefficient, 73
similarity metrics, for

clustering, 71–72
single-link algorithm, 85
singular value decomposition

(SVD), 48–52
slicing, 109
SME (subject matter expert),

9, 12–13, 22
Snowflake, 25
software applications,

generating data insights
with, 115–141

sources, of data, 18
Spark SQL, 37
spatial plots and maps,

164–167
Spearman’s rank correlation,

ranking variable pairs
using, 47–48

SQL (Structured Query
Language), 10, 26, 37,
116, 118–123, 127–130

stacked charts, 159
standard chart graphics,

154–157
statistical methods, deriving

data insights from,
11–12

statistical modeling
about, 39
analyzing extreme values,

60–61
calculating correlation with

Pearson’s r, 45–46
conditional probability with

Naïve Bayes, 44–45
decomposing data to

reduce dimensionality,
48–52

detecting outliers, 60–63
identifying patterns in time

series, 64–65
linear regression, 57–59
logistic regression, 59
modeling

decisions with multiple
criteria decision-making,
54–57

univariate time series
data, 65–66

multivariate analysis, 62–63
ordinary least squares

(OLS), 60
probability and inferential

statistics, 40–45
probability distributions,

42–43
quantifying correlation,

45–48
ranking variable pairs

using Spearman’s rank
correlation, 47–48

reducing data
dimensionality

with factor analysis, 52–53
with linear algebra, 48–54
and removing outliers

with PCA, 53–54
regression methods, 57–60
time series analysis, 64–66
univariate analysis, 61–62

182 Data Science Essentials For Dummies

statistical plots, 161–162
statistics, 40
stochastic approach, 11
storing

data for data science, 22–27
structured data, 17

storytelling, 143–144
Streaming module (Apache

Spark), 37
Streamlit, 173
strings, in Python, 98, 99–100
structured data, 6, 17
Structured Query Language

(SQL), 10, 26, 37, 116,
118–123, 127–130

subject areas, applying data
insights to, 12–14

subject matter expert (SME),
9, 12–13, 22

subject-matter segregation,
125

sum function, 100
summarizing, with

PivotTables, 137–138
supervised learning

algorithms, 31–32
supervised machine learning,

67
SVD (singular value

decomposition), 48–52

T
Tableau, 25
Tableau Public, 173–174
target variable, 31
tasks, automating with

macros in Microsoft
Excel, 139–141

TensorFlow, 28
terminology, for machine

learning, 30–31
test data, 30

testing data graphics, 167–168
text data type, in databases,

123
the three Vs, 15–18
throughput, 16–17
time series analysis

about, 64
identifying patterns in, 64–65
modeling univariate time

series data, 65–66
time to market (TTM), cloud

services and, 22–23
Tip icon, 3
tools, choosing for data science

strategy, 116–118
top-down build, 75–76
topology structures, 162–164
traditional multiple criteria

decision-making
(MCDM), 55–56

training data, 30
tree maps, 160
tree network topologies, 164
trended series, 64
TTM (time to market), cloud

services and, 22–23
Tukey, John (mathematician),

61–62
Tukey box plotting, 61–62
Tukey outlier labeling, 61–62
tuples, in Python, 99, 101

U
uniform probability

distribution, 42
univariate analysis, detecting

outliers with, 61–62
univariate time series data,

modeling, 65–66
unlabeled data, 81–82
unlabeled datasets, 80
unstructured data, 6

unsupervised learning
algorithms, 32

unsupervised machine
learning, 68

V
values, analyzing extreme,

60–61
variable pairs, ranking using

Spearman’s rank
correlation, 47–48

variety, of data, 17–18
vectors, 108
velocity, of data, 16–17
vertically stacked card

infographics, 174
Visual Basic for Applications

(VBA), 139, 141
volume, of data, 16

W
Ward method, 76
Warning icon, 3
web programming file

format, 11
Web-Based Data Visualization

Design Tools: Top 10
Guide (website),
150, 168

weighted average, 42
WHERE argument, 127–128
while loop, 102–103
word clouds, 160

X
.xls/.xlsx file format, 10

Z
zero-sum system, 55

About the Author
Lillian Pierson, PE, is the founder and fractional CMO at Data-
Mania, as well as a globally recognized growth leader in tech-
nology. To date, she has helped educate approximately 2 million
professionals on topics related to AI, growth, data strategy, and
data science.

She is the author of dozens of data-intensive books and courses,
in deep partnership with both John Wiley & Sons and LinkedIn
Learning, among others. Lillian has supported a wide variety
of organizations globally, from the United Nations and National
Geographic to Ericsson and Saudi Aramco and everything in
between.

A licensed professional engineer in good standing, Lillian has
been both a technical and marketing consultant since 2007 and a
growth adviser since 2018.

Dedication
To Vitaly, Ariana, and Stasik. I love you all so much — you make
my world go ’round.

Author’s Acknowledgments
I extend a huge thanks to all the people who’ve helped me produce
this book. Thanks so much to Chris Levesque, for your techni-
cal edits. Also, I extend a huge thanks to Lindsay Berg, Elizabeth
Kuball, and the rest of the editorial and production staff at Wiley.

Publisher’s Acknowledgments

Executive Editor: Lindsay Berg

Editor: Elizabeth Kuball

Production Editor:
Saikarthick Kumarasamy

Cover Design and Image: Wiley

WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Title Page
	Copyright Page
	Table of Contents
	Introduction
	About This Book
	Foolish Assumptions
	Icons Used in This Book
	Where to Go from Here

	Chapter 1 Wrapping Your Head Around Data Science
	Seeing Who Can Make Use of Data Science
	Inspecting the Pieces of the Data Science Puzzle
	Collecting, querying, and consuming data
	Applying mathematical modeling to data science tasks
	Deriving insights from statistical methods
	Coding, coding, coding — it’s just part of the game
	Applying data science to a subject area
	Communicating data insights

	Chapter 2 Tapping into Critical Aspects of Data Engineering
	Defining the Three Vs
	Grappling with data volume
	Handling data velocity
	Dealing with data variety

	Identifying Important Data Sources
	Grasping the Differences among Data Approaches
	Defining data science
	Defining machine learning engineering
	Defining data engineering
	Comparing machine learning engineers, data scientists, and data engineers

	Storing and Processing Data for Data Science
	Storing data and doing data science directly in the cloud
	Using serverless computing to execute data science
	Containerizing predictive applications within Kubernetes
	Sizing up popular cloud-warehouse solutions
	Introducing NoSQL databases

	Processing data in real-time

	Recognizing the Impact of Generative AI
	The reshaping of data engineering
	Tools and frameworks for supporting AI workloads

	Chapter 3 Using a Machine to Learn from Data
	Defining Machine Learning and Its Processes
	Walking through the steps of the machine learning process
	Becoming familiar with machine learning terms

	Considering Learning Styles
	Learning with supervised algorithms
	Learning with unsupervised algorithms
	Learning with reinforcement

	Seeing What You Can Do
	Selecting algorithms based on function
	Generating real-time analytics with Spark

	Chapter 4 Math, Probability, and Statistical Modeling
	Exploring Probability and Inferential Statistics
	Probability distributions
	Conditional probability with Naïve Bayes

	Quantifying Correlation
	Calculating correlation with Pearson’s r
	Ranking variable pairs using Spearman’s rank correlation

	Reducing Data Dimensionality with Linear Algebra
	Decomposing data to reduce dimensionality
	Reducing dimensionality with factor analysis
	Decreasing dimensionality and removing outliers with PCA

	Modeling Decisions with Multiple Criteria Decision-Making
	Turning to traditional MCDM
	Focusing on fuzzy MCDM

	Introducing Regression Methods
	Linear regression
	Logistic regression
	Ordinary least squares regression methods

	Detecting Outliers
	Analyzing extreme values
	Detecting outliers with univariate analysis
	Detecting outliers with multivariate analysis

	Introducing Time Series Analysis
	Identifying patterns in time series
	Modeling univariate time series data

	Chapter 5 Grouping Your Way into Accurate Predictions
	Starting with Clustering Basics
	Getting to know clustering algorithms
	Examining clustering similarity metrics

	Identifying Clusters in Your Data
	Clustering with the k-means algorithm
	Estimating clusters with kernel density estimation
	Clustering with hierarchical algorithms
	Dabbling in the DBScan neighborhood

	Categorizing Data with Decision Tree and Random Forest Algorithms
	Drawing a Line between Clustering and Classification
	Introducing instance-based learning classifiers
	Getting to know classification algorithms

	Making Sense of Data with Nearest Neighbor Analysis
	Classifying Data with Average Nearest Neighbor Algorithms
	Classifying with K-Nearest Neighbor Algorithms
	Understanding how the k-nearest neighbor algorithm works
	Knowing when to use the k-nearest neighbor algorithm
	Exploring common applications of k-nearest neighbor algorithms

	Solving Real-World Problems with Nearest Neighbor Algorithms
	Seeing k-nearest neighbor algorithms in action
	Seeing average nearest neighbor algorithms in action

	Chapter 6 Coding Up Data Insights and Decision Engines
	Seeing Where Python Fits into Your Data Science Strategy
	Using Python for Data Science
	Sorting out the various Python data types
	Numbers in Python
	Strings in Python
	Lists in Python
	Tuples in Python
	Sets in Python
	Dictionaries in Python

	Putting loops to good use in Python
	Having fun with functions
	Keeping cool with classes
	Checking out some useful Python libraries
	Saying hello to the NumPy library
	Getting up close and personal with the SciPy library
	Peeking into the pandas offering
	Bonding with Matplotlib for data visualization
	Learning from data with scikit-learn

	Chapter 7 Generating Insights with Software Applications
	Choosing the Best Tools for Your Data Science Strategy
	Getting a Handle on SQL and Relational Databases
	Investing Some Effort into Database Design
	Defining data types
	Designing constraints properly
	Normalizing your database

	Narrowing the Focus with SQL Functions
	Making Life Easier with Excel
	Using Excel to quickly get to know your data
	Filtering in Excel
	Using conditional formatting
	Excel charting to visually identify outliers and trends

	Reformatting and summarizing with PivotTables
	Automating Excel tasks with macros

	Chapter 8 Telling Powerful Stories with Data
	Data Visualizations: The Big Three
	Data storytelling for decision-makers
	Data showcasing for analysts
	Designing data art for activists

	Designing to Meet the Needs of Your Target Audience
	Step 1: Brainstorm (All about Eve)
	Step 2: Define the purpose
	Step 3: Choose the most functional visualization type for your purpose

	Picking the Most Appropriate Design Style
	Inducing a calculating, exacting response
	Eliciting a strong emotional response

	Selecting the Appropriate Data Graphic Type
	Standard chart graphics
	Comparative graphics
	Statistical plots
	Topology structures
	Spatial plots and maps

	Testing Data Graphics
	Adding Context
	Creating context with data
	Creating context with annotations
	Creating context with graphical elements

	Chapter 9 Ten Free or Low-Cost Data Science Libraries and Platforms
	Scraping the Web with Beautiful Soup
	Wrangling Data with pandas
	Visualizing Data with Looker Studio
	Machine Learning with scikit-learn
	Creating Interactive Dashboards with Streamlit
	Doing Geospatial Data Visualization with Kepler.gl
	Making Charts with Tableau Public
	Doing Web-Based Data Visualization with RAWGraphs
	Making Cool Infographics with Infogram
	Making Cool Infographics with Canva

	Index
	EULA

Essentials

