
A L L - I N - O N E

2nd Edition

Chris Minnick, et al.
Coding

A
L

L
-IN

-O
N

E

$41.99 USA / $49.99 CAN / £28.99 UK

Minnick, et al.

Cover Image: © shutterstock/antoniodiaz

This All-in-One includes work by
expert coders and coding educators,
including Chris Minnick and Eva
Holland coauthors of Coding with
JavaScript For Dummies; Nikhil
Abraham, author of Coding For
Dummies and Getting a Coding Job
For Dummies; John Paul Mueller
and Luca Massaron, coauthors of
Python for Data Science For Dummies
and Machine Learning For Dummies;
and Barry Burd, author of Flutter
For Dummies.

Define your function as a coder
A little coding knowledge can go a long way. It can help launch you on the path
to becoming a software developer or upgrade your reputation among your
co-workers as a tech guru. This book helps you dig into languages like HTML, CSS,
JavaScript, and Python as you learn to design websites, create web and mobile
apps, and analyze and visualize data. You even get some insight on how to translate
your newfound skills into a career. From aspiring code wranglers to professionals
who want to start coding on the job, this book has your back.

Computers Programming/General

Coding
2nd Edition

7 Mini-Books Inside…
• Getting Started with Coding

• Basic Web Coding

• Advanced Web Coding

• Creating Mobile Apps

• Getting Started with Python

• Data Analysis with Python

• Career Building with Coding

0005390112.INDD i	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	4:44	PM

 Coding
A L L - I N - O N E

0005390112.INDD ii	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	4:44	PM

0005390112.INDD iii	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	4:44	PM0005390112.INDD iii	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	4:44	PM

 Coding
A L L - I N - O N E

 2nd Edition

 by Chris Minnick, Nikhil Abraham,
Barry Burd, Eva Holland, Luca Massaron,

and John Paul Mueller

0005390112.INDD iv	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	4:44	PM

Coding All-in-One For Dummies®, 2nd Edition
Published by: John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, www.wiley.com

Copyright © 2022 by John Wiley & Sons, Inc., Hoboken, New Jersey

Media and software compilation copyright © 2022 by John Wiley & Sons, Inc. All rights reserved.

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections
107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the Publisher. Requests
to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111
River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/
permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, Dummies.com, Making Everything Easier, and related
trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and may not be used without written
permission. All trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not associated with
any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: WHILE THE PUBLISHER AND AUTHORS HAVE USED THEIR
BEST EFFORTS IN PREPARING THIS WORK, THEY MAKE NO REPRESENTATIONS OR WARRANTIES WITH RESPECT
TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM
ALL WARRANTIES, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES
REPRESENTATIVES, WRITTEN SALES MATERIALS OR PROMOTIONAL STATEMENTS FOR THIS WORK. THE
FACT THAT AN ORGANIZATION, WEBSITE, OR PRODUCT IS REFERRED TO IN THIS WORK AS A CITATION AND/
OR POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE PUBLISHER AND AUTHORS
ENDORSE THE INFORMATION OR SERVICES THE ORGANIZATION, WEBSITE, OR PRODUCT MAY PROVIDE OR
RECOMMENDATIONS IT MAY MAKE. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER
IS NOT ENGAGED IN RENDERING PROFESSIONAL SERVICES. THE ADVICE AND STRATEGIES CONTAINED HEREIN
MAY NOT BE SUITABLE FOR YOUR SITUATION. YOU SHOULD CONSULT WITH A SPECIALIST WHERE APPROPRIATE.
FURTHER, READERS SHOULD BE AWARE THAT WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR
DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ. NEITHER THE PUBLISHER
NOR AUTHORS SHALL BE LIABLE FOR ANY LOSS OF PROFIT OR ANY OTHER COMMERCIAL DAMAGES, INCLUDING
BUT NOT LIMITED TO SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR OTHER DAMAGES.

For general information on our other products and services, please contact our Customer Care Department within
the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002. For technical support, please visit
https://hub.wiley.com/community/support/dummies.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with
standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to
media such as a CD or DVD that is not included in the version you purchased, you may download this material at
http://booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2022939031

ISBN 978-1-119-88956-4 (pbk); 978-1-119-88957-1 (epub); 978-1-119-89535-0 (epdf)

0005390115.INDD v Trim size: 7.375 in × 9.25 in June 11, 2022 4:46 PM

Contents at a Glance
Introduction . 1

Book 1: Getting Started with Coding . 5
CHAPTER 1: What Is Coding? . 7
CHAPTER 2: Programming for the Web . 19
CHAPTER 3: Becoming a Programmer . 33

Book 2: Basic Web Coding . 43
CHAPTER 1: Exploring Basic HTML . 45
CHAPTER 2: Getting More Out of HTML . 63
CHAPTER 3: Getting Stylish with CSS . 79
CHAPTER 4: Next Steps with CSS . 101
CHAPTER 5:	 Responsive	Layouts	with	Flexbox . 123
CHAPTER 6: Styling with Bootstrap . 143

Book 3: Advanced Web Coding . 159
CHAPTER 1:	 What	Is	JavaScript? . 161
CHAPTER 2:	 Writing	Your	First	JavaScript	Program . 173
CHAPTER 3: Working with Variables . 193
CHAPTER 4: Understanding Arrays . 211
CHAPTER 5: Working with Operators, Expressions, and Statements 225
CHAPTER 6:	 Getting	into	the	Flow	with	Loops	and	Branches 241
CHAPTER 7:	 Getting	Functional . 255
CHAPTER 8: Making and Using Objects . 275
CHAPTER 9: Controlling the Browser with the Window Object 291
CHAPTER 10: Manipulating Documents with the DOM . 307
CHAPTER 11:	Using	Events	in	JavaScript . 327
CHAPTER 12:	Integrating	Input	and Output . 339
CHAPTER 13: Understanding Callbacks and Closures . 355
CHAPTER 14: Embracing AJAX and JSON . 367

Book 4: Creating Mobile Apps . 383
CHAPTER 1:	 What	Is	Flutter? . 385
CHAPTER 2:	 Setting	Up	Your	Computer	for	Mobile	App	Development. 401
CHAPTER 3:	 “Hello”	from	Flutter . 433
CHAPTER 4: Hello Again . 469
CHAPTER 5: Making Things Happen . 495

0005390115.INDD vi Trim size: 7.375 in × 9.25 in June 11, 2022 4:46 PM

CHAPTER 6: Laying Things Out . 527
CHAPTER 7: Interacting with the User . 567
CHAPTER 8:	 Navigation,	Lists,	and	Other	Goodies . 605
CHAPTER 9:	 Moving	Right	Along 653

Book 5: Getting Started with Python . 675
CHAPTER 1: Wrapping Your Head around Python . 677
CHAPTER 2: Installing a Python Distribution . 689
CHAPTER 3: Working with Real Data . 707

Book 6: Data Analysis with Python . 729
CHAPTER 1: Conditioning Your Data . 731
CHAPTER 2: Shaping Data . 759
CHAPTER 3:	 Getting	a	Crash	Course	in MatPlotLib . 779
CHAPTER 4: Visualizing the Data . 795

Book 7: Career Building with Coding . 813
CHAPTER 1:	 Exploring	Coding	Career Paths . 815
CHAPTER 2: Exploring Undergraduate and Graduate Degrees 829
CHAPTER 3: Training on the Job . 843
CHAPTER 4: Coding Career Myths . 853

Index . 861

Table of Contents vii

0005390115.INDD vii Trim size: 7.375 in × 9.25 in June 11, 2022 4:46 PM

Table of Contents
INTRODUCTION . 1

About This Book .2
Foolish	Assumptions .2
Icons Used in This Book .3
Beyond the Book .4
Where to Go from Here .4

BOOK 1: GETTING STARTED WITH CODING 5

CHAPTER 1: What Is Coding? . 7
Defining	What	Code	Is .8

Following	instructions .8
Writing code with some Angry Birds. 9

Understanding What Coding Can Do for You .10
Eating the world with software .10
Coding on the job .12
Scratching your own itch (and becoming rich and famous)13

Surveying	the	Types	of	Programming	Languages 13
Comparing	low-level	and	high-level	programming	languages14
Contrasting compiled code and interpreted code15
Programming for the web .16

Taking a Tour of a Web App Built with Code .16
Defining	the	app’s	purpose	and	scope .16
Standing on the shoulders of giants .17

CHAPTER 2: Programming for the Web . 19
Displaying	Web	Pages	on	Your	Desktop	and	Mobile	Device20

Hacking	your	favorite	news	website .20
Understanding how the World Wide Web works23
Watching out for your frontend and backend.24
Defining	web	and	mobile	applications .25

Coding Web Applications .26
Starting	with	HTML,	CSS,	and	JavaScript .26
Adding logic with Python, Ruby, or PHP .27

Coding Mobile Applications .28
Building mobile web apps .29
Building	native	mobile	apps .30

Deploying Web Applications in the Cloud .31

0005390115.INDD viii Trim size: 7.375 in × 9.25 in June 11, 2022 4:46 PM

viii Coding All-in-One For Dummies

CHAPTER 3: Becoming a Programmer . 33
Writing Code Using a Process .34

Researching what you want to build .35
Designing your app .36
Coding your app .37
Debugging your code .38

Picking Tools for the Job .39
Working	offline .39
Working online with CodeSandbox.io .40

BOOK 2: BASIC WEB CODING . 43

CHAPTER 1: Exploring Basic HTML . 45
What Does HTML Do? .46
Understanding HTML Structure .47

Identifying elements .47
Featuring	your	best	attribute .49
Standing	head,	title,	and	body	above	the	rest 50

Getting	Familiar	with	Common	HTML	Tasks	and	Elements 52
Writing headlines .53
Organizing text in paragraphs .54
Linking	to	your	(heart’s)	content .55
Adding images .56

Styling Me Pretty .58
Highlighting with bold, italics, underline, and strikethrough 58
Raising and lowering text with superscript and subscript59

Building	Your	First	Website	Using	HTML .60

CHAPTER 2: Getting More Out of HTML . 63
Organizing Content on the Page .64
Listing Data .66

Creating ordered and unordered lists .66
Nesting lists .67

Putting Data in Tables .68
Basic table structuring .69
Stretching table columns and rows .70
Aligning tables and cells .72

Filling	Out	Forms .75
Understanding how forms work .75
Creating basic forms .76

Practicing More with HTML .78

Table of Contents ix

0005390115.INDD ix Trim size: 7.375 in × 9.25 in June 11, 2022 4:46 PM

CHAPTER 3: Getting Stylish with CSS . 79
What Does CSS Do? .79
CSS Structure .81

Choosing the element to style .81
My	property	has	value .83
Hacking	the	CSS	on	your	favorite	website .84

Common CSS Tasks and Selectors .86
Font	gymnastics:	Size,	color,	style,	family,	and	decoration86
Customizing links .90
Adding background images and styling foreground images 93

Getting Stylish .97
Adding CSS to your HTML .97
Practicing with CSS .99

CHAPTER 4: Next Steps with CSS . 101
Styling (More) Elements on Your Page .102

Styling lists .102
Designing tables .105

Selecting Elements to Style .107
Styling	specific	elements .107
Naming HTML elements .112

Aligning and Laying Out Your Elements .113
Organizing data on the page .114
Shaping	the	div .116
Understanding the box model. .117
Positioning the boxes .119

Writing	More	Advanced	CSS .122

CHAPTER 5: Responsive Layouts with Flexbox 123
Introducing	Responsive	Design .124

The web is mobile .124
Why are so many sites mobile-unfriendly?124
Introducing	mobile-first	design .124
Making	responsive	web	pages	with	the	viewport	meta	tag 125

Using	Flexbox .128
Creating boxes .129
Thinking in one dimension .130
Using multi-line containers .133
Make no assumptions .134
Aligning on the cross-axis .134
Aligning on the main axis .136
Modifying	flexible	boxes .137
Changing the order of items .139

Experimenting	with	Flexbox .140

0005390115.INDD x Trim size: 7.375 in × 9.25 in June 11, 2022 4:46 PM

x Coding All-in-One For Dummies

CHAPTER 6: Styling with Bootstrap . 143
Figuring	Out	What	Bootstrap	Does .144
Installing Bootstrap .145
Understanding the Layout Options .147

Lining up on the grid system .147
Dragging and dropping to a website .150
Using	predefined	templates .151
Adapting layout for mobile, tablet, and desktop 151

Coding Basic Web Page Elements .153
Designing buttons .153
Navigating	with	toolbars .155
Adding icons .157

Practicing with Bootstrap .158

BOOK 3: ADVANCED WEB CODING . 159

CHAPTER 1: What Is JavaScript? . 161
What	Is	JavaScript? .161

The Eich-man cometh .162
Mocha-licious .163
We	need	more	effects! .163

JavaScript	Grows	Up .164
Dynamic scripting language .165
What	does	JavaScript	do? .166

Why	JavaScript? .167
JavaScript	is	easy	to	learn! .168
JavaScript	is	everywhere! .169
JavaScript	is	powerful! .172
JavaScript	is	in	demand! .172

CHAPTER 2: Writing Your First JavaScript Program 173
Setting	Up	Your	Development	Environment .173

Downloading and installing Chrome .174
Downloading and installing a code editor .174

Reading	JavaScript	Code .181
Running	JavaScript	in	the	Browser	Window .182

Using	JavaScript	in	an	HTML	event	attribute182
Using	JavaScript	in	a	script	element .183
Including	external	JavaScript	files .185

Using	the	JavaScript	Developer	Console .188
Commenting Your Code .189

Single-line comments .190
Multi-line comments .190
Using	comments	to	prevent	code	execution191

Table of Contents xi

0005390115.INDD xi Trim size: 7.375 in × 9.25 in June 11, 2022 4:46 PM

CHAPTER 3: Working with Variables . 193
Understanding Variables .193
Initializing Variables .195
Understanding Global and Local Scope .197
Naming Variables .199
Creating Constants Using the const Keyword .201
Working with Data Types .202

Number data type .202
bigInt data type .205
String data type .205
Boolean data type .208
NaN data type .209
Undefined	data	type .210
Symbol data type .210

CHAPTER 4: Understanding Arrays . 211
Making a List .211
Array	Fundamentals .213

Arrays are zero-indexed .213
Arrays can store any type of data .214

Creating Arrays .215
Using the new keyword method .215
Array literal .215

Populating Arrays .215
Understanding Multidimensional Arrays .216
Accessing Array Elements .218

Looping through arrays .219
Array properties .220
Array methods .220
Using array methods .222

CHAPTER 5: Working with Operators, Expressions,
and Statements . 225
Express Yourself .226
Hello, Operator .226

Operator precedence .226
Using parentheses .227

Types of Operators .230
Assignment operators .230
Comparison operators .231
Arithmetic operators .231
String operator .234
Bitwise operators .234
Logical operators .236

0005390115.INDD xii Trim size: 7.375 in × 9.25 in June 11, 2022 4:46 PM

xii Coding All-in-One For Dummies

Special operators .237
Combining operators .239

CHAPTER 6: Getting into the Flow with Loops and Branches . . . 241
Branching Out .241

if . . . else	statements .242
Switch statements .243

Here We Go: Loop De Loop .246
for loops .246
for . . . in	loops .248
while loops .251
do . . .	while	loops .252
break and continue statements .253

CHAPTER 7: Getting Functional . 255
Understanding	the	Function	of	Functions .255
Using	Function	Terminology .257

Defining	a	function .257
Function	head .257
Function	body .257
Calling a function .258
Defining	parameters	and	passing	arguments258
Returning	a	value .258

The	Benefits	of	Using	Functions .258
Writing	Functions .262
Returning Values .263
Passing and Using Arguments .264

Passing	arguments	by	value .265
Passing arguments by reference .267
Calling a function without all the arguments 267
Setting	default	parameter	values .267
Calling a function with more arguments than parameters268
Getting into arguments with the arguments object268

Understanding	Function	Scope .269
Creating	Anonymous	Functions .270

Knowing	the	differences	between	anonymous	and	
named functions .270
Arrow functions .270

Doing it Again with Recursion .271
Functions	within	Functions .273

CHAPTER 8: Making and Using Objects . 275
Object of My Desire .275
Creating Objects .277

Table of Contents xiii

0005390115.INDD xiii Trim size: 7.375 in × 9.25 in June 11, 2022 4:46 PM

Defining	objects	with	object	literals .277
Defining	objects	with	a	constructor	function 278
Making objects with class .279
Using Object.create .280

Retrieving	and	Setting	Object	Properties .280
Using dot notation .281
Using square bracket notation .281

Deleting Properties .283
Working with Methods .284

Using this .286
An Object-Oriented Way to Become Wealthy: Inheritance287

Creating an object using inheritance .288
Modifying an object type .289

CHAPTER 9: Controlling the Browser with the
Window Object . 291
Understanding	the	Browser	Environment .291

The user interface .292
Loader .293
HTML parsing .294
CSS parsing .294
JavaScript	parsing .294
Layout and rendering .295

Investigating	the	BOM .295
The	Navigator	object .295
The Window object .298
Using	the	Window	object’s	methods .304

CHAPTER 10: Manipulating Documents with the DOM 307
Understanding the DOM .307
Understanding Node Relationships .309
Using	the	Document	Object’s	Properties	and	Methods 314
Using	the	Element	Object’s	Properties	and	Methods 316
Working with the Contents of Elements .319

innerHTML .319
Setting attributes .320

Getting Elements by ID, Tag Name, or Class .320
getElementById .321
getElementsByTagName .322
getElementsByClassName .322

Using	the	Attribute	Object’s	Properties .324
Creating and Appending Elements .325
Removing	Elements .325

0005390115.INDD xiv Trim size: 7.375 in × 9.25 in June 11, 2022 4:46 PM

xiv Coding All-in-One For Dummies

CHAPTER 11: Using Events in JavaScript . 327
Knowing	Your	Events .327
Handling	Events .329

Using	inline	event	handlers .330
Event	handling	using	element	properties .331
Event	handling	using	addEventListener .332
Stopping propagation .336

CHAPTER 12:	Integrating	Input	and Output . 339
Understanding	HTML	Forms .339

The form element .340
The label element .341
The input element .342
The select element .344
The textarea element .344
The button element. .344

Working	with	the	Form	Object. .345
Using	Form	properties .345
Using	the	Form	object’s	methods .347
Accessing form elements .348
Getting	and	setting	form	element	values .349
Validating user input .351

CHAPTER 13: Understanding Callbacks and Closures 355
What Are Callbacks? .355

Passing functions as arguments .356
Writing functions with callbacks .356
Using named callback functions .357

Understanding Closures .360
Using Closures .363

CHAPTER 14: Embracing AJAX and JSON . 367
Working behind the Scenes with AJAX .367

AJAX examples .368
Viewing AJAX in action .370
Using the XMLHttpRequest object .373
Working with the same-origin policy .375
Using	CORS,	the	silver	bullet	for	AJAX	requests 377

Putting Objects in Motion with JSON .378

BOOK 4: CREATING MOBILE APPS . 383

CHAPTER 1: What Is Flutter? . 385
All About Hardware and Software .385
Where	Does	Flutter	Fit	In? .389

Table of Contents xv

0005390115.INDD xv Trim size: 7.375 in × 9.25 in June 11, 2022 4:46 PM

Cross-platform	development .390
A	quick-and-easy	development	cycle .394
A	great	way	to	think	about	app	development396

Enough	New	Terminology!	What’s	Next? .400

CHAPTER 2: Setting Up Your Computer for Mobile App
Development . 401
The	Stuff	You	Need .401
What to Do .403

Getting	and	installing	the	stuff .403
For	Mac	users	only .406
Configuring	Android	Studio .407
Running	your	first	app .408

Dealing	with	the	Devil’s	Details .413
On installing Android Studio .414
On	launching	Android	Studio	for	the	first	time414
On	adding	virtual	devices .415
On	installing	Flutter .416

Divisiveness	Among	Devices .418
Running	apps	on	an	Android	device .418
Testing	apps	on	a	physical	device .419

Using Android Studio .424
Starting up .425
The main window .425

Running	This	Book’s	Sample	Programs .429
Enjoying reruns .431
If	you’re	finicky432

CHAPTER 3: “Hello” from Flutter . 433
First	Things	First:	Creating	a	Flutter	Project .434

What’s	it	all	about? .436
A	constructor’s	parameters .440
A note about punctuation .442
Don’t	relent —	simply	indent .442

Classes, Objects, and Widgets .444
A brief treatise on “within-ness” .446
The documentation is your friend .447

Making Things Look Nicer .448
Creating	a	scaffold .451
Adding	visual	tweaks .453
Dart’s	enum	feature .454
Hello	from	sunny	California! .454
Adding another widget .456
Centering the text (Part 1) .459

0005390115.INDD xvi Trim size: 7.375 in × 9.25 in June 11, 2022 4:46 PM

xvi Coding All-in-One For Dummies

Centering the text (Part 2) .461
Displaying an image .464

Hey,	Wait	a	Minute468

CHAPTER 4: Hello Again . 469
Creating	and	Using	a	Function .470

The function declaration .471
A function call .472
Parameters	and	the	return	value .472

Programming	in	Dart:	The	Small	Stuff .475
Statements and declarations .475
Dart’s	typing	feature .476
Literals,	variables,	and	expressions .477
Two for the price of one .480
Dart’s	var	keyword .483
Built-in types .484
Types	that	aren’t	built-in .486
Using import declarations .487

Creating	Function	Declaration	Variations .487
Type names in function declarations .490
Naming your parameters .491
What about the build function? .492

More	Fun	to	Come! .493

CHAPTER 5: Making Things Happen . 495
Let’s	All	Press	a	Floating	Action	Button .495

Stateless widgets and stateful widgets .498
Widgets	have	methods .498
Pay no attention to the framework behind the curtain500

Enhancing Your App .509
More parameters, please .512
The	override	annotation .514
What does <Widget> mean? .515
Anonymous functions .516
What belongs where .519
Names that start with an underscore .524

Whew! .525

CHAPTER 6: Laying Things Out . 527
Understanding the Big Picture .528

Creating bite-size pieces of code .531
Creating a parameter list .533
Living	color .534
Adding padding .535

Table of Contents xvii

0005390115.INDD xvii Trim size: 7.375 in × 9.25 in June 11, 2022 4:46 PM

Your	humble	servant,	the	Column	widget .537
The SizedBox widget .539
Your friend, the Container widget .539

Nesting Rows and Columns .545
Introducing	More	Levels	of	Nesting .546
Using the Expanded Widget .549

Expanded	versus	unexpanded .552
Expanded	widget	saves	the	day .555
Flexing	some	muscles .560

How	Big	Is	My	Device? .562

CHAPTER 7: Interacting with the User . 567
A Simple Switch .568

Dart’s	const	keyword .571
Compatible or NOT? .572

Wait	For	It! .574
How	Much	Do	You	Love	Flutter? .576
Dealing	with	Text	Fields .581

Callouts 1 and 2 .582
Callout 3 .585
Callout 4 .586
Callout 5 .590

Creating Radio Buttons .590
Creating an enum .593
Building the radio group .593
Displaying	the	user’s	choice .595

Creating a Drop-Down Button .596
Building the drop-down button .600
The little Reset button .601
Making a map .602

Onward and Upward .603

CHAPTER 8: Navigation, Lists, and Other Goodies 605
Extending a Dart Class .605
Navigating	from	One	Page	to	Another .608

An icon on a button .612
Pushing and popping .612

Passing Data from the Source to a Destination613
Passing Data Back to the Source .618

Dart’s	async	and	await	keywords .621
Taking	control	of	the	app	bar’s	Back	button623

Passing Data in Both Directions .624
Creating Named Routes .629
Creating a List .633

0005390115.INDD xviii Trim size: 7.375 in × 9.25 in June 11, 2022 4:46 PM

xviii Coding All-in-One For Dummies

The ListView widget .634
Creating list items one-by-one .639
Making loops with Dart .643

Fetching	Data	from	the	Internet .646
Using a public API .647
Sending	an	URL	to	a	server .650
Making sense of a JSON response .651

What’s	Next? .652

CHAPTER 9:	 Moving	Right	Along 653
Setting	the	Stage	for	Flutter	Animation .653
Moving	Along	a	Straight	Line .659
Bouncing Around .664
Animating Size and Color Changes .666
Moving	Along	a	Curve .668
Dragging Things Around .670
Tearing Things Up .673

BOOK 5: GETTING STARTED WITH PYTHON 675

CHAPTER 1: Wrapping Your Head around Python 677
What Does Python Do? .678
Defining	Python	Structure .679

Understanding the Zen of Python .679
Styling and spacing .680

Coding Common Python Tasks and Commands 681
Defining	data	types	and	variables .681
Computing	simple	and	advanced	math .682
Using strings and special characters .684
Deciding with conditionals: if, elif, else .685
Input and output .686

Shaping Your Strings .687
Dot notation with upper(), lower(), capitalize(), and strip() 687
String formatting with % .688

CHAPTER 2: Installing a Python Distribution . 689
Using Anaconda .690

Getting Anaconda .690
Defining	why	Anaconda	is	used	in	this	book691

Installing Anaconda on Linux .692
Installing Anaconda on macOS X. .693
Installing Anaconda on Windows .694
Downloading	the	Data	Sets	and Example	Code696

Table of Contents xix

0005390115.INDD xix Trim size: 7.375 in × 9.25 in June 11, 2022 4:46 PM

Starting	Anaconda	Navigator .697
Using Jupyter Notebook .697
Defining	the	code	repository .699
Understanding the data sets used in this book 704

CHAPTER 3: Working with Real Data . 707
Uploading, Streaming, and Sampling Data .708

Uploading small amounts of data into memory709
Streaming large amounts of data into memory710
Generating	variations	on	image	data .711
Sampling	data	in	different	ways .712

Accessing	Data	in	Structured	Flat-File	Form .714
Reading	from	a	text	file .714
Reading CSV-delimited format. .715
Reading	Excel	and	other	Microsoft	Office	files718

Sending	Data	in	Unstructured	File	Form .719
Managing Data from Relational Databases .722
Interacting with Data from NoSQL Databases 724
Accessing Data from the Web .725

Accessing XML data .725
Using read_xml .727

BOOK 6: DATA ANALYSIS WITH PYTHON 729

CHAPTER 1: Conditioning Your Data . 731
Juggling between NumPy and pandas .732

Knowing when to use NumPy .732
Knowing when to use pandas .732

Validating Your Data .733
Figuring	out	what’s	in	your	data .734
Removing	duplicates .737
Creating a data map and data plan .738

Manipulating Categorical Variables .740
Creating	categorical	variables .741
Renaming	levels .742
Combining	levels .743

Dealing with Dates in Your Data .744
Formatting	date	and	time	values .745
Using the right time transformation .745

Dealing with Missing Data .747
Finding	the	missing	data .747
Encoding missingness .748
Imputing missing data .749

0005390115.INDD xx Trim size: 7.375 in × 9.25 in June 11, 2022 4:46 PM

xx Coding All-in-One For Dummies

Slicing	and	Dicing:	Filtering	and	Selecting	Data 750
Slicing rows .750
Slicing columns .751
Dicing .752

Concatenating and Transforming .752
Adding	new	cases	and	variables .753
Removing	data .754
Sorting	and	shuffling .755

Aggregating	Data	at	Any	Level .757

CHAPTER 2: Shaping Data . 759
Working with HTML Pages .760

Parsing XML and HTML .760
Using XPath for data extraction .761

Working with Raw Text .763
Dealing with Unicode .763
Stemming	and	removing	stop	words .764
Introducing regular expressions .766

Using the Bag of Words Model and Beyond .768
Understanding the bag of words model .769
Working with n-grams .771
Implementing	TF-IDF	transformations .772

Working with Graph Data .774
Understanding the adjacency matrix .775
Using NetworkX basics .775

CHAPTER 3:	 Getting	a	Crash	Course	in MatPlotLib 779
Starting with a Graph .780

Defining	the	plot .780
Drawing multiple lines and plots .781
Saving	your	work .782

Setting the Axis, Ticks, Grids .783
Getting the axes .783
Formatting	the	axes .784
Adding grids .785

Defining	the	Line	Appearance .786
Working with line styles .786
Using colors .787
Adding markers .789

Using Labels, Annotations, and Legends .790
Adding labels .791
Annotating the chart .792
Creating a legend .793

Table of Contents xxi

0005390115.INDD xxi Trim size: 7.375 in × 9.25 in June 11, 2022 4:46 PM

CHAPTER 4: Visualizing the Data . 795
Choosing the Right Graph .796

Showing parts of a whole with pie charts .796
Creating comparisons with bar charts .797
Showing distributions using histograms .799
Depicting groups using box plots .800
Seeing data patterns using scatterplots .802

Creating	Advanced	Scatterplots .803
Depicting groups .803
Showing correlations .804

Plotting Time Series. .806
Representing time on axes .806
Plotting	trends	over	time .807

Visualizing Graphs .809
Developing	undirected	graphs .809
Developing	directed	graphs .811

BOOK 7: CAREER BUILDING WITH CODING 813

CHAPTER 1:	 Exploring	Coding	Career Paths . 815
Augmenting Your Existing Job .816

Creative	design .816
Content and editorial .817
Human resources .818
Product management .819
Sales and marketing .820
Legal .821

Finding	a	New	Coding	Job .822
Frontend	web	development .823
Backend	web	development .824
Mobile	application	development. .826
Data analysis .827

CHAPTER 2: Exploring Undergraduate and Graduate
Degrees . 829
Getting a College Degree .830

College computer science curriculum .831
Doing	extracurricular	activities .833
Two-year	versus	four-year	school .834

Enrolling	in	an	Advanced	Degree	Program .836
Graduate	school	computer	science curriculum 837
Performing research .838

Interning to Build Credibility .839
Types of internship programs .839
Securing an internship .840

0005390115.INDD xxii Trim size: 7.375 in × 9.25 in June 11, 2022 4:46 PM

xxii Coding All-in-One For Dummies

CHAPTER 3: Training on the Job . 843
Taking	a	Work	Project	to	the	Next	Level .844
Learning on the Job and After Work .845

Training on the job .846
Learning after work .846

Freelancing	to	Build	Confidence	and	Skills .848
Transitioning to a New Role .849

Assessing your current role .850
Networking	with	developers .850
Identifying	roles	that	match	your	interest and	skills 851

CHAPTER 4: Coding Career Myths . 853
You Must Be Good at Math .853
You	Must	Have	Studied	Engineering .854
You	Can	Learn	Coding	in	a	Few	Weeks .855
You Need a Great Idea to Start Coding .855
Ruby Is Better than Python .856
Only	College	Graduates	Receive	Coding Offers 856
You	Must	Have	Experience .857
Tech	Companies	Don’t	Hire	Women	or Minorities858
The	Highest	Paying	Coding	Jobs	Are in San Francisco859
Your	Previous	Experience	Isn’t	Relevant .860

INDEX . 861

0005390114.INDD 1 Trim size: 7.375 in × 9.25 in June 11, 2022 2:13 PM

Introduction 1

Introduction

The ability to read, write, and understand code has never been more impor-
tant, useful, or lucrative than it is today. Computer code has forever changed
our lives. Many people can’t even make it through the day without inter-

acting with something built with code. Even so, for many people, the world of
coding seems complex and inaccessible. Maybe you participated in a tech-related
business meeting and did not fully understand the conversation. Perhaps you tried
to build a web page for your family and friends, but ran into problems displaying
pictures or aligning text. Maybe you’re even intimidated by the unrecognizable
words on the covers of books about coding, words such as HTML, CSS, JavaScript,
Python, or Ruby.

If you’ve previously been in these situations, then Coding All-in-One For Dummies,
2nd Edition is for you. This book explains basic concepts so you can participate
in technical conversations and ask the right questions, and it goes even further
than Coding For Dummies by covering additional topics in mobile app development,
data science, and coding careers. Don’t worry — this book assumes you’re start-
ing with little to no previous coding knowledge, and I haven’t tried to cram every
possible coding concept into these pages. Additionally, I encourage you here to
learn by doing and by actually creating your own programs. Instead of a website or
mobile app, imagine that you want to build a house. You could spend eight years
studying to be an architect, or you could start today by learning a little bit about
foundations and framing. This book kick-starts your coding journey today.

The importance of coding is ever-increasing. As author and technologist Douglas
Rushkoff famously said, “program or be programmed.” When humans invented
languages and then the alphabet, people learned to listen and speak, and then read
and write. In our increasingly digital world, it’s important to learn not just how to
use programs but also how to make them. For example, observe this transition in
music. For over a century, music labels decided what songs the public could listen
to and purchase. In 2005, three coders created YouTube, which allowed anyone to
release songs. Today more songs have been uploaded to YouTube than have been
released by all the record labels combined in the past century.

2 Coding All-in-One For Dummies

0005390114.INDD 2 Trim size: 7.375 in × 9.25 in June 11, 2022 2:13 PM

About This Book
This book is designed for readers with little to no coding experience and gives an
overview of programming to non-programmers. In plain English, you learn how
code is used to create websites and mobile apps, who makes those programs, and
the processes they use. The topics covered include

 » Explaining what coding is and answering the common questions
related to code

 » Building basic websites using the three most common languages: HTML, CSS,
and JavaScript

 » Surveying other programming languages such as Python and Dart

 » Creating mobile apps for iOS and Android devices using Flutter

 » Working with data using Python

 » Exploring coding careers paths and different ways to learn how to code

As you read this book, keep the following in mind:

 » The book can be read from beginning to end, but feel free to skip around if
you like. If a topic interests you, start there. You can always return to the
previous chapters, if necessary.

 » At some point, you will get stuck, and the code you write will not work as
intended. Do not fear! There are many resources to help you, including
support forums, others on the Internet, and me! Using Twitter, you can send
me a public message at @chrisminnick with the hashtag #codingFD.
Additionally, you can sign up for book updates and explanations for changes
to programming language commands by visiting https://tinyletter.com/
codingallinone.

 » Code in the book appears in a monospaced font like this: <h1>Hi
there!</h1>.

Foolish Assumptions
I do not make many assumptions about you, the reader, but I do make a few.

0005390114.INDD 3 Trim size: 7.375 in × 9.25 in June 11, 2022 2:13 PM

Introduction 3

I assume you don’t have previous programming experience. To follow along, then,
you only need to be able to read, type, and follow directions. I try to explain as
many concepts as possible using examples and analogies you already know.

I assume you have a computer running the latest version of Google Chrome. The
examples in the book have been tested and optimized for the Chrome browser,
which is available for free from Google. Even so, the examples also work in the
latest version of Firefox, Safari, or Microsoft Edge.

I assume you have access to an Internet connection. Some of the examples in the
book can be done without an Internet connection, but most require one.

For the books on Python and data analysis, I assume you are able to download and
install the Python programming language and its associated programming librar-
ies, both of which are available for free.

Icons Used in This Book
Here are the icons used in the book to flag text that should be given extra attention
or that can be skipped.

This icon flags useful information or explains a shortcut to help you understand
a concept.

This icon explains technical details about the concept being explained. The details
might be informative or interesting, but are not essential to your understanding
of the concept at this stage.

Try not to forget the material marked with this icon. It signals an important con-
cept or process that you should keep in mind.

Watch out! This icon flags common mistakes and problems that can be avoided if
you heed the warning.

4 Coding All-in-One For Dummies

0005390114.INDD 4 Trim size: 7.375 in × 9.25 in June 11, 2022 2:13 PM

Beyond the Book
A lot of extra content that you won’t find in this book is available at www.dummies.
com. Go online to find the following:

 » The source code for the examples in this book: You can find it at www.
dummies.com/go/codingallinonefd2e.

The source code is organized by book and chapter. The best way to work with
a chapter is to download all the source code for it at one time.

 » The book’s cheat sheet. Simply navigate to www.dummies.com and search for
“Coding All-in-One For Dummies Cheat Sheet.” From there, you’ll be able to
access several helpful articles about coding, including general web develop-
ment terms and advice for preparing for a job interview, among other useful
tidbits.

 » Updates: Code and specifications are constantly changing, so the commands
and syntax that work today may not work tomorrow. You can find any
updates or corrections by visiting http://www.dummies.com/go/
codingallinonefd2e or https://tinyletter.com/codingallinone.

Where to Go from Here
All right, now that all the administrative stuff is out of the way, it’s time to get
started. You can totally do this. Congratulations on taking your first step into the
world of coding!

1
0005390104.INDD 5 Trim size: 7.375 in × 9.25 in June 11, 2022 4:35 PM

Getting Started
with Coding

Contents at a Glance
CHAPTER 1: What Is Coding? . 7

CHAPTER 2: Programming for the Web . 19

CHAPTER 3: Becoming a Programmer . 33

0005390104.INDD 6 Trim size: 7.375 in × 9.25 in June 11, 2022 4:35 PM

CHAPTER 1 What Is Coding? 7

0005390130.INDD 7	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	2:32	PM

 What Is Coding?
“A million dollars isn’t cool, you know what’s cool? A billion dollars.”

 — SEAN PARKER, THE SOCIAL NETWORK

 E very week the newspapers report on another technology company that has
raised capital or sold for millions of dollars. Sometimes, in the case of com-
panies like Zoom, Coinbase, and Squarespace, the amount in the headline is

for billions of dollars. These articles may pique your curiosity, and you may want
to see how code is used to build the applications that experience these fi nancial
outcomes. Alternatively, your interests may lie closer to work. Perhaps you work
in an industry in decline or in a function that technology is rapidly changing.
Whether you are thinking about switching to a new career or improving your cur-
rent career, understanding computer programming or “coding” can help with
your professional development. Finally, your interest may be more personal —
perhaps you have an idea, a burning desire to create something, a website or an
app, to solve a problem you have experienced, and you know reading and writing
code is the fi rst step to building your solution. Whatever your motivation, this
book will shed light on coding and programmers, and help you think of both not
as mysterious and complex but approachable and something you can do yourself.

 In this chapter, you will understand what code is, what industries are aff ected by
computer software, the diff erent types of programming languages used to write
code, and take a tour of a web app built with code.

Chapter 1

 IN THIS CHAPTER

» Seeing what code is and what it
can do

» Touring your fi rst program using code

» Understanding programming
languages used to write code

0005390130.INDD 8	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	2:32	PM

8 BOOK 1 Getting Started with Coding

Defining What Code Is
Computer code is not a cryptic activity reserved for geniuses and oracles. In fact,
in a few minutes you will be writing some computer code yourself! Most computer
code performs a range of tasks in our lives from the mundane to the extraor-
dinary. Code runs our traffic lights and pedestrian signals, the elevators in our
buildings, the cell phone towers that transmit our phone signals, and the space
ships headed for outer space. We also interact with code on a more personal level,
on our phones and computers, and usually to check email or the weather.

Following instructions
Computer code is a set of statements, like sentences in English, and each state-
ment directs the computer to perform a single step or instruction. Each of these
steps is very precise, and followed to the letter. For example, if you are in a res-
taurant and ask a waiter to direct you to the restroom, they might say, “head to
the back, and try the middle door.” To a computer, these directions are so vague
as to be unusable. Instead, if the waiter gave instructions to you as if you were a
computer program they might say, “From this table, walk northeast for 40 paces.
Then turn right 90 degrees, walk 5 paces, turn left 90 degrees, and walk 5 paces.
Open the door directly in front of you, and enter the restroom.” Figure 1-1 shows
lines of code from the popular game, Pong. Do not worry about trying to under-
stand what every single line does, or feel intimated. You will soon be reading and
writing your own code.

One rough way to measure a program’s complexity is to count its statements or
lines of code. Basic applications like the Pong game have 5,000 lines of code, while
more complex applications like Facebook currently have over 10 million lines of

FIGURE 1-1:
Computer	code	
from the game

Pong.	

W
hat Is Coding?

0005390130.INDD 9	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	2:32	PM

CHAPTER 1 What Is Coding? 9

code. Whether few or many lines of code, the computer follows each instruction
exactly and effortlessly, never tiring like the waiter might when asked for the
100th time for the location of the restroom.

Be careful of only using lines of code as a measure for a program’s complexity.
Just like when writing in English, 100 well written lines of code can perform the
same functionality as 1,000 poorly written lines of code.

Writing code with some Angry Birds
If you have never written code before, now is your chance to try! Go to https://
hourofcode.com/us/learn and under the “Beginners” heading, scroll down (or
use the search box) to find the “Write Your First Computer Program” link with the
Angry Birds icon, as shown in Figure 1-2. This tutorial is meant for those with no
previous computer programming experience, and it introduces the basic building
blocks used by all computer programs. The most important take-away from the
tutorial is to understand that computer programs use code to literally and exactly
tell the computer to execute a set of instructions.

The Hour of Code is an annual program dedicated to elevating the profile of com-
puter science during one week in December. In the past, President Obama, Bill
Gates, basketball player Stephen Curry, singer Shakira, and even your humble
author of this book have supported and encouraged people from the United States
and around the world to participate.

FIGURE 1-2:
Write	your	

first	computer	
program with a

game-like	tutorial	
using	Angry	Birds.	

© John Wiley & Sons

0005390130.INDD 10	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	2:32	PM

10 BOOK 1 Getting Started with Coding

Understanding What Coding
Can Do for You

Coding can be used to perform tasks and solve problems that you experience every
day. The “everyday” situations in which programs or apps can provide assistance
continues to grow at an exponential pace, but this was not always the case. The
rise of web applications, Internet connectivity, and mobile phones have inserted
software programs into daily life and lowered the barrier for you to become a cre-
ator, solving personal and professional problems with code.

Eating the world with software
In 2011, Marc Andreessen, creator of one of the first web browsers, Netscape Nav-
igator, and now a venture capitalist, noted that “software is eating the world.” He
predicted that software companies would disrupt existing companies at a rapid
pace. Traditionally, code powered software used on desktops and laptops. The
software had to first be installed, and then you had to supply data to the program.
Three trends have dramatically increased the use of code in everyday life:

 » Web-based software:	This	software	operates	in	the	browser	without	
requiring	installation.	For	example,	if	you	wanted	to	check	your	email,	you	
previously	had	to	install	an	email	client	either	by	downloading	the	software	or	
from	a	CD-ROM. Sometimes,	issues	arose	when	the	software	was	not	
available	for	your	operating	system,	or	conflicted	with	your	operating	system	
version.	Hotmail,	a	web-based	email	client,	rose	to	popularity,	in	part,	because	
it	allowed	users	visiting	www.hotmail.com	to	instantly	check	their	email	
without	worrying	about	installation	or	software	compatibility.	Web	applica-
tions	increased	consumer	appetite	to	try	more	applications,	and	developers	in	
turn	were	incentivized	to	write	more	applications.

 » Internet broadband connectivity:	Broadband	connectivity	has	increased,	
providing	a	fast	Internet	connection	to	more	people	in	the	last	few	years	than	
in	the	previous	decade.	Today,	more	than	two	billion people	can	access	
web-based	software,	up	from	approximately	50 million	only	a	decade	ago.

 » Mobile phones:	Today’s	smartphones	bring	programs	with	you	wherever	you	
go	and	help	supply	data	to	programs.	Many	software	programs	became	more	
useful	when	accessed	on-the-go	than	when	limited	to	a	desktop	computer.	
For	instance,	use	of	maps	applications	greatly	increased	thanks	to	mobile	
phones	because	users	need	directions	the	most	when	lost,	not	just	when	
planning	a	trip	at	home	on	the	computer.	In	addition,	mobile	phones	are	
equipped	with	sensors	that	measure	and	supply	data	to	programs	like	
orientation,	acceleration,	and	current	location	through	GPS. Now	instead	of	

W
hat Is Coding?

0005390130.INDD 11	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	2:32	PM

CHAPTER 1 What Is Coding? 11

having	to	input	all	the	data	to	programs	yourself,	mobile	devices	can	help.	For	
instance,	a	fitness	application	like	Runkeeper	does	not	require	you	to	input	
start	and	end	times	to	keep	track	of	your	runs.	You	can	press	start	at	the	
beginning	of	your	run,	and	the	phone	will	automatically	track	your	distance,	
speed,	and	time.

The combination of these trends have created software companies that have
upended incumbents in almost every industry, especially ones typically immune
to technology. Some notable examples include:

 » Airbnb:	Airbnb	is	a	peer-to-peer	lodging	company	that	owns	no	rooms,	yet	
books	more	nights	than	the	Hilton	and	Intercontinental,	the	largest	hotel	
chains	in	the	world.	(See	Figure 1-3.)

 » Uber:	Uber	is	a	car	transportation	company	that	owns	no	vehicles,	books	
more	trips,	and	has	more	drivers	in	the	largest	200	cities	than	any	other	car	or	
taxi	service.

 » Groupon:	Groupon,	the	daily	deals	company,	generated	almost	$1	billion	
after	just	two	years	in	business,	growing	faster	than	any	other	company	in	
history,	let	alone	any	other	traditional	direct	marketing	company.

FIGURE 1-3:
Airbnb	booked	
5	million	nights	
after	3.5	years,	

and	its	next	
5	million	nights	
6	months	later.	

© John Wiley & Sons

0005390130.INDD 12	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	2:32	PM

12 BOOK 1 Getting Started with Coding

Coding on the job
Coding can be useful in the workplace as well. Outside the technology sector, cod-
ing in the workplace is common for some professions like financial traders, econ-
omists, and scientists. However, for most professionals outside the technology
sector, coding is just beginning to penetrate the workplace, and gradually starting
to increase in relevance. Here are areas where coding is playing a larger role on
the job:

 » Advertising:	Spend	is	shifting	from	print	and	TV	to	digital	campaigns,	and	
search	engine	advertising	and	optimization	relies	on	keywords	to	bring	
visitors	to	websites.	Advertisers	who	understand	code	see	successful	key-
words	used	by	competitors,	and	use	that	data	to	create	more	effective	
campaigns.

 » Marketing:	When	promoting	products,	personalizing	communication	is	one	
strategy	that	often	increases	results.	Marketers	who	code	can	query	customer	
databases	and	create	personalized	communications	that	include	customer	
names	and	products	tailored	to	specific	interests.

 » Sales:	The	sales	process	always	starts	with	leads.	Salespeople	who	code	
retrieve	their	own	leads	from	web	pages	and	directories,	and	then	sort	and	
qualify	those	leads.

Retrieving	information	by	copying	text	on	web	pages	and	in	directories	is	
referred	to	as	scraping.

 » Design:	After	creating	a	web	page	or	a	digital	design,	designers	must	per-
suade	other	designers	and	eventually	developers	to	actually	program	their	
drawings	into	the	product.	Designers	who	code	can	more	easily	bring	their	
designs	to	life,	and	can	more	effectively	advocate	for	specific	designs	by	
creating	working	prototypes	that	others	can	interact	with.

 » Public relations:	Companies	constantly	measure	how	customers	and	the	
public	react	to	announcements	and	news.	For	instance,	if	a	celebrity	spokes-
person	for	a	company	does	or	says	something	offensive,	should	the	company	
dump	the	celebrity?	Public	relations	people	who	code	query	social	media	
networks	like	Twitter	or	Facebook,	and	analyze	hundreds	of	thousands	of	
individual	messages	to	understand	market	sentiment.

 » Operations:	Additional	profit	can	be	generated,	in	part,	by	analyzing	a	
company’s	costs.	Operations	people	who	code	write	programs	to	try	millions	
of	combinations	to	optimize	packaging	methods,	loading	routines,	and	
delivery	routes.

Book 7 has lots more information about careers in coding.

W
hat Is Coding?

0005390130.INDD 13	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	2:32	PM

CHAPTER 1 What Is Coding? 13

Scratching your own itch (and becoming
rich and famous)
Using code built by others and coding in the workplace may cause you to think of
problems you personally face that you could solve with code of your own. You may
have an idea for a social network website, a better fitness app, or something new
altogether. The path from idea to functioning prototype used by others involves a
good amount of time and work, but might be more achievable than you think. For
example, take Coffitivity, a productivity website that streams ambient coffee shop
sounds to create white noise. The website was created by two people who had just
learned how to program a few months prior. Shortly after Coffitivity launched,
TIME magazine named the website one of 50 Best Websites of 2013, and the Wall
Street Journal also reviewed the website. While not every startup or app will ini-
tially receive this much media coverage, it can be helpful to know what is possible
when a solution really solves a problem.

Having a goal, like a website or app you want to build, is one of the best ways to
learn how to code. When facing a difficult bug or a hard concept, the idea of bring-
ing your website to life will provide the motivation you need to keep going. Just
as important, do not learn how to code to become rich and famous, as the prob-
ability of your website or app becoming successful is largely due to factors out of
your control.

The characteristics that make a website or app addictive are described using the
Hook Model at https://www.nirandfar.com/how-to-manufacture-desire/.
Products are usually made by companies, and the characteristics of an endur-
ing company are described at https://articles.sequoiacap.com/elements-
of-enduring-companies, based on a review of companies funded by Sequoia, one
of the most successful venture capital firms in the world and early investors in
Apple, Google, and PayPal.

Surveying the Types of Programming
Languages

Code comes in different flavors called programming languages. It’s estimated that
there are about 9,000 different programming languages, so clearly we can’t talk
about them all. Some of the most popular ones are JavaScript, Python, Java, Rust,
Ruby, Go, Kotlin, R, PHP, C, C++, Dart, and Swift.

0005390130.INDD 14	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	2:32	PM

14 BOOK 1 Getting Started with Coding

You can think of programming languages just like spoken languages, as they both
share many of the same characteristics, such as:

 » Functionality across languages:	Programming	languages	can	all	create	the	
same	functionality	similar	to	how	spoken	languages	can	all	express	the	same	
objects,	phrases,	and	emotions.

 » Syntax and structure:	Commands	in	programming	languages	can	overlap	
just	like	words	in	spoken	languages	overlap.	To	output	text	to	screen	in	
Python	or	Ruby	you	use	the	print	command,	just	like	imprimer	and	imprimir	
are	the	verbs	for	“print”	in	French	and	Spanish.

 » Natural lifespan:	Programming	languages	are	born	when	a	programmer	
thinks	of	a	new	or	easier	way	to	express	a	computational	concept.	If	other	
programmers	agree,	they	adopt	the	language	for	their	own	programs	and	
the	programming	language	spreads.	However,	just	like	Latin	or	Aramaic,	if	the	
programming	language	is	not	adopted	by	other	programmers	or	a	better	
language	comes	along,	then	the	programming	language	slowly	dies	from	lack	
of	use.

Despite these similarities, programming languages also differ from spoken lan-
guages in a few key ways:

 » One creator:	Unlike	spoken	languages,	programming	languages	can	be	
created	by	one	person	in	a	short	period	of	time,	sometimes	in	just	a	few	days.	
Popular	languages	with	a	single	creator	include	JavaScript	(Brendan	Eich),	
Python	(Guido	van	Rossum),	and	Ruby	(Yukihiro	Matsumoto).

 » Written in English:	Unlike	spoken	languages	(except,	of	course,	English),	
almost	all	programming	languages	are	written	in	English.	Whether	they’re	
programming	in	HTML,	JavaScript,	Python,	or	Ruby,	Brazilian,	French,	or	
Chinese	programmers	all	use	the	same	English	keywords	and	syntax	in	their	
code.	Some	non-English	programming	languages	exist,	such	as	languages	in	
Hindi	or	Arabic,	but	none	of	these	languages	are	widespread	or	mainstream.

Comparing low-level and high-level
programming languages
One way to classify programming languages is either as low-level languages or
high-level languages. Low-level languages interact directly with the computer
processor or CPU, are capable of performing very basic commands, and are gen-
erally hard to read. Machine code, one example of a low-level language, uses
code that consists of just two numbers — 0 and 1. Figure 1-4 shows an example of
machine code. Assembly language, another low-level language, uses keywords to
perform basic commands like read data, move data, and store data.

W
hat Is Coding?

0005390130.INDD 15	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	2:32	PM

CHAPTER 1 What Is Coding? 15

By contrast, high-level languages use natural language so it is easier for people
to read and write. Once code is written in a high-level language, like C++, Python,
or Ruby, an interpreter or compiler translates this high-level language into low-
level code a computer can understand.

Contrasting compiled code and
interpreted code
High-level programming languages must be converted to low-level program-
ming languages using an interpreter or compiler, depending on the language.
Interpreted languages are considered more portable than compiled languages,
while compiled languages execute faster than interpreted languages. However,
the speed advantage compiled languages have is starting to fade in importance as
improving processor speeds make performance differences between interpreted
and compiled languages negligible.

High-level programming languages like JavaScript, Python, and Ruby are inter-
preted. For these languages the interpreter executes the program directly, trans-
lating each statement one line at a time into machine code. High-level programming
languages like C++, COBOL, and Visual Basic are compiled. For these languages,
after the code is written a compiler translates all the code into machine code, and
an executable file is created. This executable file is then distributed via a website
or app store and run. Software you install on your computer, smartphone, or tab-
let, like Microsoft Office or Adobe Photoshop, are coded using compiled languages.

FIGURE 1-4:
Machine	code	
consists	of	0s	

and	1s.	

0005390130.INDD 16	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	2:32	PM

16 BOOK 1 Getting Started with Coding

Programming for the web
Software accessible on websites is gradually starting to take over installed
software. Think of the last time you downloaded and installed software for your
computer — you may not even remember! Installed software like Windows Media
Player and Winamp that play music and movies have been replaced with websites
like YouTube and Netflix. Traditional installed word processor and spreadsheet
software like Microsoft Word and Excel are competing with web software like
Google Docs and Sheets. The Google Chromebook doesn’t contain installed soft-
ware (other than Google’s Chrome browser) and instead relies exclusively on web
software to provide functionality.

Much of this book will focus on developing and creating web software, not just
because web software is growing rapidly, but also because programs for the web
are easier to learn and launch than traditional installed software.

Taking a Tour of a Web App
Built with Code

With all this talk of programming, let us actually take a look at a web application
built with code. Yelp.com is a website that allows you to search and find crowd-
sourced reviews for local businesses like restaurants, nightlife, and shopping. As
shown in Figure 1-5, Yelp did not always look as polished as it does today, but its
purpose has stayed relatively constant over the years.

Defining the app’s purpose and scope
Once you understand an app’s purpose, you can identify a few actionable tasks a
user should be able to perform to achieve that purpose. Regardless of design, the
Yelp’s website has always allowed users to

FIGURE 1-5:
Yelp’s	website	in	
2004	and	in	2022	

© John Wiley & Sons

W
hat Is Coding?

0005390130.INDD 17	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	2:32	PM

CHAPTER 1 What Is Coding? 17

 » Search	local	listings	based	on	venue	type	and	location.

 » Browse	listing	results	for	address,	hours,	reviews,	photos,	and	location	on	
a map.

Successful web applications generally allow for completing only a few key tasks
when using the app. Adding too many features to an app dilutes the strength of
the existing features, and so is avoided by most developers. For example, it took
Yelp, which has 30,000 restaurant reviews, exactly one decade after its founding
to allow users to make reservations at those restaurants directly on its website.
Whether you are using or building an app, have a clear sense of the app’s purpose.

Standing on the shoulders of giants
Developers make strategic choices and decide which parts of the app to code them-
selves, and which parts of the app to use code built by others. Developers often
turn to third-party providers for functionality that is either not core to the busi-
ness or not an area of strength. In this way, apps stand on the shoulders of others,
and benefit from others who have come before and solved challenging problems.

Yelp, for instance, displays local listing reviews and places every listing on a map.
While Yelp solicits the reviews and writes the code to display basic listing data, it
is Google, as shown in Figure 1-6, which develops the maps used on Yelp’s web-
site. By using Google’s map application instead of building its own, Yelp created
the first version of the app with fewer engineers than otherwise would have been
required.

FIGURE 1-6:
Google	maps	

used	for	the	Yelp	
web	application.	

© John Wiley & Sons

0005390130.INDD 18	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	2:32	PM

CHAPTER 2 Programming for the Web 19

0005390131.INDD 19 Trim size: 7.375 in × 9.25 in June 11, 2022 2:33 PM

 Programming for
the Web

There was a time when people felt the Internet was another world, but now
people realize it ’ s a tool that we use in this world.

 —TIM BERNERS-LEE

 P rogramming for the web allows you to reach massive audiences around the
world faster than ever before. Four years after its 2004 launch, Facebook
had 100 million users, and by 2012 it had over a billion. By contrast, it took

desktop software years to reach even 1 million people. These days, mobile phones
are increasing the reach of web applications. Although roughly 250 million desk-
top and laptop computers are sold every year, more than 1.5 billion mobile phones
are sold in that time.

 In this chapter you learn how websites are displayed on your computer or mobile
device. I introduce the languages used to program websites and show you how
mobile-device applications are made.

Chapter 2

 IN THIS CHAPTER

» Seeing the code powering websites
you use every day

» Understanding the languages used to
make websites

» Learning how applications are
created for mobile devices

0005390131.INDD 20 Trim size: 7.375 in × 9.25 in June 11, 2022 2:33 PM

20 BOOK 1 Getting Started with Coding

Displaying Web Pages on Your Desktop
and Mobile Device

On desktop computers and mobile devices, web pages are displayed by applications
called browsers. The most popular web browsers include Google Chrome, Mozilla
Firefox, Microsoft Edge, and Apple Safari. Until now, you have likely interacted
with websites you visit as an obedient user, and followed the rules the website has
created by pointing and clicking when allowed. The first step to becoming a pro-
ducer and programmer of websites is to peel back the web page and see and play
with the code underneath it all.

Hacking your favorite news website
What’s your favorite news website? By following a few steps, you can see and
even modify the code used to create that website. (No need to worry, you won’t be
breaking any rules by following these instructions.)

Although you can use almost any modern browser to inspect a website’s code,
these instructions assume you’re using the Google Chrome browser. Install the
latest version by going to www.google.com/chrome/.

To “hack” your favorite news website, follow these steps:

1. Open your favorite news website using the Chrome browser. (In this
example, I use www.huffpost.com.)

2. Place your mouse cursor over any static fixed headline and right-click
once, which opens a contextual menu. Then, left-click once on the Inspect
menu choice. (See Figure 2-1.)

If you’re using a Macintosh computer, you can right-click by holding down the
Control key and clicking once.

The Developer Tools panel opens at the bottom of your browser (or on the
right side). This panel shows you the code used to create this web page! You
can resize this window by dragging its top edge. The specific code used to
create the headline where you originally put your mouse cursor is highlighted.
(See Figure 2-2.)

Look at the left edge of the highlighted code. If you see a right arrow, left-click
once on the arrow to expand the code.

Program
m

ing for
the W

eb

0005390131.INDD 21 Trim size: 7.375 in × 9.25 in June 11, 2022 2:33 PM

CHAPTER 2 Programming for the Web 21

3. Scan the highlighted code carefully for the text of your headline. When
you find it, double-click on the headline text. This allows you to edit the
headline. (See Figure 2-3.)

Be careful not to click on anything that begins with http, which is the headline
link. Clicking on a headline link will open a new window or tab and load the link.

FIGURE 2-1:
Right-click on

a headline and
select Inspect

from the menu.

© John Wiley & Sons

FIGURE 2-2:
The highlighted
code is used to
create the web
page headline.

© John Wiley & Sons

0005390131.INDD 22 Trim size: 7.375 in × 9.25 in June 11, 2022 2:33 PM

22 BOOK 1 Getting Started with Coding

4. Insert your name in the headline and press Enter.

Your name now appears on the actual web page. (See Figure 2-4.) Enjoy your
newfound fame!

If you were unable to edit the headline after following these steps, visit
https://x-ray-goggles.mouse.org/ for instructions on installing the
Mozilla X-Ray Goggles tool. It’s a teaching aid that shows that any code on the
Internet can be modified. On that page, follow the instructions to install the
X-Ray Goggles bookmark, then visit any other website and click on the
bookmark. Try using X-Ray Goggles to hack your favorite news website.

If you successfully completed the steps above and changed the original headline,
it’s time for your 15 minutes of fame to come to an end. Reload the web page and
the original headline reappears. What just happened? Did your changes appear
to everyone visiting the web page? And why did your edited headline disappear?

To answer these questions, you first need to understand how the Internet delivers
web pages to your computer.

FIGURE 2-3:
Double-click the
headline text to
edit it with your

own headline.

FIGURE 2-4:
You successfully

changed the
headline of a

major news
website.

© John Wiley & Sons

Program
m

ing for
the W

eb

0005390131.INDD 23 Trim size: 7.375 in × 9.25 in June 11, 2022 2:33 PM

CHAPTER 2 Programming for the Web 23

Understanding how the World
Wide Web works
After you type a URL, such as huffpost.com, into your browser, the following steps
happen behind the scenes in the seconds before your page loads (see Figure 2-5):

1. Your computer sends your request for the web page to a router. The router
distributes Internet access throughout your home or workplace.

2. The router passes your request onto your Internet service provider (ISP). In the
United States, your ISP is a company like Comcast, Time Warner, AT&T, or
Verizon.

3. Your ISP then converts the words and characters in your URL —  “huffpost.
com” in my example — into a numerical address called the Internet protocol
address (or, more commonly, IP address). An IP address is a set of
four numbers separated by periods (such as, for example, 192.168.1.1). Just
like your physical address, this number is unique, and every computer has one.
Your ISP has a digital phonebook, similar to a physical phonebook, called a
domain name server that’s used to convert text URLs into IP addresses.

4. With the IP address located, your ISP knows which server on the Internet to
forward your request to, and your personal IP address is included in this
request.

5. The website server receives your request and sends a copy of the web page
code to your computer for your browser to display.

6. Your web browser renders the code onto the screen.

FIGURE 2-5:
Steps followed to
deliver a website
to your browser.

0005390131.INDD 24 Trim size: 7.375 in × 9.25 in June 11, 2022 2:33 PM

24 BOOK 1 Getting Started with Coding

When you edited the website code using the Developer Tools, you modified only
the copy of the website code that exists on your computer, so only you could see
the change. When you reloaded the page, you started Steps 1 through 6 again and
retrieved a fresh copy of the code from the server, overwriting any changes you
made on your computer.

You may have heard of a software tool called an ad blocker. Ad blockers work by
editing the local copy of website code, just as you did above, to remove website
advertisements. Ad blockers are controversial because websites use advertising
revenue to pay for operating costs. If ad blockers continue rising in popularity, ad
revenue could dry up, and websites would have to demand that readers pay to see
their content.

Watching out for your frontend
and backend
Now that you know how your browser accesses websites, let’s dive deeper into the
way the actual website is constructed. As shown in Figure 2-6, the code for web-
sites, and for programs in general, can be divided into four categories, according
to the code’s function:

 » Appearance: Appearance is the visible part of the website, including content
layout and any applied styling, such font size, font typeface, and image size.
This category is called the frontend and is created using languages like HTML,
CSS, and JavaScript.

 » Logic: Logic determines what content to show and when. For example, a
New Yorker accessing a news website should see New York weather, whereas
Chicagoans accessing the same site should see Chicago weather. This
category is part of the group called the backend and is created using lan-
guages like Ruby, Python, and PHP. These backend languages can modify the
HTML, CSS, and JavaScript that is displayed to the user.

 » Storage: Storage saves any data generated by the site and its users. User-
generated content, preferences, and profile data must be stored for retrieval
later. This category is part of the backend and is stored in databases like
MongoDB and MySQL.

 » Infrastructure: Infrastructure delivers the website from the server to you, the
client machine. When the infrastructure is properly configured, no one notices
it, but it can become noticeable when a website becomes unavailable due to
high traffic from events like presidential elections, the Super Bowl, and natural
disasters.

Program
m

ing for
the W

eb

0005390131.INDD 25 Trim size: 7.375 in × 9.25 in June 11, 2022 2:33 PM

CHAPTER 2 Programming for the Web 25

Usually, website developers specialize in one or at most two of these categories.
For example, an engineer might really understand the frontend and logic lan-
guages, or specialize in only databases. Website developers have strengths and
specializations, and outside of these areas their expertise is limited, much in the
same way that Jerry Seinfeld, a terrific comedy writer, would likely make a terrible
romance novelist.

The rare website developer proficient in all four of these categories is referred
to as a full stack developer. Usually, smaller companies hire full stack developers,
whereas larger companies require the expertise that comes with specialization.

Defining web and mobile applications
Web applications are websites you visit using a web browser on any device. Web-
sites optimized for use on a mobile device, like a phone or tablet, are called mobile
web applications. By contrast, native mobile applications cannot be viewed using a
web browser. Instead, native mobile applications are downloaded from an app
store like the Apple App Store or Google Play, and designed to run on a specific
device such as an iPhone or an Android tablet. Historically, desktop computers
outnumbered and outsold mobile devices, but two major trends in mobile usage
have occurred:

 » Starting in 2014, people with mobile devices outnumbered people with
desktop computers. This gap is projected to continue increasing, as shown in
Figure 2-7.

 » Mobile-device users spend 80 percent of their time using native mobile
applications and 20 percent of their time browsing mobile websites.

FIGURE 2-6:
Every website is
made up of four

different parts.

0005390131.INDD 26 Trim size: 7.375 in × 9.25 in June 11, 2022 2:33 PM

26 BOOK 1 Getting Started with Coding

The increase in mobile devices has happened so quickly over the last 15 years
that many companies are becoming “mobile first,” designing and developing the
mobile version of their applications before the desktop version. WhatsApp and
Instagram, two popular mobile applications, first built mobile applications, which
continue to have more functionality then their regular websites.

Coding Web Applications
Web applications are easier to build than mobile applications, require little to no
additional software to develop and test, and run on all devices, including desktop,
laptops, and mobile. Although mobile applications can perform many common
web-application tasks, such as email, some tasks are still easier to perform using
web applications. For example, booking travel is easier using web applications,
especially since the steps necessary — reviewing flights, hotels, and rental cars,
and then purchasing all three — are best achieved with multiple windows, access
to a calendar, and the entry of substantial personal and payment information.

The programming languages used to code basic web applications, further defined
in the following sections, include HTML (Hypertext Markup Language), CSS (Cas-
cading Style Sheets), and JavaScript. Additional features can be added to these
websites using languages like Python, Ruby, or PHP.

Starting with HTML, CSS, and JavaScript
Simple websites, such as the one shown in Figure 2-8, are coded using HTML,
CSS, and JavaScript. HTML is used to place text on the page, CSS is used to style
that text, and JavaScript is used to add interactive effects like the Twitter or Face-
book Share button that allows you to share content on social networks and updates
the number of other people who have also shared the same content. Websites

FIGURE 2-7:
Mobile devices

have increased at
a faster pace than

desktops.

Program
m

ing for
the W

eb

0005390131.INDD 27 Trim size: 7.375 in × 9.25 in June 11, 2022 2:33 PM

CHAPTER 2 Programming for the Web 27

conveying mainly static, unchanging information are often coded only in these
three languages. You will learn about each of these languages in later chapters.

Adding logic with Python, Ruby, or PHP
Websites with more advanced functionality, such as user accounts, file uploads,
and e-commerce, typically require a programming language to implement these
features. Although Python, Ruby, and PHP are not the only programming lan-
guages these sites can use, they are among the most popular. This popularity
means there are large online communities of developers who program in these
languages, freely post code that you can copy to build common features, and host
public online discussions that you can read for solutions to common issues.

Each of these languages also has popular and well documented frameworks.
A framework is a collection of generic components, such as user accounts and
authentication schemes that are reused frequently, allowing developers to build,
test, and launch websites more quickly. You can think of a framework as similar to
the collection of templates that comes with a word processor. You can design your
resume, greeting card, or calendar from scratch, but using the built-in template
for each of these document types helps you create your document faster and with
greater consistency. Popular frameworks for these languages include

 » Django and Flask for Python

 » Rails and Sinatra for Ruby

 » Zend and Laravel for PHP

FIGURE 2-8:
The lindaliukas.

com website from
2014, built using
HTML, CSS, and

JavaScript.

© John Wiley & Sons

0005390131.INDD 28 Trim size: 7.375 in × 9.25 in June 11, 2022 2:33 PM

28 BOOK 1 Getting Started with Coding

Coding Mobile Applications
Mobile applications are hot topics today, in part because mobile apps such as
WhatsApp and Instagram were acquired for billions of dollars, and mobile app
companies like Rovio, makers of Angry Birds, and King Digital, makers of Candy
Crush, generate annual revenues of hundreds of millions to billions of dollars.

When coding mobile applications, developers can either build

 » Mobile web applications, using HTML, CSS, and JavaScript.

 » Native mobile applications using a specific language. For example, Apple
devices are programmed using Objective-C or Swift, and Android devices are
programmed using Java, Kotlin, or Dart.

The choice between these two options may seem simple, but there are a few fac-
tors at play. Consider the following:

 » Companies developing mobile web applications must make sure the mobile
version works across different browsers, different screen sizes, and even
different manufacturers, such as Apple, Samsung, RIM, and Microsoft. This
results in thousands of possible phone combinations, which can greatly
increase the complexity of testing needed before launch. Native mobile apps
run only on one phone platform, so there is less variation to account for.

 » Despite running on only one platform, native mobile apps are more expensive
and take longer to build than mobile web apps.

 » Some developers have reported that mobile web applications have more
performance issues and load more slowly than native mobile applications.

 » As mentioned, users are spending more time using native mobile applications
and less time using browser-based mobile web apps.

 » Native mobile apps are distributed through an app store, which may require
approval from the app store owner, whereas mobile web apps are accessible
from any web browser. For example, Apple has a strict approval policy and
takes up to six days to approve an app for inclusion in the Apple App Store,
while Google has a more relaxed approval policy and takes two hours to
approve an app.

In one famous example of an app rejected from an app store, Apple blocked Google
from launching the Google Voice app in the Apple App Store because it overlapped
with Apple’s own phone functionality. Google responded by creating a mobile web
app accessible from any browser, and Apple could do nothing to block it.

Program
m

ing for
the W

eb

0005390131.INDD 29 Trim size: 7.375 in × 9.25 in June 11, 2022 2:33 PM

CHAPTER 2 Programming for the Web 29

If you’re making this choice, consider the complexity of your application. Sim-
ple applications, like schedules or menus, can likely be cheaply developed with a
mobile web app, whereas more complex applications, like messaging and social
networking, may benefit from having a native mobile app. Even well-established
technology companies struggle with this choice. Initially, Facebook and LinkedIn
created mobile web applications, but both have since shifted to primarily promot-
ing and supporting native mobile apps. The companies cited better speed, memory
management, and Developer Tools as some of the reasons for making the switch.

Building mobile web apps
Although any website can be viewed with a mobile browser, those websites not
optimized for mobile devices look a little weird, as if the regular website font size
and image dimensions were decreased to fit on a mobile screen. (See Figure 2-9.)
By contrast, websites optimized for mobile devices have fonts that are readable,
images that scale to the mobile device screen, and a vertical layout suitable for a
mobile phone.

Building mobile web apps is done using HTML, CSS, and JavaScript. CSS con-
trols the website appearance across devices based on the screen width. Screens
with a small width, such as those on phones, are assigned one vertically-based
layout, whereas screens with a larger width, like those on tablets, are assigned
another, horizontally-based layout. Because mobile web apps are accessed from

FIGURE 2-9:
Left: starbucks.

com not
 optimized for
mobile. Right:

starbucks.com
optimized for

mobile.

© John Wiley & Sons

0005390131.INDD 30 Trim size: 7.375 in × 9.25 in June 11, 2022 2:33 PM

30 BOOK 1 Getting Started with Coding

the browser and are not installed on the user’s device, these web apps can’t send
push notifications (alerts) to your phone, run in the background while the browser
is minimized, or communicate with other apps.

Although you can write the HTML, CSS, and JavaScript for your mobile web app from
scratch, mobile web frameworks allow you to develop from a base of pre-written
code, much like the frameworks for programming languages I mentioned earlier.
These mobile web frameworks include a collection of generic components that are
reused frequently, and allow developers to build, test, and launch websites more
quickly. Bootstrap is one such mobile web framework, which I introduce in Book 2.

Building native mobile apps
Native mobile apps can be faster, more reliable, and look more polished than
mobile web apps, as shown in Figure 2-10. Built using Java for use on Android
devices, and Objective-C or Swift for use on Apple devices (iOS), native mobile
apps must be uploaded to an app store, which may require approvals. The main
benefit of an app store is its centralized distribution, and the app may be featured
in parts of the app store that can drive downloads. Also, since native mobile appli-
cations are programs that are installed on the mobile device, they can be used in
more situations without an Internet connection. Finally, and most importantly,
users appear to prefer native mobile apps to mobile web apps by a wide margin,
one that continues to increase.

FIGURE 2-10:
Left: facebook.

com native
mobile app.

Right: facebook.
com mobile

web app.

© John Wiley & Sons

Program
m

ing for
the W

eb

0005390131.INDD 31 Trim size: 7.375 in × 9.25 in June 11, 2022 2:33 PM

CHAPTER 2 Programming for the Web 31

Native mobile apps can take advantage of features that run in the background
while the app is minimized, such as push notifications, and communicate with
other apps, and these features are not available when creating a mobile web
app. Additionally, native mobile apps perform better when handling graphics-
intensive applications, such as games. To be clear, native mobile apps offer better
performance and a greater number of features, but they require longer develop-
ment times and are more expensive to build than mobile web apps.

There is an alternative way to build a native mobile app — a hybrid approach that
involves building an app using one framework and then compiling that code for
multiple mobile operating systems. Two popular cross-platform frameworks are
Fluttter and React Native. Both allow you to write cross-platform code, either
using JavaScript (in the case of React Native) or Dart (in the case of Flutter). After
you’ve built one version of the app, you can use that version to create apps for
multiple platforms, including Android, iOS, and the web. The major advantage
to using this hybrid approach is building your app once, and then releasing it to
multiple platforms simultaneously.

Imagine you knew how to play the piano, but you wanted to also learn how to play
the violin. One way you could do this is to buy a violin and start learning how to
play. Another option is to buy a synthesizer keyboard, set the tone to violin, and
play the keyboard to sound like a violin. This is similar to the hybrid approach,
except, in this example, the piano is the language used by the cross-platform
framework, the violin is a native iOS app, and the synthesizer keyboard is React
Native or Flutter. Just like the synthesizer keyboard can be set to violin, cello, or
guitar, so too can React Native and Flutter create apps for Apple, Android, and
other platforms.

Deploying Web Applications in the Cloud
In the early days of the web and mobile apps, making your web applications and
mobile applications available to the world meant that you needed to buy, config-
ure, and maintain enough physical hardware (in the form of expensive web serv-
ers) to be able to handle your busiest days. This generally meant that anyone who
built a web app or mobile app had an enormous amount of computing power that
was going unused most of the time.

Servers are expensive to purchase, but they also require dedicated staff to install
upgrades and repair. If a web app or mobile app suddenly became so popular that
the servers hosting it slowed down during peak times, the only solution was to
purchase yet more hardware.

0005390131.INDD 32 Trim size: 7.375 in × 9.25 in June 11, 2022 2:33 PM

32 BOOK 1 Getting Started with Coding

In recent years, this dependency of backend services on physical hardware owned
by the creator of the software has been reduced or eliminated through the use of
cloud computing. Cloud computing is revolutionizing how software runs over the
web by making computing power available as a service. What that means is that
instead of the creator of an app needing to anticipate and monitor demand for
their app and increase (or decrease) the power of the computers running the app,
cloud computing makes computing power more like a utility.

For example, when you turn on multiple appliances in your home, your electric
bill goes up. But when you turn off appliances and lights, your bill goes down
rather than you always having to pay for the maximum amount of electricity you
might use.

Cloud computing, in its most basic form, is simply the use of computers you don’t
own to run computer programs.

WHAT ABOUT ALL THOSE OTHER
PROGRAMMING LANGUAGES?
(C, JAVA, AND SO ON)
You may wonder why so many languages exist, and what they all do. Programming
languages are created when a developer sees a need not addressed by the current lan-
guages. For example, Apple created the Swift programming language to make develop-
ing iPhone and iPad apps easier than Objective-C, the previous programming language
used. After they’re created, programming languages are very similar to spoken lan-
guages, like English or Latin. If developers code using the new language, then it thrives
and grows in popularity, like English has over the last six centuries; otherwise, the pro-
gramming language suffers the same fate as Latin, and becomes a dead language.

You may remember languages like C++, Java, and FORTRAN. These languages still exist
today, and they’re used in more places than you might think. C++ is preferred when
speed and performance is extremely important, and is used to program web browsers,
such as Chrome, Firefox, and Safari, along with games like Minecraft and Counter Strike.
Java is preferred by many large-scale businesses, and is also one language used to pro-
gram apps for the Android phone. Finally, FORTRAN is not as widespread or popular as
it once was, but it is still popular within the scientific community, and it powers some
functionality in the financial sector, especially at some of the largest banks in the world,
many of which continue to have old code.

As long as programmers think of faster and better ways to program, new programming
languages will continue to be created, while older languages fall out of favor.

CHAPTER 3 Becoming a Programmer 33

0005390132.INDD 33 Trim size: 7.375 in × 9.25 in June 11, 2022 2:27 PM

 Becoming a Programmer
“The way to get started is to quit talking and begin doing.”

 — WALT DISNEY

 P rogramming is a skill that can be learned by anyone. You might be a student
in college wondering how to start learning or a professional hoping to fi nd a
new job or improve your performance at your current job. In just about every

case, the best way to grasp how to code is pretty straightforward:

» Have a goal of what you would like to build.

» Actually start coding.

 In this chapter, you discover the processes every programmer follows when
programming, and the di� erent roles programmers play to create a program —
whether it ’ s a desktop application, a web application, or a mobile app. You also
fi nd out about the tools to use when coding either offl ine or online.

Chapter 3

 IN THIS CHAPTER

» Discovering the process programmers
follow when coding

» Understanding the diff erent roles
people play to create a program

» Picking tools to start coding offl ine or
online

0005390132.INDD 34 Trim size: 7.375 in × 9.25 in June 11, 2022 2:27 PM

34 BOOK 1 Getting Started with Coding

Writing Code Using a Process
Writing code is much like painting, furniture making, or cooking — it isn’t always
obvious how the end product was created. However, all programs, even mysteri-
ous ones, are created using a process. Here are two of the most popular processes
used today:

 » Waterfall: A set of sequential steps followed to create a program.

 » Agile: A set of iterative steps followed to create a program. (See Figure 3-1.)

Let me describe a specific scenario to explain how these two processes work. Imag-
ine that you want to build a restaurant app that does the following two things:

 » It displays restaurant information, such as the hours of operation
and the menu.

 » It allows users to make or cancel reservations.

Using the waterfall method, you define everything the app needs to do: You design
both the information-display and the reservation parts of the app, code the entire
app, and then release the app to users. In contrast, using the agile method, you
define, design, and code only the information-display portion of the app, release it
to users, and collect feedback. Based on the feedback collected, you then redesign
and make changes to the information-display to address major concerns. When
you’re satisfied with the information-display piece, you then define, design, and
build the reservation part of the app. Again, you collect feedback and refine the
reservation feature to address major concerns.

FIGURE 3-1:
The waterfall and

agile processes
are two different
ways of creating

software.

Becom
ing a

Program
m

er

0005390132.INDD 35 Trim size: 7.375 in × 9.25 in June 11, 2022 2:27 PM

CHAPTER 3 Becoming a Programmer 35

The agile methodology stresses shorter development times and has increased
in popularity as the pace of technological change has increased. The waterfall
approach, on the other hand, demands that the developer code and release the
entire app at once, but since completing a large project takes an enormous amount
of time, changes in technology may occur before the finished product arrives. If
you use the waterfall method to create the restaurant-app example, the technol-
ogy needed to take reservations may change by the time you get around to coding
that portion of the app. Still, the waterfall approach remains popular in certain
contexts, such as with financial and government software, where requirements
and approval are obtained at the beginning of a project, and whose documentation
of a project must be complete.

The healthcare.gov website, released in October 2013, was developed using a
waterfall style process. Testing of all the code occurred in September 2013, when
the entire system was assembled. Unfortunately, the tests occurred too late and
weren’t comprehensive, resulting in not enough time to fix errors before launch-
ing the site publicly.

Regardless of whether you pick the agile or waterfall methodology, coding an app
involves four steps:

1. Researching what you want to build

2. Designing your app

3. Coding your app

4. Debugging your code

On average, you’ll spend much more time researching, designing, and debugging
your app than doing the actual coding, which is the opposite of what you might
expect.

These steps are described in the sections that follow.

Researching what you want to build
You have an idea for a web or mobile application and usually it starts with, “Would-
n’t it be great if. . . .” Before writing any code, it helps to do some investigating.
Consider the possibilities in your project as you answer the following questions:

 » What similar website/app already exists? What technology was used
to build it?

 » Which features should I include — and more importantly exclude — in
my app?

0005390132.INDD 36 Trim size: 7.375 in × 9.25 in June 11, 2022 2:27 PM

36 BOOK 1 Getting Started with Coding

 » Which providers can help create these features? For example, companies like
Google, Yahoo, Microsoft, or others may have software that you could
incorporate into your app.

To illustrate, consider the restaurant app I discussed earlier. When conducting
market research and answering the three preceding questions, using Google to
search is usually the best choice. Searching for restaurant reservation app shows
existing restaurant apps that include OpenTable, Yelp, and Reserve with Google.
OpenTable, for example, allows users to reserve a table from restaurants displayed
on a map using Google Maps.

In the restaurant app example, you want to research exactly what kinds of restau-
rant information you need to provide and how extensive the reservation system
portion of the app should be. In addition, for each of these questions, you must
decide whether to build the feature from scratch or to use an existing provider.
For example, when providing restaurant information, do you want to show only
name, cuisine, address, telephone number, and hours of operation, or do you also
want to show restaurant menus? When showing restaurant data, do you prefer
extensive coverage of a single geographical area, or do you want national coverage
even if that means you cover fewer restaurants in any specific area?

Designing your app
Your app’s visual design incorporates all of your research and describes exactly
how your users will interact with every page and feature. Because your users will
be accessing your site from desktop, laptop, and mobile devices, you want to make
sure you create a responsive (multi-device) design and carefully consider how
your site will look on all these devices. At this stage of the process, a general web
designer, illustrator, or user interface specialist will help create visual designs for
the app.

Many responsive app designs and templates can be found on the Internet and used
freely. For specific examples, see Book 2, Chapter 6, or search Google using the
query responsive website design examples.

There are two types of visual designs (see Figure 3-2):

 » Wireframes: These are low-fidelity website drawings that show structurally
the ways your content and your site’s interface interact.

 » Mockups: These are high-fidelity website previews that include colors,
images, and logos.

Becom
ing a

Program
m

er

0005390132.INDD 37 Trim size: 7.375 in × 9.25 in June 11, 2022 2:27 PM

CHAPTER 3 Becoming a Programmer 37

Balsamiq is a popular tool used to create wireframes, and Photoshop is a popular
tool to create mockups. However, you can avoid paying for additional software by
using PowerPoint (PC), Keynote (Mac), or the free and open-source OpenOffice to
create your app designs.

Professional designers create mockups with Adobe Photoshop and use layers,
which isolate individual site elements. A properly created layered Photoshop file
helps developers more easily write the code for those website elements.

In addition to visual design, complex apps also have technical designs and deci-
sions to finalize. For example, if your app stores and retrieves user data, you need
a database to perform these tasks. Initial decisions here include the type of data-
base to add, the specific database provider to use, and the best way to integrate the
database into the application. Additionally, developers must design the database
by choosing the fields to store. The process is similar to the process of creat-
ing a spreadsheet to model a company’s income — you first decide the number
of columns to use, whether you’ll include fields as a percentage of revenue or a
numerical value, and so on. Similarly, other features like user logins or credit card
payments all require you to make choices for how to implement these features.

Coding your app
With research and design done, you’re now ready to code your application. In
everyday web development, you begin by choosing which pages and features to
start coding.

FIGURE 3-2:
Wireframes

(left) are simple
site renderings,

whereas
 mockups (right)

show full site
previews.

© John Wiley & Sons

0005390132.INDD 38 Trim size: 7.375 in × 9.25 in June 11, 2022 2:27 PM

38 BOOK 1 Getting Started with Coding

Knowing how much to code and when to stop can be tough. Developers call the
first iteration of an app the minimum viable product — meaning you’ve coded just
enough to test your app with real users and receive feedback. If no one likes your
app or thinks it’s useful, it’s best to find out as soon as possible.

An app is the sum of its features, and for any individual feature, it’s a good idea to
write the minimum code necessary and then add to it. For example, your restau-
rant app may have a toolbar at the top of the page with drop-down menus. Instead
of trying to create the whole menu at once, it’s better to just create the main menu
and then later create the drop-down menu.

Projects can involve frontend developers, who write code to design the appear-
ance of the app, and backend developers, who code the logic and create databases.
A “full stack developer” is one who can do both frontend and backend develop-
ment. On large projects, it’s more common to see specialized frontend and backend
developers, along with project managers who ensure everyone is communicating
with each other and adhering to the schedule so that the project finishes on time.

Debugging your code
Debugging is going to be a natural part of creating an application. The computer
always follows your instructions exactly, yet no program ever works as you expect
it to. Debugging can be frustrating. Three of the more common mistakes to watch
out for are

 » Syntax errors: These are errors caused by misspelling words/commands, by
omitting characters, or by including extra characters. Some languages, such as
HTML and CSS, are forgiving of these errors, and your code will still work even
with some syntax errors; whereas other languages, such as JavaScript, are
more particular, and your code won’t run when even one such error
is present.

 » Logic errors: These are harder to fix. With logic errors, your syntax is correct,
but the program behaves differently than you expected, such as when the
prices of the items in the shopping cart of an e-commerce site don’t add up to
the correct total.

 » Display errors: These are common mainly in web applications. With display
errors, your program might run and work properly, but it won’t appear
properly. Web apps today run on many devices, browsers, and screen sizes,
so extensive testing is the only way to catch these types of errors.

The word debugging was popularized in the 1940s by Grace Hopper, who fixed a
computer error by literally removing a moth from a computer.

Becom
ing a

Program
m

er

0005390132.INDD 39 Trim size: 7.375 in × 9.25 in June 11, 2022 2:27 PM

CHAPTER 3 Becoming a Programmer 39

Picking Tools for the Job
Now you’re ready to actually start coding. You can develop websites either offline,
by working with an editor, or online, with a web service such as CodeSandbox.
io. CodeSandbox.io is an example of a code playground. Other code playgrounds
include JSFiddle, Codepen, JSBin, PlayCode, and Plunker. Each code playground
has its own strengths, and it’s a good idea to experiment with several of them.

As of this writing, each of these code sandboxes is free to use (at least for the basic
features). Because it’s the web, however, that’s subject to change at any time.
Fortunately, almost any code sandbox will work fine for getting started with cod-
ing. CodeSandbox is one of the newer options, and it features support for version
control as well as for collaboration and many modern web programming tools.

Especially if you haven’t done any coding before, I strongly recommend that you
code with access to an Internet connection using CodeSandbox.io or another code
playground. That way, you don’t have to download and install any software to
start coding, you don’t have to find a web host to serve your web pages, and you
don’t need to upload your web page to a web host.

Working offline
To code offline, you need the following:

 » Editor: This refers to the text editor you use to write all the code this book
covers, including HTML, CSS, JavaScript, Ruby, Python, and PHP.

The editor you use will depend on the type of computer you have:

• PC: To get started, use the preinstalled Notepad or install Notepad++, a
free editor available for download at notepad-plus-plus.org. A popular
(and free) professional code editor is Microsoft’s Visual Studio Code (also
known as VSCode), which can be downloaded from https://code.
visualstudio.com.

• Mac: Use the preinstalled TextEdit or install TextMate 2.0, an open-source
editor available for download at macromates.com. Visual Studio Code also
works on macOS.

 » Browser: Many browsers exist, including Chrome, Firefox, Safari, Microsoft
Edge, and Opera.

The latest version of any of the web browsers listed here will work fine for this
book. In most cases, the screenshots in this book were taken using Google
Chrome.

0005390132.INDD 40 Trim size: 7.375 in × 9.25 in June 11, 2022 2:27 PM

40 BOOK 1 Getting Started with Coding

 » Web host: In order for your website code to be accessible to everyone on the
Internet, you need to host your website online. Freemium web hosts include
Weebly (www.weebly.com) and Wix (www.wix.com); these sites offer basic
hosting but charge for additional features such as additional storage or
removal of ads. Google provides free web hosting through Google Sites
(http://sites.google.com) and Google Drive (http://drive.google.com).

Working online with CodeSandbox.io
CodeSandbox.io is one of the easiest ways to start coding online and to share your
creations with the world. The site doesn’t require you to install a code editor or
sign up for a web host before you start coding, and it’s free to individual users like
you. Once you’ve visited CodeSandbox for the first time, it’s also possible to use
it offline.

Follow these steps to get started using CodeSandbox:

1. Open https://codesandbox.io in your web browser. If you’ve never
visited the site before, you’ll see a screen similar to Figure 3-3.

FIGURE 3-3:
CodeSandbox.io’s

homepage

© John Wiley & Sons

Becom
ing a

Program
m

er

0005390132.INDD 41 Trim size: 7.375 in × 9.25 in June 11, 2022 2:27 PM

CHAPTER 3 Becoming a Programmer 41

2. Click the button labeled Start Coding for Free. The Welcome screen,
shown in Figure 3-4, will open.

3. Click Create Sandbox to get to the list of templates you can choose from
to make a project, as shown in Figure 3-5.

4. For your first project, find the template called static and click it to open a
basic project, as shown in Figure 3-6.

You’re now ready to start coding!

FIGURE 3-4:
CodeSandbox.io’s

welcome page

© John Wiley & Sons

FIGURE 3-5
The template

selection screen
in CodeSandbox

© John Wiley & Sons

0005390132.INDD 42 Trim size: 7.375 in × 9.25 in June 11, 2022 2:27 PM

42 BOOK 1 Getting Started with Coding

FIGURE 3-6
A new static

project in
CodeSandbox

© John Wiley & Sons

2
0005390105.INDD 43 Trim size: 7.375 in × 9.25 in June 11, 2022 4:37 PM

Basic Web
Coding

Contents at a Glance
CHAPTER 1: Exploring Basic HTML . 45

CHAPTER 2: Getting More Out of HTML . 63

CHAPTER 3: Getting Stylish with CSS . 79

CHAPTER 4: Next Steps with CSS . 101

CHAPTER 5: Responsive Layouts with Flexbox 123

CHAPTER 6: Styling with Bootstrap . 143

0005390105.INDD 44 Trim size: 7.375 in × 9.25 in June 11, 2022 4:37 PM

CHAPTER 1 Exploring Basic HTML 45

0005390134.INDD 45 Trim size: 7.375 in × 9.25 in June 11, 2022 2:36 PM

 Exploring Basic HTML
“A chain is no stronger than its weakest link, and life is after all a chain.”

 — WILLIAM JAMES

 H TML, or HyperText Markup Language , is used in every single web page you
browse on the Internet. Because the language is so foundational, a good
fi rst step for you is to start learning HTML.

 In this chapter, you discover the HTML basics, including basic HTML structure
and how to make text appear in the browser. Next, you fi nd out how to format
text and display images in a web browser. Finally, you create your own, and pos-
sibly fi rst, HTML website. You may fi nd that HTML without any additional styling
appears to be very plain, and doesn’t look like the websites you normally visit
on the Internet. After you code a basic website using HTML, you will use addi-
tional languages in later chapters to add even more style and functionality to your
websites.

Chapter 1

 IN THIS CHAPTER

» Learning the purpose of HTML

» Understanding basic HTML structure

» Adding headlines, paragraphs,
hyperlinks, and images

» Formatting web page text

» Creating a basic HTML website

0005390134.INDD 46 Trim size: 7.375 in × 9.25 in June 11, 2022 2:36 PM

46 BOOK 2 Basic Web Coding

What Does HTML Do?
HTML is the language used to give structure to a website. HTML was originally
designed for creating structured documents, such as a letter, a book, or a scien-
tific paper you might create using a word processor. Whether you use Microsoft
Word or WordPad, Apple Pages, or another application, your word processor has a
main window in which you type text content, and a menu or toolbar with multiple
options to structure and style that text (see Figure 1-1). Using your word proces-
sor, you can create headings and sub-headings, write paragraphs, insert pictures,
create footers, and so forth. Similarly, you can use HTML to structure text that
appears on websites.

Markup language documents, like HTML documents, are just plain text files.
Unlike documents created with a word processor, you can view an HTML file using
any web browser on any type of computer.

HTML files are plain text files that appear styled only when viewed with a browser.
By contrast, the rich text file format used by word processors adds unseen for-
matting commands to the file. As a result, HTML written in a rich text file won’t
render correctly in the browser.

FIGURE 1-1:
The layout of a

word processor.

© John Wiley & Sons

Exploring Basic H
TM

L

0005390134.INDD 47 Trim size: 7.375 in × 9.25 in June 11, 2022 2:36 PM

CHAPTER 1 Exploring Basic HTML 47

Understanding HTML Structure
HTML follows a few rules to ensure that a website always displays in the same way
no matter which browser or computer is used. Once you understand these rules,
you’ll be better able to predict how the browser will display your HTML pages, and
to diagnose your mistakes when the browser displays your web page differently
than you expected.

You can use any browser to display your HTML files, though I strongly recom-
mend you download, install, and use Chrome or Firefox. Both of these browsers
are updated often, are generally fast, and support and consistently render the
widest variety of HTML tags.

Identifying elements
The basic building blocks of HTML are called elements. Elements give meaning and
structure to web pages. The browser recognizes an element if the following three
conditions exist:

 » The element has a name that’s a letter, word, or phrase with special meaning.
For example, h1 is an element recognized by the browser to mark text as a
header. By default, a header will display in a browser with bold text and an
enlarged font size.

 » The element’s name is enclosed with a left-angle bracket (<) and right-angle
bracket (>). An element enclosed in this way is called a tag (such as <h1>).

 » An opening tag (<element>) is followed by a closing tag (</element>). Note
that the closing tag differs from the opening tag by the addition of a forward
slash after the first left bracket and before the element (such as </h1>).

Some HTML elements are self-closing, and don’t need separate closing tags,
only a forward slash in the opening tag. For more about this topic, see the
section, “Getting Familiar with Common HTML Tasks and Elements,” later in
this chapter.

When all three conditions are met, web browsers will display the text between the
opening and closing tags using some predefined style, or the browser will take
some other action based on the content of the element. If one of these conditions
is not met, the browser will try to figure out what you meant to do, but the result
may not be what you expect.

0005390134.INDD 48 Trim size: 7.375 in × 9.25 in June 11, 2022 2:36 PM

48 BOOK 2 Basic Web Coding

For a better understanding of these three conditions, see the following example
code:

<h1>This is a big heading with all three conditions</h1>

h1 This is text without the < and > sign surrounding the tag /h1

<rockstar>This is text with a tag that has no meaning to the browser</rockstar>

This is regular text

You can see how a browser displays this code in Figure 1-2.

The browser applies a header effect to “This is a big heading with all three condi-
tions” because h1 is a header element and all three conditions for a valid HTML
element exist:

 » The browser recognizes the h1 element.

 » The h1 element name is surrounded with a left- (<) and right-angle bracket (>).

 » The opening tag (<h1>) is followed by text and then a closing tag (</h1>).

Notice how the h1 tags do not display in the heading. The browser will never dis-
play the actual text of a tag in a properly formatted HTML element.

The remaining lines of code display as plain text because they each are missing
one of the conditions. On the second line of code, the <h1> tag is missing the left
and right brackets, which violates the second condition. The third line of code
violates the first condition because rockstar is not a recognized HTML element.
(Once you finish this chapter, however, you may feel like a rockstar!) Finally, the
fourth line of code displays as plain text because it has no opening tag preceding
the text, and no closing tag following the text, which violates the third condition.

Every left-angle bracket must be followed after the element name with a right-
angle bracket. In addition, every opening HTML tag must be followed with a clos-
ing HTML tag.

FIGURE 1-2:
The example

code displayed in
a browser.

© John Wiley & Sons

Exploring Basic H
TM

L

0005390134.INDD 49 Trim size: 7.375 in × 9.25 in June 11, 2022 2:36 PM

CHAPTER 1 Exploring Basic HTML 49

Over 100 HTML elements exist, and you’ll learn about the most important ele-
ments in the following sections. For now, don’t worry about memorizing individ-
ual element names.

HTML is a forgiving language, and browsers may properly render it even if you’re
missing pieces of code, like a closing tag. However, if you leave in too many errors,
your page won’t display correctly.

Featuring your best attribute
Attributes provide additional ways to modify the behavior of an element or spec-
ify additional information. Usually, but not always, you set an attribute equal to
a value enclosed in quotes. Here’s an example using the title attribute and the
hidden attribute:

<h1 title="United States of America">USA</h1>

<h1 hidden>New York City</h1>

The title attribute provides advisory information about the element that appears
when the mouse cursor hovers over the affected text (in other words, a tooltip). In
this example, the word USA is styled as a header using the <h1> tag with a title
attribute set equal to "United States of America". In a browser, when you
place your mouse cursor over the word USA, the text United States of America
displays as a tooltip. (See Figure 1-3.)

The hidden attribute indicates that the element is not relevant, so the browser
won’t render any elements with this attribute. In this example, the words New
York City never appear in the browser window because the hidden attribute is in

FIGURE 1-3:
A heading with

title attribute has
a tooltip.

© John Wiley & Sons

0005390134.INDD 50 Trim size: 7.375 in × 9.25 in June 11, 2022 2:36 PM

50 BOOK 2 Basic Web Coding

the opening <h1> tag. More practically, hidden attributes are often used to hide
form fields from users so they can’t edit them. For example, an RSVP website may
want to include but hide from users’ view a date and time field.

You don’t have to use one attribute at a time. You can include multiple attributes
in the opening HTML tag, like this:

<h1 title="United States of America" lang="en">USA</h1>

This example uses the title attribute and the lang attribute. The lang attribute
is set to "en" to specify that the content of the element is in the English language.

When including multiple attributes, separate each attribute with one space.

Keep the following rules in mind when using attributes:

 » If using an attribute, always include the attribute in the opening HTML tag.

 » Multiple attributes can modify a single element.

 » If the attribute has a value, then use the equals sign (=) and enclose the value
in quotes.

Standing head, title, and body
above the rest
HTML files are structured in a specific way so browsers can correctly interpret the
file’s information. Every HTML file has the same five elements: four whose open-
ing and closing tags appear once and only once, and one that appears once and
doesn’t need a closing tag. These are as follows:

 » !DOCTYPE html must appear first in your HTML file, and it appears only once.
This tag lets browsers know which version of HTML you’re using. In this case,
it’s the latest version, HTML5. No closing tag is necessary for this element.

 » html represents the root or beginning of an HTML document. The <html> tag
is followed by first an opening and closing <head> tag, and then an opening
and closing <body> tag.

 » head contains other elements that specify general information about the
page, including the title.

 » title defines the title in the browser’s title bar or page tab.

Search engines like Google use title to rank websites in search results.

Exploring Basic H
TM

L

0005390134.INDD 51 Trim size: 7.375 in × 9.25 in June 11, 2022 2:36 PM

CHAPTER 1 Exploring Basic HTML 51

 » body contains the main content of an HTML document. Text, images, and
other content listed between the opening and closing body tag are displayed
by the browser.

Here is an example of a properly structured HTML file with these five elements
(see Figure 1-4):

<!DOCTYPE html>

<html>

<head>

 <title>Favorite Movie Quotes</title>

</head>

<body>

 <h1>"I'm going to make him an offer he can't refuse"</h1>

 <h1>"Houston, we have a problem"</h1>

 <h1>"May the Force be with you"</h1>

 <h1>"You talking to me?"</h1>

</body>

</html>

Using spaces to indent and separate your tags is highly recommended. It helps you
and others read and understand your code. These spaces are only for you and any
other human that reads the code, however. Your browser won’t care. As far as your
browser is concerned, you could run all your HTML together on one line. (Don’t do
this, though. The next person who reads your code will be most unhappy.)

The example had many h1 elements but only one opening and closing html, head,
title, and body tag.

FIGURE 1-4:
A web page

 created with basic
HTML elements.

© John Wiley & Sons

0005390134.INDD 52 Trim size: 7.375 in × 9.25 in June 11, 2022 2:36 PM

52 BOOK 2 Basic Web Coding

Getting Familiar with Common HTML
Tasks and Elements

Your browser can interpret over a hundred HTML elements, but most websites
use just a few elements to do most of the work within the browser. To understand
this, let’s try a little exercise: Think of your favorite news website. Have one in
mind? Now connect to the Internet, open your browser, and type the address of
that website. Bring this book with you, and take your time — I can wait!

In the event you can’t access the Internet right now, take a look at the article from
The New York Times, found in Figure 1-5.

Look closely at the news website on your screen (or look at the one in Figure 1-5).
Four HTML elements are used to create the majority of the page:

 » Headlines: Headlines are displayed in bold and have a larger font size than
the surrounding text.

 » Paragraphs: Each story is organized into paragraphs with whitespace dividing
each paragraph.

HISTORY OF HTML
A computer engineer, Tim Berners-Lee, wanted academics to easily access academic
papers and collaborate with each other. To accomplish this goal, in 1989 Mr. Berners-
Lee created the first version of HTML, which had the same hyperlink elements you find
in this chapter, and hosted the first website in 1991. Unlike with most other computer
software, Mr. Berners-Lee made HTML available royalty-free, allowing widespread
adoption and use around the world. Shortly after creating the first iteration of HTML,
Mr. Berners-Lee formed the W3C (World Wide Web Consortium), which is a group of
people from academic institutions and corporations who define and maintain the HTML
language. The W3C continues to develop the HTML language and has defined more
than 100 HTML elements, far more than the 18 that Mr. Berners-Lee originally created.
The latest version of HTML is HTML5, and it has considerable functionality. In addition to
supporting elements from previous HTML versions, HTML5 allows developers to write
code for browsers to play audio and video files, easily locate a user’s physical location,
and build charts and graphs.

Exploring Basic H
TM

L

0005390134.INDD 53 Trim size: 7.375 in × 9.25 in June 11, 2022 2:36 PM

CHAPTER 1 Exploring Basic HTML 53

 » Hyperlinks: The site’s homepage and article pages have links to other stories,
and links to share the story on social networks like Facebook and Twitter.

 » Images: Writers place images throughout the story, but also look for site
images like icons and logos.

The following sections explain how to write code to create these common HTML
features.

Writing headlines
Use headlines to describe a section of your page. HTML has six levels of headings
(see Figure 1-6):

 » h1, which is used for the most important headings

 » h2, which is used for subheadings

 » h3 to h6, which are used for less important headings

FIGURE 1-5:
The New York
Times article

with headline,
paragraphs,

hyperlinks, and
images.

© John Wiley & Sons

0005390134.INDD 54 Trim size: 7.375 in × 9.25 in June 11, 2022 2:36 PM

54 BOOK 2 Basic Web Coding

The browser renders h1 headings with a font size larger than h2’s, which in turn
is larger than h3’s. Headings start with an opening heading tag, the heading text,
and then the closing heading tag, as follows:

<h1>Heading text here</h1>

Here are some additional code examples showing various headings:

<h1>Heading 1: "I'm going to make him an offer he can't refuse"</h1>

<h2>Heading 2: "Houston, we have a problem"</h2>

<h3>Heading 3: "May the Force be with you"</h3>

<h4>Heading 4: "You talking to me?"</h4>

<h5>Heading 5: "I'll be back"</h5>

<h6>Heading 6: "My precious"</h6>

Always close what you open. With headings, remember to include a closing head-
ing tag, such as </h1>.

Organizing text in paragraphs
To display text in paragraphs, you can use the p element: Place an opening <p>
tag before the paragraph, and a closing tag after it. The p element takes text and
inserts a line break after the closing tag.

To insert a single line break after any element, use the
 tag. The
 tag is
self-closing so no closing tag is needed, and </br> isn’t used.

FIGURE 1-6:
Headings created

using elements
h1 through h6.

© John Wiley & Sons

Exploring Basic H
TM

L

0005390134.INDD 55 Trim size: 7.375 in × 9.25 in June 11, 2022 2:36 PM

CHAPTER 1 Exploring Basic HTML 55

Paragraphs start with an opening paragraph tag, the paragraph text, and then the
closing paragraph tag:

<p>Paragraph text here</p>

Here are some additional examples of coding a paragraph (see Figure 1-7):

<p>Armstrong: Okay. I'm going to step off the LM now.</p>

<p>Armstrong: That's one small step for man; one giant leap for mankind.</p>

<p>Armstrong: Yes, the surface is fine and powdery. I can kick it up loosely

with my toe. It does adhere in fine layers, like powdered

charcoal, to the sole and sides of my boots.</p>

Linking to your (heart’s) content
Hyperlinks are one of HTML’s most valuable features. Web pages that include
hyperlinked references to other sources allow the reader to access those sources
with just a click, a big advantage over printed pages.

Hyperlinks have two parts:

 » Link destination: The web page the browser visits once the link is clicked.

To define the link destination in HTML, start with an opening anchor tag (<a>)
that has an href attribute. Then add the value of the href attribute, which is
the website the browser will go to once the link is clicked.

 » Link description: The words used to describe the link.

FIGURE 1-7:
Text displayed in

paragraphs using
the p element.

© John Wiley & Sons

0005390134.INDD 56 Trim size: 7.375 in × 9.25 in June 11, 2022 2:36 PM

56 BOOK 2 Basic Web Coding

To create a hyperlink, add text to describe the link after the opening anchor tag,
and then add the closing anchor tag.

The resulting HTML should look something like this:

Link description

Here are three more examples of coding a hyperlink (see Figure 1-8):

Purchase anything

Rent a place to stay from a local host

Tech industry blog

When rendering hyperlinks, the browser, by default, will underline the link and
color the link blue. To change these default properties, see Book 2, Chapter 3.

The <a> tag does not include a line break after the link.

Google’s search engine ranks web pages partly based on the words used to describe
a web page between the opening and closing <a> tags. This improved on search
results from previous methods, which relied primarily on analyzing page content.

Adding images
Images spruce up otherwise plain HTML text pages. To include an image on your
web page — your own or someone else’s — you must obtain the image’s web
address. Websites like Google Images (images.google.com) and Flickr (www.
flickr.com) allow you to search for online images based on keywords. When you
find an image you like, right-click on the image and select Copy Image URL.

FIGURE 1-8:
Three hyperlinks

created using the
a element.

© John Wiley & Sons

Exploring Basic H
TM

L

0005390134.INDD 57 Trim size: 7.375 in × 9.25 in June 11, 2022 2:36 PM

CHAPTER 1 Exploring Basic HTML 57

Make sure you have permission to use an online image. Flickr has tools that allow
you to search for images with few to no license restrictions. Additionally, websites
pay to host images and incur charges when a website directly links to an image.
For this reason, some websites do not allow hotlinking, or linking directly from
third-party websites to an image.

If you want to use an image that has not already been uploaded to the Internet,
you can use a site like www.imgur.com to upload the image. After uploading, you
will be able to copy the image URL and use it in your HTML.

To include an image, start with an opening image tag , define the source of
the image using the src attribute, and include a forward slash at the end of the
opening tag to close the tag (see Figure 1-9):

The image tag is self-closing, which means a separate closing image tag
is not used. The image tag is one of the exceptions to the always-close-what-
you-open rule!

FIGURE 1-9:
Images of

Grace Hopper,
a U.S. Navy

rear admiral,
and Bill Gates,
the cofounder

of Microsoft,
rendered using

.

Bill Gates photo credit https://commons.wikimedia.org/wiki/
File:Dts_news_bill_gates_wikipedia.JPG

0005390134.INDD 58 Trim size: 7.375 in × 9.25 in June 11, 2022 2:36 PM

58 BOOK 2 Basic Web Coding

Styling Me Pretty
Now that you know how to display basic text and images in a browser, you should
understand how to further customize and style them. HTML has basic capabilities
to style content, and later chapters show you how to use CSS to style and position
your content down to the last pixel. Here, however, I explain how to do some basic
text formatting in HTML, and then you’ll build your first web page.

Highlighting with bold, italics, underline,
and strikethrough
HTML allows for basic text styling using the following elements:

 » strong marks important text, which the browser displays as bold

 » em marks emphasized text, which the browser displays as italicized

 » u marks text as underlined

 » del marks deleted text, which the browser displays as strikethrough

The underline element is not typically used for text because it can lead to confu-
sion. Hyperlinks, after all, are underlined by default.

To use these elements, start with the element’s opening tag, followed by the
affected text, and then a closing tag, as follows:

<element name>Affected text</element name>

Here are some examples (see Figure 1-10):

Grace Hopper, a US Navy rear admiral , popularized the term

"debugging."

Bill Gates co-founded a company called Microsoft.

Stuart Russell and Peter Norvig wrote a book called <u>Artificial Intelligence:

A Modern Approach</u>.

Mark Zuckerberg created a website called Nosebook Facebook.

Steve Jobs co-founded a company called Peach Apple

You can apply multiple effects to text by using multiple HTML tags. Always close
the most recently opened tag first and then the next most recently used tag. For
an example, look at the last line of code in Figure 1-10 and the tags applied to the
word Peach.

Exploring Basic H
TM

L

0005390134.INDD 59 Trim size: 7.375 in × 9.25 in June 11, 2022 2:36 PM

CHAPTER 1 Exploring Basic HTML 59

Raising and lowering text with
superscript and subscript
Reference works like Wikipedia and technical papers often use superscript for foot-
notes and subscript for chemical names. To apply these styles, use the elements

 » sup for text marked as superscript

 » sub for text marked as subscript

To use these elements, start with the element’s opening tag, followed by the
affected text, and then a closing tag as follows:

<element name>Affected text</element name>

Here are two examples (see Figure 1-11):

<p>The University of Pennsylvania announced to the public the first

electronic general-purpose computer, named ENIAC, on February 14,

1946.¹</p>

<p>The Centers for Disease Control and Prevention recommends drinking

several glasses of H₂0 per day.</p>

When using the superscript element to mark footnotes, use an <a> anchor tag to
link directly to the footnote so the reader can view the footnote easily.

FIGURE 1-10:
Sentences

formatted using
bold, italics,

underline, and
strikethrough.

© John Wiley & Sons

FIGURE 1-11:
Text formatted to
show superscript

and subscript
effects.

© John Wiley & Sons

0005390134.INDD 60 Trim size: 7.375 in × 9.25 in June 11, 2022 2:36 PM

60 BOOK 2 Basic Web Coding

Building Your First Website Using HTML
Now that you understand the basics, you can put that knowledge to use. You can
practice directly on your computer by following these steps:

1. Open any text editor, such as Notepad (on a PC) or TextEdit (on a Mac).

On a PC running Microsoft Windows, you can access Notepad by clicking the
Start button and selecting Run; in the search box, type Notepad.

On a Macintosh, select the Spotlight Search (hourglass icon on the top-right
corner of the toolbar), and type TextEdit.

2. Enter into the text editor any of the code samples you have seen in this
chapter or create your own combination of the code.

3. Once you have finished, save the file and make sure to include .html at
the end of the filename.

4. Double-click the file to open it in your default browser.

Visual Studio Code is a specialized text editor created specifically for writing code.
You can download it (for macOS, Windows, or Linux) at code.visualstudio.com.

If you want to practice your HTML online, you can use the CodeSandbox.io web-
site. It’s a code playground that you can use to code websites and web apps with-
out installing or downloading any software. (See Figure 1-12.) Practice all the tags
(and a few more) that you find in this chapter by following these steps:

1. Open your browser and go to codesandbox.io.

2. If you have a codesandbox account, sign in.

Signing up is discussed in Book 1, Chapter 3.

Creating an account allows you to save your progress as you work, but it’s
optional.

3. Create a new sandbox using the static template.

4. Edit the index.html file using the elements you've learned about in this
chapter.

5. Save your code by pressing CMD+S (on Windows) or CTL+S (on macOS)
whenever you want to see a preview.

Exploring Basic H
TM

L

0005390134.INDD 61 Trim size: 7.375 in × 9.25 in June 11, 2022 2:36 PM

CHAPTER 1 Exploring Basic HTML 61

FIGURE 1-12:
The Code

Sandbox.io
interface

© John Wiley & Sons

0005390134.INDD 62 Trim size: 7.375 in × 9.25 in June 11, 2022 2:36 PM

CHAPTER 2 Getting More Out of HTML 63

0005390135.INDD 63 Trim size: 7.375 in × 9.25 in June 11, 2022 2:41 PM

 Getting More Out
of HTML

“I’m controlling, and I want everything orderly, and I need lists.”

 — SANDRA BULLOCK

 E ven your best content needs structure to increase readability for your users.
This book is no exception. Consider the “In This Chapter” bulleted list of
items at the top of this chapter, or the table of contents at the beginning of

the book. Lists and tables make things easier for you to understand at a glance.
By mirroring the structure you fi nd in a book or magazine, web elements let you
precisely defi ne how content, such as text and images, appear on the web.

 In this chapter, you fi nd out how to use HTML elements such as lists, tables, and
forms, and how to know when these elements are appropriate for your content.

Chapter 2

 IN THIS CHAPTER

» Organizing content in a web page

» Writing HTML lists

» Creating HTML tables

» Filling out HTML forms

0005390135.INDD 64 Trim size: 7.375 in × 9.25 in June 11, 2022 2:41 PM

64 BOOK 2 Basic Web Coding

Organizing Content on the Page
Readability is the most important principle for organizing and displaying content
on your web page. Your web page should allow visitors to easily read, understand,
and act on your content. The desired action you have in mind for your visitors
may be to click on and read additional content, share the content with others, or
perhaps make a purchase. Poorly organized content will lead users to leave your
website before engaging with your content long enough to complete the desired
action.

Figures 2-1 and 2-2 show two examples of website readability. Figure 2-1 shows
a search at Craigslist.org for an apartment in Portland, Oregon. The search results
are structured like a list, and you can limit the content displayed using the filters
and search forms. Each listing has multiple attributes, such as a description, the
number of bedrooms, the neighborhood, and, most importantly, the price. Com-
paring similar attributes from different listings takes some effort — notice the
jagged line your eye must follow.

FIGURE 2-1:
A Craigslist.

org listing of
apartments in

Portland.

© John Wiley & Sons

G
etting M

ore O
ut

of H
TM

L

0005390135.INDD 65 Trim size: 7.375 in × 9.25 in June 11, 2022 2:41 PM

CHAPTER 2 Getting More Out of HTML 65

Figure 2-2 shows the results of a search at Kayak.com for flights from Portland to
London. As with the Craigslist search results, you can limit the content displayed
using the filters and search forms. Additionally, each flight listing has multiple
attributes, including price, carrier, departure time, landing time, and duration,
which are similar to the attributes of the apartment listings. Comparing similar
attributes from different flights is much easier with the Kayak layout, however.
Notice how the content, in contrast to Craigslist’s, has a layout that allows your
eye to follow a straight line down the page, so you can easily rank and compare
different options.

Don’t underestimate the power of simplicity when displaying content. Although
Craigslist’s content layout may look almost too simple, the site is one of the top
50 most visited websites in the world. Reddit.com is another example of a top
50 website with a simple layout.

Before displaying your content, ask yourself a few questions first:

 » Does your content have one attribute with related data, or does it follow
sequential steps? If so, consider using lists.

 » Does your content have multiple attributes suitable for comparison? If
so, consider using tables.

 » Do you need to collect input from the visitor? If so, consider using forms.

FIGURE 2-2:
A Kayak.com

listing of flights
from Portland to

London.

© John Wiley & Sons

0005390135.INDD 66 Trim size: 7.375 in × 9.25 in June 11, 2022 2:41 PM

66 BOOK 2 Basic Web Coding

Don’t let these choices overwhelm you. Pick one, see how your visitors react, and
if necessary change how you display the content. The process of evaluating one
version against another version of the same web page is called A/B testing.

Listing Data
Websites have used lists for decades to convey related or hierarchical information.
In Figure 2-3, you can see an older version of Yahoo.com that uses bulleted lists
to display various categories and today’s Food.com recipe page, which uses lists
to display various ingredients.

Lists begin with a symbol, an indentation, and then the list item. The symbol used
can be a number, letter, bullet, or no symbol at all.

Creating ordered and unordered lists
Here are the two most popular types of lists:

 » Ordered: Ordered lists are numerical or alphabetical lists in which the
sequence of list items is important.

 » Unordered: These lists are usually bulleted lists in which the sequence of list
items has no importance.

You create lists by specifying the type of list as ordered or unordered and then
adding each list item using the li tag, as shown in the following steps:

FIGURE 2-3:
Yahoo!’s 1997

homepage using
an unordered list

(left) and Food.
com’s 2022 recipe
using an ordered

list (right).

© John Wiley & Sons

G
etting M

ore O
ut

of H
TM

L

0005390135.INDD 67 Trim size: 7.375 in × 9.25 in June 11, 2022 2:41 PM

CHAPTER 2 Getting More Out of HTML 67

1. Specify the type of list.

Add opening and closing list tags that specify either an ordered (ol) or
unordered (ul) list, as follows:

• ol to specify the beginning and end of an ordered list

• ul to specify the beginning and end of an unordered list

2. Add an opening and closing tag (that is, and) for each item in
the list.

For example, here’s an ordered list:

 List item #1
 List item #2
 List item #3

Nesting lists
Additionally, you can nest lists within lists. A list of any type can be nested inside
another list; to nest a list, replace the list item tag with a list type tag, either
 or .

The example code in Figure 2-4 shows various list types including a nested list.
(See Figures 2-4 and 2-5.)

FIGURE 2-4:
Coding an

ordered list and a
nested list.

0005390135.INDD 68 Trim size: 7.375 in × 9.25 in June 11, 2022 2:41 PM

68 BOOK 2 Basic Web Coding

The <h1> tag shown in this code sample is not necessary to create a list. I use it
here only to name each list.

Every opening list or list item tag must be followed with a closing list or list
item tag.

Putting Data in Tables
Tables help further organize text and tabular data on the page. (See Figure 2-6.)
The table format is especially appropriate when displaying pricing information,
comparing features across products, or in any situation where the columns or
rows share a common attribute. Tables act as containers and can hold and display
any type of content, including text, such as heading and lists and images. For
example, the table in Figure 2-6 includes additional content and styling like icons
at the top of each column, gray background shading, and rounded buttons. This
content and styling can make tables you see online differ from tables you ordi-
narily see in books.

Avoid using tables to create page layouts. In the past, developers created multi-
column layouts using tables, but today developers use CSS (see Book 2, Chapters 3
and 4) for layout-related tasks.

FIGURE 2-5:
The page

produced by
the code in
Figure 2-4.

© John Wiley & Sons

G
etting M

ore O
ut

of H
TM

L

0005390135.INDD 69 Trim size: 7.375 in × 9.25 in June 11, 2022 2:41 PM

CHAPTER 2 Getting More Out of HTML 69

Basic table structuring
Tables comprise several parts, like the one shown in Figure 2-7.

You create a table by following these steps:

1. Define a table with the table element.

To do this, add the opening and closing <table> tags.

FIGURE 2-6:
Box.com

uses tables to
display pricing

information.

© John Wiley & Sons

FIGURE 2-7:
The different

parts of a table.

© John Wiley & Sons

0005390135.INDD 70 Trim size: 7.375 in × 9.25 in June 11, 2022 2:41 PM

70 BOOK 2 Basic Web Coding

2. Divide the table into rows with the tr element.

Between the opening and closing table tags, create opening <tr> tags and
closing </tr> tags for each row of your table.

3. Divide rows into cells using the td element.

Between the opening and closing tr tags, create opening and closing td tags
for each cell in the row.

4. Highlight cells that are headers using the th element.

Finally, specify any cells that are headers by replacing the td element with a th
element.

Your table will have only one opening and closing <table> tag; however, you can
have one or more table rows (tr) and cells (td).

The following example code shows the syntax for creating the table shown in
Figure 2-7.

<table>

 <tr>

 <th>Table header 1</th>

 <th>Table header 2</th>

 </tr>

 <tr>

 <td>Row #1, Cell #1</td>

 <td>Row #1, Cell #2</td>

 </tr>

 <tr>

 <td>Row #2, Cell #1</td>

 <td>Row #2, Cell #2</td>

 </tr>

</table>>

After you’ve decided how many rows and columns your table will have, make sure
to use an opening and closing <tr> tag for each row and an opening and closing
<td> tag for each cell in the row.

Stretching table columns and rows
Take a look at the table describing Facebook’s income statement in Figure 2-8.
Each year appears in individual columns of equal-sized width. Now look at Total
Revenue, which appears in a cell that stretches or spans across several columns.

G
etting M

ore O
ut

of H
TM

L

0005390135.INDD 71 Trim size: 7.375 in × 9.25 in June 11, 2022 2:41 PM

CHAPTER 2 Getting More Out of HTML 71

Stretching a cell across columns or rows is called spanning.

The colspan attribute spans a column over subsequent vertical columns. The
value of the colspan attribute is set equal to the number of columns you want to
span. You always span a column from left to right. Similarly, the rowspan attribute
spans a row over subsequent horizontal rows. Set rowspan equal to the number of
rows you want to span.

The following code generates a part of the table shown in Figure 2-8. You can
see the colspan attribute spans the Total Revenue cell across two columns. As
described in Book 2, Chapter 1, the tag is used to mark important text
and is shown as bold by the browser.

<tr>

 <td colspan="2">

 Total Revenue

 </td>

 <td>

 112,330,000

 </td>

 <td>

 85,965,000

 </td>

 <td>

 70,697,000

 </td>

FIGURE 2-8:
An income

 statement in a
table with

columns of
different sizes.

© John Wiley & Sons

0005390135.INDD 72 Trim size: 7.375 in × 9.25 in June 11, 2022 2:41 PM

72 BOOK 2 Basic Web Coding

 <td>

 55,838,000

 </td>

</tr>

If you set a column or row to span by more columns or rows than are actually
present in the table, the browser will insert additional columns or rows, changing
your table layout.

CSS helps size individual columns and rows, as well as entire tables. See Book 2,
Chapters 3 and 4.

Aligning tables and cells
The latest version of HTML does not support the tags and attributes in this sec-
tion. Although your browser may correctly render this code, there is no guaran-
tee your browser will correctly render it in the future. I include these attributes
because, as of this writing, HTML code on the Internet still uses these deprecated
(older) attributes in tables. This code is similar to expletives — recognize them
but try not to use them. Refer to Book 2, Chapter 3 to see modern techniques using
Cascading Style Sheets (CSS) for achieving the identical effects.

The table element has three deprecated attributes you need to know — align,
width, and border. These attributes are described in Table 2-1.

The following example code shows the syntax for creating the table in Figure 2-9
with align, width, and border attributes.

TABLE 2-1 Table Attributes Replaced by CSS
Attribute Name Possible Values Description

align left

center

right

Position of table relative to the containing
document according to the value of the
attribute. For example, align="right"
positions the table on the right side of
the web page.

width pixels (#)

%

Width of table measured either in pixels
on-screen or as a percentage of the browser
window or container tag.

border pixels (#) Width of table border in pixels.

G
etting M

ore O
ut

of H
TM

L

0005390135.INDD 73 Trim size: 7.375 in × 9.25 in June 11, 2022 2:41 PM

CHAPTER 2 Getting More Out of HTML 73

<table align="right" width=50% border=1>

 <tr>

 <td>The Social Network</td>

 <td>Generation Like</td>

 </tr>

 <tr>

 <td>Tron</td>

 <td>War Games</td>

 </tr>

</table>>

Always insert attributes inside the opening <html> tag and enclose words in
quotes.

The tr element has two deprecated attributes you need to know — align and
valign. These are described in Table 2-2.

FIGURE 2-9:
A table with
deprecated

align, width,
and border

attributes.

© John Wiley & Sons

TABLE 2-2 Table Row Attributes Replaced by CSS
Attribute Name Possible Values Description

align left

right

center

justify

Horizontal alignment of a row’s cell contents
according to the value of the attribute. For
example, align="right" positions a row’s
cell contents on the right side of each cell.

valign top

middle

bottom

Vertical alignment of a row’s cell contents
according to the value of the attribute. For
example, align="bottom" positions a row’s
cell contents on the bottom of each cell.

0005390135.INDD 74 Trim size: 7.375 in × 9.25 in June 11, 2022 2:41 PM

74 BOOK 2 Basic Web Coding

The td element has four deprecated attributes you need to know — align, valign,
width, and height. These are described in Table 2-3.

The following example code shows the syntax for creating the table in Figure 2-10
with the align, valign, width, and height attributes.

<table align="right" width=50% border=1>

 <tr align="right" valign="bottom">

 <td height=100>The Social Network</td>

 <td>Generation Like</td>

 </tr>

 <tr>

 <td height=200 align="center" valign="middle">Tron</td>

 <td align="center" valign="top" width=20%>War Games</td>

 </tr>

</table>>

Remember, these attributes are no longer supported and should not be used in
your code.

TABLE 2-3 Table Cell Attributes Replaced by CSS
Attribute Name Possible Values Description

align left

right

center

justify

Horizontal alignment of a cell’s contents according to the value of
the attribute. For example, align="center" positions the cell’s
contents in the center of the cell.

valign top

middle

bottom

Vertical alignment of a cell’s contents according to the value of the
attribute. For example, align="middle" positions a cell’s contents
in the middle of the cell.

width pixels (#)

%

Width of a cell measured either in pixels on-screen or as a
percentage of the table width.

height pixels (#)

%

Height of a cell measured either in pixels on-screen or as a
percentage of the table width.

G
etting M

ore O
ut

of H
TM

L

0005390135.INDD 75 Trim size: 7.375 in × 9.25 in June 11, 2022 2:41 PM

CHAPTER 2 Getting More Out of HTML 75

Filling Out Forms
Forms allow you to capture input from your website visitors. Until now we have
displayed content as-is, but capturing input from visitors allows you to do the
following:

 » Modify existing content on the page. For example, price and date filters on
airline websites allow for finding a desired flight more quickly.

 » Store the input for later use. For example, a website may use a registration
form to collect your email, username, and password information to allow you
to access it at a later date.

Understanding how forms work
Forms pass information entered by a user to a server by using the following
process:

1. The browser displays a form on the client machine.

2. The user completes the form and presses the Submit button.

3. The browser submits the data collected from the form to a server.

4. The server processes and stores the data and sends a response to the client
machine.

5. The browser displays the response, usually indicating whether the submission
was successful.

FIGURE 2-10:
A table with
deprecated

align, valign,
width, and

height
attributes.

© John Wiley & Sons

0005390135.INDD 76 Trim size: 7.375 in × 9.25 in June 11, 2022 2:41 PM

76 BOOK 2 Basic Web Coding

See Book 1, Chapter 2 for an additional discussion about the relationship between
the client and server.

A full description of how the server receives and stores data (Steps 3 to 5) is
beyond the scope of this book. For now, all you need to know is that server-side
programming languages such as Python, PHP, and Ruby are used to write scripts
that receive and store form submissions.

Forms are very flexible and can record a variety of user inputs. Input fields used in
forms can include free text fields, radio buttons, checkboxes, drop-down menus,
range sliders, dates, phone numbers, and more. (See Table 2-4.) Additionally,
input fields can be set to initial default values without any user input.

View the entire list of form input types and example code at www.w3schools.com/
tags/att_input_type.asp.

Creating basic forms
You create a basic form by following these steps

1. Define a form with the form element.

Start by adding an opening <form> tag and closing </form> tag.

TABLE 2-4 Selected Form Attributes
Attribute Name Possible Values Description

type checkbox

email

submit

text

password

radio

(a complete list of values has
been omitted here for brevity)

Defines the type of input field to
display in the form. For example,
text is used for free text fields,
and submit is used to create a
Submit button.

value text The initial value of the
input control.

G
etting M

ore O
ut

of H
TM

L

0005390135.INDD 77 Trim size: 7.375 in × 9.25 in June 11, 2022 2:41 PM

CHAPTER 2 Getting More Out of HTML 77

2. Using the action attribute, specify in the form element where to send
form data.

Add an action attribute to your opening <form> tag and set it equal to the
URL of a script that will process and store the user input.

3. Using the method attribute, specify in the form element how to send form
data.

Add a method attribute to your opening <form> tag and set it equal to POST.

The method attribute is set equal to GET or POST. The technicalities of each are
beyond the scope of this book, but, in general, POST is used for storing
sensitive information (such as credit card numbers), whereas GET is used to
allow users to bookmark or share with others the results of a submitted form
(for example, airline flight listings).

4. Provide a way for users to input and submit responses with the input
element.

Between the opening <form> and closing </form> tags, create one
<input> tag.

Your form will have only one opening and closing <form> tag; however, you
will have at least two <input> tags to collect and submit user data.

5. Specify input types using the type attribute in the input element.

For this example, set the type attribute equal to "text".

The <input> tag doesn’t have a closing tag, which is an exception to the “close
every tag you open” rule. These tags are called self-closing tags, and you can
see more examples in Book 2, Chapter 1.

6. Finally, create another <input> tag and set the type attribute equal to
submit.

The following example code shows the syntax for creating the form shown in
Figure 2-11.

<form action="mailto:chris@minnick.com" method="POST">

 <input type="text" value="Type a short message here">

 <input type="submit">

</form>

The action attribute in this form is set equal to mailto, which signals to the
browser to send an email using your default mail client (such as Outlook or
Gmail). If your browser isn’t configured to handle email links, this form won’t
work. Ordinarily, forms are submitted to a server to process and store the form’s
contents, but in this example form, the contents are submitted to the user’s email
application.

0005390135.INDD 78 Trim size: 7.375 in × 9.25 in June 11, 2022 2:41 PM

78 BOOK 2 Basic Web Coding

Practicing More with HTML
Practice your HTML online using the CodeSandbox.io website (or one of the other
code playgrounds listed in Book 1). Practice all the tags that you find in this chap-
ter by following these steps:

1. Open your browser and go to codesandbox.io.

2. If you have a codesandbox account, sign in.

Signing up is discussed in Book 1, Chapter 3.

Creating an account allows you to save your progress as you work, but it’s
optional.

3. Create a new sandbox using the static template, or open the sandbox
that you created in Book 2, Chapter 1.

4. Edit the index.html file using the elements you learned about in this
chapter. For example, create a list of your favorite songs or try creating a
table containing seven columns (one for each day of the week). Inside
each column, create a list of things you need to do on that day of the
week.

5. Save your code by pressing CMD+S (on Windows) or CTL+S (on macOS)
whenever you want to see a preview.

FIGURE 2-11:
A form with one
user input and a

Submit button.

© John Wiley & Sons

CHAPTER 3 Getting Stylish with CSS 79

0005390136.INDD 79	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	2:43	PM

 Getting Stylish with CSS
“Create your own style . . . let it be unique for yourself and yet identifi able
for others.”

 — ANNA WINTOUR

 T he website code examples in the preceding chapters resemble websites you
may have seen from a previous era. Websites you browse today are diff er-
ent, and they have a more polished look and feel. Numerous factors enabled

this change. Twenty years ago you might have browsed the Internet with a dial-up
modem, but today you likely use a very fast Internet connection and a more pow-
erful computer. Programmers have used this extra bandwidth and speed to write
code to further customize and style websites.

 In this chapter you discover modern techniques to style websites using Cascading
Style Sheets (CSS). First, you ’ ll learn basic CSS structure and then the CSS rules to
style your content. Finally, you ’ ll see how to apply these rules to your websites.

 What Does CSS Do?
 CSS styles HTML elements with greater control than HTML does. Take a look
at Figure 3-1 . On the left, Facebook appears as it currently exists; on the right,
however, the same Facebook page is shown without all the CSS styling. Without

Chapter 3

 IN THIS CHAPTER

» Understanding CSS and its structure

» Formatting text size, color, and style

» Styling images

» Using CSS in three diff erent contexts

0005390136.INDD 80	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	2:43	PM

80 BOOK 2 Basic Web Coding

the CSS, all the images and text appear left-justified, borders and shading disap-
pear, and text has minimal formatting.

CSS can style almost any HTML tag that creates a visible element on the page,
including all the HTML tags used to create headings, paragraphs, links, images,
lists, and tables that you learned about in previous chapters. Specifically, CSS
allows you to style

 » Text	size,	color,	style,	typeface,	and	alignment

 » Link	color	and	style

 » Image	size	and	alignment

 » List	bullet	styles	and	indentation

 » Table	size,	shading,	borders,	and	alignment

CSS styles and positions the HTML elements that appear on a web page. However,
some HTML elements (for example, <head>) aren’t visible on the page and aren’t
styled using CSS.

You may wonder why creating a separate language like CSS to handle styling was
considered a better approach than expanding the capabilities of HTML. There are
three reasons:

 » History:	CSS	was	created	four	years	after	HTML	as	an	experiment	to	see	
whether	developers	and	consumers	wanted	extra	styling	effects.	At	the	time,	
it	was	unclear	whether	CSS	would	be	useful	and	only	some	major	browsers	
supported	it.	As	a	result,	CSS	was	created	separately	from	HTML	to	allow	
developers	to	build	sites	using	just	HTML.

FIGURE 3-1:
Left	Facebook	

with CSS.
Right:	Facebook	

without	CSS.	

© John Wiley & Sons

G
etting Stylish w

ith CSS

0005390136.INDD 81	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	2:43	PM

CHAPTER 3 Getting Stylish with CSS 81

 » Code management:	Initially,	some	CSS	functionality	overlapped	with	existing	
HTML	functionality.	However,	specifying	styling	effects	in	HTML	results	in	
cluttered	and	messy	code.	For	example,	specifying	a	particular	font	typeface	
in	HTML	requires	that	you	include	the	font	typeface	attribute	in	every	
paragraph	(<p>)	tag.	Styling	a	single	paragraph	this	way	is	easy,	but	applying	
the	font	to	a	series	of	paragraphs	(or	an	entire	page	or	website)	quickly	
becomes	tedious.	By	contrast,	CSS	requires	the	typeface	to	be	specified	only	
once,	and	it	automatically	applies	to	all	paragraphs.	This	feature	makes	it	
easier	for	developers	to	write	and	maintain	code.	In	addition,	separating	the	
styling	of	the	content	from	the	actual	content	itself	has	allowed	search	
engines	and	other	automated	website	agents	to	more	easily	process	the	
content	on	web	pages.

 » Accessibility:	Web	browsers	aren’t	the	only	place	where	web	pages	are	used.	
In	addition	to	traditional	web	browsers,	web	pages	may	also	be	used	by	screen	
readers	for	the	blind,	text-to-speech	applications,	smart	speakers,	and	much	
more.	Different	kinds	of	devices	require	different	types	of	styling.	By	separating	
style	(CSS)	from	structure	(HTML)	web	pages	become	much	more	flexible	and	
the	content	of	the	web	page	can	be	used	more	easily	by	more	people.

CSS Structure
CSS follows a set of rules to ensure that websites will be displayed in the same way
no matter the browser or computer used. Sometimes, because of varying support
of the CSS standard, browsers can and do display web pages differently. Never-
theless, generally speaking, CSS ensures that users have a consistent experience
across all browsers.

Every web browser will interpret CSS rules to style your HTML, though you should
be sure to download, install, and use the latest version of Chrome, Safari, Firefox,
Edge, or Opera for the best experience.

Choosing the element to style
CSS continues to evolve and support increased functionality, but the basic syntax
for defining CSS rules remains the same. CSS modifies HTML elements with rules
that apply to each element. These rules are written as follows:

selector {

 property: value;

}

0005390136.INDD 82	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	2:43	PM

82 BOOK 2 Basic Web Coding

A CSS rule is comprised of three parts:

 » Selector:	The	HTML	element	you	want	to	style.

 » Property:	The	feature	of	the	HTML	element	you	want	to	style.	For	example,	
font	typeface,	image	height,	or	color.

 » Value:	The	options	for	the	property	that	the	CSS	rule	sets.	For	example,	
if	color	were	the	property,	the	value	would	be	red.

The selector identifies which HTML element you want to style. In HTML, an ele-
ment is surrounded by angle brackets, but in CSS, the selector stands alone. The
selector is followed by a space, an opening left curly bracket ({), property with a
value, and then a closing right curly bracket (}). The line break after the opening
curly bracket, and before the closing curly bracket is not required by CSS — in
fact, you could put all your code on one line with no line breaks or spaces. Using
line breaks is the convention followed by developers to make CSS easier to modify
and read.

You can find curly brackets on most keyboards to the right of the P key.

The following code shows you an example of CSS modifying a specific HTML
element. The CSS code appears first, followed by the HTML code that it
modifies:

The CSS:

h1 {

 font-family: cursive;

}

And now the HTML:

<h1>

 Largest IPOs in US History

</h1>

 2014: Alibaba - $20B

 2008: Visa - $18B

G
etting Stylish w

ith CSS

0005390136.INDD 83	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	2:43	PM

CHAPTER 3 Getting Stylish with CSS 83

The CSS selector targets and styles the HTML element with the same name (in
this case, <h1> tags). For example, in Figure 3-2, the heading “Largest IPOs in US
History,” created using the opening and closing <h1> tag is styled using the h1
selector, and the font-family property with cursive value.

CSS uses a colon instead of the equals sign (=) to set values of CSS properties.

The font in Figure 3-2 likely doesn’t appear to be cursive, as defined in the pre-
ceding code, because cursive is the name of a generic font family, not a specific
font. Generic font families are described later in this chapter.

My property has value
CSS syntax requires that a CSS property and its value appear within opening and
closing curly brackets. After each property is a colon, and after each value is a
semicolon. This combination of property and value together is called a declaration,
and a group of properties and values is called a declaration block.

Let’s look at a specific example with multiple properties and values:

h1 {

 font-size: 15px;

 color: blue;

}

In this example, CSS styles the h1 element, changing the font-size property to
15px, and the color property to blue.

FIGURE 3-2:
CSS	targeting	

the	heading	h1
element.	

© John Wiley & Sons

0005390136.INDD 84	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	2:43	PM

84 BOOK 2 Basic Web Coding

You can improve the readability of your code by putting each declaration (each
property/value combination) on its own line. Additionally, adding spaces or tabs
to indent the declarations also improves the readability. Adding these line breaks
and indentions doesn’t affect browser performance in any way, but it will make it
easier for you and others to read your code.

Hacking the CSS on your favorite website
In Book 1, Chapter 2, you modified a news website’s HTML code. In this chapter,
you modify its CSS. Let’s take a look at some CSS rules in the wild. In this example,
you change the CSS on huffpost.com (or your news website of choice) using the
Chrome browser. Just follow these steps:

1. Using a Chrome browser, navigate to your favorite news website, ideally
one with many headlines. (See Figure 3-3.)

2. Place your mouse pointer over a headline and right-click. From the menu
that appears, select Inspect. (See Figure 3-4.)

A	window	opens	at	the	bottom	of	your	browser.

3. Click the Styles tab on the right side of this window to see the CSS rules
being applied to HTML elements.

4. Change the color of the headline using CSS.

To	do	this,	first	find	the	color	property	in	the	element.style	section;	note	
the	square	color	box	within	that	property	that	displays	a	sample	of	the	current	
color.	Click	this	box	and	change	the	value	by	selecting	a	new	color	from	the	
pop-up	menu,	and	then	press	Enter.

Your	headline	now	appears	in	the	color	you	picked.	(See	Figure 3-5.)

If	the	element.style	section	is	blank	and	no	color	property	appears,	you	
can	still	add	it	manually.	To	do	so,	click	once	in	the	element.style	section,	
and	when	the	blinking	cursor	appears,	type	color: purple.	The	headline	
changes	to	purple.

As with HTML, you can modify any website’s CSS using Chrome’s Inspect feature.
Most modern browsers, including Firefox, Edge, Safari, and Opera, have a similar
feature.

G
etting Stylish w

ith CSS

0005390136.INDD 85	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	2:43	PM

CHAPTER 3 Getting Stylish with CSS 85

FIGURE 3-3:
The		Huffington	
Post		website	

before	
modification.	

© John Wiley & Sons

FIGURE 3-4:
Inspecting	

the	website’s	
headline.	

© John Wiley & Sons

0005390136.INDD 86	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	2:43	PM

86 BOOK 2 Basic Web Coding

Common CSS Tasks and Selectors
Although CSS includes over 150 properties and many values for each property, on
modern websites, a handful of CSS properties and values do the majority of the
work. In the previous section, when you “hacked” the CSS on a live website, you
changed the heading color — a common task in CSS. Other common tasks per-
formed with CSS include

 » Changing	font	size,	style,	font	family,	and	decoration

 » Customizing	links	including	color,	background	color,	and	link	state

 » Adding	background	images	and	formatting	foreground	images

Font gymnastics: Size, color, style,
family, and decoration
CSS lets you control text in many HTML elements. The most common text-related
CSS properties and values are shown in Table 3-1. I describe these properties and
values more fully in the sections that follow.

FIGURE 3-5:
Changing	the	CSS	
changes	the	color	
of	the	headline.	

© John Wiley & Sons

G
etting Stylish w

ith CSS

0005390136.INDD 87	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	2:43	PM

CHAPTER 3 Getting Stylish with CSS 87

Setting the font-size
As in a word processor, you can set the size of the font you’re using with CSS’s
font-size property. You have a few options for setting the font size, and the most
common one is to use pixels, as in the following:

p {

 font-size: 16px;

}

In this example, I used the p selector to size the paragraph text to 16 pixels. One
disadvantage of using pixels to size your font occurs when users who prefer a
large font size for readability have changed their browser settings to a default font
size value that’s larger than the one you specify on your site. In these situations,
the font size specified in the browser takes precedence, and the fonts on your site
will not scale to adjust to these preferences.

TABLE 3-1 Common CSS Properties and Values for Styling Text
Property	Name Possible	Values Description

font-size pixels (#px)

%

em (#em)

Specifies	the	size	of	text	measured	either	in	pixels	as	a	percentage	
of	the	containing	element’s	font	size	or	with	an	em	value,	which	
is	calculated	by	desired	pixel	value	divided	by	containing	element	
font	size	in	pixels.	Example:	font-size: 16px;

color name

hex code

rgb value

Changes	the	color	of	the	text	specified	using	names	(color:
blue;),	hexadecimal	code	(color: #0000FF;),	or	RGB	(red,	
green,	and	blue)	value	(color: rgb(0,0,255);).

font-style normal

italic

Sets	font	to	appear	in	italics	(or	not).

font-weight normal

bold

Sets	font	to	appear	as	bold	(or	not).

font-family font name Sets	the	font	typeface.	Example:	font-family: serif;

text-decoration none

underline

line-through

Sets	font	to	have	an	underline	or	strikethrough	(or	not).

0005390136.INDD 88	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	2:43	PM

88 BOOK 2 Basic Web Coding

Percentage-sizing and em values, the other options to size your fonts, are consid-
ered more accessibility-friendly. The default browser font size of normal text is
16 pixels. With percentage-sizing and em values, fonts can be sized relative to the
user-specified default. For example, the CSS for percentage-sizing looks like this:

p {

 font-size: 150%;

}

In this example, I used the p selector to size the paragraph text to 150 percent of
the default size. If the browser’s default font size was set at 16 pixels, this para-
graph’s font would appear sized at 24 pixels (150 percent of 16).

A font-size equal to 1px is equivalent to one pixel on your monitor, so the actual
size of the text displayed varies according to the size of the monitor. Accordingly,
for a fixed font size in pixels, the text appears smaller as you increase the screen
resolution.

Setting the color
The color property sets the color in one of three ways:

 » Name:	One	hundred	forty-seven	colors	can	be	referenced	by	name.	You	can	
reference	common	colors,	such	as	black,	blue,	and	red,	along	with	uncommon	
colors,	such	as	burlywood,	lemon	chiffon,	thistle,	and	rebeccapurple.

Rebecca	Meyer,	the	daughter	of	prominent	CSS	standards	author	Eric	Meyer,	
passed	away	in	2014	from	brain	cancer	at	the	age	of	six.	In	response,	the	CSS	
standardization	committee	approved	adding	a	shade	of	purple	called	
rebeccapurple	to	the	CSS	specification	in	Rebecca’s	honor.	All	major	Internet	
browsers	have	implemented	support	for	the	color.

 » Hex code:	Colors	can	be	defined	by	component	parts	of	red,	green,	and	blue,	
and	when	hexadecimal	code	is	used,	over	16	million	colors	can	be	referenced.	
In	the	code	example,	I	set	the	h1	color	equal	to	#FF0000.	After	the	hashtag,	
the	first	two	digits	(FF)	refer	to	the	red	in	the	color,	the	next	two	digits	(00)	
refer	to	the	green	in	the	color,	and	the	final	two	digits	(00)	refer	to	the	blue	in	
the	color.

 » RGB value:	Just	like	hex	codes,	RGB	values	specify	the	red,	green,	and	blue	
component	parts	for	over	16	million	colors.	RGB	values	are	the	decimal	
equivalent	to	hexadecimal	values.

Don’t	worry	about	trying	to	remember	hex	codes	or	RGB	values.	You	can	
easily	identify	colors	using	an	online	color	picker	such	as	the	one	at	www.
w3schools.com/colors/colors_picker.asp.

G
etting Stylish w

ith CSS

0005390136.INDD 89	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	2:43	PM

CHAPTER 3 Getting Stylish with CSS 89

The following example shows all three types of color changes:

p {

 color: red

}

h1 {

 color: #FF0000

}

li {

 color: rgb(255,0,0)

}

li is the element name for a list item in ordered and unordered lists.

All three colors in the preceding code example reference the same shade of red.
For the full list of colors that can be referenced by name go to www.w3.org/TR/
css3-color/#svg-color.

Setting the font-style and font-weight
The font-style property can set text to italics, and the font-weight property can
set text to bold. For each of these properties, the default is normal, which doesn’t
need to be specified. In the following example, the paragraph is styled so that the
font appears italicized and bold. Here’s an example of each:

p {

 font-style: italics;

 font-weight: bold;

}

Setting the font-family
The font-family property sets the typeface used for text. The property is set
equal to one font, or to a list of fonts separated by commas. Your website visitors
will have a variety of different fonts installed on their computers, but the font-
family property displays your specified font only if that font is already installed
on their system.

The font-family property can be set equal to two types of values:

 » Font name:	Specific	font	names	such	as	Times	New	Roman,	Arial,	
and	Courier.

0005390136.INDD 90	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	2:43	PM

90 BOOK 2 Basic Web Coding

 » Generic font family:	Modern	browsers	usually	define	one	installed	font	for	
each	generic	font	family.	These	five	generic	font	families	include

• Serif	(Times	New	Roman,	Palantino)

• Sans-serif	(Helvetica,	Verdana)

• Monospace	(Courier,	Andale	Mono)

• Cursive	(Comic	Sans,	Florence)

• Fantasy	(Impact,	Oldtown)

When using font-family, it’s best to define two or three specific fonts followed
by a generic font family as a fallback in case the fonts you specify aren’t installed,
as in the following example:

p {

 font-family: "Times New Roman", Times, serif;

}

In this example, the paragraph’s font family is defined as Times New Roman.
If Times New Roman isn’t installed on the user’s computer, the browser then
uses Times. If Times isn’t installed, the browser will use any available font in the
generic serif font family.

When using a font name with multiple words (such as Times New Roman), enclose
the font name in quotes.

Setting the text-decoration
The text-decoration property sets any font underlining or strikethrough. By
default, the property is equal to none, which doesn’t have to be specified. In the
following example, any text with an h1 heading is underlined, whereas any text
inside a paragraph tag is made strikethrough:

h1 {

 text-decoration: underline;

}

p {

 text-decoration: line-through;

}

Customizing links
In general, browsers display links as blue underlined text. Originally, this default
behavior minimized the confusion between content on the page and an interactive

G
etting Stylish w

ith CSS

0005390136.INDD 91	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	2:43	PM

CHAPTER 3 Getting Stylish with CSS 91

link. Today, almost every website styles links in its own way. Some websites don’t
underline links; others retain the underlining but style links in colors other than
blue; and so on.

The HTML anchor element (a) is used to create links. The text between the open-
ing and closing anchor tag is the link description, and the URL set in the href
attribute is the address the browser visits when the link is clicked.

The anchor tag has four states:

 » link:	A	link	that	a	user	hasn’t	clicked	or	visited

 » visited:	A	link	that	a	user	has	clicked	or	visited

 » hover:	A	link	that	the	user	hovers	the	mouse	cursor	over	without	clicking

 » active:	A	link	the	user	has	begun	to	click	but	hasn’t	yet	released	the	mouse	
button

CSS can style each of these four states, most often by using the properties and
values shown in Table 3-2.

The following example styles links in a way that’s similar to the way they’re
styled in articles at Wikipedia, where links appear blue by default, underlined on
mouse hover, and orange when active. As shown in Figure 3-6, the first link to
Chief Technology Officer of the United States appears underlined as it would if my
mouse was hovering over it. Also, the link to Google appears orange as it would if
it were active and my mouse were clicking it.

a:link{

 color: rgb(6,69,173);

 text-decoration: none;

}

TABLE 3-2 Common CSS Properties and Values for Styling Links
Property	Name Possible	Values Description

color name

hex code

rgb value

Link	color	specified	using	names	(color: blue;),	
hexadecimal	code	(color: #0000FF;),	or	RGB	value	(color:
rgb(0,0,255);).

text-decoration none

underline

Sets	link	to	have	an	underline	(or	not).

0005390136.INDD 92	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	2:43	PM

92 BOOK 2 Basic Web Coding

a:visited {

 color: rgb(11,0,128)

}

a:hover {

 text-decoration: underline

}

a:active {

 color: rgb(250,167,0)

}

Remember to include the colon between the a selector and the link state.

Although explaining why is beyond the scope of this book, CSS specifications
insist that you define the various link states in the order shown here — link, vis-
ited, hover, and then active. However, it is acceptable to not define a link state, as
long as this order is preserved.

The various link states are known as pseudo-class selectors. Pseudo-class selectors
add a keyword to CSS selectors and allow you to style a special state of the selected
element.

FIGURE 3-6:
Wikipedia.org	
page	showing	
link,	visited,	

hover,	and	active	
states.

© John Wiley & Sons

G
etting Stylish w

ith CSS

0005390136.INDD 93	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	2:43	PM

CHAPTER 3 Getting Stylish with CSS 93

Adding background images and
styling foreground images
You can use CSS to add background images behind HTML elements. Most com-
monly, the background-image property is used to add background images to indi-
vidual HTML elements such as div, table, and p, or (when applied to the body
element) to entire web pages.

Background images with smaller file sizes load more quickly than larger images.
This is especially important if your visitors commonly browse your website using
a mobile phone, which typically has a slower data connection.

The properties and values in Table 3-3 show the options for adding background
images.

Setting the background-image
As shown in the following example, the background-image property can set the
background image for the entire web page or a specific element.

body {

 background-image:

 url("http://upload.wikimedia.org/wikipedia/commons/e/e5/

 Chrysler_Building_Midtown_Manhattan_New_York_City_1932.jpg

 ");

}

You can find background images at sites such as images.google.com, www.
flickr.com, or publicdomainarchive.com.

Check image copyright information to see if you have permission to use the image,
and comply with image’s licensing terms, which can include attributing or identi-
fying the author. Additionally, directly linking to images on other servers is called
hotlinking. It is preferable to download the image and host and link to the image
on your own server.

If you prefer a single-color background instead of an image, use the background-
color property. This property is defined in much the same way as the back
ground-image property. Just set it equal to a color name, RGB value, or hex code,
as I describe earlier in this chapter in the section “Setting the color.”

0005390136.INDD 94	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	2:43	PM

94 BOOK 2 Basic Web Coding

Setting the background-size
By specifying exact dimensions using pixels or percentages, the background-size
property can scale background images to be smaller or larger, as needed. In addi-
tion, this property has three dimensions commonly used on web pages, as follows
(see Figure 3-7):

 » auto:	This	value	maintains	the	original	dimensions	of	an	image.

 » cover:	This	value	scales	an	image	so	all	dimensions	are	greater	than	or	equal	
to	the	size	of	the	container	or	HTML	element.

TABLE 3-3 CSS Properties and Values for Background Images
Property	Name Possible	Values Description

background-image url("URL") Adds	a	background	image	from	the	image	link	
specified	at	URL.

background-size auto

contain

cover

width
height (#px, %)

Sets	background	size	according	to	the	value:

auto	(default	value)	displays	the	image	as	
originally	sized.

contain	scales	the	image’s	width	and	height	so	that	
it	fits	inside	element.

cover	scales	the	image	so	element	background	
isn’t	visible.

Background	size	can	also	be	set	by	specifying	width	
and	height	in	pixels	or	as	a	percentage.

background-position keywords

position (#px, %)

Positions	the	background	in	element	using	keywords	
or	exact	position.	Keywords	comprise	horizontal	
keywords	(left, right, center)	and	vertical	
keywords	(top, center,	and	bottom). The
placement	of	the	background	can	also	be	exactly	
defined	using	pixels	or	a	percentage	to	describe	the	
horizontal	and	vertical	position	relative	to	the	element.

background-repeat repeat

repeat-x

repeat-y

no-repeat

Sets	the	background	image	to	tile,	or	repeat,	
as	follows:

horizontally	(repeat-x)

vertically	(repeat-y)

horizontally	and	vertically	(repeat)

don’t	repeat	at	all	(no-repeat).

background-attachment scroll

fixed

Sets	the	background	to	scroll	with	other	content	
(scroll),	or	to	remain	fixed	(fixed).

G
etting Stylish w

ith CSS

0005390136.INDD 95	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	2:43	PM

CHAPTER 3 Getting Stylish with CSS 95

 » contain:	This	value	scales	an	image	so	all	dimensions	are	less	than	or	equal	
to	the	size	of	the	container	or	HTML	element.

Setting the background-position
The background-position property sets the initial position of the background
image. The default initial position is in the top-left corner of the web page or
specific element. You change the default position by specifying a pair of keywords
or position values, as follows:

 » Keywords:	The	first	keyword	(left,	center,	or	right)	represents	the	
horizontal	position,	and	the	second	keyword	(top,	center,	or	bottom)
represents	the	vertical	position.

 » Position:	The	first	position	value	represents	the	horizontal	position,	and	the	
second	value	represents	the	vertical.	Each	value	is	defined	using	pixels	or	
percentages,	representing	the	distance	from	the	top-left	of	the	browser	or	the	
specified	element.	For	example,	background-position: center center is
equal	to	background-position: 50% 50%.	(See	Figure 3-8.)

Setting the background-repeat
The background-repeat property sets the direction the background will tile as
follows:

 » repeat:	This	value	(the	default)	repeats	the	background	image	both	horizon-
tally	and	vertically.

 » repeat-x:	This	value	repeats	the	background	image	only	horizontally.

 » repeat-y:	This	repeats	the	background	image	only	vertically.

 » no-repeat:	This	value	prevents	the	background	from	repeating	at	all.

FIGURE 3-7:
Setting	the	

background	size	
to	three	different	

values.	

0005390136.INDD 96	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	2:43	PM

96 BOOK 2 Basic Web Coding

Setting the background-attachment
The background-attachment property sets the background image to move (or
not) when the user scrolls through content on the page. The property can be set to

 » scroll:	The	background	image	moves	when	the	user	scrolls.

 » fixed:	The	background	image	doesn’t	move	when	the	user	scrolls.

The following code segment uses several of the properties discussed earlier to add
a background image that stretches across the entire web page, is aligned in the
center, does not repeat, and does not move when the user scrolls. (See Figure 3-9.)

body {

 background-image:

 "http://upload.wikimedia.org/wikipedia/commons/thumb/a/a0/

 USMC-090807-M-8097K-022.jpg/640px-USMC-090807-M-8097K-022.jpg");

 background-size: cover;

 background-position: center center;

 background-repeat: no-repeat;

 background-attachment: fixed;

}

FIGURE 3-8:
The	initial	

background	
image	positions	
specified	using	

keywords	or	
position.	

G
etting Stylish w

ith CSS

0005390136.INDD 97	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	2:43	PM

CHAPTER 3 Getting Stylish with CSS 97

Getting Stylish
The CSS rules discussed in this chapter give you a taste of a few common styling
properties and values. Although you aren’t likely to remember every property and
value, with practice, the property and value names will come to you naturally.
After you understand the basic syntax, the next step is to actually incorporate CSS
into your web page and try your hand at styling HTML elements.

Adding CSS to your HTML
There are three ways to apply CSS to a website to style HTML elements:

 » Inline CSS:	CSS	can	be	specified	within	an	HTML	file	on	the	same	line	as	the	
HTML	element	it	styles.	This	method	requires	placing	the	style	attribute	
inside	the	opening	HTML	tag.	Generally,	inline	CSS	is	the	least	preferred	way	
of	styling	a	website	because	the	styling	rules	are	frequently	repeated.	Here’s	
an	example	of	inline	CSS:

<!DOCTYPE html>

<html>

<head>

 <title>Record IPOs</title>

</head>

<body>

FIGURE 3-9:
An	image	set	as	
the	background	
for	entire	page.	

© John Wiley & Sons

0005390136.INDD 98	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	2:43	PM

98 BOOK 2 Basic Web Coding

 <h1 style="color: red;">Alibaba IPO expected to be biggest IPO of all

time</h1>

</body>

</html>

 » Embedded CSS:	With	this	approach,	CSS	appears	within	the	HTML	file,	but	
separated	from	the	HTML	tags	it	modifies.	The	CSS	code	appears	within	the	
HTML	file	between	an	opening	and	closing	<style>	tag,	which	itself	is	located	
between	an	opening	and	closing	<head>	tag.	Embedded	CSS	is	usually	used	
when	styling	a	single	HTML	page	differently	than	the	rest	of	your	website.

In	this	example,	the	embedded	CSS	styles	the	header	red,	just	like	the	
preceding	inline	CSS	does.

<!DOCTYPE html>

<html>

<head>

 <title>Record IPOs</title>

 <style type="text/css">

 h1 {

 color: red;

 }

 </style>

</head>

<body>

 <h1>Alibaba IPO expected to be biggest IPO of all time</h1>

</body>

</html>

 » Separate style sheets:	CSS	can	be	specified	in	a	separate	style sheet —	that	is,	
in	a	separate	file.	Using	a	separate	style	sheet	is	the	preferred	approach	to	
storing	your	CSS	because	it	makes	maintaining	the	HTML	file	easier	and	
allows	you	to	quickly	make	changes.	In	the	HTML	file,	the	<link>	tag	is	used	
to	refer	to	the	separate	style	sheet	and	has	three	attributes:

• href:	Specifies	the	CSS	filename.

• rel:	Should	be	set	equal	to	"stylesheet".

• type:	Should	be	set	equal	to	"text/css".

With three different ways of styling HTML elements with CSS, all three ways could
be used with contradictory styles. For example, say your inline CSS styles h1 ele-
ments as red, whereas embedded CSS styles them as blue, and a separate style
sheet styles them as green. To resolve these conflicts, inline CSS has the high-
est priority and overrides all other CSS rules. If no inline CSS is specified, then
embedded CSS has the next highest priority, and finally in the absence of inline

G
etting Stylish w

ith CSS

0005390136.INDD 99	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	2:43	PM

CHAPTER 3 Getting Stylish with CSS 99

or embedded CSS, the styles in a separate style sheet are used. In the example,
with the presence of all three styles, the h1 element text would appear red because
inline CSS has the highest priority and overrides the embedded CSS blue styling
and the separate CSS green styling.

The following example uses a separate CSS style sheet to style the header red, as
in the previous two examples:

CSS: style.css

h1 {

 color: red;

}

HTML: index.html

<DOCTYPE html>

<html>

<head>

 <title>Record IPOs</title>

 <link href="style.css" type="text/css" rel="stylesheet">

</head>

<body>

 <h1>Alibaba IPO expected to be biggest IPO of all time</h1>

</body>

</html>

Practicing with CSS
Practice your CSS online using the CodeSandbox.io website (or one of the other
code playgrounds listed in Book 1). Practice using all the CSS properties that you
find in this chapter by following these steps:

1. Open your browser and go to codesandbox.io.

2. If you have a codesandbox account, sign in.

Signing	up	is	discussed	in	Book	1,	Chapter 3.

Creating	an	account	allows	you	to	save	your	progress	as	you	work,	but	it’s	
optional.

3. Create a new sandbox using the static template or open the sandbox that
you created in a previous chapter.

0005390136.INDD 100	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	2:43	PM

100 BOOK 2 Basic Web Coding

4. Add an opening <style> tag and a closing </style> tag inside the head
element of your HTML file.

5. Define styles for some of the elements in your HTML document. For
example, to make all the text in your web page red, you can use the
following CSS rule:

body {
 color: red;

}

6. Make as many CSS rules as you like, using what you've learned in this
chapter, and save your file to see them in the preview window.

7. Create a new file in your project and give it a name ending with .css
(such as styles.css).

8. Replace your embedded CSS in index.html with a link to your new .css
file. For example, if your CSS file is named styles.css (and if it's in the
same folder as your HTML file), your link tag would look like this:

<link href="styles.css" type="text/css" rel="stylesheet">

CHAPTER 4 Next Steps with CSS 101

0005390137.INDD 101 Trim size: 7.375 in × 9.25 in June 13, 2022 7:28 AM

 Next Steps with CSS
“Design is not just what it looks like and feels like. Design is how it works.”

 —STEVE JOBS

 I n this chapter, you continue building on the CSS you worked with in Book 2,
Chapter 3. So far, the CSS rules you ’ ve seen in the previous chapter applied to
the entire web page, but now they get more specifi c. You fi nd out how to style

several more HTML elements, including lists, tables, and forms, and how to select
and style specifi c parts of a web page, such as the fi rst paragraph in a story or the
last row of a table. Finally, you read about how professional web developers use
CSS and the box model to control, down to the pixel, the positioning of elements
on the page.

 Before diving in, remember the big picture: HTML puts content on the web page,
and CSS further styles and positions that content. Instead of trying to memorize
every rule, use this chapter to understand CSS basics. CSS selectors have proper-
ties and values that modify HTML elements.

There is no better way to learn than by doing, so feel free to try out new style
properties you learn about in CodeSandbox (or another code playground) as you go
through this chapter. If you ’ ve built a web page already, you can use this chapter
as a reference when you have questions about specifi c elements you ’ re trying to
style.

Chapter 4

 IN THIS CHAPTER

» Formatting lists and tables

» Styling web pages using parent and
child selectors

» Naming pieces of code using id and
class

» Using the box model to position
HTML elements on the page

0005390137.INDD 102 Trim size: 7.375 in × 9.25 in June 13, 2022 7:28 AM

102 BOOK 2 Basic Web Coding

Styling (More) Elements on Your Page
In this section, you discover common ways to style lists and tables. In the previous
chapter, the CSS properties and rules you saw, like color and font-family, can
apply to any HTML element containing text. By contrast, some of the CSS shown
here is used only to style lists, tables, and forms.

Styling lists
In Book 2, Chapter 2 you created ordered lists, which start with markers like let-
ters or numbers, and unordered lists, which start with markers like bullet points.
By default, list items in an ordered list use numbers (for example, 1, 2, 3), whereas
list items in unordered lists use a solid black circle (●).

These defaults may not be appropriate for all circumstances. In fact, the two most
common tasks when styling a list include the following:

 » Changing the marker used to create a list: For unordered lists, like this one,
you can use a solid disc, empty circle, or square bullet point. For ordered lists,
you can use numbers, Roman numerals (upper- or lowercase), or case letters
(upper or lower).

 » Specifying an image to use as the bullet point: You can create your own
marker for ordered and unordered lists instead of using the default option.
For example, if you create an unordered bulleted list for a burger restaurant,
instead of using a solid circle as a bullet point, you could use a color ham-
burger icon image.

You can accomplish either of these tasks by using the properties in Table 4-1 with
an ol or ul selector to modify the list type.

CSS selectors using properties and rules modify HTML elements by the same
name. For example, Figure 4-1 has HTML tags that are referred to in CSS
with the ul selector and styled using the properties and rules in Table 4-1.

CSS properties and values apply to a CSS selector and modify an HTML element. In
the following example, embedded CSS (between the opening and closing <style>
tags) and inline CSS (defined with the style attribute in the HTML) are used to

 » Change the marker in an unordered list to a square using list-style-type.

 » Change the marker in an ordered list to uppercase Roman numerals again
using list-style-type.

 » Set a custom marker to an icon using list-style-image.

N
ext Steps w

ith CSS

0005390137.INDD 103 Trim size: 7.375 in × 9.25 in June 13, 2022 7:28 AM

CHAPTER 4 Next Steps with CSS 103

The code for embedded and inline CSS is shown next and in Figure 4-1. Figure 4-2
shows this code rendered in the browser.

<html>

<head>

TABLE 4-1 Common CSS Properties and Values for Styling Lists
Property Name Possible Values Description

list-style-type

(unordered list)

disc

circle

square

none

Sets the markers used to create list items in an unordered list to
disc (●), circle (ο), square (■), or none.

list-style-type

(ordered list)

decimal

upper-roman

lower-roman

upper-alpha

lower-alpha

Sets the markers used to create list items in an ordered list to
decimal (1, 2, 3), uppercase Roman numerals (I, II, III), lowercase
Roman numerals (i, ii, iii), uppercase letters (A, B, C), or
lowercase letters (a, b, c).

list-style-image url("URL") When URL is replaced with the image link, the property sets an
image as the marker used to create a list item.

FIGURE 4-1:
Embedded and

inline CSS.

0005390137.INDD 104 Trim size: 7.375 in × 9.25 in June 13, 2022 7:28 AM

104 BOOK 2 Basic Web Coding

<title>Figure 4-1: Lists</title>

<style>

ul {

 list-style-type: square;

}

ol {

 list-style-type: upper-roman;

}

li {

font-size: 27px;

}

</style>

</head>

<body>

<h1>Ridesharing startups</h1>

 Hailo: book a taxi on your phone

 Lyft: request a peer-to-peer ride

 <li style="list-style-image: url('car.png');">Uber: hire a driver

<h1>Food startups</h1>

 Grubhub: order takeout food online

 <li style="list-style-image: url('burger.png');">Blue Apron:

subscribe to weekly meal delivery

 Instacart: request groceries delivered the same day

</body>

</html>

FIGURE 4-2:
Ordered and

unordered
lists modified
to change the
marker type.

N
ext Steps w

ith CSS

0005390137.INDD 105 Trim size: 7.375 in × 9.25 in June 13, 2022 7:28 AM

CHAPTER 4 Next Steps with CSS 105

If the custom image for your marker is larger than the text, your text may not
align vertically with the marker. To fix this problem, you can either increase the
font size of each list item using font-size (as shown in the example) and increase
the margin between each list item using margin, or you can set list-style-type
to none and set a background image on the ul element using background-image.

There are three ways to apply CSS — with inline CSS using the style attribute,
with embedded CSS using an opening and closing <style> tag, and in a separate
CSS style sheet.

Designing tables
In Book 2, Chapter 2, you found out how to create basic tables. By default, the
width of these tables expands to fit content inside the table, content in individual
cells is left-aligned, and no borders are displayed.

These defaults may not be appropriate for all circumstances. Deprecated (unsup-
ported) HTML attributes can modify these defaults, but if at any time browsers
stop recognizing these attributes, tables created with these attributes will display
incorrectly. As a safer alternative, CSS can style tables with greater control. Three
common tasks CSS can perform for tables include the following:

 » Setting the width of a table, table row, or individual table cell with the
width property

 » Aligning text within the table with the text-align property

 » Displaying borders within the table with the border property (See Table 4-2.)

TABLE 4-2 Common CSS Properties and Values for Styling Tables
Property Name Possible Values Description

width pixels (#px)

%

Width of the table measured either in pixels on-screen or as a
percentage of the browser window or container tag.

text-align left

right

center

justify

Position of text relative to the table according to the value of the
attribute. For example, text-align="center" positions the text
in the center of the table cell.

border width

style

color

Defines three properties in one — border-width, border-style,
and border-color. The values must be specified in this order: Width
(pixel), style (none, dotted, dashed, solid), and color (name, hexadecimal
code, RBG value). For example, border: 1px solid red.

0005390137.INDD 106 Trim size: 7.375 in × 9.25 in June 13, 2022 7:28 AM

106 BOOK 2 Basic Web Coding

In the following example, the table is wider than the text in any cell, the text in
each cell is centered, and the table border is applied to header cells:

<html>

<head>

<title>Figure 4-3: Tables</title>

<style>

 table {

 width: 700px;

 }

 table, td {

 text-align: center;

 border: 1px solid black;

 border-collapse: collapse;

}

</style>

</head>

<body>

 <table>

 <caption>Desktop browser market share (December 2021)</caption>

 <tr>

 <th>Source</th>

 <th>Chrome</th>

 <th>Safari</th>

 <th>IE and Edge</th>

 <th>Firefox</th>

 <th>Opera</th>

 </tr>

 <tr>

 <td>StatCounter</td>

 <td>66.6%</td>

 <td>9.56%</td>

 <td>9.22%</td>

 <td>8.49%</td>

 <td>2.95%</td>

 </tr>

 <tr>

 <td>W3Counter</td>

 <td>66%</td>

 <td>16.8%</td>

 <td>5.2%</td>

 <td>3.2%</td>

 <td>1.5%</td>

 </tr>

 </table>>

</body>

</html>

N
ext Steps w

ith CSS

0005390137.INDD 107 Trim size: 7.375 in × 9.25 in June 13, 2022 7:28 AM

CHAPTER 4 Next Steps with CSS 107

The HTML tag <caption> and the CSS property border-collapse further style
the preceding table. The <caption> tag adds a title to the table. Although you
can create a similar effect using the <h1> tag, <caption> associates the title with
the table. The CSS border-collapse property can have a value of separate or
collapse. The separate value renders each border separately (refer to Book 2,
Chapter 2, Figure 2-9), whereas collapse draws a single border when possible
(see Figure 4-3).

Selecting Elements to Style
Currently, the CSS you have seen styles every HTML element that matches the CSS
selector. For example, in Figure 4-3 the table and td selectors have a text-align
property that centers text in every table cell. Depending on the content, you may
want to center only the text in the header row, but left-align text in subsequent
rows. Here are two ways to do so:

 » Styling specific HTML elements based on position to other elements

 » Naming HTML elements and styling elements only by name

Styling specific elements
When styling specific elements, it is helpful to visualize the HTML code as a fam-
ily tree with parents, children, and siblings. In the following code example (also
shown in Figure 4-4), the tree starts with the html element, which has two chil-
dren head and body. The head has a child element called title. The body has
h1, ul, and p elements as children. Finally, the ul element has li elements as
children, and the p element has a elements as children. Figure 4-4 shows how
the following code appears in the browser, and Figure 4-5 shows a depiction of
the following code using the tree metaphor. Note that Figure 4-6 shows each

FIGURE 4-3:
Table with width,

text alignment,
and border

 modified
using CSS.

© John Wiley & Sons

0005390137.INDD 108 Trim size: 7.375 in × 9.25 in June 13, 2022 7:28 AM

108 BOOK 2 Basic Web Coding

relationship once. For example, in the following code, an a element is inside each
of three li elements, and Figure 4-6 shows this ul li a relationship once.

<html>

<head>

 <title>Figure 4-4: DOM</title>

</head>

<body>

<h1>Parody Tech Twitter Accounts</h1>

 Bored Elon Musk

 Vinod Coleslaw

 Sarcastic Rover

<h1>Parody Non-Tech Twitter Accounts</h1>

<p>Jurassic Park Updates </p>

<p>Lord_Voldemort7</p>

</body>

</html>

Bored Elon Musk is a parody of Elon Musk, the founder of PayPal, Tesla, and
SpaceX. Vinod Coleslaw is a parody of Vinod Khosla, the Sun Microsystems
cofounder and venture capitalist. Sarcastic Rover imagines the unfiltered thoughts
of the Mars Curiosity Rover.

The HTML tree is called the DOM or document object model.

Child selector
The Parody Non-Tech Twitter account anchor tags are immediate children of the
paragraph tags. If you want to style just the Parody Non-Tech Twitter accounts,
you can use the child selector, which selects the immediate children of a speci-
fied element. A child selector is created by first listing the parent selector, then a
greater-than sign (>), and finally the child selector.

N
ext Steps w

ith CSS

0005390137.INDD 109 Trim size: 7.375 in × 9.25 in June 13, 2022 7:28 AM

CHAPTER 4 Next Steps with CSS 109

FIGURE 4-4:
Styling a family

tree of elements.

FIGURE 4-5:
Parody Tech

and Non-Tech
Twitter accounts

(browser view).

© John Wiley & Sons

0005390137.INDD 110 Trim size: 7.375 in × 9.25 in June 13, 2022 7:28 AM

110 BOOK 2 Basic Web Coding

In the following example, the anchor tags that are immediate children of the par-
agraph tags are selected, and those hyperlinks are styled with a red font color and
without any underline. The Parody Tech Twitter accounts are not styled because
they are direct children of the list item tag. (See Figure 4-7.)

p > a {

 color: red;

 text-decoration: none;

}

If you use just the a selector here, all the links on the page would be styled instead
of just a selection.

FIGURE 4-6:
Parody Tech and
Non-Tech Twitter

account (HTML
tree or Document

Object
Model view).

FIGURE 4-7:
Child selector

used to style the
Parody Non-Tech
Twitter accounts.

© John Wiley & Sons

N
ext Steps w

ith CSS

0005390137.INDD 111 Trim size: 7.375 in × 9.25 in June 13, 2022 7:28 AM

CHAPTER 4 Next Steps with CSS 111

Descendant selector
The Parody Tech Twitter account anchor tags are descendants, or located within,
the unordered list. If you want to style just the Parody Tech Twitter accounts,
you can use the descendant selector, which selects not just immediate children
of a specified element but all elements nested within the specified element.
A descendant selector is created by first listing the parent selector, a space, and
finally the descendant selector you want to target.

In the following example, as shown in Figure 4-8, the anchor tags that are
descendants of the unordered list are selected, and those hyperlinks are styled
with a blue font color and are crossed out. The Parody Non-Tech Twitter accounts
aren’t styled because they aren’t descendants of an unordered list.

ul a {

 color: blue;

 text-decoration: line-through;

}

Interested in styling just the first anchor tag within a list, like the Jurassic
Park Updates Twitter account, or the second list item, like the Vinod Coleslaw
Twitter account? Go to w3schools.com and read more about the first-child
(www.w3schools.com/cssref/sel_firstchild.asp) and nth-child selectors
(www.w3schools.com/cssref/sel_nth-child.asp).

FIGURE 4-8:
Child selector
used to style

the Parody Tech
 Twitter accounts.

© John Wiley & Sons

0005390137.INDD 112 Trim size: 7.375 in × 9.25 in June 13, 2022 7:28 AM

112 BOOK 2 Basic Web Coding

Naming HTML elements
The other way of styling specific elements in CSS is to name your HTML elements.
You name your code by using either the id or class attribute and then style your
code by referring to the id or class selector.

Naming your code using the id attribute
Use the id attribute to style one specific element on your web page. The id attrib-
ute can name any HTML element, and it is always placed in the opening HTML tag.
Additionally, each element can have only one id attribute value, and the attribute
value must appear only once within the HTML file. After you define the attribute
in the HTML file, you refer to the HTML element in your CSS by writing a hashtag
(#) followed by the attribute value.

Using the id attribute, the following code styles the Jurassic Park Updates Twitter
link the color red with a yellow background:

HTML:

<p>Jurassic Park

Updates </p>

CSS:

#jurassic {

 color: red;

 background-color: yellow;

}

Naming your code using the class attribute
Use the class attribute to style multiple elements on your web page. The class
attribute can name any HTML element and is always placed in the opening HTML
tag. The attribute value need not be unique within the HTML file. After you define
the attribute in the HTML file, you refer to the HTML element by writing a period
(.) followed by the attribute value.

With the class attribute, the following code styles all the Parody Tech Twitter
account links the color red with no underline:

HTML:

N
ext Steps w

ith CSS

0005390137.INDD 113 Trim size: 7.375 in × 9.25 in June 13, 2022 7:28 AM

CHAPTER 4 Next Steps with CSS 113

Bored Elon Musk

Vinod Coleslaw

Sarcastic Rover

CSS:

.tech {

 color: red;

 text-decoration: none;

}

Proactively use a search engine, such as Google, to search for additional CSS
effects. For example, if you want to increase the spacing between each list item,
open your browser and search for list item line spacing css. Links appearing in the
top ten results should include:

 » www.w3schools.com: A beginner tutorial site

 » www.stackoverflow.com: A discussion board for experienced developers

 » developer.mozilla.org: A reference guide initially created by the founda-
tion that maintains the Firefox browser and now maintained by a community
of developers

Each of these sites is a good place to start; be sure to look for answers that include
example code.

Aligning and Laying Out Your Elements
CSS not only allows control over the formatting of HTML elements, it also allows
control over the placement of these elements on the page, known as page layout.
Historically, developers used HTML tables to create page layouts. HTML table page
layouts were tedious to create and required that developers write a great deal of
code to ensure consistency across browsers. CSS eliminated the need to use tables
to create layouts, helped reduce code bloat, and increased control of page layouts.

0005390137.INDD 114 Trim size: 7.375 in × 9.25 in June 13, 2022 7:28 AM

114 BOOK 2 Basic Web Coding

Organizing data on the page
Before diving into code, let’s look at Figure 4-9 and review some of the basic ways
we can structure the page and the content on it. Layouts have evolved over time,
with some layouts working well on desktop computers but not displaying opti-
mally on tablet or mobile devices.

Always ask yourself how your intended layout will appear on desktop, tablet, and
mobile devices.

Hundreds of different layouts exist, and a few selected page layouts appear here
along with example websites.

Left and right navigation toolbars aren’t usually seen on mobile devices. Top nav-
igation toolbars are used on both desktop and mobile devices, and bottom naviga-
tion toolbars are most common on mobile devices.

FIGURE 4-9:
Vertical and

 horizontal
 navigation

layouts.

© John Wiley & Sons

N
ext Steps w

ith CSS

0005390137.INDD 115 Trim size: 7.375 in × 9.25 in June 13, 2022 7:28 AM

CHAPTER 4 Next Steps with CSS 115

The following examples show real websites with these layouts:

 » Vertical navigation, as shown in Figure 4-10, aids reader understanding when
a hierarchy or relationship exists between navigational topics.

In the w3schools.com example, HTML, JavaScript, Server Side, and XML relate
to one another, and underneath each topic heading are related subtopics.

 » Horizontal or menu navigation, as shown in Figure 4-11, helps reader
navigation with weak or disparate relationships between navigational topics.

In the eBay example, the Motors, Fashion, and Electronics menu items have
different products and appeal to different audiences.

Don’t spend too much time worrying about what layout to pick. You can always
pick one, observe whether your visitors can navigate your website quickly and
easily and change the layout if necessary.

FIGURE 4-10:
Use of left and

right navigation
toolbar on
w3schools.

com (left) and
 hunterwalk.com

(right).

© John Wiley & Sons

FIGURE 4-11:
Use of top

and bottom
 navigation

 toolbar on ebay.
com (left) and

moma.org (right).

© John Wiley & Sons

0005390137.INDD 116 Trim size: 7.375 in × 9.25 in June 13, 2022 7:28 AM

116 BOOK 2 Basic Web Coding

Shaping the div
The preceding page layouts are collections of elements grouped together. These
elements are grouped together using rectangular containers created with an open-
ing and closing <div> tag, and all of the layouts can be created with these <div>
tags. By itself, the <div> tag doesn’t render anything on the screen, but instead
serves as a container for content of any type, such as HTML headings, lists, tables,
or images. To see the <div> tag in action, take a look at the Codecademy.com
homepage in Figure 4-12.

Notice how the page can be divided into three parts — the navigation header, the
middle video testimonial, and then additional text user testimonials. <div> tags
are used to outline these major content areas, and additional nested <div> tags
within each part are used to group content such as images and text.

In the following example, as shown in Figure 4-13, HTML code is used to create
two containers using <div> tags, the id attribute names each div, and CSS sizes
and colors the div.

FIGURE 4-12:
Codecademy.com

homepage with
visible borders

for the
<div> tags.

© John Wiley & Sons

N
ext Steps w

ith CSS

0005390137.INDD 117 Trim size: 7.375 in × 9.25 in June 13, 2022 7:28 AM

CHAPTER 4 Next Steps with CSS 117

HTML:

<div id="first"/></div>

<div id="second"/></div>

CSS:

div {

 height: 100px;

 width: 100px;

 border: 2px solid purple;

}

#first {

 background-color: red;

}

#second {

 background-color: blue;

}

Understanding the box model
Just as we created boxes with the preceding tags, CSS creates a box around each
and every single element on the page, even text. Figure 4-14 shows the box model

FIGURE 4-13:
Two boxes

 created with
HTML <div> tag

and styled
using CSS.

© John Wiley & Sons

0005390137.INDD 118 Trim size: 7.375 in × 9.25 in June 13, 2022 7:28 AM

118 BOOK 2 Basic Web Coding

for an image that says, “This is an element.” These boxes may not always be vis-
ible, but comprise four parts:

 » content: HTML tag that is rendered in the browser

 » padding: Optional spacing between content and the border

 » border: Marks the edge of the padding and varies in width and visibility

 » margin: Transparent optional spacing surrounding the border

Using the Chrome browser, navigate to your favorite news website, then right-
click an image and choose Inspect from the context menu. On the right side of the
screen, you see three tabs; click the Computed tab. The box model is displayed for
the image you right-clicked, showing the content dimensions, and then dimen-
sions for the padding, border, and margin.

The padding, border, and margin are CSS properties, and the value is usually
expressed in pixels. In the following code, shown in Figure 4-15, padding and
margins are added to separate each div.

div {

 height: 100px;

 width: 100px;

 border: 1px solid black;

 padding: 10px;

 margin: 10px;

}

FIGURE 4-14:
Box model for
img element.

N
ext Steps w

ith CSS

0005390137.INDD 119 Trim size: 7.375 in × 9.25 in June 13, 2022 7:28 AM

CHAPTER 4 Next Steps with CSS 119

Positioning the boxes
Now that you understand how to group elements using HTML and how CSS
views elements, the final piece is to position these elements on the page. Vari-
ous techniques can be used for page layouts, and a comprehensive overview of
each technique is beyond the scope of this book. However, one technique to cre-
ate the layouts shown in Figure 4-16 is to use the float and clear properties (as
described in Table 4-3).

FIGURE 4-15:
Padding and

margin added to
separate

each div.

© John Wiley & Sons

FIGURE 4-16:
Left navigation

web page layout
created using
<div> tags.

© John Wiley & Sons

0005390137.INDD 120 Trim size: 7.375 in × 9.25 in June 13, 2022 7:28 AM

120 BOOK 2 Basic Web Coding

If the width of an element is specified, the float property allows elements that
would normally appear on separate lines to appear next to each other, such as
navigation toolbars and a main content window. The clear property is used to
prevent any other elements from floating on one or both sides of current element,
and the property is commonly set to both to place web page footers below other
elements.

The following example code uses <div> tags, float, and clear to create a simple
left navigation layout. (See Figure 4-16.) Typically, after grouping your content
using <div> tags, you name each <div> tag using class or id attributes, and then
style the div in CSS. A lot of code follows, so let’s break it down into segments:

 » The CSS is embedded between the opening and closing <style> tags, and the
HTML is between the opening and closing <body> tags.

 » Between the opening and closing <body> tags, using <div> tags, the page is
divided into four parts with header, navigation bar, content, and footer.

 » The navigation menu is created with an unordered list, which is left-aligned,
with no marker.

 » CSS styles size and color and align each <div> tag.

 » CSS properties, float and clear, are used to place the left navigation layout
to the left, and the footer below the other elements.

<!DOCTYPE html>

<html>

<head>

 <title>Figure 4-14: Layout</title>

 <style>

TABLE 4-3 Select CSS Properties and Values for Page Layouts
Property Name Possible Values Description

float left

right

none

Sends an element to the left or right of the container it is in. The
none value specifies that the element should not float.

clear left

right

both

none

Specifies on which side of an element not to have other
floating elements.

N
ext Steps w

ith CSS

0005390137.INDD 121 Trim size: 7.375 in × 9.25 in June 13, 2022 7:28 AM

CHAPTER 4 Next Steps with CSS 121

 #header{

 background-color: #FF8C8C;

 border: 1px solid black;

 padding: 5px;

 margin: 5px;

 text-align: center;

 }

 #navbar {

 background-color: #00E0FF;

 height: 200px;

 width: 100px;

 float: left;

 border: 1px solid black;

 padding: 5px;

 margin: 5px;

 text-align: left;

 }

 #content {

 background-color: #EEEEEE;

 height: 200px;

 width: 412px;

 float: left;

 border: 1px solid black;

 padding: 5px;

 margin: 5px;

 text-align: center;

 }

 #footer{

 background-color: #FFBD47;

 clear: both;

 text-align: center;

 border: 1px solid black;

 padding: 5px;

 margin: 5px;

 }

 ul {

 list-style-type: none;

 line-height: 25px;

 padding: 0px;

 }

 </style>

</head>

<body>

<div id="header"><h1>Nik's Tapas Restaurant</h1></div>

0005390137.INDD 122 Trim size: 7.375 in × 9.25 in June 13, 2022 7:28 AM

122 BOOK 2 Basic Web Coding

<div id="navbar">

 About us

 Reservations

 Menus

 Gallery

 Events

 Catering

 Press

</div>

<div id="content"></div>

<div id="footer">Copyright &copy; Nik's Tapas</div>

</body>

</html>

Writing More Advanced CSS
Practice your CSS online using the CodeSandbox.io website (or one of the other
code playgrounds listed in Book 1). Practice using all the CSS properties that you
find in this chapter by following these steps:

1. Open your browser and go to codesandbox.io.

2. If you have a codesandbox account, sign in.

Signing up is discussed in Book 1, Chapter 3.

Creating an account allows you to save your progress as you work, but it’s
optional.

3. Create a new sandbox using the static template or open the sandbox that
you created in the previous chapter.

4. Use an HTML document from this chapter or make your own. Examples
of HTML documents you might try writing include your favorite recipe,
your resume (or even a fictitious one), or a web page that explains the
steps for fixing a leaky sink or planting a garden.

5. Make a style.css file and link it to your HTML file.

6. Try using some of the new style properties you learned in this chapter, as
well as ID and class selectors, to style elements in your HTML document.

CHAPTER 5 Responsive Layouts with Flexbox 123

0005390138.INDD 123 Trim size: 7.375 in × 9.25 in June 11, 2022 12:45 PM

Responsive Layouts with
Flexbox

“The measure of intelligence is the ability to change.”

—ALBERT EINSTEIN

In this chapter, you continue building on the knowledge of CSS you gained in
Book 2, Chapters 3 and 4. You previously learned how to apply styles to ele-
ments and how to do basic web page layout using CSS. Now it’s time to learn

one of the newest and most useful features of the latest version of CSS to easily
make web pages that look good in any browser: including on desktop, tablet, or
mobile devices.

Flexbox can be confusing at first, until you do some hands-on work with it. Use a
code playground such as CodeSandbox as you go through this chapter to experi-
ment with the examples provided. If you’ve built a web page already, you can
use this chapter as a reference when you have questions about specific Flexbox
properties.

Chapter 5

IN THIS CHAPTER

 » Understanding responsive design

 » Using Flexbox, the flexible box
module

 » Styling Flexbox containers

 » Styling Flexbox items

0005390138.INDD 124 Trim size: 7.375 in × 9.25 in June 11, 2022 12:45 PM

124 BOOK 2 Basic Web Coding

Introducing Responsive Design
Responsive design is the practice of making web pages and web apps that adjust to
fit the width of the browser window in which they appear. In this section, you’ll
learn the terminology behind responsive design as well as the reasons for design-
ing responsive web pages.

The web is mobile
In the years since the first edition of this book came out, the web passed a major
milestone. In 2016, the number of web pages viewed on mobile devices surpassed
the number of web pages viewed on desktop (including laptop) devices globally.
Since then, this trend has continued. Today, around two-thirds of all web page
views come from mobile devices. This fact is significant, because many web pages
still don’t work well on mobile devices.

Why are so many sites mobile-unfriendly?
Since most web development is done using desktop computers (it’s so much easier
to code with a large monitor, or even better, with multiple monitors!), there is an
inherent bias in web development toward desktop browsers. Many web developers
still treat testing their websites on mobile as an afterthought.

A website built without taking mobile browsers into consideration from the very
beginning is likely to not work as well on mobile devices as it does on desktop,
or to not be usable at all on mobile. When so many more web pages are being
browsed on mobile devices, leaving them behind can result in significantly less
traffic to your website and in unhappy customers.

Introducing mobile-first design
In recent years, the trend in web development has begun to reflect reality, and
we’ve entered the age of “mobile-first” design. In mobile-first design, instead of
making a web page that’s optimized for desktop devices and then scaling it down
for mobile devices, we design web pages first for mobile and then scale them up
for desktop devices.

Responsive Layouts
w

ith Flexbox

0005390138.INDD 125 Trim size: 7.375 in × 9.25 in June 11, 2022 12:45 PM

CHAPTER 5 Responsive Layouts with Flexbox 125

Making responsive web pages with
the viewport meta tag
The simplest way to design a responsive web page is to write a simple web page
that uses the browser’s default styling, with no additional positioning CSS or ele-
ment widths specified, and then add a viewport meta tag to the head element.

A viewport meta tag is an instruction for the web browser that tells it how to scale
the virtual window in which web pages display, which is called the viewport.

For example, the following HTML document will look just fine (if a bit boring) on
desktop devices.

<!DOCTYPE html>

<html>

 <head>

 <title>What's the cat up to?</title>

 </head>

 <body>

 <h1>Here are some of the things my cat is doing this morning:</h1>

 Playing with catnip mouse

 Hiding from the dog

 Jumping on the table

 Getting into the salad

 Rolling on the floor

 Sleeping on the dresser

 </body>

</html>

Figure 5-1 shows how this web page looks in Chrome on a desktop computer.

When you open this same web page on a mobile device, however, it appears very
small, as shown in Figure 5-2.

The reason the web page looks so small on a mobile device is that mobile devices
display more pixels per inch than desktop devices. To get more details about the
reasons behind this and how using a viewport meta tag adjusts for this, view
the excellent video about the browser viewports at https://www.youtube.com/
watch?v=XrMTuTzX4co.

0005390138.INDD 126 Trim size: 7.375 in × 9.25 in June 11, 2022 12:45 PM

126 BOOK 2 Basic Web Coding

FIGURE 5-1:
A simple web

page in a desktop
browser.

© John Wiley & Sons

FIGURE 5-2:
A non-optimized

web page in a
mobile browser.

© John Wiley & Sons

Responsive Layouts
w

ith Flexbox

0005390138.INDD 127 Trim size: 7.375 in × 9.25 in June 11, 2022 12:45 PM

CHAPTER 5 Responsive Layouts with Flexbox 127

The viewport meta tag you can use to make a simple web page display correctly
on mobile devices is as follows:

 <meta name="viewport" content="width=device-width,
initial-scale=1.0">

If this tag looks familiar, that’s because it’s always added to the default index.
html file that gets created in codesandbox.io when you make a new project. The
viewport meta tag is almost always the same as the one shown above, and it’s so
useful that you should add it to every web page you make in the future.

What this viewport meta tag does is to adjust the size of the content to fit the size
of the viewport.

A full explanation of how the viewport tag works is much easier to understand
from a video. Check out the link from a few paragraphs ago to learn more.

With the viewport meta tag added, here’s how the preceding simple web page’s
code now looks:

<!DOCTYPE html>

<html>

 <head>

 <title>What's the cat up to?</title>

 <meta name="viewport" content="width=device-width, initial-scale=1.0">

 </head>

 <body>

 <h1>Here are some of the things my cat is doing this morning:</h1>

 Playing with catnip mouse

 Hiding from the dog

 Jumping on the table

 Getting into the salad

 Rolling on the floor

 Sleeping on the dresser

 </body>

</html>

This page will look the same in a desktop browser as it did in Figure 5-1. Figure 5-3
shows how it looks in a mobile browser now.

If you want to try this out for yourself, go to codesandbox.io and enter this code
into an HTML page. Then open the preview URL in your mobile phone’s web
browser.

0005390138.INDD 128 Trim size: 7.375 in × 9.25 in June 11, 2022 12:45 PM

128 BOOK 2 Basic Web Coding

Using Flexbox
By default, web browsers display the elements in an HTML document from left to
right and from top to bottom. This is what’s called the normal flow. By using the
CSS float and position properties, you can modify this normal flow of HTML
or even remove elements from the normal flow of a document and position them
wherever you want in the viewport. However, these positioning tools can be com-
plex, and achieving the results you want and getting them to work correctly on
different devices can be tricky — especially when you’re trying to align elements
or create responsive layouts.

Another problem with normal flow is that not all languages are written from left
to right. So-called normal flow is backward to the Arabic-speaking world, for
example.

Flexbox was created to fix the many issues with web page layout using older CSS
properties like float and position. The first things you need to know about Flex-
box are:

FIGURE 5-3:
A simple mobile

web page.

© John Wiley & Sons

Responsive Layouts
w

ith Flexbox

0005390138.INDD 129 Trim size: 7.375 in × 9.25 in June 11, 2022 12:45 PM

CHAPTER 5 Responsive Layouts with Flexbox 129

 » All Flexbox layout happens in Flexbox containers (also known as boxes).

 » Flexbox is one-dimensional. When you work with Flexbox, you only deal with
the x axis (rows) or the y axis (columns) at any one time.

 » Flexbox doesn’t assume that the text direction (also known as the writing
mode) is left-to-right.

 » Flexbox containers and the items inside them are flexible (it’s right there in the
name!).

In the following sections, you’ll learn more about each of these points and you’ll
see plenty of example code you can try out on your own to help you get comfort-
able with using Flexbox.

Creating boxes
To get started with Flexbox, you first need to define what part or parts of your web
page will use it. The way to do this is to set the display property of an element to
flex. By default, a container will flow elements inside it horizontally (in a row).
For example, in the following code, the div element with the id of gallery is a
Flexbox that will flow horizontally.

<!DOCTYPE html>

<html>

 <head>

 <title>Creating a container</title>

 <style>

 #gallery {

 display: flex;

 }

 </style>

 </head>

 <body>

 <div id="gallery"></div>

 </body>

</html>

The preceding code won’t display anything in the browser just yet, because there’s
no content in the Flexbox container. To see what Flexbox can do, you can put
something in the Flexbox. An element that’s inside a Flexbox container is called
an item.

Just as a cardboard box doesn’t make a lot of sense for holding just one thing
(unless you’re a certain online retailer, in which case the bigger the box and the

0005390138.INDD 130 Trim size: 7.375 in × 9.25 in June 11, 2022 12:45 PM

130 BOOK 2 Basic Web Coding

smaller the item inside it the better!), a Flexbox with only one item isn’t impres-
sive. To see what simply creating a container and putting things in it can do, we’ll
need several items in the box. The following example code creates three div ele-
ments in the flex container and styles them with a solid black border and margins
of 10 pixels.

<!DOCTYPE html>

<html>

 <head>

 <title>A flexible row of boxes</title>

 <style>

 #gallery {

 display: flex;

 }

 .box {

 border: 4px solid black;

 margin: 10px;

 width: 100px;

 height: 100px;

 font-size: 36px;

 }

 </style>

 </head>

 <body>

 <div id="gallery">

 <div class="box">1</div>

 <div class="box">2</div>

 <div class="box">3</div>

 </div>

 </body>

</html>

When displayed in a web browser, the preceding code will show three boxes
arranged in a neat row, as shown in Figure 5-4.

Thinking in one dimension
When we say that Flexbox layout is one-dimensional, what we mean is that Flex-
box only deals with either layout in rows or layout in columns. This is different
from a grid layout, in which you can position objects in rows or columns at the
same time.

The property to change the dimension that a container flows its items in is
flex-direction. The flex-direction property has four possible values: row (the
default), row-reverse, column, and column-reverse.

Responsive Layouts
w

ith Flexbox

0005390138.INDD 131 Trim size: 7.375 in × 9.25 in June 11, 2022 12:45 PM

CHAPTER 5 Responsive Layouts with Flexbox 131

The following code changes the layout direction of the items to column, which
makes them display as vertically stacked boxes.

<!DOCTYPE html>

<html>

 <head>

 <title>Demonstrating flex-direction</title>

 <style>

 #gallery {

 display: flex;

 flex-direction: column;

 }

 .box {

 border: 4px solid black;

 margin: 10px;

 width: 100px;

 height: 100px;

 font-size: 36px;

 }

 </style>

 </head>

 <body>

 <div id="gallery">

 <div class="box">1</div>

 <div class="box">2</div>

 <div class="box">3</div>

 </div>

 </body>

</html>

FIGURE 5-4:
Little boxes all

the same.

© John Wiley & Sons

0005390138.INDD 132 Trim size: 7.375 in × 9.25 in June 11, 2022 12:45 PM

132 BOOK 2 Basic Web Coding

To reverse the order of the items in the box, use one of the -reverse values, as
shown in the following code and in Figure 5-5:

<!DOCTYPE html>

<html>

 <head>

 <title>Demonstrating flex-direction</title>

 <style>

 #gallery {

 display: flex;

 flex-direction: row-reverse;

 }

 .box {

 border: 4px solid black;

 margin: 10px;

 width: 100px;

 height: 100px;

 font-size: 36px;

 }

 </style>

 </head>

 <body>

 <div id="gallery">

 <div class="box">1</div>

 <div class="box">2</div>

 <div class="box">3</div>

 </div>

 </body>

</html>

FIGURE 5-5:
Reversing a flex

container

© John Wiley & Sons

Responsive Layouts
w

ith Flexbox

0005390138.INDD 133 Trim size: 7.375 in × 9.25 in June 11, 2022 12:45 PM

CHAPTER 5 Responsive Layouts with Flexbox 133

Using multi-line containers
By default, the items in a flex container will all be on one line. If you want to cre-
ate a multi-line container in which items will wrap to new lines in the container
when a line of items in a container fills up, you can use the flex-wrap property.

In the following code, the flex-wrap property is set to wrap, which will cause an
additional line to be created when the previous line fills up with items.

<!DOCTYPE html>

<html>

 <head>

 <title>Demonstrating flex-wrap</title>

 <style>

 #gallery {

 display: flex;

 flex-wrap: wrap;

 }

 .box {

 border: 4px solid black;

 margin: 10px;

 font-size: 36px;

 width: 100px;

 height: 100px;

 font-size: 36px;

 }

 </style>

 </head>

 <body>

 <div id="gallery">

 <div class="box">1</div>

 <div class="box">2</div>

 <div class="box">3</div>

 <div class="box">4</div>

 <div class="box">5</div>

 <div class="box">6</div>

 </div>

 </body>

</html>

Figure 5-6 shows what the preceding code looks like rendered in a browser whose
viewport is less than the total width of the six items in the container.

Wrapping items in a container is one of the best ways to create a responsive lay-
out with Flexbox. With wrapping, when a multiple-column layout doesn’t fit the
width of the viewport, the items that don’t fit will just drop down to a new line,
rather than going off the page or shrinking down to fit.

0005390138.INDD 134 Trim size: 7.375 in × 9.25 in June 11, 2022 12:45 PM

134 BOOK 2 Basic Web Coding

Make no assumptions
If you’re working in a language with a left-to-right writing mode, your Flexbox
containers will flow their items from left to right by default. If you’re working in
a language with a right-to-left writing mode, your Flexbox containers will flow
their items from right to left by default.

The terminology used by Flexbox is careful not to play favorites. When we talk
about the position where a row or column of items begin, we use the term “start.”
Likewise, when we talk about the position where a row or column of items stops,
we use the term “end.” The start and end positions could be at the top, bottom,
left, or right of the screen. All that’s important is that the items in a flex container
flow from the start to the end by default. If you use a -reverse value for the flex-
direction property, the items will flow from the end to the start.

By default, items are aligned to the start position on their axis. You can see that in
Figure 5-4, where the row of boxes starts at the left and moves to the right.

Aligning on the cross-axis
One of the greatest features of Flexbox is that you can modify the alignment of
items on their axis or on their cross-axis. The cross-axis refers to the other axis.
To set the cross-axis alignment of items, use the align-items property. The
align-items property can have one of four possible values:

 » stretch

 » flex-start

 » flex-end

 » center

FIGURE 5-6:
Wrapping items.

© John Wiley & Sons

Responsive Layouts
w

ith Flexbox

0005390138.INDD 135 Trim size: 7.375 in × 9.25 in June 11, 2022 12:45 PM

CHAPTER 5 Responsive Layouts with Flexbox 135

The default value is stretch, which makes all the items the same size (along the
cross-axis) as the largest one. For example, Figure 5-7 shows three boxes of dif-
ferent sizes. Using the stretch value of align-items, all the boxes will be the
same height as the tallest one.

If you set align-items to flex-start, the items will be different heights and
their start points will be aligned. If you set align-items to flex-end, their end
points will align. Setting align-items to center will center the items vertically if
the flex-direction is set to row or row-reverse, as shown in Figure 5-8.

FIGURE 5-7:
Stretching items.

© John Wiley & Sons

FIGURE 5-8:
Centering on the

cross-axis.

© John Wiley & Sons

0005390138.INDD 136 Trim size: 7.375 in × 9.25 in June 11, 2022 12:45 PM

136 BOOK 2 Basic Web Coding

Aligning on the main axis
To align items on their main axis, use the justify-content property. The possi-
ble values of justify-content are:

 » flex-start: Items will be justified with the start of the container.

 » flex-end: Items will be justified with the end of the container.

 » center: Items will be centered within the container.

 » space-around: Items are evenly distributed on the line with equal space
around each item.

 » space-between: Items are distributed so that the space between them is
equal.

 » space-evenly: Items are distributed so that the space between the items and
the space to the edges is even.

Figure 5-9 illustrates each of the possible values of the justify-content property.

FIGURE 5-9:
The different

ways to justify
content within a

container.

© John Wiley & Sons

Responsive Layouts
w

ith Flexbox

0005390138.INDD 137 Trim size: 7.375 in × 9.25 in June 11, 2022 12:45 PM

CHAPTER 5 Responsive Layouts with Flexbox 137

Modifying flexible boxes
All the Flexbox properties you’ve seen so far are applied to the container. Each
item within the container can also have Flexbox properties applied to it. For
example, you may want to modify the sizes or the relative sizes of items within a
Flexbox. The three properties that can be applied flex items to affect their size are:

 » flex-basis

 » flex-grow

 » flex-shrink

These three properties tell items how to adjust when there’s extra space (also
known as available space) within the container. For example, if you have three
items that are each 100 pixels wide, and the container around them is 500 pixels
wide, there will be 200 pixels of available space (assuming that the items don’t
have margins between them, of course).

flex-basis
The flex-basis property specifies the initial size of an item before the available
space in the container is taken into consideration. By default, flex-basis is set to
auto, which tells the item to look at its width or height property. You can also set
the flex-basis property to any other size by specifying a length (for example,
100px or 80%).

flex-grow
The flex-grow property is a number that indicates what share of the available
space an item will get when it’s distributed. For example, if each item in the con-
tainer has flex-grow set to 1 (which is the default value), the available space will
be distributed evenly between them. But, if there are three items and two of them
have flex-grow set to 1 and the other has flex-grow set to 2, the one with flex-
grow set to 2 will get twice as much of the available space as the others, as shown
in the following code and in Figure 5-10.

 <div style="display: flex;">

 <div class="box" style="flex-grow: 1;"></div>

 <div class="box" style="flex-grow: 2;"></div>

 <div class="box" style="flex-grow: 1;"></div>

 </div>

0005390138.INDD 138 Trim size: 7.375 in × 9.25 in June 11, 2022 12:45 PM

138 BOOK 2 Basic Web Coding

flex-shrink
The flex-shrink property behaves the same way as flex-grow, but it determines
how much an item will shrink if there isn’t enough space available for the items.
In the following code and example, the middle item will shrink twice as much as
the other two, as shown in Figure 5-11.

<div style="display: flex;">

 <div class="box" style="flex-shrink: 1;"></div>

 <div class="box" style="flex-shrink: 2;"></div>

 <div class="box" style="flex-shrink: 1;"></div>

</div>

The flex property
Although you can specify the flex-basis, flex-grow, and flex-shrink proper-
ties individually for each item, it’s more common for developers to use a short-
hand property that sets all three at the same time. The shorthand property for
setting these three is the flex property.

FIGURE 5-10:
Distributing

 available space
with flex-grow.

© John Wiley & Sons

FIGURE 5-11:
Using

flex-shrink.

© John Wiley & Sons

Responsive Layouts
w

ith Flexbox

0005390138.INDD 139 Trim size: 7.375 in × 9.25 in June 11, 2022 12:45 PM

CHAPTER 5 Responsive Layouts with Flexbox 139

The flex property takes up to three values. The first one is the only value required,
and it’s the number for the flex-grow property. The second one is the number for
the flex-shrink property. The third value is the value for flex-basis. There’s no
difference between using the shorthand property or using the individual proper-
ties, except in the amount of typing you need to do.

Here’s how you can set flex-grow to 2, flex-shrink to 1, and flex-basis to
100px, all in one line of CSS:

flex: 2 1 100px;

If you only want to set the flex-grow property, you can just use one number:

flex: 1;

If you only want to set flex-grow and flex-basis, you can use two values:

flex: 1 100px;

Notice that there’s no way to use two values to set only flex-shrink and flex-
basis. If that’s what you want to do, you need to use three values and set flex-
grow as well.

Changing the order of items
The order in which items appear in a container will be in the same order in which
they appear in the code, by default. If you want to modify the order of the items,
you can do so using the order property.

The order property takes a number value, which is the order in which the item
should appear. Items that have the same number for the order property will be
laid out in the order that they appear in the source code. By default, all items have
an order value of 0.

The following code and Figure 5-12 demonstrate the use of order to make an ele-
ment that comes last in the source code appear first in the browser window.

<!DOCTYPE html>

<html>

 <head>

 <title>The order property</title>

 <style>

 #gallery {

 display: flex;

0005390138.INDD 140 Trim size: 7.375 in × 9.25 in June 11, 2022 12:45 PM

140 BOOK 2 Basic Web Coding

 }

 .box {

 border: 4px solid black;

 margin: 10px;

 font-size: 36px;

 width: 100px;

 height: 100px;

 }

 </style>

 </head>

 <body>

 <div id="gallery">

 <div class="box" style="order: 2;">

 1

 </div>

 <div class="box" style="order: 3;">

 2

 </div>

 <div class="box" style="order: 1;">

 3

 </div>

 </div>

 </body>

</html>

Experimenting with Flexbox
Practice using Flexbox online using the CodeSandbox.io website (or one of the
other code playgrounds listed in Book 1) by following these steps:

FIGURE 5-12:
Changing the

order of items in
a container.

© John Wiley & Sons

Responsive Layouts
w

ith Flexbox

0005390138.INDD 141 Trim size: 7.375 in × 9.25 in June 11, 2022 12:45 PM

CHAPTER 5 Responsive Layouts with Flexbox 141

1. Open your browser and go to codesandbox.io.

2. If you have a codesandbox account, sign in.

Signing up is discussed in Book 1, Chapter 3.

Creating an account allows you to save your progress as you work, but it’s
optional.

3. Create a new sandbox using the static template or open the sandbox that
you created in the previous chapter.

4. Use an HTML document from this chapter or make your own.

5. Make a style.css file and link it to your HTML file.

6. Make a Flexbox container and then try using some of the properties you
learned in this chapter. Test your web page on both a desktop browser
and a mobile browser and get it to look good on both.

0005390138.INDD 142 Trim size: 7.375 in × 9.25 in June 11, 2022 12:45 PM

CHAPTER 6 Styling with Bootstrap 143

0005390139.INDD 143 Trim size: 7.375 in × 9.25 in June 13, 2022 7:39 AM

 Styling with Bootstrap
“None of us got where we are solely by pulling ourselves up by our bootstraps.
We got here because somebody — a parent, a teacher, an Ivy League crony, or
a few nuns — bent down and helped us pick up our boots.”

 — THURGOOD MARSHALL

 B ootstrap is a free toolkit that allows users to create web pages quickly and
with great consistency. In 2011 two Twitter developers, Mark Otto and Jacob
Thornton, created the toolkit for internal use at Twitter and soon afterward

released it to the general public. Before Bootstrap, developers would create com-
mon web page features over and over again and each time slightly diff erently,
leading to increased time spent on maintenance. Bootstrap has become one of the
most popular tools used in creating websites and is used by NASA and Newsweek
for their websites. With a basic understanding of HTML and CSS, you can use and
customize Bootstrap layouts and elements for your own projects.

 In this chapter, you discover what Bootstrap does and how to use it. You also
discover the various layouts and elements that you can quickly and easily create
when using Bootstrap.

Chapter 6

 IN THIS CHAPTER

» Understanding what Bootstrap does

» Using the Bootstrap Icons library

» Viewing layouts created with
Bootstrap

» Creating web page elements using
Bootstrap

0005390139.INDD 144 Trim size: 7.375 in × 9.25 in June 13, 2022 7:39 AM

144 BOOK 2 Basic Web Coding

Figuring Out What Bootstrap Does
Imagine you’re the online layout developer for The Washington Post, responsible
for coding the front page of the print newspaper (see Figure 6-1) into a digital
website version. The newspaper consistently uses the same font size and typeface
for the main headline, captions, and bylines. Similarly, there are a set number
of layouts to choose from, usually with the main headline at the top of the page
accompanied by a photo.

Every day you could write your CSS code from scratch, defining font typeface,
sizes, paragraph layouts, and the like. However, given that the newspaper follows
a largely defined format, it would be easier to define this styling ahead of time in
your CSS file with class names and when necessary refer to the styling you want
by name. At its core, this is how Bootstrap functions.

Bootstrap is a collection of standardized prewritten HTML, CSS, and JavaScript
code that you can reference using class names (for a refresher, see Book 2,
Chapter 4) and then further customize. Bootstrap allows you to create and gives
you the following:

FIGURE 6-1:
The front page of

The Washington
Post (January 25,

2022).

© John Wiley & Sons

Styling w
ith Bootstrap

0005390139.INDD 145 Trim size: 7.375 in × 9.25 in June 13, 2022 7:39 AM

CHAPTER 6 Styling with Bootstrap 145

 » Layouts: Define your web page content and elements in a grid pattern.

 » Components: Use existing buttons, menus, and icons that have been tested
on hundreds of millions of users.

 » Responsiveness: A fancy word for whether your site will work on mobile
phones and tablets in addition to desktop computers. Ordinarily, you would
write additional code so your website appears properly on these different
screen sizes, but Bootstrap code is already optimized to do this for you, as
shown in Figure 6-2. Behind the scenes, Bootstrap uses Flexbox, which you
learned about in Book 2, Chapter 5, to make responsive layouts.

 » Cross-browser compatibility: Chrome, Firefox, Safari, Edge, and other
browsers all vary in the way they render certain HTML elements and CSS
properties. Bootstrap code is optimized so your web page appears consis-
tently no matter the browser used.

Installing Bootstrap
Install and add Bootstrap to your HTML file by following these steps:

1. Open your web browser and go to https://getbootstrap.com.

2. Click the Download button. You’ll see the Download Bootstrap page.

3. Scroll down the page (or use the navigation link on the right side of the
page) to find the section called CDN via jsDelivr, as shown in Figure 6-3.

FIGURE 6-2:
The Super Mario

Odyssey page
optimized for

mobile, tablet,
and desktop

using Bootstrap.

© John Wiley & Sons

0005390139.INDD 146 Trim size: 7.375 in × 9.25 in June 13, 2022 7:39 AM

146 BOOK 2 Basic Web Coding

4. Click the first Copy button in the CDN via jsDelivr section to copy the code
for including Bootstrap in your web page.

5. Paste the code you just copied between your opening and closing
<head> tag.

The <link> and <script> tags download Bootstrap from a content delivery
network (CDN), which is a network that’s optimized for serving code and media
files to users quickly no matter where they’re located.

If you want to try Bootstrap using CodeSandbox.io, you can create a new project
with the static template (or use one that you’ve already created) and paste the
CDN links into the <head> element, as shown in Figure 6-4. When you save the
file, your page will have Bootstrap styles applied to it. Try changing the default
text on the page and see how simply adding Bootstrap to a page makes it look
better.

FIGURE 6-3:
The Bootstrap

CDN links.

© John Wiley & Sons

Styling w
ith Bootstrap

0005390139.INDD 147 Trim size: 7.375 in × 9.25 in June 13, 2022 7:39 AM

CHAPTER 6 Styling with Bootstrap 147

Understanding the Layout Options
Bootstrap allows you to lay out content quickly and easily using a grid system.
You have three options when using this grid system:

 » Code yourself. After you learn how the grid is organized, you can write code
to create any layout you wish.

 » Code with a Bootstrap editor. Instead of writing code in a text editor, drag
and drop components and elements to generate Bootstrap code. You can
then download and use this code.

 » Code with a prebuilt theme. Download free Bootstrap themes or buy a theme
where the website has already been created, and you fill in your own content.

Lining up on the grid system
Bootstrap divides the screen into a grid system of 12 equally sized columns. These
columns follow a few rules:

 » Columns must sum to a width of 12 columns. You can use one column that
is 12 columns wide, 12 columns that are each one column wide, or anything
in between.

FIGURE 6-4:
Using

Bootstrap in
CodeSandbox.io

© John Wiley & Sons

0005390139.INDD 148 Trim size: 7.375 in × 9.25 in June 13, 2022 7:39 AM

148 BOOK 2 Basic Web Coding

 » Columns can contain content or spaces. For example, you could have a
4-column-wide column, a space of 4 columns, and another 4-column-wide
column.

Unless you specify otherwise, these columns will automatically stack into a
single column on smaller browser sizes or screens like mobile devices, and
expand horizontally on larger browser sizes or screens like laptop and
desktop screens. (See Figure 6-5.)

Now that you have a sense for how these layouts appear on the screen, take a look
at example code used to generate these layouts. To create any layout, follow these
steps:

1. Create a <div> tag with the attribute class="container".

2. Inside the first <div> tag, create another nested <div> tag with the
attribute class="row".

3. For each row you want to create, create another <div> tag with the
attribute class="col-md-X". Set X equal to the number of columns you
want the row to span.

For example, to have a row span four columns, write <div class= "col-md-4">.
The md targets the column width for desktops, and I show you how to target other
devices later in this section.

You must include <div class="container"> at the beginning of your page and
have a closing </div> tag, or your page will not render properly.

The following code, as shown in Figure 6-6, creates a simple three-column cen-
tered layout:

<div class="container">

 <!-- Example row of columns -->

FIGURE 6-5:
Sample Bootstrap

layouts.

Styling w
ith Bootstrap

0005390139.INDD 149 Trim size: 7.375 in × 9.25 in June 13, 2022 7:39 AM

CHAPTER 6 Styling with Bootstrap 149

 <div class="row">

 <div class="col-md-4">

 <h2>Heading</h2>

 <p>Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do

 eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim

 ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut

 aliquip ex ea commodo consequat.

</p>

 </div>

 <div class="col-md-4">

 <h2>Heading</h2>

 <p>Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod

 Tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam,

 quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo

 consequat.

</p>

 </div>

 <div class="col-md-4">

 <h2>Heading</h2>

 <p>Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod

 tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam,

 quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo

 consequat.

</p>

 </div>

 </div>

</div>

To see another example, go to the Zoom.us site and resize the browser win-
dow. You will notice that as you make the browser window smaller, the columns
automatically stack on top of one another in order to be readable. Also, the col-
umns are automatically centered. Without Bootstrap, you would need more code
to achieve these same effects.

FIGURE 6-6:
Bootstrap three-

column layout
with desktop (left)
and mobile (right)

versions.

© John Wiley & Sons

0005390139.INDD 150 Trim size: 7.375 in × 9.25 in June 13, 2022 7:39 AM

150 BOOK 2 Basic Web Coding

The Lorem Ipsum text you see in the preceding code is commonly used to create
filler text. Although the words don’t mean anything, the quotation originates
from a first-century BC Latin text by Cicero. You can generate filler text when
creating your own websites by using the dummy text you find at www.lipsum.org.

Dragging and dropping to a website
After looking at the preceding code, you may want an even easier way to gen-
erate the code without having to type it yourself. Bootstrap editors allow you to
drag and drop components to create a layout, after which the editor will generate
Bootstrap code for your use.

Bootstrap editors that you can use include the following:

 » Layoutit.com: Free online Bootstrap editor (as shown in Figure 6-7) that
allows you to drag and drop components and then download the source code

 » Pingendo.com: Free downloadable drag-and-drop Bootstrap editor

 » Codeply.com: Free online code editor with built-in support for Bootstrap

These sites are free and may stop working without notice. You can find additional
options by using any search engine to search for Bootstrap editors.

FIGURE 6-7:
Layoutit.com

interface with
drag-and-drop

Bootstrap
components.

© John Wiley & Sons

Styling w
ith Bootstrap

0005390139.INDD 151 Trim size: 7.375 in × 9.25 in June 13, 2022 7:39 AM

CHAPTER 6 Styling with Bootstrap 151

Using predefined templates
Sites exist with ready-to-use Bootstrap themes; all you need to do is add your
own content. Of course, you can also modify the theme if you wish. Here are some
of these Bootstrap theme websites:

 » www.bootstrapzero.com: Collection of free, open-source
Bootstrap templates

 » www.bootswatch.com and www.bootsnipp.com: Include prebuilt Bootstrap
components that you can assemble for your own site

 » www.wrapbootstrap.com: Bootstrap templates available for purchase

Bootstrap themes may be available for free, but follow the licensing terms. The
author may require attribution, email registration, or a tweet.

Adapting layout for mobile,
tablet, and desktop
The Bootstrap grid is mobile first. What this means is that the default behavior
for items within a Bootstrap container is for each one to take up the full 12 col-
umns. If you want to have multiple columns on larger devices, you can use the
col-xx-xx classes. In responsive design, we call the screen sizes at which the
layout shifts breakpoints. There are six breakpoints you can target — extra small,
small, medium, large, extra large, and extra extra large. As shown in Table 6-1,
Bootstrap uses a different class prefix to target each breakpoint except the extra
small one, which is the default.

TABLE 6-1 Bootstrap Code for Various Screen Sizes
Extra Small

(<576px)
Small

(≥576px)
Medium
(≥768px)

Large
(≥992 px)

Extra Large
(≥1200px)

Extra Extra
Large (≥1400px)

Class
prefix

col-xs- col-sm- col-md- col-lg- col-xl- col-xxl-

Example
device

Phones Tablets Laptops Desktops Large screens Extra large
screens, TVs

0005390139.INDD 152 Trim size: 7.375 in × 9.25 in June 13, 2022 7:39 AM

152 BOOK 2 Basic Web Coding

Because Bootstrap is mobile first, you only need to use the col-xs- breakpoint if
you want to divide a mobile screen into multiple columns. If you want to display
your layout in a single column on small screens (which is generally a good idea),
you don’t need to specify the col-xs-12 breakpoint, as it’s implied.

Based on Table 6-1, if you want your website to have two equally sized columns
on tablets, desktops, large desktops, and TVs, you use the col-sm- class name as
follows:

<div class="container">

 <div class="row">

 <div class="col-sm-6">Column 1</div>

 <div class="col-sm-6">Column 2</div>

</div>

</div>

After viewing your code on all three devices, you decide that on desktops and
larger devices you prefer unequal instead of equal columns so that the left column
is half the size of the right column. You target desktop devices using the col-md-
class name and add it to the class name immediately after col-sm-:

<div class="container">

 <div class="row">

 <div class="col-sm-6 col-md-4">Column 1</div>

 <div class="col-sm-6 col-md-8">Column 2</div>

</div>

</div>

HTML elements can have multiple classes. This allows you to add multiple effects,
such as changing the way a column is displayed, to the element. To define mul-
tiple classes, use the class attribute and set it equal to each class; separate each
class with a space. For an example, refer to the preceding code: The third and
fourth <div> elements have two classes, col-sm-6 and col-md-4.

Finally, you decide that on large desktop screens and TVs, you want the left
column to be two columns wide. You target large desktop screens using the
col-lg- class name, as shown in Figure 6-8, and add to your existing class
attribute values:

<div class="container">

 <div class="row">

 <div class="col-sm-6 col-md-4 col-lg-2">Column 1</div>

 <div class="col-sm-6 col-md-8 col-lg-10">Column 2</div>

</div>

</div>

Styling w
ith Bootstrap

0005390139.INDD 153 Trim size: 7.375 in × 9.25 in June 13, 2022 7:39 AM

CHAPTER 6 Styling with Bootstrap 153

Coding Basic Web Page Elements
In addition to responsive layouts, Bootstrap can also create web page components
found on almost every website. The idea here is the same as when working with
layouts — instead of re-creating the wheel every time by designing your own
button or toolbar, it would be better to use prebuilt code, which has already been
tested across multiple browsers and devices.

The following examples show how to quickly create common web components.

Designing buttons
Buttons are a basic element on many web pages, but usually can be difficult to set
up and style. As shown in Table 6-2, buttons can have various types and sizes.

FIGURE 6-8:
A two-column

site displayed on
 tablet, desktop,

and large
desktop.

© John Wiley & Sons

0005390139.INDD 154 Trim size: 7.375 in × 9.25 in June 13, 2022 7:39 AM

154 BOOK 2 Basic Web Coding

To create a button, write the following HTML:

1. Begin with the button HTML element.

2. In the opening <button> tag, include type="button".

3. Include the class attribute with the btn class attribute value and add
class prefixes based on the effect you want.

4. To add styles, continue adding the class prefix name into the HTML class
attribute.

As shown in Figure 6-9, the following code combines the button type and button
size:

<p>

 <button type="button" class="btn btn-primary btn-lg">Large primary button

 </button>

 <button type="button" class="btn btn-danger btn-lg">Large danger button

 </button>

</p>

<p>

 <button type="button" class="btn btn-success">Default success button</button>

 <button type="button" class="btn btn-info">Default info button</button>

</p>

<p>

 <button type="button" class="btn btn-warning btn-sm">Small warning button

TABLE 6-2 Bootstrap Code for Creating Buttons
Attribute Class Prefix Description

Button type btn-primary

btn-secondary

btn-success

btn-danger btn-warning

btn-info

btn-light

btn-dark

Blue button with hover effect

Gray button with hover effect

Green button with hover effect

Red button with hover effect

Yellow button with hover effect

Light blue button with hover effect

Light gray button with hover effect

Black button with hover effect

Button size btn-lg btn-sm Large button size

Default button size

Small button size

Styling w
ith Bootstrap

0005390139.INDD 155 Trim size: 7.375 in × 9.25 in June 13, 2022 7:39 AM

CHAPTER 6 Styling with Bootstrap 155

 </button>

 <button type="button" class="btn btn-dark btn-sm">Small dark button

 </button>

</p>

For additional button type, button size, and other button options, see https://
getbootstrap.com/docs/5.1/components/buttons/.

Navigating with toolbars
Web pages with multiple pages or views usually have one or more toolbars to help
users with navigation. Some toolbar options are shown in Table 6-3.

FIGURE 6-9:
Bootstrap button

types and sizes.

© John Wiley & Sons

TABLE 6-3 Bootstrap Code for Creating Navigation Toolbars
Attribute Class Prefix Description

Toolbar type nav-tabs

nav-pills

Tabbed navigation toolbar

Pill, or solid button navigation toolbar

Toolbar button type dropdown

caret dropdown-menu

Button or tab as drop-down menu

Down-arrow drop-down menu icon

Drop-down menu items

0005390139.INDD 156 Trim size: 7.375 in × 9.25 in June 13, 2022 7:39 AM

156 BOOK 2 Basic Web Coding

To create a pill or solid button navigation toolbar, write the following HTML:

1. Begin an unordered list using the ul element.

2. In the opening tag, include class="nav nav-pills".

3. Create buttons using the tag. Include class="nav-item" in each
 tag and class="active" in one opening tag to designate which
tab on the main toolbar should appear visually highlighted.

4. Include class="nav-link" in each <a> tag.

5. To create a drop-down menu, nest an unordered list. See the code next to
“More” with class prefixes "dropdown", "caret", and "dropdown-menu".

You can link to other web pages in your drop-down menu by using the <a> tag.

The following code, as shown in Figure 6-10, creates a toolbar using Bootstrap:

<ul class="nav nav-pills">

 <li class="nav-item">

 Timeline

 <li class="nav-item">

 About

 <li class="nav-item">

 Photos

 <li class="nav-item">

 Friends

 <li class="nav-item dropdown">

 <a class="nav-link dropdown-toggle" data-bs-toggle="dropdown" href="#"

 >More

 <ul class="dropdown-menu">

 <li class="nav-item">

 Places

 <li class="nav-item">

 Sports

 <li class="nav-item">

 Music

Styling w
ith Bootstrap

0005390139.INDD 157 Trim size: 7.375 in × 9.25 in June 13, 2022 7:39 AM

CHAPTER 6 Styling with Bootstrap 157

The dropdown-toggle class and the data-bs-toggle="dropdown" attribute and
value work together to add drop-down menus to elements such as links. For addi-
tional toolbar options, see https://getbootstrap.com/docs/5.1/components/
navs-tabs/.

Adding icons
Icons are frequently used with buttons to help convey some type of action. For
example, your email program likely uses a button with a trash can icon to delete
emails. Icons quickly communicate a suggested action to users without much
explanation.

Bootstrap Icons is a free and open-source library of over 1,500 icons. To use
Bootstrap Icons, you first need to link to the icon library. One way to do this is by
putting the following link to the Bootstrap Icons CDN URL in the <head> of your
HTML page.

<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/bootstrap-icons@1.7.2/

font/bootstrap-icons.css">

Once you’ve included the Bootstrap Icons in your page, you can browse the icons
at https://icons.getbootstrap.com/ to find the icon you want. To use the icon,
give an element the bi class along with the bi-[icon-name] class. As shown in
Figure 6-11, the following example code creates three buttons with a star, paper-
clip, and trash can icon.

Although you can include the entire library in your web page, if you’re only going
to use one of two, you can improve the loading time of your website by only
importing the icons you use. You can get the code for importing individual icons
at icons.getbootstrap.com/#install.

<button type="button" class="btn btn-light">Star

 <i class="bi bi-star"></i>

FIGURE 6-10:
Bootstrap toolbar

with drop-down
menus.

© John Wiley & Sons

0005390139.INDD 158 Trim size: 7.375 in × 9.25 in June 13, 2022 7:39 AM

158 BOOK 2 Basic Web Coding

</button>

<button type="button" class="btn btn-light">Attach

 <i class="bi bi-paperclip"></i>

</button>

<button type="button" class="btn btn-light">Trash

 <i class="bi bi-trash"></i>

</button>

Practicing with Bootstrap
You can practice using Bootstrap online with the CodeSandbox.io website (or one
of the other code playgrounds listed in Book 1) by following these steps:

1. Open your browser and go to codesandbox.io.

2. If you have a codesandbox account, sign in.

Signing up is discussed in Book 1, Chapter 3.

Creating an account allows you to save your progress as you work, but it’s
optional.

3. Create a new sandbox using the static template or open the sandbox that
you created in the previous chapter.

4. Use an HTML document from this chapter or make your own.

5. Follow the instructions in this chapter to include Bootstrap in your page.

6. Make a Bootstrap container and then try using some of the Bootstrap
classes you learned in this chapter. Test your web page on a desktop
browser and a mobile browser and get it to look good on both.

FIGURE 6-11:
Bootstrap

buttons with
icons.

© John Wiley & Sons

3
0005390106.INDD 159 Trim size: 7.375 in × 9.25 in June 11, 2022 4:39 PM

Advanced Web
Coding

Contents at a Glance
CHAPTER 1: What Is JavaScript? . 161

CHAPTER 2: Writing Your First JavaScript Program 173

CHAPTER 3: Working with Variables . 193

CHAPTER 4: Understanding Arrays . 211

CHAPTER 5: Working with Operators, Expressions,
and Statements. 225

CHAPTER 6: Getting into the Flow with Loops
and Branches . 241

CHAPTER 7: Getting Functional . 255

CHAPTER 8: Making and Using Objects . 275

CHAPTER 9: Controlling the Browser with the
Window Object . 291

CHAPTER 10: Manipulating Documents with the DOM 307

CHAPTER 11: Using Events in JavaScript . 327

CHAPTER 12:	Integrating	Input	and Output . 339

CHAPTER 13: Understanding Callbacks and Closures 355

CHAPTER 14: Embracing AJAX and JSON . 367

0005390106.INDD 160 Trim size: 7.375 in × 9.25 in June 11, 2022 4:39 PM

CHAPTER 1 What Is JavaScript? 161

0005390140.INDD 161 Trim size: 7.375 in × 9.25 in June 11, 2022 2:48 PM

 What Is JavaScript ?
“People understand me so poorly that they don’t even understand my
complaint about them not understanding me.”

 — SØREN KIERKEGAARD

J avaScript hasn’t always been as highly regarded as it is today. Some people
have called it the best and worst programming language in the world. Over
the last few years, there have been a great number of improvements made

to the way programmers write JavaScript and to JavaScript interpreters. These
improvements have made JavaScript a much better language today than it’s been
in the past.

 In this chapter, you discover what JavaScript is and a little bit of the history of the
language. You also fi nd out what JavaScript does and why you need to know it.

 What Is JavaScript ?
 Back in the very early days of the web, browsers were simple readers for web
pages (see Figure 1-1). They had virtually no capabilities themselves, except for
the ability to display text in various sized fonts. As soon as Microsoft released its

Chapter 1

 IN THIS CHAPTER

» Getting to know JavaScript

» Figuring out what JavaScript does

» Understanding why you need
JavaScript

0005390140.INDD 162 Trim size: 7.375 in × 9.25 in June 11, 2022 2:48 PM

162 BOOK 3 Advanced Web Coding

Internet Explorer browser, the browser wars were on, and the features started
flying! One browser introduced the ability to display images, then another intro-
duced the capability to have different fonts, and then blinking text, moving text,
and all sorts of other wacky capabilities were introduced!

It wasn’t long before someone got the idea that browsers could actually do useful
things themselves, rather than just acting as fancy document display programs.

The Eich-man cometh
JavaScript got its start back in 1995 at Netscape. The creator of JavaScript, Brandon
Eich, wrote JavaScript in record time (some say in as few as ten days!) by borrow-
ing many of the best features from various other programming languages. The
rush to market also created some interesting quirks (or, less politely described,
mistakes) in the design of the language. The result is a sort of Esperanto-like
language that looks deceptively familiar to people who are experienced with other
programming languages.

FIGURE 1-1:
The first web

browsers weren’t
much to look at.

© John Wiley & Sons

W
hat Is JavaScript?

0005390140.INDD 163 Trim size: 7.375 in × 9.25 in June 11, 2022 2:48 PM

CHAPTER 1 What Is JavaScript? 163

Mocha-licious
The original name of JavaScript was Mocha. It was renamed LiveScript with the
first beta deployment of Netscape Navigator and was then changed to JavaScript
when it was built into the Netscape 2 browser in 1995. Microsoft very quickly
reverse-engineered JavaScript and introduced an exact clone of it in Internet
Explorer, calling it Jscript to get around trademark issues.

Netscape submitted JavaScript to the standards organization known as Ecma
International, and it was adopted and standardized as ECMAScript in 1997.

Brandon Eich, the creator of JavaScript, famously commented about the name
of the standardized language, stating that ECMAScript was an “unwanted trade
name that sounds like a skin disease.”

Not only is ECMAScript an unappealing name for a programming language, the
name given to the language by Netscape and which most people refer to it as, is
rather unfortunate as well. If you already know how to program in Java or if you
learn how to at some point, it’s a very good idea to keep in mind that the two lan-
guages may have some similarities, but they are, in fact, quite different animals.

We need more effects!
When JavaScript debuted, it quickly became very popular as a way to make web
pages more dynamic. So-called Dynamic HTML (DHTML) was an early result of
JavaScript being built into web browsers, and it enabled all sorts of fun effects, like
the falling snowflake effect (see Figure 1-2), popup windows, and curling web page
corners, but also more useful things like drop-down menus and form validation.

FIGURE 1-2:
JavaScript made it

possible to have
snowflakes falling

on your
web page.

0005390140.INDD 164 Trim size: 7.375 in × 9.25 in June 11, 2022 2:48 PM

164 BOOK 3 Advanced Web Coding

JavaScript Grows Up
In the years since those early days, JavaScript has become the world’s most widely
used programming language and virtually every personal computer in the world
has at least one browser on it that can run JavaScript code.

JavaScript is flexible enough that it can be used and learned by nonprogrammers,
but powerful enough that it can (and is) used by professional programmers to
enable functionality on nearly every website on the Internet today, ranging from
single-page sites to gigantic sites like Google, Amazon, Facebook, and many,
many others!

COMMON MISCONCEPTIONS
ABOUT JAVASCRIPT
Over the years, JavaScript has had some pretty nasty things said about it. While some-
times rumors are interesting, they aren’t always true. The following list explains some
common misconceptions about JavaScript:

• Myth: JavaScript is not a real programming language. Reality: JavaScript is often
used for trivial tasks in web browsers, but that doesn’t make it any less of a pro-
gramming language. In fact, JavaScript has many advanced features that have
raised the bar for programming languages and are now being imitated in
languages such as PHP, C++, and even Java.

• Myth: JavaScript is related to Java. Reality: Nope. The name JavaScript was
invented purely as a marketing strategy because Java was incredibly popular at the
time JavaScript came out.

• Myth: JavaScript is new. Reality: JavaScript has been around for over a quarter of a
century! Many awesome JavaScript programmers today weren’t even born when
JavaScript was created.

• Myth: JavaScript is buggy and runs differently in different browsers. Reality: While
this used to be true in some cases, browser makers decided to support the stan-
dardized version of JavaScript long ago. Every browser will run JavaScript the same
today.

W
hat Is JavaScript?

0005390140.INDD 165 Trim size: 7.375 in × 9.25 in June 11, 2022 2:48 PM

CHAPTER 1 What Is JavaScript? 165

Dynamic scripting language
JavaScript is often described as a dynamic scripting language. To understand what
this means, you’ll first need to learn a couple of terms and get some context.

Computer programs are sets of instructions that cause computers to do things.
Every computer programming language has a set of instructions and a certain
way that humans must write those instructions. The computer can’t under-
stand these instructions directly. For a computer to understand a programming
language, it needs to go through a conversion process that translates human-
readable (and writable) instructions into machine language. Depending on when
this translation takes place, programming languages can be roughly divided into
two types: compiled and interpreted (see Figure 1-3).

Compiled programming languages
Compiled programming languages are languages in which a programmer must write
the code and then run it through a special program called a compiler that inter-
prets the given code and then converts it into machine language. The computer
can then execute the compiled program.

FIGURE 1-3:
Programming

 languages
are classified

 according
to when the

 compilation takes
place.

0005390140.INDD 166 Trim size: 7.375 in × 9.25 in June 11, 2022 2:48 PM

166 BOOK 3 Advanced Web Coding

Examples of compiled languages include C, C++, Fortran, Java, Objective-C, and
COBOL.

Interpreted programming languages
Interpreted languages are technically still compiled by the computer into machine
language, but the compiling takes place by the user’s web browser right as the
program is being run. Programmers who write interpreted languages don’t need
to go through the step of compiling their code prior to handing it off to the com-
puter to run.

The benefit of programming in an interpreted language is that it’s easy to make
changes to the program at any time. The downside, however, is that compiling
code as it’s being run creates another step in the process and can slow down the
performance of programs.

Partially because of this performance factor, interpreted languages have gotten a
reputation for being less than serious programming languages. However, because
of better just-in-time compilers and faster computer processors, this perception
is rapidly changing. JavaScript is having a big impact in this regard.

Examples of interpreted programming languages include PHP, Perl, Haskell, Ruby
and of course, JavaScript.

What does JavaScript do?
If you use the web, you’re making use of JavaScript all the time. The list of things
that can be enabled with JavaScript is extensive and ranges from simple notices
you get when you forget to fill out a required field on a form to complex applica-
tions, such as Google Docs or Facebook. Here’s a short list of the most common
uses for JavaScript on the web:

 » Nifty effects

 » Input validation

 » Rollover effects

 » Drop-down/fly-out menus

 » Drag and drop features

 » Infinitely scrolling web pages

 » Autocomplete

 » Progress bars

W
hat Is JavaScript?

0005390140.INDD 167 Trim size: 7.375 in × 9.25 in June 11, 2022 2:48 PM

CHAPTER 1 What Is JavaScript? 167

 » Tabs within web pages

 » Sortable lists

 » Magic Zoom (see Figure 1-4)

Why JavaScript?
JavaScript has become the standard for creating dynamic user interfaces for the
web. Pretty much any time you visit a web page with animation, live data, a but-
ton that changes when you hover over it, or a drop-down menu, JavaScript is at
work. Because of its power and ability to run in any web browser, JavaScript cod-
ing is the most popular and necessary skill for a modern web developer to have.

FIGURE 1-4:
So-called Magic

Zoom effects are
enabled using

JavaScript.

© John Wiley & Sons

0005390140.INDD 168 Trim size: 7.375 in × 9.25 in June 11, 2022 2:48 PM

168 BOOK 3 Advanced Web Coding

JavaScript is easy to learn!
Keep in mind that programming languages were created to give people a simple
way to talk to computers and tell them what to do. Compared with machine
language, the language that the computer’s CPU speaks, every programming
language is easy and understandable. To give you a sample of what sort of
instructions your computer is actually obeying, here is a machine language pro-
gram to write out "Hello World".

b8 21 0a 00 00
a3 0c 10 00 06
b8 6f 72 6c 64
a3 08 10 00 06
b8 6f 2c 20 57
a3 04 10 00 06
b8 48 65 6c
a3 00 10 00 06
b9 00 10 00 06
ba 10 00 00 00
bb 01 00 00 00
b8 04 00 00 00
cd 80
b8 01 00 00 00
cd 80

Now look at one way you can accomplish this simple task with JavaScript:

alert("Hello World");

Much easier, yes?

Once you learn the basic rules of the road (called the syntax), such as when to use
parentheses and when to use curly brackets ({}), JavaScript resembles plain old
English.

The first step in learning any language, including programming languages, is to
get over your fear of getting started. JavaScript makes this easy. There are thou-
sands of sample bits of JavaScript code on the web that anyone can just pick up
and start messing around with. You already have all the tools you need (see Book
3, Chapter 2), and it’s easy to start small with JavaScript and gradually build up to
making great and wonderful things.

W
hat Is JavaScript?

0005390140.INDD 169 Trim size: 7.375 in × 9.25 in June 11, 2022 2:48 PM

CHAPTER 1 What Is JavaScript? 169

JavaScript is everywhere!
Although JavaScript was originally designed to be used in web browsers, it has
found a home in many other places. Today, JavaScript runs on smartphones and
tablets, on web servers, in desktop applications, and in all sorts of portable devices.

The most common place to find JavaScript, and what it was originally designed
to do, is running in web browsers. When JavaScript runs in this way, it’s called
client-side JavaScript.

Client-side JavaScript adds interactivity to web pages. It accomplishes this in
several ways:

 » By controlling the browser itself or making use of functionality of the browser

 » By manipulating the structure and content of web pages

 » By manipulating the styles (such as fonts and layout) of web pages

 » By accessing data from other sources

To understand how JavaScript can manipulate the structure and style of web
pages, you need to know a little bit about HTML5 and CSS3.

HTML5
Hypertext Markup Language (HTML) is the language used to structure web pages.
It works by marking up content (text and images) to give web browsers informa-
tion about the content, such as what is a heading, what is a paragraph, where an
image goes, and so on. Listing 1-1 shows a simple HTML document. Figure 1-5
shows how a web browser displays this document.

LISTING 1-1: A Simple HTML Document

<!DOCTYPE html>
<html>
 <head>
 <title>Hello, HTML!</title>
 </head>
 <body>
 <h1>This is HTML</h1>
 <p id="introduction">

(continued)

0005390140.INDD 170 Trim size: 7.375 in × 9.25 in June 11, 2022 2:48 PM

170 BOOK 3 Advanced Web Coding

 This simple document was written with Hypertext Markup
Language.

</p>
 </body>
</html>

Here’s a quick review of everything you need to know about HTML right now to
move forward with learning JavaScript:

 » In HTML, the characters surrounded by angle brackets are called tags.

 » The ending tag (which comes after the content being marked up) has a slash
after the first angle bracket. For example </p> is an ending tag.

 » A group of two tags (beginning and ending), plus the content in between
them, is called an element.

 » Elements are generally organized in a hierarchal way (with elements nested
within elements).

 » Elements may contain name/value pairs, called attributes. If an element has
attributes, they go in the beginning tag. Name/value pairs assign values, in
quotes, to names (which aren’t in quotes) by putting an equals sign between
them. For example, in the following tag, width and height are both attributes
of the div element:

<div width="100" height="100"></div>

FIGURE 1-5:
Web browsers

use HTML to
 render web

pages.

© John Wiley & Sons

LISTING 1-1: (continued)

W
hat Is JavaScript?

0005390140.INDD 171 Trim size: 7.375 in × 9.25 in June 11, 2022 2:48 PM

CHAPTER 1 What Is JavaScript? 171

 » Some elements don’t have content and therefore don’t need an ending tag.
For example, the img tag, which simply inserts an image into a web page,
looks like this:

<img src="myimage.jpg" width="320" height="200" alt="Here
is a picture of my dog.">

All the data necessary to show the image is included in the beginning tag using
attributes, so the img tag doesn’t require an ending tag.

When you write a web page with HTML, you can include JavaScript code directly
in that document, or you can reference JavaScript code files (which end in .js)
from the HTML document. Either way, your viewer’s web browser will download
the JavaScript code and run it when a user accesses a web page containing that
JavaScript.

Client-side JavaScript runs inside of your users’ web browsers.

CSS3
Cascading Style Sheets (CSS) is the language used to add formatting and different
layouts to web pages. The word style, when used in CSS, refers to many aspects of
how the HTML document is presented to the user, including

 » Typefaces (or font faces)

 » Type size

 » Colors

 » Arrangement of elements in the browser window

 » Sizes of elements

 » Borders

 » Backgrounds

 » Creation of rounded corners on element borders

Like JavaScript, CSS can be either placed directly into an HTML document, or it
can be linked to from the HTML document. Once it’s downloaded, it immediately
does its thing and formats the document according to your specifications.

0005390140.INDD 172 Trim size: 7.375 in × 9.25 in June 11, 2022 2:48 PM

172 BOOK 3 Advanced Web Coding

Style sheets in CSS are made up of CSS rules, which contain properties and values
that should be applied to an element or a group of elements. Here’s an example
of a CSS rule:

p{font-size: 14px; font-color: black; font-family: Arial,
sans-serif}

This rule, reading from left to right, specifies that all p elements (which indicate
paragraphs in HTML) should be displayed in text that is 14px large, black, and
using the Arial font. If Arial isn’t available on the user’s computer, it should be
displayed in some sans-serif typeface.

The part of the CSS rule that’s outside of the curly brackets is called the selector. It
selects the elements that the properties within the curly brackets apply to.

Throughout Book 3, you find out how to use JavaScript with HTML and CSS. We
provide just enough information here to be able to show you how HTML and CSS
work. If you need to learn more, you can review Book 2.

JavaScript is powerful!
JavaScript running in a web browser used to be slow, and JavaScript got a bad
reputation early on among programmers. According to Google, JavaScript code
runs up to 80 percent as fast as compiled code. And, it keeps getting faster all
the time. What this means is that today’s JavaScript is much more powerful than
the JavaScript of just a few years ago. And, it’s many times more powerful than the
JavaScript that was introduced in 1995.

JavaScript is in demand!
JavaScript is not only the most widely known programming language, it’s also the
most in-demand skill in the information technology (IT) job market. It’s pro-
jected that the job market for JavaScript programmers will increase by 13 percent
between 2020 and 2030. Exciting things are happening with JavaScript, and there
has never been a better time than right now to learn it.

CHAPTER 2 Writing Your First JavaScript Program 173

0005390141.INDD 173	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	2:50	PM

 Writing Your First
 JavaScript Program

“The secret of getting ahead is getting started.”

 — MARK TWAIN

 S imple JavaScript programming isn’t diffi cult to understand. In this
chapter, you go through the process of setting up your computer for writ-
ing JavaScript. You also write your fi rst JavaScript program and get to know

the basic syntax behind everything you’ll do with JavaScript in your future as a
programmer.

 Setting Up Your Development
Environment

 It’s important to have all your tools set up and in place before beginning to write
your fi rst JavaScript program. The fi rst step, if you haven ’ t already done it, is to go
through the process of downloading and installing JavaScript development tools.

Chapter 2

 IN THIS CHAPTER

» Arranging your development
environment

» Getting to know JavaScript code

» Understanding a simple JavaScript
program

» Understanding the value of
commenting your code

0005390141.INDD 174	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	2:50	PM

174 BOOK 3 Advanced Web Coding

If you have preferred tools other than the ones recommended in this chapter,
please feel free to use those. However, you should still read this section of the book
to learn about some of the most popular JavaScript tools and to make your own
decisions about whether to use them.

If you don’t want to install any additional tools, you can continue to work in
CodeSandbox.io. The template you’ll want to use for JavaScript programs is called
Vanilla.

After you install each of the tools, you’ll learn some tips and tricks for how to get
the most out of each of them.

Downloading and installing Chrome
All browsers will run JavaScript very fast and correctly. However, some of the
instructions in this book will be specific to Google Chrome, so you should at least
go through the process of installing it on your computer in this chapter. This
book uses Google Chrome because it offers excellent tools for making JavaScript
programmers’ jobs easier and because it’s currently the most widely used web
browser on the Internet.

If you don’t have Chrome installed, follow these steps to install it:

1. Go to www.google.com/chrome.

Figure 2-1	shows	you	what	the	download	page	for	Google	Chrome	looks	like.

2. Click Download Chrome and the appropriate version for your computer
will be downloaded.

3. Open the downloaded file and follow the instructions to install Chrome.

Downloading and installing a code editor
A source code editor, commonly referred to as code editor, is a text editor with
added functionality that helps you write and edit programming code. The one
you’ll learn about in this book is Visual Studio Code.

W
riting Your First

JavaScript Program

0005390141.INDD 175	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	2:50	PM

CHAPTER 2 Writing Your First JavaScript Program 175

There are many code editors to choose from, so if you already have a favorite that
you like to use and that you’re comfortable with, please use it! A programmer’s
code editor is a very personal choice, and many people will find that they just feel
more comfortable with a specific one. If you find that Visual Studio Code (also
known as VS Code) just doesn’t fit your style, Table 2-1 lists some other options.

VS Code is popular among JavaScript programmers, and it provides a simple user
interface along with many plugins for handling more advanced programming
tasks as you gain more programming experience.

FIGURE 2-1:
Installing	Chrome	
is	easy	on	Mac	or	

Windows.	

© John Wiley & Sons

NOW YOU HAVE A SUPERCHARGED
JAVASCRIPT ENGINE!
Google	Chrome	uses	Google’s	V8	JavaScript	engine	to	parse,	compile,	and	run	JavaScript	
code.	Depending	on	whose	benchmarking	test	you	believe,	Chrome	is	either	the	fastest	
way	to	run	JavaScript	in	a	browser,	or	it’s	one	of	the	fastest.	The	major	browser	makers	
are	constantly	competing	to	outdo	each	other.	It	doesn’t	matter	too	much	who	is	the	
fastest	at	any	one	time;	the	competition	has	increased	the	speed	of	every	browser’s	
JavaScript	engine	by	leaps	and	bounds	in	recent	years.

0005390141.INDD 176	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	2:50	PM

176 BOOK 3 Advanced Web Coding

To install VS Code, follow these steps:

1. Go to http://code.visualstudio.com and choose the appropriate
version for your operating system.

2. Open the downloaded file and follow the instructions for installing
VS Code.

Getting started with VS code
When you first open VS Code, you’ll have an option to choose a color theme, as
shown in Figure 2-2. If you want to skip this for now, you can click the Get Started
link in the upper left to go to the main Get Started screen (see Figure 2-3).

If you’ve used VS Code before, you’ll have the option to open a recent project from
the Get Started page. Otherwise, you can choose one of the options under the
Start heading on the Get Started screen: New File, Open (which opens an existing
folder), or Clone Git Repository.

TABLE 2-1 Examples of Other Code Editors
Name Location Compatible	with	. . .

Brackets brackets.io Mac,	Windows,	Linux

Atom www.atom.io Mac,	Windows,	Linux

Sublime	Text sublimetext.com Mac,	Windows,	Linux

Nova nova.app Mac	only

Notepad++ http://notepad-plus-plus.org Windows	only

TextMate http://macromates.com Mac	only

BBEdit www.barebones.com/products/bbedit Mac	only

EMacs www.gnu.org/software/emacs Mac,	Windows,	Linux

TextPad www.textpad.com Windows	only

vim www.vim.org Mac,	Windows,	Linux

Netbeans https://netbeans.org Mac,	Windows,	Linux

W
riting Your First

JavaScript Program

0005390141.INDD 177	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	2:50	PM

CHAPTER 2 Writing Your First JavaScript Program 177

FIGURE 2-2:
The	Color	Theme	

preferences	
window.	

© John Wiley & Sons

FIGURE 2-3:
The	Get	Started	

page.

© John Wiley & Sons

0005390141.INDD 178	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	2:50	PM

178 BOOK 3 Advanced Web Coding

To get started with your first VS Code project, follow these steps:

1. Click New File from the Get Started Screen.

A	blank	and	untitled	page	will	appear.

2. Click the Explorer icon (it looks like a magnifying glass) in the left toolbar.
The Explorer pane will open on the left and it will tell you that you
haven’t opened a folder yet, as shown in Figure 2-4.

3. Click Open Folder and find a folder (or create a new one) on your com-
puter that you want to keep your JavaScript files in.

4. Save your untitled file in your new folder and name it myFirstProgram.
html.

FIGURE 2-4:
The	Explorer	

pane.	

© John Wiley & Sons

W
riting Your First

JavaScript Program

0005390141.INDD 179	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	2:50	PM

CHAPTER 2 Writing Your First JavaScript Program 179

Choosing a syntax color scheme
VS Code syntax colors are based on the type of code that you’re writing and
the file extension. Input the following HTML and JavaScript code shown in
Listing 2-1 into the file you’ve just created to see the default color scheme.

As you’re about to find out, JavaScript is finicky. Make sure that you capitalize
and spell everything exactly as it is in the listing, or your script may not work
correctly or at all.

LISTING 2-1: A Sample HTML File Containing JavaScript

<!DOCTYPE html>
<html>
<head>
 <title>Hello, HTML!</title>
 <script>
 function countToTen(){
 let count = 0;
 while (count < 10) {
 count++;
 document.getElementById("theCount").innerHTML += count +

"
";
 }
 }
</script>
</head>
<body onload="countToTen();">
 <h1>Let's Count to 10 with JavaScript!</h1>
 <p id="theCount"></p>
</body>
</html>

Figure 2-5 shows what the file looks like in VS Code.

If you don’t like the color scheme that’s currently selected, you can change it by
choosing Preferences ➪ Color Theme and then selecting another color scheme.

Try out a few of the other color schemes and find one you like.

0005390141.INDD 180	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	2:50	PM

180 BOOK 3 Advanced Web Coding

If you’d like to try out the program you’ve just typed, follow these steps:

1. Save the file by choosing File ➪  Save.

2. Open your Chrome browser and press Ctrl+O.

An	Open	File	window	appears.

3. Navigate to the file on your computer and select it.

4. Click the Open button.

The	file	will	open	in	your	browser.

Your browser should look just like Figure 2-6. If it doesn’t, very carefully check
your code — you probably have a small typo somewhere. Don’t forget to save your
file after making any changes!

You can also save your file by pressing Command+S (on the Mac) or Control+S (On
Windows). Once you become proficient with them, keyboard shortcuts will save
you a lot of time.

FIGURE 2-5:
VS	Code	applies	

colors	to	all	of	the	
different	parts	of	

your	code.	

© John Wiley & Sons

W
riting Your First

JavaScript Program

0005390141.INDD 181	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	2:50	PM

CHAPTER 2 Writing Your First JavaScript Program 181

Reading JavaScript Code
Before you get started with writing JavaScript programs, you need to be aware of
a few rules of JavaScript:

 » JavaScript is case-sensitive.	Mistakes	in	capitalization	are	probably	the	most	
common	errors	that	those	who	are	new	to	JavaScript	make.	They’re	also	one	
of	the	more	difficult	bugs	to	track	down.	Remember,	to	JavaScript,	the	words	
pants	and	Pants	are	completely	different.

 » JavaScript doesn’t care much about whitespace.	Whitespace	includes	
spaces,	tabs,	and	line	breaks —	any	character	that	doesn’t	have	a	visual	
representation.	When	you’re	writing	JavaScript	code,	it	doesn’t	matter	if	you	
use	one	space,	two	spaces,	a	tab,	or	even	a	line	break	(in	most	cases)	within	
the	code.	JavaScript	will	ignore	whitespace.	The	one	exception	is	when	you’re	
writing	out	text	that	you	want	JavaScript	to	print	to	the	screen.	In	this	case,	the	
whitespace	you	use	will	show	up	in	the	end	result.	The	best	practice,	with	
regards	to	whitespace	in	your	code,	is	to	use	enough	space	that	your	code	is	
easy	to	read	and	to	also	be	consistent	with	how	you	use	this	space.

 » Watch out for reserved words.	JavaScript	has	a	list	of	words	that	have	
special	meaning	to	the	language.	We	list	these	words	in	Book	3,	Chapter 3.	For	
now,	just	be	aware	that	some	words,	such	as	function,	while,	break,	and	
with,	have	special	meanings.

 » JavaScript likes semicolons.	JavaScript	code	is	made	up	of	statements.	You	
can	think	of	statements	as	sentences.	They	are	fundamental	building	blocks	
for	JavaScript	programs	in	the	same	way	that	sentences	are	the	building	
blocks	of	paragraphs.	In	JavaScript,	statements	end	with	a	semicolon.

FIGURE 2-6:
Running	a	simple	
counting	program	

in	Chrome.	

© John Wiley & Sons

0005390141.INDD 182	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	2:50	PM

182 BOOK 3 Advanced Web Coding

If	you	don’t	use	a	semicolon	at	the	end	of	a	statement,	JavaScript	will	put	it	
there	for	you.	This	can	lead	to	unexpected	results,	however,	so	it’s	considered	
a	best	practice	to	always	end	statements	with	a	semicolon.

Running JavaScript in the Browser Window
Although it’s seen in many different environments, the most common place to
see JavaScript in the wild is running in web browsers. Controlling inputs and
outputs, manipulating web pages, handling common browser events such as
clicks and scrolls, and controlling the different features of web browsers is what
 JavaScript was born to do!

To run JavaScript in a web browser, you have three options, all of which will be
shown in the following pages:

 » Put	it	directly	in	an	HTML	event	attribute

 » Put	it	between	an	opening	and	closing	script	tag

 » Put	it	in	a	separate	document	and	include	it	in	your	HTML	document

Many times, you’ll use a combination of all three techniques within any one web
page. However, knowing when to use each is important and is a skill that you’ll
learn with more practice.

Using JavaScript in an HTML event attribute
HTML has several special attributes that are designed for triggering JavaScript
when something happens in the web browser or when the user does something.
Here’s an example of an HTML button with an event attribute that responds to
mouse click events:

<button id="bigButton" onclick="alert('Hello World!');">Click
Here</button>

In this case, when a user clicks on the button created by this HTML element, a
popup will appear with the words “Hello World!”.

HTML has over 70 different event attributes. Table 2-2 shows the most commonly
used ones.

W
riting Your First

JavaScript Program

0005390141.INDD 183	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	2:50	PM

CHAPTER 2 Writing Your First JavaScript Program 183

Although they’re easy to use, using event attributes is considered a less-than-
ideal practice by many JavaScript programmers. You learn them in this book
because they are so widely used and easy to learn. However, for now, just be aware
that there is a better way to write JavaScript code that responds to events than to
use event attributes. You’ll learn about this better method in Book 3, Chapter 11.

Using JavaScript in a script element
The HTML script element allows you to embed JavaScript into an HTML docu-
ment. Often script elements are placed within the head element, and, in fact, this
placement was often stated as a requirement. Today, however, script elements
are used within the head element as well as in the body of web pages.

The format of the script element is very simple:

<script>
 (insert your JavaScript here)
</script>

TABLE 2-2 Commonly Used HTML Event Attributes
Attribute Description

onload Runs	the	script	after	the	page	finishes	loading

onfocus Runs	the	script	when	the	element	gets	focus	(such	as	when	a	text	box	is	active)

onblur Runs	the	script	when	the	element	loses	focus	(such	as	when	the	user	clicks	a	new	text	box	
in	a	form)

onchange Runs	the	script	when	the	value	of	an	element	is	changed

onselect Runs	the	script	when	text	has	been	submitted

onsubmit Runs	the	script	when	a	form	has	been	submitted

onkeydown Runs	the	script	when	a	user	is	pressing	a	key

onkeypress Runs	the	script	when	a	user	presses	a	key

onkeyup Runs	the	script	when	a	user	releases	a	key

onclick Runs	the	script	when	a	user	mouse	clicks	an	element

ondrag Runs	the	script	when	an	element	is	dragged

ondrop Runs	the	script	when	a	dragged	element	is	being	dropped

onmouseover Runs	the	script	when	a	user	moves	a	mouse	pointer	over	an	element

0005390141.INDD 184	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	2:50	PM

184 BOOK 3 Advanced Web Coding

You saw an example of this type of script embedding in Listing 2-1. Listing 2-2
shows another example of an HTML document with a script tag containing
JavaScript. In this case, however, the script element is at the bottom of the body
element.

LISTING 2-2: Embedding JavaScript within a Script Element

<!DOCTYPE html>
<html>
<head>
 <title>Hello, HTML!</title>
</head>
<body>
 <h1>Let's Count to 10 with JavaScript!</h1>
 <p id="theCount"></p>
 <script>
 let count = 0;
 while (count < 10) {
 count++;
 document.getElementById("theCount").innerHTML += count +

"
";
 }
 </script>
</body>
</html>

If you create a new file in VS Code, input Listing 2-2 into it, and then open it in a
web browser, you’ll notice that it does exactly the same thing as Listing 2-1.

Script placement and JavaScript execution
Web browsers normally load and execute scripts as they are loaded. A web page
always gets read by the browser from the top down, just as you would read a
page of text. Sometimes you’ll want to wait until the browser is done loading the
contents of the web page before the script runs. In Listing 2-1, we accomplished
this by using the onload event attribute in the body element. Another common
way to delay execution is to simply place the code to be executed at the end of the
code, as in Listing 2-2.

Limitations of JavaScript in <script> elements
While much more commonly used and more widely accepted than inline script-
ing (putting JavaScript into event attributes), embedding JavaScript into a script
element has some serious limitations.

W
riting Your First

JavaScript Program

0005390141.INDD 185	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	2:50	PM

CHAPTER 2 Writing Your First JavaScript Program 185

The biggest limitation is that scripts embedded in this way can be used only
within the web page where they live. In other words, if you put your JavaScript
into a script element, you need to copy and paste that script element exactly
into every page where it exists. With some websites containing many hundreds of
web pages, you can see how this can become a maintenance nightmare.

When to use JavaScript in <script> elements
This method of embedding JavaScript does have its uses. For bits of JavaScript that
simply call other bits of JavaScript and that rarely (or preferably, never) change, it
is acceptable and can even speed up the loading and display of your web pages by
causing the web server to have to make fewer requests to the server.

Single page apps, which (as the name implies) contain only a single HTML page,
are also great candidates for the use of this type of embedding because there will
only ever be one place to update the script.

As a rule, however, you should seek to minimize the amount of JavaScript that you
embed directly into an HTML document. The results will be easier maintenance
and better organization of your code.

Including external JavaScript files
The third and most popular way to include JavaScript in HTML documents is by
using the src attribute of the script element.

A script element with a src attribute works exactly like a script element with
JavaScript between the tags, except that if you use the src attribute, the JavaScript
is loaded into the HTML document from a separate file. Here’s an example of a
script element with a src attribute:

<script src="myScript.js"></script>

In this case, you would have a separate file, named myScript.js, that would
reside in the same folder as your HTML document. The benefits of using external
JavaScript files are that using them:

 » Keeps	your	HTML	files	neater	and	less	cluttered

 » Makes	your	life	easier	because	you	need	to	modify	JavaScript	in	only	one	
place	when	something	changes	or	when	you	make	a	bug	fix

0005390141.INDD 186	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	2:50	PM

186 BOOK 3 Advanced Web Coding

Creating a .js file
Creating an external JavaScript file is like creating an HTML file or another type of
file. To replace the embedded JavaScript in Listing 2-1 with an external JavaScript
file, follow these steps:

1. In VS Code, choose File ➪  New File.

2. Copy everything between <script> and </script> from the file you
created for Listing 2-1 and paste it into your new .js file.

Notice that external JavaScript files don’t contain <script> elements,
just the JavaScript.

3. Save your new file as countToTen.js in the same folder as your .html
files.

4. In your .html file, modify your script element to add a src attribute,
like this:

<script src="countToTen.js"></script>

Your copy of MyFirstProgram.html should now look like this:

<!DOCTYPE html>
<html>
 <head>
 <title>Hello, HTML!</title>
 <script src="countToTen.js"></script>
 </head>
 <body onload="countToTen();">
 <h1>Let's Count to 10 with JavaScript!</h1>
 <p id="theCount"></p>
 </body>
</html>

Your new file, countToTen.js, should look like this:

function countToTen(){
 let count = 0;
 while (count < 10) {
 count++;
 document.getElementById("theCount").innerHTML += count +

"
";
 }
}

W
riting Your First

JavaScript Program

0005390141.INDD 187	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	2:50	PM

CHAPTER 2 Writing Your First JavaScript Program 187

After you’ve saved both files, you should see them inside your project in the VS
Code explorer pane, as shown in Figure 2-7.

Keeping your .js files organized
External JavaScript files can sometimes get to be very large. In many cases, it’s a
good idea to break them up into smaller files, organized by the type of functions
they contain. For example, one JavaScript file may contain scripts related to the
user login capabilities of your program, while another may contain scripts related
to the blogging capabilities.

For small programs, however, it’s usually sufficient to have just one file, and
many people will name their single JavaScript file something generic, such as
app.js, main.js, or scripts.js.

JavaScript files don’t need to be in the same folder as the HTML file that includes
them. In fact, we recommend that you create a new folder specifically for storing
your external JavaScript files. Most people call this something like js.

FIGURE 2-7:
Viewing		multiple	

files	in	your	
	project	folder	in	

VS	Code.	

© John Wiley & Sons

0005390141.INDD 188	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	2:50	PM

188 BOOK 3 Advanced Web Coding

Follow these steps to create a js folder inside of your VS Code project and move
your js file into it:

1. Click the New Folder icon at the top of the VS Code Explorer pane.

2. A blank text area will appear in the explorer.

3. Enter js into the folder name text field and press Enter.

4. A new folder called js appears in the sidebar.

5. Click and drag countToTen.js in the Explorer to put it in the js folder.

6. Open MyFirstProgram.js and change your script element to reflect the
new location of your js file, like this:

<script src="js/countToTen.js"></script>

When you open MyFirstProgram.html in your browser (or simply click refresh),
it should look exactly like it did before you moved the JavaScript file into its own
folder.

Using the JavaScript Developer Console
Sometimes, it’s helpful to be able to run JavaScript commands without creating an
HTML page and including separate scripts or creating <script> blocks. For these
times, you can use the Chrome browser’s JavaScript Console (see Figure 2-8).

To access the JavaScript Console, find the Chrome menu in the upper-right corner
of your browser. It looks like three dots stacked on top of each other.

A menu icon made of three stacked dots like the Chrome menu is sometimes
called a “Kebab” menu, because it looks a little like three things on a skewer.

Click the Chrome menu and then find More Tools in the drop-down menu. Under
More Tools, choose Developer Tools from the drop-down menu. When the Devel-
oper Tools opens (at the bottom of the screen or on the right), click the Console
tab at the top of it.

And, yes, there is a faster way to open the JavaScript Console. Simply press
Alt+Command+J (on Mac) or Control+Shift+J (on Windows).

W
riting Your First

JavaScript Program

0005390141.INDD 189	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	2:50	PM

CHAPTER 2 Writing Your First JavaScript Program 189

The JavaScript Console is perhaps the best friend of the JavaScript developer.
Besides allowing you to test and run JavaScript code quickly and easily, it also is
where errors in your code are reported, and it has features that will help you track
down and solve problems with your code.

Once you’ve opened the JavaScript Console, you can start inputting commands
into it, which will run as soon as you press Enter. To try it out, open the JavaScript
Console and then type the following commands, pressing Enter after each one:

1080/33
40 + 2
40 * 34
100%3
34++
34--

Commenting Your Code
As you learn more JavaScript commands and start to write larger programs, it’s
often helpful to be able to leave yourself little reminders of what you were think-
ing or what certain things do. Programmers call these tiny notes to themselves
(or to anyone else who may work with your code) comments. The process of writ-
ing these notes is called commenting.

FIGURE 2-8:
JavaScript	

Console	in	the	
Chrome	browser.	

© John Wiley & Sons

0005390141.INDD 190	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	2:50	PM

190 BOOK 3 Advanced Web Coding

The JavaScript engine completely ignores comments. They are there just for peo-
ple. This is your time to explain things, clarify things, describe your thinking, or
even leave reminders to yourself about things you want to do in the future.

It is always a good idea to comment your code. Even if you think that your code
is self-explanatory at the time that you write it, chances are good that you won’t
think that eight months down the road when you need to modify it.

JavaScript gives you two ways to denote something as a comment:

 » The	single-line	comment

 » The	multi-line	comment

Single-line comments
Single-line comments start with //. Everything after these two slashes and up
until the end of the line will be ignored by the JavaScript parser.

Single-line comments don’t need to start at the beginning of a line. It’s quite
common to see a single-line comment used on the same line as a piece of code
that is not commented. For example:

pizzas = pizza + 1; // add one more pizza

Multi-line comments
Multi-line comments start with /* and tell the JavaScript parser to ignore every-
thing up to */. Multi-line comments are useful for more extensive documentation
of code. For example:

/* The countToTen function does the following things:
 * Initializes a variable called count
 * Starts a loop by checking the value of count to make sure

it's less than 10
 * Adds 1 to the value of count
 * Appends the current value of count, followed by a line

break, to the paragraph with id='theCount'
 * Starts the loop over
*/

W
riting Your First

JavaScript Program

0005390141.INDD 191	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	2:50	PM

CHAPTER 2 Writing Your First JavaScript Program 191

Using comments to prevent code execution
Besides being useful for documenting code, comments are often useful for isolat-
ing pieces of code to find problems. For example, if you wanted to see what the
countToTen function would do if you removed the line from the loop that incre-
ments the value of count, you could comment out that line using a single-line
comment, like this:

function countToTen(){
 let count = 0;
 while (count < 10) {
 // count++;
 document.getElementById("theCount").innerHTML += count +

"
";
 }
}

When you run this program, the line count++; will no longer run, and the pro-
gram will print out 0s forever (or until you close the browser window).

What you just created is called an infinite loop. If you do run a modified version of
this program, it won’t do any harm to your computer, but it will likely take your
CPU for a wild ride of spinning in circles as fast as it can until you shut down the
browser tab.

0005390141.INDD 192	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	2:50	PM

CHAPTER 3 Working with Variables 193

0005390142.INDD 193 Trim size: 7.375 in × 9.25 in June 11, 2022 2:52 PM

 Working with Variables
“Beauty is variable, ugliness is constant.”

 — DOUGLAS HORTON (1891 – 1968)

 I n this chapter, you discover how to create variables, fi ll them with values, use
functions to fi nd out what type of data is in your variables, convert between
diff erent data types, and manipulate the data in your variables.

 Understanding Variables
 Variables are representative names in a program. Just as x may stand for some
as-yet-unknown value in algebra, or x may mark the spot where the treasure is
buried on a pirate’s map, variables are used in programming to represent some-
thing else.

 You can think about variables as containers that contain data. You can give these
containers names, and later you can recall and change the data in a variable by
using its name.

Chapter 3

 IN THIS CHAPTER

» Creating and using variables

» Understanding variable scope

» Knowing JavaScript’s data types

» Naming variables

» Using built-in functions to work with
variables

0005390142.INDD 194 Trim size: 7.375 in × 9.25 in June 11, 2022 2:52 PM

194 BOOK 3 Advanced Web Coding

Without variables, every computer program would have only one purpose. For
example, the following one-line program doesn’t use variables:

alert(3 + 7);

Its purpose is to add together the numbers 3 and 7 and to print out the result in a
browser popup window.

The program isn’t of much use, however (unless you happen to need to recall the
sum of 3 and 7 on a regular basis). With variables, you can make a general purpose
program that can add together any two numbers and print out the result, like the
following example:

let firstNumber = 3;
let secondNumber = 7;
let total = Number(firstNumber) +
 Number(secondNumber);
alert (total);

Taken a step further, you can expand this program to ask the user for two num-
bers and then add them together, like the following example:

let firstNumber = prompt("Enter the first number");
let secondNumber = prompt("Enter the second number");
let total = Number(firstNumber) + Number(secondNumber);
alert (total);

Try out this program for yourself! (Book 3, Chapter 2 shows how to use your code
editor.) Follow these steps:

1. Open your code editor and create a basic HTML template.

2. Between <body> and </body>, insert an opening <script> tag and a
closing </script> tag.

3. Between the opening and closing script tags, enter the preceding
example code.

Your document should now look like this:

<html>

 <head></head>

 <body>

 <script>

W
orking w

ith Variables

0005390142.INDD 195 Trim size: 7.375 in × 9.25 in June 11, 2022 2:52 PM

CHAPTER 3 Working with Variables 195

 let firstNumber = prompt('Enter the first number');

 let secondNumber = prompt('Enter the second number');

 let total = Number(firstNumber) + Number(secondNumber);
 alert(total);

 </script>

 </body>

</html>

1. Save your new HTML document as addtwo.html.

2. Open your HTML document in your web browser.

You should be prompted for a first number, as shown in Figure 3-1.

3. Enter the first number.

After you enter that number, you’ll be prompted for a second number.

4. Enter the second number.

After you give the program the second number, the result of adding the two
numbers together will be displayed on the screen.

Initializing Variables
Initializing a variable is the technical term that’s used to describe the process of
first creating a variable in a program and giving it an initial value.

FIGURE 3-1:
A general-

purpose program
for adding two

user-submitted
numbers.

© John Wiley & Sons

0005390142.INDD 196 Trim size: 7.375 in × 9.25 in June 11, 2022 2:52 PM

196 BOOK 3 Advanced Web Coding

Variables in JavaScript can be initialized in one of three ways:

 » Using a var keyword:

var myName;

A variable created using a var keyword will have an initial value of undefined
unless you give it a value when you create it, such as

var myName = "Chris";

It’s also possible to use the var keyword without using the var keyword
(sounds strange, right?), like this:

myName = "Chris";

When you create a variable without a var keyword, it becomes a global
variable. (To understand what a global variable means, see the next section.)

Creating global variables is a bad practice that should be avoided.

 » Using a let keyword:

let myName = "Chris";

As with the var keyword, if you create a variable without specifically assigning
it a value, it will have a default value of undefined. You’ll learn the difference
between let and var in a moment.

 » Using the const keyword:

const myName = "Chris";

The const keyword creates a constant. Once created, a constant can’t be
assigned a new value. Constants are great for making sure your program
won’t accidentally change something that shouldn’t be changed — the value
of pi or the recipe for mom’s vegetable soup, for example.

Notice the quotes around the value on the right in the preceding examples. These
quotes indicate that the value should be treated as text, rather than as a number, a
JavaScript keyword, or another variable. See the section on data types later in this
chapter for more information about how and when to use quotes.

W
orking w

ith Variables

0005390142.INDD 197 Trim size: 7.375 in × 9.25 in June 11, 2022 2:52 PM

CHAPTER 3 Working with Variables 197

Understanding Global and Local Scope
How and where you declare a variable determines how and where your program
can make use of that variable. This concept is called variable scope. JavaScript has
three types of scope:

 » Global scoped variables can be used anywhere inside of a program.

 » Function scoped variables are variables that you create using the var keyword
inside of a protected program within a program, called a function.

 » Block scoped variables are variables created using the let or const keyword.
Block scoped variables can be used within the “block” where they’re initialized.
A block in JavaScript is a unit of code created using a left curly bracket ({) and
a right curly bracket (}).

WHEN IS EQUAL NOT EQUAL?
In English, it’s common and correct to read statements containing "=" as "var myName
equals Chris". However, this interpretation is not correct in programming.

Take, for example,

var myName = 'Chris';

The character that looks like an equals sign between the variable name (myName) and
the value (Chris) in the preceding example may look exactly like an equals sign, and
it’s even produced using the key that is commonly called equals sign on the keyboard.
However, in JavaScript, the equals sign is actually called the assignment operator.

The difference between an assignment operator and an “equals to” is vital to
understand:

• The assignment operator sets the thing to the left of it equal to the thing to the
right of it, like this:

var myName = 'Chris';

• “Equals” compares the value on the left to the value on the right and determines
whether or not they are the same. Equals in JavaScript is written as ===.

0005390142.INDD 198 Trim size: 7.375 in × 9.25 in June 11, 2022 2:52 PM

198 BOOK 3 Advanced Web Coding

THE TRAGIC TALE OF THE MISSING VAR
There is really never a reason to create a variable without using the var, let, or const
keyword, and doing so will cause you problems. If you leave out the var, let, or const
keyword, it just looks like you forgot it, so don’t do it!

The following example shows the kind of problem and confusion that can happen from
creating a global variable. It also demonstrates the use of a more advanced program-
ming tool, called a function, which we cover in much more detail in Book 3, Chapter 7. In
short, functions let you put smaller programs within your programs.

In this first example, the programmer wants to have a variable called movie that is
global, and a separate variable with the same name that is only valid within the func-
tion called showBadMovie. This is a perfectly normal thing to do, and under normal
circumstances, the movie variable inside the function wouldn’t affect the global vari-
able. However, if you forget to use the var or let keyword when declaring the movie
variable inside the function, bad things happen.

var movie = "The Godfather";
function showGoodMovie () {
 alert (movie + " is a good movie!");
}
function showBadMovie () {
 movie = "Speed 2: Cruise Control";
 alert (movie + " is a bad movie!");
}

Notice that the var keyword is missing from before the movie variable in showBad-
Movie(). JavaScript assumes that you want to override the global movie variable,
rather than create a local function variable. The results are positively disastrous!

showGoodMovie(); // pops up "The Godfather is a good movie!"
showBadMovie(); // pops up "Speed 2: Cruise Control is a bad

movie!"
/* Oh no! The global variable is now Speed 2: Cruise Control,

not the good movie name anymore! */
showGoodMovie(); // pops up "Speed 2: Cruise Control is a good

movie!"

W
orking w

ith Variables

0005390142.INDD 199 Trim size: 7.375 in × 9.25 in June 11, 2022 2:52 PM

CHAPTER 3 Working with Variables 199

Using block scoped variables is preferable to using function scoped variables
because limiting the scope of variables reduces the chance that you’ll accidentally
overwrite the value of a variable with another variable of the same name.

The use of function scoped variables and globals can create problems in your pro-
gram that can be difficult to track down and fix. Most JavaScript programmers
agree that you should avoid creating globals whenever possible, and that it’s a far
better practice to use block scoped variables (created using let or const) than to
use var.

Naming Variables
Variable names can start with the following characters:

 » Upper- or lowercase letter

 » An underscore (_)

 » A dollar sign ($)

Although you can use an underscore or dollar sign to start a variable, it’s best to
begin with a letter. Unexpected characters can often cause your code to look con-
fusing and difficult to read, especially if you are new to JavaScript coding.

© John Wiley & Sons

0005390142.INDD 200 Trim size: 7.375 in × 9.25 in June 11, 2022 2:52 PM

200 BOOK 3 Advanced Web Coding

GUIDELINES FOR CREATING GOOD
VARIABLE NAMES
Although JavaScript gives you a lot of freedom in how you name your variables, it’s best
to decide on some basic rules for yourself before you start programming. For exam-
ple, do you start your variable names with a lowercase or uppercase letter? Do you use
underscores between multiple words within a variable name, or do you use camelCase?
As your code becomes more complex, the importance of correct naming becomes
apparent.

Fortunately, you’re not on your own when you’re deciding on your style. There are some
best practices that many professional JavaScript programmers agree upon and use
when naming variables:

• Do not use names that are too short! Simple one letter names or nonsensical
names are not a good option when naming variables.

• Use multiword names to be as precise as possible.

• In multiword names, always put adjectives to the left, as in let greenPython;.

Pick a style for multiple word names and be consistent. There are two ways to join
words to create a name: camelCase and under_score. JavaScript is a flexible language,
and you can use either method, although camelCase is generally the more commonly
employed.

Some words cannot be used as variable names. The following is a list of reserved words
that cannot be used as JavaScript variables, functions, methods, loop labels, or object
names.

abstract else instanceof switch

boolean enum int synchronized

break export interface this

byte extends long throw

case false native throws

catch final new transient

char finally null true

class float package try

W
orking w

ith Variables

0005390142.INDD 201 Trim size: 7.375 in × 9.25 in June 11, 2022 2:52 PM

CHAPTER 3 Working with Variables 201

After the first character, you can use any letter or number in your variable name,
and it can be any length. JavaScript variables cannot contain spaces, mathematical
operators, or punctuation (other than the underscore).

Always remember that JavaScript is case-sensitive. A variable named myname is
not the same variable as Myname or myName.

Variable names are identifiers; the best thing you can do is name a variable some-
thing precise and relevant. This naming convention may sometimes result in very
long names, but as a rule, a longer name that accurately represents the variable is
more useful than a shorter name that is vague.

Of course, there are limits to how long variable names can be without making
your life more difficult. If you need to use 20 characters to accurately describe
your variable, go for it. But, if you’re creating variable names like nameOfPerson-
WhoJustFilledOutTheFormOnMyWebsite, you may want to see whether you can
simplify your life (as well as that of anyone else who may need to work with your
code) by shortening to something more like personName.

Creating Constants Using the
const Keyword

Occasionally, your program may have a need for variables that can’t be changed. In
these cases, you can declare your variable using the const keyword. For example:

const heightOfTheEmpireStateBuilding = 1454;
const speedOfLight = 299792458;

const for private typeof

continue function protected var

debugger goto public void

default if return volatile

delete implements short while

do import static with

double in super

0005390142.INDD 202 Trim size: 7.375 in × 9.25 in June 11, 2022 2:52 PM

202 BOOK 3 Advanced Web Coding

const numberOfProblems = 99;
const meanNumberofBooksReadIn2022 = 12;

Constants abide by the same rules as other variables, but once you create a con-
stant, its value cannot be changed during its lifetime (which lasts as long as the
script is running).

Working with Data Types
A variable’s data type is the kind of data the variable can hold and what operations
can be done with the value of the variable. The number 10, used in a sentence, is
different than the number 10 used in an equation, for example. Data types are the
way JavaScript distinguishes between values that are meant to be words and val-
ues that are meant to be treated as mathematical expressions.

If you think about all the types of data that you work with on a daily basis — pie
charts, recipes, short stories, newspaper articles, and so on — you’ll see just how
much potential there is for things to get very complicated when it comes to data.
The generous creators of JavaScript decided to make things very simple for you. It
has seven basic data types.

Furthermore, JavaScript is what’s called a loosely typed language. What loosely
typed means is that you don’t even need to tell JavaScript, or even know, whether
a variable you’re creating will hold a word, a paragraph, a number, or a different
type of data.

Loosely typed doesn’t mean that JavaScript doesn’t distinguish between words
and numbers. JavaScript is friendly about it and handles the work of figuring out
what type of data you store in your variables largely behind the scenes.

JavaScript recognizes seven basic, or primitive, types of data.

Number data type
Numbers in JavaScript are stored as 64-bit, floating point values. What this
means, in English, is that numbers can range from 5e-324 (that’s -5 followed
by 324 zeros) to 1.7976931348623157e+308 (move the decimal 308 spots to the
right to see this giant number). Any number may have decimal points or not.
Unlike most programming languages, JavaScript doesn’t have separate data types
for integers (positive or negative numbers without a fractional part) and floating
points (decimals).

W
orking w

ith Variables

0005390142.INDD 203 Trim size: 7.375 in × 9.25 in June 11, 2022 2:52 PM

CHAPTER 3 Working with Variables 203

Just how big is the biggest number JavaScript can use? Here it is, written out with-
out scientific notation:

1797693134862315700
000
000
000
000

In practice, however, the biggest number that’s “safe” to use in JavaScript is
9007199254740991. If you compare two numbers that are larger than this number
using JavaScript, you’ll get incorrect results. If you need to use a larger number,
consider using the bigInt data type instead of number. You learn about bigInt
in the next section.

When you declare a number variable, you compile it from all of the following elements:

 » The var, let, or const keyword

 » The name you want to give your variable

 » The assignment operator

 » A number (or an equation that resolves to a number)

 » A semicolon

Here are some examples of valid number variables declarations:

let numberOfDucks = 4;

var populationOfSpain = 47200000;

const howManyTacos = 8;

Number functions
JavaScript includes a built-in Number function for converting values to numbers. To
use the Number function, simply put the value (or a variable holding the value) that
you want to convert to a number between the parentheses after the Number function.

The Number function produces four kinds of output:

 » Numbers that are formatted as text strings are converted to numbers that
can be used for calculations, like this:

Number("42") // returns the number 42

0005390142.INDD 204 Trim size: 7.375 in × 9.25 in June 11, 2022 2:52 PM

204 BOOK 3 Advanced Web Coding

 » Text strings that can’t be converted to numbers return the value NaN, like this:

Number("eggs") // returns NaN

 » The Boolean value true returns the number 1, like this:

Number(true) // returns 1

 » The Boolean value false returns the number 0, like this:

Number(false) // returns 0

parseInt function
To JavaScript, all numbers are actually floating point numbers. However, you can
use the parseInt function to tell JavaScript to consider only the nonfractional part
of the number (the integer), discarding everything after the decimal point.

parseInt(100.33); // returns 100

parseFloat function
You can use parseFloat to specifically tell JavaScript to treat a number as a float.
Or, you can even use it to convert a string to a number. For example:

parseFloat("10"); // returns 10
parseFloat(100.00); //returns 100.00
parseFloat("10"); //returns 10

Examples
Now you can play around with some numbers and number functions. Try entering
the following expressions into the JavaScript Console in your Chrome browser to
see what results they produce.

You can open the JavaScript Console in Chrome by pressing Command+Option+J
(Mac) or Ctrl+Shift+J (Windows).

1 + 1
3 * 3
parseFloat("839");
parseInt("33.333333");
12 + "12"
"12" + 12
"12" * 2

W
orking w

ith Variables

0005390142.INDD 205 Trim size: 7.375 in × 9.25 in June 11, 2022 2:52 PM

CHAPTER 3 Working with Variables 205

Number variables must be declared without quotation marks. "10" is not the same
as 10. The former is a string (which is covered in the next section), and if you acci-
dentally declare a number variable inside of quotes, you’ll get unexpected results.

If you’re following along, you may have noticed some odd behaviors with the pre-
vious examples. For example, when you add "12" (a string) to 12 (a number), the
result is "1212" (a string). But, when you multiply "12" (a string) by 2 (a number)
the result is 24 (a number). This is a case where JavaScript is really using its head!

In the first example, when you add, JavaScript guesses that, because one of the
values in the addition equation is a string, you meant for both of them to be. So,
it converts the number to a string and treats the plus symbol as a concatenation
operator.

In the second example, when you multiply, one of the values in the operation is a
number, and there’s no way to multiply strings together. JavaScript converts the
string to a number and then proceeds with the multiplication. But, what happens
when you try to multiple two strings together?

"sassafras" * "orange"

The result is NaN (not a number). There’s just no way to convert sassafras or
orange into a number, so JavaScript throws up its hands.

bigInt data type
The bigInt data type doesn’t have an upper limit. If you need to use numbers
larger than the maximum safe integer (9007199254740991), bigInt is the way
to go.

To create a bigInt, just add an n to the end of a number. For example, here’s a
number that’s larger than the maximum safe number, safely stored in a bigInt:

let reallyBigNumber = 9007199254740992n;

String data type
Strings can be made up of any characters:

 » Letter

 » Number

0005390142.INDD 206 Trim size: 7.375 in × 9.25 in June 11, 2022 2:52 PM

206 BOOK 3 Advanced Web Coding

 » Punctuation (such as commas and periods)

 » Special characters that can be written using a backslash followed by character

Some characters, such as quotes, have special meaning in JavaScript or require a
special combination of characters, such as a tab or new line, to represent inside of
a string. We call these special characters. Table 3-1 lists the special characters that
you can use inside JavaScript strings.

You create a string variable by enclosing it in single or double quotes, like this:

let myString = "Hi, I'm a string.";

It doesn’t matter whether you use single or double quotes, as long as the begin-
ning and ending quotes surrounding the string match up.

If you surround your string with single quotes, you can use double quotes within
that string without a problem. The same goes for if you surround your strings
with double quotes; you can use single quotes within the string without a problem.

If you create a string and surround it with one type of quote, you can’t use that
type of quote inside the string, or the JavaScript parser will think you mean to end
the string and will generate an error.

TABLE 3-1 JavaScript Special Characters
Code Outputs

\' Single quote

\" Double quote

\\ Backslash

\n New line

\r Carriage return

\t Tab

\b backspace

\f Form feed

W
orking w

ith Variables

0005390142.INDD 207 Trim size: 7.375 in × 9.25 in June 11, 2022 2:52 PM

CHAPTER 3 Working with Variables 207

Escaping quotes
The solution to the problem of not being able to include quotes inside of a string
surrounded with that type of quotes is to preface the quotes with a \. Adding a
backslash before a quote is called escaping the quotes.

String functions
JavaScript includes many helpful functions for working with and converting
strings.

Here’s a list of the most frequently used built-in string functions:

 » charAt produces the character at a specified position. Note that the counting
of characters starts with 0:

let watzThisString = 'JavaScript is Fun!';
console.log (watzThisString.charAt(3));

// returns a

 » concat combines one or more strings and returns the incorporated string:

let watzThisString = 'JavaScript is Fun!';
console.log (watzThisString.concat(' We love

JavaScript!'));

// returns JavaScript is Fun! We love JavaScript!

 » indexOf searches and returns the position of the first occurrence of the
searched character or substring within the string:

let watzThisString = 'JavaScript is Fun!';
console.log (watzThisString.indexOf('Fun');

// returns 14

 » split splits strings into an array of substrings:

let watzThisString = 'JavaScript is Fun!';
console.log (watzThisString.split('F'));

// returns ["JavaScript is ", "un!"]

 » substr extracts a portion of a string beginning at "start" through a speci-
fied length:

let watzThisString = 'JavaScript is Fun!';
console.log (watzThisString.substr(2,5));

// returns vaScr

0005390142.INDD 208 Trim size: 7.375 in × 9.25 in June 11, 2022 2:52 PM

208 BOOK 3 Advanced Web Coding

 » substring extracts the characters within a string between two specified
positions:

let watzThisString = 'JavaScript is Fun!';
console.log (watzThisString.substring(2,5));

// returns Vas

 » toLowerCase produces the string with all of its characters converted to
lowercase:

let watzThisString = 'JavaScript is Fun!';
console.log (watzThisString.toLowerCase());

// returns javascript is fun!

 » toUpperCase produces the string with all of its characters converted to
uppercase:

let watzThisString = 'JavaScript is Fun!';
console.log (watzThisString.toUpperCase());

// returns JAVASCRIPT IS FUN!

Boolean data type
Boolean variables store one of two possible values: either true or false.

The term Boolean is named after George Boole (1815–1864), who created an alge-
braic system of logic. Because it’s named after a person, you generally write it
with an initial capital letter.

Boolean variables are often used for storing the results of comparisons. You can
find out the Boolean value of a comparison or convert any value in JavaScript into
a Boolean value by using the Boolean function. For example:

let isItGreater = Boolean (3 > 20);
alert (isItGreater); // returns false
let areTheySame = Boolean ("tiger" === "Tiger");
alert (areTheySame); // returns false

The result of converting a value in JavaScript into a Boolean value using the
Boolean function depends on the value:

 » In JavaScript, the following values always evaluate to a Boolean false value:

• NaN
• undefined

W
orking w

ith Variables

0005390142.INDD 209 Trim size: 7.375 in × 9.25 in June 11, 2022 2:52 PM

CHAPTER 3 Working with Variables 209

• 0 (numeric value zero)

• -0
• "" (empty string)

• false
 » Anything that is not one of the preceding values evaluates to a Boolean true.

For example:

• 74
• "Eva"
• "10"
• "NaN"

The number character "0" is not the same as the numeric value 0 (zero). While 0
will always result in a Boolean value of false, the string "0" will always result in
a Boolean true.

Boolean values are primarily used with conditional expressions. The following
program creates a Boolean variable and then tests its value using an if/then
statement (which you can find out about in Book 3, Chapter 5).

let b = true;
if (b == true) {
 alert ("It is true!");
 } else {
 alert ("It is false.");
}

Boolean values are written without quotes around them, like this:

let myVar = true

On the other hand, let myVar = "true" creates a string variable.

NaN data type
NaN stands for Not a Number. It’s the result that you get when you try to do
math with a string, or when a calculation fails or can’t be done. For example, it’s
impossible to calculate the square root of a negative number. Trying to do so will
result in NaN.

0005390142.INDD 210 Trim size: 7.375 in × 9.25 in June 11, 2022 2:52 PM

210 BOOK 3 Advanced Web Coding

A more common occurrence that will produce NaN is an attempt to perform math-
ematical operations using strings that can’t be converted to numbers.

Undefined data type
Even if you create a variable in JavaScript and don’t specifically give it a value, it
still has a default value. This value is undefined.

Symbol data type
The Symbol data type is used to create unique identifiers in JavaScript. Unlike the
other data types, even if two symbols appear to be identical and have the same
name, JavaScript guarantees that they’ll be unique. To test this, enter the follow-
ing code into your Chrome Developer Console:

let id1 = Symbol("id");
let id2 = Symbol("id");
alert(id1 === id2);

The result will be an alert window with the Boolean false value displayed in it.

CHAPTER 4 Understanding Arrays 211

0005390143.INDD 211 Trim size: 7.375 in × 9.25 in June 11, 2022 2:55 PM

 Understanding Arrays
“I am large. I contain multitudes.”

 — WALT WHITMAN

 A rrays are a fundamental part of any programming language. In this
chapter, you discover what they are, how to use them, and what makes
JavaScript arrays distinct from arrays in other programming languages.

You work with arrays to create lists, order lists, and add and remove items from
lists.

 Making a List
 The earlier chapters in this book involve working with variables that are stand-
alone pieces of data, such as: const myName = "Chris" , let firstNumber = "3" ,
and var how ManyTacos = 8 . There are often times in programming (and in life)
where you want to store related data under a single name. For example, consider
the following types of lists:

» A list of your favorite artists

» A program that selects and displays a diff erent quote from a list of quotes
each time it’s run

Chapter 4

 IN THIS CHAPTER

» Identifying and defi ning arrays

» Building arrays

» Moving beyond 2D with
multidimensional arrays

» Working within array elements

» Using array functions and properties

0005390143.INDD 212 Trim size: 7.375 in × 9.25 in June 11, 2022 2:55 PM

212 BOOK 3 Advanced Web Coding

 » A holiday card mailing list

 » A list of your top music albums of the year

 » A list of all your family and friends’ birthdays

 » A shopping list

 » A to-do list

 » A list of New Year’s resolutions

Using single-value variables (see Book 3, Chapter 3), you would need to create and
keep track of multiple variables in order to accomplish any of these tasks. Here is
an example of a list created using single-value variables:

let artist1 = "Alphonse Mucha";
let artist2 = "Chiara Bautista";
let artist3 = "Claude Monet";
let artist4 = "Sandro Botticelli";
let artist5 = "Andy Warhol";
let artist6 = "Jill McVarish";
let artist7 = "Vincent Van Gough";
let artist8 = "Paul Klee";
let artist9 = "William Blake";
let artist10 = "Egon Schiele";
let artist11 = "Salvador Dali";
let artist12 = "Paul Cezanne";
let artist13 = "Diego Rivera";
let artist14 = "Pablo Picasso";

This approach could work in the short term, but you’d quickly run into difficulties.
For example, what if you wanted to sort the list alphabetically and move artists
into the correct variable names based on their position in the alphabetical sort?
You’d need to first move Mucha out of the artist1 variable (maybe into a tem-
porary holding variable) and then move Bautista into the artist1 variable. The
artist2 spot would then be free for Blake, but don’t forget that Mucha is still in
that temporary slot! Blake’s removal from artist9 frees that up for you to move
someone else into the temporary variable, and so on. Creating a list in this way
quickly becomes complicated and confusing.

Fortunately, JavaScript supports the creation of variables containing multiple val-
ues, called arrays.

U
nderstanding A

rrays

0005390143.INDD 213 Trim size: 7.375 in × 9.25 in June 11, 2022 2:55 PM

CHAPTER 4 Understanding Arrays 213

Arrays are a way to store groups of related data inside of a single variable. With
arrays, you can create lists containing any mix of string values, numbers, Boolean
values, objects, functions, any other type of data, and even other arrays!

Array Fundamentals
An array consists of array elements. Array elements are made up of the array
name and then an index number that is contained in square brackets. The individ-
ual value within an array is called an array element. Arrays use numbers (called the
index numbers) to access those elements. The following example illustrates how
arrays use index numbers to access elements:

myArray[0] = "yellow balloon";
myArray[1] = "red balloon";
myArray[2] = "blue balloon";
myArray[3] = "pink balloon";

In this example, the element with the index number of 0 has a value of "yellow
balloon". The element with an index number 3 has a value of "pink balloon".
Just as with any variable, you can give an array any name that complies with
the rules of naming JavaScript variables. By assigning index numbers in arrays,
 JavaScript gives you the ability to make a single variable name hold a nearly
unlimited list of values.

Just so you don’t get too carried away, there actually is a limit to the number of
elements that you can have in an array, although you’re very unlikely to ever
reach it. The limit is 4,294,967,295 elements.

In addition to naming requirements (which are the same for any type of variable,
as described in Book 3, Chapter 3), arrays have a couple of other rules and special
properties that you need to be familiar with:

 » Arrays are zero-indexed

 » Arrays can store any type of data

Arrays are zero-indexed
JavaScript doesn’t have fingers or toes. As such, it doesn’t need to abide by our
crazy human rules about starting counting at 1. The first element in a JavaScript
array always has an index number of 0 (see Figure 4-1).

0005390143.INDD 214 Trim size: 7.375 in × 9.25 in June 11, 2022 2:55 PM

214 BOOK 3 Advanced Web Coding

What this means for you is that myArray[3] is actually the fourth element in the
array.

Zero-based numbering is a frequent cause of bugs and confusion for those new to
programming, but once you get used to it, it will become quite natural. You may
even discover that there are benefits to it, such as the ability to turn your guitar
amp up to the 11th level.

Arrays can store any type of data
Each element in an array can store any of the data types (see Book 3, Chapter 3),
as well as other arrays. Array elements can also contain functions and JavaScript
objects (see Book 3, Chapters 7 and 8).

While you can store any type of data in an array, you can also store elements that
contain different types of data, together, within one array, as shown in Listing 4-1.

LISTING 4-1: Storing Different Types of Data in an Array

item[0] = "apple";
item[1] = 4+8;
item[2] = 3;
item[3] = item[2] * item[1];

FIGURE 4-1:
JavaScript is
similar to a

volume knob. It
starts counting at

zero!

U
nderstanding A

rrays

0005390143.INDD 215 Trim size: 7.375 in × 9.25 in June 11, 2022 2:55 PM

CHAPTER 4 Understanding Arrays 215

Creating Arrays
JavaScript provides two ways for you to create new arrays:

 » new keyword

 » Array literal notation

Using the new keyword method
The new keyword method uses new Array to create an array and add values to it.

let catNames = new Array("Larry", "Fuzzball", "Mr. Furly");

You may see this method used in your career as a programmer, and it’s a perfectly
acceptable way to create an array.

Many JavaScript experts recommend against using this method, however. The
biggest problem with using the new keyword is what happens when you forget
to include it. Forgetting to use the new keyword can dramatically change the way
your program operates.

Array literal
A much simpler and safer way to create arrays is to use what is called the array
literal method of notation. This is what it looks like:

let dogNames =["Shaggy", "Tennessee", "Dr. Spock"];

That’s all there is to it. The use of square brackets and no special keywords means
that you’re less likely to accidentally leave something out. The array literal method
also uses less characters than the new keyword method — and when you’re trying
to keep your JavaScript as tidy as possible, every little bit helps!

Populating Arrays
You can add values to an array when it is first created, or you can simply create
an array and then add elements to it at a later time. Adding elements to an array
works exactly the same as creating or modifying a variable, except that you spec-
ify the index number of the element that you want to create or modify. Listing 4-2
shows an example of creating an empty array and adding elements to it.

0005390143.INDD 216 Trim size: 7.375 in × 9.25 in June 11, 2022 2:55 PM

216 BOOK 3 Advanced Web Coding

LISTING 4-2: Populating an Empty Array

let peopleList =[];
peopleList[0] = "Chris Minnick";
peopleList[1] = "Eva Holland";
peopleList[2] = "Abraham Lincoln";

You don’t always need to add elements sequentially. It is perfectly legal in
JavaScript to create a new element out of sequence. For example, in the array in
Listing 4-2, you could add the following:

peopleList[99] = "Tina Turner";

Creating an array out of sequence like this effectively creates blank elements for
all of the indexes in between peopleList[2] and peopleList[99].

So, if you check the length property of the peopleList array after adding an ele-
ment with an index of 99, something interesting happens:

peopleList.length // returns 100

Even though you’ve only created four elements, JavaScript will say that the length
of an array is 100 because the length is based on the highest numbered index,
rather than on how many elements you’ve actually created.

Understanding Multidimensional Arrays
Not only can you store arrays inside of arrays, you can even put arrays inside of
arrays inside of arrays. This can go on and on.

An array that contains an array is called a multidimensional array. To write a mul-
tidimensional array, you simply add more sets of square brackets to a variable
name. For example:

let listOfLists[0][0];

Multidimensional arrays can be difficult to visualize when you first start work-
ing with them. Figure 4-2 shows a pictorial representation of a multidimensional
array.

U
nderstanding A

rrays

0005390143.INDD 217 Trim size: 7.375 in × 9.25 in June 11, 2022 2:55 PM

CHAPTER 4 Understanding Arrays 217

You can also visualize multidimensional arrays as hierarchal lists or outlines. For
example:

Top Albums by Genre

1. Country

1.1 Johnny Cash:Live at Folsom Prison

1.2 Patsy Cline:Sentimentally Yours

1.3 Hank Williams:I’m Blue Inside

2. Rock

2.1 T-Rex:Slider

2.2 Nirvana:Nevermind

2.3 Lou Reed:Transformer

3. Punk

3.1 Flipper:Generic

3.2 The Dead Milkmen:Big Lizard in my Backyard

3.3 Patti Smith:Easter

Here is a code that would create an array based on Figure 4-2:

let bestAlbumsByGenre = []
bestAlbumsByGenre[0] = "Country";
bestAlbumsByGenre[0][0] = "Johnny Cash:Live at Folsom Prison"
bestAlbumsByGenre[0][1] = "Patsy Cline:Sentimentally Yours";
bestAlbumsByGenre[0][2] = "Hank Williams:I'm Blue Inside";
bestAlbumsByGenre[1] = "Rock";
bestAlbumsByGenre[1][0] = "T-Rex:Slider";
bestAlbumsByGenre[1][1] = "Nirvana:Nevermind";
bestAlbumsByGenre[1][2] = "Lou Reed:Tranformer";
bestAlbumsByGenre[2] = "Punk";
bestAlbumsByGenre[2][0] = "Flipper:Generic";
bestAlbumsByGenre[2][1] = "The Dead Milkmen:Big Lizard in my

Backyard";
bestAlbumsByGenre[2][2] = "Patti Smith:Easter";

0005390143.INDD 218 Trim size: 7.375 in × 9.25 in June 11, 2022 2:55 PM

218 BOOK 3 Advanced Web Coding

Accessing Array Elements
You can access the elements of arrays in the same way that you set them, using
square brackets and the index number. For example, to access the third element
in any array called myArray, you would use the following:

myArray[2];

To access elements in a multidimensional array, just add more square brackets to
get to the element you want:

bestAlbumsByGenre[0][1]; // returns "Patsy_Cline:Sentimentally
Yours";

To test out setting and accessing the elements of an array, follow these steps:

1. Open your Chrome browser and then open the JavaScript Console.

You can open your JavaScript Console using the Chrome menu or by pressing
Command+Option+J on Mac or Ctrl+Shift+J in Windows.

FIGURE 4-2:
A pictorial

 representation
of a

 multidimensional
array.

U
nderstanding A

rrays

0005390143.INDD 219 Trim size: 7.375 in × 9.25 in June 11, 2022 2:55 PM

CHAPTER 4 Understanding Arrays 219

2. In the console, type the following statement, followed by the Return or
Enter key, to create an array called lengthsOfString:

let lengthsOfString = [2,4,1.5,80];

3. Type the array name followed by the index number in square brackets to
retrieve the value of each array element.

For example:

lengthsOfString[0];
lengthsOfString[3];

lengthsOfString[2];

4. Enter an index number that doesn’t exist in the array.

For example:

lengthsOfString[4];

Notice that the value of this array element is undefined.

5. Type the following command to create a new variable to hold the total
length of string that you have:

let totalLength = lengthsOfString[0] + lengthsOfString[1] +
lengthsOfString[2] + lengthsOfString[3];

6. Finally, get the value of totalLength with this command:

totalLength;

Looping through arrays
As you can imagine, working with multiple values of arrays by typing the array
name and the index number can get tiring for your fingers after a while. Fortu-
nately, there are easier ways to work with all of the elements in an array. The most
common method is to use a programming construct called a loop. (We cover loops
in much more detail in Book 3, Chapter 6.)

It’s also possible to work with multiple elements in an array by using JavaScript’s
built-in array functions.

0005390143.INDD 220 Trim size: 7.375 in × 9.25 in June 11, 2022 2:55 PM

220 BOOK 3 Advanced Web Coding

Array properties
You can access certain data about an array by accessing array properties. The way
to access array properties in JavaScript is by using dot notation. To use dot nota-
tion, you type the name of the array, followed by a period, followed by the prop-
erty you want to access. (You can find out much more about properties in Book 3,
Chapter 8.) Table 4-1 lists all of the properties of JavaScript arrays.

The most commonly used array property is length. You have already seen the
length property in action. Its purpose is to provide the number of elements in an
array, whether defined or undefined. For example:

let myArray = [];
myArray[2000] = "surprise!";
myArray.length; // returns 2001

You can also use the length property to truncate an array:

myArray.length; // returns 2001
myArray.length = 10;
myArray.length; // returns 10

Array methods
JavaScript array methods (also known as array functions) provide handy ways to
manipulate and work with arrays. Table 4-2 shows a list of the most commonly
used array methods, along with descriptions of what they do or the values they
produce.

TABLE 4-1 JavaScript’s Array Properties
Property Return Value

prototype Allows the addition of properties and methods to an Array object

constructor A reference to the function that created the Array object’s prototype

length Either returns or sets the number of elements in an array

U
nderstanding A

rrays

0005390143.INDD 221 Trim size: 7.375 in × 9.25 in June 11, 2022 2:55 PM

CHAPTER 4 Understanding Arrays 221

TABLE 4-2 JavaScript Array Methods
Method Return Value

concat A new array made up of the current array, joined with other array(s) and/or value(s)

every true if every element in the given array satisfies the provided testing function

filter A new array with all of the elements of a current array that test true by the
given function

forEach Completes the function once for each element in the array

indexOf The first occurrence of the specified value within the array. Returns -1 if the value
is not found

join Joins all the elements of an array into a string

lastIndexOf The last occurrence of the specified value within the array. Returns -1 if value
is not found

map A new array with the result of a provided function on every element in the array

pop Removes the last element in an array

push Adds new items to the end of an array

reduce Reduces two values of an array to a single value by applying a function to them (from
left to right)

reduceRight Reduces two values of an array to a single value by applying a function to them
simultaneously (from right to left)

reverse Reverses the order of elements in an array

shift Removes the first element from an array and returns that element, resulting in a
change in length of an array

slice Selects a portion of an array and returns it as a new array

some Returns true if one or more elements satisfy the provided testing function

sort Returns an array after the elements in an array are sorted (default sort order is
alphabetical and ascending)

splice Returns a new array comprised of elements that were added or removed from a
given array

toString Converts an array to a string

unshift Returns a new array with a new length by the addition of one or more elements

0005390143.INDD 222 Trim size: 7.375 in × 9.25 in June 11, 2022 2:55 PM

222 BOOK 3 Advanced Web Coding

Using array methods
The syntax for using array methods differs depending on the particular method
you are trying to use. You do, however, access the functionality of every array
method the same way that you access array properties: by using dot notation.

For a complete reference to JavaScript array methods, with examples, visit
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/
Global_Objects/Array.

Listing 4-3 shows some examples of how to use JavaScript array methods.

LISTING 4-3: Commonly Used JavaScript Array Methods in Action

<html>
 <head>
 <title>common array methods</title>
 </head>
 <body>
 <script>
 let animals = ['tiger', 'bear'];
 let fruit = ['cantaloupe', 'orange'];
 let dishes = ['plate', 'bowl', 'cup'];
 let fruitsAndAnimals = fruit.concat(animals);
 document.write(fruitsAndAnimals + '
');
 let whereIsTheTiger = animals.indexOf('tiger');
 document.write(
 'The tiger has an index number of: ' + whereIsTheTiger +

'
'
);
 </script>
 </body>
</html>

Figure 4-3 shows the result of Listing 4-3 when run in a browser.

U
nderstanding A

rrays

0005390143.INDD 223 Trim size: 7.375 in × 9.25 in June 11, 2022 2:55 PM

CHAPTER 4 Understanding Arrays 223

FIGURE 4-3:
Commonly used
JavaScript array

methods in
action.

© John Wiley & Sons

0005390143.INDD 224 Trim size: 7.375 in × 9.25 in June 11, 2022 2:55 PM

CHAPTER 5 Working with Operators, Expressions, and Statements 225

0005390144.INDD 225 Trim size: 7.375 in × 9.25 in June 7, 2022 4:13 PM

 Working with Operators,
Expressions, and
Statements

“Hello Operator. Can you give me number 9?”

 — THE WHITE STRIPES

 J avaScript operators, expressions, and statements are the basic building blocks
of programs. They help you manipulate and change values, perform math,
compare two or more values, and much, much more.

 In this chapter, you discover how operators, expressions, and statements do their
work and how you can best use them to your advantage.

Chapter 5

 IN THIS CHAPTER

» Reading and coding JavaScript
expressions

» Changing values with assignment
operators

» Thinking logically with comparison
operators

» Doing the math with arithmetic
operators

» Getting wise to bitwise operators

» Putting it together with string
operators

0005390144.INDD 226 Trim size: 7.375 in × 9.25 in June 7, 2022 4:13 PM

226 BOOK 3 Advanced Web Coding

Express Yourself
An expression is a piece of code that resolves to a value. Expressions can either
assign a value to a variable, or they can simply have a value. For example, both of
the following are examples of valid expressions:

1 + 1

a = 1;

Expressions can be short and simple, as illustrated in these examples, or they can
be quite complicated.

The pieces of data (1 or a in these examples) in an expression are called operands.

Hello, Operator
The engines that make expressions do their work are called operators. They oper-
ate on data to produce different results. The = and + in the preceding expressions
are examples of operators.

Operator precedence
A single expression often will contain several operators. Consider the following
example:

a = 1 + 2 * 3 / 4;

Depending on the order in which you perform the different calculations, the final
value of a could be any one of the following:

a = 1.75

a = 2.5

a = 2.25

In fact, the actual result of this expression will be 2.5. But how do you know this?
Depending on the person doing the math, the division could be done first (3 / 4),
the addition could be done first (1 + 2), or the multiplication could be done first
(2 * 3).

W
orking w

ith O
perators,

Expressions, and Statem
ents

0005390144.INDD 227 Trim size: 7.375 in × 9.25 in June 7, 2022 4:13 PM

CHAPTER 5 Working with Operators, Expressions, and Statements 227

Clearly, there must be a better way to figure out the answer, and there is! This
is where operator precedence comes in. Operator precedence is the order in which
operators in an expression are evaluated.

Operators are divided into groups of different levels of precedence, numbered
from 0 to 19, as shown in Table 5-1.

The operator with the lowest number is said to have the highest precedence. This
may seem confusing at first, but if you think of it in terms of the first person in
a line (whoever is in spot 0, in this case) being the first person to get a delicious
sandwich or cup of coffee, you’ll have no problem keeping it straight.

When an expression contains two or more operators that have the same prece-
dence, they are evaluated according to their associativity. Associativity determines
whether the operators are evaluated from left to right or right to left.

Using parentheses
The operator with the highest precedence in an expression is parentheses. In most
cases, you can ignore the rules of operator precedence simply by grouping opera-
tions into subexpressions using parentheses. For example, the previous multi-
operator expression can be fully clarified in the following ways:

a = (1 + 2) * (3 / 4); // result: 2.25
a = (1 + (2 * 3)) / 4; // result: 1.75
a = ((1 + 2) *3) / 4; // result: 2.25
a = 1 + ((2 * 3) / 4); // result: 2.5

Parentheses in expressions force the JavaScript interpreter to evaluate the con-
tents of the parentheses first, from the innermost parentheses to the outermost,
before performing the operations outside of the parentheses.

Upon consulting Table 5-1, you’ll see that the actual order of the precedence for
the preceding expression is

a = 1 + ((2 * 3) / 4);

This statement makes the actual operator precedence explicit. Multiplication is
done first, followed by division, followed by the addition.

0005390144.INDD 228 Trim size: 7.375 in × 9.25 in June 7, 2022 4:13 PM

228 BOOK 3 Advanced Web Coding

TABLE 5-1 Operator Precedence

Operator Use
Operator
Associativity Precedence Sample Use

(..) Grouping n/a 0 — highest
precedence

(1 + 3)

..... Operator
property access

Left to right 1 myCar.color

[..] Array access Left to right 1 thingsToDo[4]

new ...() Creates an object
(with arguments list)

n/a 1 new Car ("red")

function ...() Function call Left to right 2 function sum (1,2)

new ... Creates an object
(without a list)

Right to left 2 new Car

...++ Postfix increment n/a 3 number++

...-- Postfix decrement n/a 3 number--

! ... Logical not Right to left 4 !myVal

~ ... Bitwise not Right to left 4 ~myVal

- ... Negation Right to left 4 -aNumber

++ ... Prefix increment Right to left 4 ++aNumber

-- ... Prefix decrement Right to left 4 --aNumber

typeof ... typeof Right to left 4 typeof myVar

void ... void Right to left 4 void(0)

delete ... delete Right to left 4 delete
object.property

... * ... Multiplication Left to right 5 result = 3 * 7

... / ... Division Left to right 5 result = 3 / 7

... % ... Remainder Left to right 5 result = 7 % 3

... + ... Addition Left to right 6 result = 3 + 7

... - ... Subtraction Left to right 6 result = 3 - 7

... << ... Bitwise left shift Left to right 7 result = 3 << 7

... >> ... Bitwise right shift Left to right 7 result = 3 >> 7

W
orking w

ith O
perators,

Expressions, and Statem
ents

0005390144.INDD 229 Trim size: 7.375 in × 9.25 in June 7, 2022 4:13 PM

CHAPTER 5 Working with Operators, Expressions, and Statements 229

Operator Use
Operator
Associativity Precedence Sample Use

... >>> ... Bitwise unsigned
right shift

Left to right 7 result = 3 >>> 7

... < ... Less than Left to right 8 a < b

... <= ... Less than or equal to Left to right 8 a <= b

... > ... Greater than Left to right 8 a > b

... >= ... Greater than
or equal to

Left to right 8 a >= b

... in ... in Left to right 8 value in values

...
instanceof ...

instanceof Left to right 8 myCar instanceof
car

... == ... Equality Left to right 9 3 == "3"

... != ... Inequality Left to right 9 3 != "3"

... === ... Strict equality Left to right 9 3 === "3"

... !== ... Strict inequality Left to right 9 3 !== "3"

... & ... Bitwise and Left to right 10 result = a & b

... ^ ... Bitwise xor Left to right 11 result = a ^ b

... | ... Bitwise or Left to right 12 result = a | b

... && ... Logical and Left to right 13 a && b

... || ... Logical or Left to right 14 a || b

...
? ... : ...

Conditional Right to left 15 a ? 3 : 7

... = ... Assignment Right to left 16 a = 3

... += ... Assignment Right to left 16 a += 3

... -= ... Assignment Right to left 16 a -= 3

... *= ... Assignment Right to left 16 a *= 3

... /= ... Assignment Right to left 16 a /= 3

... %= ... Assignment Right to left 16 a %= 3

... <<= ... Assignment Right to left 16 a <<= 3

(continued)

0005390144.INDD 230 Trim size: 7.375 in × 9.25 in June 7, 2022 4:13 PM

230 BOOK 3 Advanced Web Coding

Types of Operators
JavaScript has several types of operators. This section discusses the most used
types of operators.

Assignment operators
The assignment operator assigns the value of the operand on the right to the oper-
and on the left:

a = 5;

After this expression runs, the variable a will have a value of 5. You can also chain
assignment operators together to assign the same value to multiple variables, as
in the following example:

a = b = c = 5;

Because the operator’s associativity is right to left (see Table 5-1), 5 will first be
assigned to c, then the value of c will be assigned to b, and then the value of b will
be assigned to a. The result of this expression is that a, b, and c all have a value of 5.

What do you think the end value of a will be after these expressions are evaluated?

let b = 1;

let a = b += c = 5;

TABLE 5-1 (continued)

Operator Use
Operator
Associativity Precedence Sample Use

... >>= ... Assignment Right to left 16 a >>= 3

... >>>= ... Assignment Right to left 16 a >>>= 3

... &= ... Assignment Right to left 16 a &= 3

... ^= ... Assignment Right to left 16 a ^= 3

... |= ... Assignment Right to left 16 a |= 3

yield ... Yield Right to left 17 yield [expression]

... , ... Comma / sequence Left to right 18 a + b, c + d

W
orking w

ith O
perators,

Expressions, and Statem
ents

0005390144.INDD 231 Trim size: 7.375 in × 9.25 in June 7, 2022 4:13 PM

CHAPTER 5 Working with Operators, Expressions, and Statements 231

To find out, open the JavaScript Console in Chrome and type each line, followed by
Return or Enter. The result of this statement is that a will be equal to 6.

You can find a complete list of the different assignment operators in in the “Com-
bining operators” section, later in this chapter.

Comparison operators
Comparison operators test for equality or difference between operands and return
a true or false value.

Table 5-2 shows a complete list of the JavaScript comparison operators.

Arithmetic operators
Arithmetic operators perform mathematical operations on operands and return the
result. Table 5-3 shows a complete list of arithmetic operators.

TABLE 5-2 JavaScript Comparison Operators
Operator Description Example

== Equality 3 == "3" // true

!= Inequality 3 != 3 // false

=== Strict equality 3 === "3" // false

!== Strict inequality 3 !== "3" // true

> Greater than 7 > 1 // true

>= Greater than or equal to 7 >= 7 // true

< Less than 7 < 10 // true

<= Less than or equal to 2 <= 2 // true

0005390144.INDD 232 Trim size: 7.375 in × 9.25 in June 7, 2022 4:13 PM

232 BOOK 3 Advanced Web Coding

Listing 5-1 shows arithmetic operators at work.

LISTING 5-1: Using Arithmetic Operators

<html>

<head>

 <title>arithmetic operators</title>

</head>

<body>

 <h1>Wild Birthday Game</h1>

 <p>

 Enter the number 7

 Multiply by the month of your birth

 Subtract 1

 Multiply by 13

 Add the day of your birth

 Add 3

 Multiply by 11

 Subtract the month of your birth

 Subtract the day of your birth

 Divide by 10

 Add 11

 Divide by 100

</p>

TABLE 5-3 Arithmetic Operators
Operator Description Example

+ Addition a = 1 + 1

- Subtraction a = 10 - 1

* Multiplication a = 2 * 2

/ Division a = 8 / 2

% Modulus a = 5 % 2

++ Increment a = ++b

a = b++

a++

-- Decrement a = --b

a = b--

a--

W
orking w

ith O
perators,

Expressions, and Statem
ents

0005390144.INDD 233 Trim size: 7.375 in × 9.25 in June 7, 2022 4:13 PM

CHAPTER 5 Working with Operators, Expressions, and Statements 233

 <script>

 let numberSeven = Number(prompt('Enter the number 7'));

 let birthMonth = Number(prompt('Enter your birth month'));

 let calculation = numberSeven * birthMonth;

 calculation = calculation - 1;

 calculation = calculation * 13;

 let birthDay = Number(prompt('Enter the day of your birth'));

 calculation = calculation + birthDay;
 calculation = calculation + 3;
 calculation = calculation * 11

 calculation = calculation - birthMonth;

 calculation = calculation - birthDay;

 calculation = calculation / 10;

 calculation = calculation + 11;
 calculation = calculation / 100;

 document.write("Your birthday is " + calculation);
 </script>

</body>

</html>

The result of running Listing 5-1 in a browser is shown in Figure 5-1.

FIGURE 5-1:
The wild

arithmetic game.

© John Wiley & Sons

0005390144.INDD 234 Trim size: 7.375 in × 9.25 in June 7, 2022 4:13 PM

234 BOOK 3 Advanced Web Coding

String operator
The string operator performs operations using two strings. When used with strings,
the + operator becomes the concatenation operator. Its purpose is to join strings.
Note that when you’re joining strings with the concatenation operator, no spaces
are added. Thus, it’s very common to see statements like the following, where
strings containing nothing but a blank space are concatenated between other
strings or spaces are added to the end or beginning of strings (before the quota-
tion mark) to form a coherent sentence:

let greeting = "Hello, " + firstName + ". I'm" + " " + mood + "
to see you.";

Bitwise operators
Bitwise operators treat operands as signed 32-bit binary representations of numbers
in twos complement format. Here’s what that means, starting with the term binary.

Binary numbers are strings of 1s or 0s, with the position of the digit determining
the value of a 1 in that position. For example, here’s how to write the number 1 as
a 32-bit binary number:

00000000000000000000000000000001

The rightmost position has a value of 1. Each position to the left of this position
has a value of twice the value of the number to its right. So, the following binary
number is equal to 5:

00000000000000000000000000000101

Signed integers means that both negative and positive whole numbers can be rep-
resented in this form.

To change a number from positive to negative, just flip all the bits and add 1. For
example, the number -5 is represented by the following binary number:

11111111111111111111111111111011

Bitwise operators convert numbers to these 32-bit binary numbers and then con-
vert them back to what we would consider normal numbers after the operation
has been done.

Bitwise operators are difficult to understand at first. They’re not very commonly
used in JavaScript, but they’re included here for the sake of completeness. Table 5-4
lists the JavaScript bitwise operators.

W
orking w

ith O
perators,

Expressions, and Statem
ents

0005390144.INDD 235 Trim size: 7.375 in × 9.25 in June 7, 2022 4:13 PM

CHAPTER 5 Working with Operators, Expressions, and Statements 235

Figure 5-2 shows a demonstration of each of the bitwise operators in the Chrome
JavaScript Console.

TABLE 5-4 JavaScript Bitwise Operators
Operator Usage Description

Bitwise AND a & b Returns a 1 in each bit position for which the corresponding bits of both
operands are 1s.

Bitwise OR a | b Returns a 1 in each bit position for which the corresponding bits of
either or both operands are 1s.

Bitwise XOR a ^ b Returns a 1 in each bit position for which the corresponding bits of
either but not both operands are 1s.

Bitwise NOT ~a Inverts the bits of its operand.

Left shift a << b Shifts a in binary representation b (<32) bits to the left, shifting in zeros
from the right.

Sign-propagating
right shift

a >> b Shifts a in binary representation b (<32) bits to the right, discarding bits
shifted off.

Zero-fill right shift a >>> b Shifts a in binary representation b (<32) bits to the right, discarding bits
shifted off and shifting in zeros from the left.

FIGURE 5-2:
The JavaScript

bitwise operators.

© John Wiley & Sons

0005390144.INDD 236 Trim size: 7.375 in × 9.25 in June 7, 2022 4:13 PM

236 BOOK 3 Advanced Web Coding

Logical operators
The terms truthy and falsy in JavaScript refer to the value that’s returned when you
evaluate something as a Boolean. The following values evaluate to Boolean false
values and are thus considered falsy values:

 » false

 » 0

 » -0

 » '' (empty string)

 » null

 » undefined

 » NaN

Everything else evaluates to a Boolean true value, and is thus considered truthy.
You can find out whether a value or expression is truthy or falsy by surrounding it
with the Boolean() function, as in these examples:

Boolean(0) // returns false
Boolean("0") // returns true
Boolean(1+1) //returns true

Logical operators evaluate a logical expression for truthiness or falsiness. There are
three logical operators, shown in Table 5-5.

TABLE 5-5 Logical Operators
Operator Meaning Description

&& And Returns the first falsy operand. Otherwise, it returns the
second operand.

|| Or Returns the first operand if it is true. Otherwise, it returns
the second operand.

! Not Takes only one operand. Returns false if its operand can
be converted to true. Otherwise, it returns false.

W
orking w

ith O
perators,

Expressions, and Statem
ents

0005390144.INDD 237 Trim size: 7.375 in × 9.25 in June 7, 2022 4:13 PM

CHAPTER 5 Working with Operators, Expressions, and Statements 237

You can also use the OR operator to set a default value for variables. For example,
in the following expression, the value of myVar will be set to the value of x unless
x evaluates to a false value (for example, if x is undefined). Otherwise, it will be
set to the default value of 0.

let myVar = x||0;

Special operators
JavaScript’s special operators are a hodge-podge of miscellaneous other symbols
and words that perform other important functions.

Conditional operator
The conditional operator (also known as the ternary operator) uses three operands.
It evaluates a logical expression and then returns a value based on whether that
expression is true or false. The conditional operator is the only operator that
requires three operands. For example:

let isItBiggerThanTen = (value > 10) ? "greater than 10" : "not
greater than 10";

Comma operator
The comma operator evaluates two operands and returns the value of the sec-
ond one. It’s most often used to perform multiple assignments or other opera-
tions within loops. It can also serve as a shorthand for initializing variables. For
example:

let a = 10 , b = 0;

Because the comma has the lowest precedence of the operators, its operands are
always evaluated separately.

delete operator
The delete operator removes a property from an object or an element from an
array.

When you use the delete operator to remove an element from an array, the length
of the array stays the same. The removed element will have a value of undefined.

let animals = ["dog","cat","bird","octopus"];
console.log (animals[3]); // returns "octopus"

0005390144.INDD 238 Trim size: 7.375 in × 9.25 in June 7, 2022 4:13 PM

238 BOOK 3 Advanced Web Coding

delete animals[3];
console.log (animals[3]); // returns "undefined"

in operator
The in operator returns true if the specified value exists in an array or object.

let animals = ["dog","cat","bird","octopus"];
if (3 in animals) {
 console.log ("it's in there");
}

In this example, if the animals array has an element with the index of 3, the string
"it's in there" will print out to the JavaScript Console.

instanceof operator
The instanceof operator returns true if the object you specify is the type of
object that has been specified.

let myString = new String();
if (myString instanceof String) {
 console.log("yup, it's a string!");
}

new operator
The new operator creates an instance of an object. As you can see in Book 3, Chap-
ter 8, JavaScript has several built-in object types, and you can also define your
own. In the following example, Date is a built-in JavaScript object, while Pet and
Flower are examples of objects that a programmer could create to serve custom
purposes within a program.

let today = new Date();
let bird = new Pet();
let daisy = new Flower();

W
orking w

ith O
perators,

Expressions, and Statem
ents

0005390144.INDD 239 Trim size: 7.375 in × 9.25 in June 7, 2022 4:13 PM

CHAPTER 5 Working with Operators, Expressions, and Statements 239

this operator
The this operator refers to the current object. It’s frequently used for retrieving
properties within an object.

Book 3, Chapter 8 covers the this operator in more detail.

typeof operator
The typeof operator returns a string containing the type of the operand:

let businessName = "Harry's Watch Repair";
console.log(typeof businessName); // returns "string"

void operator
The void operator evaluates an expression and then returns undefined. The place
where you most often see void used is in HTML documents when a link is needed,
but the creator of the link wants to override the default behavior of the link using
JavaScript:

This is a link, but it won't do anything

Combining operators
You can combine assignment operators with the other operators as a shorthand
method of assigning the result of an expression to a variable. For example, the
following two examples have the same result:

a = a + 10;

a += 10;

Table 5-6 lists all the possible combinations of the assignment operators with
other operators.

0005390144.INDD 240 Trim size: 7.375 in × 9.25 in June 7, 2022 4:13 PM

240 BOOK 3 Advanced Web Coding

TABLE 5-6 Combining the Assignment Operators and
Other Operators

Name Shorthand Standard Operator

Assignment x = y x = y

Addition assignment x += y x = x + y

Subtraction assignment x -= y x = x - y

Multiplication assignment x *= y x = x * y

Division assignment x /= y x = x / y

Remainder assignment x %= y x = x % y

Left shift assignment x <<= y x = x << y

Right shift assignment x >>= y x = x >> y

Unassigned right shift assignment x >>>= y x = x <<< y

Bitwise AND assignment x &= y x = x & y

Bitwise XOR assignment x ^= y x = x ^ y

Bitwise OR assignment x |= y x = x | y

CHAPTER 6 Getting into the Flow with Loops and Branches 241

0005390145.INDD 241 Trim size: 7.375 in × 9.25 in June 11, 2022 3:00 PM

 Getting into the Flow
with Loops and Branches

“It ’ s not hard to make decisions when you know what your values are.”

 — ROY DISNEY

 I n earlier chapters of this book, you learned about linear JavaScript code.
However, more often than not, there comes a time (many times, actually) in
a program where you need a choice to be made or where you need to alter the

straight-ahead logic of a program to repeat statements multiple times with dif-
ferent values. In this chapter, you learn about looping and branching statements.

 Branching Out
Looping and branching statements are called control statements because they con-
trol the order in which JavaScript statements are run. You can use branching state-
ments to create diff erent paths for the execution of JavaScript code, depending
on conditional logic. Loops are the simplest way to group JavaScript statements
together in a program.

Chapter 6

 IN THIS CHAPTER

» Finding out about if/else branching

» Understanding the diff erent types of
loops

» Using loops to repeat statements

» Looping through the values of an
array

0005390145.INDD 242 Trim size: 7.375 in × 9.25 in June 11, 2022 3:00 PM

242 BOOK 3 Advanced Web Coding

The logic of a JavaScript program often comes to a point where a choice must be
made that will make all the difference. Figure 6-1 demonstrates, using JavaScript,
a real-world decision that can be solved using branching.

if . . . else statements
The if and else statements work together to evaluate a logical expression and
run different statements based on the result. if statements can be, and often are,
used by themselves. else statements must always be used in conjunction with an
if statement.

The basic syntax for an if statement is

if (condition) {
...
}

The condition here is any expression that evaluates to a Boolean (true or false)
value. If the result of the expression is true, the statements between the brackets
will be executed. If it’s false, they will just be skipped over.

The else statement comes in when you want to do something if the condition
evaluates to false. For example:

FIGURE 6-1:
Branching

chooses the path.

Wonderlane / Flickr / CC BY 2.0

G
etting into the Flow

 w
ith

Loops and Branches

0005390145.INDD 243 Trim size: 7.375 in × 9.25 in June 11, 2022 3:00 PM

CHAPTER 6 Getting into the Flow with Loops and Branches 243

let age = 19;
if (age < 21){
 document.write ("You are under the legal drinking age in the

U.S.");
} else {
 document.write ("What'll it be?");
}

Many other programming languages have a combination keyword called the
elseif, which can be used multiple times in an if ... else statement until a true
value occurs. JavaScript doesn’t have an elseif keyword.

However, you can get the same functionality as an elseif keyword by using if
and else together with a space between them. For example:

if (time < 12){
 document.write ("Good Morning!");
} else if (time < 17){
 document.write ("Good Afternoon!");
} else if (time < 20){
 document.write ("Good Evening!");
} else {
 document.write ("Good Night!");
}

Notice the use of line breaks and spaces in the preceding examples. Many people
have different styles for how to write if ... else statements. You may also see
them written with fewer line breaks or without space between the keywords and
brackets. These will work, too. However, whenever possible, it is preferable to
choose ease of reading over brevity.

Switch statements
The switch statement chooses between multiple statements to execute based on
possible values of a single expression. Each of these values in a switch statement
is called a case. In English, you may say, for example:

“In the case that we are expecting six guests, order three pizzas. In the case that we
are expecting 12 guests, order six pizzas. In the case that we’re expecting more
than 20 guests, freak out.”

0005390145.INDD 244 Trim size: 7.375 in × 9.25 in June 11, 2022 3:00 PM

244 BOOK 3 Advanced Web Coding

The syntax for the switch statement is

switch (expression) {
 case value1:
 // Statements
 break;
 case value2:
 // Statements
 break;
 case value3:
 // Statements
 break;
 default:
 // Statements
 break;
}

Notice the break statement after the statements associated with each case. The
break statement tells the switch statement to stop and exit the switch statement.

UNDERSTANDING IF . . . ELSE SHORTHAND
You should be aware of a couple of shortcuts for using if ... else statements. The
first is to use a ternary operator in place of the if ... else. This is somewhat more dif-
ficult to read than a standard if ... else:

let whatToSay = (time < 12 ? "Good Morning" : "Hello");

In this case, the value of whatToSay is set to "Good Morning" if time is less than 12
and it’s set to "Hello" if time is not less than 12.

Another shorthand method for writing if ... else statements uses the logical AND
(&&) operator. Remember that the logical AND will only evaluate the second operand if
the first evaluates to true. Programmers call this short-circuiting because it’s not neces-
sary for the second operand to be evaluated in a logical AND operation if the first oper-
and results in a false value.

time < 12 && console.log ("Good Morning!");

In the preceding example, the && statement first looks at whether time is less than 12.
If it is, the string "Good Morning" will be written to the console. If it isn’t, nothing will be
done because of the short-circuiting side effect of the && operator.

G
etting into the Flow

 w
ith

Loops and Branches

0005390145.INDD 245 Trim size: 7.375 in × 9.25 in June 11, 2022 3:00 PM

CHAPTER 6 Getting into the Flow with Loops and Branches 245

Without the break, the switch statement would continue and run the statements
in the next clause, regardless of whether the expression meets the conditions of
that case.

Forgetting a break statement within a switch can cause big problems, so be sure
to always use it. Because a switch statement will run any statements within any
case clause after a clause that evaluates to true, unpredictable results can occur
when you forget a break statement. Problems caused by missing break state-
ments are not easy to identify because they generally won’t produce errors, but
will frequently produce incorrect results.

If no match is found in any of the case clauses, the switch statement will look for
a default clause and execute the statement it contains.

The exception to the rule that you should always use a break statement between
case clauses is the default clause. As long as the default clause is the last state-
ment in your switch (which it should be), you can safely omit the break after it
because the program will break out of the switch after the last statement anyway.

Listing 6-1 shows an example of how you might use a switch statement.

LISTING 6-1: Using a switch Statement to Personalize a Greeting

let languagePreference = "Spanish";
switch (languagePreference){
 case "English":
 console.log("Hello!");
 break;
 case "Spanish":
 console.log("Hola!");
 break;
 case "German":
 console.log("Guten Tag!");
 break;
 case "French":
 console.log("Bon Jour!");
 break;
 default:
 console.log("I'm Sorry, I don't speak" + languagePreferance +

"!");
}

0005390145.INDD 246 Trim size: 7.375 in × 9.25 in June 11, 2022 3:00 PM

246 BOOK 3 Advanced Web Coding

Here We Go: Loop De Loop
Loops execute the same statement multiple times. JavaScript has several different
types of loops:

 » for

 » for ... in

 » do ... while

 » while

for loops
The for statement creates a loop using three expressions:

 » Initialization: The initial value of a variable, typically a counter.

 » Condition: A Boolean expression to be evaluated with each iteration of the
loop.

 » Final expression: An expression to be evaluated after each loop iteration.

Although it’s not required to use all three expressions in a for loop, all three of
them are nearly always included. The for loop is usually used to run code a pre-
determined number of times.

The following is an example of a simple for loop:

for (let x = 1; x < 10; x++){
console.log(x);
}

Broken down, this is how the preceding for loop example works:

1. A new variable, in this case x, is initiated with the value of 1.

2. A test is performed to determine whether x is less than 10.

If it is, the statements inside the loop are executed (in this case, a console.log
statement).

If not, the value of x is incremented using the increment operator (++).

G
etting into the Flow

 w
ith

Loops and Branches

0005390145.INDD 247 Trim size: 7.375 in × 9.25 in June 11, 2022 3:00 PM

CHAPTER 6 Getting into the Flow with Loops and Branches 247

3. The test is done again to determine whether x is less than 10.

If so, the statements inside the loop are executed.

4. The test repeats, until the condition expression no longer evaluates to
true.

Figure 6-2 shows the result of running this for statement in the Chrome devel-
oper tools.

Looping through an array
You can use for loops to list the contents of an array by testing the value of the
counter against the value of the length property of the array. Be sure to remember
that JavaScript arrays are zero-indexed, so the value of any array.length will be
one more than the highest index numbered element in the array. That is why we
subtract 1 in Listing 6-2.

LISTING 6-2: Listing the Contents of an Array with for Loop

<html>
<head>
 <title>Different Area Codes</title>
</head>
<body>
 <script>
 let areaCodes = ["770", "404", "718", "202", "901", "305",

"312", "313", "215", "803"];

FIGURE 6-2:
A loop that

counts from 1
to 9.

© John Wiley & Sons

(continued)

0005390145.INDD 248 Trim size: 7.375 in × 9.25 in June 11, 2022 3:00 PM

248 BOOK 3 Advanced Web Coding

 for (x=0; x < areaCodes.length - 1; x++){
 document.write("Different Area Code:" + areaCodes[x] +

"
");
 }
 </script>
</body>
</html>

Figure 6-3 shows the output of running the program detailed in Listing 6-2.

for . . . in loops
The for ... in statements loop through the properties in an object. You can also
use a for ... in statement to loop through the values of an array.

The for ... in loop has an interesting quirk. It doesn’t care about the order of
properties or elements that it’s looping through. For this reason, and because
using for ... in loop is slower, you’re better off using a standard for loop to loop
through array elements.

Objects are data containers that have properties (what they are) and methods
(what they do). Web browsers have a set of built-in objects that programmers can
use to control the function of the browser. The most basic of these is the Document
object. The write method of the Document object, for example, tells your browser
to insert a specified value into the HTML document.

FIGURE 6-3:
Output of listing
the contents of
an array with a

for loop.

© John Wiley & Sons

LISTING 6-2: (continued)

G
etting into the Flow

 w
ith

Loops and Branches

0005390145.INDD 249 Trim size: 7.375 in × 9.25 in June 11, 2022 3:00 PM

CHAPTER 6 Getting into the Flow with Loops and Branches 249

The Document object also has properties that it uses to track and give program-
mers information about the current document. The Document.images collection,
for example, contains all of the img tags in the current HTML document.

In Listing 6-3, the for . . . in loop is used to list all the properties of the Document
object.

LISTING 6-3: Looping through the Document object with for . . . in

<html>
 <head>
 <title>document properties</title>
 <style>
 .columns {
 column-count: 6;
 }
 </style>
 </head>
 <body>
 <div class="columns">
 <script>
 for (var prop in document) {
 document.write(prop + '
');
 }
 </script>
 </div>
 </body>
</html>

The results of running Listing 6-3 are shown in Figure 6-4.

You can also use a for ... in loop to output the values that are in the properties
of the object, rather than just the property name. Listing 6-4 is a program that
outputs the current values of each of the Document object’s properties.

0005390145.INDD 250 Trim size: 7.375 in × 9.25 in June 11, 2022 3:00 PM

250 BOOK 3 Advanced Web Coding

LISTING 6-4: Outputting the Property Names and Values of the Document
Object with for . . . in

<html>
 <head>
 <title>document properties with values</title>
 <style>
 .columns {
 column-count: 6;
 }
 </style>
 </head>
 <body>
 <div class="columns">
 <script>
 for (var prop in document) {
 document.write(prop + ': ' + document[prop] + '
');
 }

FIGURE 6-4:
A list of all the
properties of
a Document

object using the
for ... in loop.

© John Wiley & Sons

G
etting into the Flow

 w
ith

Loops and Branches

0005390145.INDD 251 Trim size: 7.375 in × 9.25 in June 11, 2022 3:00 PM

CHAPTER 6 Getting into the Flow with Loops and Branches 251

 </script>
 </div>
 </body>
</html>

Figure 6-5 shows the output of Listing 6-4.

while loops
The while statement creates a loop that runs as long as a condition evaluates to
true. Listing 6-5 shows a web page containing an example of the while loop.

LISTING 6-5: Using a while Loop

<html>
 <head>
 <title>Guess the Word</title>
 </head>
 <body>
 <script>

FIGURE 6-5:
Results of

outputting
the property

names and
values of the

Document object
with for ... in.

© John Wiley & Sons

(continued)

0005390145.INDD 252 Trim size: 7.375 in × 9.25 in June 11, 2022 3:00 PM

252 BOOK 3 Advanced Web Coding

 let guessedWord = prompt('What word am I thinking of?');
 while (guessedWord != 'sandwich') {
 // as long as the guessed word is not sandwich
 guessedWord = prompt("No. That's not it. Try again.");
 }
 alert("Congratulations! That's exactly right!"); // do this

after exiting the loop
 </script>
 </body>
</html>

do . . . while loops
The do . . . while loop works in much the same way as the while loop, except that
it puts the statements before the expression to test against. The effect is that the
statements within a do ... while loop will always execute as least once.

Listing 6-6 demonstrates the use of a do ... while loop.

LISTING 6-6: Using a do . . . while Loop

<html>
 <head>
 <title>Let's Count</title>
 </head>
 <body>
 <script>
 let i = 0;
 do {
 i++;
 document.write(i + '
');
 } while (i < 10);
 </script>
 </body>
</html>

LISTING 6-5: (continued)

G
etting into the Flow

 w
ith

Loops and Branches

0005390145.INDD 253 Trim size: 7.375 in × 9.25 in June 11, 2022 3:00 PM

CHAPTER 6 Getting into the Flow with Loops and Branches 253

break and continue statements
You can use break and continue to interrupt the execution of a loop. The break
statement was shown previously in this chapter in the context of a switch state-
ment, where it serves to break out of the switch after a successful match.

In a loop, break does much the same thing. It causes the program to immediately
exit the loop, no matter whether the conditions for the completion of the loop
have been met.

For example, in Listing 6-7, the word-guessing game will progress just as it does
in Listing 6-5, but the loop will immediately terminate if no value is entered.

LISTING 6-7: Using a break in a while Loop

<html>
 <head>
 <title>Guess the Word</title>
 </head>
 <body>
 <script>
 let guessedWord = prompt('What word am I thinking of?');
 while (guessedWord != 'sandwich') {
 if (guessedWord == '') {
 break;
 } // exit the loop right away if user doesn't enter a

value
 guessedWord = prompt("No. That's not it. Try again.");
 }
 alert("Congratulations! That's exactly right!");
 </script>
 </body>
</html>

The continue statement causes the current iteration of the loop to stop and tells
the program to start up again with the next iteration of the loop, skipping the
statements that come after the continue statement.

Listing 6-8 shows a program that counts from 1 to 20, but only prints out even
numbers. Notice that the program determines whether a number is even by using
the modulus operator to test whether the current value of the counter is divisible
by two.

0005390145.INDD 254 Trim size: 7.375 in × 9.25 in June 11, 2022 3:00 PM

254 BOOK 3 Advanced Web Coding

LISTING 6-8: Counting and Using continue to Display Even Numbers

<html>
<head>
 <title>Count and show me even numbers</title>
</head>
<body>
 <script>
 for (let i = 0; i <= 20; i++){
 if (i%2 != 0){
 continue;
 }
 document.write (i + " is an even number.
");
 }
 </script>
</body>
</html>

When used in this way, continue can replace the functionality of an else state-
ment. Figure 6-6 shows the result of running Listing 6-8 in a browser.

The break and continue statements can be useful, but they can also be danger-
ous. Their small size and great power make them easy to overlook when reading
through code. For this reason, some programmers consider using them inside of
a loop to be a bad practice. For more information on why and the complexities
of the issue, read this discussion: http://programmers.stackexchange.com/
questions/58237/are-break-and-continue-bad-programming-practices.

FIGURE 6-6:
Counting and

using continue
to display even

numbers.

© John Wiley & Sons

CHAPTER 7 Getting Functional 255

0005390146.INDD 255 Trim size: 7.375 in × 9.25 in June 11, 2022 3:03 PM

 Getting Functional
“I write as a function. Without it I would fall ill and die. It’s much a part of one
as the liver or intestine, and just about as glamorous.”

 — CHARLES BUKOWSKI

 F unctions help you reduce code repetition by turning frequently used bits of
code into reusable parts. In this chapter, you write some functions and use
them to make otherwise tedious tasks easy and fun!

 Understanding the Function of Functions
Functions are mini programs within your programs. Functions serve to handle
tasks within the main program that may be required multiple times by diff erent
parts of the program.

 If you’ve read any of the preceding chapters, you’ve seen a few functions in action.
The following example is a simple function that, when run, simply adds a z to the
end of a string.

 function addZ(aString) {
 aString += "z";
 return aString;
 }

Chapter 7

 IN THIS CHAPTER

» Writing functions

» Documenting functions

» Passing parameters

» Returning values

» Organizing programs with functions

0005390146.INDD 256 Trim size: 7.375 in × 9.25 in June 11, 2022 3:03 PM

256 BOOK 3 Advanced Web Coding

To try this function, follow these steps:

1. Open the JavaScript Console in Chrome.

2. Type in the function.

You can type it all on one line, or you can press Shift+Enter or Shift+Return
after each line to create a line break without executing the code.

3. Press Return or Enter after the final curly brace.

The console should write out undefined.

4. Type the following command, followed by Return or Enter, to run the function:

addZ("I have JavaScript skill");

The result of running this function is shown in Figure 7-1.

Functions are a fundamental part of JavaScript programming, and they have a
lot of rules and special powers that you need to be aware of as a JavaScript coder.
Don’t worry if you aren’t able to memorize each detail about functions. It will take
some practice to understand some of the more abstract concepts, and you may
even need to read this chapter again. Eventually, everything will become clear to
you, so just stick with it!

FIGURE 7-1:
Running your

first function in
the JavaScript

Console.

© John Wiley & Sons

G
etting Functional

0005390146.INDD 257 Trim size: 7.375 in × 9.25 in June 11, 2022 3:03 PM

CHAPTER 7 Getting Functional 257

Using Function Terminology
Programmers have a number of words that are important to understand when
they talk about functions. We use these words extensively in this chapter and
throughout this book. The following list is a quick summary of some of the lingo
you’ll run into when you’re working with functions.

Defining a function
When a function appears in JavaScript code, it doesn’t run. It’s simply created and
made available for use later. The creation of the function so that it can be used
later on is called defining a function.

You only need to define a function once in a program or on a web page. If you
accidentally define the same function more than once, however, JavaScript won’t
complain. It will simply use the most recently defined version of the function.

For example:

function myFunction(){
};

Function head
The function head is the part of the function definition that includes the function
keyword, the function name, and the parentheses.

For example:

function myFunction()

Function body
The function body is made up of the statements between the curly braces of the
function.

For example:

{
 // function body
}

0005390146.INDD 258 Trim size: 7.375 in × 9.25 in June 11, 2022 3:03 PM

258 BOOK 3 Advanced Web Coding

Calling a function
When you use a function, it’s called calling the function. Calling a function causes
the statements in the function body to be executed.

For example:

myFunction();

Defining parameters and passing
arguments
Parameters are names that you give to pieces of data that are provided to a func-
tion when it’s called. Arguments are the values you provide to functions. When a
function is called with arguments (according to the specified parameters of the
function), programmers refer to that as passing the arguments into the function.

The syntax for defining a parameter is as follows:

function myFunction(parameter) {

The syntax for calling a function with an argument is as follows:

myFunction(myArgument);

Returning a value
In addition to being able to accept input from the outside world, functions can
also send back values after they’re finished running. When a function sends back
something, it’s called returning a value.

To return a value, use the return keyword inside the function. For example:

return myValue;

The Benefits of Using Functions
Listing 7-1 shows a program that adds numbers together. It works great and does
exactly what it’s supposed to do, using a for ... in loop (see Book 3, Chapter 6).

G
etting Functional

0005390146.INDD 259 Trim size: 7.375 in × 9.25 in June 11, 2022 3:03 PM

CHAPTER 7 Getting Functional 259

LISTING 7-1: A Program for Adding Numbers Using the for . . . in Loop

<html>
<head>
 <title>Get the total</title>
</head>
<body>
 <script>
 let myNumbers = [2,4,2,7];
 let total = 0;
 for (oneNumber in myNumbers){
 total = total + myNumbers[oneNumber];
 }
 document.write(total);
 </script>
</body>
</html>

If you had multiple sets of numbers to add together, however, you’d need to write
a new loop statement specifically for each new array of numbers.

Listing 7-2 turns the program from Listing 7-1 into a function and then uses that
function to find the sums of the elements in several different arrays.

LISTING 7-2: A Function for Adding Numbers from an Array

<html>
<head>
 <title>Get the sum</title>
</head>
<body>
 <script>
 /**
 *Adds elements in an array
 *@param {Array.<number>} numbersToAdd
 *@return {Number} sum
 */
 function addNumbers(numbersToAdd) {
 let sum = 0;
 for (oneNumber in numbersToAdd) {
 sum = sum + numbersToAdd[oneNumber];
 }

(continued)

0005390146.INDD 260 Trim size: 7.375 in × 9.25 in June 11, 2022 3:03 PM

260 BOOK 3 Advanced Web Coding

 return sum;
 }
 let myNumbers = [2,4,2,7];
 let myNumbers2 = [3333,222,111];
 let myNumbers3 = [777,555,777,555];
 let sum1 = addNumbers(myNumbers);
 let sum2 = addNumbers(myNumbers2);
 let sum3 = addNumbers(myNumbers3);
 document.write(sum1 + "
");
 document.write(sum2 + "
");
 document.write(sum3 + "
");
 </script>
</body>
</html>

LISTING 7-2: (continued)

DOCUMENTING JAVASCRIPT WITH JSDOC
It’s a good practice to always document your JavaScript code using a standard system.
The most widely used JavaScript documentation system, and thus the de-facto stan-
dard, is JSDoc.

The JSDoc language is a simple markup language that can be inserted inside of
JavaScript files. JSDoc is based on the JavaDoc system that’s used for documenting code
written in the Java programming language.

After you’ve annotated your JavaScript files with JSDoc, you can use a documentation
generator, such as jsdoc-toolkit, to create HTML files documenting the code.

JSDoc markup goes inside of special block comment tags. The only difference between
JSDoc markup and regular JavaScript block comments is that JSDoc markup starts with
/** and ends with */, whereas normal block comments in JavaScript only require one
asterisk after the beginning slash. The extra asterisk in JSDoc markup tags allows you
to create normal comment blocks without having them be a part of the generated
documentation.

G
etting Functional

0005390146.INDD 261 Trim size: 7.375 in × 9.25 in June 11, 2022 3:03 PM

CHAPTER 7 Getting Functional 261

The figure shows some code from the open-source AngularJS JavaScript framework that
has been annotated using JSDoc.

© John Wiley & Sons

Different parts and aspects of a program can be documented with JSDoc using JSDoc
tags. Here are the most popular tags:

JSDoc Tag Explanation

@author Programmer’s name

@constructor Indicates that a function is a constructor

@deprecated Indicates the method is deprecated

@exception Describes an exception thrown by a method; synonymous
with @throws

@exports Specifies a member that is exported by the module

@param Describes a method parameter

@private Indicates a member is private

@return Describes a return value. Synonymous with @returns

@returns Describes a return value. Synonymous with @return

@see Records an association to another object

(continued)

0005390146.INDD 262 Trim size: 7.375 in × 9.25 in June 11, 2022 3:03 PM

262 BOOK 3 Advanced Web Coding

The block comment that precedes the function in Listing 7-2 follows the for-
mat specified by the JavaScript documenting system, JSDoc. By commenting your
functions using this format, you not only make your programs much easier to
read, you also can use these comments to automatically generate documentation
for your programs. You can read more about JSDoc in the sidebar “Documenting
JavaScript with JSDoc” or at http://usejsdoc.org.

Functions are a great time, work, and space saver. Writing a useful function may
initially take longer than writing JavaScript code outside of functions, but in the
long term, your programs will be better organized, and you’ll save yourself a lot
of headaches if you get into the habit of writing functions.

Writing Functions
A function declaration consists of the following items, in this order:

 » Function keyword

 » Name of the function

 » Parentheses, which may contain one or more parameters

 » Pair of curly brackets containing statements

Sometimes, a function’s whole purpose will be to write a message to the screen
in a web page. An example of a time when it’s useful to have a function like this
is for displaying the current date. The following example function writes out the
current date to the browser window:

function getTheDate(){
 let rightNow = new Date();
 document.write(rightNow.toDateString());
}

JSDoc Tag Explanation

@this Specifies the types of the object to which the keyword this
refers within a function

@throws Describes an exception thrown by a method

@version Indicates the version number of a library

(continued)

G
etting Functional

0005390146.INDD 263 Trim size: 7.375 in × 9.25 in June 11, 2022 3:03 PM

CHAPTER 7 Getting Functional 263

Follow these steps to try this function:

1. Open the JavaScript Console in Chrome.

2. Type the function into the console.

Use Shift+Return (or Shift+Enter) after typing each line to create a line break in
the console without executing the code.

3. After you enter the final }, press Return (or Enter) to run the code.

Notice that nothing happens, except that the word undefined appears in the
console, letting you know that the function has been accepted, but that it didn’t
return a value.

4. Call the function by typing the name of the function (getTheDate)
followed by parentheses, followed by a semicolon:

getTheDate();

The function prints out the current date and time to the browser window, and
then the console displays undefined because the function doesn’t have a
return value; its purpose is simply to print out the date to the browser window.

The default return value of functions is undefined, so technically, undefined is
a return value.

Returning Values
In the example in the preceding section, we create a function that just prints a
string to the browser window. After the single document.write statement exe-
cutes, there are no more statements to run and so the program exits the function
and continues with the next statement after the function call.

Most functions return a value (other than undefined) after their work is done. You
can then use this value in the rest of the program. Listing 7-3 shows a function
that returns a value. The return value of the function is then assigned to a variable
and printed to the console.

0005390146.INDD 264 Trim size: 7.375 in × 9.25 in June 11, 2022 3:03 PM

264 BOOK 3 Advanced Web Coding

LISTING 7-3: Returning a Value from a Function

function getHello(){
 return "Hello!";
}
let helloText = getHello();
console.log (helloText);

The return statement is generally the last statement in a function. When it exe-
cutes, the function exits. You can use the return statement to send any type of lit-
eral value (such as "Hello!" or 3) outside of the function or to return the value of
a variable, an expression, an array or object, or even another function! Listing 7-4
shows a function that returns the result of an expression.

LISTING 7-4: Returning the Result of an Expression

function getCircumference(){
 let radius = 12;
 return 2 * Math.PI * radius;
}
console.log (getCircumference());

Passing and Using Arguments
For functions to be able to do the same thing with different input, they need a
way for programmers to give them input. In Listing 7-2, earlier in this chapter,
the parentheses after the name of a function in its declaration are used to specify
parameters for the function.

The difference between parameters and arguments can be confusing at first.
Here’s how it works:

 » Parameters are the names you specify in the function definition.

 » Arguments are the values you pass to the function. They take on the names of
the parameters when they are passed.

G
etting Functional

0005390146.INDD 265 Trim size: 7.375 in × 9.25 in June 11, 2022 3:03 PM

CHAPTER 7 Getting Functional 265

In the following function, you define two parameters for the myTacos function:

function myTacos(meat,produce){
...
}

When you call this function, you include data (arguments) in the places where the
function definition has parameters. Note that the arguments passed to the func-
tion must be listed in the same order as the parameters in the function definition:

myTacos("beef","onions");

The values passed to the function will become the values of the local variables
inside of the function and will be given the names of the function’s parameters.

Listing 7-5 expands the myTacos function to print out the values of the two argu-
ments to the console. Passing an argument is like initializing a variable inside of
the function, except that the values come from outside of the function.

LISTING 7-5: Referring to Arguments Inside a Function Using the Parameter Names

function myTacos(meat,produce){
 console.log(meat); // writes "beef"
 console.log(produce); // writes "onions"
}
myTacos("beef","onions");

You can specify up to 255 parameters in a function definition. However, it’s highly
unusual to need to write a function that takes anywhere near that many param-
eters! Just for the sake of keeping your code clean and understandable, if you find
you need a lot of parameters, you should think about whether there’s a better way
to do it.

Passing arguments by value
If you use a variable with one of the primitive data types to pass your argument,
the argument passes by value. What this means is the new variable created inside
the function is totally separate from the variable used to pass the argument, and
no matter what happens after the value gets into the function, the variable outside
of the function won’t change.

0005390146.INDD 266 Trim size: 7.375 in × 9.25 in June 11, 2022 3:03 PM

266 BOOK 3 Advanced Web Coding

Primitive data types in JavaScript are string, number, bigInt, Boolean, Symbol,
undefined, and null.

In Listing 7-6, you see that several variables are created, given values, and then
passed into a function. In this case, the parameters of the function have the same
names as the variables used to pass the arguments. Even though the values of
the variables inside the function get changed, the values of the original variables
remain the same.

LISTING 7-6: Demonstration of Arguments Passed by Value

<html>
<head>
 <title>Arguments Passed By Value</title>
</head>
<body>
 <script>
 /**
 * Increments two numbers
 * @param {number} number1
 * @param {number} number2
 */
 function addToMyNumbers(number1,number2){
 number1++;
 number2++;
 console.log("number 1: " + number1);
 console.log("number 2: " + number2);
 }
 let number1 = 3;
 let number2 = 12;
 addToMyNumbers(number1,number2); // pass the arguments
 console.log("original number1: " + number1);
 console.log("original number2: " + number2);
 </script>
</body>
</html>

Figure 7-2 shows the output of this program in the JavaScript Console.

G
etting Functional

0005390146.INDD 267 Trim size: 7.375 in × 9.25 in June 11, 2022 3:03 PM

CHAPTER 7 Getting Functional 267

Passing arguments by reference
Whereas JavaScript primitive variables (strings, numbers, Boolean, undefined,
and null) are passed to functions by value, JavaScript objects are passed by refer-
ence. What this means is that if you pass an object as an argument to a function,
any changes to that object within the function will also change the value outside
of the function. The implications and uses of passing by reference are beyond the
scope of this chapter but are covered in Book 3, Chapter 8.

Calling a function without all the
arguments
You don’t need to always call a function with the same number of parameters as
are listed in the function definition. If a function definition contains three param-
eters, but you call it with only two, the third parameter will create a variable with
a value of undefined in the function.

Setting default parameter values
If you want arguments to default to something other than undefined, you can set
default values. One way to do this is to test the arguments inside of the function
value and set default values if the data type of the argument is undefined.

For example, in Listing 7-7, the function takes one parameter. Inside the func-
tion, a test is done to check whether the argument is undefined. If so, it will be
set to a default value.

FIGURE 7-2:
Variables outside

of a function
aren’t affected

by what happens
inside the
function.

© John Wiley & Sons

0005390146.INDD 268 Trim size: 7.375 in × 9.25 in June 11, 2022 3:03 PM

268 BOOK 3 Advanced Web Coding

LISTING 7-7: Setting Default Argument Values

function welcome(yourName){
 if (typeof yourName === 'undefined'){
 yourName = "friend";
 }

The method for setting default values shown in Listing 7-7 works fine, but there’s
a better way that’s much more compact. Since the 2015 version of JavaScript (also
known as ES6), you can set default values for parameters inside the function head,
as shown in Listing 7-8.

LISTING 7-8: Setting Default Arguments in the Function Head

function welcome(yourName = "friend") {
 document.write("Hello," + yourName);
}

Calling a function with more arguments
than parameters
If you call a function with more arguments than the number of parameters, local
variables won’t be created for the additional arguments because the function has
no way of knowing what to call them.

There is a neat trick that you can use to retrieve the values of arguments that are
passed to a function but don’t have a matching parameter: the arguments object.

Getting into arguments with the
arguments object
When you don’t know how many arguments will be passed into a function, you can
use the arguments object, which is built-in to functions by JavaScript, to retrieve
all the arguments and make use of them.

The arguments object contains an array of all the arguments passed to a function.
By looping through the array (using the for loop or the for ... in loop — see
Book 3, Chapter 6), you can make use of every argument, even if the number of
arguments may change each time the function is called.

G
etting Functional

0005390146.INDD 269 Trim size: 7.375 in × 9.25 in June 11, 2022 3:03 PM

CHAPTER 7 Getting Functional 269

Listing 7-9 demonstrates the use of the arguments object to present a welcome
message to someone with two middle names as well as someone with one middle
name.

LISTING 7-9: Using the Arguments Object to Define a Function that Can Add an
Arbitrary Number of Numbers

<html>

 <head>

 <title>Welcome Message</title>

 </head>

 <body>

 <script>

 /**

 *Flexible Welcome Message

 */

 function flexibleWelcome() {

 let welcome = 'Welcome,';

 for (i = 0; i < arguments.length; i++) {
 welcome = welcome + arguments[i] + '';
 }

 return welcome;

 }

 document.write(

 flexibleWelcome('John', 'Jacob', 'Jingleheimer', 'Schmidt') + '
'
);

 document.write(

 flexibleWelcome('Christopher', 'James', 'Minnick') + '
'
);

 </script>

 </body>

</html>

Understanding Function Scope
Variables created inside a function by passing arguments are only available within
that function. Programmers call this feature of JavaScript function scope. Variables
created inside of a function are destroyed when the function exits.

However, if you create a variable inside a function without using a var, let, or
const keyword, that variable becomes a global variable and can be changed and
accessed anywhere in your program.

0005390146.INDD 270 Trim size: 7.375 in × 9.25 in June 11, 2022 3:03 PM

270 BOOK 3 Advanced Web Coding

Accidentally creating a global variable is the source of many JavaScript bugs and
errors, and it’s recommended that you always properly scope variables and never
create a global variable unless it’s absolutely necessary. Most JavaScript program-
mers agree that implicit globals (globals created by not using var, let, or const
when initializing a variable) are a bad practice. As such, most code-checking and
testing tools specifically disallow their use.

Creating Anonymous Functions
The function name part of the function head isn’t required, and you can create
functions without names. This may seem like an odd thing to do because a func-
tion with no name is like a dog with no name; you have no way to call it! However,
anonymous functions can be assigned to variables when they are created, which
gives you the same capabilities as using a name within the function head:

let doTheThing = function(thingToDo) {
 document.write("I will do this thing: " + thingToDo);
}

Knowing the differences between anony-
mous and named functions
There are a couple important, and sometimes useful, differences between creating
a named function and assigning an anonymous function to a variable. The first
is that an anonymous function assigned to a variable only exists and can only
be called after the program executes the assignment. Named functions can be
accessed anywhere in a program.

The second difference between named functions and anonymous functions
assigned to variables is that you can change the value of a variable and assign a
different function to it at any point. That makes anonymous functions assigned to
variables more flexible than named functions.

Arrow functions
Another way to write anonymous functions is as arrow functions. Arrow functions
get their name from the combination of symbols used to write them. Instead of
the function keyword, arrow functions use the characters => between the param-
eter list and the function body.

G
etting Functional

0005390146.INDD 271 Trim size: 7.375 in × 9.25 in June 11, 2022 3:03 PM

CHAPTER 7 Getting Functional 271

The combination of the = and the > operator is called a “fat arrow.”

Arrow functions are always anonymous functions. They can be passed as argu-
ments to other functions, or they can be assigned to variables. For example, here’s
an arrow function that squares a number:

let square = (num) => {
 return num * num;
}

One of the things that makes arrow functions useful is that they are more com-
pact than using the function keyword. In fact, arrow functions have some special
rules and shortcuts that can make them even more compact than the preceding
example. These rules are:

 » If the function only has one parameter, you don’t need to use the parentheses
around the parameter list.

 » If the function doesn’t do anything but return data, you don’t need to include
the return keyword.

 » If you don’t include the return keyword, you also don’t include the curly
brackets around the function body.

Using an arrow function, the preceding square function can be written as the
following:

let square = num => num * num;

Doing it Again with Recursion
You can call functions from outside of the function or from within other functions.
You can even call a function from within itself. When a function calls itself, it’s
using a programming technique called recursion.

You can use recursion in many of the same cases where you would use a loop,
except that it repeats the statements within a function.

Listing 7-10 shows a simple recursive function. This recursive function has one
big problem, however. Can you spot it?

0005390146.INDD 272 Trim size: 7.375 in × 9.25 in June 11, 2022 3:03 PM

272 BOOK 3 Advanced Web Coding

LISTING 7-10: A Fatally Flawed Recursive Function

function squareItUp(startingNumber) {
 var square = startingNumber * startingNumber;
 console.log(square);
 squareItUp(square);
}

Do you see the issue with this function? It never ends. It will just keep on multi-
plying numbers together until you stop it.

Running this function will probably crash your browser, if not your computer. No
permanent damage will be done, of course, but it’s enough for you to just read the
code and notice the problem here.

Listing 7-11 improves upon the squareItUp() function by providing what’s called
a base case. A base case is the condition under which a recursive function’s job is
done and it should halt. Every recursive function must have a base case.

LISTING 7-11: A Recursive Function to Square Numbers Until the Number Is Greater
than 1,000,000

function squareItUp(startingNumber) {
 square = startingNumber * startingNumber;

 if (square > 1000000) {
 console.log(square);
 } else {
 squareItUp(square);
 }
}

There. That’s better! But, this function still has a big problem. What if someone
passes a negative number, zero or 1 into it? The result of any of these cases would
still be an infinite loop. To protect against such a situation, we need a termination
condition. In Listing 7-12, a check to make sure that the argument isn’t less than
or equal to 1 and that it isn’t something other than a number has been added. In
both cases, the function will stop immediately.

G
etting Functional

0005390146.INDD 273 Trim size: 7.375 in × 9.25 in June 11, 2022 3:03 PM

CHAPTER 7 Getting Functional 273

LISTING 7-12: A Recursive Function with Termination and Base Conditions

function squareItUp(startingNumber) {

 // Termination conditions, invalid input

 if (typeof startingNumber != 'number' || startingNumber - Number <= 1) {

 return -1; // exit the function

 }

 square = startingNumber * startingNumber;

 // Base condition

 if (square > 1000000) {

 console.log(square); // Print the final value

 } else {

 // If the base condition isn't met, do it again.

 squareItUp(square);

 }

}

Functions within Functions
Functions can be declared within functions. Listing 7-13 demonstrates how this
technique works and how it affects the scope of variables created within the
functions.

LISTING 7-13: Declaring Functions within Functions

function turnIntoAMartian(myName) {
 function recallName(myName) {
 let martianName = myName + ' Martian';
 }
 recallName(myName);
 console.log(martianName);
}
turnIntoAMartian("Glenn"); // martianName is not defined

The preceding example demonstrates how nesting a function within a func-
tion creates another layer of scope. Variables created in the inner function aren’t
directly accessible to the containing function. In order to get their values, a return
statement is needed, as shown in Listing 7-14.

0005390146.INDD 274 Trim size: 7.375 in × 9.25 in June 11, 2022 3:03 PM

274 BOOK 3 Advanced Web Coding

LISTING 7-14: Returning Values from an Inner Function

function turnIntoAMartian(myName) {
 function recallName(myName) {
 let martianName = myName + ' Martian';
 return martianName;
 }
 let martianName = recallName(myName);
 console.log(martianName);
}
turnIntoAMartian("Glenn"); // "Glenn Martian"

CHAPTER 8 Making and Using Objects 275

0005390147.INDD 275 Trim size: 7.375 in × 9.25 in June 11, 2022 3:05 PM

 Making and Using
Objects

“We cannot do anything with an object that has no name.”

 — MAURICE BLANCHOT, “LITERATURE AND THE RIGHT TO DEATH”

 I n this chapter, we show you why you should use objects, how to use them, and
what special powers they have to make your programs and your programming
better.

 Object of My Desire
 In addition to the seven primitive data types (see Book 3, Chapter 3,) JavaScript
also has a data type called object. JavaScript objects encapsulate data and function-
ality in reusable components.

 To understand what objects are and how they work, it’s helpful to compare
JavaScript objects with physical, real-life things. Take a guitar, for example.

Chapter 8

 IN THIS CHAPTER

» Understanding and creating objects

» Using properties and methods

» Using dot notation

» Deleting properties

» Working with methods

» Understanding inheritance

0005390147.INDD 276 Trim size: 7.375 in × 9.25 in June 11, 2022 3:05 PM

276 BOOK 3 Advanced Web Coding

A guitar has things that make up what it is and has things that it does. Here are a
few facts about the guitar we’re using for this example:

 » It has six strings.

 » It’s black and white.

 » It’s electric.

 » Its body is solid.

Some of the things this guitar can do (or that can be done to the guitar) are

 » Strum strings

 » Increase the volume

 » Decrease the volume

 » Tighten the strings

 » Adjust the tone

 » Loosen the strings

If this guitar were a JavaScript object instead of a real-life object, the things that
it does would be called its methods, and the things that make up the guitar, such
as its strings and body type, would be its properties.

Methods and properties in objects are both written the same way: as name-value
pairs, with a colon separating the name and the value. When a property has a
function as its value, it’s known as a method.

In reality, everything within an object is a property. We just call a property with a
function value by a different name: a method.

Listing 8-1 shows what our guitar’s properties might look like as a JavaScript
object.

LISTING 8-1: A JavaScript Guitar Object

let guitar = {
 bodyColor: "black",
 scratchPlateColor: "white",
 numberOfStrings: 6,
 brand: "Yamaha",

M
aking and U

sing
O

bjects

0005390147.INDD 277 Trim size: 7.375 in × 9.25 in June 11, 2022 3:05 PM

CHAPTER 8 Making and Using Objects 277

 bodyType: "solid",
 strum: function() {...},
 tune: function() {...}
};

Creating Objects
JavaScript has four ways to create objects:

 » By writing an object literal

 » By using the object constructor method

 » By using the Object.create method

 » By using the class keyword

Which one you choose depends on the circumstances. In the next sections, you
discover the pros and cons of each and when one is preferred over the other.

Defining objects with object literals
The object literal method of creating objects starts with a standard variable defini-
tion, using the var, let, or const keyword, followed by the assignment operator:

const person =

In the right side of the statement, however, you’ll use curly braces with comma-
separated name/value pairs:

const person = {eyes: 2, feet: 2, hands: 2, eyeColor: "blue"};

If you don’t know the properties that your object will have when you create it or
if your program requires that additional properties be added a later time, you can
create the object with few, or even no properties, and then add properties to it
later:

const person = {};
person.eyes = 2;
person.hair = "brown";

0005390147.INDD 278 Trim size: 7.375 in × 9.25 in June 11, 2022 3:05 PM

278 BOOK 3 Advanced Web Coding

The methods in the examples earlier in this book have mostly been used to out-
put text. document.write and console.log both use this method of separat-
ing properties with a period, so it may look familiar to you. The dot between the
object name and the property indicates that the property belongs to that object.
Dot notation is covered in more detail in the “Retrieving and Setting Object Prop-
erties” section, later of this chapter.

Another thing to notice about objects is that, like arrays, objects can contain mul-
tiple different data types as the values of properties.

The not-so-well-kept secret to really understanding JavaScript is in knowing that
arrays and functions are types of objects and that the number, string, and Bool-
ean primitive data types can also be used as objects. What this means is that they
have all the properties of objects and can be assigned properties in the same way
as objects.

Objects and arrays are often initialized using the const keyword, as in the preced-
ing example. Using const to initialize arrays and objects still gives you the ability
to change the elements or properties of the array or object, but it restricts the
variable from being assigned a different or new object.

Defining objects with a constructor
function
The second way to define an object is by using a constructor function. This method
uses the new keyword to create an object from a function. An example of using an
object constructor is shown in Listing 8-2.

LISTING 8-2: Using a Constructor Function

function Person(name,age){
 this.name = name;
 this.age = age;
}

const mom = new Person("Patricia",78);

A constructor function can be used to create multiple objects from the same tem-
plate. Each object created using the Person function will have a property called
name and a property called age.

M
aking and U

sing
O

bjects

0005390147.INDD 279 Trim size: 7.375 in × 9.25 in June 11, 2022 3:05 PM

CHAPTER 8 Making and Using Objects 279

Making objects with class
A class is a template for objects. If you think this sounds similar to the definition
of a constructor function, you’re right. Many other programming languages use
classes to define object templates, but JavaScript never had the concept of a class
when it was growing up.

That changed in 2015, when the class keyword and the syntax for writing classes
officially became part of JavaScript. JavaScript classes are very similar to con-
structor functions in their purpose, but the language you use to write a class is
somewhat different.

To write a JavaScript class, start with the class keyword, the name you want to
give your class (it’s traditional to give classes names that start with a capital let-
ter), and then a left curly brace, like this:

class Person {

Once you’ve written the class header, you can write a constructor. This is a func-
tion, just like a normal constructor function, but you can write it using method
notation, which omits the function keyword and the colon that would normally
be required to write a function inside an object.

class Person {
 constructor(name,age) {
 this.name = name;
 this.age = age;
 }
}

Once you’ve defined your class, you create an object from a class the same way you
create an object from a constructor function:

const neighbor = new Person('Murray',6);

One of the interesting things about using classes is that you can create new classes
that are based on other classes. For example, if you wanted to create a new class
called Teacher that had all the same properties as Person, plus some more, you
could use the extends keyword to do it, like this:

const Teacher extends Person {
 constructor(name,age,subject) {
 super(name,age);
 this.subject = subject;
 }
}

0005390147.INDD 280 Trim size: 7.375 in × 9.25 in June 11, 2022 3:05 PM

280 BOOK 3 Advanced Web Coding

To create a new object based on the Teacher class, just use the new keyword and
pass the three arguments. Inside the constructor function, the class uses the
super function to call the Person class and run its constructor function with the
arguments provided to Teacher (the values of name and age, in this example).

const myTeacher = new Teacher('Jill',39,'art');

Using Object.create
The Object.create method of making objects takes an existing object as its
parameter and returns a new object with the object it was created from as its pro-
totype. For example, you might start with an object like the following to use as a
prototype for other objects:

const cat = {
 sound: 'meow',
 sleep: function () {
 console.log('The cat is asleep');
 },
};

With Object.create, you can make a copy of this object that still has the sound
and sleep properties and add properties to it, as shown in Listing 8-3.

LISTING 8-3: Using object.create

const cat = {
 sound: 'meow',
 sleep: function () {
 console.log('The cat is asleep');
 },
};
const sparky = object.create(cat);
sparky.name = 'Sparky';
sparky.age = 10;

Retrieving and Setting Object Properties
After you create an object and define its properties, you’ll want to be able to
retrieve and change those properties. The two ways to access object properties are
by using dot notation or square brackets notation.

M
aking and U

sing
O

bjects

0005390147.INDD 281 Trim size: 7.375 in × 9.25 in June 11, 2022 3:05 PM

CHAPTER 8 Making and Using Objects 281

Using dot notation
In dot notation, the name of an object is followed by a period (or dot), followed by
the name of the property that you want to get or set.

To create a new property called firstName in the person object or to modify the
value of an existing firstName property, you would use a statement like the
following:

person.firstName = "Glenn";

If the firstName property doesn’t already exist, this statement will create it. If it
does exist, it will update it with a new value.

To retrieve the value of a property using dot notation, you would use the exact
same syntax, but you would move the object and property names (called the prop-
erty accessor) into a different position in the statement. For example, if you want
to concatenate the values of person.firstName and person.lastName and assign
them to a new variable called fullName, you do the following:

let fullname = person.firstName + person.lastName;

Or, to write out the value of a person.firstName to your browser console, just use
the property accessor as you would any variable; such as

console.log(person.firstName);

Dot notation is generally faster to type and easier to read. It’s an easier way to set
and retrieve object property values.

Using square bracket notation
Square bracket notation uses, you guessed it, square brackets after the object name
in order to get and set property values. To set a property value with square bracket
notation, put the name of the property in quotes inside square brackets, like this:

person["firstName"] = "Iggy";

Square bracket notation has a couple of capabilities that dot notation doesn’t. The
main one is that you can use variables inside of square bracket notation for cases
where you don’t know the name of the property that you want to retrieve when
you’re writing your program.

0005390147.INDD 282 Trim size: 7.375 in × 9.25 in June 11, 2022 3:05 PM

282 BOOK 3 Advanced Web Coding

The following example does the exact same thing as the preceding example, but
with a variable inside of the square brackets rather than a literal string. Using this
technique, you can make a single statement that can function in many different
circumstances, such as in a loop or a function:

let personProperty = "firstName";
person[personProperty] = "Iggy";

Listing 8-4 shows a simple program that creates an object called chair, then
loops through each of the object’s properties and asks the user to input values
for each. Once the user has entered a value for each of the properties, the write-
ChairReceipt function is called, which prints out each property along with the
value the user entered.

LISTING 8-4: Chair Configuration Script

<html>
 <head>
 <title>The WatzThis? Chair Configurator</title>
 </head>
 <body>
 <script>
 let myChair = {
 cushionMaterial: '',
 numberOfLegs: '',
 legHeight: '',
 };

 function configureChair() {
 let userValue;
 for (const property in myChair) {
 if (myChair.hasOwnProperty(property)) {
 userValue = prompt('Enter a value for ' + property);
 myChair[property] = userValue;
 }
 }
 }

M
aking and U

sing
O

bjects

0005390147.INDD 283 Trim size: 7.375 in × 9.25 in June 11, 2022 3:05 PM

CHAPTER 8 Making and Using Objects 283

 function writeChairReceipt() {
 document.write(
 '<h2>Your chair will have the following

configuration:</h2>'
);
 for (const property in myChair) {
 if (myChair.hasOwnProperty(property)) {
 document.write(property + ': ' + myChair[property] +

'
');
 }
 }
 }

 configureChair();
 writeChairReceipt();
 </script>
 </body>
</html>

Deleting Properties
You can delete properties from objects by using the delete operator. Listing 8-5
demonstrates how this operator works.

LISTING 8-5: Using the delete Operator

const myObject = {
 var1 : "the value",
 var2 : "another value",
 var3 : "yet another"
};

// delete var2 from myObject
delete myObject.var2;

// try to write the value of var2
document.write(myObject.var2); // result is an error

0005390147.INDD 284 Trim size: 7.375 in × 9.25 in June 11, 2022 3:05 PM

284 BOOK 3 Advanced Web Coding

Working with Methods
Methods are properties with functions for their values. You define a method the
same way that you define any function. The only difference is that a method is
assigned to a property of an object. Listing 8-6 demonstrates the creation of an
object with several properties, one of which is a method.

LISTING 8-6: Creating a Method

const sandwich = {
 meat: '',
 cheese: '',
 bread: '',
 condiment: '',
 makeSandwich: function (meat, cheese, bread, condiment) {
 sandwich.meat = meat;
 sandwich.cheese = cheese;
 sandwich.bread = bread;
 sandwich.condiment = condiment;
 let mySandwich =
 sandwich.bread +
 ', ' +
 sandwich.meat +
 ', ' +
 sandwich.cheese +
 ', ' +
 sandwich.condiment;
 return mySandwich;
 },
};

JavaScript has a newer way of creating strings that incorporate variables than the
method shown in the preceding example. The newer method is called template lit-
erals notation. Template literals use the backtick character (which is in the upper-
left corner of a desktop or laptop keyboard) around a string. Strings inside of
backtick characters can include JavaScript expressions inside of curly braces pre-
ceded by a $. For example, the mySandwich variable in the makeSandwich method
in Listing 8-6 can be rewritten like this:

let mySandwich = '${sandwich.bread}, ${sandwich.meat},
 ${sandwich.cheese}, ${sandwich.condiment}';

M
aking and U

sing
O

bjects

0005390147.INDD 285 Trim size: 7.375 in × 9.25 in June 11, 2022 3:05 PM

CHAPTER 8 Making and Using Objects 285

To call the makeSandwich method of the sandwich object, you can then use dot
notation just as you would access a property, but with parentheses and param-
eters supplied after the method name, as shown in Listing 8-7.

LISTING 8-7: Calling a Method

<html>
 <head>
 <title>Make me a sandwich</title>
 </head>
 <body>
 <script>
 const sandwich = {
 meat: '',
 cheese: '',
 bread: '',
 condiment: '',
 makeSandwich: function (meat, cheese, bread, condiment) {
 sandwich.meat = meat;
 sandwich.cheese = cheese;
 sandwich.bread = bread;
 sandwich.condiment = condiment;
 let mySandwich = `${sandwich.bread}, ${sandwich.meat},

${sandwich.cheese}, ${sandwich.condiment}`;
 return mySandwich;
 },
 };

 let sandwichOrder = sandwich.makeSandwich(
 'ham',
 'cheddar',
 'wheat',
 'spicy mustard'
);
 document.write(sandwichOrder);
 </script>
 </body>
</html>

0005390147.INDD 286 Trim size: 7.375 in × 9.25 in June 11, 2022 3:05 PM

286 BOOK 3 Advanced Web Coding

Using this
The this keyword is a shorthand for referencing the containing object of a
method. For example, in Listing 8-8, every instance of the object name, sand-
wich, has been replaced with this. When the makeSandwich function is called as
a method of the sandwich object, JavaScript understands that this refers to the
sandwich object.

LISTING 8-8: Using this Inside a Method

<html>
<head>
 <title>Make a sandwich</title>
</head>
<body>
 <script>

 const sandwich = {
 meat:"",
 cheese:"",
 bread:"",
 condiment:"",
 makeSandwich: function(meat,cheese,bread,condiment){
 this.meat = meat;
 this.cheese = cheese;
 this.bread = bread;
 this.condiment = condiment;
 let mySandwich = `${sandwich.bread}, ${sandwich.meat},

${sandwich.cheese}, ${sandwich.condiment}`;
 return mySandwich;
 }
 }

 let sandwichOrder = sandwich.makeSandwich("ham","cheddar","wh

eat","spicy mustard");
 document.write (sandwichOrder);

 </script>
</body>
</html>

The result of using the this keyword instead of the specific object name is exactly
the same in this case.

M
aking and U

sing
O

bjects

0005390147.INDD 287 Trim size: 7.375 in × 9.25 in June 11, 2022 3:05 PM

CHAPTER 8 Making and Using Objects 287

Where this becomes very useful is when you have a function that may apply to
multiple different objects. In that case, the this keyword will reference the object
that it’s called within, rather than being tied to a specific object.

In the next sections, you find out about constructor functions and inheritance,
both of which are enabled by the humble this statement.

An Object-Oriented Way to Become
Wealthy: Inheritance

When you create objects, you’re not just limited to creating specific objects, such
as your guitar, your car, your cat, or your sandwich. The real beauty of objects is
that you can use them to create types of objects, from which other objects can be
created.

Every JavaScript object is based on another JavaScript object, and that object may
be based on another object. The objects that an object is based on is called its pro-
totype. The prototype may also have a prototype. This goes on until you get to
the base object in JavaScript that, eventually, all objects are based on. This is the
Object object.

To better understand the idea of prototypes and inheritance, let’s start at the top
of the prototype chain and make some new objects. It’s possible to use the Object
constructor function to create a new object based on the base object:

const person = new Object();

Here, a new person object of the type Object is created. This new person object
contains all the default properties and methods of the Object type, but with a new
name. You can then add your own properties and methods to the person object to
make it specifically describe what you mean by person.

const person = new Object();
person.eyes = 2;
person.ears = 2;
person.arms = 2;
person.hands = 2;
person.feet = 2;
person.legs = 2;
person.species = "Homo sapien";

0005390147.INDD 288 Trim size: 7.375 in × 9.25 in June 11, 2022 3:05 PM

288 BOOK 3 Advanced Web Coding

Creating an object using inheritance
So, now you’ve set some specific properties of the person object. Imagine that you
want to create a new object that’s a specific person, like Willie Nelson. You could
simply create a new object called willieNelson and give it all the same properties
as the person object, plus the properties that make Willie Nelson unique.

const willieNelson = new Object();
willieNelson.eyes = 2;
willieNelson.ears = 2;
willieNelson.arms = 2;
willieNelson.hands = 2;
willieNelson.feet = 2;
willieNelson.legs = 2;
willieNelson.species = "Homo sapien";
willieNelson.occupation = "musician";
willieNelson.hometown = "Austin";
willieNelson.hair = "Long";
willieNelson.genre = "country";

This method of defining the willieNelson object is wasteful, however. It requires
you to do a lot of work, and there’s no indication here that Willie Nelson is a per-
son. He just happens to have all the same properties as a person.

The solution is to create a new type of object, called Person and then make the
willieNelson object be of the type Person.

Notice that when we talk about a type of object, we always capitalize the name of
the object type. This isn’t a requirement, but it is a nearly universal convention.
For example, we say

const person = new Object();

or

const willieNelson = new Person();

This new willieNelson object will inherit all the properties of the person
object. And, there’s one more fascinating thing about the relationship between
an object and its prototype: if you don’t specifically set a value for a property of
an object, when you try to access that property, JavaScript will look for a value for
that property in the object’s prototype, and the prototype’s prototype, all the way
up the chain.

M
aking and U

sing
O

bjects

0005390147.INDD 289 Trim size: 7.375 in × 9.25 in June 11, 2022 3:05 PM

CHAPTER 8 Making and Using Objects 289

In the willieNelson example, where willieNelson was created using the Person
constructor, if you access willieNelson.eyes, it will return 2, because the person
object has a property called eyes with a value of 2.

To test this, run the code in Listing 8-9 in a web browser.

LISTING 8-9: Testing Inheritance

<html>
<head>
 <title>Inheritance demo</title>
</head>
<body>
 <script>

 function Person(){
 this.eyes = 2;
 this.ears = 2;
 this.arms = 2;
 this.hands = 2;
 this.feet = 2;
 this.legs = 2;
 this.species = "Homo sapien";
 }
 const willieNelson = new Person();
 alert("Willie Nelson has " + willieNelson.feet + " feet!");
 </script>
</body>
</html>

The result of running Listing 8-9 in a browser is shown in Figure 8-1.

Modifying an object type
Suppose that you have your Person object type, which serves as the prototype for
several objects. At some point you realize that the person, as well as all the objects
that inherit from it, ought to have a few more properties.

0005390147.INDD 290 Trim size: 7.375 in × 9.25 in June 11, 2022 3:05 PM

290 BOOK 3 Advanced Web Coding

To modify a prototype object, use the prototype property that every object inher-
its from Object. Listing 8-10 shows how this works.

LISTING 8-10: Modifying a Prototype Object

function Person(){
 this.eyes = 2;
 this.ears = 2;
 this.arms = 2;
 this.hands = 2;
 this.feet = 2;
 this.legs = 2;
 this.species = "Homo sapien";
}

const willieNelson = new Person();
const johnnyCash = new Person();
const patsyCline = new Person();

// Person needs more properties!
Person.prototype.knees = 2;
Person.prototype.toes = 10;
Person.prototype.elbows = 2;

// Check the values of existing objects for the new properties
document.write (patsyCline.toes); // outputs 10

FIGURE 8-1:
Willie Nelson is a

Person.

© John Wiley & Sons

CHAPTER 9 Controlling the Browser with the Window Object 291

0005390148.INDD 291 Trim size: 7.375 in × 9.25 in June 11, 2022 3:06 PM

 Controlling the Browser
with the Window Object

“In making theories, always keep a window open so that you can throw one
out if necessary.”

 — BELA LUGOSI

 T he Browser Object Model (BOM) allows JavaScript to interact with the func-
tionality of the web browser. Using the BOM, you can create and resize win-
dows, display alert messages, and change the current page being displayed

in the browser.

 In this chapter, you discover what can be done with the browser window and how
to use it to write better JavaScript programs.

 Understanding the Browser Environment
 Web browsers are complicated pieces of software. When they work well, they
operate seamlessly and integrate all their functions into a smooth and seem-
ingly simple web browsing experience. We all know that web browsers have an

Chapter 9

 IN THIS CHAPTER

» Understanding the BOM (Browser
Object Model)

» Opening and closing windows

» Getting windows properties

» Resizing windows

0005390148.INDD 292 Trim size: 7.375 in × 9.25 in June 11, 2022 3:06 PM

292 BOOK 3 Advanced Web Coding

occasional hiccup and sometimes even crash. To understand why this happens,
and to be able to make better use of browsers, it’s important to know the many
different parts of the web browser and how these parts interact with each other.

The user interface
The part of the web browser that you interact with when you type in an URL, click
the home button, create or use a bookmark, or change your browser settings is
called the user interface, or browser chrome (not to be confused with Google’s
Chrome browser).

The Chrome browser consists of the web browser’s menus, window frames, tool-
bars, and buttons that are outside of the main content window where web pages
load, as shown in Figure 9-1.

FIGURE 9-1:
The Chrome

browser.

© John Wiley & Sons

Controlling the Brow
ser

w
ith the W

indow
 O

bject

0005390148.INDD 293 Trim size: 7.375 in × 9.25 in June 11, 2022 3:06 PM

CHAPTER 9 Controlling the Browser with the Window Object 293

Loader
The loader is the part of a web browser that communicates with web servers and
downloads web pages, scripts, CSS, graphics, and all the other components of a
web page. Most often, loading is the part of displaying a web page that creates the
longest wait time for the user.

The HTML page is the first part of a web page that must be downloaded, as it
contains links and embedded scripts and styles that need to be processed to dis-
play the page.

Figure 9-2 shows the Chrome Developer Tools’ Network tab. It displays a graphi-
cal view of everything that happens during the loading of a web page, along with
a timeline showing how long the loading of each part takes.

Once the HTML document is downloaded, browsers will open several connections
to the server to download the other parts of the web page as quickly as possible.
Generally, the parts of a web page that are linked from an HTML document (also
known as the resources) are loaded in the order in which they appear in the HTML
document. For example, a script that is linked in the head element of the page will
be loaded before one that’s linked at the bottom of the page.

FIGURE 9-2:
Web browser

loading.

© John Wiley & Sons

0005390148.INDD 294 Trim size: 7.375 in × 9.25 in June 11, 2022 3:06 PM

294 BOOK 3 Advanced Web Coding

The load order of resources is critical to the efficiency and speed at which the
page can be displayed to the user. For a web page to be displayed correctly,
the CSS styles that apply to that page need to be loaded and parsed. Because of
this, CSS should always be loaded in the head element at the top of the web page.

JavaScript sometimes affects the display of a web page as well, but more often,
it affects only the functionality. When a script will affect the display of a web
page, it should be loaded in the head of the document (after the CSS). Scripts
that aren’t critical to how the web page appears should be linked from the very
end of the body element (right before the </body>), to not create a blocking sce-
nario in which the browser waits for scripts to load before displaying anything
to the user.

HTML parsing
After a web page is downloaded, the HTML parsing component of the browser
goes to work parsing the HTML to create a model (called the Document Object
Model or DOM) of the web page. The DOM, which is covered in detail in Book 3,
Chapter 10, is like a map of your web page. JavaScript programmers use this map
to manipulate and access all the different parts of a web page.

Upon completion of the HTML parsing, the browser begins downloading the other
components of the web page.

CSS parsing
Once the CSS for a web page is completely downloaded, the web browser will parse
the styles and figure out which ones apply to the HTML document. CSS parsing is
a complex process involving multiple passes over a document to apply each style
correctly and to consider how the styles impact each other.

JavaScript parsing
The next step in displaying a web page is the JavaScript parsing. The JavaScript
parser compiles and runs every script in your web page in the order in which it
appears in the document. If your JavaScript code adds or removes elements, text,
or styles within the HTML DOM, the browser will update the HTML and CSS ren-
derings accordingly.

Controlling the Brow
ser

w
ith the W

indow
 O

bject

0005390148.INDD 295 Trim size: 7.375 in × 9.25 in June 11, 2022 3:06 PM

CHAPTER 9 Controlling the Browser with the Window Object 295

Layout and rendering
Finally, once all the web page’s resources have been loaded and parsed, the
browser determines how to display the page and then displays it. Unless you’ve
specified that a script included earlier in the document should wait until the end
to be executed, the layout and rendering of your scripts will occur in the order
they’re included in the document.

In general, it’s better to display a web page to the user as quickly as possible, even
if the page may not be fully functional when it first appears. Modern websites
frequently employ this strategy specifically (called deferred loading) to improve the
perceived performance of their pages. If you’ve ever opened a web page and had to
wait for a moment before you can use a form or interactive element, you’ve seen
deferred loading in action.

Investigating the BOM
JavaScript programmers can find out information about a user’s web browser and
control aspects of the user’s experience through an API called the Browser Object
Model (the BOM).

There is no official standard for the Browser Object Model. Different browsers
implement it in different ways. However, there are some generally accepted stan-
dards for how JavaScript interacts with web browsers.

The Navigator object
The Navigator object provides JavaScript with access to information about the
user’s web browser. The Navigator object takes its name from the first web
browser to implement it, Netscape Navigator. The Navigator object isn’t built
into JavaScript. Rather, it’s a feature of web browsers that is accessible using
JavaScript. Nearly every web browser (and every modern web browser) has adopted
the same terminology to refer to this highest-level browser object.

The Navigator object accesses helpful information such as

 » The name of the web browser

 » The version of the web browser

0005390148.INDD 296 Trim size: 7.375 in × 9.25 in June 11, 2022 3:06 PM

296 BOOK 3 Advanced Web Coding

 » The physical location of the computer the browser is running on (if the user
allows the browser to access geolocation data)

 » The language of the browser

 » The type of computer the browser is running on

Table 9-1 shows all the properties of the Navigator object.

To get the properties of the Navigator object, you use the same syntax used to
get the properties of any object — namely, dot notation or brackets notation.
Listing 9-1, when opened in a web browser, will display all the current properties
and values of the Navigator object.

LISTING 9-1: Properties of the Navigator Object and Their Values

<html>
 <head>
 <style>
 .columns {
 column-count: 6;
 }

TABLE 9-1 The Properties of the Navigator Object
Property Use

appCodeName Gets the code name of the browser.

appName Gets the name of the browser.

appVersion Gets the browser version information.

cookieEnabled Tells whether cookies are enabled in the browser.

geolocation Locates the user’s physical location.

language Gets the language of the browser.

onLine Identifies whether the browser is online.

platform Gets the platform the browser was compiled for.

product Gets the browser engine name of the browser.

userAgent Gets the user-agent the browser sends to web servers.

Controlling the Brow
ser

w
ith the W

indow
 O

bject

0005390148.INDD 297 Trim size: 7.375 in × 9.25 in June 11, 2022 3:06 PM

CHAPTER 9 Controlling the Browser with the Window Object 297

 </style>
 </head>
 <body>
 <div class="columns">
 <script>
 for (var prop in navigator) {
 document.write(prop + ': ' + navigator[prop] + '
');
 }
 </script>
 </div>
 </body>
</html>

Figure 9-3 shows the output of Listing 9-1 when opened in a web browser.

If you run Listing 9-1 yourself, you’ll notice something interesting about the
output: The values for the appName and userAgent properties are seemingly just
plain wrong. For example, the browser used to generate Figure 9-3 was Google
Chrome, but appName lists it as Netscape.

This misleading value is a relic from the days when programmers used the prop-
erties of the Navigator object to detect whether a user was using a particular
browser and supported certain features.

FIGURE 9-3:
Listing all the
properties of

the Navigator
object with

their values.

© John Wiley & Sons

0005390148.INDD 298 Trim size: 7.375 in × 9.25 in June 11, 2022 3:06 PM

298 BOOK 3 Advanced Web Coding

When new browsers, such as Chrome and Firefox, came along, those browsers
adopted the Netscape browser appName value in order to make sure they were
compatible with websites that detected features in this way.

Today, browser detection isn’t recommended, and you can use better ways to
detect browser support for functionality than by looking at the appName property.
The most common way to detect features today is by examining the DOM for
objects associated with the feature you want to use. For example, if you want to
find out if a browser supports the HTML5 audio element, you can use the follow-
ing test:

let test_audio = document.createElement('audio');
if (test_audio.play) {
 console.log('Browser supports HTML5 audio');
} else {
 console.log("Browser doesn't support HTML5 audio");
}

The Window object
The main area of a web browser is called the window. This is the area into which
HTML documents (and associated resources) load. Each tab in a web browser is
represented in JavaScript by an instance of the Window object. The Window object’s
properties are listed in Table 9-2.

Some of the most common uses for the window properties include

 » Opening a new location in the browser window

 » Finding the size of a browser window

 » Returning to a previously open page (as in the Back button functionality)

Opening a web page with the
window.location property
Getting the value of the window.location property will return the URL of the
current page. Setting the value of the window.location property with a new URL
causes the browser to load that web page in the window.

Listing 9-2 is a web page with a script that requests a web page address from the
user and then loads that page in the current browser window.

Controlling the Brow
ser

w
ith the W

indow
 O

bject

0005390148.INDD 299 Trim size: 7.375 in × 9.25 in June 11, 2022 3:06 PM

CHAPTER 9 Controlling the Browser with the Window Object 299

TABLE 9-2 The Window Object’s Properties
Property Use

closed A Boolean value indicating whether a window has been closed or not.

defaultStatus Gets or sets the default text in the status bar of a window.

document Refers to the document object for the window.

frameElement Gets the element, such as <iframe> or <object>, that the window
is embedded in.

frames Lists all the subframes in the current window.

history Gets the user’s browser history for the current window.

innerHeight Gets the inner height of the window.

innerWidth Gets the inner width of the window.

length Gets the number of frames in the window.

location Gets the Location object for the window.

name Gets or sets the name of the window.

navigator Gets the Navigator object for the window.

opener Gets the Window object that created the current window.

outerHeight Gets the outer height of the window, including scrollbars and toolbars.

pageXOffset Gets the number of pixels that have been scrolled horizontally in
the window.

pageYOffset Gets the number of pixels that have been scrolled vertically in
the window.

parent Refers to the parent of the current window.

screen Refers to the Screen object of the window.

screenLeft Gets the horizontal pixel distance from the left side of the main
screen to the left side of the current window.

screenTop Gets the vertical pixel distance from the top of the window relative
to the top of the screen.

screenX Gets the horizontal coordinate relative to the screen.

screenY Gets the vertical coordinate relative to the screen.

self Refers to the current window.

top Refers to the topmost browser window.

0005390148.INDD 300 Trim size: 7.375 in × 9.25 in June 11, 2022 3:06 PM

300 BOOK 3 Advanced Web Coding

LISTING 9-2: A Script for Loading a Web Page in the Browser Window Using the
window.location Property

<html>
 <head>
 <script>
 function loadNewPage(url) {
 window.location = url;
 }
 </script>
 </head>
 <body>
 <script>
 let newURL = prompt('
 Please enter a web page address!
 ');
 loadNewPage(newURL);
 </script>
 </body>
</html>

Figure 9-4 shows the output of Listing 9-2.

FIGURE 9-4:
The window.

location
property
in action.

© John Wiley & Sons

Controlling the Brow
ser

w
ith the W

indow
 O

bject

0005390148.INDD 301 Trim size: 7.375 in × 9.25 in June 11, 2022 3:06 PM

CHAPTER 9 Controlling the Browser with the Window Object 301

Determining the size of a browser window
When you’re designing a website or a web application to work and function on
different types of devices (a technique known as responsive design), knowing the
size of the web browser, particularly the width, is critical.

The window.innerWidth and window.innerHeight properties give you this infor-
mation, in pixels, for the current web browser window.

Using CSS to determine the size of a browser window is also possible and quite
common. However, there are some differences in how CSS and JavaScript treat
scrollbars that may influence which technique you decide to use.

Try a simple responsive design example using JavaScript. Run the program in
Listing 9-3 in your web browser. If your web browser window width is below
500 pixels, one message will be displayed. If your window’s width is greater than
500 pixels, a different message will be displayed.

LISTING 9-3: Changing a Web Page Based on the Width of the Window

<html>
 <head>
 <title>Adapting to the window.innerWidth</title>
 </head>
 <body>
 <script>
 let currentWidth = window.innerWidth;
 if (currentWidth > 500) {
 document.write('<h1>Your window is big.</h1>');
 } else {
 document.write('<h1>Your window is small.</h1>');
 }
 </script>
 </body>
</html>

To test the responsive design example in Listing 9-3, follow these steps:

1. In your web browser, open an HTML document containing the code in
Listing 9-3.

If your window is more than 500px wide when you open your page, you’ll see a
message that your window is big.

0005390148.INDD 302 Trim size: 7.375 in × 9.25 in June 11, 2022 3:06 PM

302 BOOK 3 Advanced Web Coding

2. Drag the lower-right corner of your browser to make the window as
narrow as you can, as shown in Figure 9-5.

3. Click your browser’s refresh button, or press Command+R (on Mac) or
Ctrl+R (on Windows), to reload the page.

Notice that the message on the page now says your browser’s window is small.

Creating a Back button using location and history
The history property of the window object is a read-only reference to the his-
tory object, which stores information about the pages the user has accessed in
the current browser window. By far the most common use of the history object
is to enable buttons that return the user to a previously viewed page, as shown in
Listing 9-4.

FIGURE 9-5:
Displaying a

different message
for narrow

browser width.

© John Wiley & Sons

Controlling the Brow
ser

w
ith the W

indow
 O

bject

0005390148.INDD 303 Trim size: 7.375 in × 9.25 in June 11, 2022 3:06 PM

CHAPTER 9 Controlling the Browser with the Window Object 303

LISTING 9-4: Implementing a Back Button in a Web Application

<html>
 <head>
 <title>Creating a Back button</title>
 <script>
 function takeMeBack() {
 window.location(history.go(-1));
 }
 function getHistoryLength() {
 var l = window.history.length;
 return l;
 }
 </script>
 </head>
 <body>
 <script>
 var historyLength = getHistoryLength();
 document.write(
 "<p>Welcome! The number of pages you've visited in this

window is: " +
 historyLength +
 ".</p>");
 </script>

 Go

Back
 </body>
</html>

To use the Back button in Listing 9-4, follow these steps:

1. Open a new browser window and visit any page you like, such as
www.watzthis.com.

2. While in that same browser window, open an HTML document containing
the code in Listing 9-4.

0005390148.INDD 304 Trim size: 7.375 in × 9.25 in June 11, 2022 3:06 PM

304 BOOK 3 Advanced Web Coding

3. Click the Go Back link.

Your browser will take you back to the last page you visited before the one
containing the Back button.

Care to guess what happens if you open Listing 9-4 in a new browser tab before
accessing any other web pages in that tab? If you guessed that nothing happens,
you’re correct! If only one page (the current one) has been displayed in a window,
there’s nothing to go back to.

Using the Window object’s methods
In addition to its properties, the Window object also has some useful methods that
JavaScript programmers should know and use. Table 9-3 shows the complete list
of these methods.

TABLE 9-3 The Window Object’s Methods
Method Use

alert() Displays an alert box with a message and an OK button.

atob() Decodes a base-64 encoded string.

blur() Causes the current window to lose focus.

clearInterval() Cancels the timer set using setInterval().

clearTimeout() Cancels the timer set using setTimeout().

close() Closes the current window or notification.

confirm() Displays a dialog box with an optional message and two
buttons; OK and Cancel.

createPopup() Creates a popup window.

focus() Sets the current window into focus.

moveBy() Moves the current window by a specified amount.

moveTo() Relocates a window to a specified position.

open() Opens a new window.

print() Prints the contents of the current window.

prompt() Displays a dialog box prompting the user for input.

resizeBy() Resizes the window by a specified number of pixels.

Controlling the Brow
ser

w
ith the W

indow
 O

bject

0005390148.INDD 305 Trim size: 7.375 in × 9.25 in June 11, 2022 3:06 PM

CHAPTER 9 Controlling the Browser with the Window Object 305

A method is just another name for a function that’s contained within an object.

Method Use

resizeTo() Resizes a window to a specified height and width.

scrollBy() Scrolls the document by a specified amount.

scrollTo() Scrolls the document to a specific set of coordinates.

setInterval() Calls a function or executes an expression repeatedly at
specified intervals (in milliseconds).

setTimeout() Calls a function or executes an expression after a specified
interval (in milliseconds).

stop() Stops the current window from loading.

0005390148.INDD 306 Trim size: 7.375 in × 9.25 in June 11, 2022 3:06 PM

CHAPTER 10 Manipulating Documents with the DOM 307

0005390149.INDD 307	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:08	PM

 Manipulating
Documents with
the DOM

“No object is mysterious. The mystery is your eye.”

 — ELISABETH BOWEN

 U nderstanding the DOM is key to being able to manipulate the text or HTML
in a web page. Using the DOM, you can create animations, update data
without refreshing web pages, move objects around in a browser, and

much more!

 Understanding the DOM
 The Document Object Model (DOM) is the interface for JavaScript to talk to and
work with HTML documents inside of browser windows. The DOM can be visual-
ized as an inverted tree, with each part of the HTML document branching off its
containing part.

Chapter 10

 IN THIS CHAPTER

» Getting to know the DOM (Document
Object Model)

» Working with nodes

» Moving around the tree

» Selecting elements

0005390149.INDD 308	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:08	PM

308 BOOK 3 Advanced Web Coding

Listing 10-1 is the markup for a web page. The DOM representation is shown in
Figure 10-1.

LISTING 10-1: An HTML Document

<html>
<head>
 <title>Bob's Appliances</title>
</head>
<body>
 <header>
 <img src="logo.gif" width="100"
 height="100" alt="Site Logo">
 </header>
 <div>
 <h1>Welcome to Bob's</h1>
 <p>The home of quality appliances</p>
 </div>
 <footer>
 copyright © Bob
 </footer>
</body>
</html>

A DOM tree is made up of individual components, called nodes. The main node,
from which every other node springs, is called the document node. The node under
the document node is the root element node. For HTML documents, the root node
is the one created by the html element. After the root node, every element, attrib-
ute, and piece of content in the document is represented by a node in the tree that
comes from another node in the tree.

The DOM has several different types of nodes:

 » Document node:	The	entire	HTML	document	is	represented	in	this	node

 » Element nodes:	The	HTML	elements

 » Attribute nodes:	The	attributes	associated	with	elements

 » Text nodes:	The	text	content	of	elements

 » Comment nodes:	The	HTML	comments	in	a	document

M
anipulating D

ocum
ents

w
ith the D

O
M

0005390149.INDD 309	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:08	PM

CHAPTER 10 Manipulating Documents with the DOM 309

Understanding Node Relationships
HTML DOM trees resemble family trees in the hierarchical relationship between
nodes. In fact, the technical terms used to describe relationships between nodes
in a tree take their names from familial relationships.

 » Every	node,	except	the	root	node,	has	one	parent.

 » Each	node	may	have	any	number	of	children.

 » Nodes	with	the	same	parent	are	siblings.

Because HTML documents often have multiple elements that are of the same type,
the DOM allows you to access distinct elements in a node list using an index num-
ber. For example, you can refer to the first <p> element in a document as p[0], and
the second <p> element node as p[1].

Although a node list may look like an array, it’s not. You can loop through the
contents of a node list, but you can’t use array methods on node lists.

FIGURE 10-1:
A	representation	
of	the	Document	
Object	Model	for	

Listing 10-1.	

0005390149.INDD 310	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:08	PM

310 BOOK 3 Advanced Web Coding

In Listing 10-2, the three <p> elements are all children of the <div> element.
Because they have the same parent, they are siblings.

LISTING 10-2: Demonstration of Parent, Child, and Sibling Relationships
in an HTML Document

<html>
<head>
 <title>The HTML Family</title>
</head>
<body>
 <section> <!-- proud parent of 3 p elements, child of body -->
 <p>First</p>
 <!-- 1st child of section element, sibling of 2 p elements -->
 <p>Second</p>
 <!-- 2nd p child of section element, sibling of 2 p elements -->
 <p>Third</p>
 <!-- 3rd p child of section element, sibling of 2 p elements -->
 </section>
</body>
</html>

In Listing 10-2, the HTML comments are also children of the section element.
The last comment before the closing section tag is called the last child of the
section.

By understanding the relationships between document nodes, you can use the
DOM tree to find any element within a document.

Listing 10-3 is an HTML document containing a script that outputs all the child
nodes of the section element.

LISTING 10-3: Displaying the Child Nodes of the section Element

<html>
 <head>
 <title>The HTML Family</title>
 </head>
 <body>
 <section> <!-- proud parent of 3 p elements,
 child of body -->

M
anipulating D

ocum
ents

w
ith the D

O
M

0005390149.INDD 311	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:08	PM

CHAPTER 10 Manipulating Documents with the DOM 311

 <p>First</p> <!-- 1st child of section element,
 sibling of 2 p elements -->
 <p>Second</p>
 <!-- 2nd p child of section element,
 sibling of 2 p elements -->
 <p>Third</p>
 <!-- 3rd p child of section element,
 sibling of 2 p elements -->
 </section>
 <h1>Nodes in the section element</h1>
 <script>
 let myNodelist = document.body.childNodes[1].childNodes;
 for (let i = 0; i < myNodelist.length; i++) {
 document.write(myNodelist[i] + '
');
 }
 </script>
 </body>
</html>

Figure 10-2 shows what the output of Listing 10-3 looks like in a browser. Notice
that the first child node of the section element is a text node. If you look closely
at the HTML markup in Listing 10-3, you’ll see that there is a single space between
the opening section tag and the comment. Even something as simple as a single
space (or a tab or a line break) creates a node in the DOM tree. This fact needs to
be taken into consideration when you’re navigating the DOM using relationships
between nodes.

The HTML DOM also provides a couple of keywords for navigating nodes using
their positions relative to their siblings or parents. The relative properties are:

 » firstChild:	References	the	first	child	of	a	node

 » lastChild:	References	the	last	child	of	the	node

 » nextSibling:	References	the	next	node	with	the	same	parent	node

 » previousSibling:	References	the	previous	node	with	the	same	parent	node

Listing 10-4 shows how you can use these relative properties to traverse the DOM.

0005390149.INDD 312	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:08	PM

312 BOOK 3 Advanced Web Coding

LISTING 10-4: Using firstChild and lastChild to Highlight Navigation Links

<html>
 <head>
 <title>Iguanas Are No Fun</title>
 <script>
 function boldFirstAndLastNav() {
 document.body.childNodes[1].firstChild.style
 .fontWeight = 'bold';
 document.body.childNodes[1].lastChild.style
 .fontWeight = 'bold';
 }
 </script>
 </head>
 <body>
 <nav>
 Home |
 Why Are Iguanas No Fun? |
 What Can Be Done? |
 Contact Us

FIGURE 10-2:
Viewing	the	
output	of	

Listing 10-3.	

© John Wiley & Sons

M
anipulating D

ocum
ents

w
ith the D

O
M

0005390149.INDD 313	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:08	PM

CHAPTER 10 Manipulating Documents with the DOM 313

 </nav>
 <p>Iguanas are no fun to be around. Use the links
 above to learn more.</p>
 <script>
 boldFirstAndLastNav();
 </script>
 </body>
</html>

Notice in Listing 10-4 that all the spacing must be removed between the elements
within the <nav> element for the firstChild and lastChild properties to access
the correct elements that we want to select and style.

Figure 10-3 shows what the document in Listing 10-4 looks like when previewed
in a browser. Notice that just the first and last links in the navigation are bold.

This is the first example in which we use the DOM to make a change to existing
elements within the document. However, this method of selecting elements is
almost never used. It’s too prone to mistakes and too difficult to interpret and use.

In the next section, you see that the DOM provides you with much easier ways of
traversing and manipulating nodes than counting children.

FIGURE 10-3:
Previewing	

Listing 10-4	in	a	
browser.	

© John Wiley & Sons

0005390149.INDD 314	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:08	PM

314 BOOK 3 Advanced Web Coding

Using the Document Object’s
Properties and Methods

The Document object provides properties and methods for working with HTML
documents. The complete list of Document object properties is shown in Table 10-1.
The Document object’s methods are shown in Table 10-2.

TABLE 10-1 The Document Object’s Properties
Property Use

anchors Gets	a	list	of	all	anchors	(<a>	elements	with	name	attributes)	in	the	document.

baseURI Gets	the	base	URI	of	the	document.

body Gets the <body>	or	<frameset>	node	of	the	document	body.

cookie Gets	or	sets	the	name/value	pairs	of	cookies	in	the	document.

doctype Gets	the	Document	Type	Declaration	associated	with	the	document.

documentElement Gets	the	element	that	is	the	root	of	the	document	(for	example,	the	<html>
element	of	an	HTML	document).

documentMode Gets	the	mode	used	by	the	browser	to	render	the	document.

documentURI Gets	or	sets	the	location	of	the	document.

domain Gets	the	domain	name	of	the	server	that	loaded	the	document.

embeds Gets	a	list	of	all	<embed>	elements	in	the	document.

forms Gets	a	collection	of	all	<form>	elements	in	the	document.

head Gets the <head>	element	in	the	document.

images Gets	a	list	of	all		elements	in	the	document.

implementation Gets the DOMImplementation	object	that	handles	the	document.

lastModified Gets	the	date	and	time	the	current	document	was	last	modified.

links Gets	a	collection	of	all	<area>	and	<a>	elements	in	the	document	that	contain	the	
href	attribute.

readyState Gets	the	loading	status	of	the	document.	Returns	loading	while	the	document	is	
loading,	interactive	when	it	has	finished	parsing,	and	complete	when	it	has	
completed	loading.

referrer Gets	the	URL	of	the	page	that	the	current	document	was	linked	from.

M
anipulating D

ocum
ents

w
ith the D

O
M

0005390149.INDD 315	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:08	PM

CHAPTER 10 Manipulating Documents with the DOM 315

Property Use

scripts Gets	a	list	of	<scripts>	elements	in	the	document.

title Gets	or	sets	the	title	of	the	document.

URL Gets	the	full	URL	of	the	document.

TABLE 10-2 The Document Object’s Methods
Method Use

addEventListener() Assigns	an	event	handler	to	the	document.

adoptNode() Adopts	a	node	from	an	external	document.

close() Finishes	the	output	writing	stream	of	the	document	that	was	
previously	opened	with	document.open().

createAttribute() Creates	an	attribute	node.

createComment() Creates	a	comment	node.

createDocumentFragment() Creates	an	empty	document	fragment.

createElement() Creates	an	element	node.

createTextNode() Creates	a	text	node.

getElementById() Gets	the	element	that	has	the	specified	ID	attribute.

getElementsByClassName() Gets	all	elements	with	the	specified	class	name.

getElementsByName() Gets	all	elements	with	the	specified	name.

getElementsByTagName() Gets	all	elements	with	the	specified	tag	name.

importNode() Copies	and	imports	a	node	from	an	external	document.

normalize() Clears	the	empty	text	nodes	and	joins	adjacent	nodes.

open() Opens	a	document	for	writing.

querySelector() Gets	the	first	element	that	matches	the	specified	group	of	selector(s)	
in	the	document.

querySelectorAll() Gets	a	list	of	all	the	elements	that	match	the	specified	selector(s)	in	
the	document.

removeEventListener() Clears	an	event	handler	that	had	been	added	using	the	
.addEventListener()	method	from	the	document.

renameNode() Renames	an	existing	node.

write() Writes	JavaScript	code	or	HTML	expressions	to	a	document.

writeIn() Writes	JavaScript	code	or	HTML	expressions	to	a	document	and	adds	
a	new	line	character	after	each	statement.

0005390149.INDD 316	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:08	PM

316 BOOK 3 Advanced Web Coding

Using the Element Object’s Properties
and Methods

The Element object provides properties and methods for working with HTML ele-
ments within a document. Table 10-3 shows all the properties of the Element
object. Table 10-4 lists all the methods of the Element object.

TABLE 10-3 The Element Object’s properties
Method Use

accessKey Gets	or	sets	the	accesskey	attribute	of	the	element.

attributes Gets	a	collection	of	all	the	element’s	attributes	registered	to	the	specified	
node	(returns	a	NameNodeMap).

childElementCount Gets	the	number	of	child	elements	in	the	specified	node.

childNodes Gets	a	list	of	the	element’s	child	nodes.

children Gets	a	list	of	the	element’s	child	elements.

classList Gets	the	class	name(s)	of	the	element.

className Gets	or	sets	the	value	of	the	class	attribute	of	the	element.

clientHeight Gets	the	inner	height	of	an	element,	including	padding.

clientLeft Gets	the	left	border	width	of	the	element.

clientTop Gets	the	top	border	width	of	the	element.

clientWidth Gets	the	width	of	the	element,	including	padding.

contentEditable Gets	or	sets	whether	the	element	is	editable.

dir Gets	or	sets	the	value	of	the	dir	attribute	of	the	element.

firstChild Gets	the	first	child	node	of	the	element.

firstElementChild Gets	the	first	child	element	of	the	element.

id Gets	or	sets	the	value	of	the	id	attribute	of	the	element.

innerHTML Gets	or	sets	the	content	of	the	element.

isContentEditable Returns	true	if	the	content	of	an	element	is	editable;	returns	false	if	it	is	
not	editable.

lang Gets	or	sets	the	base	language	of	the	elements	attribute.

lastChild Gets	the	last	child	node	of	the	element.

M
anipulating D

ocum
ents

w
ith the D

O
M

0005390149.INDD 317	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:08	PM

CHAPTER 10 Manipulating Documents with the DOM 317

Method Use

lastElementChild Gets	the	last	child	element	of	the	element.

namespaceURI Gets	the	namespace	URI	for	the	first	node	in	the	element.

nextSibling Gets	the	next	node	at	the	same	node	level.

nextElement Sibling Gets	the	next	element	at	the	same	node	level.

nodeName Gets	the	current	node’s	name.

nodeType Gets	the	current	node’s	type.

nodeValue Gets	or	sets	the	value	of	the	node.

offsetHeight Gets	the	height	of	the	element,	including	vertical	padding,	borders,	and	
scrollbar.

offsetWidth Gets	the	width	of	the	element,	including	horizontal	padding,	borders,	and	
scrollbar.

offsetLeft Gets	the	horizontal	offset	position	of	the	element.

offsetParent Gets	the	offset	container	of	the	element.

offsetTop Gets	the	vertical	offset	position	of	the	element.

ownerDocument Gets	the	root	element	(document	node)	for	an	element.

parentNode Gets	the	parent	node	of	the	element.

parentElement Gets	the	parent	element	node	of	the	element.

previousSibling Gets	the	previous	node	at	the	same	node	tree	level.

previousElement Sibling Gets	the	previous	element	node	at	the	same	node	tree	level.

scrollHeight Gets	the	entire	height	of	the	element,	including	padding.

scrollLeft Gets	or	sets	the	number	of	pixels	the	element’s	content	is	scrolled	horizontally.

scrollTop Gets	or	sets	the	number	of	pixels	the	element’s	content	is	scrolled	vertically.

scrollWidth Gets	the	entire	width	of	the	element,	including	padding.

style Gets	or	sets	the	value	of	the	style	attribute	of	the	element.

tabIndex Gets	or	sets	the	value	of	the	tabindex	attribute	of	the	element.

tagName Gets	the	tag	name	of	the	element.

textContent Gets	or	sets	the	textual	content	of	the	node	and	its	descendants.

title Gets	or	sets	the	value	of	the	title	attribute	of	the	element.

length Gets	the	number	of	nodes	in	the	NodeList.

0005390149.INDD 318	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:08	PM

318 BOOK 3 Advanced Web Coding

TABLE 10-4 The Element Object’s Methods
Method Use

addEventLIstener() Registers	an	event	handler	to	the	element.

appendChild() Inserts	a	new	child	node	to	the	element	(as	a	last	child	node).

blur() Eliminates	focus	from	the	element.

click() Replicates	a	mouse-click	on	the	element.

cloneNode() Clones	the	element.

compareDocumentPosition() Compares	the	document	position	of	two	elements.

contains() Yields	true	if	the	node	is	a	descendant	of	a	node;	otherwise,	
yields	false.

focus() Gives	focus	to	the	element.

getAttribute() Gets	the	specified	attribute	value	of	the	element	node.

getAttributeNode() Gets	the	specified	attribute	node.

getElementsByClassName() Gets	a	collection	of	all	child	elements	with	the	stated	class	name.

getElementsByTagName() Gets	a	collection	of	all	the	child	elements	with	the	stated	tag	name.

getFeature() Gets	an	object	that	implements	the	APIs	of	the	stated	feature.

hasAttribute() Yields	true	if	the	element	has	the	stated	attribute;	otherwise,	
yields	false.

hasAttributes() Yields	true	if	the	element	has	any	attributes;	otherwise,	yields	false.

hasChildNodes() Yields	true	if	the	element	has	any	child	nodes;	otherwise,	yields	false.

insertBefore() Enters	a	new	child	node	before	the	stated	existing	node.

isDefaultNamespace() Yields	true	if	the	stated	namespaceURI	is	the	default;	otherwise,	
yields	false.

isEqualNode() Evaluates	to	see	whether	two	elements	are	equal.

isSameNode() Evaluates	to	see	whether	two	elements	are	the	same	node.

isSupported() Yields	true	if	the	stated	feature	is	supported	on	the	element.

normalize() Joins	the	specified	nodes	with	their	adjacent	nodes	and	removes	any	
empty	text	nodes.

querySelector() Gets	the	first	child	element	that	matches	the	stated	CSS	selector(s)	of	
the	element.

M
anipulating D

ocum
ents

w
ith the D

O
M

0005390149.INDD 319	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:08	PM

CHAPTER 10 Manipulating Documents with the DOM 319

Working with the Contents of Elements
You can display node types and node values by using the HTML DOM. You also
can set property values of elements within the DOM using the Element object.
When you use JavaScript to set the properties of DOM elements, the new values
are reflected in real time within the HTML document.

Changing the properties of elements in a web document in order to reflect them
instantly in the browser, without needing to refresh or reload the web page, is a
cornerstone of what used to be called Web 2.0.

innerHTML
The most important property of an element that you can modify through the DOM
is the innerHTML property.

The innerHTML property of an element contains everything between the beginning
and ending tag of the element. For example, in the following code, the innerHTML
property of the div element contains a p element and its text node child:

<body><div><p>This is some text.</p>

</div></body>

Method Use

querySelectorAll() Gets	all	the	child	elements	that	match	the	stated	CSS	selector(s)	of	
the	element.

removeAttribute() Takes	the	stated	attribute	out	of	the	element.

removeAttributeNode() Takes	the	stated	attribute	node	out	of	the	element	and	retrieves	the	
removed	node.

removeChild() Removes	the	stated	child	node.

replaceChild() Replaces	the	specified	child	node	with	another.

removeEventListener() Removes	the	specified	event	handler.

setAttribute() Changes	or	sets	the	stated	attribute	to	the	specified	value.

setAttributeNode() Changes	or	sets	the	stated	attribute	node.

toString() Changes	an	element	to	a	string.

item() Gets	the	node	at	the	stated	index	in	the	NodeList.

0005390149.INDD 320	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:08	PM

320 BOOK 3 Advanced Web Coding

It’s very common in web programming to create empty div elements in your
HTML document and then use the innerHTML property to dynamically insert
HTML into the elements.

To retrieve and display the value of the innerHTML property, you can use the fol-
lowing code:

let getTheInner = document.body.firstChild.innerHTML;
document.write (getTheInner);

In the preceding code, the value that will be output by the document.write()
method is

<p>This is some text.</p>

Setting the innerHTML property is done in the same way that you set the property
of any object:

document.body.firstChild.innerHTML = "Hi there!";

The result of running the preceding JavaScript will be that the p element
and the sentence of text in the original markup will be replaced with the words
"Hi There!" The original HTML document remains unchanged, but the DOM
representation and the rendering of the web page will be updated to reflect the
new value. Because the DOM representation of the HTML document is what the
browser displays, the display of your web page will also be updated.

Setting attributes
To set the value of an HTML attribute, you can use the setAttribute() method:

document.body.firstChild.innerHTML.setAttribute("class",
"myclass");

The result of running this statement is that the first child element of the body
element will be given a new attribute named "class" with a value of "myclass".

Getting Elements by ID, Tag Name, or Class
The getElementBy methods provide easy access to any element or groups of ele-
ments in a document without relying on parent/child relationships of nodes. The
three most used ways to access elements are

M
anipulating D

ocum
ents

w
ith the D

O
M

0005390149.INDD 321	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:08	PM

CHAPTER 10 Manipulating Documents with the DOM 321

 » getElementById

 » getElementsByTagName

 » getElementsByClassName

getElementById
By far the most widely used method for selecting elements, getElementById is
essential to modern web development. With this handy little tool, you can find
and work with any element simply by referencing a unique id attribute. No matter
what else happens in the HTML document, getElementById will always be there
for you and will reliably select the exact element that you want.

Listing 10-5 demonstrates the awesome power of getElementById to enable you
to keep all your JavaScript together in your document or to modularize your code.
By using getElementById, you can work with any element, anywhere in your doc-
ument just as long as you know its id.

LISTING 10-5: Using getElementById to Select Elements

<html>

 <head>

 <title>Using getElementById</title>

 <script>

 function calculateMPG(miles, gallons) {

 document.getElementById('displayMiles').innerHTML = parseInt(miles);

 document.getElementById('displayGallons').innerHTML = parseInt(gallons);

 document.getElementById('displayMPG').innerHTML = miles / gallons;

 }

 </script>

 </head>

 <body>

 <p>You drove ___ miles.</p>

 <p>You used ___ gallons of gas.</p>

 <p>

 Your MPG is ___.

 <script>

 let milesDriven = prompt('Enter miles driven');

 let gallonsGas = prompt('Enter the gallons of gas used');

 calculateMPG(milesDriven, gallonsGas);

 </script>

</p>

 </body>

</html>

0005390149.INDD 322	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:08	PM

322 BOOK 3 Advanced Web Coding

getElementsByTagName
The getElementsByTagName method returns a node list of all the elements with
the specified tag name. For example, in Listing 10-6, getElementsByTagName is
used to select all h1 elements and change their innerHTML properties to sequential
numbers.

LISTING 10-6: Using getElementsByTagName to Select and Change Elements

<html>

 <head>

 <title>Using getElementsByTagName</title>

 <script>

 function numberElements(tagName) {

 let getTags = document.getElementsByTagName(tagName);

 for (let i = 0; i < getTags.length; i++) {
 getTags[i].innerHTML = i + 1;
 }

 }

 </script>

 </head>

 <body>

 <h1>this text will go away</h1>

 <h1>this will get overwritten</h1>

 <h1>JavaScript will erase this</h1>

 <script>

 numberElements('h1');

 </script>

 </body>

</html>

getElementsByClassName
The getElementsByClassName method works in much the same way as the
getElementsByTagName, but it uses the values of the class attribute to select ele-
ments. The function in Listing 10-7 selects elements with a class of "error" and
will change the value of their innerHTML property.

M
anipulating D

ocum
ents

w
ith the D

O
M

0005390149.INDD 323	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:08	PM

CHAPTER 10 Manipulating Documents with the DOM 323

LISTING 10-7: Using getElementsByClassName to Select and Change Elements

<html>

 <head>

 <title>Using getElementsByClassName</title>

 <script>

 function checkMath(result) {

 let userMath = document.getElementById('answer1').value;

 let errors = document.getElementsByClassName('error');

 if (parseInt(userMath) != parseInt(result)) {

 errors[0].innerHTML =

 'That's wrong. You entered ' +
 userMath +
 '. The answer is ' +
 result;

 } else {

 errors[0].innerHTML = 'Correct!';

 }

 }

 </script>

 </head>

 <body>

 <label for="number1">4+1 = </label
 ><input type="text" id="answer1" value=""/>

 <button id="submit" onclick="checkMath(4+1);">Check your math!</button>
 <h1 class="error"></h1>

 </body>

</html>

The result of running Listing 10-7 in a web browser and entering a wrong answer
is shown in Figure 10-4.

Notice that Listing 10-7 uses an onclick attribute inside the button element. This
is an example of a DOM event handler attribute. You can find out more about event
handlers in Book 3, Chapter 11.

0005390149.INDD 324	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:08	PM

324 BOOK 3 Advanced Web Coding

Using the Attribute Object’s Properties
The Attribute object provides properties for working with attributes within the
HTML elements. Table 10-5 lists all the Attribute object’s properties.

FIGURE 10-4:
Using	the	get

Elements
ByClassName	to	
select	an	element	
for	displaying	an	
error	message.	

© John Wiley & Sons

TABLE 10-5 The Attribute Object’s Properties
Property Use

isId Yields	true	if	the	attribute	is	an	id;	otherwise,	yields	false.

name Gets	the	name	of	the	attribute.

value Gets	or	sets	the	value	of	the	attribute.

specified Yields	true	if	the	attribute	has	been	specified;	otherwise,	yields	false.

M
anipulating D

ocum
ents

w
ith the D

O
M

0005390149.INDD 325	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:08	PM

CHAPTER 10 Manipulating Documents with the DOM 325

Creating and Appending Elements
To create a new element in an HTML document, use the document.create
Element() method. When you use createElement(), a new beginning and end
tag of the type you specify will be created.

Listing 10-8 shows an example of how you can use this method to dynamically
create a list in an HTML document from an array.

LISTING 10-8: Using document.createElement() to Generate a Table from an Array

<html>

 <head>

 <title>Generating a list</title>

 </head>

 <body>

 <h1>Here are some types of balls</h1>

 <ul id="ballList">

 <script>

 let typeOfBall = ['basket', 'base', 'soccer', 'foot', 'hand'];

 for (let i = 0; i < typeOfBall.length; i++) {
 let listElement = document.createElement('li');

 listElement.innerHTML = typeOfBall[i];

 document.getElementById('ballList').appendChild(listElement);

 }

 </script>

 </body>

</html>

Removing Elements
For all the great things that it lets you do with HTML documents, the HTML DOM
is not highly regarded by professional JavaScript programmers. It has a number of
oddities and tends to make some things more difficult than they should be.

One of the big faults with the DOM is that it doesn’t provide a way to directly
remove an element from a document. Instead, you have to tell the DOM to find the
parent of the element you want to remove and then tell the parent to remove its
child. It sounds a little confusing, but Listing 10-9 should clear it all up.

0005390149.INDD 326	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:08	PM

326 BOOK 3 Advanced Web Coding

LISTING 10-9: Removing an Element from a Document

<html>

 <head>

 <title>Remove an element</title>

 <script>

 function removeFirstParagraph() {

 let firstPara = document.getElementById('firstparagraph');

 firstPara.parentNode.removeChild(firstPara);

 }

 </script>

 </head>

 <body>

 <div id="gibberish">

 <p id="firstparagraph">

 Lorem ipsum dolor sit amet, consectetur adipiscing elit. Vestibulum

 molestie pulvinar ante, a volutpat est sodales et. Ut gravida justo ac

 leo euismod, et tempus magna posuere. Cum sociis natoque penatibus et

 magnis dis parturient montes, nascetur ridiculus mus. Integer non mi

 iaculis, facilisis risus et, vestibulum lorem. Sed quam ex, placerat nec

 tristique id, mattis fringilla ligula. Maecenas a pretium justo.

 Suspendisse sit amet nibh consectetur, tristique tellus quis, congue

 arcu. Etiam pellentesque dictum elit eget semper. Phasellus orci neque,

 semper ac tortor ac, laoreet ultricies enim.

 </p>

 </div>

 <button onclick="removeFirstParagraph();">That's Gibberish!</button>

 </body>

</html>

When you run Listing 10-9 in a browser and press the button, the onclick event
calls the removeFirstParagraph() function.

The first thing removeFirstParagraph() does is select the element that you
 actually want to remove, the element with the id = "firstparagraph". Then, the
script selects the parent node of the first paragraph. It then uses the removeChild()
method to remove the first paragraph.

CHAPTER 11 Using Events in JavaScript 327

0005390150.INDD 327	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:10	PM

 Using Events in
 JavaScript

“And now, the sequence of events in no particular order:”

 — DAN RATHER

 W eb pages are much more than just static displays of text and graph-
ics. JavaScript gives web pages interactivity and the ability to perform
useful work. An important part of JavaScript’s ability to perform useful

functions in the browser is its ability to respond to events.

 Knowing Your Events
Events are the things that happen within the browser (such as a page loading) and
things the user does (such as clicking, pressing keys on the keyboard, moving the
mouse, and so on). Events happen all the time in the browser.

 The HTML DOM gives JavaScript the ability to identify and respond to events in a
web browser. Events can be divided into groups according to what HTML elements
or browser objects they apply to. Table 11-1 lists events that are supported by every
HTML element.

Chapter 11

 IN THIS CHAPTER

» Finding out what’s happenin’

» Using event handlers to respond to
events

» Knowing the types of event handlers

0005390150.INDD 328	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:10	PM

328 BOOK 3 Advanced Web Coding

Other types of events are supported by every element other than the body and
frameset elements. These are listed in Table 11-2.

Table 11-3 shows the events that are supported by the window object.

In addition to these events, many other specifications define events that can hap-
pen. For example, the File API has a series of events related to file loading, and the
HTML5 Media specification contains events related to audio and video playback.
As you can see, a lot of things are going on (or can go on) in your browser!

TABLE 11-1 Events Supported by All HTML Elements
Event Occurs	When	. . .

abort The	loading	of	a	file	is	aborted.

change An	elements	value	has	changed	since	losing	and	regaining	focus.

click A	mouse	has	been	clicked	on	an	element.

dbclick A	mouse	has	been	clicked	twice	on	an	element.

input The	value	of	an	<input> or <textarea>	element	is	changed.

keydown A	key	is	pressed	down.

keyup A	key	is	released	after	being	pressed.

mousedown A	mouse	button	has	been	pressed	down	on	an	element.

mouseenter A	mouse	pointer	is	moved	onto	the	element	that	has	the	
listener	attached.

mouseleave A	mouse	pointer	is	moved	off	of	the	element	that	has	the	
listener	attached.

mousemove A	mouse	pointer	is	moved	over	an	element.

mouseout A	mouse	pointer	is	moved	off	the	element	or	one	of	its	children	that	has	
the	listener	attached.

mouseover A	mouse	pointer	is	moved	onto	the	element	or	one	of	its	children	that	
the	listener	is	attached	to.

mouseup A	mouse	button	is	released	over	an	element.

mousewheel A	wheel	button	of	a	mouse	is	rotated.

reset A	form	is	reset.

select Text	has	been	selected.

submit A	form	is	submitted.

U
sing Events in

JavaScript

0005390150.INDD 329	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:10	PM

CHAPTER 11 Using Events in JavaScript 329

For a complete list of events, you can visit https://developer.mozilla. org/
en-US/docs/Web/Events.

Handling Events
When JavaScript does something in response to these events, it’s called event
handling.

Over the years, browser makers have implemented several ways for JavaScript
programs to handle events. As a result, the landscape of JavaScript events has
been one of incompatibilities between browsers.

TABLE 11-2 Events Supported by Every Element Except
<body> and <frameset>
Event Occurs	When	. . .

blur An	element	has	gone	out	of	focus.

error A	file	failed	to	load.

focus An	element	has	come	into	focus.

load A	file	and	its	attached	files	have	finished	loading.

resize The	document	has	been	resized.

scroll The	document	or	an	element	has	been	scrolled.

TABLE 11-3 Events Supported by the Window Object
Event Occurs	When	. . .

afterprint The	document	print	preview	has	been	closed	or	the	document	has	started	printing.

beforeprint The	document	print	preview	is	open	or	the	document	is	about	to	be	printed.

beforeunload The	window,	the	document,	and	its	included	files	are	about	to	be	unloaded.

hashchange The	part	of	the	URL	after	the	number	sign	(#)	changes.

pagehide The	browser	leaves	a	page	in	the	browser	history.

pageshow The	browser	goes	to	a	page	in	the	session	history.

popstate The	active	session	history	item	changes.

unload The	document	or	included	file	is	being	unloaded.

0005390150.INDD 330	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:10	PM

330 BOOK 3 Advanced Web Coding

Today, JavaScript is getting to the point where the old, inefficient techniques for
handling events can soon be discarded. However, because these older techniques
are still widely used, it’s important that they are covered here.

Using inline event handlers
The first system for handling events was introduced along with the first versions
of JavaScript. It relies on special event handler attributes in HTML, including the
onclick event handler.

The inline event handler attributes are formed by adding the prefix on to an event.
To use them, add the event attribute to an HTML element. When the specified
event occurs, the JavaScript within the value of the attribute will be performed.
For example, Listing 11-1 pops up an alert when the link is clicked.

LISTING 11-1: Attaching an onclick Event Handler to a Link Using the Inline Method

Click Here To Go
Home

If you put this markup into an HTML document and click the link, you see an alert
window with the words Go Home! When you dismiss the alert window, the link
proceeds with the default event handler associated with the a element — namely,
following the link in the href attribute.

In many cases, you may not want the default action associated with an element to
happen. For example, what if you just wanted the alert window in Listing 11-1 to
pop up without doing anything else?

JavaScript programmers have come up with several different methods to prevent
default actions. One technique is to make the default action be something that is
inconsequential. For example, by changing the value of the href attribute to a #,
the link will point to itself:

Click Here

A better method, however, is to tell the event handler to return a Boolean false
value, which tells the default action not to run:

<a href="homepage.html" onclick="alert('Go Home!');return
false'>Click Here

U
sing Events in

JavaScript

0005390150.INDD 331	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:10	PM

CHAPTER 11 Using Events in JavaScript 331

Another method of preventing the default action is to use the void operator, which
you learned about in Book 3, Chapter 5.

Event handling using element properties
One of the biggest problems with the older, inline technique of assigning events
to elements is that it violates one of the most important rules of programming:
keeping presentation (how something looks) separate from functionality (what it
does). Mixing up your event handlers and HTML tags makes your web pages more
difficult to maintain, debug, and understand.

With version 3 of their browser, Netscape introduced a new event model that
allowed programmers to attach events to elements as properties. Listing 11-2
shows an example of how this model works.

LISTING 11-2: Attaching Events to Elements Using Event Properties

<html>

 <head>

 <title>Counting App</title>

 <script>

 // wait until the window is loaded before registering the onclick event

 window.onload = initializer;

 // create a global counting variable

 var theCount = 0;

 /**

 Registers onclick event

 */

 function initializer() {

 document.getElementById('incrementButton').onclick = increaseCount;

 }

 /**

 Increments theCount and displays result.

 */

 function increaseCount() {

 theCount++;
 document.getElementById('currentCount').innerHTML = theCount;

 }

 </script>

 </head>

 <body>

 <h1>Click the button to count.</h1>

 <p>Current Number: 0</p>

 <button id="incrementButton">Increase Count</button>

 </body>

</html>

0005390150.INDD 332	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:10	PM

332 BOOK 3 Advanced Web Coding

One thing to notice about Listing 11-2 is that function names that are assigned
to the event handler don’t have parentheses after them. What’s going on here is
that the whole function is assigned to the event handler and is telling it “run this
when this event happens,” rather than actually using a function call. If you add
the parentheses after the function name, the function will be executed, and its
result will be assigned to the onclick event, which is not what you want.

Event handling using addEventListener
Although the previous two methods of event handling are very commonly used
and are supported by every browser, a more modern and flexible way to handle
events (and the recommended way) is to use the addEventListener() method.

The addEventListener method listens for events on any DOM node and triggers
actions based on those events. When the function specified as an action for the
event runs, it automatically receives a single argument, the Event object. By con-
vention, we name this argument e.

addEventListener() has several benefits over using the DOM event attributes:

 » You	can	apply	more	than	one	event	listener	to	an	element.

 » It	works	on	any	node	in	the	DOM	tree,	not	just	on	elements.

 » It	gives	you	more	control	over	when	it’s	activated.

Listing 11-3 demonstrates the use of the addEventListener method. This exam-
ple has the same counting function as Listing 11-2, but it adds a second event
handler to the button that increases the size of the number each time it’s clicked.

LISTING 11-3: Assigning an Event with addEventListener()

<html>

 <head>

 <title>Counting App</title>

 <script>

 // wait until the window is loaded before registering the onclick event

 window.addEventListener('load', registerEvents, false);

 // create a global counting variable

 var theCount = 0;

 /**

 Registers onclick events

 */

 function registerEvents(e) {

 document

U
sing Events in

JavaScript

0005390150.INDD 333	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:10	PM

CHAPTER 11 Using Events in JavaScript 333

 .getElementById('incrementButton')

 .addEventListener('click', increaseCount, false);

 document

 .getElementById('incrementButton')

 .addEventListener('click', changeSize, false);

 }

 /**

 Increments theCount and displays result.

 */

 function increaseCount(e) {

 theCount++;
 document.getElementById('currentCount').innerHTML = theCount;

 }

 /**

 Change the font size of the count text

 */

 function changeSize(e) {

 document.getElementById('currentCount').style.fontSize = theCount;

 }

 </script>

 </head>

 <body>

 <h1>Click the button to count.</h1>

 <p>Current Number: 0</p>

 <button id="incrementButton">Increase Count</button>

 </body>

</html>

Figure 11-1 shows what the page created by Listing 11-3 looks like after an exciting
afternoon of clicking the button.

The addEventListener method is implemented by using three arguments.

The first argument is the event type. Unlike the other two event-handling meth-
ods, addEventListener just wants the name of the event, without the on prefix.

The second argument is the function to call when the event happens. As with the
event properties method of event handling, it’s important to not use the paren-
theses here in order for the function to be assigned to the event handler, rather
than the result of running the function.

0005390150.INDD 334	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:10	PM

334 BOOK 3 Advanced Web Coding

The third argument is a Boolean value (true or false) that indicates the order in
which event handlers execute when an element with an event has a parent ele-
ment that also is associated with an event.

When elements are nested, it’s important to know which one will happen first.
Figure 11-2 illustrates a common problem: The outer square is clickable, but so is
the inner circle. When you click on the inner circle, should the event attached to
the square happen first, or should the event attached to the circle happen first?

Most people would say that it makes sense that the circle event should happen
first. However, when Microsoft implemented its version of events in Internet
Explorer, it decided that the outer event (the square) should happen first.

FIGURE 11-1:
Attaching	two	
events	to	the	
same	element	
increases	the	
possibilities!	

© John Wiley & Sons

FIGURE 11-2:
Events	within	

events.	

U
sing Events in

JavaScript

0005390150.INDD 335	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:10	PM

CHAPTER 11 Using Events in JavaScript 335

Microsoft eventually lost, and today the default way for events to be handled in
a situation like the one in Figure 11-2 is called bubbling up. Events on the inside-
most element happen first and then bubble up to the outermost elements.

The other way to handle this scenario is called the capture method. In capture
mode, the outermost events happen first, and the innermost events happen last.
To use the capture method, set the last argument of the addEventListener method
to true. In most cases, however, omitting the last argument of addEventListener
or specifically setting it to false is what you’ll want to do.

Listing 11-4 shows an example demonstrating why knowing the order in which
event handlers execute is important. The h1 elements have click events, but so do
words within that header.

LISTING 11-4: Demonstrating Event Capture and Event Bubbling

<html>

 <head>

 <title>Event capturing vs. Event bubbling</title>

 <style>

 #theText {

 font-size: 18px;

 }

 h1 {

 border: 1px solid #000;

 background-color: #dadada;

 }

 #capEvent,

 #bubEvent {

 background-color: #666;

 }

 </style>

 <script>

 // wait until the window is loaded before registering the events

 window.addEventListener('load', registerEvents, false);

 /**

 Registers onclick events

 */

 function registerEvents(e) {

 document

 .getElementById('capTitle')

 .addEventListener('click', makeTiny, true);

 document

 .getElementById('capEvent')

 .addEventListener('click', makeHuge, true);

 document

(continued)

0005390150.INDD 336	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:10	PM

336 BOOK 3 Advanced Web Coding

 .getElementById('bubTitle')

 .addEventListener('click', makeTiny, false);

 document

 .getElementById('bubEvent')

 .addEventListener('click', makeHuge, false);

 }

 function makeHuge(e) {

 console.log('making the text huge');

 document.getElementById('theText').style.fontSize = '80px';

 }

 function makeTiny(e) {

 console.log('making the text tiny');

 document.getElementById('theText').style.fontSize = '10px';

 }

 </script>

 </head>

 <body>

 <h1 id="capTitle">Event capturing </h1>

 <h1 id="bubTitle">Event bubbling </h1>

 <p id="theText">Hello, Events!</p>

 </body>

</html>

Figure 11-3 shows what Listing 11-4 looks like in a web browser.

In Figure 11-3, when the word capturing is clicked, the event registered to the
larger container fires first, followed by the event registered to the event contain-
ing the word capturing.

When you click the word bubbling, the event registered to that span fires first, fol-
lowed by the event on its parent element.

Stopping propagation
In addition to bubbling and capturing, you can handle nested events in a third
way: just do the single event and then stop. You can turn off bubbling and captur-
ing for an event (or even for all events) by using the stopPropagation method.

If you don’t need event propagation in your script, it’s a good idea to turn it off
because all that bubbling and capturing does use system resources and can make
your website slower.

LISTING 11-4: (continued)

U
sing Events in

JavaScript

0005390150.INDD 337	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:10	PM

CHAPTER 11 Using Events in JavaScript 337

Listing 11-5 demonstrates how to turn off event propagation.

LISTING 11-5: Turning Off Event Propagation

function load(e) {

 if (!e) var e = window.event; // set cancelBubble for IE 8 and earlier

 e.cancelBubble = true;

 if (e.stopPropagation) e.stopPropagation();

 document.getElementById('capTitle').addEventListener('click', makeTiny, true);

 document.getElementById('capEvent').addEventListener('click', makeHuge, true);

 document

 .getElementById('bubTitle')

 .addEventListener('click', makeTiny, false);

 document

 .getElementById('bubEvent')

 .addEventListener('click', makeHuge, false);

}

FIGURE 11-3:
Handling	nested	

events.	

© John Wiley & Sons

0005390150.INDD 338	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:10	PM

CHAPTER 12 Integrating Input and Output 339

0005390151.INDD 339 Trim size: 7.375 in × 9.25 in June 11, 2022 3:11 PM

 Integrating Input
and Output

“Malfunction. Need Input.”

 — NUMBER 5, SHORT CIRCUIT (1986)

 H andling user input and sending back results are basic and necessary
functions for any computer program. In this chapter, you fi nd out how
JavaScript and HTML can work together to receive and output data.

 Understanding HTML Forms
 The primary way to get input from users of web applications is through HTML
forms. HTML forms give web developers the ability to create text fi elds, drop-
down selectors, radio buttons, checkboxes, and buttons. With CSS, you can adjust
the look of a form to fi t your particular website. JavaScript gives you the ability to
enhance the functionality of your form.

Chapter 12

 IN THIS CHAPTER

» Working with forms

» Using input

» Sending output

0005390151.INDD 340 Trim size: 7.375 in × 9.25 in June 11, 2022 3:11 PM

340 BOOK 3 Advanced Web Coding

The form element
All HTML forms are contained within a form element. The form element is the
container that holds the input fields, buttons, checkboxes, and labels that make
up a user input area. The form element acts much like any container element, such
as a div, article, or section. But it also contains some attributes that tell the
browser what to do with the user input from the form fields it contains.

Listing 12-1 shows an HTML form containing two input fields and a submit button.

LISTING 12-1: Example of an HTML Page Containing a Form

<html>
<head>
 <title>HTML form</title>
</head>
<body>
 <form action="subscribe.php" name="newsletterSubscribe"

method="post">
 <label for="firstName">First Name: </label>
 <input type="text" name="firstName" id="firstName">

 <label for="email">Email: <input type="text" name="email"

id="email"></label>

 <input type="submit" value="Subscribe to our newsletter!">
 </form>
</body>
</html>

When you view this form in a web browser, it looks like Figure 12-1.

In the preceding example, the form element has three attributes:

 » action: Tells the browser what to do with the user input. Often, the action is a
server-side script.

 » name: Specifies the name that the programmer assigned to this form. The
name attribute of the form is useful for accessing the form using the DOM.

 » method: Takes a value of either get or post, indicating whether the browser
should send the data from the form in the URL or in the HTTP header.

Integrating Input
and O

utput

0005390151.INDD 341 Trim size: 7.375 in × 9.25 in June 11, 2022 3:11 PM

CHAPTER 12 Integrating Input and Output 341

In addition to these three attributes, the form element can also contain several
other attributes:

 » accept-charset: Indicates the character sets that the server accepts. Unless
you’re working with multilingual content, you can safely leave this
attribute out.

 » autocomplete: Indicates whether the input elements of the form should use
autocomplete in the browser.

 » enctype: Indicates the type of content that the form should submit to the
server. For forms that are submitting only text data to the server, this should
be set to text/html. If your form is submitting a file to the server (such as
an uploaded graphic), the enctype should be multipart/form-data. The
default value is application/x-www-form-urlencoded.

 » novalidate: A Boolean value indicating whether the input from the form
should be validated by the browser on submit. If this attribute isn’t specified,
forms are validated by default.

 » target: Indicates where the response from the server should be displayed
after the form is submitted. The default ("_self") is to open the response in
the same browser window where the form was. Another option is to open the
response in a new window ("_blank").

The label element
You can use the label element to associate an input field’s description (label)
with the input field. The for attribute of the label element takes the value of the

FIGURE 12-1:
An HTML form.

© John Wiley & Sons

0005390151.INDD 342 Trim size: 7.375 in × 9.25 in June 11, 2022 3:11 PM

342 BOOK 3 Advanced Web Coding

id attribute of the element that the label should be associated with, as shown in
this example:

<label for="firstName">First Name: </label>
<input type="text" name="firstName" id="firstName">

Another method for associating a label with a form field is to nest the form field
within the label element, as shown in this example:

<label>First Name:
 <input type="text" name="firstName">
</label>

This method has the advantage of not requiring the input field to have an ID
(which is often just a duplicate of its name attribute).

The input element
The HTML input element is the most fundamental form-related HTML element.
Depending on the value of its type attribute, it causes the browser to display (or
not display) several types of input fields.

Most commonly, the input element’s type is set to "text", which creates a text
input in the browser. The optional value attribute assigns a default value to the
element, and the name attribute is the name that is paired with the value to form
the name/value pair that can be accessed through the DOM and that is submitted
along with the rest of the form values when the form is submitted.

A basic text input field looks like this:

<input type="text" name="streetAddress">

With HTML5, the input element gained a bunch of new possible type attribute
values. These new values allow the web developer to more precisely specify the
type of value that should be provided in the input. They also allow the web browser
to provide controls that are better suited to the type of input that’s required to do
input validation and results in better web applications.

It may seem odd that this chapter focuses so much on the form capabilities of
HTML, rather than jumping right into JavaScript. However, forms are an area where
HTML can really reduce the workload of programmers, so it’s vital that JavaScript
programmers learn what can be accomplished with forms through HTML.

The input element’s possible values for the type attribute are shown in Table 12-1.

Integrating Input
and O

utput

0005390151.INDD 343 Trim size: 7.375 in × 9.25 in June 11, 2022 3:11 PM

CHAPTER 12 Integrating Input and Output 343

TABLE 12-1 Possible Values for the input Element’s type Attribute
Value Description

button A clickable button

checkbox A checkbox

color A color picker

date A date control (year, month, and day)

datetime A date and time control (year, month, day, hour, minute, second,
and fraction of a second based on the UTC time zone)

datetime-local A date and time control (year, month, day, hour, minute, second,
and fraction of a second; no time zone)

email A field for an email address

file A file-select field and a Browse button

hidden A hidden input field

image A submit button using an image, rather that the default button

month A month and year control

number A number input field

password A password filed

radio A radio button

range An input using a range of numbers, such as a slider control

reset A reset button

search A text field for entering a search string

submit A submit button

tel A field for entering a telephone number

text Default; a single-line text field

time A control for entering a time (no time zone)

url A field for entering a URL

week A week and year control (no time zone)

0005390151.INDD 344 Trim size: 7.375 in × 9.25 in June 11, 2022 3:11 PM

344 BOOK 3 Advanced Web Coding

The select element
The HTML select element defines either a drop-down or a multiselect input.
The select element contains option elements that are the choices that the user
will have in the select control, as shown in Listing 12-2.

LISTING 12-2: A Drop-Down Form Control, Created Using the select Element

<select name="favoriteColor">
 <option value="red">red</option>
 <option value="blue">blue</option>
 <option value="green">green<option>
</select>

The form created by the markup in Listing 12-2 is shown in Figure 12-2.

The textarea element
The textarea element defines a multiline text input field:

<textarea name="description" rows="4" cols="30"></textarea>

The button element
The button element defines another way to create a clickable button:

<button name="myButton">Click The Button</button>

FIGURE 12-2:
An HTML drop-

down control.

© John Wiley & Sons

Integrating Input
and O

utput

0005390151.INDD 345 Trim size: 7.375 in × 9.25 in June 11, 2022 3:11 PM

CHAPTER 12 Integrating Input and Output 345

The button element can be used in place of input elements with the type attrib-
ute set to 'submit'. Or, you can use button elements anywhere you need a but-
ton, but where you don’t want the submit action to happen.

If you don’t want the button to submit the form when clicked, you need to add a
type attribute to it with the value of 'button'.

Working with the Form Object
The HTML DOM represents forms using the Form object. Through the Form object,
you can get and set values of form fields, control the action that’s taken when a
user submits a form, and change the behavior of the form.

Using Form properties
The properties of the Form object match up with the attributes of the HTML
form element (see the section earlier in this chapter called “The form element”).
They’re used for getting or setting the values of the HTML form element attributes
with JavaScript. Table 12-2 lists all the properties of the Form object.

DOM objects are representations of HTML pages. Their purpose is to give you
access (also known as programming interface) to the different parts of the docu-
ment through JavaScript. Anything within an HTML document can be accessed
and changed with JavaScript by using the DOM.

You can find techniques for setting or getting the value of a form’s properties in
Book 3, Chapter 10. After referencing the form using one of these methods, you
then access the property using dot notation or the square bracket method.

USING THE AUTOCOMPLETE ATTRIBUTE
The autocomplete attribute in an HTML form element sets the default autocomplete
value for the input elements inside the form. If you want the browser to provide
autocomplete functionality for every input in the form, set autocomplete to 'on'.
If you want to be able to select which elements the browser can autocomplete or if
your document provides its own autocomplete functionality (through JavaScript), set
the form’s autocomplete attribute to 'off', and then you can set the autocomplete
attribute for each individual input element within the form.

0005390151.INDD 346 Trim size: 7.375 in × 9.25 in June 11, 2022 3:11 PM

346 BOOK 3 Advanced Web Coding

To get the value of the name property of the first form in a document, you could
use the following statement:

document.getElementByTagName("form")[0].name

A more common way to access a form is by assigning it an id attribute and using
getElementById to select it.

The DOM provides another, more convenient method for accessing forms: the
forms collection. The forms collection lets you access the forms in a document in
two different ways:

 » By index number: When a form element is created in the document, it is
assigned an index number, starting with zero. To access the first form in the
document, use document.forms[0].

 » By name: You can also access forms using the name attribute of the form
element. For example, to get the value of the action property of a form with a
name of subscribeForm, you would use document.forms.subscribeForm.
action. Or you can use the square brackets method of accessing properties
and write document.forms["subscribeForm"].action.

TABLE 12-2 Form Object Properties
Property Use

acceptCharset Gets or sets a list of character sets that are supported by the server.

action Gets or sets the value of the action attribute of the form element.

autocomplete Gets or sets whether input elements can have their values automatically completed by
the browser.

encoding Tells the browser how to encode the form data (either as text or as a file). This property
is synonymous with enctype.

enctype Tells the browser how to encode the form data (either as text or as a file).

length Gets the number of controls in the form.

method Gets or sets the HTTP method the browser uses to submit the form.

name Gets or sets the name of the form.

noValidate Indicates that the form does not need to be validated upon submittal.

target Indicates the place to display the results of a submitted form.

Integrating Input
and O

utput

0005390151.INDD 347 Trim size: 7.375 in × 9.25 in June 11, 2022 3:11 PM

CHAPTER 12 Integrating Input and Output 347

Using the Form object’s methods
The Form object has two methods: reset and submit.

The reset method
The reset method clears any changes to the form’s fields that were made after
the page loaded and resets the default values. It does the same thing as the HTML
reset button, which is created by using a type="reset" attribute with an input
element, as shown in the following code:

<input type="reset" value="Clear the form">

The submit method
The submit method causes the form to submit its values according to the proper-
ties of the form (action, method, target, and so on). It does the same thing as
the HTML submit button, which is created by using a type="submit" attribute
with an input element, as shown in the following code:

<input type="submit" value="Submit the form">

Listing 12-3 demonstrates the use of the submit and reset methods, along with
several of the Form object’s properties.

LISTING 12-3: Using the Form Object’s Properties and Methods

<html>

 <head>

 <title>Subscribe to our newsletter!</title>

 <script>

 function setFormDefaults() {

 document.forms.subscribeForm.method = 'post';

 document.forms.subscribeForm.target = '_blank';

 document.forms.subscribeForm.action =

 'http://watzthis.us9.list-manage.com/' +
 'subscribe/post?u=1e6d8741f7db587af747ec056&id=663906e3ba';

 //register the button events

 document

 .getElementById('btnSubscribe')

 .addEventListener('click', submitForm);

 document

 .getElementById('btnReset')

 .addEventListener('click', resetForm);

 }

(continued)

0005390151.INDD 348 Trim size: 7.375 in × 9.25 in June 11, 2022 3:11 PM

348 BOOK 3 Advanced Web Coding

 function submitForm() {

 document.forms.subscribeForm.submit();

 }

 function resetForm() {

 document.forms.subscribeForm.reset();

 }

 </script>

 </head>

 <body onload="setFormDefaults();">

 <form name="subscribeForm">

 <h2>Subscribe to our mailing list</h2>

 <label for="mce-EMAIL">Email Address </label>

 <input type="email" value="" name="EMAIL" id="mce-EMAIL"/>

 <button type="button" id="btnSubscribe">Subscribe!</button>

 <button type="button" id="btnReset">Reset</button>

 </form>

 </body>

</html>

Accessing form elements
JavaScript offers several ways to access form input fields and their values. These
ways are not all created equal, however, and differences of opinion exist among
JavaScript programmers as to which technique is the best. The following list pres-
ents the different techniques and their benefits and drawbacks:

 » Use the index number of the form and of its input fields. For example, to
access the first input field in the first form, you could use the following code:

document.forms[0].elements[0]

Avoid the preceding technique because it relies on the structure of the
document and the order of the elements within the form not to change. As
soon as someone decides that the email field should come before the first
name field in the form, your whole script will break.

 » Use the name of the form and the name of the input field. For example:

document.myForm.firstName

This technique has the benefit of being easy to read and easy to use. It’s
supported by every browser (and has been since very early in the develop-
ment of the DOM).

LISTING 12-3: (continued)

Integrating Input
and O

utput

0005390151.INDD 349 Trim size: 7.375 in × 9.25 in June 11, 2022 3:11 PM

CHAPTER 12 Integrating Input and Output 349

 » Use getElementById to select the form and the name of the input field
to select the input. For example:

document.getElementById("myForm").firstName

This technique requires you to assign an id attribute to the form of the
element. For example, the preceding code would match an input field named
firstName inside of the following form element.

<form id="myForm" action="myaction.php">
 ...

</form>

 » Use a unique id attribute value on the field to access the field directly.
For example:

document.getElementById("firstName")

Something to remember when using the preceding technique is that if you
have multiple forms on your page, you need to make sure that each form field
has a unique id attribute (id attribute values must be unique anyway, so it’s
not really an issue).

Getting and setting form element values
The DOM gives you access to form elements’ names and values using the name
and value properties.

Listing 12-4 demonstrates the getting and setting of form input fields using a
simple calculator application.

LISTING 12-4: A Calculator App Demonstrating the Getting and
Setting of Form Input Fields

<html>
 <head>
 <title>Math Fun</title>
 <script>
 function registerEvents() {
 document.mathWiz.operate.addEventListener('click',

doTheMath, false);
 }

(continued)

0005390151.INDD 350 Trim size: 7.375 in × 9.25 in June 11, 2022 3:11 PM

350 BOOK 3 Advanced Web Coding

 function doTheMath() {
 let first = parseInt(document.mathWiz.numberOne.value);
 let second = parseInt(document.mathWiz.numberTwo.value);
 let operator = document.mathWiz.operator.value;
 let answer;
 switch (operator) {
 case 'add':
 answer = first + second;
 break;
 case 'subtract':
 answer = first - second;
 break;
 case 'multiply':
 answer = first * second;
 break;
 case 'divide':
 answer = first / second;
 break;
 }
 document.mathWiz.theResult.value = answer;
 }
 </script>
 </head>
 <body onload="registerEvents();">
 <form name="mathWiz">
 <label>First Number: <input type="number"

name="numberOne"/></label
 >

 <label>Second Number: <input type="number"

name="numberTwo"/></label
 >

 <label
 >Operator:
 <select name="operator">
 <option value="add">+</option>
 <option value="subtract">-</option>
 <option value="multiply">*</option>
 <option value="divide">/</option>
 </select>
 </label>

LISTING 12-4: (continued)

Integrating Input
and O

utput

0005390151.INDD 351 Trim size: 7.375 in × 9.25 in June 11, 2022 3:11 PM

CHAPTER 12 Integrating Input and Output 351

 <input type="button" name="operate" value="Do the
Math!"/>

 <label>Result: <input type="number" name="theResult"/> </
label>

 </form>
 </body>
</html>

Validating user input
One of the most common uses for JavaScript is to check, or validate, form input
before submitting user input to the server. JavaScript form validation provides an
extra safeguard against bad or potentially unsafe data making its way into a web
application. It also provides users with instant feedback about whether they’ve
made a mistake.

Some of the most common JavaScript input validation tasks have been replaced by
HTML attributes in HTML5. However, due to browser incompatibilities, it’s still a
good practice to validate user-submitted data using JavaScript.

In the calculator program in Listing 12-4, the input type was set to number for the
operand units. This should cause the browser to prevent the user from submitting
non-numeric values into these fields. Because the number input type is relatively
new, you can’t always count on the browsers to support it, so using JavaScript
user input validation is important.

Listing 12-5 demonstrates an input validation script. The important thing to
notice here is that the action of the form has been set to the input validation
function. The submit method of the form runs only after the tests in the input
validation function have finished.

The line in the preceding code that does the real magic is this strange-looking one
inside of the validate function:

if (/^\d+$/.test(first) && /^\d+$/.test(second)) {

The characters between / and / make up what’s called a regular expression. A regu-
lar expression is a search pattern made up of symbols that represent groups of
other symbols. In this case, we’re using a regular expression to check whether the
values the user entered are both numeric.

0005390151.INDD 352 Trim size: 7.375 in × 9.25 in June 11, 2022 3:11 PM

352 BOOK 3 Advanced Web Coding

Input validation is such a common use for JavaScript that many different tech-
niques have been created for doing it. Before you reinvent the wheel for your
 particular JavaScript application, do a search for open source JavaScript input
 validation and see whether any existing libraries of code can save you some time
and give you more functionality.

LISTING 12-5: Performing Input Validation with JavaScript

<html>

 <head>

 <title>Math Fun</title>

 <script>

 function registerEvents() {

 document.mathWiz.operate.addEventListener('click', validate, false);

 }

 function validate() {

 let first = document.mathWiz.numberOne.value;

 let second = document.mathWiz.numberTwo.value;

 let operator = document.mathWiz.operator.value;

 let answer;

 if (/^\d+$/.test(first) && /^\d+$/.test(second)) {
 doTheMath();

 } else {

 alert('Error: Both numbers must be numeric');

 }

 }

 function doTheMath() {

 let first = parseInt(document.mathWiz.numberOne.value);

 let second = parseInt(document.mathWiz.numberTwo.value);

 let operator = document.mathWiz.operator.value;

 switch (operator) {

 case 'add':

 answer = first + second;
 break;

 case 'subtract':

 answer = first - second;

 break;

 case 'multiply':

 answer = first * second;

 break;

 case 'divide':

 answer = first / second;

 break;

 }

 document.mathWiz.theResult.value = answer;

 }

Integrating Input
and O

utput

0005390151.INDD 353 Trim size: 7.375 in × 9.25 in June 11, 2022 3:11 PM

CHAPTER 12 Integrating Input and Output 353

 </script>

 </head>

 <body onload="registerEvents();">

 <div id="formErrors"></div>

 <form name="mathWiz">

 <label>First Number: <input type="text" name="numberOne"/></label>

 <label>Second Number: <input type="text" name="numberTwo"/></label>

 <label

 >Operator:

 <select name="operator">

 <option value="add">+</option>
 <option value="subtract">-</option>

 <option value="multiply">*</option>

 <option value="divide">/</option>

 </select>

 </label>

 <input type="button" name="operate" value="Do the Math!"/>

 <label>Result: <input type="number" name="theResult"/> </label>

 </form>

 </body>

</html>

0005390151.INDD 354 Trim size: 7.375 in × 9.25 in June 11, 2022 3:11 PM

CHAPTER 13 Understanding Callbacks and Closures 355

0005390152.INDD 355 Trim size: 7.375 in × 9.25 in June 7, 2022 6:01 PM

 Understanding Callbacks
and Closures

“O, call back yesterday, bid time return.”

 — EARL OF SALISBURY, RICHARD II

 C allbacks and closures are two of the most useful and widely used techniques
in JavaScript. In this chapter, you fi nd out how and why to pass functions as
arguments to other functions.

 What Are Callbacks?
JavaScript functions are objects. This statement is the key to understanding many
of the more advanced JavaScript topics, including callback functions.

 Functions, like any other object, can be assigned to variables, be passed as argu-
ments to other functions, and created within and returned from functions.

Chapter 13

 IN THIS CHAPTER

» Understanding callback functions

» Using callbacks

» Creating closures

0005390152.INDD 356 Trim size: 7.375 in × 9.25 in June 7, 2022 6:01 PM

356 BOOK 3 Advanced Web Coding

Passing functions as arguments
A callback function is a function that is passed as an argument to another function.
Callback functions are a technique that’s possible in JavaScript because of the fact
that functions are objects.

Function objects contain a string with the code of the function. When you call a
function by naming the function, followed by (), you’re telling the function to
execute its code. When you name a function or pass a function without the (), the
function does not execute.

Here is an example of a callback function using the addEventListener method:

document.addEventListener('click',doSomething,false);

This method takes an event (click) and a Function object (doSomething) as
arguments. The callback function doesn’t execute right away. Instead, the
addEventListener method executes the function when the event occurs.

Writing functions with callbacks
Here’s a simple example function, doMath, that accepts a callback function as an
argument:

function doMath(number1,number2,callback) {

 let result = callback(number1,number2);

 document.write ('The result is: ' + result);
}

This is a generic function for returning the result of any math operation involv-
ing two operands. The callback function that you pass to it specifies what actual
operations will be done.

To call the doMath function, pass two number arguments and then a function as
the third argument:

doMath(5,2,function(number1,number2){

 let calculation = number1 * number2 / 6;

 return calculation;

});

Listing 13-1 is a complete web page that contains the doMath function and then
invokes it several times with different callback functions.

U
nderstanding

Callbacks and Closures

0005390152.INDD 357 Trim size: 7.375 in × 9.25 in June 7, 2022 6:01 PM

CHAPTER 13 Understanding Callbacks and Closures 357

LISTING 13-1: Calling a Function with Different Callback Functions

<html>

 <head>

 <title>Introducing the doMath function</title>

 <script>

 function doMath(number1, number2, callback) {

 let result = callback(number1, number2);

 document.getElementById('theResult').innerHTML +=
 'The result is: ' + result + '
';
 }

 document.addEventListener(

 'DOMContentLoaded',

 function () {

 doMath(5, 2, function (number1, number2) {

 let calculation = number1 * number2;

 return calculation;

 });

 doMath(10, 3, function (number1, number2) {

 let calculation = number1 / number2;

 return calculation;

 });

 doMath(81, 9, function (number1, number2) {

 let calculation = number1 % number2;

 return calculation;

 });

 },

 false

);

 </script>

 </head>

 <body>

 <h1>Do the Math</h1>

 <div id="theResult"></div>

 </body>

</html>

The result of running Listing 13-1 in a browser is shown in Figure 13-1.

Using named callback functions
In the examples in the preceding section, the callback functions were all written
as anonymous functions. It’s also possible to define named functions and then
pass the name of the function as a callback function.

0005390152.INDD 358 Trim size: 7.375 in × 9.25 in June 7, 2022 6:01 PM

358 BOOK 3 Advanced Web Coding

Anonymous functions are functions that you create without giving them names.

Using named functions as callbacks can reduce the visual code clutter that can
come with using anonymous functions. Listing 13-2 shows an example of how to
use a named function as a callback. This example also features the following two
improvements over Listing 13-1:

 » A test has been added to the doMath function to make sure that the callback
argument is actually a function.

 » It prints the code of the callback function before displaying the result of
running it.

LISTING 13-2: Using Named Functions as Callbacks

<html>

 <head>

 <title>doMath with Named Functions</title>

 <script>

 function doMath(number1, number2, callback) {

 if (typeof callback === 'function') {

 let result = callback(number1, number2);

 document.getElementById('theResult').innerHTML +=
 callback.toString() +
 '

The result is: ' +
 result +
 '

';

 }

 }

FIGURE 13-1:
Doing

calculations
using callbacks.

© John Wiley & Sons

U
nderstanding

Callbacks and Closures

0005390152.INDD 359 Trim size: 7.375 in × 9.25 in June 7, 2022 6:01 PM

CHAPTER 13 Understanding Callbacks and Closures 359

 function multiplyThem(number1, number2) {

 let calculation = number1 * number2;

 return calculation;

 }

 function divideThem(number1, number2) {

 let calculation = number1 / number2;

 return calculation;

 }

 function modThem(number1, number2) {

 let calculation = number1 % number2;

 return calculation;

 }

 document.addEventListener(

 'DOMContentLoaded',

 function () {

 doMath(5, 2, multiplyThem);

 doMath(10, 3, divideThem);

 doMath(81, 9, modThem);

 },

 false

);

 </script>

 </head>

 <body>

 <h1>Do the Math</h1>

 <div id="theResult"></div>

 </body>

</html>

The result of running Listing 13-2 in a browser is shown in Figure 13-2.

Using named functions for callbacks has two advantages over using anonymous
functions for callbacks:

 » It makes your code easier to read.

 » Named functions are multipurpose and can be used on their own or as
callbacks.

0005390152.INDD 360 Trim size: 7.375 in × 9.25 in June 7, 2022 6:01 PM

360 BOOK 3 Advanced Web Coding

Understanding Closures
A closure is the local variable for a function, kept alive after the function has
returned.

Take a look at the example in Listing 13-3. In this example, an inner function is
defined within an outer function. When the outer function returns a reference to
the inner function, the returned reference can still access the local data from the
outer function.

In Listing 13-3, the greetVisitor function returns a function that is created
within it called sayWelcome. Notice that the return statement doesn’t use () after
sayWelcome. That’s because you don’t want to return the value of running the
function, but rather the code of the actual function.

LISTING 13-3: Creating a Function Using a Function

function greetVisitor(phrase) {
 let welcome = phrase + '. Great to see you!'; // Local variable
 let sayWelcome = function () {
 alert(welcome);
 };

FIGURE 13-2:
Doing math with

named callbacks.

© John Wiley & Sons

U
nderstanding

Callbacks and Closures

0005390152.INDD 361 Trim size: 7.375 in × 9.25 in June 7, 2022 6:01 PM

CHAPTER 13 Understanding Callbacks and Closures 361

 return sayWelcome;
}
let personalGreeting = greetVisitor('Hola Amiga');
personalGreeting(); // alerts "Hola Amiga. Great to see you!"

The useful thing about Listing 13-3 is that it uses the greetVisitor function to
create a new custom function called personalGreeting, which can still access the
variables from the original function.

Normally, when a function has finished executing, the local variables within it
are inaccessible. By returning a function reference (sayWelcome), however, the
greetVisitor function’s internal data becomes accessible to the outside world.

The keys to understanding closures are to understand variable scope in JavaScript
and to understand the difference between executing a function and a function
reference. By assigning the return value of the greetVisitor function to the
new personalGreeting function, the program stores the code of the sayWelcome
function. You can test this by using the toString method:

personalGreeting.toString()

If you add to Listing 13-3 an alert statement to output the toString() value of
personalGreeting, you get the result shown in Figure 13-3.

In Figure 13-3, the variable welcome is a copy of the variable welcome from the
original greetVisitor function at the time that the closure was created.

In Listing 13-4, a new closure is created using a different argument to the
greetVisitor function. Even though calling greetVisitor() changes the value of
the welcome variable, the result of calling the first function (personalGreeting)
remains the same.

FIGURE 13-3:
A closure includes

the code of the
returned inner

function.

© John Wiley & Sons

0005390152.INDD 362 Trim size: 7.375 in × 9.25 in June 7, 2022 6:01 PM

362 BOOK 3 Advanced Web Coding

LISTING 13-4: Closures Contain Secret References to Outer Function Variables

<html>

<head>

 <title>Using Closures</title>

 <script>

 function greetVisitor(phrase) {

 let welcome = phrase + ". Great to see you!

"; // Local variable
 let sayWelcome = function() {

 document.getElementById("greeting").innerHTML += welcome;
 }

 return sayWelcome;

 }

 // wait until the document is loaded

 document.addEventListener('DOMContentLoaded', function() {

 // make a function

 let personalGreeting = greetVisitor("Hola Amiga");

 // make another function

 let anotherGreeting = greetVisitor("Howdy, Friend");

 // look at the code of the first function

 document.getElementById("greeting").innerHTML +=
 "personalGreeting.toString()
" + personalGreeting.toString() + "
";
 // run the first function

 personalGreeting(); // alerts "Hola Amiga. Great to see you!""

 // look at the code of the 2nd function

 document.getElementById("greeting").innerHTML +=
 "anotherGreeting.toString()
" + anotherGreeting.toString() + "
";
 // run the 2nd function

 anotherGreeting(); // alerts "Howdy, Friend. Great to see you!"

 // check the first function

 personalGreeting(); // alerts "Hola Amiga. Great to see you!""

 // finish the addEventListener method

 }, false);

 </script>

</head>

<body>

 <p id="greeting"</p>

</body>

</html>

The result of running Listing 13-4 in a web browser is shown in Figure 13-4.

U
nderstanding

Callbacks and Closures

0005390152.INDD 363 Trim size: 7.375 in × 9.25 in June 7, 2022 6:01 PM

CHAPTER 13 Understanding Callbacks and Closures 363

Closures are not hard to understand after you know the underlying concepts and
have a need for them. Don’t worry if you don’t feel totally comfortable with them
just yet. It’s fully possible to code in JavaScript without using closures, but once
you do understand them, they can be quite useful and will make you a better
programmer.

Using Closures
A closure is like keeping a copy of the local variables of a function as they were
when the closure was created.

In web programming, closures are frequently used to eliminate the duplication of
effort within a program or to hold values that need to be reused throughout a pro-
gram so that the program doesn’t need to recalculate the value each time it’s used.

Another use for closures is to create customized versions of functions for specific
uses.

In Listing 13-5, closures are used to create functions with error messages specific
to different problems that may occur in the program. All the error messages get
created using the same function.

When a function’s purpose is to create other functions, it’s known as a function
factory.

FIGURE 13-4:
Creating

customized
greetings with

closures.

© John Wiley & Sons

0005390152.INDD 364 Trim size: 7.375 in × 9.25 in June 7, 2022 6:01 PM

364 BOOK 3 Advanced Web Coding

LISTING 13-5: Using a Function to Create Functions

<html>

<head>

 <title>function factory</title>

 <script>

 function createMessageAlert(theMessage){

 return function() {

 alert (theMessage);

 }

 }

 let badEmailError = createMessageAlert("Unknown email address!");

 let wrongPasswordError = createMessageAlert("That's not your password!");

 window.addEventListener('load', loader, false);

 function loader(){

 document.login.yourEmail.addEventListener('change',badEmailError);

 document.login.yourPassword.addEventListener('change',wrongPasswordError);

 }

</script>

</head>

<body>

 <form name="login" id="loginform">

 <p>

 <label>Enter Your Email Address:

 <input type="text" name="yourEmail">

 </label>

 </p>

 <p>

 <label>Enter Your Password:

 <input type="text" name="yourPassword">

</label>

 </p>

 <button>Submit</button>

</body>

</html>

The key to understanding Listing 13-5 is the function factory.

function createMessageAlert(theMessage){

 return function() {

 alert (theMessage);

 }

}

U
nderstanding

Callbacks and Closures

0005390152.INDD 365 Trim size: 7.375 in × 9.25 in June 7, 2022 6:01 PM

CHAPTER 13 Understanding Callbacks and Closures 365

To use this function factory, assign its return value to a variable, as in the follow-
ing statement:

let badEmailError = createMessageAlert("Unknown email address!");

The preceding statement creates a closure that can be used elsewhere in the pro-
gram just by running badEmailError as a function, as in the following event
handler:

document.login.yourEmail.addEventListener('change',badEmailError);

0005390152.INDD 366 Trim size: 7.375 in × 9.25 in June 7, 2022 6:01 PM

CHAPTER 14 Embracing AJAX and JSON 367

0005390153.INDD 367	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:15	PM

 Embracing AJAX
and JSON

“The Web does not just connect machines, it connects people.”

 — TIM BERNERS-LEE

 A JAX is a technique for making web pages more dynamic by sending and
receiving data in the background while the user interacts with the pages.
JSON has become the standard data format used by AJAX applications. In

this chapter, you fi nd out how to use AJAX techniques to make your site sparkle!

 Working behind the Scenes with AJAX
Asynchronous JavaScript + XML (AJAX) is a term that’s used to describe a method
of using JavaScript, the DOM, HTML, and the XMLHttpRequest object together
to refresh parts of a web page with live data without needing to refresh the
entire page.

AJAX was fi rst implemented on a large scale by Google ’ s Gmail in 2004 and then
was given its name by Jesse James Garret in 2005.

Chapter 14

 IN THIS CHAPTER

» Reading and writing JSON

» Understanding AJAX

» Using AJAX

0005390153.INDD 368	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:15	PM

368 BOOK 3 Advanced Web Coding

The HTML DOM changes the page dynamically. The important innovation that
AJAX made was to use the XMLHttpRequest object to retrieve data from the server
asynchronously (in the background) without blocking the execution of the rest of
the JavaScript on the web page.

Although AJAX originally relied on data formatted as XML (hence the X in the
name), it’s much more common today for AJAX applications to use a data format
called JavaScript Object Notation (JSON). Most people still call applications that
get JSON data asynchronously from a server AJAX, but a more technically accurate
(but less memorable) acronym would be AJAJ.

AJAX examples
When web developers first started to use AJAX, it became one of the hallmarks of
what was labeled Web 2.0. The most common way for web pages to show dynamic
data prior to AJAX was by downloading a new web page from the server. For exam-
ple, consider craigslist.org, shown in Figure 14-1.

To navigate through the categories of listings or search results on Craigslist, you
click links that cause the entire page to refresh and reveal the content of the page
you requested.

FIGURE 14-1:
Craigslist.org was
quite	happy	with	
Web	1.0,	thank	
you	very	much.	

© John Wiley & Sons

Em
bracing A

JA
X

and JSO
N

0005390153.INDD 369	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:15	PM

CHAPTER 14 Embracing AJAX and JSON 369

While still very common, refreshing the entire page to display new data in just part
of the page is unnecessarily slow and can provide a less smooth user experience.

Compare the old Craigslist-style navigation with the application-like user inter-
face of Google Slides, shown in Figure 14-2, which uses AJAX to load new content
into part of the screen while the navigation bars remain static.

In addition to making web page navigation smoother, AJAX is also great for creat-
ing live data elements in a web page. Prior to AJAX, if you wanted to display live
data, a chart, or an up-to-date view of an email inbox, you either needed to use
a plug-in (such as Adobe Flash) or periodically cause the web page to automati-
cally refresh.

With AJAX, it’s possible to periodically refresh data through an asynchronous
process that runs in the background and then update only the elements of the
page that need to be modified.

Weather Underground’s WunderMap, shown in Figure 14-3, shows a weather
map with constantly changing and updating data overlays. The data for the map
is retrieved from remote servers using AJAX.

FIGURE 14-2:
Google Slides
uses	AJAX	to	

provide	a	more	
modern	user	
experience.	

© John Wiley & Sons

0005390153.INDD 370	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:15	PM

370 BOOK 3 Advanced Web Coding

Viewing AJAX in action
In Figure 14-3, shown in the preceding section, the Chrome Developer Tools win-
dow is open to the Network tab. The Network tab shows all network activity
involving the current web page. When a page is loading, this includes the requests
and downloads of the page’s HTML, CSS, JavaScript, and images. After the page
is loaded, the Network tab also displays the asynchronous HTTP requests and
responses that make AJAX possible.

Follow these steps to view AJAX requests and responses in Chrome:

1. Open your Chrome web browser and navigate to www.wunderground.com/
wundermap.

2. Open your Chrome Developer Tools by using the Chrome menu or by
pressing Cmd+Option+I (on Mac) or Ctrl+Shift+I (on Windows).

3. Open the Network tab.

Your	Developer	Tools	window	should	now	resemble	Figure 14-4.	You	may	
want	to	drag	the	top	border	of	the	Developer	Tools	to	make	it	larger	at	this	
point.	Don’t	worry	if	this	makes	the	content	area	of	the	browser	too	small	to	
use.	What’s	going	on	in	the	Developer	Tools	is	the	important	thing	right	now.

Notice	that	new	items	are	periodically	appearing	in	the	Network	tab.	These	are	
the	AJAX	requests	and	responses.	Some	of	them	are	images	returned	from	the	
server,	and	some	are	data	for	use	by	the	client-side	JavaScript.

FIGURE 14-3:
WunderMap	uses	

AJAX	to	display	
live	weather	data.	

© John Wiley & Sons

Em
bracing A

JA
X

and JSO
N

0005390153.INDD 371	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:15	PM

CHAPTER 14 Embracing AJAX and JSON 371

4. Click one of the rows in the Name column of the Networks tab.

Additional	data	will	be	displayed	about	that	particular	item,	as	shown	in	
Figure 14-5.

5. Click through the tabs (Headers, Preview, Response and so on) in the
detailed data pane and examine the data.

The	first	tab,	Headers,	displays	the	HTTP	request	that	was	sent	to	the	remote	
server.	Take	a	look	in	particular	at	the	Request	URL. This	is	a	standard	website	
address	that	passes	data	to	a	remote	server.

6. Select and copy the value of the Request URL from one of the items you
inspected.

7. Open a new tab in your browser and paste the entire Request URL into
the address bar.

A	page	containing	data	or	an	image	opens,	as	in	Figure 14-6.

8. Compare the results of opening the Request URL in a new tab with the
results shown in the Response tab in the Developer Tools.

They	should	be	similar,	although	they	may	not	look	identical	because	they	
weren’t	run	at	the	same	time.

FIGURE 14-4:
The	Network	tab	
of	the	Developer	

Tools.

© John Wiley & Sons

0005390153.INDD 372	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:15	PM

372 BOOK 3 Advanced Web Coding

FIGURE 14-5:
Viewing	

additional	
information	

about	a		particular	
record	in	the	
Network	tab.	

© John Wiley & Sons

FIGURE 14-6:
The	result	of	

copying	an	HTTP	
Request	URL	

from	the	
Network	tab.	

© John Wiley & Sons

Em
bracing A

JA
X

and JSO
N

0005390153.INDD 373	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:15	PM

CHAPTER 14 Embracing AJAX and JSON 373

As you can see, there’s really no magic to AJAX. The JavaScript on the web page
is simply requesting and receiving data from a server. Everything that happens
behind the scenes is open to inspection through the Chrome Developer Tools (or
the similar tools that are available with most other web browsers today).

Using the XMLHttpRequest object
The XMLHttpRequest object provides a way for web browsers to request data from
a URL without having to refresh the page.

The XMLHttpRequest object was created and implemented first by Microsoft in
its Internet Explorer browser and has since become a web standard that has been
adopted by every modern web browser.

You can use the methods and properties of the XMLHttpRequest object to
retrieve data from a remote server or your local server. Despite its name, the
XMLHttpRequest object can get other types of data besides XML, and it can even
use different protocols to get data besides HTTP.

Listing 14-1 shows how you can use XMLHttpRequest to load the contents of an
external text document containing HTML into the current HTML document.

LISTING 14-1: Using XMLHttpRequest to Load External Data

<html>

 <head>

 <title>Loading External Data</title>

 <script>

 window.addEventListener('load', init, false);

 function init(e) {

 document

 .getElementById('myButton')

 .addEventListener('click', documentLoader, false);

 }

 function reqListener() {

 console.log(this.responseText);

 document.getElementById('content').innerHTML = this.responseText;

 }

 function documentLoader() {

 let oReq = new XMLHttpRequest();

 oReq.onload = reqListener;

 oReq.open('get', 'loadme.txt', true);

 oReq.send();

 }

(continued)

0005390153.INDD 374	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:15	PM

374 BOOK 3 Advanced Web Coding

 </script>

 </head>

 <body>

 <form id="myForm">

 <button id="myButton" type="button">Click to Load</button>

 </form>

 <div id="content"></div>

 </body>

</html>

The heart of this document is the documentLoader function:

function documentLoader(){

 var oReq = new XMLHttpRequest();

 oReq.onload = reqListener;

 oReq.open("get", "loadme.txt", true);

 oReq.send();

}

The first line of code inside the function creates the new XMLHttpRequest object
and gives it the name of oReq:

var oReq = new XMLHttpRequest();

The methods and properties of the XMLHttpRequest object are accessible through
the oReq object.

This second line assigns a function, reqListener, to the onload event of the oReq
object. The purpose of this is to cause the reqListener function to be called when
oReq loads a document:

oReq.onload = reqListener;

The third line uses the open method to create a request:

oReq.open("get", "loadme.txt", true);

In this case, the function uses the HTTP GET method to load the file called loadme.
txt. The third parameter is the async argument. It specifies whether the request
should be asynchronous. If it’s set to false, the send method won’t return until
the request is complete. If it’s set to true, notifications about the completion of
the request will be provided through event listeners. Because the event listener is
set to listen for the load event, an asynchronous request is what’s desired.

LISTING 14-1: (continued)

Em
bracing A

JA
X

and JSO
N

0005390153.INDD 375	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:15	PM

CHAPTER 14 Embracing AJAX and JSON 375

It’s unlikely that you’ll run into a situation where you’ll want to set the async
argument to false. In fact, some browsers have begun to just ignore this argu-
ment if it’s set to false and to treat it as if it’s true either way because of the bad
effect on the user experience that synchronous requests have.

The last line in the documentLoader function sends the requests that you created
with the open method:

oReq.send();

The open method will get the latest version of the requested file. So-called live-
data applications often use loops to repeatedly request updated data from a server
using AJAX.

Working with the same-origin policy
If you save the HTML document in Listing 14-1 to your computer and open it in
a web browser, more than likely, you won’t get the results that you’d expect. If
you load the document from your computer and then open the Chrome Developer
Tools JavaScript Console, you will see a couple of error messages similar to the
errors shown in Figure 14-7.

The problem here is what’s called the same-origin policy. In order to prevent web
pages from causing users to unknowingly download code that may be malicious
using XMLHttpRequest, browsers will return an error by default whenever a script
tries to load an URL that doesn’t have the same origin. If you load a web page

FIGURE 14-7:
Errors	when	
trying	to	use	

XMLHttp
Request	on	a	

local	file.	

© John Wiley & Sons

0005390153.INDD 376	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:15	PM

376 BOOK 3 Advanced Web Coding

from www.example.com and a script on that page tries to retrieve data from www.
watzthis.com, the browser will prevent the request with a similar error to the
one you see in Figure 14-7.

The same-origin policy also applies to files on your local computer. If it didn’t,
XMLHttpRequest could be used to compromise the security of your computer.

There’s no reason to worry about the examples in this book negatively affecting
your computer. However, in order for the examples in this chapter to work cor-
rectly on your computer, you need a way around the same-origin policy.

The first way around the same-origin policy is to put the HTML file containing
the documentLoader function and the text file on the same web server.

The other way around the same-origin policy is to start your browser with the
same-origin policy restrictions temporarily disabled.

These instructions are to allow you to test your own files on your local computer
only. Do not surf the web with the same-origin policy disabled. You may expose
your computer to malicious code.

To disable the same-origin policy on macOS:

1. If your Chrome browser is open, close it.

2. Open the Terminal app and launch Chrome using the following
command:

/Applications/Google\ Chrome.app/Contents/MacOS/Google\ Chrome

--disable-web-security

To disable the same-origin policy on Windows:

1. If your Chrome browser is open, close it.

2. Open the Command prompt and navigate to the folder where you
installed Chrome.

3. Type the following command to launch the browser:

Chrome.exe --disable-web-security

Once the browser starts up, you’ll be able to run files containing AJAX requests
locally until you close the browser. Once the browser is closed and reopened, the
security restrictions will be re-enabled automatically.

Em
bracing A

JA
X

and JSO
N

0005390153.INDD 377	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:15	PM

CHAPTER 14 Embracing AJAX and JSON 377

Figure 14-8 shows the result of running Listing 14-1 in a browser without the
same-origin policy errors.

Using CORS, the silver bullet
for AJAX requests
It’s quite common for a web application to make requests to a different server in
order to retrieve data. For example, many websites and mobile apps use Google’s
Maps through the Google Maps Platform API.

In order for the transactions between servers to be secure, mechanisms have been
created for browsers and servers to work out their differences and establish trust.

Currently, the best method for allowing and restricting access to resources
between servers is the standard called Cross-Origin Resource Sharing (CORS).

To see CORS in action, visit the Weather Underground’s WunderMap (www.
wunderground.com/wundermap) using the Chrome web browser. When the page
has loaded, right-click and select Inspect to open the Chrome Developer Tools,
then select the Network tab. Click one of the requests where the Name starts with
"stationdata?" and the Type is xhr.

FIGURE 14-8:
Listing 14-1	run	

in	a	browser	with	
the	same-origin	
policy	disabled.	

© John Wiley & Sons

0005390153.INDD 378	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:15	PM

378 BOOK 3 Advanced Web Coding

Click the Headers tab, and you’ll see the following text in the HTTP header:

Access-Control-Allow-Origin: *

This is the CORS response header that this particular server is configured to send.
The asterisk value after the colon indicates that this server will accept requests
from any origin. If the owners of wunderground.com wanted to restrict access to
the data at this script to only specific servers or authenticated users, they could
do so using CORS.

Putting Objects in Motion with JSON
In Listing 14-1, you use AJAX to open and display a text document containing a
snippet of HTML. Another common use for AJAX is to request and receive data for
processing by the browser.

For example, gasbuddy.com uses a map from Google along with data about gas
prices to present a simple and up-to-date view of gas prices in different loca-
tions, as shown in Figure 14-9.

FIGURE 14-9:
gasbuddy.com	
uses	AJAX	to	

display	gas	prices	
on	a	map.	

© John Wiley & Sons

Em
bracing A

JA
X

and JSO
N

0005390153.INDD 379	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:15	PM

CHAPTER 14 Embracing AJAX and JSON 379

If you examine gasbuddy.com in the Network tab, you’ll find that some requests
have responses that look something like the code shown in Listing 14-2.

LISTING 14-2: Part of a Response to an AJAX Request on gasbuddy.com

([{id:"tuwtvtuvvvv",base:[351289344,822599680],zrange:[11,11],

layer:"m@288429816",features:[{

id:"17243857463485476481",a:[0,0],bb:[-8,-8,7,7,-47,7,48,22,-41,19,41,34],c:"{1:

{title:\"Folsom Lake State Recreation Area\"},4:{type:1}}"}]},{id:"tuwtvtuvvvw",

zrange:[11,11],layer:"m@288429816"},{id:"tuwtvtuvvwv",base:[351506432,824291328],

zrange:[11,11],layer:"m@288429816",features:[{id:"8748558518353272790",a:[0,0],

bb:[-8,-8,7,7,-41,7,41,22],c:"{1:{title:\"Deer Creek Hills\"},4:{type:1}}"}]},

{id:"tuwtvtuvvww",zrange:[11,11],layer:"m@288429816"}])

If you take a small piece of data out of this block of code and reformat it, you get
something like Listing 14-3, which should look more familiar to you.

LISTING 14-3: gasbuddy.com Response Data, Reformatted

{id:"tuwtvtuvvvv",

base:[351289344,822599680],

zrange:[11,11],

layer:"m@288429816",

features:[{

id:"17243857463485476481",

a:[0,0],

bb:[-8,-8,7,7,-47,7,48,22,-41,19,41,34],

c:"{

1:{title:\"Folsom Lake State Recreation Area\"},

4:{type:1}

}"}

]}

}

By looking at the format of the data, you can see that it looks suspiciously like
the name:value format of a JavaScript object literal, also known as a comma-
separated list of name-value pairs enclosed in curly braces.

The main reason JSON is so easy to use is because it’s already in a format that
JavaScript can work with, so no conversion is necessary. For example, Listing 14-4
shows a JSON file containing information about this book.

0005390153.INDD 380	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:15	PM

380 BOOK 3 Advanced Web Coding

LISTING 14-4: JSON Data Describing Coding All-in-One For Dummies

{ "book_title": "Coding All-in-One For Dummies",

"book_author": "Chris Minnick",

"summary": "Everything beginners need to know to start coding.",

"isbn":"978-1119889564"

}

Listing 14-5 shows how this data can be loaded into a web page using JavaScript
and then used to display its data in HTML.

LISTING 14-5: Displaying JSON Data with JavaScript

<html>

 <head>

 <title>Displaying JSON Data</title>

 <script>

 window.addEventListener('load', init, false);

 function init(e) {

 document

 .getElementById('myButton')

 .addEventListener('click', documentLoader, false);

 }

 function reqListener() {

 // convert the string from the file to an object with JSON.parse

 var obj = JSON.parse(this.responseText);

 // display the object's data like any object

 document.getElementById('book_title').innerHTML = obj.book_title;

 document.getElementById('book_author').innerHTML = obj.book_author;

 document.getElementById('summary').innerHTML = obj.summary;

 }

 function documentLoader() {

 var oReq = new XMLHttpRequest();

 oReq.onload = reqListener;

 oReq.open('get', 'listing14-5.json', true);

 oReq.send();

 }

 </script>

 </head>

 <body>

 <form id="myForm">

 <button id="myButton" type="button">Click to Load</button>

 </form>

 <h1>Book Title</h1>

 <div id="book_title"></div>

Em
bracing A

JA
X

and JSO
N

0005390153.INDD 381	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:15	PM

CHAPTER 14 Embracing AJAX and JSON 381

 <h2>Authors</h2>

 <div id="book_author"></div>

 <h2>Summary</h2>

 <div id="summary"></div>

 </body>

</html>

The key to displaying any JSON data that’s brought into a JavaScript document
from an external source is to convert it from a string to an object using the JSON.
parse method. After you do that, you can access the values within the JSON file
using dot notation or bracket notation, as you would access the properties of any
JavaScript object.

Figure 14-10 shows the results of running Listing 14-5 in a web browser and
pressing the button to load the JSON data.

FIGURE 14-10:
Displaying	JSON	
data	within	an	
HTML	page.	

© John Wiley & Sons

0005390153.INDD 382	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:15	PM

4
0005390107.INDD 383 Trim size: 7.375 in × 9.25 in June 11, 2022 4:26 PM

Creating
Mobile Apps

Contents at a Glance
CHAPTER 1: What Is Flutter? . 385

CHAPTER 2: Setting Up Your Computer for
Mobile App Development . 401

CHAPTER 3: “Hello” from Flutter . 433

CHAPTER 4: Hello Again . 469

CHAPTER 5: Making Things Happen . 495

CHAPTER 6: Laying Things Out . 527

CHAPTER 7: Interacting with the User . 567

CHAPTER 8: Navigation, Lists, and Other Goodies 605

CHAPTER 9:	 Moving	Right	Along	. 653

0005390107.INDD 384 Trim size: 7.375 in × 9.25 in June 11, 2022 4:26 PM

CHAPTER 1 What Is Flutter? 385

0005390154.INDD 385 Trim size: 7.375 in × 9.25 in June 11, 2022 3:17 PM

 What Is Flutter?

 B efore you learn how to program mobile apps with Flutter, it ’ s important
to understand the big picture and how mobile apps fi t into it. No doubt
about it: Mobile phones are complicated beasts. So how do they work? What

makes them tick? What ’ s going on inside each of those remarkable gadgets?

 All About Hardware and Software
 A mobile phone is really a small computer. And, like any computer, a mobile phone
operates on several layers. Figure 1-1 shows you a few of those layers.

Hardware is the stuff you can touch. It ’ s the bottom layer of the diagram in
Figure 1-1 . Hardware consists of items like circuitry, memory, and the battery.

 Electrical signals that travel along the hardware ’ s circuits make the hardware do
what you want it to do. These signals encode instructions. Taken as a whole, these
instructions are called software .

 When people create software, they don ’ t describe each electrical signal that
travels through the hardware ’ s circuitry. Instead, people write source code —
instructions that look something like English-language instructions. One source
code instruction can be shorthand for hundreds or thousands of electrical signals.

Chapter 1

 IN THIS CHAPTER

» How mobile apps fi t in with hardware
and software

» What makes Flutter great

» Alternatives to Flutter

» Mobile app and Flutter terminology

0005390154.INDD 386 Trim size: 7.375 in × 9.25 in June 11, 2022 3:17 PM

386 BOOK 4 Creating Mobile Apps

A collection of source code instructions that perform a particular task (word pro-
cessing, web browsing, managing a smart thermostat, or whatever) is called a
program. A person who writes these instructions is a programmer or — a fancier-
sounding term — a developer. The person who runs a program on their own device
is a user.

Just as people communicate using many spoken languages, programmers write
source code using many programming languages. If you create iPhone apps, you
probably write code in either the Swift language or the Objective-C language. If
you create Android apps, you’re likely to write code in either Kotlin or Java.

When you create a Flutter app, you write code in the Dart programming language.
Here’s a complete Dart language program:

main() => print('Hello');

This program displays the word Hello on the screen. It’s not very useful, but please
be patient. This is only Chapter 1!

Figure 1-1 distinguishes between two kinds of software:

FIGURE 1-1:
A conceptual view

of your mobile
phone.

W
hat Is Flutter?

0005390154.INDD 387 Trim size: 7.375 in × 9.25 in June 11, 2022 3:17 PM

CHAPTER 1 What Is Flutter? 387

 » Operating system (OS) software runs whenever the device is turned on.

OS software manages the device and provides ways for the user to interact
with the device. Devices made by Apple, such as iPhones and iPads, run the
iOS operating system. Android phones and tablets run the Android operating
system (of course).

 » Application programs do the work that users want done.

Apps to make phone calls, apps to read email, calendar apps, web browsers,
and games are examples of application programs. As a Flutter developer, your
job is to create application programs.

By one estimate, the popular operating system named Linux consists of nearly
28 million instructions. No one can deal with that much code, so operating sys-
tems are divided into layers of their own. Figure 1-1 shows only four of a typical
operating system’s many layers:

 » A kernel performs the operating system’s most fundamental tasks.

The kernel schedules apps to be run, manages a device’s memory and files,
provides access to input and output, and does many other essential tasks.

 » A runtime is a bunch of code that does extra work in the background
while your application program runs.

Runtimes come in many shapes and sizes. A runtime for the C programming
language consists of a relatively small amount of code. In contrast, a Java
language runtime (a Java Virtual Machine, or JVM) is a big piece of software with
lots of moving parts.

When you run an iOS app, the app uses the Objective-C runtime. When you run
an Android app, that app uses the Android runtime, also known as ART.

 » An application programming interface (API) is a bunch of code that app
developers use over and over again.

For example, Android’s API has something named toUpperCase. If you apply
toUpperCase to "Flutter For Dummies", you get "FLUTTER FOR
DUMMIES". You don’t have to write your own code to change each of the
letters. Android’s API provides this functionality for you. All you have to do is
tell Android’s API to apply its toUpperCase feature, and then you’re all set.

Here’s some useful terminology: Rather than tell an API to “apply its toUpper
Case feature,” you call toUpperCase. This use of the word call dates back to
the FORTRAN programming language of the 1950s.

Operating systems haven’t cornered the market on APIs. All kinds of software
come with APIs. Flutter and Dart have their own APIs.

0005390154.INDD 388 Trim size: 7.375 in × 9.25 in June 11, 2022 3:17 PM

388 BOOK 4 Creating Mobile Apps

Dart’s API has general-purpose things, like toUpperCase, isAtSameMomentAs,
and a bunch of others. Flutter’s API has features that apply to visually oriented
apps. For example, when you want to display a box where the user can type
text, you don’t have to describe every aspect of the box’s appearance and
behavior. Instead, you can call the API’s TextField constructor and have
Flutter do the hard work for you.

An API is sometimes referred to as a library. You borrow books from a public
library, and you borrow existing code from the Dart and Flutter APIs.

In the Dart programming terminology, the word library has a slightly different
meaning. You don’t have to worry about that yet.

In this book, you’ll learn about pieces of the Dart and Flutter APIs and then
you’ll use those pieces to create Flutter programs.

A typical API has thousands of pieces. No one memorizes all of them. When
you want to add an image to your app, you open Flutter’s documentation and
search for the word Image. The documentation’s Image page tells you how to
display an image, how to size an image, how to tile an image, and how to do
all kinds of other good stuff.

 » The OS user interface is the area that includes the home screen, the
launch icons, a file explorer, and any other stuff users see when they’re
not working with a particular application program.

On your laptop computer, you probably have a desktop instead of a home
screen. One way or another, the OS presents options to help users launch
application programs and perform other maintenance tasks. These options
are part of the OS user interface.

Each layer in Figure 1-1 contains a collection of related components. This helps
programmers focus on the components that concern them the most — for
example:

 » The API has code to help developers write application programs.

A developer who’s creating an online purchasing app looks for components in
the API.

 » The runtime layer has code to run programs efficiently.

To make everyone’s code run faster, engineers at Apple make improvements
to the iOS Runtime layer.

In addition to separating parts of the code from one another, the layers form
organized paths of communication among parts of the system. In general, a
layer’s code communicates only with the layers immediately above and below it.

W
hat Is Flutter?

0005390154.INDD 389 Trim size: 7.375 in × 9.25 in June 11, 2022 3:17 PM

CHAPTER 1 What Is Flutter? 389

For example, a user taps a button belonging to a weather app. The app responds
by calling on functionality provided by the API. Communication works its way
down the diagram in Figure 1-1 until it reaches the hardware, which responds by
changing the pixels on the device’s screen. A user never communicates directly
with the API, and application programs have no direct access to the operating
system’s kernel.

When you create a Flutter app, you use the Dart programming language. Dart and
Flutter have separate APIs:

 » Dart’s API deals with the tasks that every programming language should be
able to do, no matter what programmers want to do with that language.

For example, Dart’s API helps programmers round a number, trim a string of
characters, describe a time interval, reverse a list, and so on.

 » Flutter’s API deals with the presentation of components and images on a
device’s screen.

One part of Flutter’s API deals with buttons, text fields, checkboxes, and the
like. Another part handles a user’s gestures. Yet another covers animation.

Every Dart program, even the simplest one, calls on code in the Dart API, and
every Flutter app calls on both the Dart and Flutter APIs. These APIs are both
useful and formidable. They’re useful because of all the things you can do with
the API code. They’re formidable because both APIs are extensive. No one memo-
rizes all the features made available by the Dart and Flutter APIs. Programmers
remember the features that they use often and look up the features that they need
in a pinch. They look up these features on a website called the Flutter API reference
documentation.

The API documentation (see https://api.flutter.dev) describes the features in
both the Dart and Flutter APIs. As a Flutter developer, you consult this API doc-
umentation on a daily basis. You can bookmark the website and revisit the site
whenever you need to look up something.

Where Does Flutter Fit In?
The heart of Flutter is an API for creating apps. Most Flutter apps run on mobile
devices, but Flutter apps can run on laptop and desktop computers, too. Flutter
certainly wasn’t the first API for mobile devices, so why should anyone consider
using Flutter to create apps?

0005390154.INDD 390 Trim size: 7.375 in × 9.25 in June 11, 2022 3:17 PM

390 BOOK 4 Creating Mobile Apps

Cross-platform development
People throw around the word platform as if the word means everything and noth-
ing. A simple definition of a platform is a particular operating system along with
the hardware the OS runs on.

What makes the Android platform different from its iOS counterpart? To create
radio buttons in Android’s API, you write code of the following kind:

<RadioGroup>

 <RadioButton

 android:id="@+id/radioButton1"
 android:text="Red"

 android:onClick="onRadioButtonClicked"/>

 <RadioButton

 android:id="@+id/radioButton2"
 android:text="Yellow"

 android:onClick="onRadioButtonClicked"/>

 <RadioButton

 android:id="@+id/radioButton3"
 android:text="Green"

 android:onClick="onRadioButtonClicked"/>

</RadioGroup>

Try converting that code to work on an iPhone. The iOS API doesn’t have radio
buttons, so, to adapt an Android app with radio buttons for iOS, you write code to
make things that look like radio buttons. You also code rules for the radio buttons
to follow — rules like “only one button at a time can be selected.” If you don’t
want to create radio buttons from scratch, you can replace Android’s radio buttons
with an iOS picker component, a thing that looks like an old automobile odometer.
One way or another, replacing an app’s components takes time and costs money.

Some companies give up and create apps for only one platform — iPhone or
Android. Other companies hire two teams of programmers — one for iPhone
development and another for Android development. Still other companies have
one team of programmers that work on both versions of the code. For the compa-
nies’ managers, the problem is exasperating. Why spend nearly twice the money
and create two apps that do almost the same things?

W
hat Is Flutter?

0005390154.INDD 391 Trim size: 7.375 in × 9.25 in June 11, 2022 3:17 PM

CHAPTER 1 What Is Flutter? 391

The developer community has names for this ugly situation:

 » Software written for one platform isn’t compatible with other platforms.

 » The mobile phone arena suffers from fragmentation: The market is divided
between two different operating systems, and the Android half is divided
among many vendors’ phones.

A program that makes direct use of either the Android or iOS API is called native
code, and native code written for Android can’t run on an iOS device. In the same
way, native code written for iOS is meaningless to an Android device. What’s a
developer to do?

A framework is a second-level API. What the heck does that mean? A framework is
an API that serves as an intermediary between the developer and some other API. If
direct use of the Android or iOS API is problematic, you switch to a framework’s
API. The framework’s API deals head-on with Android’s and iOS’s problems.

Frameworks like Flutter offer an alternative to native app development. When
you write a Flutter program, you don’t write code specifically for Android or
iOS. Instead, you write code that can be translated into either system’s API calls.
Here’s how you create radio buttons in the Flutter framework:

Radio(

 value: TrafficLight.Red,

 groupValue: _trafficLightValue,

 onChanged: _updateTrafficLight,

),

Radio(

 value: TrafficLight.Yellow,

 groupValue: _trafficLightValue,

 onChanged: _updateTrafficLight,

),

Radio(

 value: TrafficLight.Green,

 groupValue: _trafficLightValue,

 onChanged: _updateTrafficLight,

)

Your computer translates code of this kind into either Android API calls or iOS API
calls — or both. That’s cool!

0005390154.INDD 392 Trim size: 7.375 in × 9.25 in June 11, 2022 3:17 PM

392 BOOK 4 Creating Mobile Apps

A BRIEF HISTORY
130,000 years ago: Humans first walk the earth.

10,000 years ago: Humans begin farming.

1752: Ben Franklin discovers electricity.

1760: The Industrial Revolution begins.

March 10, 1876: Alexander Graham Bell makes the first telephone call.

April 3, 1973: Martin Cooper makes the first mobile phone call.

August 16, 1994: BellSouth Cellular releases IBM Simon — the first smartphone.

June 29, 2007: Apple releases the first iPhone.

November 5, 2007: Google releases the first public beta of Android.

Both the iOS and Android are native development technologies. With native develop-
ment, the programmer makes calls directly to the system’s API.

December 2007: Articles and blog posts about fragmentation in mobile phone tech-
nologies start appearing in large numbers.

March 13, 2009: Nitobi Software introduces a framework that uses HTML, CSS, and
JavaScript to create mobile phone apps.

October 4, 2011: Adobe acquires Nitobi, rebrands its framework with the name
PhoneGap, and spins off an open-source version that eventually becomes Apache
Cordova.

Cordova and its cousins are hybrid app development frameworks. With hybrid app
development, an app runs in a window that’s essentially a web browser. Because web
browser technology is standard across all platforms, a hybrid app can run on both
Android and iOS devices, or even on a desktop computer.

What’s “hybrid” about hybrid apps? The code to display text and images in a web
browser doesn’t vary much from one environment to another, so a browser page on an
iPhone looks more or less like the same page on an Android phone. But communicating
with hardware devices, such as the GPS receiver and vibration motor, is another story
entirely.

W
hat Is Flutter?

0005390154.INDD 393 Trim size: 7.375 in × 9.25 in June 11, 2022 3:17 PM

CHAPTER 1 What Is Flutter? 393

Web pages aren’t designed to talk directly to a device’s hardware. In fact, you don’t
want to visit awfulwebsite.com and have the site’s code quietly take pictures with
your laptop’s built-in camera. To make a hybrid app interact with hardware, you have
to backpedal and make calls to the iPhone’s API, the Android API, or whatever other API
you can use. That’s why frameworks like Apache Cordova have plug-ins — additional
programs whose code is specific to either iOS or Android. The bottom line is, a typical
hybrid app does some of its work in a web browser and the rest of its work with native
API calls.

What’s the downside with hybrid apps? Frameworks like Apache Cordova are like for-
eign language interpreters: While the app runs, the device must constantly translate
web browser instructions into native code instructions. When you talk through an inter-
preter, the conversation can become sluggish. Hybrid apps aren’t always as responsive
as native apps. In addition, hybrid apps can’t do all the things that native apps can do.
It’s the same when you talk through a foreign language interpreter. You can say most of
the things you want to say, but some ideas simply can’t be translated.

Returning to the history lesson . . .

Summer 2013: A hackathon for Facebook employees gives birth to React Native — a
cross-platform framework based on the React.js JavaScript framework.

February 24, 2016: Microsoft acquires Xamarin — a cross-platform mobile develop-
ment framework based indirectly on Microsoft’s own .NET framework.

With a cross-platform framework, a programmer writes one program that targets nei-
ther iOS nor Android. When the programmer says, “Test this code,” the framework
translates the whole program into native code for either Android or iOS, whichever
platform the programmer chooses. When the program is ready for public distribution,
the framework translates it into two different native apps — one for iOS and the other
for Android.

But why stop there? If you can translate code into both iOS and Android apps, you can
translate the code into web pages and desktop apps. A developer can create one piece
of code and have it run on all kinds of phones, tablets, PCs, Macs, watches, toasters, or
whatever.

This brings us to the subject of this book:

December 4, 2018: Google announces Flutter 1.0 for cross-platform development.

(continued)

0005390154.INDD 394 Trim size: 7.375 in × 9.25 in June 11, 2022 3:17 PM

394 BOOK 4 Creating Mobile Apps

A quick-and-easy development cycle
Here’s what happens when you create an app for mobile devices:

1. You write some code, or you modify some existing code.

You don’t write Android or iOS code on a phone of any kind. Phones aren’t
powerful enough for all the editing and other stuff you need to do. Instead, you
create an app’s code on a laptop or desktop computer. This laptop or desktop
computer is called your development computer.

2. You issue a command for your development computer to build the code.

Building the code takes place in several stages, one of which is called compiling.
Compiling means automatically translating your program from the source code
you wrote to detailed object code instructions. Think of object code as a bunch
of zeros and ones. It’s very detailed and extremely unintuitive. Humans hardly

Flutter differs from Xamarin and React Native in some significant ways. First and
foremost, Xamarin isn’t entirely free. Using Xamarin for professional projects costs
between $300 and $1900 a year, depending on the size and scope of the projects under
development.

In addition, Flutter’s way of displaying components is different from the React Native
and Xamarin way. When you run a React Native app on an iPhone, the app calls on the
iOS API to create iOS buttons, text fields, and other visual components. The same is
true for Android development. React Native gets the Android API to display Android-
specific components. Components created by the iOS and Android APIs don’t look alike.
The two APIs use different shapes, different color palettes, and different navigation
schemes. The differences can lead to unexpected results and can occasionally sabotage
the whole cross-platform development effort.

Flutter doesn’t call on the iOS or Android APIs to display an app’s components. Instead,
Flutter specifies all the tiny pixels required to draw a button or a text field and calls on
the iOS or Android API to paint those pixels. If you want an app to look the same on
both iOS and Android devices, Flutter is your natural choice.

What if you want your app to have that special, iPhone look when it runs on iOS
devices? Can you do that with Flutter? Of course, you can. The Flutter framework has
two special libraries — one for Android and another for iOS. Flutter’s Material Design
library draws things that look like Android components, and Flutter’s Cupertino library
makes objects look like iOS components. This book emphasizes the Material library, but
almost everything in it has a Cupertino counterpart.

(continued)

W
hat Is Flutter?

0005390154.INDD 395 Trim size: 7.375 in × 9.25 in June 11, 2022 3:17 PM

CHAPTER 1 What Is Flutter? 395

ever read or write object code but, at the heart of things, processors respond
only to object code instructions. For a detailed look at compiling code, see this
section’s “What is a compiler?” sidebar.

In addition to the translation step, the build process connects the program you
wrote with additional code that your program needs in order to run. For
example, if your program accesses the Internet, the build process integrates
your code with existing network code.

3. The development computer deploys your code to a target device.

This so-called “device” may be a real phone connected to your computer or a
program that simulates a phone on your computer’s screen. One way or
another, your program starts running.

4. You press buttons, type text, and otherwise test your app to find out
whether it’s doing the things you want it to do.

Of course, it’s not doing all those things. So you return to Step 1 and keep
trying.

Steps 2 and 3 can be painfully slow. For some simple iPhone and Android apps,
it’s common to watch for several minutes as the computer prepares code for
the program’s next run. This sluggishness reduces a developer’s productivity
considerably.

But along with Flutter comes some good news. Flutter uses the Dart programming
language, and Dart comes with these two (count ’em — two) compilers:

 » Ahead-of-time (AOT) compiler

With an AOT compiler, your development computer translates an entire program
and makes the translated code available for devices to run. No further transla-
tion takes place when the devices run your program. Each target device devotes
its processing power to the efficient running of your code.

An app running on AOT-compiled code runs smoothly and efficiently.

 » Just-in-time (JIT) compiler

With a JIT compiler, your development computer translates enough code to
start the app running. It feeds this code to a test device and continues
translating while the test device runs the app. If the developer presses a
button on the test device’s screen, the JIT compiler hurries to translate that
button’s code.

An app running on a JIT compiler may appear to be sluggish because the
compiler translates code while the app runs. But using a JIT compiler is a great
way to test an app.

0005390154.INDD 396 Trim size: 7.375 in × 9.25 in June 11, 2022 3:17 PM

396 BOOK 4 Creating Mobile Apps

Here’s what happens when you develop a Flutter app:

1. You write some code.

2. You issue a command for your development computer to build the code.

The first time around, building code can take some time.

3. The development computer deploys your code to a target device.

Again, you face a noticeable time lag.

4. In testing your code, you find out that it’s not doing all the things you
want it to do.

5. You modify your existing code, and then . . .

6. You issue a command for your development computer to rebuild the
code.

Here’s where Flutter’s magic happens. Dart’s JIT compiler recompiles only the
part of the app that you’ve modified and sends the change straight to the
target device. The modified code starts running in a fraction of a second. You
save hours of time every day because you’re not waiting for code changes to
take effect.

Flutter gives you two ways to apply changes to a running app:

 » With hot restart, the app begins its run anew, removing any data that you’ve
entered during the most recent test, displaying the app as if you’re running it
for the first time.

 » With hot reload, the app takes up from where it left off, with the data you last
entered intact, if possible. The only changes are the ones dictated by your
modifications to the code.

Flutter’s hot restart and hot reload are both blazingly fast. They turn the app
development cycle into a pleasure rather than a chore. Book 4, Chapter 2 tells you
more about building, testing, and rerunning apps.

A great way to think about app
development
You may have heard the all-encompassing mantra of Flutter app development:

In Flutter, almost everything is a widget.

W
hat Is Flutter?

0005390154.INDD 397 Trim size: 7.375 in × 9.25 in June 11, 2022 3:17 PM

CHAPTER 1 What Is Flutter? 397

WHAT IS A COMPILER?
You’re a human being. (Sure, every rule has exceptions. But if you’re reading this book,
you’re probably human.) Anyway, humans can write and comprehend the following
Flutter source code:

import 'package:flutter/widgets.dart';

main() => runApp(SizedBox());

When you paraphrase the source code in English, here’s what you get:

Get some code (code from the Flutter API) named widgets.dart.

Run an application whose only component is a box widget.

If you don’t see the similarities between the Flutter code and its English equivalent, don’t
worry. Like most human beings, you can learn to read and write the Flutter code. In
case you’re wondering, this source code contains the world’s simplest and most useless
Flutter app. When the app runs, you see a completely black screen. It’s not what you’d
call a “killer app.”

Source code is nice, but source code isn’t for everyone and everything. The processors
in computers and mobile devices aren’t human beings. Processors don’t follow source
code instructions. Instead, they follow cryptic instructions of the following kind:

1100100 1100101 1111000 00001010 00110000 00110011 00110101 00000000

10000100

These zeros and ones are, in fact, the first few words in an Android phone’s version of
the Black Screen app’s code. Here’s the Black Screen app after a processor interprets
the zeros and ones:

.class public com/allmycode/dexperiment/MainActivity

.super io/flutter/embedding/android/FlutterActivity

.source MainActivity.java

.method public <init>()V

.limit registers 1

; this: v0 (Lcom/allmycode/dexperiment/MainActivity;)

.line 8

 invoke-direct {v0},io/flutter/embedding/android/

FlutterActivity/<init>

 ; <init>()V

 return-void

.end method

(continued)

0005390154.INDD 398 Trim size: 7.375 in × 9.25 in June 11, 2022 3:17 PM

398 BOOK 4 Creating Mobile Apps

And what is a widget? In a mobile app, every button is one of the app’s widgets.
Every text field is a widget. The app itself is a widget. The positioning of buttons
and text fields is a widget. The animating of objects from one part of the screen to
another is a widget. When you create a Flutter app, you put widgets inside of other
widgets, which in turn are inside even more widgets. Listing 1-1 has some fake
code that illustrates the point:

LISTING 1-1: Like a Wheel within a Wheel

// This isn't real Flutter code!

Application(

 Background(

 CenterWhateverIsInsideThis(

 Button(

 onPressed: print("I've been clicked."),

 Padding(

 Text(

What a mess! Humans don’t want to read or write instructions of this kind. These
instructions aren’t Dart source code instructions. They’re Dalvik bytecode instructions.
When you write a Flutter program, you write Dart source code instructions. If you test
your program on an Android device, your development computer translates the source
code into bytecode. If you test your program on an iPhone, the computer translates
your source code into something that’s even more obscure than bytecode.

The tool that performs the translation is a compiler. The compiler takes code that you
can write and understand and translates it into code that a processor has a fighting
chance of carrying out.

You might put your source code in a file named main.dart. To run your app on
Android devices, the compiler creates other files named MainActivity.dex and app.
apk. Normally, you don’t bother looking at these compiled files. You can’t even examine
.dex files or .apk files with an ordinary editor. If you try to open MainActivity.dex
with Notepad, TextEdit, or even Microsoft Word, you’ll see nothing but dots, squiggles,
and other gobbledygook.

No one (except for a few crazy programmers in some isolated labs in faraway places)
writes Dalvik bytecode or any other kind of code that processors actually understand.
When you ask your development computer to run your code, the computer uses its
own software (a compiler) to create processor-friendly instructions. The only reason to
look at the bytecode in this sidebar is to understand what a hard worker your develop-
ment computer is.

(continued)

W
hat Is Flutter?

0005390154.INDD 399 Trim size: 7.375 in × 9.25 in June 11, 2022 3:17 PM

CHAPTER 1 What Is Flutter? 399

 "Click Me"

),

),

),

),

),

)

Listing 1-1 has a Text widget inside of a Padding widget, which is inside of a
Button widget inside a CenterWhateverIsInsideThis widget. That Center
WhateverIsInsideThis widget is inside a Background widget, which is inside an
Application widget. Listing 1-1 is modeled after real Flutter code. The real Flut-
ter code creates the app shown in Figure 1-2. When the user presses the Button in
Figure 1-2, the words I’ve been clicked appear.

Compare Figures 1-2 and 1-3. Figure 1-2 shows the app as the user sees it.
Figure 1-3 shows the same app as the Flutter developer codes it.

If you’re not already a Flutter developer, the word widget might suggest a vis-
ible component, such as a button, a slider, an icon, or some other such thing.
But in Flutter, things that aren’t really visible are also widgets. For example, in
Listing 1-1, CenterWhateverIsInsideThis is a widget. Having layout features like
CenterWhateverIsInsideThis be widgets is a powerful idea. It means that Flutter
developers can focus their attention on one overarching task — stuffing widgets
inside other widgets. Flutter has a certain simplicity and elegance that other app
development frameworks don’t have.

Flutter has no built-in widget named CenterWhateverIsInsideThis. But don’t
be disappointed. Flutter’s Center widget does what the fictitious CenterWhatever
IsInsideThis widget is supposed to do.

FIGURE 1-2:
An app with

a button.

0005390154.INDD 400 Trim size: 7.375 in × 9.25 in June 11, 2022 3:17 PM

400 BOOK 4 Creating Mobile Apps

Enough New Terminology! What’s Next?
You may have read this chapter from start to finish but not one word in the chapter
prompted you to touch your computer keyboard. What a shame! The next chapter
will rectify that awful omission.

FIGURE 1-3:
Widgets within

widgets.

CHAPTER 2 Setting Up Your Computer for Mobile App Development 401

0005390155.INDD 401 Trim size: 7.375 in × 9.25 in June 11, 2022 3:19 PM

 Setting Up Your
Computer for Mobile
App Development

 T ools don ’ t directly do the things you want done. You can ’ t eat a tool, read
a good tool, hear a tool ’ s happy song, or dance the jig with a tool. But you
can use tools to make food, books, musical instruments, and dance fl oors.

 This chapter is all about tools — the tools you use to make great mobile apps.

 The Stuff You Need
 This book tells you how to create apps using Flutter. Before you can create apps,
you need some software tools. Here ’ s a list of the tools you need:

» The Flutter Software Development Kit (SDK)

 The Flutter SDK includes lots and lots of prewritten, reusable Flutter code and
a bunch of software tools for running and testing Flutter apps. The SDK has

Chapter 2

 IN THIS CHAPTER

» Installing Dart and Flutter

» Installing a development
environment

» Mimicking mobile devices on your
laptop computer

0005390155.INDD 402 Trim size: 7.375 in × 9.25 in June 11, 2022 3:19 PM

402 BOOK 4 Creating Mobile Apps

the official Flutter code libraries, Dart code libraries, documentation, and even
some sample apps.

 » An integrated development environment

You can create Flutter apps by using geeky, keyboard-only tools, but eventu-
ally you’ll tire of typing and retyping commands. An integrated development
environment (IDE), on the other hand, is a little like a word processor. A word
processor helps you compose documents (memos, poems, and other works
of fine literature); in contrast, an IDE helps you compose instructions for
processors.

One way to compose Flutter apps is by using the Android Studio IDE. Don’t be
fooled by the word Android in the IDE’s name. Using Android Studio, you can
create iPhone apps, web apps, and other kinds of apps.

 » Some sample Flutter apps, to help you get started

All examples in this book are available for download here:

www.dummies.com/go/codingallinonefd2e

 » A device for testing your Flutter code

You write some code, and then you run it to see whether it works correctly.
Usually, it doesn’t work correctly until you make some changes. Most often, it
doesn’t work correctly until you make lots of changes.

This book emphasizes the creation of apps for iPhones and Android phones.
You can run your code on your own phone, but you can also run it on your
computer. To run a mobile app on your computer, you need software that
displays a phone on your screen and runs your app within that display.

In the iPhone world, this type of software is called a simulator, and Android
calls its software an emulator. Simulators and emulators are examples of
virtual devices. In contrast, an actual iPhone or Android phone is called a
physical device (also called a real device).

An emulator isn’t quite the same thing as a simulator. An emulator is software
that behaves, to a large extent, like the hardware of a real, physical phone.
A simulator is software that runs a phone’s apps without really behaving too
much like the phone’s hardware. Fortunately, when you run this book’s apps,
you can ignore this subtle difference.

All these tools run on the development computer — the laptop or desktop computer
you use to develop Flutter apps. Later, when you publish your app, users run the
app on their target devices — physical devices such as iPhones, Android phones,
and (someday soon) smart toasters.

Setting U
p Your Com

puter for
M

obile A
pp D

evelopm
ent

0005390155.INDD 403 Trim size: 7.375 in × 9.25 in June 11, 2022 3:19 PM

CHAPTER 2 Setting Up Your Computer for Mobile App Development 403

Here’s good news: You can download for free all the software you need to run this
book’s examples. The software is separated into four downloads:

 » When you visit https://flutter.dev/docs/get-started/install, you
can click a button to install the Flutter SDK.

 » A button at the page http://developer.android.com/studio gives you
the Android Studio IDE download. Along with this download comes the
Android emulator.

 » This book’s website has a link to all of the book’s code.

 » The iPhone simulator, as well as all the code you need for generating iPhone
apps, comes with the installation of Xcode on your Mac. Xcode is available
from the Macintosh App Store. (Unfortunately, you can’t develop for iPhone
on a Windows PC.)

In the world of mobile app development, things change very quickly. The cre-
ators of Flutter are always creating new features and new tools. The old tools stop
working, and the old instructions no longer apply. If you see something on your
screen that doesn’t look like one of the screenshots in this book, don’t despair. It
might be something very new, or you might have reached a corner of the software
that isn’t described in this book. Visit the book’s website to find out about late-
breaking changes, to report a bug, or to ask a question.

What to Do
It’s an old, familiar refrain. First you get some software. Then you run the software.

Getting and installing the stuff
1. Visit the book’s website (www.dummies.com/go/codingallinonefd2e) and

download the BOOK_4_CREATING_MOBILE_APPS.zip file, which contains all
the program examples in this book.

The downloaded file is a .zip archive file. (Refer to the later sidebars “Those
pesky filename extensions” and “Compressed archive files.”)

Most web browsers save files to the Downloads directory on the computer’s
hard drive. But your browser may be configured a bit differently. One way or
another, make note of the folder containing the downloaded file BOOK_4_
CREATING_MOBILE_APPS.zip.

2. Extract the contents of the downloaded file to a place on your computer’s
hard drive.

0005390155.INDD 404 Trim size: 7.375 in × 9.25 in June 11, 2022 3:19 PM

404 BOOK 4 Creating Mobile Apps

3. Visit https://flutter.dev/docs/get-started/install and download
the Flutter SDK.

Choose a version of the software that matches your operating system
(Windows, Macintosh, or whatever).

4. Extract the contents of the downloaded file to a place on your computer’s
hard drive.

The aforementioned contents is actually a directory full of stuff. The directory’s
name is flutter. Put your new flutter directory in a place that isn’t pro-
tected with special privileges. For example, if you try extracting the flutter
directory inside the c:\program files directory, Windows displays its User
Account Control dialog box and asks for confirmation. Don’t put the flutter
directory inside a place like that.

You say “folder.” I say “directory.” To not-quite-quote Gershwin, let’s call
the whole thing off because, in this book, these two words are used
interchangeably.

A good place to put the flutter directory is inside your home directory. For
example, your computer probably has a directory named Users, and inside
that Users directory is a directory with your name on it. That directory is your
home directory. This home directory contains the Documents directory, the
Downloads directory, and lots of other stuff. After you extract the downloaded
file’s content, your home directory has a brand-new flutter directory.

You don’t have to extract the flutter directory right inside your home
directory, but it’s the simplest, most reliable thing to do.

5. Make a note of the place on your hard drive where the new flutter
directory lives.

For example, if you copied the .zip file’s contents to your /Users/
janeqreader directory, make a note of the /Users/janeqreader/flutter
directory. That’s your Flutter SDK path.

To make sure that you’ve extracted the downloaded file’s contents correctly,
look inside the flutter directory for a subdirectory named bin. The flutter
directory has other subdirectories, named dev, examples, and packages. Your
mileage may vary, depending on when you download the Flutter SDK.

6. Visit http://developer.android.com/studio and download the Android
Studio IDE.

The download is an .exe file, a .dmg file, or maybe something else.

7. Install the software that you downloaded in Step 6.

During the installation, a dialog box may offer the option of installing an
Android virtual device (AVD). If so, accept the option.

Setting U
p Your Com

puter for
M

obile A
pp D

evelopm
ent

0005390155.INDD 405 Trim size: 7.375 in × 9.25 in June 11, 2022 3:19 PM

CHAPTER 2 Setting Up Your Computer for Mobile App Development 405

For other details about installing Android Studio, see this chapter’s later section
“On installing Android Studio.”

Android Studio isn’t the only IDE that has features for creating Flutter apps.
Some developers prefer Virtual Studio Code (known affectionately as VS Code),
which is available for Windows, Macintosh, and Linux. And if you enjoy
roughing it, you can do without an IDE and use the command line along with
your favorite text editor — Emacs, vi, or Notepad. In this book, I focus on
Android Studio, but you can find plenty of alternatives.

To learn more about Visual Studio Code, visit https://code.visualstudio.com.

While you’re visiting any software download site, check the requirements for
downloading, installing, and running that software. Make sure you have enough
memory and an operating system that’s sufficiently up to date.

THOSE PESKY FILENAME EXTENSIONS
The filenames displayed in File Explorer or in a Finder window can be misleading. You
may browse a directory and see the name android-studio-ide or flutter_win-
dows. The file’s real name might be android-studio-ide.exe, flutter_windows.
zip, or plain old flutter_windows. Filename endings such as .zip, .exe, .dmg, .app,
and .dart are filename extensions.

The ugly truth is that, by default, Windows and the Mac hide many filename extensions.
This awful feature tends to confuse people. If you don’t want to be confused, change
your computer’s system-wide settings. Here’s how to do it:

• In Windows 7: Choose Start ➪ Control Panel ➪ Appearance and
Personalization ➪ Folder Options. Then skip to the third bullet.

• In Windows 8: On the Charms bar, choose Settings ➪ Control Panel. In the Control
Panel, choose Appearance and Personalization ➪ Folder Options. Then proceed to
the following bullet.

• In Windows 7 or 8: Follow the instructions in one of the preceding bullets. Then, in
the Folder Options dialog box, click the View tab. Look for the Hide File Extensions
for Known File Types option. Make sure that this checkbox is not selected.

• In Windows 10: On the File Explorer’s main menu, select View. On the ribbon that
appears, put a check mark next to File Name Extensions.

• In macOS: On the Finder application’s menu, select Preferences. In the resulting
dialog box, select the Advanced tab and look for the Show All File Extensions option.
Make sure that this checkbox is selected.

0005390155.INDD 406 Trim size: 7.375 in × 9.25 in June 11, 2022 3:19 PM

406 BOOK 4 Creating Mobile Apps

For Mac users only
If you have a Mac and you want to create iPhone apps, follow these steps:

1. Select App Store from the Apple menu.

2. In the store’s search field, type Xcode and then press Enter.

The App Store’s search finds dozens of apps, but only one has the simple name
Xcode.

3. Click the Xcode app’s Get button.

As a result, the App Store installs Xcode on your computer.

COMPRESSED ARCHIVE FILES
When you visit this book’s website and download the examples, you download a file
named BOOK_4_CREATING_MOBILE_APPS.zip. A ZIP file is a single file that encodes
a bunch of smaller files. The BOOK_4_CREATING_MOBILE_APPS.zip file encodes
files with names such as app0301.dart, app0302.dart, and app0401.dart.
The app0301.dart file contains the code in Listing 3-1 — the first listing in
Book 4, Chapter 3. Likewise, app0302.dart and app0401.dart have the code in
Listings 3-2 and 4-1.

The BOOK_4_CREATING_MOBILE_APPS.zip file also encodes a folder named assets.
This folder contains copies of the images that appear in the book’s apps.

A .zip file is an example of a compressed archive file. Other examples of compressed
archives include .tar.gz files, .rar files, and .sparsebundle files. When you uncom-
press a file, you extract the original files and folders stored inside the larger archive file.
(For a .zip file, another word for uncompressing is unzipping.)

When you download BOOK_4_CREATING_MOBILE_APPS.zip, the web browser may
uncompress the file automatically for you. If not, you can get your computer to uncom-
press the file. Here’s how:

• On a Windows computer, double-click the .zip file’s icon. When you do this,
Windows File Explorer shows you the files and folders inside the compressed .zip
archive. Drag all these files and folders to another place on your computer’s hard
drive (a place that’s not inside the archive file).

• On a Mac, double-click the .zip file’s icon. When you do this, the Mac extracts
the contents of the archive file and shows you the extracted contents in a Finder
window.

Setting U
p Your Com

puter for
M

obile A
pp D

evelopm
ent

0005390155.INDD 407 Trim size: 7.375 in × 9.25 in June 11, 2022 3:19 PM

CHAPTER 2 Setting Up Your Computer for Mobile App Development 407

4. Launch the Xcode application.

The first time you run Xcode, your Mac installs some additional components. If you
want your apps to run on Apple devices, you need those additional components.

Configuring Android Studio
Android Studio doesn’t come automatically with Flutter support, meaning you
have to add Flutter support the first time you run the IDE. Here’s what you do.

1. Launch the Android Studio application.

The first time you run a fresh, new copy of Android Studio, you see the
Welcome screen.

2. Select Plugins on the Welcome screen.

You’ll find the Plugins link on the left side of the Welcome screen. (See
Figure 2-1.)

3. Search for a plugin named Flutter. Install that plugin.

If Android Studio offers the option of installing Dart as well, accept the option.

After installing the plugin, Android Studio may want to be restarted. Of course,
you should restart it. When you do, you see the Welcome screen again. Now the
Welcome screen includes the New Flutter Project option. (See Figure 2-2.)

FIGURE 2-1:
Android Studio’s
default Welcome

screen.

© John Wiley & Sons

0005390155.INDD 408 Trim size: 7.375 in × 9.25 in June 11, 2022 3:19 PM

408 BOOK 4 Creating Mobile Apps

Running your first app
You’ve installed Android Studio, added Android Studio’s Flutter plugin, and then
restarted Android Studio. Now you’re staring at Android Studio’s Welcome screen.
What do you do next?

1. Connect to the Internet.

During the run of your very first app, Android Studio downloads some
additional software.

2. Select the New Flutter Project option. (Refer to Figure 2-2.)

On your phone, an app is an app, and that’s all there is to it. But on your
development computer, all your work is divided into projects. For professional
purposes, you’re not absolutely correct if you think of one app as equaling one
project. But, for the examples in this book, the “one project equals one app”
model works just fine.

If you don’t see the New Flutter Project option, you may not have installed the
Flutter plugin correctly. Double-check the instructions in the “Configuring
Android Studio” section, earlier in this chapter.

Having selected New Flutter Project, you’ll see three dialog boxes, one after
another. The first asks for the path to the Flutter SDK, the second asks for the
new app’s name and other details, and the third creates something called a
package.

FIGURE 2-2:
You’ve installed

the Flutter plugin.

© John Wiley & Sons

Setting U
p Your Com

puter for
M

obile A
pp D

evelopm
ent

0005390155.INDD 409 Trim size: 7.375 in × 9.25 in June 11, 2022 3:19 PM

CHAPTER 2 Setting Up Your Computer for Mobile App Development 409

3. In the first step, enter the Flutter SDK path that you noted earlier. (See
Figure 2-3.) Click Next and the second dialog box will appear.

The second dialog box has several fields for you to fill out: Project Name,
Project Location, Description, Project Type, Organization, and information
about the languages and platforms the app should use and support. (See
Figure 2-4.)

4. Select a name that has only lowercase letters and, if you want, under-
score (_) characters.

Flutter project names cannot contain uppercase letters, blank spaces, or
punctuation characters other than the underscore.

If you create many apps, keeping track of them all can drive you crazy. So, it
helps if you decide on a formula for naming your apps and then stick to that
formula as closely as you can. Later on, when you start marketing your apps,
you can abandon the formula, and use clever names that attract peoples’
attention.

5. Don’t change the Project Location option unless you have a specific
reason for doing so.

You don’t have to specify a new directory for each of your projects. Android
Studio does that for you automatically with this project location as the starting
point.

6. For the description, type something that’s silly and off the wall.

Do it now, while you still can. When you create apps professionally, you have to
be more serious.

7. If your company has a domain name, or if you have your own domain
name, type it in the Organization field. If not, type anything at all or leave
the default text alone.

A package is a collection of closely related pieces of code, and each Flutter app
belongs to its own package. In the Flutter world, it’s customary to start a
package’s name with the reverse of a domain name. For example, if your
company’s domain name is wiley.com, the app is usually in a package named
com.wiley.somethingorother. The somethingorother part will be unique
to each of your apps.

When you create your first project, the Organization field’s default text is
probably example.com. Several years ago, the Internet Corporation for
Assigned Names and Numbers (ICANN) set this name aside for anyone to use.

8. Under the Organization field are some buttons for selecting the Android
and iOS languages and the platforms you want to enable support for.
Leave these settings as they are for now.

0005390155.INDD 410 Trim size: 7.375 in × 9.25 in June 11, 2022 3:19 PM

410 BOOK 4 Creating Mobile Apps

9. Click Finish.

As if by magic, Android Studio’s main window appears. (See Figure 2-5.) The
main window has all the tools you need for developing top-notch Flutter
applications. It even has a sample starter application, which you run in the next
few steps.

Android Studio’s main window may look overwhelming at first. The main
window’s parts are described in this chapter’s “Using Android Studio” section,
later in this chapter.

In Figure 2-6, notice two important items near the top of Android Studio’s main
window:

• The Target Selector displays the text <no devices>.

• The Run icon is a little right-pointing green arrow.

10. What you do next depends on your development computer and your develop-
ment goals.

If you have a Mac and you want to run an iPhone simulator, select Open
iOS Simulator in the Target Selector drop-down list.

If you don’t have a Mac, or if you want to run an Android emulator, select
Tools ➪ AVD Manager on Android Studio’s main menu bar. In the resulting
dialog box, look for a Green Arrow icon on the right side of the dialog box.
Click that Green Arrow icon. (See Figure 2-7.)

If the AVD manager is empty — that is to say, if it’s not like the manager shown
in Figure 2-7, which shows a virtual device labeled Pixel API 28 — you have to
create an Android Virtual Device. See the section “Running apps on an Android
device,” later in this chapter, for details.

Android Virtual Devices don’t always start quickly. For a computer with 16
gigabytes of RAM, the start-up time may be two to three minutes. On a
computer with only 4 gigabytes of RAM, the AVD might never start up. Apple’s
iPhone simulator tends to be a bit snappier, but you never know. Two later
sections of this chapter are devoted to Android emulator and iPhone simulator
tricks — “On adding virtual devices” and “Divisiveness Among Devices.”

When your virtual device’s home screen appears on the screen, you’re ready to
run the sample Flutter app.

11. Click the Run icon on Android Studio’s toolbar. (Refer to Figure 2-6.)

As a result, Android Studio’s Run tool window appears in the lower portion of
the main window. A few messages appear while you wait impatiently for the
app to start running. When the app starts running, the virtual device (the
simulator or emulator) sports a handsome display. (See Figure 2-8.)

Setting U
p Your Com

puter for
M

obile A
pp D

evelopm
ent

0005390155.INDD 411 Trim size: 7.375 in × 9.25 in June 11, 2022 3:19 PM

CHAPTER 2 Setting Up Your Computer for Mobile App Development 411

FIGURE 2-3:
Enter the Flutter

SDK path.

© John Wiley & Sons

FIGURE 2-4:
Details about

your new app.

© John Wiley & Sons

0005390155.INDD 412 Trim size: 7.375 in × 9.25 in June 11, 2022 3:19 PM

412 BOOK 4 Creating Mobile Apps

FIGURE 2-5:
Android Studio’s

main window.

© John Wiley & Sons

FIGURE 2-6:
Android Studio’s

toolbar.

© John Wiley & Sons

FIGURE 2-7:
Start running

an Android
 Virtual Device.

© John Wiley & Sons

Setting U
p Your Com

puter for
M

obile A
pp D

evelopm
ent

0005390155.INDD 413 Trim size: 7.375 in × 9.25 in June 11, 2022 3:19 PM

CHAPTER 2 Setting Up Your Computer for Mobile App Development 413

Congratulations! Your first app is running. You can try out the app by clicking the
mouse on the app’s floating action button (the circular item in the lower-right
corner of the virtual device’s screen). The message in the middle tells you how
many times you’ve clicked the button. It’s not the world’s most useful app, but
it’s a good start.

For details about any of these steps, see the next several sections.

Dealing with the Devil’s Details
In earlier sections, you learned the basic steps for setting up your computer
and running your first Flutter app. Basic steps are nice, but they don’t work for
everyone. That’s why, in this section, you’ll delve a bit deeper.

In the world of mobile app development, things change very quickly. The cre-
ators of Flutter are always creating new features and new tools. The old tools stop
working, and the old instructions no longer apply. If you see something on your
screen that doesn’t look like one of my screenshots, don’t despair. It might be
something very new, or you might have reached a corner of the software that’s

FIGURE 2-8:
Isn’t it wonderful?

© John Wiley & Sons

0005390155.INDD 414 Trim size: 7.375 in × 9.25 in June 11, 2022 3:19 PM

414 BOOK 4 Creating Mobile Apps

not described in this book. If you get stuck, check this book’s website for the latest
updates and to get additional help.

On installing Android Studio
What you do to install Android Studio depends on your operating system:

 » In Windows: The downloaded file is probably an .exe file. Double-click the
.exe file’s icon.

When you double-click the .exe file’s icon, a wizard guides you through the
installation.

 » On a Mac: The downloaded file is probably a .dmg file. Double-click the .dmg
file’s icon.

When you double-click the .dmg file’s icon, you see the Android Studio icon
(also known as the Android Studio.app icon). Drag the Android Studio icon to
your Applications folder.

For more information on topics like .exe and .dmg, refer to the earlier sidebar
“Those pesky filename extensions.” And, if you need help with .zip files, see the
earlier sidebar “Compressed archive files.”

On launching Android Studio
for the first time
Is it time to launch Android Studio? This section has a few small details.

 » In Windows: Click the Start button and look for the Android Studio entry.

 » On a Mac: Press Command-space to make the Spotlight appear. In the
Spotlight’s search field, start typing Android Studio. When your Mac makes the
full name Android Studio appear in the Spotlight’s search field, press Enter.

When you launch Android Studio for the first time, you might see a dialog box
offering to import settings from a previous Android Studio installation. Chances
are, you don’t have a previous Android Studio installation, so you should firmly
but politely decline this offer.

When the dust settles, Android Studio displays the Welcome screen. The Welcome
screen has options such as Start a New Android Studio Project, Open an Existing
Android Studio Project, Configure, and Get Help. (Refer to Figures 2-1 and 2-2.)

Setting U
p Your Com

puter for
M

obile A
pp D

evelopm
ent

0005390155.INDD 415 Trim size: 7.375 in × 9.25 in June 11, 2022 3:19 PM

CHAPTER 2 Setting Up Your Computer for Mobile App Development 415

You see this Welcome screen again and again. Stated informally, the Welcome
screen says, “At the moment, you’re not working on any particular project (any
particular Flutter app). So, what do you want to do next?”

On adding virtual devices
When it comes to installing virtual devices, the stories for iPhone and Android are
a bit different.

 » With an Apple, Windows, or Linux computer, you can download Android
Studio and get the Android emulator that comes with it. You might have to do
a bit of work to install an Android Virtual Device (AVD), but that’s not
a big deal.

 » If you have an Apple computer, you get an iPhone simulator by downloading
Apple’s Xcode software.

If you don’t have an Apple computer, you can find third-party simulators by
searching the Web, but keep in mind that creating iPhone apps on anything
other than a Mac is difficult. Depending on the way you do it, the process
might even be illegal.

Android makes a distinction between an emulator and an Android Virtual Device
(AVD). Here’s the scoop:

 » When you install Android Studio, you get the Android phone emulator
automatically. This emulator can bridge the gap between your development
computer’s hardware and a mock-up of a phone’s hardware. But which
phone’s hardware is it mocking? Is it a Samsung Galaxy or a Sony Xperia?
How big is the phone’s screen? What kind of camera does the phone have?

 » An Android Virtual Device is a description of a phone’s hardware. The emulator
doesn’t work unless you create an AVD for the emulator to emulate. When
you install Android Studio, you may or may not see an option to install an
AVD. If you do, accept the option. If you don’t, that’s okay. You’ll be able to
create a bunch of AVDs when you get Android Studio running.

When you install Android Studio, the installer may offer you the option to create
an AVD for you to use. If you weren’t offered this option, or if you skipped the
option, you can create an AVD using the AVD Manager tool. In fact, you can create
several additional AVDs and use several different AVDs to run and test your Flutter
apps on Android’s emulator.

To open the AVD Manager, go to Android Studio’s main menu bar and choose
Tools ➪ AVD Manager.

0005390155.INDD 416 Trim size: 7.375 in × 9.25 in June 11, 2022 3:19 PM

416 BOOK 4 Creating Mobile Apps

On installing Flutter
If you’re having trouble running apps, and you think your Flutter installation is
sick, you can take Flutter to the doctor. Here’s how:

1. In Android Studio, start a new Flutter project or open an existing project.

For help with that, refer to this chapter’s “Running your first app” section.

2. In Android Studio’s main menu bar, select Tools ➪ Flutter ➪ Flutter Doctor.

As a result, the computer reports to you on the health of your Flutter
installation.

MIMICKING AN ANDROID PHYSICAL DEVICE
Android’s emulated device is really three pieces of software rolled into one:

• A system image is a copy of one version of the Android operating system.

For example, a particular system image might be for Android Pie (API Level 28) run-
ning on an Intel x86_64 processor.

• An emulator bridges the gap between the system image and the processor on
your development computer.

You might have a system image for an Atom_64 processor, but your development
computer runs a Core i5 processor. The emulator translates instructions for the
Atom_64 processor into instructions that the Core i5 processor can execute.

• An Android Virtual Device (AVD) is a piece of software that describes a
device’s hardware.

An AVD contains a bunch of settings, telling the emulator all the details about the
device to be emulated. What’s the screen resolution of the device? Does the device
have a physical keyboard? Does it have a camera? How much memory does it have?
Does it have an SD card? All these choices belong to a particular AVD.

Android Studio’s menus and dialog boxes make it easy to confuse these three items.
When you create a new AVD, you create a new system image to go with that AVD. But
Android Studio’s dialog boxes blur the distinction between the AVD and the system
image. You also see the word emulator, when the correct term is AVD. If the subtle dif-
ferences between system images, emulators, and AVDs don’t bother you, don’t worry
about them.

A seasoned Android developer typically has several system images and several AVDs on
the development computer, but only one Android emulator program.

Setting U
p Your Com

puter for
M

obile A
pp D

evelopm
ent

0005390155.INDD 417 Trim size: 7.375 in × 9.25 in June 11, 2022 3:19 PM

CHAPTER 2 Setting Up Your Computer for Mobile App Development 417

YOUR FRIEND, THE COMMAND LINE
Most of the instructions in this book require pointing and clicking. But some tasks still
require long, cryptic typewritten commands, and some people prefer typing commands
over clicking buttons. To help you survive the unimaginable misery of typing error-
prone, enigmatic commands, here are a few tips:

• You can’t type commands just anywhere. To communicate directly with your
computer, you must first open your computer’s Terminal (as it’s known in the
Mac world) or Command Prompt (as it’s known to Windows users).

If Android Studio is running, you can open Mac’s Terminal or the Windows
Command Prompt by clicking the little Terminal tool button near the bottom of
Android Studio’s window.

• On a Mac, you can always open Mac’s Terminal by pressing Command+space,
typing Terminal, and then pressing Enter.

On Windows, you can always open the Command Prompt by pressing Start, typing
cmd, and then pressing Enter.

• At any moment, a Terminal or Command Prompt window has a working directory.
For example, if the working directory is /Users/isaacnewton/Documents, and
you type myfile.txt, the computer looks in the /Users/isaacnewton/
Documents directory for a file named myfile.txt. If the /Users/isaacnewton/
Documents directory has a file named myfile.txt, the computer displays the con-
tents of myfile.txt in page-size chunks.

(On Windows): To find out which directory is the working directory, look at the
prompt or type cd. To change the working directory, type cd followed by the new
directory’s name.

c:\Users\isaacnewton\Documents>cd

c:\Users\isaacnewton\Documents

c:\Users\isaacnewton\Documents>cd c:\Users\isaacnewton

c:\Users\isaacnewton>cd

c:\Users\isaacnewton

• (On a Mac): To find out which directory is the working directory, type pwd. To
change the working directory, type cd followed by the new directory’s name.

Isaacs-Air:Documents isaacnewton$ pwd

/Users/isaacnewton/Documents

Isaacs-Air:Documents isaacnewton$ cd /Users/isaacnewton

Isaacs-Air:~ isaacnewton$ pwd

/Users/isaacnewton

0005390155.INDD 418 Trim size: 7.375 in × 9.25 in June 11, 2022 3:19 PM

418 BOOK 4 Creating Mobile Apps

The report from Flutter Doctor isn’t always helpful. Some of the report’s findings
may be false alarms. Others may be difficult to interpret. If you see something
that looks like a useful diagnosis, give it a try. Many of the doctor’s hints involve
opening up a Terminal or Command Prompt window. You’ll find advice about that
in the “Your friend, the command line” sidebar.

Divisiveness Among Devices
If your development computer has enough horsepower, you can run a few Android
Virtual Devices simultaneously. On a Mac, you can run an iPhone simulator while
your Android Virtual Devices are running. But using your virtual and physical
devices can be tricky. This section gives you some tips.

Running apps on an Android device
The emulator that comes with Android Studio swallows up lots of resources on
your development computer. If you don’t have the latest, most powerful hard-
ware, you may have trouble running apps in the emulator. Maybe you don’t see
Android’s home screen or you don’t see your app running five minutes or so after
the emulator starts running. If so, here are several things you can try:

 » Lather, rinse, repeat.

Close the emulator and launch your application again. Sometimes, the second
or third time’s a charm. On rare occasions, the first three attempts fail, but the
fourth attempt succeeds.

 » If you have access to a computer with more RAM, try running your
app on it.

Horsepower matters.

 » If you don’t have access to a computer with more RAM, close all non-
essential programs on your development computer and try running your
app again.

 » Try a different AVD.

The “On adding virtual devices” section, earlier in this chapter, tells you how to
add a new AVD to your system. An AVD with an x86 system image is better
than an AVD with an armeabi image. (Fortunately, when a dialog box lets you
choose between x86 and armeabi, you don’t have to know what x86 or
armeabi means.)

Setting U
p Your Com

puter for
M

obile A
pp D

evelopm
ent

0005390155.INDD 419 Trim size: 7.375 in × 9.25 in June 11, 2022 3:19 PM

CHAPTER 2 Setting Up Your Computer for Mobile App Development 419

 » Wrestle with virtualization technology.

You might not want to start down this rabbit hole.

When it runs on an Intel x86 processor, Android’s emulator tries to use
something called Intel Virtualization Technology (VT) with the Intel Hardware
Accelerated Execution Manager (HAXM). If your computer isn’t completely
comfortable with a VT-and-HAXM configuration, you’re likely to have trouble
using Android’s emulator.

Don’t despair! Try installing an armeabi system image.

The previous bulleted list describes a few remedies for problems with Android
Studio’s emulator. Unfortunately, none of the bullets in this list is a silver bullet. If
you’ve tried these tricks and you’re still having trouble, you might try abandoning
the emulator that comes with Android Studio and running apps on a “real” device.

Testing apps on a physical device
You can bypass virtual devices and test your apps on a physical phone, a tablet
device, or maybe even a smart coffee pot. To do so, you have to prepare the physi-
cal device, prepare your development computer, and then hook together the two.
It’s quite a chore, but after you do it the first time, it becomes much easier. This
section describes an outline of the steps you must follow. For more details, visit
these pages:

 » https://flutter.dev/docs/get-started/install/macos - deploy-
to-ios-devices

 » https://flutter.dev/docs/get-started/install/windows - set-up-
your-android-device

Preparing to test on an Android physical device
To test your app on an Android device, follow these steps:

1. On your Android device, enable Developer Options.

On many Android devices, you do this by choosing Settings ➪ About. In the
About list, tap the Build Number item seven times. (Yes, seven times.) Then
press the Back button to return to the Settings list. In the Settings list, tap
System ➪ Developer Options.

0005390155.INDD 420 Trim size: 7.375 in × 9.25 in June 11, 2022 3:19 PM

420 BOOK 4 Creating Mobile Apps

2. In the Developer Options list, turn on USB debugging.

You may see a message similar to the following:

USB debugging is intended for development purposes.

Use it to copy data between your computer and your device,

install apps on your device without notification, and read log data.

The stewards of Android are warning you that the USB Debugging option can
expose your device to malware.

Many developers keep USB Debugging on all the time with no problems. But if
you’re nervous about security, turn off USB Debugging when you’re not using
the device to develop apps.

3. (For Windows users only) Visit https://developer.android.com/studio/
run/oem-usb.html to download your Android device’s Windows USB
driver. Install the driver on your Windows development computer.

While you follow the next step, keep an eye on your Android device’s
screen.

4. With a USB cable, connect the device to the development computer.

Not all USB cables are created equal. Some cables, called data cables, have
wires and metal in places where other cables, called charging cables, have
nothing except plastic. Try to use whatever USB cable came with your device.
If you can’t find the cable that came with your device or you don’t know which
cable came with your device, try more than one cable. When you find a cable
that works, label that cable.

When you plug in the cable, you see a popup dialog box on the Android
device’s screen. The popup asks whether you want to allow USB
debugging.

5. Yes, allow USB debugging.

If you’re not looking for it, you can miss the popup to allow USB debugging. Be
sure to look for this popup when you plug in your device. If you definitely don’t
see the popup, you might be okay anyway. But if the message appears and you
don’t respond to it, you definitely won’t be okay.

Setting U
p Your Com

puter for
M

obile A
pp D

evelopm
ent

0005390155.INDD 421 Trim size: 7.375 in × 9.25 in June 11, 2022 3:19 PM

CHAPTER 2 Setting Up Your Computer for Mobile App Development 421

CHECKING THE CONNECTION AND
BREAKING THE CONNECTION
To find out whether your Android phone is properly connected to your development
computer, follow these steps:

1. Open the Terminal on a Mac or the Command Prompt on Windows.

For details, refer to the earlier sidebar “Your friend, the command line.”

2. Use the cd command to navigate to Android’s platform-tools directory.

On Windows, the command to do this looks like this:

cd %HOMEDRIVE%%HOMEPATH%\AppData\Local\Android\Sdk\platform-tools

On macOS, you can use the following command:

cd ~/Library/Android/sdk/platform-tools/

3. Type adb devices. (On a Mac, type ./adb devices.)

If your computer’s response includes a very long hexadecimal number (such as
2885046445FF097), that number represents your connected device. For example,
with one particular phone connected, you might get a response such as this:

emulator-5554 device

emulator-5556 device

2885046445FF097 device

If you see the word unauthorized next to the long hexadecimal number, you proba-
bly didn’t answer OK to the question “Allow USB debugging?” in Step 5 of the earlier
section “Preparing to test on an Android physical device.”

If your computer’s response doesn’t include a long hexadecimal number, you might
have missed one of the other steps in that earlier section.

Eventually, you’ll want to disconnect your device from the development computer. Look
for some reference to the device in File Explorer or the Finder.

• If you don’t see a reference, you can probably yank the device’s USB cable from
your computer.

• If you see a reference, try to eject the device.

(continued)

0005390155.INDD 422 Trim size: 7.375 in × 9.25 in June 11, 2022 3:19 PM

422 BOOK 4 Creating Mobile Apps

Preparing to test on an iPhone
To test your app on an iPhone (or even an iPad), you must be using an Apple com-
puter. If you have a Mac, follow these steps:

1. Visit https://brew.sh and follow the instructions to install Homebrew
on your computer.

Homebrew is a third-party software package manager for macOS and Linux. You
can use it to install all kinds of software, not just iPhone development tools.

2. Open your Mac’s Terminal application.

3. In the Terminal application window, type the following commands, one
after another:

brew update

brew install --HEAD libusbmuxd

brew link libusbmuxd

brew install --HEAD libimobiledevice

brew install ideviceinstaller ios-deploy cocoapods

pod setup

Wasn’t that fun? It takes a long time to get responses, and you probably see
scary warning messages along the way.

4. Visit developer.apple.com and sign up for membership in Apple’s
developer program.

After these three steps, your development computer is ready to go. Follow these
steps whenever you want to test a new Flutter app on a physical iPhone:

If you try to eject the device, and you see the dreaded Not Safe to Remove Device mes-
sage, start by following Steps 1 and 2 in this sidebar. Then do one of the following:

• On a Mac, type the following and press Enter:

./adb kill-server

• On Windows, type the following and press Enter

adb kill-server

After that, you see the friendly Safe to Remove Hardware message.

(continued)

Setting U
p Your Com

puter for
M

obile A
pp D

evelopm
ent

0005390155.INDD 423 Trim size: 7.375 in × 9.25 in June 11, 2022 3:19 PM

CHAPTER 2 Setting Up Your Computer for Mobile App Development 423

1. Connect the physical phone to your development computer using a USB
data cable.

Not all cables are alike. Apple puts a proprietary chip in each of its iPhone
cables. If you buy your cable from a third-party vendor, you might not be able
to use it to transfer an app to your phone.

2. In Android Studio, open your new Flutter project.

3. Look for the Project tool window — the panel displaying a tree of files
and folders.

You find the Project tool window along the left side of Android Studio’s main
window. If you have trouble finding it, skip ahead to the section entitled “The
Project tool window” in this chapter.

4. Expand one of the tree’s topmost branches to find a subbranch
named iOS.

5. Right-click the iOS subbranch. In the resulting context menu, select
Flutter ➪ Open iOS Module in Xcode.

As a result, Xcode starts up. There’s a tree of files and folders on the left side of
the Xcode window.

Throughout this chapter, I write right-click as though everyone has a mouse
with two or more buttons. If you’re a Mac user and your mouse has only one
button, you can use Control+click wherever you see the term right-click.

6. In the tree of files and folders, select Runner. (See Figure 2-9.)

7. Select the Signing & Capabilities tab near the top of the Xcode window.
(Again, refer to Figure 2-9.)

The Signing & Capabilities tab has a Team drop-down list.

8. In the Team drop-down list, select Add an Account.

As a result, an Accounts dialog box appears. With your Apple ID, you automati-
cally belong to a team of developers — your personal team with you as its only
member.

9. Do whatever you have to do in the Accounts dialog box and then dismiss
the dialog box.

As a result, you return to the Signing & Capabilities tab.

10. In the Team drop-down list, select your very own team.

11. Close Xcode.

You’re good to go.

0005390155.INDD 424 Trim size: 7.375 in × 9.25 in June 11, 2022 3:19 PM

424 BOOK 4 Creating Mobile Apps

Testing on any physical device
(Android or iPhone)
When you’re ready to test your app on a physical device, and you’ve connected the
device to your development computer, look at the Target Selector drop-down list
on Android Studio’s toolbar. When your development computer is communicating
properly with the physical device, the device’s name appears as one of this drop-
down list’s items. (See Figure 2-10.) Select this item and then click the Run icon.

Using Android Studio
Android Studio is a customized version of IntelliJ IDEA — a general-purpose IDE
with tools for Java development, C/C++ development, PHP development, model-
ing, project management, testing, debugging, and much more.

In this section, you get an overview of Android Studio’s main window and of the
most useful features that help you build Flutter apps.

FIGURE 2-9:
Who’s Berry

Burd?

© John Wiley & Sons

FIGURE 2-10:
iPhone is

connected!

© John Wiley & Sons

Setting U
p Your Com

puter for
M

obile A
pp D

evelopm
ent

0005390155.INDD 425 Trim size: 7.375 in × 9.25 in June 11, 2022 3:19 PM

CHAPTER 2 Setting Up Your Computer for Mobile App Development 425

Starting up
Each Flutter app belongs to a project. You can have dozens of projects on your
computer’s hard drive. When you run Android Studio, each of your projects is
either open or closed. An open project appears in a window (its own window) on
your computer screen. A closed project doesn’t appear in a window.

Several of your projects can be open at the same time. You can switch between
projects by moving from window to window.

If Android Studio is running and no projects are open, Android Studio displays its
Welcome screen. (Refer to Figure 2-2.) The Welcome screen may display some
recently closed projects. If so, you can open a project by clicking its name on the
Welcome screen. For an existing app that’s not on the Recent Projects list, you can
click the Welcome screen’s Open an Existing Android Studio Project option.

If you have any open projects, Android Studio doesn’t display the Welcome screen.
In that case, you can open another project by choosing File ➪ Open or File ➪ Open
Recent in an open project’s window. To close a project, you can choose File ➪ Close
Project, or you can do whatever you normally do to close one of the windows on
your computer. (On a PC, click the X in the window’s upper-right corner. On a
Mac, click the little red button in the window’s upper left corner.)

Android Studio remembers which projects were open from one run to the next. If
any projects are open when you quit Android Studio, those projects open again the
next time you launch Android Studio. You can override this behavior (so that only
the Welcome screen appears each time you launch Android Studio). In Android
Studio on a Windows computer, start by choosing File ➪ Settings ➪ Appearance
and Behavior ➪ System Settings. In Android Studio on a Mac, choose Android Stu-
dio ➪ Preferences ➪ Appearance and Behavior ➪ System Settings. In either case,
uncheck the Reopen Last Project on Startup checkbox.

The main window
Android Studio’s main window is divided into several areas. Some of these areas
can appear and disappear on your command. What comes next is a description of
the areas in Figure 2-11, moving from the top of the main window to the bottom.

The areas that you see on your computer screen may be different from the areas
in Figure 2-11. Usually, that’s okay. You can make areas come and go by choosing
certain menu options, including the View option on Android Studio’s main menu
bar. You can also click the little tool buttons on the edges of the main window.

0005390155.INDD 426 Trim size: 7.375 in × 9.25 in June 11, 2022 3:19 PM

426 BOOK 4 Creating Mobile Apps

The top of the main window
The topmost area contains the toolbar and the navigation bar.

 » The toolbar contains action buttons, such as Open and Save All. It also
contains the Target Selector and the Run icon.

The Target Selector is the drop-down list whose default option is <no
devices>. In Figure 2-11, the Target Selector displays the name iPad (mobile).

The Run icon is the thing that looks like a green Play button.

You can read more about these items earlier, in this chapter’s “Running your
first app” section.

 » The navigation bar displays the path to one of the files in your Flutter
project.

A Flutter project contains many files, and, at any particular moment, you work
on one of these files. The navigation bar points to that file.

The Project tool window
Below the main menu and the toolbars, you see two different areas. The area on
the left contains the Project tool window, which you use to navigate from one file to
another within your Android app.

FIGURE 2-11:
The main window
has several areas.

© John Wiley & Sons

Setting U
p Your Com

puter for
M

obile A
pp D

evelopm
ent

0005390155.INDD 427 Trim size: 7.375 in × 9.25 in June 11, 2022 3:19 PM

CHAPTER 2 Setting Up Your Computer for Mobile App Development 427

At any given moment, the Project tool window displays one of several possible
views. For example, back in Figure 2-11, the Project tool window displays its Proj-
ect view. In Figure 2-12, the Packages view is displayed.

Packages view displays many of the same files as Project view, but in Packages
view, the files are grouped differently. In this book, you’ll primarily be using the
Project view.

If Android Studio doesn’t display the Project tool window, look for the Project tool
button — the little button displaying the word Project on the left edge of the main
window. Click that Project tool button. (But wait! What if you can’t find the little
Project button? In that case, go to Android Studio’s main menu and select Win-
dow ➪ Restore Default Layout.)

The Editor area
The area to the right of the Project tool window is the Editor area. When you edit a
Dart program file, the editor displays the file’s text. (Refer to Figure 2-11.) You can
type, cut, copy, and paste text as you would in other text editors.

The Editor area can have several tabs. Each tab contains a file that’s open for edit-
ing. To open a file for editing, double-click the file’s branch in the Project tool
window. To close the file, click the little x next to the file’s name on the Editor tab.

The lower area
Below the Project tool window and the Editor area is another area that contains
several tool windows. When you’re not using any of these tool windows, you
might not see this lower area.

FIGURE 2-12:
Selecting

 Packages view.

© John Wiley & Sons

0005390155.INDD 428 Trim size: 7.375 in × 9.25 in June 11, 2022 3:19 PM

428 BOOK 4 Creating Mobile Apps

In the lower area, the tool window that you’ll use most often is the Run tool win-
dow. (Refer to the lower portion of Figure 2-11.) The Run tool window appears
automatically when you click the Run icon. This tool window displays information
about the run of a Flutter app. If your app isn’t running correctly, the Run tool
window may contain useful diagnostic information.

You can force other tool windows to appear in the lower area by clicking tool
buttons near the bottom of the Android Studio window. For example, when you
click the Terminal tool button, Android Studio displays the Windows Command
Prompt, the Mac Terminal app, or another text-based command screen that you
specify. For details, refer to the earlier sidebar “Your friend, the command line.”

A particular tool button might not appear when there’s nothing you can do with it.
For example, the Run tool button might not appear until you press the Run icon.
Don’t worry about that. The tool button shows up whenever you need it.

Finishing your tour of the areas in Figure 2-11.

The status bar
The status bar is at the bottom of Android Studio’s window.

The status bar tells you what’s happening now. For example, if the cursor is on
the 37th character of the 11th line in the editor, you see 11:37 somewhere on the
status line. When you tell Android Studio to run your app, the status bar contains
the Run tool window’s most recent message.

The kitchen sink
In addition to the areas that I mention in this section, other areas might pop up
as the need arises. You can dismiss an area by clicking the area’s Hide icon. (See
Figure 2-13.)

FIGURE 2-13:
Hiding the Project
tool window area.

© John Wiley & Sons

Setting U
p Your Com

puter for
M

obile A
pp D

evelopm
ent

0005390155.INDD 429 Trim size: 7.375 in × 9.25 in June 11, 2022 3:19 PM

CHAPTER 2 Setting Up Your Computer for Mobile App Development 429

Running This Book’s Sample Programs
This book has dozens of sample Flutter apps, and they’re all available for down-
load from the book’s website. You can run any of these programs as part of an
Android Studio Flutter app. This section has all the details.

1. Launch Android Studio.

For the run of your first app, you need an Internet connection.

What you do next depends on what you see when you launch Android Studio.

2. If you see Android Studio’s Welcome screen (refer to Figure 2-2), select
Start a New Flutter Project. If you see another Android Studio window
with a File option on the main menu bar, choose File ➪ New ➪ New Flutter
Project on the main menu bar.

Either way, the first dialog box for creating a new Flutter project appears.

3. Create a new Flutter project by following Steps 3 through 9 in this
chapter’s earlier section “Running your first app.”

4. In Android Studio’s Project tool window, look for a folder named lib.

If you need help finding that tool window, refer to the “The Project tool
window” section earlier in this chapter.

The Project tool window contains a tree of folders and files. Expand one of the
tree’s topmost branches to find the lib folder. This lib folder contains your
project’s Dart code.

5. Right-click the tree’s main.dart branch and then select Delete.

A window will pop up asking you if you want to do a “Safe delete.” Uncheck the
box next to Safe delete (which will also cause the other checkbox to become
unchecked.)

6. Make sure that you’ve uncompressed the BOOK_4_CREATING_MOBILE_
APPS.zip file.

For details, refer to the earlier sidebar “Compressed archive files.”

If you’re unsure where to find the BOOK_4_CREATING_MOBILE_APPS.zip file,
look first in a folder named Downloads. Most web browsers put stuff inside
Downloads by default.

Safari on a Mac generally uncompresses .zip archives automatically, and
Windows browsers (Internet Explorer, Firefox, Chrome, and others) do not
uncompress .zip archives automatically. For the complete scoop on archive
files, see the earlier sidebar “Compressed archive files.”

0005390155.INDD 430 Trim size: 7.375 in × 9.25 in June 11, 2022 3:19 PM

430 BOOK 4 Creating Mobile Apps

7. In File Explorer or the Finder, navigate to the uncompressed BOOK_4_
CREATING_MOBILE_APPS folder. Inside that folder, look for the example
that you want to run.

If you look inside the uncompressed download, you notice files named
app0301.dart, app0302.dart, and so on. With a few exceptions, the numbers
in these file names are chapter numbers followed by listing numbers. For
example, in the name app0602.dart, the 06 stands for Chapter 6, and the 02
stands for the second code listing in that chapter.

For this experiment, I suggest that you look for the app0201.dart file. (No
code is listed anywhere in this chapter. So, in this unusual case, 0201 doesn’t
refer to a project whose code is in something called Listing 2-1.)

8. Right-click the chosen app####.dart file. Then, from the resulting context
menu, select Copy.

9. Right-click the new project’s empty lib folder. From the resulting context
menu, select Paste.

If Android Studio displays a dialog box offering to paste to a particular
directory, check to make sure that the directory’s full name ends in lib. Then,
press OK.

10. Look near the top of the Android Studio window for a drop-down list with
the name main.dart in it (see Figure 2-14).

11. In the drop-down list, select Edit Configuration. The Edit Run/Debug
Configurations dialog box will appear, as shown in Figure 2-15.

12. Change the entry point from main.dart to the name of the file you
copied into the lib directory.

Now you’re ready to run one of this book’s examples. Go for it!

FIGURE 2-14:
Opening the

Edit Run/Debug
Configurations

dialog.

© John Wiley & Sons

Setting U
p Your Com

puter for
M

obile A
pp D

evelopm
ent

0005390155.INDD 431 Trim size: 7.375 in × 9.25 in June 11, 2022 3:19 PM

CHAPTER 2 Setting Up Your Computer for Mobile App Development 431

On occasion, you may have more than one file in your project’s lib folder and
more than one app in your project. If you do, pressing the Run icon might not run
the app that appears in Android Studio’s editor area. To run the app that’s show-
ing in the editor area, look for that app’s tab along the top of the editor area. When
you right-click that tab, you see an option such as Run ’app0201.dart’. Select that
option and watch the program run.

Enjoying reruns
The second time you run a particular example from this book, you don’t have to
follow all the steps in the previous section. It’s easy to run an example over and
over again. You can make changes to the code and then click the Run icon again.
That’s all you have to do.

If you’ve closed a project and you want to run it again, simply reopen the proj-
ect in Android Studio and click the Run icon. For details, refer to this chapter’s
“Starting up” section.

FIGURE 2-15:
Changing the

Dart entry
point in the

Edit Run/Debug
 Configurations

dialog.

© John Wiley & Sons

0005390155.INDD 432 Trim size: 7.375 in × 9.25 in June 11, 2022 3:19 PM

432 BOOK 4 Creating Mobile Apps

If you’re finicky . . .
After following the steps in the previous section, you may see some error markers
(squiggly, red underlines) in the Project tool window. Android Studio’s sample
Flutter project describes something named MyApp, but the code that you copied
into the lib folder makes no mention of MyApp. You can run this project over and
over again without fixing the squiggly, red underlines. But if you want to fix them,
simply follow these steps:

1. In the Project tool window, expand the branch labeled test.

Inside that branch, you find a file named widget_test.dart.

2. Delete the widget_test.dart file.

The squiggly, red underlines are gone. Problem solved!

The apps in this book are practice apps. No one runs these apps to get real work
done. When you develop a real app, you must never ignore code in the test folder.
Testing is an essential part of the software development process. Thorough test-
ing is what makes programs work reliably.

Another way to get rid of the squiggly, red underlines is to jump into a time
machine and redo instructions in the “Running This Book’s Sample Programs”
section. If you disregard Step 5 and don’t delete main.dart, you won’t get those
red underlines. But you may have to deal with two other issues. The Run icon’s
behavior may become a bit confusing.

CHAPTER 3 “Hello” from Flutter 433

0005390156.INDD 433 Trim size: 7.375 in × 9.25 in June 11, 2022 3:23 PM

 “Hello” from Flutter
♪ “Hello, I Must Be Going” ♪

BERT KALMAR AND HARRY RUBY, SUNG BY GROUCHO MARX, IN
ANIMAL CRACKERS, 1930

 A ccording to legend, the fi rst computer program to print nothing but “Hello
world!” was written by Brian Kernighan, as part of the BCPL programming
language documentation. The fi rst public appearance of such a program

was in Kernighan and Ritchie ’ s 1972 book, The C Programming Language . Nowadays,
the term Hello world program, or simply Hello program, applies to any dirt-simple
code for someone’s fi rst exposure to a new language or new framework.

 This chapter features a simple “Hello world” Flutter program and several
embellishments. You can run the code, dissect it, change it, and have fun with it.

Chapter 3

 IN THIS CHAPTER

» Running your fi rst Flutter app

» Adding text and images

» Improving your app ’ s layout

0005390156.INDD 434 Trim size: 7.375 in × 9.25 in June 11, 2022 3:23 PM

434 BOOK 4 Creating Mobile Apps

First Things First: Creating
a Flutter Project

Listing 3-1 contains your first Flutter app.

LISTING 3-1: Ahoy, Maties!

import 'package:flutter/material.dart';

main() => runApp(App0301());

class App0301 extends StatelessWidget {

 Widget build(BuildContext context) {

 return MaterialApp(

 home: Material(

 child: Text("Hello world!"),

),

);

 }

}

Follow these steps to run this code in a Flutter project:

1. Create a new Flutter project.

Refer to Book 4, Chapter 2. As usual, Android Studio creates a file full of Dart
code for you. The file’s name is main.dart.

2. Make sure that the main.dart code appears in Android Studio’s editor.

Android Studio opens the directory named android in the Project tool window
by default. To get to the main project directory (where the lib directory
containing main.dart is), click the drop-down at the top of the Project tool
window (which will say Android) and select Project. Expand the tree in the
Project tool window on the left side of Android Studio’s main window. Look for
lib branch and, within the lib branch, the main.dart branch. Double-click
that main.dart branch.

3. In Android Studio’s editor, delete all the main.dart code.

How liberating!

“H
ello” from

 Flutter

0005390156.INDD 435 Trim size: 7.375 in × 9.25 in June 11, 2022 3:23 PM

CHAPTER 3 “Hello” from Flutter 435

4. In Android Studio’s editor, type the code that you see in Listing 3-1.

tHE dART PROGRAMMING LANGUAGE IS cASe-sEnsITiVE. If you change a
lowercase letter in a word to an UpperCase letter, you can change the word’s
meaning. cHANGING the case can make the entire word go from being
meaningful to being meaningless. In the first line of Listing 3-1, you can’t
replace import with Import. iF YOU DO, THE WHOLE PROGRAM STOPS
WORKING. Try it and see for yourself!

Figure 3-1 shows you the finished product.

5. Run your new app.

For detailed instructions about initiating a run, refer to Book 4, Chapter 2.

Figure 3-2 shows you what you see when you run the Flutter app in Listing 3-1. The
app looks pretty bad, but at least you can see the little Hello world! in the upper-left
corner of the screen. You’ll tend to the app’s cosmetic aspects later in this chapter.

You may see red markers in Android Studio’s editor. If you do, hover over a marker
and read the explanation that appears. Some explanations are easy to understand;
others aren’t. The more practice you have in interpreting these messages, the
more skilled you become at fixing the problems.

Another thing you can try is to select the Dart Analysis tab at the bottom of
Android Studio’s main window. This tab lists many of the spots in your project that

FIGURE 3-1:
A Flutter app is

ready to run.

© John Wiley & Sons

FIGURE 3-2:
Running the code

in Listing 3-1.
© John Wiley & Sons

0005390156.INDD 436 Trim size: 7.375 in × 9.25 in June 11, 2022 3:23 PM

436 BOOK 4 Creating Mobile Apps

contain questionable code. For any item in the list, a red icon indicates an error —
something that must be fixed. (If you don’t fix it, your app can’t run.) Any other
color icon indicates a warning — something that won’t prevent your code from
running but might be worth considering.

Often times, Android Studio will underline code with a green squiggly line. This
indicates a warning or a hint for how your code could be better. If you hover
over the underlined code, you’ll get a description of the improvement you could
make. At this point, these hints may not make much sense. However, at the
bottom of the popup window will be a suggested action (such as Add 'key' to
constructors), as shown in Figure 3-3.

If you click the hint text in the popup window, Android Studio will magically make
the fix for you and the green squiggly line will be gone! Most of the fixes that are
suggested this way won’t affect how your app runs, but they’re good practices,
which you’ll learn about as you become more familiar with Dart.

If you look at the code listings you downloaded from this book’s website, you’ll
see that many of the suggested fixes have been implemented there, even if the
book lists the shorter syntax that accomplishes the same thing. This was done in
the interest of keeping the code listings shorter in the book and saving a few trees.

In the next several sections, you’ll take apart the code in Listing 3-1 and explore
it from many points of view. In the process, you’ll learn what the code does, why
it does what it does, and what it might do differently.

What’s it all about?
When you look at Listing 3-1, you may see words, punctuation, and indentation,
but that’s not what experienced Flutter developers see. They see the broad outline.
They see big ideas in complete sentences. Figure 3-4 shows you what Listing 3-1
looks like to an experienced developer.

FIGURE 3-3:
Can you take

a hint?

© John Wiley & Sons

“H
ello” from

 Flutter

0005390156.INDD 437 Trim size: 7.375 in × 9.25 in June 11, 2022 3:23 PM

CHAPTER 3 “Hello” from Flutter 437

A Flutter program is like a set of Russian matryoshka dolls. It’s a thing within
a thing within another thing, and so on, until you reach an endpoint. (See
Figure 3-5.)

FIGURE 3-4:
The big picture.

FIGURE 3-5:
The layered look.

0005390156.INDD 438 Trim size: 7.375 in × 9.25 in June 11, 2022 3:23 PM

438 BOOK 4 Creating Mobile Apps

Listing 3-1 has some Text inside a piece of Material which is, in turn, inside a
MaterialApp. The words Text, Material, and MaterialApp begin commands to
construct things. In Dart language terminology, the words Text, Material, and
MaterialApp are the names of constructor calls. Here’s the inside story:

 » The code

Text("Hello world!")

 » is a constructor call. When Flutter executes this code, it constructs a Text
object. That Text object contains the words Hello world!

 » The code

Material(

 child: Text("Hello world!"),

)

is another constructor call. When Flutter executes this code, it constructs a
Material object. That Material object contains the aforementioned Text
object. (See Figure 3-6.)

A Material object has some of the characteristics that physical material, such
as a piece of fabric, might have. It has a certain shape. It may be elevated from
the surface below it. You can move it or pinch it. Granted, the background in
Figure 3-2 doesn’t look much like a piece of fabric. But imitating the texture of
cloth isn’t Material Design’s goal. The point of Material Design is to create a
language for describing the status of the components on a user’s screen, and
to describe how these components relate to one another. For the scoop on
Material Design, visit https://material.io/.

FIGURE 3-6:
Each constructor

call creates an
object.

“H
ello” from

 Flutter

0005390156.INDD 439 Trim size: 7.375 in × 9.25 in June 11, 2022 3:23 PM

CHAPTER 3 “Hello” from Flutter 439

 » The code

MaterialApp(

 home: Material(

 child: Text("Hello world!"),

),

)

 » is yet another constructor call. When Flutter executes this code, it constructs
a MaterialApp whose starting screen is the Material object. (Refer to
Figure 3-4.)

Here’s a way to sum it all up:

In Listing 3-1, the MaterialApp object has a Material object, and the Material
object has a Text object.

In that sentence, the seemingly innocent use of the words “has a” is important.
For more details, see the later section “A brief treatise on ‘within-ness’.”

To understand the code in Listing 3-1, you have to know where pairs of parenthe-
ses begin and end. But finding the matches between open and close parentheses
isn’t always easy. To help with this problem, Android Studio has a few tricks up
its virtual sleeve. If you place the cursor near a parenthesis character, Android
Studio highlights the matching parenthesis. In addition, you can visit Android
Studio’s Settings or Preferences dialog box. (On Windows, select File➪ Settings. On
a Mac, select Android Studio➪ Preferences.) In that dialog box, select Editor➪ Gen-
eral➪ Appearance and put a check mark in the Show Closing Labels in Dart Source
Code checkbox. After you dismiss the dialog box, Android Studio displays com-
ments marking the ends of many constructor calls. (Notice the labels // Material
and // MaterialApp in Figure 3-7.)

FIGURE 3-7:
Helpful closing

labels.

© John Wiley & Sons

0005390156.INDD 440 Trim size: 7.375 in × 9.25 in June 11, 2022 3:23 PM

440 BOOK 4 Creating Mobile Apps

A constructor’s parameters
Every constructor call has a list of parameters (usually called a parameter list). In
Listing 3-1, each constructor’s parameter list has only one parameter in it. (See
Figure 3-8.)

Constructor calls can have many parameters, or have no parameters. Take, for
example, the Text call in Listing 3-1. In that code, the parameter "Hello world!"
supplies information to Dart — information that’s specific to the Text widget
that Dart is constructing. Try changing Text("Hello world!") to Text("Hello
world!", textScaleFactor: 4.0). When you save the new code, Android Stu-
dio does a hot restart that changes the look of the app in your emulator. (See
Figure 3-9.)

Book 4, Chapter 1 describes the difference between Flutter’s hot restart and hot
reload features. Both features apply updates to an app while the app is running.
To do a hot restart, simply save your code. To do a hot reload, press the Run icon
near the top of Android Studio’s main window.

FIGURE 3-8:
Constructor calls

have parameters.

FIGURE 3-9:
An ugly app to

illustrate the
textScale

Factor
 parameter’s

effect. © John Wiley & Sons

“H
ello” from

 Flutter

0005390156.INDD 441 Trim size: 7.375 in × 9.25 in June 11, 2022 3:23 PM

CHAPTER 3 “Hello” from Flutter 441

The constructor call

Text("Hello world!", textScaleFactor: 4.0)

contains two kinds of parameters:

 » "Hello world!" is a positional parameter.

A positional parameter is a parameter whose meaning depends on its position
in the parameter list. When you create a new Text object, the characters to be
displayed must always come first in the list. You can see this for yourself by
changing the constructor call to the following, invalid code:

Text(textScaleFactor: 4.0, "Hello world!") // Bad code!!

 » In this code, the positional "Hello world!" parameter doesn’t come first in
the list. So, if you type this line in Android Studio’s editor, the editor marks this
line with an ugly red error indicator. Quick! Change it back so that the "Hello
world!" parameter comes first! You don’t want Android Studio to form a bad
impression of you!

 » textScaleFactor: 4.0 is a named parameter.

A named parameter is a parameter whose meaning depends on the word
before the colon. A Text constructor call can have many different named
parameters, such as textScaleFactor, style, and maxLines. You can write
the named parameters in any order as long as they come after any of the
positional parameters.

When you supply a textScaleFactor parameter, the parameter tells Flutter
how large the text should be. (Refer to Figure 3-9.) When you don’t supply a
textScaleFactor parameter, Flutter uses the default 1.0 factor.

The size of the text depends on a few things, such as the textScaleFactor
and a style parameter’s font size. For example, the following code makes
Hello world! twice as large as it is in Figure 3-9.

Text("Hello world!", textScaleFactor: 4.0,

 style: TextStyle(fontSize: 28.0))

 » The app shown in Figure 3-9 already has textScaleFactor 4.0. But it has the
default font size, which is 14.0. Because 28.0 is two times 14.0, the fontSize:
28.0 parameter doubles the size of the text.

0005390156.INDD 442 Trim size: 7.375 in × 9.25 in June 11, 2022 3:23 PM

442 BOOK 4 Creating Mobile Apps

A note about punctuation
In Dart, you use commas to separate a constructor’s parameters from one another.
And, for all but the simplest parameter lists, you end the list with a trailing comma.

return MaterialApp(

 home: Material(

 child: Text("Hello world!"), // Trailing comma after the child parameter

), // Trailing comma after the home parameter

);

Without trailing commas, your code runs as expected. But the next section tells
you how you can get Android Studio to make your code look good. And, without
trailing commas, Android Studio doesn’t do its best. A pair of slashes (//) has a
special meaning in Dart. (To find out what it is, see Book 4, Chapter 4.)

Don’t relent — simply indent
Take another look at Listing 3-1 and notice how some of the lines are indented.
As a general rule, if one thing is subordinate to some other thing, its line of
code is indented more than that other thing. For example, in Listing 3-1, the
MaterialApp object contains the Material object, so the home: Material line is
indented more than the return MaterialApp line.

Here are two facts to keep in mind:

 » In a Dart program, indentation isn’t necessary.

 » In a Dart program, indentation is necessary.

Wait! What are those two facts again?

If you change the indentation in a Dart program, the program still runs. Here’s a
valid reworking of the code in Listing 3-1.

// Don't do this. It's poorly indented code.

 import 'package:flutter/material.dart';

main() => runApp(App0301());

class App0301 extends StatelessWidget {

Widget build(BuildContext context) {

return MaterialApp(

“H
ello” from

 Flutter

0005390156.INDD 443 Trim size: 7.375 in × 9.25 in June 11, 2022 3:23 PM

CHAPTER 3 “Hello” from Flutter 443

home: Material(

child: Text("Hello world!"),

),

);

 }

 }

When you ask Android Studio to run this poorly indented code, it works. Android
Studio dutifully runs the code on your virtual or physical device. But having this
code run isn’t good enough. This poorly indented code is hideous. It’s almost impossible
to read. The indentation, or lack thereof, gives you no indication of the program’s
structure. You have to wade through the words to discover that the Material
widget is inside the MaterialApp widget. Instead of showing you the app’s struc-
ture at a glance, this code makes your eyes wander aimlessly in a sea of seemingly
unrelated commands.

The good news is, you don’t have to learn how to indent your code. Android Studio
can do the indentation for you. Here’s how:

1. Open Android Studio’s Settings or Preferences dialog box.

On Windows, select File➪ Settings.

On a Mac, select Android Studio➪ Preferences.

2. In that dialog box, select Languages & Frameworks➪ Flutter and then put
a check mark in the Format Code on Save checkbox.

The check mark tells Android Studio to fix your code’s indentation whenever
you save your work.

While you’re at it, you might as well put a check mark in the next checkbox —
the Organize Imports on Save checkbox.

3. Select OK to dismiss the dialog box.

Hazzah! When you run the code — or simply save the code — Android Studio
fixes the code’s indentation.

If you want more control over Android Studio’s behavior, don’t fiddle with the
Settings or Preferences dialog box. Instead, whenever you want indentation to be
fixed, put the cursor in the Editor panel, and then choose Code➪ Reformat Code
from Android Studio’s main menu.

One way or another, please indent your code properly.

0005390156.INDD 444 Trim size: 7.375 in × 9.25 in June 11, 2022 3:23 PM

444 BOOK 4 Creating Mobile Apps

Classes, Objects, and Widgets
Dart is an object-oriented language, so Dart has things called objects and classes.
Listing 3-1 contains the names of many classes, such as App0301, Stateless
Widget, Widget, BuildContext, MaterialApp, Material, and Text. It’s fair to say
that almost every word in Listing 3-1 that starts with an uppercase letter is the
name of a class.

You don’t have to know a lot about object-oriented programming to understand
the role of these words in Listing 3-1, but it helps to keep a few facts in mind:

 » An object is a thing of some kind. Each object belongs to a particular
class of things.

The word Text is the name of a class of things — things that contain charac-
ters to be displayed on the screen. On its own, a class doesn’t do much. The
fact that Flutter has a Text class doesn’t mean anything for an app that
displays images and no characters.

In contrast, the constructor call Text("Hello world!") constructs an actual
object. That object appears on the user’s screen. For example, a Text object
containing the words Hello world! appears in Figure 3-2. You can refer to
that object as an instance of the Text class.

In any particular app, you can construct no Text instances, one Text instance,
or many Text instances. The same is true of classes such as Widget and
Material and almost every other class.

 » Being an instance of one class might make you automatically be an
instance of a bigger class.

Every instance of the Cat class is, by definition, an instance of the Animal
class. (If that weren’t true, millions of YouTube videos wouldn’t exist.) And
what about the Animal class? Every instance of the Animal class is an instance
of the LivingThing class. (See Figure 3-10.)

In the same way, every instance of Flutter’s Text class is, by definition, an
instance of Flutter’s StatelessWidget class. And, in turn, every instance of
the StatelessWidget class is an instance of Flutter’s Widget class. So every
Text instance is also a Widget instance. (Refer to Figure 3-10.)

 » In Flutter, almost every object is, in one way or another, an instance of
the Widget class.

Informally, a widget is a component on a user’s screen. Flutter takes this idea
to another level, with each part of the user interface (the Text instance, the
Material instance, and even the MaterialApp instance) being a widget in its
own right.

“H
ello” from

 Flutter

0005390156.INDD 445 Trim size: 7.375 in × 9.25 in June 11, 2022 3:23 PM

CHAPTER 3 “Hello” from Flutter 445

In Listing 3-1, App0301 is the name of a class. In the line

main() => runApp(App0301());

the term App0301() is yet another constructor call. This call constructs an
instance of the App0301 class.

The line

class App0301 extends StatelessWidget

 » and all the code below it is the declaration of the App0301 class. The declaration
tells Dart what kind of class it is and what kinds of things you can do with the
class. In particular, the word extends in that first line makes any instance of the
App0301 class be an instance of the StatelessWidget class. That’s all you have
to do to make App0301 instances be instances of the StatelessWidget class.

Now you have several terms with subtly different meanings — class, object,
instance, and widget. In Listing 3-1, the code Text("Hello world!") constructs
something, but exactly what kind of thing does that code construct?

 » From the Dart language’s point of view, Text("Hello world!") con-
structs an object.

In Dart terminology, you call it an instance of the Text class.

 » From the Flutter point of view, Text("Hello world!") creates a widget.

It’s an instance of the Text class and therefore an instance of the
StatelessWidget class and an instance of the Widget class. For more of
about objects, classes, and widgets, see Book 4, Chapter 7.

FIGURE 3-10:
Cats are

instances of the
Animal class.

0005390156.INDD 446 Trim size: 7.375 in × 9.25 in June 11, 2022 3:23 PM

446 BOOK 4 Creating Mobile Apps

A brief treatise on “within-ness”
In a Dart program, you can find widgets within other widgets. (Refer to
Figure 3-5.) In the same Dart program, you find classes within other classes.
(Refer to Figure 3-10.) These two kinds of “within-ness” aren’t the same. In fact,
these two kinds of “within-ness” have little to do with one another.

In Figure 3-4, a Text widget is the child of a Material widget. This doesn’t mean
that a Text instance is also an instance of the Material class. To understand the
difference, think about two kinds of relationships: “is a” relationships and “has
a” relationships.

 » The relationships described in the “What’s it all about?” section are “has
a” relationships.

In Listing 3-1, the MaterialApp object has a Material object inside of it, and
the Material object has a Text object inside of it.

There’s nothing special about “has a” relationships. There can be “has a” relation-
ships in a barnyard. A Cat has a Mouse, and the Mouse has a PieceOfCheese.

 » The relationships described in the earlier “Classes, Objects, and Widgets”
section are “is a” relationships.

In every Flutter program, each Text object is a StatelessWidget object and,
in turn, each StatelessWidget object is a Widget object.

In a barnyard, each Cat is an Animal and, in turn, each Animal is a
LivingThing.

It wouldn’t make sense to say that a Cat is a Mouse, or that a Material object
is a Text object. In the same way, it’s not correct to say that every Cat has an
Animal, or that every Text object has a StatelessWidget object. The two kinds of
relationships — “has a” and “is a” — are quite different.

If you’re hungering for terminology that’s more formal than “has a” and “is a,”
I have some for you:

 » A chain of things connected by the “has a” relationship is called a
composition hierarchy.

Frivolous as it may be, the diagram in Figure 3-5 illustrates a composition
hierarchy.

 » The chain of things connected by the “is a” relationship is called the
inheritance hierarchy.

The diagrams in Figure 3-10 are part of Flutter’s class hierarchy.

“H
ello” from

 Flutter

0005390156.INDD 447 Trim size: 7.375 in × 9.25 in June 11, 2022 3:23 PM

CHAPTER 3 “Hello” from Flutter 447

Don’t you feel better now that you have these fancy terms to fling around?

In Flutter, almost everything is called a “widget.” Many classes are widgets.
When a class is a widget, the class’s instances (any objects constructed from that
class) are also called widgets.

The documentation is your friend
You may be asking yourself how you’re going to memorize all these names: Text,
StatelessWidget, MaterialApp, and probably thousands more. Sorry to say,
you’re asking the wrong question. You don’t memorize anything. When you use
a name often enough, you remember it naturally. When you don’t remember
a name, you look it up in the online Flutter docs. (Sometimes, you’re not sure
where to look for the name you want. In that case, you have to poke around a bit.)

For example, point your web browser to https://api.flutter.dev/flutter/
widgets/Text-class.html. When you do, you see a page with information about
the Text class, some sample code, and some other stuff. (See Figure 3-11.)

In the page’s upper-right corner, you find a list of Text constructors. In Figure 3-11,
there are two possibilities: Text and rich. If you select the Text link, you see a
page describing the Text constructor call. (See Figure 3-12.)

This page lists the parameters in the constructor call and provides other helpful
information.

FIGURE 3-11:
Useful info about

the Text class.

0005390156.INDD 448 Trim size: 7.375 in × 9.25 in June 11, 2022 3:23 PM

448 BOOK 4 Creating Mobile Apps

On the page in Figure 3-12, notice how all but one of the constructor’s parameters
are enclosed in a pair of curly braces. The parameter that’s not in curly braces
(namely, String data) is the constructor’s one and only positional parameter.
Each of the parameters inside the curly braces (including double textScale
Factor) is a named parameter.

You can always count on Flutter’s documentation to tell you what kinds of objects
you can and cannot put inside of other objects. For example, the following code
is doomed to failure:

return MaterialApp(

 child: Text("Hello world!"), // Don't do this!

);

It’s doomed because, according to the Flutter docs, the MaterialApp constructor
has no parameter named child.

Making Things Look Nicer
The app shown in Figure 3-2 looks pretty bad. The words Hello world! are tucked
up against the screen’s upper-left corner. Fortunately, Flutter offers an easy way
to fix this: You surround the Text widget with a Center widget. As its name sug-
gests, the Center widget centers whatever is inside of it.

FIGURE 3-12:
The Text

 constructor call.

“H
ello” from

 Flutter

0005390156.INDD 449 Trim size: 7.375 in × 9.25 in June 11, 2022 3:23 PM

CHAPTER 3 “Hello” from Flutter 449

The word Center is the name of a class, so any object constructed from that
class is called an instance of that class. In a term such as “Center widget,” the
word widget suggests that something like Center (something to help manage the
screen’s layout) is a component of some kind. A piece of Text on the screen is
a component, a piece of Material on the screen is a component, and a Center
object is also a component. Even though a Center widget doesn’t light up some-
where on the screen, a Center widget is still a component. Part of Flutter’s great
strength is that Flutter treats all things the same way. When so many things are
widgets, so many things can serve as parameters in the constructors of other
things. The people who make up names for programming features call this the
composability feature, and composability is a very nice feature to have.

You have a few ways to surround a Text widget’s code with a Center widget’s
code. One way is to poke the cursor somewhere inside Android Studio’s editor,
start typing, and hope that you navigate the thicket of parentheses correctly. A
better way is to do the following:

1. Place the cursor on the word Text in the editor.

2. Press Alt+Enter (on Windows) or Opt+Return (on macOS).

As a result, a drop-down list appears.

3. In the drop-down list, select Center Widget.

Listing 3-2 shows you what you get.

LISTING 3-2: Centering the Text

import 'package:flutter/material.dart';

main() => runApp(App0302());

class App0302 extends StatelessWidget {

 Widget build(BuildContext context) {

 return MaterialApp(

 home: Material(

 child: Center(

 child: Text("Hello world!"),

),

),

);

 }

}

0005390156.INDD 450 Trim size: 7.375 in × 9.25 in June 11, 2022 3:23 PM

450 BOOK 4 Creating Mobile Apps

In Listing 3-2, the Material widget has a Center widget child, which, in turn,
has a Text widget child. You can think of the Text widget as the grandchild of the
Material widget.

Flutter supports hot restarting. After adding the Center code to the program in
Android Studio’s editor, save the changes by pressing Ctrl+S (on Windows) or
Cmd+S (on a Mac). If the program from Listing 3-1 was already running, Flutter
applies your changes and updates the emulator screen almost immediately.

In some situations, hot restart doesn’t work. Instead of updating your app, Android
Studio displays an error message. If that happens, try a hot reload. (Press the Run
icon near the top of Android Studio’s main window.) And what if hot reload fails?
In that case, press the Stop icon — the red square icon that’s in the same row as
the Run icon. When you press the Stop icon, the run of your app ends completely.
Pressing the Run icon to start afresh may fix the problem.

Figure 3-13 shows what you get when you run the code in Listing 3-2.

FIGURE 3-13:
Yes, you’ve

 centered the text.

© John Wiley & Sons

“H
ello” from

 Flutter

0005390156.INDD 451 Trim size: 7.375 in × 9.25 in June 11, 2022 3:23 PM

CHAPTER 3 “Hello” from Flutter 451

Creating a scaffold
The Text widget in Figure 3-13 looks so lonely. Let’s add some fanfare to the basic
app. Listing 3-3 has the code; Figures 3-14 and 3-15 show you the new screen.

LISTING 3-3: Using a Scaffold

import 'package:flutter/material.dart';

main() => runApp(App0303());

class App0303 extends StatelessWidget {

 Widget build(BuildContext context) {

 return MaterialApp(

 home: Scaffold(

 appBar: AppBar(

 title: Text("My First Scaffold"),

),

 body: Center(

 child: Text("Hello world!"),

),

 drawer: Drawer(

 child: Center(

 child: Text("I'm a drawer."),

),

),

),

);

 }

}

The home for a MaterialApp doesn’t have to be a Material widget. In Listing 3-3,
the home is a Scaffold. When companies build skyscrapers, they create
scaffolds — temporary wooden structures to support workers in high places. In
programming, a scaffold is a structure that provides basic, often-used functionality.

The Scaffold constructor in Listing 3-3 has three parameters — an appBar, a
body, and a drawer. In Figures 3-14 and 3-15, the appBar is the dark region at the
top of the screen. The body is the large white region containing the Center with
its Text widget. In Figure 3-15, the drawer is the big white area that appears when
the user swipes from the left edge of the screen. The drawer also appears when
the user presses the “hamburger” icon — three horizontal lines near the screen’s
top-left corner.

0005390156.INDD 452 Trim size: 7.375 in × 9.25 in June 11, 2022 3:23 PM

452 BOOK 4 Creating Mobile Apps

The body is nothing special. It’s very much like the entire screen in the earlier
examples. But the appBar and drawer are new. The appBar and drawer are two of
the things you can have when you create a Scaffold. Other things made availa-
ble by Scaffold widgets include navigation bars, floating buttons, bottom sheets,
footer buttons, and more.

In this chapter, Listings 3-1 and 3-2 have Material widgets, and Listing 3-3
has a Scaffold. These widgets form the backgrounds for their respective apps.
If you remove the Material widget from Listing 3-1 or 3-2, your app’s screen
becomes an ugly mess. You get large red letters with yellow underlines against a

FIGURE 3-15:
Pulling out a

drawer.

© John Wiley & Sons

FIGURE 3-14:
Behold! A

scaffold!

© John Wiley & Sons

“H
ello” from

 Flutter

0005390156.INDD 453 Trim size: 7.375 in × 9.25 in June 11, 2022 3:23 PM

CHAPTER 3 “Hello” from Flutter 453

black background. The same thing happens when you remove the Scaffold from
Listing 3-3. There are other widgets that can provide backgrounds for your apps,
but Material and Scaffold are the most commonly used.

Adding visual tweaks
Try this experiment: Change the appBar parameter from Listing 3-3 to the code
snippet in Listing 3-4.

LISTING 3-4: A Slight Change for the Code from Listing 3-3

appBar: AppBar(

 title: Text("My First Scaffold"),

 elevation: 100,

 systemOverlayStyle: SystemUiOverlayStyle.dark,

)

Figure 3-16 shows the effect of adding the elevation and systemOverlayStyle
parameters to the AppBar constructor call. The effect of the elevation parame-
ter is subtle, but it’s details like this that can make a big difference in the overall
appearance of an app.

In Google’s Material Design language, you imagine that the background rests on
some flat surface, and that other components are elevated off the background
by some number of pixels. For an AppBar, the default elevation is 4, but you can
change a bar’s elevation with . . . wait for it . . . the elevation parameter.

FIGURE 3-16:
A slight change

from the screen
in Figure 3-14.

© John Wiley & Sons

0005390156.INDD 454 Trim size: 7.375 in × 9.25 in June 11, 2022 3:23 PM

454 BOOK 4 Creating Mobile Apps

A component’s elevation affects several aspects of the component’s appearance.
But in this section, the most obvious change is probably the shadow beneath
the AppBar. You might not be able to see the difference between the shadows in
Figures 3-14 and 3-16, but when you run the code on a virtual or physical device,
an AppBar with elevation: 100 casts quite a large shadow.

You may be wondering what the 100 in elevation: 100 means. Is it millimeters,
pixels, points, or light-years? In truth, it means “100 density-independent pix-
els” — or “100 dps,” for short. No matter what screen the user has, one dp is 1/160
of an inch. So elevation: 100 means 100/160 of an inch (better known as five-
eighths of an inch). For all the details about Material Design’s elevation property,
visit https://material.io/design/environment/elevation.html.

An AppBar widget’s systemOverlayStyle parameter is yet another matter. The
effect of adding systemOverlayStyle: SystemUiOverlayStyle.dark is to tell
Flutter that, because the AppBar is light, the text and icons at the top of the
AppBar should be dark. (Compare Figures 3-14 and 3-16.) The dark text and icons
are easy to see against what is considered to be a light AppBar.

Dart’s enum feature
An interesting feature of the Dart programming language is hiding inside Listing 3-4.
The name SystemUiOverlayStyle refers to something called an enum (pronounced
“ee-noom”). The word enum is short for enumeration. An enum is a bunch of val-
ues, like SystemUiOverlayStyle.light and SystemUiOverlayStyle.dark.

In Listing 3-4, notice how you refer to an enum’s value. You don’t use a con-
structor call. Instead, you use the name of the enum (such as SystemUiOver
layStyle), followed by a period, followed by the unique part of the value’s name
(such as light or dark).

Flutter has many other built-in enums. For example, the Orientation enum
has values Orientation.portrait and Orientation.landscape. The Animation
Status enum has values AnimationStatus.forward, AnimationStatus.reverse,
AnimationStatus.completed, and AnimationStatus.dismissed. To find out
how to create a new enum, see Book 4, Chapter 7.

Hello from sunny California!
Google announced Material Design at its developer conference in 2014. The first
version of this design language dealt mostly with Android devices, but Ver-
sion 2 embraced custom branding for iPhones and other iOS devices. Flutter’s
Material widget runs on iPhones with automatic platform-specific adapta-
tions. You can run any of this book’s MaterialApp examples on iPhones as well

“H
ello” from

 Flutter

0005390156.INDD 455 Trim size: 7.375 in × 9.25 in June 11, 2022 3:23 PM

CHAPTER 3 “Hello” from Flutter 455

as Android phones, but if you want an iPhone-first design strategy, you can use
Flutter’s Cupertino widget collection. Listing 3-5 has an example.

LISTING 3-5: How to Look Like an iPhone App

import 'package:flutter/cupertino.dart';

void main() => runApp(App0305());

class App0305 extends StatelessWidget {

 Widget build(BuildContext context) {

 return CupertinoApp(

 home: CupertinoPageScaffold(

 navigationBar: CupertinoNavigationBar(),

 child: Center(

 child: Text("Hello world!"),

),

),

);

 }

}

Listing 3-5 is very much like its Material Design cousin, Listing 3-3. But instead
of having MaterialApp, Scaffold and AppBar widgets, Listing 3-5 has the
CupertinoApp, CupertinoPageScaffold, and CupertinoNavigationBar widgets.
Instead of importing 'package:flutter/material.dart', Listing 3-5 imports
'package:flutter/cupertino.dart'. (This import declaration makes Flutter’s
Cupertino widget library available for use by the rest of the listing’s code.)

Flutter’s Material Design and Cupertino widgets aren’t completely parallel with
one another. For example, the Scaffold constructor call in Listing 3-3 has a body
parameter. In place of that parameter, the CupertinoPageScaffold constructor
call in Listing 3-5 has a child parameter. When in doubt, check the official Flutter
documentation pages to find out which parameter names belong to which wid-
gets’ constructor calls.

You can mix and match Material Design and Cupertino widgets in the same app.
You can even tailor your app’s design style for different kinds of phones. You can
even put code of the following kind in your app:

if (Platform.isAndroid) {

 // Do Android-specific stuff

}

if (Platform.isIOS) {

 // Do iOS-specific stuff

}

0005390156.INDD 456 Trim size: 7.375 in × 9.25 in June 11, 2022 3:23 PM

456 BOOK 4 Creating Mobile Apps

For more information, visit https://pub.dev/packages/device_info_plus.

Adding another widget
Relationships between widgets can be described in terms that are similar to a
family tree. In the previous examples, the Text widget is a child of the Center
widget and the Center widget is a child of the body. In both cases, the widgets are
only children.

How do you put two children on a scaffold’s body? You might be tempted to try this:

// DON'T DO THIS:

body: Center(

 child: Text("Hello world!"),

 child: AnotherWidget(...)

)

But a constructor call can’t have two parameters with the same name. So, what
can you do?

Flutter has a Column widget. The Column widget’s constructor has a children
parameter. The Column widget’s children line up, one under another, on the
screen. That sounds promising! Listing 3-6 has some code, and Figure 3-17 has
the resulting display.

LISTING 3-6: More Widgets, Please!

import 'package:flutter/material.dart';

main() => runApp(App0306());

class App0306 extends StatelessWidget {

 Widget build(BuildContext context) {

 return MaterialApp(

 home: Scaffold(

 appBar: AppBar(

 title: Text("Adding Widgets"),

),

 body: Column(

 children: [

 Text(

 "Hello world!",

 textScaleFactor: 2.0,

),

 Text("It's lonely for me inside this phone.")

],

“H
ello” from

 Flutter

0005390156.INDD 457 Trim size: 7.375 in × 9.25 in June 11, 2022 3:23 PM

CHAPTER 3 “Hello” from Flutter 457

),

),

);

 }

}

A Column constructor call has a children parameter, and the children
parameter’s value is a list. In the Dart programming language, a list is a bunch of
objects. Each object’s position in the list is called an index. The index values start
from 0 and work their way upward.

One way to create a list is to enclose objects in square brackets. For example,
Listing 3-6 contains a list with two objects. (See Figure 3-18.)

A list’s indices don’t begin with 1. They begin with 0.

FIGURE 3-17:
Who’s in there?

© John Wiley & Sons

FIGURE 3-18:
Square brackets

create lists of
things.

0005390156.INDD 458 Trim size: 7.375 in × 9.25 in June 11, 2022 3:23 PM

458 BOOK 4 Creating Mobile Apps

STRING THINGS
In the Dart programming language (and in JavaScript and other programming lan-
guages), the stuff that you surround with quotation marks (as in "Hello world!") is
called a string. It’s a bunch of characters, one after another. Here are some handy facts
about strings:

• To create a string, you can use double quotation marks or single quotation
marks.

In other words, 'Hello world!' is the same as "Hello world!".

• It’s easy to put a single quotation mark inside a double quoted string.

Refer to this string in Listing 3-6:

"It's lonely for me inside this phone."

• It’s easy to put a double quotation mark inside a single quoted string.

For example, the following is a valid string:

'"Yikes!" she said.'

• Using backslash characters (\), you can put either kind of quotation mark
inside either kind of string.

Here are two examples:

'It\'s lonely for me inside this phone.'

"\"Yikes!\" she said."

• A string can straddle several lines if you use triple quotation marks.

Both of these examples are valid Dart code:

'''And the winner is ...

 Charles Van Doren!'''

"""And the winner is ...

 Charles Van Doren!"""

• To paste strings one after another, use a plus sign (+) or some blank spaces.

Both of these examples are valid Dart code:

"Hello" + " world!"

"Hello" " world!"

For some other things you can do with strings, see Book 4, Chapter 4.

“H
ello” from

 Flutter

0005390156.INDD 459 Trim size: 7.375 in × 9.25 in June 11, 2022 3:23 PM

CHAPTER 3 “Hello” from Flutter 459

Centering the text (Part 1)
Figure 3-17 looks strange because the words are tucked up against the upper-left
corner. In this section, you’ll walk through some steps to diagnose this problem
and fix it.

1. While the app in Listing 3-6 runs, look on the right edge of Android
Studio’s window for a toolbar button with the words Flutter Inspector on
it. Click that toolbar button.

As a result, the Flutter Inspector appears. (See Figure 3-19.)

2. In the upper-left corner of the Flutter Inspector, look for the Toggle Select
Widget Mode icon. (Refer to Figure 3-19.) Click that icon.

3. In the tree of widgets, select Column. (See Figure 3-20.)

FIGURE 3-19:
The Flutter
Inspector.

© John Wiley & Sons

FIGURE 3-20:
Selecting a

branch of the
Flutter Inspector’s

tree.

© John Wiley & Sons

0005390156.INDD 460 Trim size: 7.375 in × 9.25 in June 11, 2022 3:23 PM

460 BOOK 4 Creating Mobile Apps

As a result, the device that’s running your app adds highlighting and a little
label to the Column widget on the screen. (See Figure 3-21.)

4. Just for fun, select a few other branches in the Flutter Inspector’s tree of
widgets.

You can determine the boundaries of almost any of your widgets by using this
technique.

The graphic in Figure 3-21 tells you that the Column widget isn’t centered inside
of its parent Scaffold widget, and it’s not wide enough to fill the entire Scaffold
widget. To fix this, put the Column widget inside of a Center widget. Put the cursor
on the word Column in Android Studio’s editor, and then follow the instructions
at the start of the earlier “Making Things Look Nicer” section. Listing 3-7 shows
you what you get.

LISTING 3-7: Centering the Column Widget

import 'package:flutter/material.dart';

main() => runApp(App0307());

class App0307 extends StatelessWidget {

 Widget build(BuildContext context) {

 return MaterialApp(

 home: Scaffold(

 appBar: AppBar(

 title: Text("Adding Widgets"),

),

 body: Center(

 child: Column(

FIGURE 3-21:
Widget Select
mode is really

useful!

© John Wiley & Sons

“H
ello” from

 Flutter

0005390156.INDD 461 Trim size: 7.375 in × 9.25 in June 11, 2022 3:23 PM

CHAPTER 3 “Hello” from Flutter 461

 children: [

 Text(

 "Hello world!",

 textScaleFactor: 2.0,

),

 Text("It's lonely for me inside this phone.")

],

),

),

),

);

 }

}

When you save your changes, Android Studio does a hot restart and you see the
new-and-improved display in Figure 3-22.

Centering the text (Part 2)
The Text widgets in Figure 3-22 are centered horizontally, but they’re not cen-
tered vertically. To center them vertically, you can fiddle with Flutter’s Center
widget, but there’s a much easier way.

1. In Android Studio’s Flutter Inspector, hover your mouse pointer over the
Column widget.

The Flutter Inspector displays all the properties of whatever widget you’re
hovering over in a popup.

Wait! What’s a “property”? Every object has properties, and each property of
each object has a value. For example, every instance of Flutter’s Text class has

FIGURE 3-22:
The Column

widget is
centered.

© John Wiley & Sons

0005390156.INDD 462 Trim size: 7.375 in × 9.25 in June 11, 2022 3:23 PM

462 BOOK 4 Creating Mobile Apps

a textScaleFactor property. In Listing 3-7, a constructor call sets a Text
instance’s textScaleFactor property to the value 2.0.

Constructor calls aren’t the only way of setting the properties of objects. In
Figure 3-23, the Flutter Inspector shows the values of the Column widget’s
direction property, its mainAxisAlignment property, and many other
properties.

A column’s main axis is an invisible line going from the column’s top to its
bottom. You can replace start with any of the values end, center,
spaceBetween, spaceAround, or spaceEvenly.

2. In Android Studio’s editor, add a mainAxisAlignment parameter to the
Column widget’s constructor. (See Listing 3-8.)

FIGURE 3-23:
Properties of

the Column (the
Column widget

that’s constructed
in Listing 3-7).

© John Wiley & Sons

LISTING 3-8: Time for an Alignment

import 'package:flutter/material.dart';

main() => runApp(App0308());

class App0308 extends StatelessWidget {

 Widget build(BuildContext context) {

 return MaterialApp(

 home: Scaffold(

 appBar: AppBar(

“H
ello” from

 Flutter

0005390156.INDD 463 Trim size: 7.375 in × 9.25 in June 11, 2022 3:23 PM

CHAPTER 3 “Hello” from Flutter 463

In Listing 3-8, mainAxisAlignment is the name of a parameter,
MainAxisAlignment is the name of an enum, and MainAxisAlignment.
center is one of the enum’s values.

For another look at Dart’s enum feature, refer to the “Dart’s enum feature”
section earlier in this chapter. And if you hunger for even more, see Book 4,
Chapter 7.

3. Save your editor changes to do a hot restart.

On the device that’s running your app, the Text widgets are now centered
horizontally and vertically. (See Figure 3-24.)

This section’s example illustrates aspects of Flutter’s Column widget, which dis-
plays things from top to bottom. It should come as no surprise that Flutter has a
Row widget, which displays things from side to side. Most facts about the Column
widget are also true of the Row widget. (Well, they’re true when you’re lying down
instead of sitting upright.)

In addition, Flutter has a ListView widget. The ListView widget displays things
either way — from top to bottom or from side to side. In addition, the ListView
widget has its own scrolling feature. You can put 100 items on a ListView even
though only 20 items fit on the screen. When the user scrolls the screen, items
move off the screen while other items move on. To read about Flutter’s ListView
widget, see Book 4, Chapter 8.

 title: Text("Adding Widgets"),

),

 body: Center(

 child: Column(

 mainAxisAlignment: MainAxisAlignment.center,

 children: [

 Text(

 "Hello world!",

 textScaleFactor: 2.0,

),

 Text("It's lonely for me inside this phone.")

],

),

),

),

);

 }

}

0005390156.INDD 464 Trim size: 7.375 in × 9.25 in June 11, 2022 3:23 PM

464 BOOK 4 Creating Mobile Apps

Displaying an image
Words are nice, but pictures are prettier. In this section, you put an image on your
Flutter app screen.

1. In Android Studio, start a new Flutter project.

This project is named app0308 in the following screenshots, but you don’t have
to use that name.

2. In Android Studio’s Project Tool window, right-click the project’s name.

As a result, a contextual menu appears. (See Figure 3-25.)

FIGURE 3-24:
How lovely!

© John Wiley & Sons

FIGURE 3-25:
Right-clicking the
app0308 branch.

© John Wiley & Sons

“H
ello” from

 Flutter

0005390156.INDD 465 Trim size: 7.375 in × 9.25 in June 11, 2022 3:23 PM

CHAPTER 3 “Hello” from Flutter 465

3. On the contextual menu, choose New➪ Directory. (Refer to Figure 3-25.)

As a result, the New Directory dialog box appears. How convenient!

4. In the dialog box, type the name assets and then press Enter.

To be honest, you can name this new directory almost anything you want. But
if you don’t name it assets, you’ll confuse other Flutter developers.

5. Check the Project Tool window to make sure that the project tree has a
new assets branch. (See Figure 3-26.)

Seasoned Flutter developers create an images subdirectory of the new assets
directory. I won’t bother with that right now.

6. Find an image file.

Search your development computer’s hard drive for an image file. Look for
filenames ending in .png, .jpg, .jpeg, or .gif.

If your File Explorer or Finder doesn’t show filename extensions (such as .png,
.jpg, .jpeg, or .gif for image files), refer to the sidebar in Book 4, Chapter 2
that talks about those pesky filename extensions.

7. In your development computer’s File Explorer or Finder, copy the image file.

That is, right-click the image file’s name. On the contextual menu that appears,
select Copy.

8. Using Android Studio’s Project Tool window, paste the image file into the
assets directory.

That is, right-click the assets branch. On the resulting contextual menu,
choose Paste. In the resulting dialog box, type a name for your image file, and
then press Enter.

9. Open your project’s pubspec.yaml file.

More specifically, double-click the pubspec.yaml branch in the Project Tool
window’s tree.

Here’s a fun fact: The extension .yaml stands for Yet Another Markup Language.

FIGURE 3-26:
The assets

directory is a
subdirectory

of the app0308
directory.

© John Wiley & Sons

0005390156.INDD 466 Trim size: 7.375 in × 9.25 in June 11, 2022 3:23 PM

466 BOOK 4 Creating Mobile Apps

10. In the pubspec.yaml file, look for advice about adding assets to your
project.

The advice might look something like this:

To add assets to your application,

add an assets section, like this:

assets:

- images/a_dot_burr.jpeg

- images/a_dot_ham.jpeg

(In case you’re wondering, the filenames a_dot_burr.jpeg and a_dot_ham.
jpeg refer to Aaron Burr and Alexander Hamilton. These file names occur
many times in Flutter’s official documentation. Flutter is the technology behind
the mobile app for the Broadway musical Hamilton.)

In a .yaml file, a hashtag (#) tells the computer to ignore everything on the rest
of the line. So, in this part of the .yaml file, none of the lines has any effect.

11. Delete the hashtags on two of the lines. On the second line, change the
name of the image file to the name you chose in Step 8.

When I do this, my pubspec.yaml file contains the following text:

To add assets to your application,

add an assets section, like this:

assets:

 - MyImage.png

- images/a_dot_ham.jpeg

It’s common to forget to make the necessary changes in the pubspec.yaml
file. Try not to forget this step. When you do forget (and almost everyone
does), go back and edit the project’s pubspec.yaml file.

12. Replace all the code in the main.dart file with the code in Listing 3-9.

Use your own class name and filename instead of my App0309 and MyImage.
png names.

LISTING 3-9: Displaying an Image

import 'package:flutter/material.dart';

main() => runApp(App0309());

class App0309 extends StatelessWidget {

 Widget build(BuildContext context) {

“H
ello” from

 Flutter

0005390156.INDD 467 Trim size: 7.375 in × 9.25 in June 11, 2022 3:23 PM

CHAPTER 3 “Hello” from Flutter 467

13. Let ’er rip.

That is, run the code on a virtual or physical device. The display on the device’s
screen looks something like the result in Figure 3-27.

FIGURE 3-27:
It’s a robot!

© John Wiley & Sons

 return MaterialApp(

 home: Scaffold(

 appBar: AppBar(

 title: Text("My First Image"),

),

 body: Center(

 child: Image.asset('MyImage.png'),

),

),

);

 }

}

0005390156.INDD 468 Trim size: 7.375 in × 9.25 in June 11, 2022 3:23 PM

468 BOOK 4 Creating Mobile Apps

Flutter has an Image class, and the Image class has several different constructors.
The Image.asset constructor in Listing 3-9 grabs a file from a place inside your
Flutter project’s directory. To grab an image off the Internet, you call a different
constructor — the Image.network constructor. To get an image from somewhere
on your hard drive (somewhere outside of your Flutter project’s directory), you
can call the Image.file constructor. Each of these constructors is called a named
constructor. In each case, the stuff after the dot (.asset, .network, and .file) is
that particular constructor’s name.

Hey, Wait a Minute . . .
This chapter covers some fundamental ideas in Dart and Flutter app develop-
ment. You start with a Hello World program and make several changes to it.
While you do all that, you build up a vocabulary of useful concepts — concepts
like classes, constructors, enums, and widgets.

But, what do the first four lines of the Hello World program do? Why do you
return something when you construct a MaterialApp?

The answers to these questions, and others like them, are in the next chapter.
What are you waiting for? Read on!

CHAPTER 4 Hello Again 469

0005390157.INDD 469 Trim size: 7.375 in × 9.25 in June 11, 2022 3:27 PM

 Hello Again
♪ “Hello, hello again, sh-boom and hopin ’ we ’ ll meet again.” ♪

 —JAMES KEYES, CLAUDE FEASTER, CARL FEASTER, FLOYD F. MCRAE,
AND JAMES EDWARDS, SUNG BY THE CHORDS, THE CREW-CUTS,

STAN FREBERG, AND OTHERS, 1954

 C hapter 3 is all about a simple Hello World program. Listing 4-1 shows one
version of the code.

 LISTING 4-1 : Yet Another Look at the First Hello Program

 import 'package:flutter/material.dart';

 main() => runApp(App0401());

 class App0401 extends StatelessWidget {

 Widget build(BuildContext context) {

 return MaterialApp(

 home: Material(

 child: Center(child: Text("Hello world!")),

),

);

 }

 }

Chapter 4

 IN THIS CHAPTER

» Looking at functions in a Flutter app

» Learning to type

» Dealing with variables and other little
things

0005390157.INDD 470 Trim size: 7.375 in × 9.25 in June 11, 2022 3:27 PM

470 BOOK 4 Creating Mobile Apps

In Chapter 3, you focused on the middle of the program — the MaterialApp and
all the stuff inside it — while ignoring anything having to do with things called
“functions.” This chapter continues the tour of a Hello World program and sets its
sites on those “function” things.

Creating and Using a Function
Here’s an experiment: Run the app whose code is shown in Listing 4-2.

LISTING 4-2: Words, Words, Words

import 'package:flutter/material.dart';

main() => runApp(App0402());

class App0402 extends StatelessWidget {

 Widget build(BuildContext context) {

 return MaterialApp(

 home: Material(

 child: Center(child: Text(highlight("Look at me"))),

),

);

 }

}

highlight(words) {

 return "*** " + words + " ***";

}

Figure 4-1 shows you the output of the app in Listing 4-2.

Listing 4-2 contains a function declaration and a function call. (See Figure 4-2.)

FIGURE 4-1:
Another exciting

Flutter app.

H
ello A

gain

0005390157.INDD 471 Trim size: 7.375 in × 9.25 in June 11, 2022 3:27 PM

CHAPTER 4 Hello Again 471

The function declaration
Think about a recipe — a set of instructions for preparing a particular meal.
A function declaration is like a recipe: It’s a set of instructions for performing
a particular task. In Listing 4-2, this set of instructions says, “Form the string
containing asterisks followed by some words followed by more asterisks and
return that string somewhere.”

Most recipes have names, like Macaroni and Cheese or Triple Chocolate Cake. The
function at the bottom of Listing 4-2 also has a name: Its name is highlight.
(See Figure 4-3.) There’s nothing special about the name highlight. It could
have just as easily been called makeItFancy or tacos (although, calling it tacos
might not be the best choice in terms of making your code understandable to other
programmers).

FIGURE 4-2:
The highlight

function in
Listing 4-2.

FIGURE 4-3:
A header

and a body.

0005390157.INDD 472 Trim size: 7.375 in × 9.25 in June 11, 2022 3:27 PM

472 BOOK 4 Creating Mobile Apps

In Figure 4-3, the function name highlight is in the part of the declaration called
the header. The function’s instructions (return "*** " + words + " ***") are
in the part of the declaration called the body.

A recipe for macaroni and cheese sits in a book or on a web page. The recipe
doesn’t do anything. If no one uses the recipe, the recipe lies dormant. The same is
true of a function declaration. The declaration in Listing 4-2 doesn’t do anything
on its own. The declaration just sits there.

A function call
Eventually, somebody might say, “Please make macaroni and cheese for dinner,”
and then someone follows the Macaroni and Cheese recipe’s instructions. One
way or another, the process begins when someone says (or maybe only thinks)
the name of the recipe.

A function call is code that says, “Please execute a particular function declara-
tion’s instructions.” Imagine a phone or another device that’s running the code
in Listing 4-2. When the phone encounters the function call highlight("Look
at me"), the phone is diverted from its primary task — the task of constructing
an app with its Material, Center, and Text widgets. The phone takes a detour to
execute the instructions in the highlight function’s body. After figuring out that
it should create "*** Look at me ***", the phone returns to its primary task,
adding the Text widget with "*** Look at me ***" to the Center widget, adding
the Center widget to the Material widget, and so on.

A function call consists of a function’s name (such as the name highlight in
Listing 4-2), followed by some last-minute information (such as "Look at me"
in Listing 4-2).

Wait! In the previous sentence, what does some last-minute information mean?
Read on.

Parameters and the return value
Suppose that your recipe for macaroni and cheese serves one person and calls
for two ounces of uncooked elbow macaroni. You’ve invited 100 people to your
intimate evening gathering. In that case, you need 200 ounces of uncooked elbow
macaroni. In a way, the recipe says the following: “To find the number of ounces
of uncooked elbow macaroni that you need, multiply the number of servings
by 2.” That number of servings is last-minute information. The person who wrote
the recipe doesn’t know how many people you’ll be serving. You provide a number
of servings when you start preparing the mac-and-cheese. All the recipe says is to
multiply that number by 2.

H
ello A

gain

0005390157.INDD 473 Trim size: 7.375 in × 9.25 in June 11, 2022 3:27 PM

CHAPTER 4 Hello Again 473

In a similar way, the highlight function declaration in Listing 4-2 says, “To find
the value that this function returns, combine asterisks followed by the words that
you want to be highlighted followed by more asterisks.”

A function declaration is like a black box. You give it some values. The function
does something with those values to calculate a new value. Then the function
returns that new value. (See Figures 4-4 and 4-5.)

FIGURE 4-4:
Good stuff in,

good stuff out.

FIGURE 4-5:
In with the old,

out with the new.

0005390157.INDD 474 Trim size: 7.375 in × 9.25 in June 11, 2022 3:27 PM

474 BOOK 4 Creating Mobile Apps

Figures 4-4 and 4-5 show what it means to give values to a function, and for a
function to return a value.

 » You give values to a function with the function’s parameter list.

Like any constructor call, every function call has a parameter list. Each
parameter feeds a piece of information for the function to use. In Figure 4-5,
the function call highlight("Look at me") passes the value "Look at me"
to the highlight function’s declaration. Inside the function declaration, the
name words stands for "Look at me", so the expression "*** " + words +
" ***" stands for "*** Look at me ***".

 » You return a value from a function with a return statement.

In Listing 4-2, the line

return "*** " + words + " ***";

 » is a return statement. Again, imagine a phone that’s running the code in
Listing 4-2. With the execution of this return statement, this is what happens:

• The phone stops executing any code inside the body of the highlight
function.

• The phone replaces the entire function call with the returned value so that

Center(child: Text(highlight("Look at me")))

• effectively becomes

Center(child: Text("*** Look at me ***"))

• It continues to execute whatever code it was executing before it became
diverted by the function call. It takes up where it left off, constructing the
Center, Material, and MaterialApp widgets.

A cookbook may have only one recipe for chicken fricassee, but you can follow
the recipe as many times as you want. In the same way, a particular function has
only one declaration, but an app may contain many calls to that function. To see
this in action, look at Listing 4-2 and change the code’s child parameter, like so:

child: Column(mainAxisAlignment: MainAxisAlignment.center, children: [

 Text(highlight("Look at me")),

 Text(highlight("Your attention, please"))

])

The new child contains two calls to the highlight function, each with its own
parameter value. The resulting app is what you see in Figure 4-6.

H
ello A

gain

0005390157.INDD 475 Trim size: 7.375 in × 9.25 in June 11, 2022 3:27 PM

CHAPTER 4 Hello Again 475

A return statement is only one of several kinds of statements in the Dart pro-
gramming language. For more about this topic, see the section “Statements and
declarations,” later in this chapter.

Programming in Dart: The Small Stuff
“Dart is boring.” That’s what Faisal Abid said during a presentation at DevFest
NYC 2017. He wasn’t talking trash about Dart. He was merely explaining that Dart
is much like many other programming languages. If you’ve written some pro-
grams in Java, C++, or JavaScript, you find Dart’s features to be quite familiar.
You encounter a few surprises, but not too many. When you’re learning to create
Flutter apps, you don’t want a new, complicated programming language to get in
your way. So, a boring language like Dart is just what you need.

This section presents some facts about the Dart programming language. Some of
it may look quite similar to other languages you’ve learned. Other parts are unique
to Dart.

Statements and declarations
A statement is a piece of code that commands Dart to do something. If you think
this definition is vague, that’s okay for now. Anyway, in Listing 4-2, the line

return "*** " + words + " ***";

is a statement because it commands Dart to return a value from the execution of
the highlight function.

Unlike a statement, a declaration’s primary purpose is to define something. For
example, the highlight function declaration in Listing 4-2 defines what should
happen if and when the highlight function is called.

Statements and declarations aren’t completely separate from one another. In
Listing 4-2, the highlight function declaration contains one statement — a

FIGURE 4-6:
Two Text

widgets.

0005390157.INDD 476 Trim size: 7.375 in × 9.25 in June 11, 2022 3:27 PM

476 BOOK 4 Creating Mobile Apps

return statement. A function declaration may contain several statements. For
example, the following declaration contains three statements:

highlight2(words) {

 print("Wha' da' ya' know!");

 print("You've just called the highlight2 function!");

 return "*** " + words + " ***";
}

The first two statements (calls to Dart’s print function) send text to Android
Studio’s Run tool window. The third statement (the return statement) makes
highlight("Look at me") have the value "*** Look at me ***".

Use Dart’s print function only for testing your code. Remove all calls to print
before publishing an app. If you don’t, you might face some trouble. At best, the
calls serve no purpose and can slow down the run of your app. At worst, you may
print sensitive data and show it to malicious hackers.

Dart’s typing feature
What does “five” mean? You can have five children, but you can also be five feet
tall. With five children, you know exactly how many kids you have. (Unlike the
average American family, you can’t have 2.5 kids.) But if you’re five feet tall, you
might really be five feet and half an inch tall. Or you might be four feet eleven-
and-three-quarter inches tall, and no one would argue about it.

What else can “five” mean? Nuclear power plants can undergo fire-induced
vulnerability evaluation, also known as five. In this case, “five” has nothing to do
with a number. It’s just f-i-v-e.

A value’s meaning depends on the value’s type. Consider three of the Dart
language’s built-in types: int, double, and String.

 » An int is a whole number, with no digits to the right of the dec-
imal point.

If you write

int howManyChildren = 5;

 » in a Dart program, the 5 means “exactly five.”

 » A double is a fractional number, with digits to the right of the decimal
point.

H
ello A

gain

0005390157.INDD 477 Trim size: 7.375 in × 9.25 in June 11, 2022 3:27 PM

CHAPTER 4 Hello Again 477

If you write

double height = 5;

 » in a Dart program, the 5 means “as close to five as you care to measure.”

 » A String is a bunch of characters.

If you use single quotes (or double quotes) and write

String keystroke = '5';

 » in a Dart program, the '5' means “the character that looks like an uppercase
letter S but whose upper half has pointy turns.”

A value’s type determines what you can do with that value. Consider the values
86 and "86".

 » The first one, 86, is a number. You can add another number to it.

86 + 1 is 87

 » The second one, "86", is a string. You can’t add a number to it, but you
can add another string to it.

"86" + "1" is "861"

In some languages (such as JavaScript, for example), you can combine any value
with any other value and usually produce some kind of a result. You can’t do that
in Dart. The Dart programming language is type safe.

Literals, variables, and expressions
The Dart language has literals and variables. The value of a literal is the same in
every Dart program. For example, 1.5 is a literal because 1.5 means “one-and-a-
half” in every Dart program. Likewise, "Hello world!" in Listing 4-1 is a literal
because "Hello world!" stands for the same string of 12 characters in every Dart
program. (Yes, the blank space counts as one of the characters.)

Fun fact: In early versions of FORTRAN (circa 1956), you could change the mean-
ing of the literal 5 so that it stood for something else, like the number 6. Talk
about confusing!

0005390157.INDD 478 Trim size: 7.375 in × 9.25 in June 11, 2022 3:27 PM

478 BOOK 4 Creating Mobile Apps

The value of a variable is not the same in every Dart program. In fact, the value of
a variable may not be the same from one part of a Dart program to another. Take,
for example, the following line of code:

int howManyChildren = 5;

This line is called a variable declaration. The line defines a variable named
howManyChildren whose type is int. The line initializes that variable with the value
5. When Dart encounters this line, howManyChildren stands for the number 5.

Later, in the same program, Dart may execute the following line:

howManyChildren = 6;

This line is called an assignment statement. The line makes howManyChildren refer
to 6 instead of 5. Congratulations on the birth of a new child! Is it a girl or a boy?

An expression is a part of a Dart program that stands for a value. Imagine that your
code contains the following variable declarations:

int numberOfApples = 7;

int numberOfOranges = 10;

If you start with these two declarations, each entry in the left column of Table 4-1
is an expression.

In the last row of Table 4-1, do you really need the toString() part? Yes, you do.
If you write '9' + numberOfApples, you get an error message because '9' is a
String and numberOfApples is an int. You can’t add an int value to a String
value.

The Dart language has statements and expressions. A statement is a command to
do something; an expression is code that has a value. For example, the statement
print("Hello"); does something. (It displays Hello in Android Studio’s Run tool
window.) The expression 3 + 7 * 21 has a value. (Its value is 150.)

You can apply Dart’s toString to any expression. For some examples, see Book
4, Chapter 7.

H
ello A

gain

0005390157.INDD 479 Trim size: 7.375 in × 9.25 in June 11, 2022 3:27 PM

CHAPTER 4 Hello Again 479

TABLE 4-1 Fruitful Expressions
Expression Value Type Notes

7 7 int

7.1 7.1 double

7.0 7.0 double Even with .0, you get a double.

7.1 + 8 15.1 double A double plus an int is a double.

0.1 + 0.1 + 0.1 0.30000000000000004 double Arithmetic on double values isn’t
always accurate.

numberOfApples 7 int

numberOfOranges 10 int

numberOfApples +
numberOfOranges

17 int Who says you can’t add apples
and oranges?

8 + numberOfApples 15 int

numberOfOranges * 10 100 An asterisk (*) stands for
multiplication.

20 / 7 2.857142857142857 double A slash (/) performs division and
produces a double.

20.0 ~/ 7.0 2 int The ~/ combination performs
division and produces an int.
It always rounds down.

(20 / 7).round() 3 int This is how you round up or down
to the nearest int value.

20 % 7 6 int When you divide 20 by 7, you get 2
with a remainder of 6.

highlight("Look at me") "*** Look
at me ***"

String Assuming that you’ve declared
highlight as in Listing 4-2, the
function returns a Striing.

'9' + numberOfApples.
toString()

'97' String numberOfApples.toString()
is a String. Its value is '7'.

0005390157.INDD 480 Trim size: 7.375 in × 9.25 in June 11, 2022 3:27 PM

480 BOOK 4 Creating Mobile Apps

Dart provides a quick way to determine the type of a particular expression. To see
this, change the highlight function declaration in Listing 4-2 as follows:

highlight(words) {

 print(20 / 7);

 print((20 / 7).runtimeType);

 return "*** " + words + " ***";
}

When you run the app, the following lines appear in Android Studio’s Run tool
window:

flutter: 2.857142857142857

flutter: double

The value of 20 /7 is 2.857142857142857, and the value of (20 / 7).runtimeType
is double.

Two for the price of one
In Dart, some statements do double duty as both statements and expressions. As an
experiment, change the highlight function in Listing 4-2 so that it looks like this:

highlight(words) {

 int numberOfKazoos;

 print(numberOfKazoos);

 print(numberOfKazoos = 94);

 return "*** " + words + " ***";
}

Android Studio reports an error that the numberOfKazoos must be defined before
it’s used. Dart variables are non-nullable by default. What this means is that,
unless you specifically say that a variable can be null (which is the value of a Dart
variable before it’s initialized), Dart will enforce what’s called “null safety” and
refuse to run programs with variables that aren’t initialized to a non-null value.

Null safety is one of the things that makes Dart fast. It also decreases the chances
of programs having errors. If you want to let a variable be null, you can use the
“nullable” type operator, which is a question mark. For example, the preceding
example can be written like this and it will run just fine:

highlight(words) {

 int? numberOfKazoos;

 print(numberOfKazoos);

 print(numberOfKazoos = 94);

H
ello A

gain

0005390157.INDD 481 Trim size: 7.375 in × 9.25 in June 11, 2022 3:27 PM

CHAPTER 4 Hello Again 481

 return "*** " + words + " ***";
}

Here’s what you see in Android Studio’s Run tool window when you run this code:

flutter: null

flutter: 94

The line int? numberOfKazoos; is a variable declaration without an initializa-
tion. That’s fair game in the Dart programming language, as long as you use the
nullable type operator.

When Dart executes print(numberOfKazoos); you see flutter: null in the Run
tool window. Roughly speaking, null means “nothing.” At this point in the pro-
gram, the variable numberOfKazoos has been declared but hasn’t yet been given a
value, so numberOfKazoos is still null.

Finally, when Dart executes print(numberOfKazoos = 94); you see flutter: 94
in the Run tool window. Aha! The code numberOfKazoos = 94 is both a statement
and an expression! Here’s why:

 » As a statement, numberOfKazoos = 94 makes the value of number
OfKazoos be 94.

 » As an expression, the value of numberOfKazoos = 94 is 94.

Of these two facts, the second is more difficult for people to digest. (I’ve known
some experienced programmers who think about this the wrong way.) To execute
print(numberOfKazoos = 94); Dart covertly substitutes 94 for the expression
numberOfKazoos = 94, as shown in Figure 4-7.

In other words, the value numberOfKazoos = 94 is 94. So, in addition to doing
something, the code numberOfKazoos = 94 also has a value. That’s why
numberOfKazoos = 94 is both a statement and an expression.

FIGURE 4-7:
Dart’s innermost

thoughts.

0005390157.INDD 482 Trim size: 7.375 in × 9.25 in June 11, 2022 3:27 PM

482 BOOK 4 Creating Mobile Apps

Simple assignment statements aren’t the only things that double as expressions.
Try this code out for size:

int numberOfKazoos = 100;

print(numberOfKazoos);

print(numberOfKazoos++);
print(numberOfKazoos);

The code’s output is

flutter: 100

flutter: 100

flutter: 101

If the middle line of output surprises you, you’re not alone. As a statement, num-
berOfKazoos++ adds 1 to the value of numberOfKazoos, changing the value from
100 to 101. But, as an expression, the value of numberOfKazoos++ is 100, not 101.
(Refer to Figure 4-7.)

Here’s a comforting thought. By the time Dart executes the last print
(numberOfKazoos) statement, the value of numberOfKazoos has already changed
to 101. Whew!

As a statement, ++numberOfKazoos (with the plus signs in front) does the same
thing that numberOfKazoos++ does: It adds 1 to the value of numberOfKazoos. But,
as an expression, the value of ++numberOfKazoos isn’t the same as the value of
numberOfKazoos++. Try it. You’ll see.

Dart has some other statements whose values are expressions. For example, the
following code prints flutter: 15 twice:

int howManyGiraffes = 10;

print(howManyGiraffes += 5);
print(howManyGiraffes);

And the following code prints flutter: 5000 twice:

int rabbitCount = 500;

print(rabbitCount *= 10);

print(rabbitCount);

For more info about topics like += and *=, visit this page:

https://dart.dev/guides/language/language-tour#operators

H
ello A

gain

0005390157.INDD 483 Trim size: 7.375 in × 9.25 in June 11, 2022 3:27 PM

CHAPTER 4 Hello Again 483

Dart’s var keyword
On occasion, you might want to create a variable whose type can change. To do so,
declare the variable using Dart’s var keyword and leave out an initialization in the
declaration. For example, the following code won’t work:

int x = 7;

print(x);

x = "Someone's trying to turn me into a String"; // You can't do this

print(x);

But the following code works just fine:

var x;

x = 7;

print(x);

x = "I've been turned into a String"; // Dart is happy to oblige

print(x);

Another reason for using var is to avoid long, complicated type names. For an
example, see this chapter’s “Built-in types” section.

WE PAUSE FOR A FEW COMMENTS
You may have noticed some stuff beginning with two slashes (//) in some of the
chapter’s code examples. Two slashes signal the beginning of a comment.

A comment is part of a program’s text. But unlike declarations, constructor calls, and
other such elements, a comment’s purpose is to help people understand your code.
A comment is part of a good program’s documentation.

The Dart programming language has three kinds of comments:

• End-of-line comments

An end-of-line comment starts with two slashes and goes to the end of a line of type.
So, in the following code snippet, the text // Dart is happy to oblige is an
end-of-line comment:

x = "I've been turned into a String"; // Dart is happy to oblige

All the text in an end-of-line comment is for human eyes only. No information from
the two slashes to the end of the line is translated by Dart’s compiler.

(continued)

0005390157.INDD 484 Trim size: 7.375 in × 9.25 in June 11, 2022 3:27 PM

484 BOOK 4 Creating Mobile Apps

Built-in types
In a Dart program, every value has a type. Dart has ten built-in types. (See
Table 4-2.)

• Block comments

A block comment begins with /* and ends with */.

A block comment can span across several lines. For example, the following code is a
block comment:

/* Temporarily commenting out this code.

 That is, omitting these statements to see what happens:

 x = "Someone's trying to turn me into a String";

 print(x); */

Once again, no information between /* and */ gets translated by the compiler.

• Doc comments

An end-of-line doc comment begins with three slashes (///). A block doc comment
begins with /** and ends with */.

A doc comment is meant to be read by people who never even look at the Dart
code. But that doesn’t make sense. How can you see a doc comment if you never
look at the code?

Well, a certain program called dartdoc (what else?) can find any doc comments in
a program and turn these comments into a nice-looking web page. (For an example
of such a page, visit https://api.flutter.dev/flutter/widgets/Widget-
class.html.)

One more thought about comments in general: Book 4, Chapter 3 describes a way to
display closing labels in Android Studio’s editor.

home: Material(

 child: Text("Hello world!"),

), // Material

Does that final // Material look like a comment to you? Well, it’s not really a com-
ment. (Sorry about that.) Closing labels belong to a broader category of items called
code decoration. When Android Studio creates code decoration, it doesn’t add the deco-
ration to the program’s text. It only displays that decoration in the editor. If you examine
a program’s text using Notepad or TextEdit, you don’t see the code decoration.

(continued)

H
ello A

gain

0005390157.INDD 485 Trim size: 7.375 in × 9.25 in June 11, 2022 3:27 PM

CHAPTER 4 Hello Again 485

TABLE 4-2 Dart’s Built-In Types
Type Name What Literals Look Like Useful Info About the Type

Number types

int 42 Numbers with no digits to the right of the decimal
point — typically, from –9007199254740992 to
9007199254740991.

double 42.0 42.1 Numbers with digits to the right of the decimal point
(possibly, all zero digits).

num 42 42.0 42.1 A number of some kind. Every int value, and every
double value, is an example of a num value.

Collection Types

List [2, 4, –9, 25, 18]

["Hello", "Goodbye", 86]

[]

<int>[]

A bunch of values. The initial value is the 0th, the next
value is the 1st, the next value is the 2nd, and so on.
(With [], the bunch has no values in it.)

Set {2, 4, –9, 25, 18}

{"Hello", "Goodbye", 86}

{}

<int>{}

A bunch of values with no duplicates in no particular
order. (With {}, the bunch has no values in it.)

Map { 'one' : 1, 'two' : 2 ,

'three' : 3, 'many': 99}

<String, int>{}

A bunch of pairs, each pair consisting of a key (such
as 'one', 'two', 'three', or 'many') and a value
(such as 1, 2, 3, or 99). (With {}, the bunch has no
pairs in it.)

Other Types

String 'Dart is boring'

""

"""The previous

string is empty."""

A sequence of characters.

bool true, false A logical value. A variable of this type has one of only
two possible values: true and false.

Runes Runes('I ' '\u2665' ' you') A string of Unicode characters. For example, '\
u2665' is a heart character (♥).

Symbol (Not applicable) Turns an identifier in a Dart program into a value in a
Dart program. (Don’t worry about it!)

0005390157.INDD 486 Trim size: 7.375 in × 9.25 in June 11, 2022 3:27 PM

486 BOOK 4 Creating Mobile Apps

You can combine types to create new types. One way to do this is to put types
inside of collection types. For example, in the following declaration, the variable
amounts is a List containing only int values.

List<int> amounts = [7, 3, 8, 2];

Of course, you can go crazy layering types within types within other types:

Map<String, Map<String, List<int>>> values = {

 "Size": {

 "Small": [1, 2, 3],

 },

};

In cases like that, your best bet is to use the var keyword. Dart can usually figure
things out by looking at the rest of the code.

var values = {

 "Size": {

 "Small": [1, 2, 3],

 },

};

Types that aren’t built-in
In addition to the types in Table 4-2, every class is a type. For example, in
Listing 4-1, App0401 is the name of a type. It’s a type that’s defined in Listing 4-1.
You can add a line to Listing 4-1 that makes a variable refer to an instance of the
App0401 class. Here’s one such line:

App0401 myApp = App0401();

Like many other variable declarations, this line has a type name (App0401), fol-
lowed by a new variable name (myApp), followed by an initialization. The initial-
ization makes myApp refer to a newly constructed App0401 instance.

The Dart language comes with a library full of standard, reusable code. The formal
name for such as library is an application programming interface (API). Dart’s API
has declarations of many classes. For example, instances of Dart’s DateTime class
are moments in time, and instances of the Duration class are time intervals.

Similarly, the Flutter toolkit comes with a feature-rich API. In Listing 4-1, Widget,
StatelessWidget, BuildContext, MaterialApp, Material, Center, and Text are
the names of classes in the Flutter API.

H
ello A

gain

0005390157.INDD 487 Trim size: 7.375 in × 9.25 in June 11, 2022 3:27 PM

CHAPTER 4 Hello Again 487

Using import declarations
Woe is me! I can’t read the new book by my favorite author unless I go to my
local library and check out a copy. The same is true of Dart’s and Flutter’s library
classes (well, almost). You can’t use Flutter’s MaterialApp or Material classes
unless you start your program with

import 'package:flutter/material.dart';

If you delete this line, you can’t even use any of Flutter’s Widget classes
(StatelessWidget, Widget, Center, and Text, to name a few). That’s because,
when you import 'package:flutter/material.dart', you automatically import
'package:flutter/widgets.dart' also.

A relatively small number of Dart’s API classes, like the aforementioned DateTime
class, belong to a package named dart.core. You can start your program with
the line

import 'dart:core';

but it won’t do you any good. Classes from the dart.core package are always
imported, whether you ask for it or not.

No one memorizes the names of all the classes in the Dart or Flutter librar-
ies. When you need to know about a class, look it up by visiting https://api.
flutter.dev.

Creating Function Declaration Variations
This section shows some alternative ways of creating function declarations.
Listing 4-3 has the first example.

LISTING 4-3: Messing with Function Declarations

import 'package:flutter/material.dart';

main() {

 runApp(App0403());

}

class App0403 extends StatelessWidget {

 Widget build(BuildContext context) {

(continued)

0005390157.INDD 488 Trim size: 7.375 in × 9.25 in June 11, 2022 3:27 PM

488 BOOK 4 Creating Mobile Apps

BLING YOUR STRING
Listing 4-2 contains the following code:

"*** " + words + " ***"

The juxtaposition of plus signs and quotation marks can make code difficult to read. To
make your life easier, Dart has string interpolation. With string interpolation, a dollar sign
($) means, “Temporarily ignore the surrounding quotation marks and find the value of
the following variable.” That’s why, in Listing 4-3, the expression "*** $words ***"
stands for "*** Look at me ***" — the same string you get in Listing 4-2.

Not impressed with string interpolation? Look over the following function and see what
you think of it:

// The function call

getInstructions1(8, "+", ";", "'")

// The function's declaration

getInstructions1(howMany, char1, char2, char3) {

 return "Password: " +
 howMany.toString() +
 " characters; Don't use " +
 char1 +
 " " +
 char2 +
 " or " +
 char3;

}

Quite a mess, isn’t it? The value that the getInstructions1 function returns is

Password: 8 characters; Don't use + ; or '

 return MaterialApp(

 home: Material(

 child: Center(child: Text(highlight("Look at me"))),

),

);

 }

}

highlight(words) => "*** $words ***";

To read all about the dollar sign ($) on the last line of Listing 4-3, see the nearby
“Bling your string” sidebar.

(continued)

H
ello A

gain

0005390157.INDD 489 Trim size: 7.375 in × 9.25 in June 11, 2022 3:27 PM

CHAPTER 4 Hello Again 489

A run of the code in Listing 4-3 is the same as that of Listing 4-2. (Refer to
Figure 4-1.) In a sense, Listing 4-3 contains the same program as Listing 4-2. The
notation for things is slightly different, but the things themselves are the same.

In Listing 4-3, the highlight function declaration

highlight(words) => "*** $words ***";

is shorthand for the more long-winded highlight declaration in Listing 4-2.
When the body of a function declaration contains only one statement, you can use
this quick-and-easy fat arrow (=>) notation.

In a fat arrow function declaration, you never use the return keyword.

It’s easy to forget to include some blank spaces, quotation marks, or other items in this
sort of code. Here’s how you get the same return value using string interpolation:

// The function call

Text(getInstructions2(8, "+", ";", "'")

// The function's declaration

getInstructions2(howMany, char1, char2, char3) {

 return "Password: $howMany characters; Don't use $char1 $char2 or

$char3";

}

This new function, getInstructions2, is easier to create and understand than
getInstructions1.

When you use string interpolation, you can go a step further. Here’s what you can do
when you add curly braces to the mix:

// The function call

getInstructions3(8, "+", ";", "'")

// The function's declaration

getInstructions3(howMany, char1, char2, char3) {

 return "Password: ${howMany + 1} characters; Don't use $char1 $char2

or $char3";

}

This new getInstructions3 function returns

Password: 9 characters; Don't use + ; or '

String interpolation can handle all kinds of expressions — arithmetic expressions, logical
expressions, and others.

0005390157.INDD 490 Trim size: 7.375 in × 9.25 in June 11, 2022 3:27 PM

490 BOOK 4 Creating Mobile Apps

Every Dart program has a function named main. When you start running a pro-
gram, Dart looks for the program’s main function declaration and starts executing
whatever statements are in the declaration’s body. In a Flutter app, a state-
ment like

runApp(App0403());

tells Dart to construct an instance of App0403 and then run that instance. The
runApp function is part of Flutter’s API.

Type names in function declarations
Listing 4-4 adds some type names to the code from Listing 4-2.

LISTING 4-4: Better Safe than Sorry

import 'package:flutter/material.dart';

void main() => runApp(App0404());

class App0404 extends StatelessWidget {

 Widget build(BuildContext context) {

 return MaterialApp(

 home: Material(

 child: Center(child: Text(highlight("Look at me"))),

),

);

 }

}

String highlight(String words) {

 return "*** $words ***";

}

In Listing 4-4, String and void add some welcome redundancy to the code.
The occurrence of String in (String words) tells Dart that, in any call to the
highlight function, the words parameter must have type String. Armed with
this extra String information, Dart will cough up and spit out a bad function call
such as

highlight(19)

This is bad because 19 is a number, not a String. You may argue and say, “I’ll
never make the mistake of putting a number in a call to the highlight function.”

H
ello A

gain

0005390157.INDD 491 Trim size: 7.375 in × 9.25 in June 11, 2022 3:27 PM

CHAPTER 4 Hello Again 491

Yes you will, and so will every other programmer on earth. When you’re writing
code, mistakes are inevitable. The trick is to catch them sooner rather than later.

Near the end of Listing 4-4, String highlight tells Dart that the value returned
by the highlight function must be a String. If you accidentally write the follow-
ing code, Dart will complain like nobody’s business:

String highlight(String words) {

 return 99; //Bad code!

}

Sorry, chief. The value 99 isn’t a String.

Continuing our journey through Listing 4-4, void main doesn’t quite mean, “The
main function must return a value of type void.” Why not? It’s okay to put a type
name in front of a fat arrow declaration. So, what’s different about void main?

Simply stated, void isn’t a type. In a way, void means “no type.” The word void
reminds Dart that this main function isn’t supposed to return anything useful. Try
declaring void main and putting a return statement in the declaration’s body:

void main() {

 runApp(App0404());

 return 0; // Bad

}

If you do this, Android Studio’s editor adds red marks to your code. Dart is saying,
“Sorry, Bud. You can’t do that.”

Naming your parameters
Book 4, Chapter 3 distinguishes between constructors’ positional parameters
and named parameters. All that fuss about the kinds of parameters applies to
functions as well. For example, the highlight function in Listing 4-4 has one
parameter — a positional parameter.

highlight("Look at me") // A function call

String highlight(String words) { // The function declaration

 return "*** $words ***";

}

0005390157.INDD 492 Trim size: 7.375 in × 9.25 in June 11, 2022 3:27 PM

492 BOOK 4 Creating Mobile Apps

If you want, you can turn words into a named parameter. Simply surround the
parameter with curly braces:

highlight(words: "Look at me") // A function call

String highlight({String words}) { // The function declaration

 return "*** " + words + " ***";
}

You can even have a function with both positional and named parameters. In the
parameter list, all the positional parameters must come before any of the named
parameters. For example, the following code displays +++Look at me!+++.

highlight(// A function call

 "Look at me",

 punctuation: "!",

 symbols: "+++",
)

String highlight(// The function declaration

 String words, {

 String punctuation,

 String symbols,

}) {

 return symbols + words + punctuation + symbols;
}

What about the build function?
Listing 4-4 contains some familiar-looking code:

class App0404 extends StatelessWidget {

 Widget build(BuildContext context) {

 return MaterialApp(

Here are some facts:

 » In this code, build is the name of a function, and

Widget build(BuildContext context)

is the function declaration’s header.

The build function does exactly what its name suggests. It builds something.
To be precise, it builds the widget whose content is the entire Flutter app.

H
ello A

gain

0005390157.INDD 493 Trim size: 7.375 in × 9.25 in June 11, 2022 3:27 PM

CHAPTER 4 Hello Again 493

 » The build function returns a value of type Widget.

Quoting from Book 4, Chapter 3, “Being an instance of one class might make
you automatically be an instance of a bigger class.” In fact, every instance of
the MaterialApp class is automatically an instance of the StatefulWidget
class, which, in turn, is automatically an instance of the Widget class. So there
you have it — every MaterialApp is a Widget. That’s why it’s okay for the
build function’s return statement to return a MaterialApp object.

 » The function’s one-and-only parameter has the type BuildContext.

When Dart builds a widget, Dart creates a BuildContext object and passes
that to the widget’s build function. A BuildContext object contains informa-
tion about the widget and the widget’s relationship to other widgets in the
program. For more info, see Book 4, Chapter 6.

In Listing 4-4, the build function’s declaration is inside the class App0404 defi-
nition, but the highlight function declaration isn’t inside any class definition. In
a sense, this build function “belongs to” instances of the App0404 class.

A function that belongs to a class, or to the class’s instances, has a special name.
It’s called a method. More on this in Book 4, Chapter 5.

More Fun to Come!
What happens if a user taps the screen and wants a response from the app in
Listing 4-4? Absolutely nothing.

Let’s fix that. Turn the page to see what’s in Chapter 5.

♪ “Goodbye from us to you.” ♪

—BUFFALO BOB ON “THE HOWDY DOODY SHOW,” 1947–1960

0005390157.INDD 494 Trim size: 7.375 in × 9.25 in June 11, 2022 3:27 PM

CHAPTER 5 Making Things Happen 495

0005390158.INDD 495 Trim size: 7.375 in × 9.25 in June 11, 2022 3:34 PM

 Making Things Happen

 U ntil now, you ’ ve only used Flutter to build static apps. A static app always
does the same thing. Through building these static apps, you ’ ve learned
about Flutter ’ s programming strategies, constructors, functions, and other

good stuff . But here in Chapter 5, you ’ re going to learn to make more interest-
ing apps. An app that always displays the same text is boring, and users will rate
the app with zero stars. An interesting app interacts with the user. The app ’ s
screen changes when the user enters text, taps a button, moves a slider, or does
something else to get a useful response from the app. Making things happen is
essential for any kind of mobile app development. So, in this chapter, you begin
learning how to make things happen.

 Let ’ s All Press a Floating Action Button
 When you create a new Flutter project, Android Studio makes a main.dart fi le for
you. The main.dart fi le contains a cute little starter app. Listing 5-1 has a scaled-
down version of that starter app.

Chapter 5

 IN THIS CHAPTER

» What happens when you press
buttons on a device ’ s screen

» The truth about widget states

» How to remain anonymous

» How to move variables from one
place to another

0005390158.INDD 496 Trim size: 7.375 in × 9.25 in June 11, 2022 3:34 PM

496 BOOK 4 Creating Mobile Apps

LISTING 5-1: Press a Button; Change the Screen

import 'package:flutter/material.dart';

void main() => runApp(App0501());

class App0501 extends StatelessWidget {

 Widget build(BuildContext context) {

 return MaterialApp(

 home: MyHomePage(),

);

 }

}

class MyHomePage extends StatefulWidget {

 _MyHomePageState createState() => _MyHomePageState();

}

class _MyHomePageState extends State {

 String _pressedOrNot = "You haven't pressed the button.";

 void _changeText() {

 setState(_getNewText);

 }

 void _getNewText() {

 _pressedOrNot = "You've pressed the button.";

 }

 Widget build(BuildContext context) {

 return Scaffold(

 body: Center(

 child: Text(

 _pressedOrNot,

),

),

 floatingActionButton: FloatingActionButton(

 onPressed: _changeText,

));

 }

}

The code in Listing 5-1 captures the essence of the starter app in the February
2022 version of Android Studio. By the time you read this book, the creators of
Flutter may have completely changed the starter app. If the stuff in Listing 5-1
bears little resemblance to the starter app you get when you create a new project,

M
aking Things H

appen

0005390158.INDD 497 Trim size: 7.375 in × 9.25 in June 11, 2022 3:34 PM

CHAPTER 5 Making Things Happen 497

don’t worry. Just do what you’ve been doing. That is, delete all of Android Studio’s
main.dart code and replace it with the code in Listing 5-1.

When you launch the app in Listing 5-1, you see the text “You haven’t pressed the
button” and, in the screen’s lower-right corner, a blue circle. (See Figure 5-1.)

That blue circle is called a floating action button. It’s one of the widgets that you can
add to a Scaffold. When you click this app’s floating action button, the words on
the screen change to “You’ve pressed the button.” (See Figure 5-2.)

At last! A Flutter app is making something happen!

To understand what’s going on, you have to know about two kinds of widgets. To
learn their names, read the next section’s title.

FIGURE 5-1:
Before pressing

the button.

FIGURE 5-2:
After pressing

the button.

0005390158.INDD 498 Trim size: 7.375 in × 9.25 in June 11, 2022 3:34 PM

498 BOOK 4 Creating Mobile Apps

Stateless widgets and stateful widgets
Some systems have properties that can change over time. Take, for example, your
common, everyday traffic light. If it’s functioning properly, it’s red, yellow, or
green. Imagine that you’re hurrying to get to work and you stop for a red light.
Under your breath, you may grumble, “I’m annoyed that this traffic light’s state is
red. I wish that the state of that system would change to green.” A system’s state
is a property of the system that may change over time.

The app in Listing 5-1 has a homepage (named MyHomePage), and that homepage
is in one of two states. One state is shown in Figure 5-1. It’s the state in which the
Text widget displays “You haven’t pressed the button.” The other state is shown
in Figure 5-2. It’s the state in which the Text widget displays “You’ve pressed the
button.”

In Listing 5-1, the first line of the MyHomePage class declaration is

class MyHomePage extends StatefulWidget

You want the look of the MyHomePage widget to be able to change itself nimbly, so
you declare MyHomePage objects to be stateful widgets. Each MyHomePage instance
has a state — something about it that may change over time.

In contrast, the App0501 class in Listing 5-1 is a stateless widget. The app itself
(App0501) relies on its homepage to keep track of whatever text is being displayed.
So, the app has no need to remember whether it’s in one state or another. Nothing
about an App0501 instance changes during the run of this code.

Think again about a traffic light. The part with the bulbs rests on a pole that’s
fastened permanently to the ground. The entire assembly — pole, bulbs and all —
doesn’t change. But the currents running through the bulbs change every 30 sec-
onds or so. There you have it. The entire assembly is unchanging and stateless,
but a part of that assembly — the part that’s responsible for showing colors — is
changing and stateful. (See Figure 5-3.)

Widgets have methods
In Listing 5-1, the declaration of the App0501 class contains a function named
build. A function that’s defined inside of a class declaration is called a method.
The App0501 class has a build method. That’s good because there’s some fine
print in the code for StatelessWidget. According to that fine print, every class
that extends StatelessWidget must contain the declaration of a build method.

M
aking Things H

appen

0005390158.INDD 499 Trim size: 7.375 in × 9.25 in June 11, 2022 3:34 PM

CHAPTER 5 Making Things Happen 499

A stateless widget’s build method tells Flutter how to build the widget. Among
other things, the method describes the widget’s look and behavior. Whenever you
launch the program in Listing 5-1, Flutter calls the App0501 class’s build method.
That build method constructs a MaterialApp instance, which, in turn, constructs
a MyHomePage instance. And so on. From that point onward, the MaterialApp
instance doesn’t change. Yes, things inside the MaterialApp instance change, but
the instance itself doesn’t change.

How often does your town build a new traffic light assembly? Perhaps you might
see one going up every two years or so. The metal part of a traffic light isn’t
designed to change regularly. The town planners call the traffic light assembly’s
build method only when they construct a new light. The same is true of stateless
widgets in Flutter. A stateless widget isn’t designed to be changed. When a state-
less widget requires changing, Flutter replaces the widget.

What about stateful widgets? Do they have build methods? Well, they do and they
don’t. Every stateful widget has to have a createState method. The createState
method makes an instance of Flutter’s State class, and every State class has its
own build method. In other words, a stateful widget doesn’t build itself. Instead,
a stateful widget creates a state, and the state builds itself. (See Figure 5-4.)

A typical traffic light’s state changes every 30 seconds or every few minutes, and
thus, the state of the light gets rebuilt. In the same way, the build method that
belongs (indirectly) to a stateful widget gets called over and over again during
the run of a program. That’s what stateful widgets are for. They’re nimble things
whose appearance can easily change. In contrast, a stateless widget is like the pole
of a traffic light. It’s a rigid structure meant for one-time use.

FIGURE 5-3:
A riddle: How is a

Flutter program
like a traffic light?

0005390158.INDD 500 Trim size: 7.375 in × 9.25 in June 11, 2022 3:34 PM

500 BOOK 4 Creating Mobile Apps

Pay no attention to the framework
behind the curtain
A program that displays buttons and other nice-looking things has a graphical
user interface. Such an interface is commonly called a GUI (pronounced “goo-ey,”
as in “This peanut butter is really gooey”). In many GUI programs, things hap-
pen behind the scenes. While your app’s code runs, lots of other code runs in the
background. When you run a Flutter app, code that was written by the creators of
Flutter runs constantly to support your own app’s code. This background support
code belongs to the Flutter framework.

Listing 5-1 has declarations for functions named main, build, createState, _
getNewText, and _changeText, but the code in Listing 5-1 doesn’t call any of
these functions. Instead, Flutter’s framework code calls these functions when a
device runs the app.

FIGURE 5-4:
Stateful widgets

weren’t built
in a day.

M
aking Things H

appen

0005390158.INDD 501 Trim size: 7.375 in × 9.25 in June 11, 2022 3:34 PM

CHAPTER 5 Making Things Happen 501

”I’M TALKING TO YOU, STATELESS WIDGET —
YOU MUST HAVE A BUILD METHOD!”
Every class that extends StatelessWidget must have a build method. Flutter’s API
enforces that rule.

But don’t take my word for it. Temporarily comment out the build method declaration
in Listing 5-1. That is, change the declaration of App0501 so that it looks like this:

class App0501 extends StatelessWidget {

// Widget build(BuildContext context) {

// return MaterialApp(

// home: MyHomePage(),

//);

// }

}

When you do, you’ll see some red marks in Android Studio’s editor. The red marks indi-
cate that the program contains an error; namely, that App0501 doesn’t have its own
build method.

To quickly comment out several lines of code, drag the mouse so that the highlight
touches each of those lines. Then, if you’re using Windows, press Ctrl-/. If you’re using a
Mac, press Cmd-/.

How does Dart enforce its build method requirement? As a novice developer, you don’t
have to know the answer. You can skip the rest of this sidebar and go merrily on your way.
But if you’re curious, and you don’t mind taking a little detour in your learning, try this:

In Android Studio’s editor, right-click on the word StatelessWidget. On the result-
ing context menu, select Go To➪ Declaration. Et voila! A new tab containing the
StatelessWidget class declaration opens up in the editor. If you ignore most of the
code in the StatelessWidget class declaration, you see something like this:

abstract class StatelessWidget extends Widget {

 // A bunch of code that you don't have to worry about, followed by ...

 Widget build(BuildContext context);

}

The first word, abstract, warns Dart that this class declaration contains methods (that
is, functions) with no bodies. And, indeed, the line

 Widget build(BuildContext context);

(continued)

0005390158.INDD 502 Trim size: 7.375 in × 9.25 in June 11, 2022 3:34 PM

502 BOOK 4 Creating Mobile Apps

Here’s a blow-by-blow description:

 » The Dart language calls the main function when the code in Listing 5-1
starts running.

The main function constructs an instance of App0501 and calls runApp to get
things going. Then . . .

 » The Flutter framework calls the App0501 instance’s build function.

The build function constructs an instance of MyHomePage. Then . . .

 » The Flutter framework calls the MyHomePage instance’s createState
function.

is a method header with no body. In place of a body, there’s only a semicolon.

You might not be surprised to learn that StatelessWidget is an example of an
abstract class and that the class’s build method is an abstract method. With that in
mind, I offer you these two facts:

• You can’t make a constructor call for an abstract class.

You can construct a Text widget by writing Text("Hello") because the Text
class isn’t abstract. But you can’t construct a StatelessWidget by writing
StatelessWidget(). That makes sense because, in the declaration of
StatelessWidget, the build method isn’t fully defined.

• If you extend an abstract class, you have to provide a full declaration for each
of the class’s abstract methods.

The StatelessWidget class declaration contains the following line:
 Widget build(BuildContext context);

Because of this, the App0501 class in Listing 5-1 must contain a full build method
declaration. What’s more, the declaration must specify a parameter of type Build
Context. Sure enough, the build method belonging to App0501 does the job:

Widget build(BuildContext context) {

 return MaterialApp(

 home: MyHomePage(),

);

}

With a fully defined build method, the App0501 class isn’t abstract. That’s good
because, near the top of Listing 5-1, there’s a line containing an App0501()
constructor call.

(continued)

M
aking Things H

appen

0005390158.INDD 503 Trim size: 7.375 in × 9.25 in June 11, 2022 3:34 PM

CHAPTER 5 Making Things Happen 503

The createState function constructs an instance of _myHomePageState.
Then . . .

 » The Flutter framework calls the _myHomePageState instance’s build
function.

The build function constructs a Scaffold containing a Center with a Text
widget and a FloatingActionButton widget.

To understand the Text widget’s constructor, look at a few lines of code:

String _pressedOrNot = "You haven't pressed the button.";

// Later in the listing ...

 child: Text(

 _pressedOrNot,

),

Initially, the value of the _pressedOrNot variable is "You haven't pressed the
button." So, when the app starts running, the Text widget obediently displays
“You haven’t pressed the button.”

But the floating action button’s code is a different story.

void _changeText() {

 setState(_getNewText);

}

void _getNewText() {

 _pressedOrNot = "You've pressed the button.";

}

// Later in the listing ...

 floatingActionButton: FloatingActionButton(

 onPressed: _changeText,

)

The constructor for the FloatingActionButton has an onPressed parameter, and
the value of that parameter is _changeText. What’s that all about?

The onPressed parameter tells Flutter “If and when the user presses the button,
have the device call the _changeText function.” In fact, a lot of stuff happens
when the user presses the floating action button. In the next few sections, you see
some of the details.

0005390158.INDD 504 Trim size: 7.375 in × 9.25 in June 11, 2022 3:34 PM

504 BOOK 4 Creating Mobile Apps

The big event
In GUI programming, an event is something that happens — something that may
require a response of some kind. The press of a button is an example of an event.
Other examples of events include an incoming phone call, the movement of a device
to a new GPS location, or the fact that one app needs information from another app.

An event handler is a function that’s called when an event occurs. In Listing 5-1,
the _changeText function is a handler for the button’s onPressed event. In and of
itself, the code onPressed: _changeText doesn’t call the _changeText function.
Instead, that code registers the function _changeText as the official handler for float-
ing action button presses.

A call to the _changeText function would look like this: _changeText(). The call
would end with open and closed parentheses. The code onPressed: _changeText,
with no parentheses, doesn’t call the _changeText function. That code tells the
device to remember that the name of the button’s onPressed event handler is
_changeText. The device uses this information when, and only when, the user
presses the button.

Call me back
The functions _changeText and _getNewText in Listing 5-1 are callback functions.
The line

onPressed: _changeText

tells the framework, “When the button is pressed, call my _changeText function.”
And the line

setState(_getNewText)

tells the framework “Set the state by calling my _getNewText function.”

A callback function is simply a function that’s passed to another function as an
argument and is invoked by the function it’s passed to.

Callbacks are useful
You may have written programs that have no callbacks. When your program starts
running, the system executes the first line of code and keeps executing instruc-
tions until it reaches the last line of code. Everything runs as planned from start to
finish. (Well, in the best of circumstances, everything runs as planned.)

A callback adds an element of uncertainty to a program. When will an event take
place? When will a function be called? Where’s the code that calls the function?

M
aking Things H

appen

0005390158.INDD 505 Trim size: 7.375 in × 9.25 in June 11, 2022 3:34 PM

CHAPTER 5 Making Things Happen 505

Programs with callbacks are more difficult to understand than programs with no
callbacks.

Why do you need callbacks? Can you get away without having them? To help
answer this question, think about your common, everyday alarm clock. Before
going to sleep, you tell the alarm clock to send sound to your ears (a callback)
when the 9 A.M. event happens:

on9am: _rattleMyEarDrums,

If you didn’t rely on a callback, you’d have to keep track of the time all night on
your own. Like Bart and Lisa Simpson in the back seat of a car, you’d repeat-
edly be asking, “Is it 9 A.M. yet? Is it 9 A.M. yet? Is it 9 A.M. yet?” You certainly
wouldn’t get a good night’s sleep. By the same token, if a Flutter program had
to check every hundred milliseconds for a recent press of the button, there
wouldn’t be much time for the program to get anything else done. That’s why you
need callbacks in Flutter programs.

Programming with callbacks is called event driven programming. If a program
doesn’t use callbacks and, instead, repeatedly checks for button presses and other
such things, that program is polling. In some situations, polling is unavoidable.
But when event driven programming is possible, it’s far superior to polling.

The outline of the code
One good way to look at code is to squint so that most of it is blurry and unreada-
ble. The part that you can still read is the important part. Figure 5-5 contains my
mostly blurry version of some code in Listing 5-1.

FIGURE 5-5:
What to look for

in Listing 5-1.

0005390158.INDD 506 Trim size: 7.375 in × 9.25 in June 11, 2022 3:34 PM

506 BOOK 4 Creating Mobile Apps

According to Figure 5-5, this is the state management strategy in Listing 5-1:

1. Register _changeText as a callback function and wait for the user to press the
floating action button.

When, at last, the user presses the floating action button, . . .

2. Have _changeText call setState and pass _getNewText as the one-and-only
parameter in the setState function call.

The setState function calls _getNewText. When it does, . . .

3. The _getNewText function does whatever it has to do with some text.

The setState function also gets the Flutter framework to call build. When
it does, . . .

4. The stuff on the user’s screen is rebuilt.

The rebuilt screen displays the new text.

There’s nothing special about the state management strategy in Listing 5-1. You
can copy-and-paste this strategy into many other programs. Figure 5-6 shows
you the general idea.

According to Figure 5-6, these steps form a state management strategy:

1. Register a function as a callback function for an event and wait for that event to
take place.

FIGURE 5-6:
What to look for
in many Flutter

programs.

M
aking Things H

appen

0005390158.INDD 507 Trim size: 7.375 in × 9.25 in June 11, 2022 3:34 PM

CHAPTER 5 Making Things Happen 507

In Figure 5-6, the name of the callback function is _handlerFunction. Like all
such functions, the _handlerFunction takes no parameters and returns void.

When, at last, the event takes place, . . .

2. Have the callback function call setState and pass another function as the
one-and-only parameter in the setState function call.

In Figure 5-6, the name of this other function is _getNewInfo. Like all such
functions, the _getNewInfo function takes no parameters and returns void.

The setState function calls _getNewInfo (or whatever name you’ve used,
other than _getNewInfo). When it does, . . .

3. The _getNewInfo function changes something about the state of a widget.

The setState function also gets the Flutter framework to call build. When it
does, . . .

4. The stuff on the user’s screen is rebuilt.

The rebuilt screen displays the widget in its new state.

And so it goes.

C’mon, what really happens?
When you run a program that has a graphical user interface, lots of stuff happens
behind the scenes. If you want, you can look at the framework’s code, but that
code can be quite complex. Besides, with any decent framework, you shouldn’t
have to read the framework’s own code. You should be able to call the frame-
work’s functions and constructors by knowing only the stuff in the framework’s
documentation.

You can be sure that when Listing 5-1 runs, the setState call results in a call to
_getNewText. You know this because, if you comment out the setState call, the
text doesn’t change. But, it’s often helpful to get some sense of the framework’s
inner mechanisms, even if it’s only a rough outline.

To that end, take a look at Figure 5-7. The figure summarizes the description of
event handling in the previous few sections. It illustrates some of the action in
Listing 5-1, including a capsule summary of the code in the setState function.
Make no mistake: Figure 5-7 is an oversimplified view of what happens when
Flutter handles an event, but you might find the figure useful.

0005390158.INDD 508 Trim size: 7.375 in × 9.25 in June 11, 2022 3:34 PM

508 BOOK 4 Creating Mobile Apps

FIGURE 5-7:
Flutter responds
to the press of a

button.

WHAT TO DO WHEN YOU CALL SETSTATE
Try this experiment: Modify the _changeText function in Listing 5-1 this way:

void _changeText() {

 _getNewText();

 setState(_doNothing);

}

void _doNothing() {}

Move the reference to _getNewText outside of the setState function. After this move,
the change of text happens before the call to setState, so setState doesn’t have to
call _getNewText. Of course, you still have to feed setState a function to call, so you
feed it the _doNothing function. That _doNothing function keeps setState busy
while it prepares to call the build method.

Does the modified code work? In this chapter’s example, it does. But, in general, a change
of this kind is a bad idea. Putting _getNewText inside the setState call ensures that the
assignment to _pressedOrNot and the call to build happen together. In a more compli-
cated program, the call to build might be delayed, and the results can be strange.

M
aking Things H

appen

0005390158.INDD 509 Trim size: 7.375 in × 9.25 in June 11, 2022 3:34 PM

CHAPTER 5 Making Things Happen 509

Enhancing Your App
The code in Listing 5-1 is a simplified version of Android Studio’s starter app.
That’s nice, but maybe you want to know more about the starter app. To that end,
Listing 5-2 includes a few more features — features that enhance the look and
behavior of the simple Flutter demo program.

LISTING 5-2: Inching Toward Android Studio’s Starter App

import 'package:flutter/material.dart';

void main() => runApp(App0502());

class App0502 extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 return MaterialApp(

 title: 'Flutter Demo',

 theme: ThemeData(

 primarySwatch: Colors.blue,

),

 home: MyHomePage(),

);

Here’s another thing to consider: In Listing 5-1, the _getNewText function contains one
simple assignment statement. But imagine an app that does a long, time-consuming
calculation before displaying that calculation’s result. The update of the screen comes in
these three parts:

1. Do the calculation.

2. Change the text to be displayed so that it contains the calculation’s result.

3. Have the framework call build to refresh the display.

In that case, Flutter experts recommend the following division of labor:

• Do the long, time-consuming calculation before the call to setState.

• Do the change of text in a parameter when you call setState.

In other words, keep the code that does heavy lifting outside the setState call, but put
the code that changes the state’s values inside the setState call. That’s good advice.

(continued)

0005390158.INDD 510 Trim size: 7.375 in × 9.25 in June 11, 2022 3:34 PM

510 BOOK 4 Creating Mobile Apps

 }

}

class MyHomePage extends StatefulWidget {

 @override

 _MyHomePageState createState() => _MyHomePageState();

}

class _MyHomePageState extends State {

 int _counter = 0;

 void _incrementCounter() {

 setState(() {

 _counter++;

 });

 }

 @override

 Widget build(BuildContext context) {

 return Scaffold(

 appBar: AppBar(

 title: Text("Listing 5-2"),

),

 body: Center(

 child: Column(

 mainAxisAlignment: MainAxisAlignment.center,

 children: <Widget>[

 Text(

 'You have pushed the button this many times:',

),

 Text(

 '$_counter',

 style: Theme.of(context).textTheme.titleLarge,

),

],

),

),

 floatingActionButton: FloatingActionButton(

 onPressed: _incrementCounter,

 tooltip: 'Increment',

 child: Icon(Icons.add),

),

);

 }

}

(continued)

M
aking Things H

appen

0005390158.INDD 511 Trim size: 7.375 in × 9.25 in June 11, 2022 3:34 PM

CHAPTER 5 Making Things Happen 511

Figures 5-8 and 5-9 show a run of the code in Listing 5-2. Figure 5-8 is what you
see when the app starts running, and Figure 5-9 is what you see after one click
of the floating action button. On subsequent clicks, you see the numbers 2, 3, 4,
and so on.

Whenever the user clicks the floating action button, the number on the screen
increases by 1. To make this happen, Listing 5-2 has three references to the vari-
able named _counter. Figure 5-10 illustrates the role of the _counter variable in
the running of the app.

The app’s Text widget displays the value of the _counter variable. So, when the
app starts running, the Text widget displays 0. When the user first presses the
floating action button and the Flutter framework calls setState, the _counter
variable becomes 1. So, the number 1 appears in the center of the app’s screen.
When the user presses the action button again, _counter becomes 2, and so on.

FIGURE 5-8:
Before the first

button press.

FIGURE 5-9:
After the first
 button press.

0005390158.INDD 512 Trim size: 7.375 in × 9.25 in June 11, 2022 3:34 PM

512 BOOK 4 Creating Mobile Apps

More parameters, please
Listing 5-2 introduces some tried-and-true constructor parameters. For example,
the MaterialApp constructor has title and theme parameters.

 » The title (in this example, Flutter Demo) appears only on Android
phones, and only when the user conjures up the Recent Apps list.

 » The value of theme is a ThemeData instance (thus, the use of the
ThemeData constructor in Listing 5-2).

In the world of app design, themes are vitally important. A theme is a bunch of
choices that apply to all parts of an app. For example, “Use the Roboto font for
all elements that aren’t related to accessibility” is a choice, and that choice can
be part of a theme.

The choice made in Listing 5-2 is “Use the blue color swatch throughout the
app.” A swatch is a bunch of similar colors — variations on a single color that
can be used throughout the app. The Colors.blue swatch contains ten

FIGURE 5-10:
Updating the
Text widget.

M
aking Things H

appen

0005390158.INDD 513 Trim size: 7.375 in × 9.25 in June 11, 2022 3:34 PM

CHAPTER 5 Making Things Happen 513

shades of blue, ranging from very light to very dark. (For a look at some pretty
swatches, see https://api.flutter.dev/flutter/material/Colors-
class.html.)

As an experiment, run the code in Listing 5-2 and then change Colors.blue
to Colors.deepOrange or Colors.blueGrey. When you save the change, all
elements in the app suddenly look different. That’s cool! You don’t have to
specify each widget’s color. The theme maintains a consistent look among all
widgets on the screen. For a big app with more than one page, the theme
maintains a consistent look from one page to another. This helps the user
understand the flow of elements in the app.

In Listing 5-2, a Text widget’s style parameter uses a roundabout way to get
a TextStyle instance. The code Theme.of(context).textTheme.titleLarge
represents a TextStyle with large text size. Figure 5-11 shows you the options
that are available when you use Theme.of(context).textTheme.

As it is with the MaterialApp theme, the notion of a text theme is mighty handy.
When you rely on Flutter’s Theme.of(context).textTheme values, you provide a
uniform look for all the text elements in your app. You can also take comfort in the
fact that you’re using standard values — nice-looking values chosen by profes-
sional app designers.

FIGURE 5-11:
Flutter’s

TextTheme styles.

0005390158.INDD 514 Trim size: 7.375 in × 9.25 in June 11, 2022 3:34 PM

514 BOOK 4 Creating Mobile Apps

Finally, the floating action button in Listing 5-2 has tooltip and child
parameters.

 » The tooltip string shows up when a user long-presses the button.

When you touch the screen and keep your finger in the same place for a
second or two, you’re long-pressing that part of the screen. The app in
Listing 5-2 displays the word Increment whenever the user long-presses the
floating action button.

 » For the button’s child, you construct an Icon instance.

The Icon instance displays a tiny image from Flutter’s Icons class; namely,
the Icons.add image. Sure enough, that image is a plus sign. (Refer to
Figures 5-8 and 5-9.)

For a list of images in Flutter’s Icons class, visit

https://api.flutter.dev/flutter/material/Icons-class.html

You can read more about parameters in Listing 5-2 and discover other useful
parameters by visiting Flutter’s documentation pages. For a brief introduction to
those pages, refer to Book 4, Chapter 3.

The override annotation
The line @override, which appears several times in Listing 5-2, is called an anno-
tation. In Dart, an annotation begins with the at sign (@).

A statement, such as _pressedOrNot = "You've pressed the button.", tells
Dart what to do during the run of a program. But an annotation is different. An
annotation tells Dart something about part of a Dart program. An @override anno-
tation reminds Dart that the class you’re extending has a matching declaration.

For example, consider the following code in Listing 5-2:

class App0502 extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

The line @override says “The StatelessWidget class, which this App0502 class
extends, has its own build(BuildContext context) method declaration.” And
indeed, according to this chapter’s earlier sidebar (“I’m talking to you, stateless
widget — you must have a build method!”) the StatelessWidget class in the

M
aking Things H

appen

0005390158.INDD 515 Trim size: 7.375 in × 9.25 in June 11, 2022 3:34 PM

CHAPTER 5 Making Things Happen 515

Flutter API code has a build(BuildContext context) method with no body. It
all works out nicely.

Listing 5-2 has @override annotations, but Listing 5-1 doesn’t. Look at that! You
can get away without having @override annotations! So, why bother having them?

The answer is “safety.” The more information you give Dart about your code,
the less likely it is that Dart will let you do something wrong. If you make a mis-
take and declare your build method incorrectly, Dart might warn you. “Hey!
You said that you intend to override the build method that’s declared in the
StatelessWidget class, but your new build method doesn’t do that correctly.
Fix it, my friend!”

You can make Dart warn you about methods that don’t match with their
@override annotations. For details, visit https://dart.dev/guides/language/
analysis-options.

What does <Widget> mean?
In Listing 5-2, the column’s list of children starts with some extra stuff:

children: <Widget>[

 Text(

 'You have pushed the button this many times:',

),

 Text(

 '$_counter',

 style: Theme.of(context).textTheme.display1,

),

]

The <Widget> word, with its surrounding angle brackets, is called a generic, and
a list that starts with a generic is called a parameterized list. In Listing 5-2, the
<Widget> generic tells Dart that each of the list’s values is, in one way or another,
a Widget. According to Book 4, Chapter 3, every instance of the Text class is an
instance of the Widget class, so the <Widget> generic isn’t lying.

In many situations, the use of generics is a safety issue. Consider the following
two lines of code:

var words1 = ["Hello", "Goodbye", 1108]; // No error message

var words2 = <String>["Hello", "Goodbye", 1108]; // Error message!

0005390158.INDD 516 Trim size: 7.375 in × 9.25 in June 11, 2022 3:34 PM

516 BOOK 4 Creating Mobile Apps

You may plan to fill your list with String values, but when you declare words1
and words2, you accidentally include the int value 1108. The words1 list isn’t
parameterized, so Dart doesn’t catch the error. But the words2 list is parameter-
ized with the <String> generic, so Dart catches the mistake and refuses to run the
code. An error message says The element type 'int' can't be assigned to
the list type 'String'. To this, you should respond, “Good catch, Dart. Thank
you very much.”

Anonymous functions
In the Dart programming language, some functions don’t have names. Take a look
at the following code:

void _incrementCounter() {

 setState(_addOne);

}

void _addOne() {

 _counter++;

}

Imagine that your app contains no other references to _addOne. In that case,
you’ve made up the name _addOne and used the name only once in your app. Why
bother giving something a name if you’ll be using the name only once? “Let’s give
this ear of corn the name ‘sinkadillie’. And now, let’s eat sinkadillie.”

To create a function with no name, you remove the name. If the function’s header
has a return type, you remove that too. So, for example,

void _addOne() {

 _counter++;

}

becomes

 () {

 _counter++;

}

When you make this be the parameter for the setState function call, it looks like
this:

void _incrementCounter() {

 setState(() {

M
aking Things H

appen

0005390158.INDD 517 Trim size: 7.375 in × 9.25 in June 11, 2022 3:34 PM

CHAPTER 5 Making Things Happen 517

 _counter++;

 });

}

That’s what you have in Listing 5-2.

A function with no name is called an anonymous function. When an anonymous
function contains more than one statement, those statements must be enclosed
in curly braces. But if the function contains only one statement, you can use fat
arrow notation. For example, in Listing 5-2, the following code would work just
fine:

void _incrementCounter() {

 setState(() => _counter++);

}

CONFRONTING THE GREAT VOID
Take a nostalgic look at some code from the beginning of this chapter. It’s in Listing 5-1.

void _changeText() {

 setState(_getNewText);

}

And later, in Listing 5-1:

floatingActionButton: FloatingActionButton(

 onPressed: _changeText,

))

The button press triggers a call to _changeText, and the _changeText function calls
setState(_getNewText). Why not eliminate the middleman and have onPressed
point directly to setState(_getNewText)? The resulting code would look something
like this:

 floatingActionButton: FloatingActionButton(

 onPressed: setState(_getNewText), // This doesn't work.

))

When you write this code, an error message says, "The expression here has a type
of 'void' and therefore can't be used." Flutter wants the onPressed param-
eter to be a function, but the expression setState(_getNewText) isn’t a function. It’s a
call to setState, and a call to setState returns void. (See this sidebar’s first figure.)

(continued)

0005390158.INDD 518 Trim size: 7.375 in × 9.25 in June 11, 2022 3:34 PM

518 BOOK 4 Creating Mobile Apps

© John Wiley & Sons

A VoidCallback function is a function that takes no arguments and has the return
type void. A common reason for creating a VoidCallback function is . . . well . . . to
call a function back. Flutter wants the onPressed parameter to be a VoidCallback
function, and the _changeText function fulfills the criteria for being a VoidCallback
function. So, in Listing 5-1, the code onPressed: _changeText is fine and dandy.

But setState(_getNewText) isn’t a VoidCallback. No, setState(_getNewText) is a
plain old void. So the code onPressed: setState(_getNewText) falls flat on its face.

How can you fix the problem? You can revert to the original Listing 5-1 code, or you can
save the day by using yet another anonymous function. All you do is add () => before
the reference to setState, like so:

floatingActionButton: FloatingActionButton(

 onPressed: () => setState(_getNewText),

)

This sidebar’s second figure describes the miraculous change that takes place when you
add a few characters to your code. What was formerly a call to setState becomes a
VoidCallback, and everyone is happy. Most importantly, Dart is happy. Your program
runs correctly.

© John Wiley & Sons

M
aking Things H

appen

0005390158.INDD 519 Trim size: 7.375 in × 9.25 in June 11, 2022 3:34 PM

CHAPTER 5 Making Things Happen 519

What belongs where
In Listing 5-2, the _counter variable’s declaration is inside the _MyHomePage
State class but outside of that class’s _incrementCounter and build methods.
A variable of this kind is called an instance variable or a field. (It depends on whom
you ask.)

Why did I declare the _counter variable in that particular place? Why not put
the declaration somewhere else in the code? A whole chapter could be written to
answer the question in detail, but you don’t want to read all that. Instead, here’s
an experiment for you to try:

1. Starting with the code in Listing 5-2, add a reference to _counter inside
the MyHomePage class. (See Figure 5-12.)

Android Studio marks this new reference with a jagged red underline. The
underline shames you into admitting that this additional reference was a bad
idea. You’ve declared the _counter variable in the _MyHomePageState class,
but you’re trying to reference the variable in a different class; namely, the
MyHomePage class.

FIGURE 5-12:
References to the

boldface
_counter

 variable are valid
only inside the

gray box.

0005390158.INDD 520 Trim size: 7.375 in × 9.25 in June 11, 2022 3:34 PM

520 BOOK 4 Creating Mobile Apps

Whenever you declare a variable inside of a class, that variable is local to the
class. You can’t refer to that variable outside the class. In particular, you can’t
refer to that variable inside a different class.

Don’t you hate it when authors contradict themselves? There is a way to refer to
a variable outside of its class’s code. It’s covered in detail in Book 4, Chapter 7.

2. Remove the reference to _counter that you added in Step 1. Then move
the declaration of _counter to the end of the _MyHomePageState class.
(See Figure 5-13.)

Near the start of the _MyHomePageState class, you do _counter++. But you
don’t declare the _counter variable until the end of the _MyHomePageState
class. Nevertheless, the program runs correctly. The moral of this story is, you
don’t have to declare a variable before you refer to that variable. Nice!

3. Move the declaration of _counter so that it’s inside the body of the
_incrementCounter function. (See Figure 5-14.)

When you do, you see an error marker on the occurrence of _counter in
the build function. You’ve declared the _counter variable inside the
_incrementCounter function, but you’re trying to reference that variable
in a different function; namely, the build function.

FIGURE 5-13:
References to the
boldface _counter
variable are valid

inside the
gray box.

M
aking Things H

appen

0005390158.INDD 521 Trim size: 7.375 in × 9.25 in June 11, 2022 3:34 PM

CHAPTER 5 Making Things Happen 521

Whenever you declare a variable inside a function, that variable is local to the
function. You can’t refer to that variable outside the function. In particular, you
can’t refer to that variable inside a different function.

4. Keep the declaration of _counter inside the _incrementCounter function
and add another _counter declaration inside the build function.
Initialize the build function’s _counter variable to 99. (See Figure 5-15.)

When you do this, the error message from Step 3 goes away. So the code is
correct. Right?

No! The code isn’t correct. When you run the code, the number in the center of
the device is 99, and its value never changes. Pressing the floating action
button has no effect. What’s going on?

With this revised code, you have two different _counter variables — one that’s
local to the _incrementCounter function and another that’s local to the build
function. The statement _counter++ adds 1 to one of these _counter
variables, but it doesn’t add 1 to the other _counter variable. It’s like having
two people named Barry Burd — one living in New Jersey and the other in
California. If you add a dollar to one of their bank accounts, the other person
doesn’t automatically get an additional dollar.

5. Include only one _counter declaration. Put it just before the start of the
_MyHomePageState class. (See Figure 5-16.)

FIGURE 5-14:
References to

the boldface
_counter

 variable are valid
only inside the

gray box.

0005390158.INDD 522 Trim size: 7.375 in × 9.25 in June 11, 2022 3:34 PM

522 BOOK 4 Creating Mobile Apps

FIGURE 5-15:
You can refer to

one _counter
variable only in
the upper gray

region; you can
refer to the

other _counter
 variable only in
the lower gray

region.

FIGURE 5-16:
Use a top-level

name anywhere
in your .dart file.

M
aking Things H

appen

0005390158.INDD 523 Trim size: 7.375 in × 9.25 in June 11, 2022 3:34 PM

CHAPTER 5 Making Things Happen 523

After making this change, the editor doesn’t display any error markers. Maybe
you click the Run icon, anticipating bad news. Either the app doesn’t run, or it
runs and behaves badly. But, lo and behold, the app runs correctly!

A declaration that’s not inside a class or a function is called a top-level declara-
tion, and a top-level name can be referenced anywhere in your program. (Well,
almost anywhere. There are some limits. In particular, see the later section
“Names that start with an underscore.”)

6. Include two _counter variable declarations — one at the top level, and
another inside the _MyHomePageState class. Initialize the top-level
_counter to 2873 and the latter _counter to 0. (See Figure 5-17.)

Before testing this version of the code, end the run of any other version. Start
this version of the code afresh.

When this modified app starts running, the number in the center of the screen
is 0, not 2873. The top-level declaration of _counter has no effect because it’s
shadowed by the declaration in the _MyHomePageState class.

FIGURE 5-17:
The Shadow

knows!

0005390158.INDD 524 Trim size: 7.375 in × 9.25 in June 11, 2022 3:34 PM

524 BOOK 4 Creating Mobile Apps

The _counter declaration in the _MyHomePageState class applies to the code
inside the _MyHomePageState class. The top-level _counter declaration
applies everywhere else in this file’s code.

This section is all about classes, methods, and variables. The section describes an
instance variable as a variable whose declaration is inside of a class, but not inside
any of the class’s methods. That’s almost a correct description of an instance vari-
able. To be precise, an instance variable’s declaration is one that doesn’t contain
the word static — a word that you encounter in Book 4, Chapters 7 and 8. Until
you read Chapters 7 and 8, don’t worry about it.

Names that start with an underscore
Someday soon, when you’re a big-shot Flutter developer, you’ll create a large,
complicated app that involves several different .dart files. A file’s import state-
ments will make code from one file available for use in another file. But how does
this work? Are there any restrictions? Figure 5-18 says it all.

TOP-LEVEL NAMES AREN’T ALWAYS BEST
In Step 5 of this section’s instructions, you declare _counter at the top level and the
program runs without a hitch. If it’s okay to declare _counter at the top level, why don’t
you do that in Listing 5-2? Well, you should expect more from a program than that it
simply runs correctly. In addition to running correctly, a good program is sturdy. The
program doesn’t break when someone changes a bit of code.

In Listing 5-2, the only use of the _counter variable is inside the _MyHomePageState
class. A programmer who’s working on the _MyHomePageState class’s code should be
able to mess with the _counter variable. But other programmers, those who work on
other parts of the app, have no need to reference the _counter variable. By keeping
access to _counter inside the _MyHomePageState class, you’re protecting the vari-
able from accidental misuse by programmers who don’t need to reference it. (Object-
oriented programmers call this encapsulation.)

The program in Listing 5-2 isn’t a large, industrial-strength app. So, in that program, any-
one who writes code outside the _MyHomePageState class is likely to know all about
the code inside the _MyHomePageState class. But for real-life applications in which
teams of programmers work on different parts of the code, protecting one part of the
code from the other parts is important. No, it’s not important. It’s absolutely essential.

In any program that you write, limit access to variable names and other names as much
as you can. Don’t declare them at the top level if you don’t have to. It’s safer that way.

M
aking Things H

appen

0005390158.INDD 525 Trim size: 7.375 in × 9.25 in June 11, 2022 3:34 PM

CHAPTER 5 Making Things Happen 525

A variable or function whose name begins with an underscore (_) is local to
the file in which it’s declared and can’t be referenced in other .dart files. All
other names can be imported and shared among all the files in an application. In
Figure 5-18, the _number variable can be used only in one_file.dart. But, because
of an import statement, the amount variable is available in both one_file.dart
and another_file.dart.

If you’re used to writing code in languages like Java, forget about access modifiers
such as public and private. The Dart language doesn’t have those things.

Whew!
This is a heavy-duty chapter. If you’ve spent the evening reading every word of it,
you’re probably a bit tired. But that’s okay. Take a breather. Make yourself a cup
of tea. Sit in your easy chair and relax with a performance of The Well-Tempered
Clavier (Praeludium 1, BWV 846).

Chapter 6 continues the theme of widgets responding to user actions. In that
chapter, you slide sliders, switch switches, drop drop-down lists, and do other
fun things. Go for it (but don’t forget to unwind a bit first)!

FIGURE 5-18:
“I got plenty

 numbers left."
(Google it.)

© John Wiley & Sons

0005390158.INDD 526 Trim size: 7.375 in × 9.25 in June 11, 2022 3:34 PM

CHAPTER 6 Laying Things Out 527

0005390159.INDD 527	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:42	PM

 Laying Things Out

 I n a Flutter layout, widgets are nested inside of other widgets. The outer widget
sends a constraint to the inner widget:

"You can be as wide as you want, as long as your width is between 0 and 400 density-
independent pixels."

 Later on, the inner widget sends its exact height to the outer widget:

"I ’ m 200 density-independent pixels wide."

 The outer widget uses that information to position the inner widget:

"Because you ’ re 200 density-independent pixels wide, I ’ ll position your left edge
100 pixels from my left edge."

 Of course, this is a simplifi ed version of the true scenario. But it ’ s a useful start-
ing point for understanding the way Flutter layouts work. Most importantly, this
outer/inner communication works its way all along an app ’ s widget chain.

Chapter 6

 IN THIS CHAPTER

» Putting widgets where you
want them

» Dealing with common layout
problems

» Working with various screen sizes

0005390159.INDD 528	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:42	PM

528 		BOOK	4	 Creating Mobile Apps

Imagine having four widgets. Starting from the outermost widget (such as the
Material widget), call these widgets “great-grandmother”, “grandmother”,
“mother”, and “Elsie.” Here’s how Flutter decides how to draw these widgets:

1. Great-grandmother	tells	grandmother	how	big	she	(grandmother)	can	be.

2. Grandmother	tells	mother	how	big	she	(mother)	can	be.

3. Mother	tells	Elsie	how	big	she	(Elsie)	can	be.

4. Elsie	decides	how	big	she	is	and	tells	mother.

5. Mother	determines	Elsie’s	position,	decides	how	big	she	(mother)	is,	and	then	
tells	grandmother.

6. Grandmother	determines	mother’s	position,	decides	how	big	she	(grand-
mother)	is,	and	then	tells	great-grandmother.

7. Great-grandmother	determines	mother’s	position	and	then	decides	how	big	
she	(great-grandmother	is).

Yes, the details are fuzzy. But it helps to keep this pattern in mind as you read
about Flutter layouts.

Understanding the Big Picture
Listings 6-1 and 6-2 introduce a handful of Flutter layout concepts, and
Figure 6-1 shows what you see when you run these listings together.

LISTING 6-1: Reuse This Code

// app06main.dart

import 'package:flutter/material.dart';

import 'app0602.dart'; // Change this line to app0605, app0606, and so on.

void main() => runApp(App06Main());

class App06Main extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 return MaterialApp(

 home: _MyHomePage(),

);

 }

}

Laying Things O
ut

0005390159.INDD 529	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:42	PM

CHAPTER 6 Laying Things Out 529

class _MyHomePage extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 return Material(

 color: Colors.grey[400],

 child: Padding(

 padding: const EdgeInsets.symmetric(

 horizontal: 20.0,

),

 child: buildColumn(context),

),

);

 }

}

Widget buildTitleText() {

 return Text(

 "My Pet Shop",

 textScaleFactor: 3.0,

 textAlign: TextAlign.center,

);

}

Widget buildRoundedBox(

 String label, {

 double height = 88.0,

}) {

 return Container(

 height: height,

 width: 88.0,

 alignment: Alignment(0.0, 0.0),

 decoration: BoxDecoration(

 color: Colors.white,

 border: Border.all(color: Colors.black),

 borderRadius: BorderRadius.all(

 Radius.circular(10.0),

),

),

 child: Text(

 label,

 textAlign: TextAlign.center,

),

);

}

0005390159.INDD 530	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:42	PM

530 		BOOK	4	 Creating Mobile Apps

LISTING 6-2: A Very Simple Layout

// app0602.dart

import 'package:flutter/material.dart';

import 'app06main.dart';

Widget buildColumn(BuildContext context) {

 return Column(

 mainAxisAlignment: MainAxisAlignment.center,

 crossAxisAlignment: CrossAxisAlignment.stretch,

 children: <Widget>[

 buildTitleText(),

 SizedBox(height: 20.0),

 buildRoundedBox(

 "Sale Today",

 height: 150.0,

),

],

);

}

The code in Listing 6-1 refers to code in Listing 6-2, and vice versa. As long
as these two files are in the same Android Studio project, running the app in
Listing 6-1 automatically uses code from Listing 6-2. This works because of the
import declarations near the top of each of the listings. For info about import
declarations, refer to Book 4, Chapter 4.

Listings 6-1 and 6-2 illustrate some coding concepts along with a bunch of useful
Flutter features that will be covered in the next several sections.

FIGURE 6-1:
A	sale	at	

My	Pet	Shop.	

Laying Things O
ut

0005390159.INDD 531	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:42	PM

CHAPTER 6 Laying Things Out 531

Creating bite-size pieces of code
In Listings 6-1 and 6-2, method calls create some of the widgets.

child: buildColumn(context),

// ... And elsewhere, ...

Column(

 // ... Blah, blah, ...

 children: <Widget>[

 buildTitleText(),

 SizedBox(height: 20.0),

 buildRoundedBox(

 // ... Etc.

Each method call takes the place of a longer piece of code — one that describes
a particular widget in detail. These methods makes the code easier to read and
digest. With a glance at Listing 6-2, you can tell that the Column consists of title
text, a sized box, and a rounded box. You don’t know any of the details until
you look at the buildTitleText and buildRoundedBox method declarations in
Listing 6-1, but that’s okay. With the code divided into methods this way, you
don’t lose sight of the app’s overall outline.

In the design of good software, planning is essential. But sometimes your plans
change. Imagine this scenario: You start writing some code that you believe will
be fairly simple. After several minutes (or, sometimes, several hours), you real-
ize that the code has become large and unwieldy. So you decide to divide the code
into methods. To do this, you can take advantage of one of Android Studio’s handy
refactoring features. Here’s how it works:

1. Start with a constructor call that you want to replace with your own
method call.

For	example,	you	want	to	replace	the	Text	constructor	call	in	the	following	
code	snippet:

children: <Widget>[

 Text(

 "My Pet Shop",

 textScaleFactor: 3.0,

 textAlign: TextAlign.center,

),

 SizedBox(height: 20.0),

0005390159.INDD 532	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:42	PM

532 		BOOK	4	 Creating Mobile Apps

2. Place the mouse cursor on the constructor call’s name.

For	the	snippet	in	Step	1,	click	on	the	word	Text.

3. On Android Studio’s main menu, select Refactor➪ Extract➪ Method.

As	a	result,	Android	Studio	displays	the	Extract	Method	dialog	box.

4. In the Extract Method dialog box, type a name for your new method.

For	a	constructor	named	Text,	Android	Studio	suggests	the	method	name	
buildText.	But,	to	create	Listings 6-1	and 6-2,	I	made	up	the	name	
buildTitleText.

5. In the Extract Method dialog box, choose Refactor.

As	if	by	magic,	Android	Studio	adds	a	new	method	declaration	to	your	code	
and	replaces	the	original	widget	constructor	with	a	call	to	the	method.

The	new	method’s	return	type	is	whatever	kind	of	widget	your	code	is	trying	to	
construct.	For	example,	starting	with	the	code	in	Step	1,	the	method’s	first	two	
lines	might	look	like	this:

Text buildTitleText() {

 return Text(

6. Do yourself a favor and change the type in the method’s header to
Widget.

Widget buildTitleText() {
 return Text(

Every	instance	of	the	Text	class	is	an	instance	of	the	Widget	class,	so	this	
change	doesn’t	do	any	harm.	In	addition,	the	change	adds	a	tiny	bit	of	flexibility	
that	may	eventually	save	you	some	mental	energy.	Maybe	later,	you’ll	decide	to	
surround	the	method’s	Text	widget	with	a	Center	widget.

Text buildTitleText() {

 return Center(

 child: Text(

After	you	make	this	change,	your	code	is	messed	up	because	the	header’s	
return	type	is	inaccurate.	Yes,	every	instance	of	the	Text	class	is	an	instance	of	
the Widget	class.	But,	no,	an	instance	of	the	Center	class	isn’t	an	instance	of	
the Text	class.	Your	method	returns	an	instance	of	Center,	but	the	method’s	
header	expects	the	method	to	return	an	instance	of	Text.	Don’t	you	wish	you	
had	changed	the	first	word	in	the	header	to	Widget?	Do	it	sooner	rather	than	
later.	That	way,	you	won’t	be	distracted	when	you’re	concentrating	on	making	
changes	in	the	method’s	body.

Laying Things O
ut

0005390159.INDD 533	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:42	PM

CHAPTER 6 Laying Things Out 533

Creating a parameter list
In Listing 6-1, the header of the buildRoundedBox declaration looks like this:

Widget buildRoundedBox(

 String label, {

 double height = 88.0,

})

The method has two parameters: label and height.

 » The label parameter is a positional parameter.

It’s	a	positional	parameter	because	it’s	not	surrounded	by	curly	braces.	In	a	
header,	all	the	positional	parameters	must	come	before	any	of	the	named	
parameters.

 » The height parameter is a named parameter.

It’s	a	named	parameter	because	it’s	surrounded	by	curly	braces.	In	a	call	
to	this	method,	you	can	omit	the	height	parameter.	When	you	do,	the	
parameter’s	default	value	is	88.0.

With these facts in mind, the following calls to buildRoundedBox are both valid:

buildRoundedBox(// Flutter style guidelines recommend having a

 "Flutter", // trailing comma at the end of every list.

 height: 1000.0, // It's the comma after the height parameter.

)

buildRoundedBox("Flutter") // In the method header, the height parameter

 // has the default value 88.0.

Here are some calls that aren’t valid:

buildRoundedBox(// In a function call, all positional parameters

 height: 1000.0, // must come before any named parameters.

 "Flutter",

)

buildRoundedBox(

 label: "Flutter", // The label parameter is a positional parameter,

 height: 1000.0, // not a named parameter.

)

0005390159.INDD 534	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:42	PM

534 		BOOK	4	 Creating Mobile Apps

buildRoundedBox(// The height parameter is a named parameter,

 "Flutter", // not a positional parameter.

 1000.0,

)

buildRoundedBox() // You can't omit the label parameter, because

 // the label parameter has no default value.

For info about positional parameters and named parameters, refer to Book 4,
Chapter 3. For the basics on declaring functions, refer to Book 4, Chapter 4.

In Listing 6-2, the declaration of buildColumn has a BuildContext parame-
ter. You may ask, “What good is this BuildContext parameter? The body of the
buildColumn method makes no reference to this parameter’s value.” For an
answer, see the last section of this chapter.

Living color
Book 4, Chapter 5 introduces Flutter’s Colors class with basic things like Colors.
grey and Colors.black. In fact, the Colors class provides 12 different shades
of gray, 7 shades of black, 28 shades of blue, and a similar variety for other col-
ors. For example, the shades of grey are named Colors.grey[50] (the lightest),
Colors.grey[100], Colors.grey[200], Colors.grey[300], and so on, up to
Colors.grey[900] (the darkest). You can’t put arbitrary numbers inside the
brackets, so things like Colors.grey[101] and Colors.grey[350] simply don’t
exist. But one shade — Colors.grey[500] — is special. You can abbreviate
Colors.grey[500] by writing Colors.grey without having a number in brackets.

If you want extra-fine control over the look of your app, you can use Flutter’s
Color.fromRGBO constructor. (That’s Color singular, as opposed to Colors plu-
ral.) The letters RGBO stand for Red, Green, Blue, and Opacity. In the constructor,
the values of Red, Green, and Blue range from 0 to 255, and the value of Opacity
ranges from 0.0 to 1.0. For example, Color.fromRGBO(255, 0, 0, 1.0) stands
for completely opaque Red. Table 6-1 has some other examples.

To find out about other options for describing colors, visit Flutter’s Color class
documentation page:

https://api.flutter.dev/flutter/dart-ui/Color-class.html

Laying Things O
ut

0005390159.INDD 535	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:42	PM

CHAPTER 6 Laying Things Out 535

Adding padding
Flutter’s Padding widget puts some empty space between its outermost edge and
its child. In Listing 6-1, the code

Padding(

 padding: const EdgeInsets.symmetric(

 horizontal: 20.0,

),

 child: buildColumn(context),

surrounds the buildColumn call with 20.0 units of empty space on the left and the
right. (Refer to Figure 6-1.) With no padding, the column would touch the left and
right edges of the user’s screen, and so would the white Sale Today box inside the
column. That wouldn’t look nice.

In Flutter, a line such as horizontal: 20.0 stands for 20.0 density-independent
pixels. A density-independent pixel (dp) has no fixed size. Instead, the size of a
density-independent pixel depends on the user’s hardware. In particular, every
inch of the user’s screen is roughly 96 dp long. That makes every centimeter
approximately 38 pixels long. According to Flutter’s official documentation, the
rule about having 96 dp per inch “may be inaccurate, sometimes by a signifi-
cant margin.” Run this section’s app on your own phone and you’ll see what
they mean.

TABLE 6-1 Sample Parameters for the Color.fromRGBO Constructor
Parameter	List What	the	Parameter	List	Means

(0, 255, 0, 1.0) Green

(0, 0, 255, 1.0) Blue

(255, 0, 255, 1.0) Purple	(equal	amounts	of	Red	and	Blue)

(0, 0, 0, 1.0) Black

(255, 255, 255, 1.0) White

(190, 190, 190, 1.0) Gray	(approximately	75%	whiteness)

(255, 0, 0, 0.5) 50%	transparent	Red

(255, 0, 0, 0.0) Nothing	(complete	transparency,	no	matter	what	the	Red,	Green,	and	Blue	
values	are)

0005390159.INDD 536	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:42	PM

536 		BOOK	4	 Creating Mobile Apps

In Flutter, you describe padding of any kind by constructing an EdgeInsets
object. The EdgeInsets.symmetric constructor in Listing 6-1 has one
parameter — a horizontal parameter. In addition to the horizontal parameter,
an EdgeInsets.symmetric constructor can have a vertical parameter, like so:

Padding(

 padding: const EdgeInsets.symmetric(

 horizontal: 20.0,

 vertical: 10.0,

)

A vertical parameter adds empty space to the top and bottom of the child widget.
Table 6-2 lists some alternatives to the EdgeInsets.symmetric constructor.

TABLE 6-2 EdgeInsets Constructor Calls
Constructor	Call How	Much	Blank	Space	Surrounds	the	

Child	Widget

EdgeInsets.all(20.0) 20.0	dp	on	all	four	sides

EdgeInsets.only(

left: 15.0,

top: 10.0,

)

15.0	dp	on	the	left

10.0	dp	on	top

EdgeInsets.only(

top: 10.0,

right: 15.0,

bottom: 15.0,

)

10.0	dp	on	top

15.0	dp	on	the	right

15.0	dp	on	the	bottom

EdgeInsets.fromLTRB(

5.0,

10.0,

3.0,

2.0,

)

5.0	dp	on	the	left

10.0	dp	on	top

3.0	dp	on	the	right

2.0	dp	on	the	bottom

Laying Things O
ut

0005390159.INDD 537	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:42	PM

CHAPTER 6 Laying Things Out 537

The Padding widget adds blank space inside of itself. To add space outside of a
widget, see the section “Your friend, the Container widget,” later in this chapter.

Your humble servant, the Column widget
Think about it: Without Flutter’s Column widget, you wouldn’t be able to position
one widget above another. Everything on a user’s screen would be squished into
one place. The screen would be unreadable, and no one would use Flutter. You
wouldn’t be reading this book. What an awful world it would be!

The Column widget in Listing 6-2 has two properties related to alignment:

Column(

 mainAxisAlignment: MainAxisAlignment.center,

 crossAxisAlignment: CrossAxisAlignment.stretch,

 // ... And so on.

The mainAxisAlignment property comes up in Book 4, Chapter 3. It describes
the way children are positioned from the top to the bottom of the column. With
MainAxisAlignment.center, children gather about halfway down from the top of
the screen. (Refer to Figure 6-1.) In contrast, the crossAxisAlignment describes
how children are situated from side to side within the column. (See Figure 6-2.)

FIGURE 6-2:
Every	Flutter	

book	contains	a	
drawing	like	this.	

0005390159.INDD 538	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:42	PM

538 		BOOK	4	 Creating Mobile Apps

A column’s crossAxisAlignment can make a big difference in the way the
column’s children appear on the screen. For example, if you comment out the cross
AxisAlignment line in Listing 6-2, you see the screen shown in Figure 6-3.

In Listing 6-2, the CrossAxisAlignment.stretch value tells the column that
its children should fill the entire cross axis. This means that, regardless of the
children’s explicit width values, children shrink or widen so that they run across
the entire column. If you don’t believe me, try the following experiment:

1. Run the code in Listing 6-1.

Use	the	iPhone	simulator,	the	Android	emulator,	or	a	real	physical	phone.	Start	
with	the	device	in	portrait	mode,	as	in	Figure 6-1.

2. Turn the device sideways so that it is in landscape mode.

If	you’re	running	a	virtual	device,	press	Command-right	arrow	(on	a	Mac)	or	
Ctrl+right	arrow	(on	Windows).	If	you’re	running	a	physical	device,	turn	the	
darn	thing	sideways.

3. Observe the change in the size of the Sale Today box.

No	matter	how	wide	the	screen	is,	the	Sale	Today	box	stretches	almost	all	the	
way	across.	The	width: 88.0	setting	in	Listing 6-1	has	no	effect.

You can read more about axis alignments in the sections that follow.

When you turn a device sideways, the device might not switch between portrait
and landscape modes. This is true for both physical devices (real phones and
tablets) and virtual devices (emulators and simulators). If your device’s orienta-
tion refuses to change, try this:

FIGURE 6-3:
When	you	don’t	
stretch	the	Sale	

Today	box.	

Laying Things O
ut

0005390159.INDD 539	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:42	PM

CHAPTER 6 Laying Things Out 539

 » On	an	Android	device,	in	Settings➪ Display,	turn	on	Auto	Rotate	Screen.

 » On	an	iPhone	or	iPad,	swipe	up	from	the	bottom	of	the	screen	and	press	the	
button	that	displays	a	lock	and	a	circular	arrow.

The SizedBox widget
If you plan to live on a desert island and can bring only seven widgets with you,
those seven widgets should be Column, Row, SizedBox, Container, Expanded,
Spacer, and Padding.

A SizedBox is a rectangle that developers use for taking up space. A SizedBox
has a width, a height, and possibly a child. Very often, only the width or the
height matters.

Listing 6-2 has a SizedBox of height 20.0 sitting between the title text and the
rounded box. Without the SizedBox, there would be no space between the title
text and the rounded box.

A Spacer is like a SizedBox, except that a Spacer uses flex instead of explicit
height and width parameters. For a look at Flutter’s flex property, see the sec-
tion “Flexing some muscles,” later in this chapter.

Your friend, the Container widget
In Listing 6-2, the box displaying the words Sale Today uses a Container widget. A
Container is a widget that contains something. (That’s not surprising.) While the
widget is containing something, it has properties like height, width, alignment,
decoration, padding, and margin.

The height and width parameters
You might be curious about a particular line in Listing 6-1:

 return Container(

 height: height,

What could height: height possibly mean? The height is what it is? The height
is the height is the height?

To find out what’s going on, place the cursor on the second occurrence of the word
height — the one after the colon. When you do, Android Studio highlights that
occurrence along with one other. (See Figure 6-4.)

0005390159.INDD 540	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:42	PM

540 		BOOK	4	 Creating Mobile Apps

Noticeably absent is any highlight on the height that’s immediately before the
colon. Listing 6-1 has two variables named height. One is a parameter of build
RoundedBox; the other is a parameter of the Container constructor. The line

height: height,

makes the Container parameter have the same value as the buildRounded
Box parameter. (The buildRoundedBox parameter gets its value from the call in
Listing 6-2.)

In a Container constructor call, the height and width parameters are
suggestions — not absolute sizes. For details, refer to the section “Your humble
servant, the Column widget,” earlier in this chapter. And, while you’re at it,
check out the section “Using the Expanded Widget,” later in this chapter.

The alignment parameter
To align a child within a Container widget, you don’t use mainAxisAlignment
or crossAxisAlignment. Instead, you use the plain old alignment parameter. In
Listing 6-1, the line

alignment: Alignment(0.0, 0.0)

tells Flutter to put the child of the container in the center of the container.
Figure 6-5 illustrates the secrets behind the Alignment class.

The decoration parameter
As the name suggests, decoration is something that livens up an otherwise dull-
looking widget. In Listing 6-1, the BoxDecoration constructor has three param-
eters of its own:

 » color: The widget’s fill color.

This	property	fills	the	Sale	Today	box	in	Figure 6-1	with	white.

FIGURE 6-4:
Selecting	a	

name	in	Android	
	Studio’s	editor.	

Laying Things O
ut

0005390159.INDD 541	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:42	PM

CHAPTER 6 Laying Things Out 541

Both	the	Container	and	BoxDecoration	constructors	have	color param-
eters.	When	you	put	a	BoxDecoration	inside	of	a	Container,	have	a	color
parameter	for	the	BoxDecoration,	not	the	Container.	If	you	have	both,	your	
program	may	crash.

 » border: The outline surrounding the widget.

Listing 6-1	uses	the	Border.all	constructor,	which	describes	a	border	on	all	
four	sides	of	the	Sale	Today	box.

To	create	a	border	whose	sides	aren’t	all	the	same,	use	Flutter’s	Border
constructor	(without	the	.all	part).	Here’s	an	example:

Border(

 top: BorderSide(width: 5.0, color: Colors.black),

 bottom: BorderSide(width: 5.0, color: Colors.black),

 left: BorderSide(width: 3.0, color: Colors.blue),

 right: BorderSide(width: 3.0, color: Colors.blue),

)

 » borderRadius: The amount of curvature of the widget’s border.

Figure 6-6	shows	what	happens	when	you	use	different	values	for	the	
borderRadius parameter.

FIGURE 6-5:
Using	a	

	container’s	
	alignment	

parameter.

0005390159.INDD 542	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:42	PM

542 		BOOK	4	 Creating Mobile Apps

The padding and margin parameters
The Container constructor call in Listing 6-1 has no padding or margin param-
eters, but padding and margin can be useful in other settings. To find out how
padding and margin work, look first at Listing 6-3.

LISTING 6-3: Without Padding or Margin

// app0603.dart

import 'package:flutter/material.dart';

void main() => runApp(App0602());

class App0602 extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 return MaterialApp(

 home: Material(

 color: Colors.grey[50],

 child: Container(

 color: Colors.grey[500],

 child: Container(

 color: Colors.grey[700],

),

),

),

);

 }

}

FIGURE 6-6:
Experiments	with	
a	border	radius.	

Laying Things O
ut

0005390159.INDD 543	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:42	PM

CHAPTER 6 Laying Things Out 543

Listing 6-3 has a container within another container that’s within a Material
widget. The inner container is grey[700], which is fairly dark gray. The outer
container is a lighter gray, and the Material widget background is grey[50],
which is almost white.

When you run the app in Listing 6-3, the inner container completely covers the
outer container, which, in turn, completely covers the Material widget. Each of
these widgets expands to fill its parent, so each of the three widgets takes up the
entire screen. The only widget you can see is the innermost, dark gray container.
What a waste!

To remedy this situation, Listing 6-4 uses both padding and margin. Figure 6-7
shows you the result.

LISTING 6-4: With Padding and Margin

// app0604.dart

import 'package:flutter/material.dart';

void main() => runApp(App0604());

class App0604 extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 return MaterialApp(

 home: SafeArea(

 child: Material(

 color: Colors.grey[50],

 child: Container(

 color: Colors.grey[500],

 padding: EdgeInsets.all(80.0),

 margin: EdgeInsets.all(40.0),

 child: Container(

 color: Colors.grey[700],

),

),

),

),

);

 }

}

0005390159.INDD 544	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:42	PM

544 		BOOK	4	 Creating Mobile Apps

Listing 6-4 is all about the middle container — the one whose color is a medium
shade of gray. I’ve marked up Figure 6-7 to make the result crystal-clear. The
general rules are as follows:

 » Padding is the space between a widget’s outermost edges and the
widget’s child.

In	Figure 6-7,	the	medium	gray	stuff	is	padding.

 » A margin is the space between a widget’s outermost edges and the
widget’s parent.

In	Figure 6-7,	the	white	(or	nearly	white)	stuff	is	the	margin.

You can add padding to almost any widget without putting that widget inside a
Container. To do so, simply put the widget inside of a Padding widget. For an
example, look for the Padding widget in Listing 6-1.

When you think about a mobile device, you probably imagine a rectangular
screen. Does this mean that an entire rectangle is available for use by your app? It
doesn’t. The top of the rectangle may have a notch. The corners of the rectangle
may be rounded instead of square. The operating system (iOS or Android) may
consume parts of the screen with an Action Bar or other junk.

To avoid items in this obstacle course, Flutter has a SafeArea widget. The
SafeArea is the part of the screen that’s available for the free, unencumbered use
by your app. In Listing 6-4, a SafeArea helps me show the padding and margin in
all their glory. Without that SafeArea, the top part of the margin might be covered
by stuff that’s not part of my app.

FIGURE 6-7:
Padding	versus	

margin.	

Laying Things O
ut

0005390159.INDD 545	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:42	PM

CHAPTER 6 Laying Things Out 545

Nesting Rows and Columns
You hardly ever see an app with only one column of widgets. Most of the time, you
see widgets alongside other widgets, widgets arranged in grids, widgets at angles
to other widgets, and so on. The most straightforward way to arrange Flutter wid-
gets is to put columns inside of rows and rows inside of columns. Listing 6-5 has
an example, and Figure 6-8 shows you the results.

LISTING 6-5: A Row within a Column

// app0605.dart

import 'package:flutter/material.dart';

import 'app06main.dart';

Widget buildColumn(BuildContext context) {

 return Column(

 mainAxisAlignment: MainAxisAlignment.center,

 crossAxisAlignment: CrossAxisAlignment.stretch,

 children: <Widget>[

 buildTitleText(),

 SizedBox(height: 20.0),

 _buildRowOfThree(),

],

);

}

Widget _buildRowOfThree() {

 return Row(

 mainAxisAlignment: MainAxisAlignment.spaceBetween,

 children: <Widget>[

 buildRoundedBox("Cat"),

 buildRoundedBox("Dog"),

 buildRoundedBox("Ape"),

],

);

}

In Listing 6-1, the Column widget’s crossAxisAlignment property forces the Sale
Today box to be as wide as it could possibly be. That happens because the Sale
Today box is one of the Column widget’s children. But in Listing 6-5, the Cat, Dog,
and Ape boxes aren’t children of the Column widget. Instead, they’re grandchildren
of the Column widget. So, for Listing 6-5, the major factor positioning the Cat,
Dog, and Ape boxes is the Row widget’s mainAxisAlignment property.

0005390159.INDD 546	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:42	PM

546 		BOOK	4	 Creating Mobile Apps

To see this in action, change these lines in Listing 6-5:

return Row(

 mainAxisAlignment: MainAxisAlignment.spaceBetween,

To the following lines:

return Row(

 mainAxisAlignment: MainAxisAlignment.center,

When you do, you see the arrangement shown in Figure 6-9.

To find out about values you can give to a mainAxisAlignment property, refer to
Book 4, Chapter 3.

Introducing More Levels of Nesting
Yes, you can create a row within a column within a row within a column within
a row. You can go on like that for a very long time. This section has two modest
examples. The first example (Listing 6-6) has a row of captioned boxes.

FIGURE 6-9:
Animals	in	
cramped	
quarters.	

FIGURE 6-8:
Animals	for	sale.	

Laying Things O
ut

0005390159.INDD 547	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:42	PM

CHAPTER 6 Laying Things Out 547

LISTING 6-6: Adding Captions to the Boxes

// app0606.dart

import 'package:flutter/material.dart';

import 'app06main.dart';

Widget buildColumn(BuildContext context) {

 return Column(

 mainAxisAlignment: MainAxisAlignment.center,

 crossAxisAlignment: CrossAxisAlignment.stretch,

 children: <Widget>[

 buildTitleText(),

 SizedBox(height: 20.0),

 _buildCaptionedRow(),

],

);

}

Widget _buildCaptionedRow() {

 return Row(

 mainAxisAlignment: MainAxisAlignment.spaceBetween,

 children: <Widget>[

 _buildCaptionedItem(

 "Cat",

 caption: "Meow",

),

 _buildCaptionedItem(

 "Dog",

 caption: "Woof",

),

 _buildCaptionedItem(

 "Ape",

 caption: "Chatter",

),

],

);

}

Column _buildCaptionedItem(String label, {required String caption}) {

 return Column(

 children: <Widget>[

 buildRoundedBox(label),

 SizedBox(

 height: 5.0,

),

(continued)

0005390159.INDD 548	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:42	PM

548 		BOOK	4	 Creating Mobile Apps

 Text(

 caption,

 textScaleFactor: 1.25,

),

],

);

}

Figure 6-10 shows a run of the code from Listing 6-6.

The next example, Listing 6-7, does something a bit different. In Listing 6-7, two
boxes share the space where one box might be.

LISTING 6-7: More Widget Nesting

// app0607.dart

import 'package:flutter/material.dart';

import 'app06main.dart';

Widget buildColumn(BuildContext context) {

 return Column(

 mainAxisAlignment: MainAxisAlignment.center,

 crossAxisAlignment: CrossAxisAlignment.stretch,

 children: <Widget>[

 buildTitleText(),

 SizedBox(height: 20.0),

 _buildColumnWithinRow(),

],

);

}

FIGURE 6-10:
Noisy	animals	

for	sale.	

LISTING 6-6: (continued)

Laying Things O
ut

0005390159.INDD 549	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:42	PM

CHAPTER 6 Laying Things Out 549

Widget _buildColumnWithinRow() {

 return Row(

 mainAxisAlignment: MainAxisAlignment.spaceBetween,

 children: <Widget>[

 buildRoundedBox("Cat"),

 SizedBox(width: 20.0),

 buildRoundedBox("Dog"),

 SizedBox(width: 20.0),

 Column(

 children: <Widget>[

 buildRoundedBox(

 "Big ox",

 height: 36.0,

),

 SizedBox(height: 16.0),

 buildRoundedBox(

 "Small ox",

 height: 36.0,

),

],

),

],

);

}

Figure 6-11 shows a run of the code from Listing 6-7.

Using the Expanded Widget
Start with the code in Listing 6-5 and add two more boxes to the row:

Widget _buildRowOfFive() {

 return Row(

 mainAxisAlignment: MainAxisAlignment.spaceBetween,

 children: <Widget>[

FIGURE 6-11:
A	multilevel	

arrangement.	

0005390159.INDD 550	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:42	PM

550 		BOOK	4	 Creating Mobile Apps

 buildRoundedBox("Cat"),

 buildRoundedBox("Dog"),

 buildRoundedBox("Ape"),

 buildRoundedBox("Ox"),

 buildRoundedBox("Gnu"),

],

);

}

When you run this modified code on a not-too-large phone in portrait mode, you
see the ugly display in Figure 6-12. (If your phone is too large to see the ugliness,
add more buildRoundedBox calls.)

The segment on the right side of Figure 6-12 (the stuff that looks like barricade
tape) indicates overflow. The row is trying to be wider than the phone’s screen.
Look near the top of Android Studio’s Run tool window and you see the following
message:

A RenderFlex overflowed by 67 pixels on the right.

When you line up too many boxes side-by-side, the screen becomes overcrowded.
That’s not surprising. But some layout situations aren’t so obvious. You can
stumble into an overflow problem when you least expect it.

What can you do when your app overflows? Here’s an off-the-wall suggestion:
Tell each of the boxes to expand. (You read that correctly: Tell them to expand!)
Listing 6-8 has the code, and Figure 6-13 shows you the results.

LISTING 6-8: Expanding Your Widgets

// app0608.dart

import 'package:flutter/material.dart';

FIGURE 6-12:
You	can’t	cross	
the	barricade.	

Laying Things O
ut

0005390159.INDD 551	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:42	PM

CHAPTER 6 Laying Things Out 551

import 'app06main.dart';

Widget buildColumn(BuildContext context) {

 return Column(

 mainAxisAlignment: MainAxisAlignment.center,

 crossAxisAlignment: CrossAxisAlignment.stretch,

 children: <Widget>[

 buildTitleText(),

 SizedBox(height: 20.0),

 _buildRowOfFive(),

],

);

}

Widget _buildRowOfFive() {

 return Row(

 mainAxisAlignment: MainAxisAlignment.spaceBetween,

 children: <Widget>[

 _buildExpandedBox("Cat"),

 _buildExpandedBox("Dog"),

 _buildExpandedBox("Ape"),

 _buildExpandedBox("Ox"),

 _buildExpandedBox("Gnu"),

],

);

}

Widget _buildExpandedBox(

 String label, {

 double height = 88.0,

}) {

 return Expanded(

 child: buildRoundedBox(

 label,

 height: height,

),

);

}

FIGURE 6-13:
A	nice	row	of	five.	

0005390159.INDD 552	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:42	PM

552 		BOOK	4	 Creating Mobile Apps

To quote from the official Flutter documentation (https://api.flutter.dev/
flutter/widgets/Expanded-class.html):

“A	widget	that	expands	a	child	of	a	Row,	Column,	or	Flex	so	that	the	child	fills	the	
available	space.

Using	an	Expanded	widget	makes	a	child	of	a	Row,	Column,	or	Flex	expand	to	fill	
the	available	space	along	the	main	axis	(horizontally	for	a	Row	or	vertically	for	a	
Column).	If	multiple	children	are	expanded,	the	available	space	is	divided	among	
them	according	to	the	flex	factor.”

In spite of its name, the Expanded widget doesn’t necessarily make its child big-
ger. Instead, the Expanded widget makes its child fill the available space along
with any other widgets that are competing for that space. If that available space
differs from the code’s explicit height or width value, so be it. Listing 6-8 inher-
its the line

width: 88.0,

to describe the width of each rounded box. But, in Figure 6-13, none of the boxes
is 88.0 dp wide. On an iPhone 11 Pro Max, each box is only 74.8 dp wide.

Expanded versus unexpanded
The code in the previous section surrounds each of a row’s boxes with the
Expanded widget. In this section, Listing 6-9 shows you what happens when you
use Expanded more sparingly.

LISTING 6-9: Expanding One of Three Widgets

// app0609.dart

import 'package:flutter/material.dart';

import 'app06main.dart';

Widget buildColumn(BuildContext context) {

 return Column(

 mainAxisAlignment: MainAxisAlignment.center,

 crossAxisAlignment: CrossAxisAlignment.stretch,

 children: <Widget>[

 buildTitleText(),

 SizedBox(height: 20.0),

 _buildRowOfThree(),

],

);

}

Laying Things O
ut

0005390159.INDD 553	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:42	PM

CHAPTER 6 Laying Things Out 553

Widget _buildRowOfThree() {

 return Row(

 mainAxisAlignment: MainAxisAlignment.spaceBetween,

 children: <Widget>[

 buildRoundedBox(

 "Giraffe",

 height: 150.0,

),

 SizedBox(width: 10.0),

 buildRoundedBox(

 "Wombat",

 height: 36.0,

),

 SizedBox(width: 10.0),

 _buildExpandedBox(

 "Store Manager",

 height: 36.0,

),

],

);

}

Widget _buildExpandedBox(

 String label, {

 double height = 88.0,

}) {

 return Expanded(

 child: buildRoundedBox(

 label,

 height: height,

),

);

}

The code in Listing 6-9 surrounds only one box — the Store Manager box — with
an Expanded widget. Here’s what happens:

 » The	code	gets	width: 88.0	from	the	buildRoundedBox	method	in	Listing 6-1,	
so	the	Giraffe	and	Wombat	boxes	are	88.0	dp	wide	each.

 » Two	SizedBox	widgets	are	10.0	dp	wide	each.

So	far,	the	total	is	196.0	dp.

 » Because	the	Store	Manager	box	sits	inside	an	Expanded	widget,	the	remaining	
screen	width	goes	to	the	Store	Manager	box.	(See	Figure 6-14.)

0005390159.INDD 554	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:42	PM

554 		BOOK	4	 Creating Mobile Apps

Use of the Expanded widget affects a widget’s size along its parent’s main axis,
but not along its parent’s cross axis. So, in Figure 6-14, the Store Manager box
grows from side to side (along the row’s main axis) but doesn’t grow from top to
bottom (along the row’s cross axis). In fact, only the numbers 150.0, 36.0, and
36.0 in the _buildRowOfThree method (see Listing 6-9) have any influence on
the heights of the boxes.

With a bit of tweaking, the code in Listing 6-9 can provide more evidence that
an Expanded widget isn’t necessarily a large widget. Try these two experiments:

1. Rerun the code from Listings 6-1 and 6-9. But, in the buildRoundedBox
method declaration, change width: 88.0 to width: 130.0.

On	an	iPhone	simulator,	the	widths	of	the	Giraffe	and	Wombat	boxes	are	130.0	
dp	each.	But	the	width	of	the	Expanded	Store	Manager	box	is	only	94.0	dp.	The	
Giraffe	and	Wombat	boxes	are	quite	large.	So,	when	the	Store	Manager	box	
fills	the	remaining	available	space,	that	space	is	only	94.0	dp	wide.	(See	
Figure 6-15.)

FIGURE 6-14:
The	store	

	manager	takes	
up	space.	

FIGURE 6-15:
Expanding	to	

fit	into	a	
small	space.	

Laying Things O
ut

0005390159.INDD 555	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:42	PM

CHAPTER 6 Laying Things Out 555

2. In the buildRoundedBox method declaration, change width from its value
in Step 1 (width: 130.0) to width: 180.0.

With	the	Giraffe	and	Wombat	boxes	and	the	SizedBox	widgets	taking	up	
380.0	dp,	there’s	no	room	left	on	the	iPhone	simulator	for	the	Store	Manager	
box	and	you’ll	see	the	black-and-yellow	stripe,	indicating	RenderBox	overflow.	
(See	Figure 6-16.)	The	Expanded	widget	isn’t	a	miracle	worker.	It	doesn’t	help	
solve	every	problem.

Expanded widget saves the day
Listings 6-10 and 6-11 illustrate a nasty situation that may arise when you mix
rows and columns at various levels.

LISTING 6-10: A Listing That’s Doomed to Failure

// app0610.dart -- BAD CODE

import 'package:flutter/material.dart';

import 'app06main.dart';

import 'constraints_logger.dart';

Widget buildColumn(BuildContext context) {

 return Row(

 children: [

 _buildRowOfThree(),

],

);

}

Widget _buildRowOfThree() {

 return ConstraintsLogger(

 comment: 'In _buildRowOfThree',

FIGURE 6-16:
More	barricade	

tape.

(continued)

0005390159.INDD 556	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:42	PM

556 		BOOK	4	 Creating Mobile Apps

 child: Row(

 children: <Widget>[

 _buildExpandedBox("Cat"),

 _buildExpandedBox("Dog"),

 _buildExpandedBox("Ape"),

],

),

);

}

Widget _buildExpandedBox(

 String label, {

 double height = 88.0,

}) {

 return Expanded(

 child: buildRoundedBox(

 label,

 height: height,

),

);

}

LISTING 6-11: An Aid for Debugging

// constraints_logger.dart

import 'package:flutter/material.dart';

class ConstraintsLogger extends StatelessWidget {

 final String comment;

 final Widget child;

 ConstraintsLogger({

 this.comment = "",

 required this.child,

 }) : assert(comment != null);

 Widget build(BuildContext context) {

 return LayoutBuilder(

 builder: (BuildContext context, BoxConstraints constraints) {

 print('$comment: $constraints to ${child.runtimeType}');

 return child;

 },

);

 }

}

LISTING 6-10: (continued)

Laying Things O
ut

0005390159.INDD 557	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:42	PM

CHAPTER 6 Laying Things Out 557

When you run the code in Listings 6-10 and 6-11, three things happen:

 » Nothing appears on your device’s screen except maybe a dull, gray
background.

 » In Android Studio’s Run tool window, you see the following error
message:

RenderFlex children have non-zero flex but incoming width

constraints are unbounded.

Flutter	developers	start	groaning	when	they	see	this	message.

Later	on,	in	the	Run	tool	window	. . .

If a parent is to shrink-wrap its child, the child

cannot simultaneously expand to fit its parent.

 » Also, in the Run tool window, you see a message like this one:

I/flutter (5317): In _buildRowOfThree:

BoxConstraints(0.0<=w<=Infinity, 0.0<=h<=683.4) to Row

 » This I/flutter	message	tells	you	that	the	layout’s	inner	row	is	being	handed	a	
width	constraint	that	has	something	to	do	with	Infinity.	This	informative	
0.0<=w<=Infinity	message	comes	to	you	courtesy	of	the	code	in	Listing 6-11.

What do all these messages mean? In a Flutter app, your widgets form a tree.
Figure 6-17 shows a tree of widgets as it’s depicted in Android Studio’s Flutter
Inspector.

To display your widgets, Flutter travels in two directions:

 » Along the tree from top to bottom

During	this	travel,	each	widget	tells	its	children	what	sizes	they	can	be.	In	
Flutter	terminology,	each	parent	widget	passes constraints	to	its	children.

For	example,	a	Run	tool	window	message	says	that,	in	Listing 6-11,	the	outer	
row	passes	the	width	constraint	of	0.0<=w<=Infinity	to	the	inner	row.	
Because	of	the	word	Infinity,	this	constraint	is	called	an	unbounded
constraint.

If	you’re	looking	for	an	example	of	a	bounded constraint,	look	at	the	same	
Run	tool	window	message.	The	outer	row	passes	the	height	constraint	of	
0.0<=h<=683.4	to	the	inner	row.	That	constraint	is	bounded	by	the	value	
683.4	dp.

0005390159.INDD 558	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:42	PM

558 		BOOK	4	 Creating Mobile Apps

Eventually,	Flutter	reaches	the	bottom	of	your	app’s	widget	tree.	At	that	
point	. . .

 » Along the tree again — this time, from bottom to top

During	this	travel,	each	child	widget	tells	its	parent	exactly	what	size	it	wants	
to	be.	The	parent	collects	this	information	from	each	of	its	children	and	uses	
the	information	to	assign	positions	to	the	children.

Sometimes	this	works	well,	but	in	Listing 6-11,	it	fails	miserably.

In Listing 6-11, because each animal box is inside an Expanded widget, the inner
row doesn’t know how large it should be. The inner row needs to be given a width
in order to divide up the space among the animal boxes. But the outer row has
given an unbounded constraint to the inner row. Instead of telling the inner row
its width, the outer row is asking the inner row for its width. Nobody wants to
take responsibility, so Flutter doesn’t know what to do. (See Figure 6-18.)

How can you fix this unpleasant problem? Oddly enough, another Expanded widget
comes to the rescue.

Widget _buildRowOfThree() {

 return Expanded(

 child: ConstraintsLogger(

FIGURE 6-17:
The	tree	created	
by	Listings 6-10	

and 6-11.	

© John Wiley & Sons

Laying Things O
ut

0005390159.INDD 559	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:42	PM

CHAPTER 6 Laying Things Out 559

 comment: 'In _buildRowOfThree',

 child: Row(

 children: <Widget>[

 _buildExpandedBox("Cat"),

 _buildExpandedBox("Dog"),

 _buildExpandedBox("Ape"),

],

),

),

);

}

This new Expanded widget passes bounded constraints down the widget tree, as
you can see from this new message in the Run tool window:

I/flutter (5317): In _buildRowOfThree:

BoxConstraints(w=371.4, 0.0<=h<=683.4) to Row

The new Expanded widget tells the inner row that its width must be exactly
371.4 dp, so the confusion that’s illustrated in Figure 6-18 goes away. Flutter
knows how to display the app’s widgets, and you see three nicely arranged animal
boxes on your device’s screen. Problem solved!

The constraint w=371.4 is called a tight constraint because it gives the row an exact
size with no leeway whatsoever. In contrast, the constraint 0.0<=h<=683.4 is
called a loose constraint. The loose constraint says, “Be as short as 0.0 dp high and
as tall as 683.4 dp high. See if I care.”

FIGURE 6-18:
Someone	needs	

to	make	a	
decision!	

0005390159.INDD 560	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:42	PM

560 		BOOK	4	 Creating Mobile Apps

This business with constraints and sizes may seem overly complicated. But the
process of scanning down the tree and then up the tree is an important part of
the Flutter framework. The two-scan approach makes for efficient rebuilding of
stateful widgets. And the rebuilding of stateful widgets is fundamental to the way
Flutter apps are designed.

Some layout schemes work well with small numbers of components but start
slowing down when the number of components becomes large. Flutter’s layout
scheme works well with only a few widgets and scales nicely for complicated
layouts with large numbers of widgets.

The ConstraintsLogger widget is for debugging purposes only. Before publish-
ing an app, remove all uses of the ConstraintsLogger from your code.

Flexing some muscles
Using Flutter’s Expanded widget, you can specify the relative sizes of the children
inside a column or a row. Listing 6-12 has an example.

LISTING 6-12: How to Specify Relative Sizes

// app0612.dart

import 'package:flutter/material.dart';

import 'app06main.dart';

Widget buildColumn(BuildContext context) {

 return Column(

 mainAxisAlignment: MainAxisAlignment.center,

 crossAxisAlignment: CrossAxisAlignment.stretch,

 children: <Widget>[

 buildTitleText(),

 SizedBox(height: 20.0),

 _buildRowOfThree(),

],

);

}

Widget _buildRowOfThree() {

 return Row(

 mainAxisAlignment: MainAxisAlignment.spaceBetween,

 children: <Widget>[

 _buildExpandedBox(

 "Moose",

Laying Things O
ut

0005390159.INDD 561	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:42	PM

CHAPTER 6 Laying Things Out 561

),

 _buildExpandedBox(

 "Squirrel",

 flex: 1,

),

 _buildExpandedBox(

 "Dinosaur",

 flex: 3,

),

],

);

}

Widget _buildExpandedBox(

 String label, {

 double height = 88.0,

 int flex = 1,

}) {

 return Expanded(

 flex: flex,

 child: buildRoundedBox(

 label,

 height: height,

),

);

}

What will happen to our heroes, the Moose and the Squirrel, in Listing 6-12? To
find out, see Figure 6-19.

Notice the frequent use of the word flex in Listing 6-12. An Expanded widget can
have a flex value, also known as a flex factor. A flex factor decides how much space
the widget consumes relative to the other widgets in the row or column.

FIGURE 6-19:
The	squirrel	
is	small;	the	

	dinosaur	is	big.	

0005390159.INDD 562	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:42	PM

562 		BOOK	4	 Creating Mobile Apps

Listing 6-12 has three boxes:

 » Moose,	with	no	flex	value	(so	it	gets	the	value	of	1	set	when	flex	is	initiated)

 » Squirrel,	with	flex	value	1

 » Dinosaur,	with	flex	value	3

Here’s the lowdown on the resulting size of each box:

Because the Moose box has a null flex value, the Moose box has whatever width
comes explicitly from the _buildExpandedBox method.

Both the Squirrel and Dinosaur boxes have non-null, non-zero flex values. So
those two boxes share the space that remains after the Moose box is in place.
With flex values of Squirrel: 1, Dinosaur: 3, the Dinosaur box is three times the
width of the Squirrel box. On a Pixel 2 emulator, the Squirrel box is 70.9 dp wide,
and the Dinosaur box is 212.5 dp wide. That’s the way flex values work.

In addition to the Expanded widget’s flex property, Flutter has classes named
Flex and Flexible. It’s easy to confuse the three of them. Every Flex instance
is either a Row instance or a Column instance. And every Expanded instance is an
instance of the Flexible class. A Flexible instance can have a flex value, but a
Flexible instance doesn’t force its child to fill the available space. How about that!

How Big Is My Device?
The title of this section is a question, and the answer is “You don’t know.” A Flut-
ter app can run on a small iPhone 6, or in a web page on a 50-inch screen. You
want your app to look good no matter what size your device happens to be. How
can you do that? Listing 6-13 has an answer.

LISTING 6-13: Checking Device Orientation

// app0613.dart

import 'package:flutter/material.dart';

import 'app06main.dart';

Widget buildColumn(context) {

 if (MediaQuery.of(context).orientation == Orientation.landscape) {

 return _buildOneLargeRow();

 } else {

Laying Things O
ut

0005390159.INDD 563	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:42	PM

CHAPTER 6 Laying Things Out 563

 return _buildTwoSmallRows();

 }

}

Widget _buildOneLargeRow() {

 return Column(

 mainAxisAlignment: MainAxisAlignment.center,

 children: <Widget>[

 Row(

 mainAxisAlignment: MainAxisAlignment.spaceEvenly,

 children: <Widget>[

 buildRoundedBox("Aardvark"),

 buildRoundedBox("Baboon"),

 buildRoundedBox("Unicorn"),

 buildRoundedBox("Eel"),

 buildRoundedBox("Emu"),

 buildRoundedBox("Platypus"),

],

),

],

);

}

Widget _buildTwoSmallRows() {

 return Column(

 mainAxisAlignment: MainAxisAlignment.center,

 children: [

 Row(

 mainAxisAlignment: MainAxisAlignment.spaceEvenly,

 children: [

 buildRoundedBox("Aardvark"),

 buildRoundedBox("Baboon"),

 buildRoundedBox("Unicorn"),

],

),

 SizedBox(

 height: 30.0,

),

 Row(

 mainAxisAlignment: MainAxisAlignment.spaceEvenly,

 children: [

 buildRoundedBox("Eel"),

 buildRoundedBox("Emu"),

 buildRoundedBox("Platypus"),

],

),

],

);

}

0005390159.INDD 564	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:42	PM

564 		BOOK	4	 Creating Mobile Apps

Figures 6-20 and 6-21 show what happens when you run the code in Listing 6-13.
When the device is in portrait mode, you see two rows, with three boxes on each
row. But when the device is in landscape mode, you see only one row, with six boxes.

FIGURE 6-20:
Listing 6-13	in	
portrait	mode.	

FIGURE 6-21:
Listing 6-13	in	

landscape	mode.	

Laying Things O
ut

0005390159.INDD 565	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:42	PM

CHAPTER 6 Laying Things Out 565

The difference comes about because of the if statement in Listing 6-13.

if (MediaQuery.of(context).orientation == Orientation.landscape) {

 return _buildOneLargeRow();

} else {

 return _buildTwoSmallRows();

}

Yes, the Dart programming language has an if statement. It works the same way
that if statements work in other programming languages.

if (a certain condition is true) {

 Do this stuff;

} otherwise {

 Do this other stuff;

}

In the name MediaQuery, the word Media refers to the screen that runs your app.
When you call MediaQuery.of(context), you get back a treasure trove of infor-
mation about that screen, such as

 » orientation:	Whether	the	device	is	in	portrait	mode	or	landscape	mode

 » size.height	and	size.width:	The	number	of	dp	units	from	top	to	bottom	
and	across	the	device’s	screen

 » size.longestSide	and	size.shortestSide:	The	larger	and	smaller	screen	
size	values,	regardless	of	which	is	the	height	and	which	is	the	width

 » size.aspectRatio:	The	screen’s	width	divided	by	its	height

 » devicePixelRatio:	The	number	of	physical	pixels	for	each	dp	unit

 » padding,	viewInsets,	and	viewPadding:	The	parts	of	the	display	that	aren’t	
available	to	the	Flutter	app	developer,	such	as	the	parts	covered	up	by	the	
phone’s	notch	or	(at	times)	the	soft	keyboard

 » alwaysUse24HourFormat:	The	device’s	time	display	setting

 » platformBrightness:	The	device’s	current	brightness	setting

 » . . .	and	many	more

For example, a Pixel C tablet with 2560-by-1800 dp is big enough to display a row
of six animal boxes in either portrait or landscape mode. To prepare for your app
to run on such a device, you may not want to rely on the device’s orientation

0005390159.INDD 566	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:42	PM

566 		BOOK	4	 Creating Mobile Apps

property. In that case, you can replace the condition in Listing 6-13 with some-
thing like the following:

if (MediaQuery.of(context).size.width >= 500.0) {

 return _buildOneLargeRow();

} else {

 return _buildTwoSmallRows();

}

Notice the word context in the code MediaQuery.of(context). In order to query
media, Flutter has to know the context in which the app is running. That’s
why, starting with this chapter’s very first listing, the _MyHomePage class’s
build method has a BuildContext context parameter. Listing 6-1 has this
method call:

buildColumn(context)

And other listings have method declarations with this header:

Widget buildColumn(BuildContext context)

Listings 6-2 to 6-12 make no use of that context parameter. But what if, in
Listing 6-1, you omit the method’s context parameter, like so:

buildColumn()

Then everything is hunky-dory until Listing 6-13, which would have no access to
the context and would be unable to call MediaQuery.of(context). Including the
context parameter in Listings 6-1 to 6-12 was unnecessary, except that it would
eventually be used when you got up to Listing 6-13.

CHAPTER 7 Interacting with the User 567

0005390160.INDD 567 Trim size: 7.375 in × 9.25 in June 11, 2022 3:45 PM

 Interacting with the User

 L ove is in the air! The sun is shining. The birds are singing. Hearts are all
a-Flutter. (Pun intended.)

 Doris D. Developer wants to fi nd a mate, and she has two important criteria. First,
she wants someone who ’ s 18 or older. Second, she ’ s looking for someone who
loves developing Flutter apps. What better way for Doris to achieve her goal than
for her to write her own dating app?

 This chapter covers Doris ’ s outstanding work. To create the app, Doris uses sev-
eral kinds of widgets: a text fi eld, a slider, a drop-down button, and some others.
A widget of this kind — one that the user sees and interacts with — is called a
control element , or simply a control .

 Doris ’ s app also has some layout widgets, such as Center , Row , and Column , but
these layout widgets aren ’ t called controls. The user doesn ’ t really see them and
certainly doesn ’ t interact with them. This chapter ’ s emphasis is on the controls,
not on the layout widgets or the app ’ s other assorted parts.

 Doris ’ s fi nal dating app isn ’ t full-featured by commercial standards, but the code
for the app is a few hundred lines long. That ’ s why Doris develops the app in small
pieces — fi rst one control, and then another, and another, and so on. Each piece
is a small, free-standing practice app.

Chapter 7

 IN THIS CHAPTER

» Collecting responses from the user

» Responding to input

» Dealing with null values

» Advice on love and marriage

0005390160.INDD 568 Trim size: 7.375 in × 9.25 in June 11, 2022 3:45 PM

568 BOOK 4 Creating Mobile Apps

The first practice app deals with a simple question: Is the prospective mate at least
18 years old?

A Simple Switch
A Switch is a control that’s in one of two possible states: on or off, yes or no, true
or false, happy or sad, over 18 or not. Listing 7-1 has the code for the practice
Switch app.

LISTING 7-1: How Old Are You?

import 'package:flutter/material.dart';

void main() => runApp(app0701());

class App0701 extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 return MaterialApp(

 home: MyHomePage(),

);

 }

}

class MyHomePage extends StatefulWidget {

 @override

 _MyHomePageState createState() => _MyHomePageState();

}

const _youAre = 'You are';

const _compatible = 'compatible with\nDoris D. Developer.';

class _MyHomePageState extends State<MyHomePage> {

 bool _ageSwitchValue = false;

 String _messageToUser = "$_youAre NOT $_compatible";

 /// State

 @override

 Widget build(BuildContext context) {

 return Scaffold(

 appBar: AppBar(

 title: Text("Are you compatible with Doris?"),

),

 body: Padding(

Interacting w
ith

the U
ser

0005390160.INDD 569 Trim size: 7.375 in × 9.25 in June 11, 2022 3:45 PM

CHAPTER 7 Interacting with the User 569

 padding: const EdgeInsets.all(8.0),

 child: Column(

 children: <Widget>[

 _buildAgeSwitch(),

 _buildResultArea(),

],

),

),

);

 }

 /// Build

 Widget _buildAgeSwitch() {

 return Row(

 children: <Widget>[

 Text("Are you 18 or older?"),

 Switch(

 value: _ageSwitchValue,

 onChanged: _updateAgeSwitch,

),

],

);

 }

 Widget _buildResultArea() {

 return Text(_messageToUser, textAlign: TextAlign.center);

 }

 /// Actions

 void _updateAgeSwitch(bool newValue) {

 setState(() {

 _ageSwitchValue = newValue;

 _messageToUser =

 _youAre + (_ageSwitchValue ? " " : " NOT ") + _compatible;

 });

 }

}

Figures 7-1 and 7-2 show the app in its two possible states.

This chapter’s listings are practice apps. They’re bite-size samples of Doris’s
completed dating app. But even “bite-size” programs can be long and compli-
cated. To keep this chapter’s listings short, code is reused from one listing to
another. You can download the entire dating app from this book’s website.

0005390160.INDD 570 Trim size: 7.375 in × 9.25 in June 11, 2022 3:45 PM

570 BOOK 4 Creating Mobile Apps

The code in Listing 7-1 isn’t much different from the code in Book 4, Chapter 5. In
Chapter 5, the floating action button has an onPressed parameter. In Listing 7-1,
the Switch widget has something similar. Listing 7-1 has an onChanged parameter.
The onChanged parameter’s value is a function; namely, the _updateAgeSwitch
function. When the user flips the switch, that flip triggers the switch’s onChanged
event, causing the Flutter framework to call the _updateAgeSwitch function.

Unlike the event handling functions in Book 4, Chapter 5, the _updateAgeSwitch
function in Listing 7-1 isn’t a VoidCallback. A VoidCallback function takes no
parameters, but the _updateAgeSwitch function has a parameter. The param-
eter’s name is newValue:

void _updateAgeSwitch(bool newValue)

When the Flutter framework calls _updateAgeSwitch, the framework passes the
Switch widget’s new position (off or on) to the newValue parameter. Because
the type of newValue is bool, newValue is either false or true. It’s false when
the switch is off and true when the switch is on.

If _updateAgeSwitch isn’t a VoidCallback, what is it? The _updateAgeSwitch
function is of type ValueChanged<bool>. A ValueChanged function takes one
parameter and returns void. The function’s parameter can be of any type, but
a ValueChanged<bool> function’s parameter must be of type bool. In the same

FIGURE 7-1:
The user turns on

the switch.

© John Wiley & Sons

FIGURE 7-2:
The user turns off

the switch.

© John Wiley & Sons

Interacting w
ith

the U
ser

0005390160.INDD 571 Trim size: 7.375 in × 9.25 in June 11, 2022 3:45 PM

CHAPTER 7 Interacting with the User 571

way, a ValueChanged<double> function’s parameter must be of type double. And
so on.

Make no mistake about it: Even though the term ValueChanged<bool> doesn’t
have the word Callback in it, the _updateAgeSwitch function is a callback. When
the user flips the Switch widget, the Flutter framework calls your code back. Yes,
the _updateAgeSwitch function is a callback. It’s just not a VoidCallback.

With many controls, nothing much happens if you don’t change the control’s
value and call setState. To illustrate, try commenting out the setState call in
the body of the _updateAgeSwitch function in Listing 7-1:

void _updateAgeSwitch(bool newValue) {

 // setState(() {

 _ageSwitchValue = newValue;

 _messageToUser = _youAre + (_ageSwitchValue ? " " : " NOT ") + _compatible;
 // });

}

Then uncomment the setState call and comment out the assignment statements:

void _updateAgeSwitch(bool newValue) {

 setState(() {

// _ageSwitchValue = newValue;

// _messageToUser =

// _youAre + (_ageSwitchValue ? " " : " NOT ") + _compatible;

 });

}

In both cases, when you restart the program and tap on the switch, the
_messageToUser refuses to change and the switch won’t even budge. That settles
it! The look of the switch is completely dependent on the _ageSwitchValue vari-
able and the call to setState. If you don’t assign anything to _ageSwitchValue or
you don’t call setState, the switch is completely unresponsive.

Dart’s const keyword
In app development, the issue of change is very important. The term variable
comes from the word vary, which means “change.” But some things shouldn’t
change. Listing 7-1 refers to the strings 'You are' and 'compatible with\
nDoris D. Developer' more than once, so Doris created the names _youAre
and _compatible for these strings. That way, she didn’t have to type things like
'compatible with\nDoris D. Developer' more than once.

0005390160.INDD 572 Trim size: 7.375 in × 9.25 in June 11, 2022 3:45 PM

572 BOOK 4 Creating Mobile Apps

Doris wanted to make sure that the value of _youAre wouldn’t change throughout
the run of the program. That’s why, in Listing 7-1, she declared _youAre with the
word const. Dart’s const keyword is short for constant. As a constant, the value
of _youAre cannot change. The same holds true for the declaration of _compatible
in Listing 7-1. The use of Dart’s const keyword is a safety measure, and it’s a darn
good one!

In case you’re wondering, \n in 'compatible with\nDoris D. Developer' tells
Dart to go to a new line of text. That way, Doris D. Developer appears on a line
of its own. (See Figures 7-1 and 7-2.) The character combination \n is called an
escape sequence.

Referring to the code in Listing 7-1, an experienced developer might say, “the
_youAre constant” or “the _youAre variable.” The former is more accurate, but
the latter is acceptable.

Dart has two keywords to indicate that certain things shouldn’t change: const
and final. The const keyword says, “Don’t change this value at any time dur-
ing a run of the app.” The final keyword says, “Don’t change this value unless
you encounter this declaration again.” The difference between const and final
has many subtle consequences, but the important thing to know is that programs
with const may run a bit faster than programs with final. You can put any old
const declaration at the top level of your code or inside a function declaration.
But, for a const at the start of a class, the story is different. The following code
is illegal:

// Don't do this:

class _MyHomePageState extends State<MyHomePage> {

 const _youAre = 'You are';

But this code is just fine:

// Do this instead:

class _MyHomePageState extends State<MyHomePage> {

 static const _youAre = 'You are';

For the real scoop on Dart’s static keyword, see the “Callout 4” section, later in
this chapter.

Compatible or NOT?
For some users, the dating app should say, “You are compatible with Doris
D. Developer.” For other users, the app should add NOT to its message. That’s why
Listing 7-1 contains the following code:

Interacting w
ith

the U
ser

0005390160.INDD 573 Trim size: 7.375 in × 9.25 in June 11, 2022 3:45 PM

CHAPTER 7 Interacting with the User 573

_messageToUser =

 _youAre + (_ageSwitchValue ? " " : " NOT ") + _compatible;

The expression _ageSwitchValue ? " " : " NOT " is a conditional expression,
and the combination of ? and : in that expression is Dart’s conditional operator.
Figure 7-3 shows you how Dart evaluates a conditional expression.

A conditional expression looks like this:

condition ? expression1 : expression2

When the condition is true, the value of the whole expression is whatever you
find in the expression1 part. But, when the condition is false, the value of the
whole expression is whatever you find in the expression2 part.

In addition to its conditional expressions, Dart has if statements. A conditional
expression is like an if statement but, unlike an if statement, a conditional
expression has a value. That value can be assigned to a variable.

To illustrate the point, here’s an if statement whose effect is the same as the
conditional expression in Listing 7-1:

if (_ageSwitchValue) {

 _messageToUser = _youAre + " " + _compatible;
} else {

 _messageToUser = _youAre + " NOT " + _compatible;
}

FIGURE 7-3:
Evaluating a
conditional
expression.

0005390160.INDD 574 Trim size: 7.375 in × 9.25 in June 11, 2022 3:45 PM

574 BOOK 4 Creating Mobile Apps

Translated into plain English, this if statement says:

If the bool variable _ageSwitchValue has the value true,

 _messageToUser = _youAre + " " + _compatible;
otherwise

 _messageToUser = _youAre + " NOT " + _compatible;

In some situations, choosing between an if statement and a conditional expres-
sion is a matter of taste. But in Listing 7-1, the conditional expression is a clear
winner. After all, an if statement doesn’t have a value. You can’t assign an if
statement to anything or add an if statement to anything. So, code of the fol-
lowing kind is illegal:

// THIS CODE IS INVALID.

_messageToUser =

 _youAre +

 if (_ageSwitchValue) {

 " ";

 } else {

 " NOT ";

 } +

_compatible;

Another name for Dart’s conditional operator is the ternary operator. The word
ternary means “three,” and the operator has three parts: one before the question
mark, a second between the question mark and the colon, and a third after the
colon.

Wait For It!
Today’s users are impatient. They want instant feedback. However, sometimes it
can be useful to require an app’s users to stop and think for a moment. In Doris’s
app, she wants to have at least two questions that a person needs to answer which
will be used to determine the final result. She also wants to give the person using
the app a chance to change their mind about their answers before they learn the
final result. She decides she needs a Submit button that must be pressed after the
users are happy with their responses to the questions.

To make a button, you can use the ElevatedButton widget. A button isn’t much.
You press it, and something happens. You press it again, and something may or
may not happen.

Interacting w
ith

the U
ser

0005390160.INDD 575 Trim size: 7.375 in × 9.25 in June 11, 2022 3:45 PM

CHAPTER 7 Interacting with the User 575

This section’s example shuns the quick response of the app in Listing 7-1. When
the user flicks a switch, the switch simply moves. The app doesn’t say, “You’re
compatible” or “You’re not compatible” until the user presses the button. The
code is in Listing 7-2.

LISTING 7-2: Responding to a Button Press

// Copy the code up to and including the _buildAgeSwitch

// method from Listing 7-1 here.

 Widget _buildResultArea() {

 return Row(

 children: <Widget>[

 ElevatedButton(

 child: Text("Submit"),

 onPressed: _updateResults,

),

 SizedBox(

 width: 15.0,

),

 Text(_messageToUser, textAlign: TextAlign.center),

],

);

 }

 /// Actions

 void _updateAgeSwitch(bool newValue) {

 setState(() {

 _ageSwitchValue = newValue;

 });

 }

 void _updateResults() {

 setState(() {

 _messageToUser = _youAre +

 (_ageSwitchValue ? " " : " NOT ") +

 _compatible;

 });

 }

}

Figure 7-4 shows a snapshot from a run of the code in Listing 7-2.

0005390160.INDD 576 Trim size: 7.375 in × 9.25 in June 11, 2022 3:45 PM

576 BOOK 4 Creating Mobile Apps

When it’s combined with some code from Listing 7-1, the app in Listing 7-2 has
both onPressed and onChanged event handlers. In particular:

 » The function _updateAgeSwitch handles onChanged events for
the switch.

When the user taps the switch, the appearance of the switch changes from off
to on or from on to off.

 » The function _updateResults handles onPressed events for the button.

When the user presses the button, the app’s message catches up with the
switch’s status. If the switch is on, the message becomes, “You are compati-
ble.” If the switch is off, the message becomes “You are NOT compatible.”

Between the moment when the user flicks the switch and the time when the user
presses the button, the message on the screen might be inconsistent with the
switch’s state. In an online form with several questions, that’s not a problem.
The user doesn’t expect to see a result until after the concluding button press.
But in this chapter’s practice apps, each with only one question for the user, the
lack of coordination between the user’s answer and the message that’s displayed
is problematic. These practice apps don’t win any user experience awards.

Fortunately, Doris doesn’t publish her practice apps. Instead, she publishes an
app that combines all the controls from her practice apps and more.

So, what’s next? How about a slider?

How Much Do You Love Flutter?
Doris the Developer wants to meet someone who loves to create Flutter apps.
Her homemade dating app includes a slider with values from 1 to 10. Scores of 8
and above are acceptable. Anyone with a response of 7 or below can take a hike.
Listing 7-3 contains Doris’s practice slider app.

FIGURE 7-4:
Good news!

© John Wiley & Sons

Interacting w
ith

the U
ser

0005390160.INDD 577 Trim size: 7.375 in × 9.25 in June 11, 2022 3:45 PM

CHAPTER 7 Interacting with the User 577

LISTING 7-3: For the Love of Flutter

import 'package:flutter/material.dart';

void main() => runApp(app0703());

class App0703 extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 return MaterialApp(

 home: MyHomePage(),

);

 }

}

class MyHomePage extends StatefulWidget {

 @override

 _MyHomePageState createState() => _MyHomePageState();

}

const _youAre = 'You are';

const _compatible = 'compatible with\nDoris D. Developer.';

class _MyHomePageState extends State<MyHomePage> {

 double _loveFlutterSliderValue = 1.0;

 String _messageToUser = "";

 /// State

 @override

 Widget build(BuildContext context) {

 return Scaffold(

 appBar: AppBar(

 title: Text("Are you compatible with Doris?"),

),

 body: Padding(

 padding: const EdgeInsets.all(8.0),

 child: Column(

 children: <Widget>[

 _buildLoveFlutterSlider(),

 _buildResultArea(),

],

),

),

);

 }

(continued)

0005390160.INDD 578 Trim size: 7.375 in × 9.25 in June 11, 2022 3:45 PM

578 BOOK 4 Creating Mobile Apps

 /// Build

 Widget _buildLoveFlutterSlider() {

 return Column(

 children: <Widget>[

 SizedBox(

 height: 10.0,

),

 Text("On a scale of 1 to 10, "

 "how much do you love developing Flutter apps?"),

 Slider(

 min: 1.0,

 max: 10.0,

 divisions: 9,

 value: _loveFlutterSliderValue,

 onChanged: _updateLoveFlutterSlider,

 label: '${_loveFlutterSliderValue.toInt()}',

),

],

);

 }

 Widget _buildResultArea() {

 return Row(

 children: <Widget>[

 ElevatedButton(

 child: Text("Submit"),

 onPressed: _updateResults,

),

 SizedBox(

 width: 15.0,

),

 Text(_messageToUser, textAlign: TextAlign.center),

],

);

 }

 /// Actions

 void _updateLoveFlutterSlider(double newValue) {

 setState(() {

 _loveFlutterSliderValue = newValue;

 });

 }

 void _updateResults() {

 setState(() {

LISTING 7-3: (continued)

Interacting w
ith

the U
ser

0005390160.INDD 579 Trim size: 7.375 in × 9.25 in June 11, 2022 3:45 PM

CHAPTER 7 Interacting with the User 579

 _messageToUser = _youAre +
 (_loveFlutterSliderValue >= 8 ? " " : " NOT ") +
 _compatible;

 });

 }

}

Figure 7-5 shows a run of the slider app with the slider set all the way to 10.

The Slider constructor call in Listing 7-3 has these six parameters:

 » min: The slider’s smallest value.

The little gizmo that moves from left to right along a slider is called a thumb.
The position of the thumb determines the slider’s value. So min is the
value of the slider when the slider’s thumb is at the leftmost point.
The min parameter has type double.

 » max: The slider’s largest value. This is the value of the slider (again, a double)
when the thumb is at the rightmost point.

A slider’s values may increase going from left to right or from right to left.
Before displaying a slider, Flutter checks a textDirection property. If the
value is TextDirection.ltr, the slider’s minimum value is on the left. But
if the textDirection property’s value is TextDirection.rtl, the slider’s
minimum value is on the right. Apps written for speakers of Arabic, Farsi,
Hebrew, Pashto, and Urdu use TextDirection.rtl. Other apps use
TextDirection.ltr.

 » divisions: The number of spaces between points where the thumb can be
placed. (See Figure 7-6.)

FIGURE 7-5:
Love at first byte.

© John Wiley & Sons

0005390160.INDD 580 Trim size: 7.375 in × 9.25 in June 11, 2022 3:45 PM

580 BOOK 4 Creating Mobile Apps

The slider in Listing 7-3 can be placed at values 1.0, 2.0, 3.0, and so on,
up to 10.0.

If you omit the divisions parameter, or if you set that parameter to null,
the thumb can be placed anywhere along the slider. For example, with the
following constructor, the slider’s value can be 0.0, 0.20571428571428554,
0.917142857142857, 1.0, or almost any other number between 0 and 1.

Slider(

 min: 0.0,

 max: 1.0,

 value: _loveFlutterSliderValue,

 onChanged: _updateLoveFlutterSlider,

)

 » value: A number in the range from min to max. This parameter determines
the thumb’s position.

 » onChanged: The event handling function for changes to the slider. When the
user moves the slider’s thumb, the Flutter framework calls this function.

 » label: The widget that’s displayed on the slider’s value indicator.

As the user moves the thumb, an additional shape appears. That shape is the
slider’s value indicator. In Figure 7-5, the bubble with the number 10 on it is the
slider’s value indicator.

Despite its name, the value indicator doesn’t necessarily display a Text widget
showing the slider’s value. In fact, the value indicator can display anything you
want it to display. (Well, almost anything.)

Luckily for us, the widget on the slider in Listing 7-3 displays _loveFlutter
SliderValue — the slider’s very own value. But remember: If you don’t want
numbers like 0.20571428571428554 to appear in the value indicator, you
have to convert the slider’s double values into int values. That’s why, in
Listing 7-3, the widget on the slider’s value indicator displays _loveFlutter
SliderValue.toInt(), not plain old _loveFlutterSliderValue.

If you don’t specify a label parameter, or if you specify a label but make it
null, the value indicator never appears.

FIGURE 7-6:
Why the number

of divisions is 9 in
Listing 7-3.

Interacting w
ith

the U
ser

0005390160.INDD 581 Trim size: 7.375 in × 9.25 in June 11, 2022 3:45 PM

CHAPTER 7 Interacting with the User 581

Dealing with Text Fields
In this section, you’ll meet Doris’s friend Irving. Unlike Doris, Irving wants a
companion with lots of money. To this end, Irving asks Doris to create a varia-
tion on her dating app. Irving’s custom-made app has two text fields — one for a
user’s name and another for the user’s income. If the user’s income is $100,000 or
more, the app reports “compatible.” Otherwise, the app reports “incompatible.”
Figure 7-7 has an illustrated version of the app’s _MyHomePageState class. To see
the rest of Irving’s app, look for the App0704 project in the download from this
book’s website.

To keep the size of Figure 7-7 manageable, I omitted the declaration of _build-
Decoration. In case you’re wondering, here’s that method’s code:

InputDecoration _buildDecoration(String label) {

 return InputDecoration(

 labelText: label,

 border: OutlineInputBorder(

 borderRadius: BorderRadius.all(Radius.circular(10.0)),

),

);

}

Figure 7-8 shows Pat’s attempt to be deemed compatible with Irving. With an
income of $61,937, Pat doesn’t have a chance.

Text fields have the same kinds of event handlers that switches and sliders have.
In particular, a TextField constructor can have an onChanged event handler — a
function that looks like this:

 void _updateStuff(String newValue) {

 // When the user types a character, do something with

 // the characters inside the text field (the newValue).

 }

But what about the press of a button? Is there a nice way to find out what’s in
a text field when the field’s characters aren’t changing? Yes, there is. It’s the
TextEditingController — a stand-out feature in Figure 7-7.

In fact, Figure 7-7 has two TextEditingController objects — one for the Your
Name field and another for the Your Income field. The next several paragraphs
add details to the numbered callouts in Figure 7-7.

0005390160.INDD 582 Trim size: 7.375 in × 9.25 in June 11, 2022 3:45 PM

582 BOOK 4 Creating Mobile Apps

Callouts 1 and 2
In a Flutter program, constructor calls rule the roost. You get a Text widget with
a constructor call like Text("Hello"). You get a Column and two Text widgets
with code like Column(children: [Text('a'), Text('b')]).

FIGURE 7-7:
How much do

you earn?

Interacting w
ith

the U
ser

0005390160.INDD 583 Trim size: 7.375 in × 9.25 in June 11, 2022 3:45 PM

CHAPTER 7 Interacting with the User 583

When you issue a constructor call, the call itself stands for an object. For example,
the call Text("Hello") stands for a particular Text widget — an instance of the
Text class. You can assign the call to a variable and use that variable elsewhere in
your code:

@override

Widget build(BuildContext context) {

 Text myTextInstance = Text("I'm reusable");

 return Scaffold(

 appBar: AppBar(

 title: myTextInstance,

),

 body: Column(

 children: <Widget>[

 myTextInstance,

],

),

);

}

In many cases, you can separate the variable declaration from the call:

Text myTextInstance;

// More code here, and elsewhere ...

myTextInstance = Text("I'm reusable");

In Figure 7-7, the declaration of the two controller variables (_nameField
Controller and _incomeFieldController) is separate from the corresponding
TextEditingController constructor calls. This was done to introduce Flutter’s
initState and dispose methods.

FIGURE 7-8:
Bad news for Pat.

© John Wiley & Sons

0005390160.INDD 584 Trim size: 7.375 in × 9.25 in June 11, 2022 3:45 PM

584 BOOK 4 Creating Mobile Apps

A State object is like anything else in the world — it comes into being and, even-
tually, it goes away. Flutter calls initState when a State instance comes into
being and calls dispose when the State instance goes away.

It may not be obvious, but the code in Figure 7-7 refers to two different
initState methods. The declaration that begins with void initState() describes
a method that belongs to the _MyHomePageState class. But the _MyHomePageState
class extends Flutter’s own State class, and that State class has its own
initState declaration. (See Figure 7-9.)

When you have two methods named initState, how do you distinguish one from
another? Well, what if you meet a woman named Mary, whose child is also named
Mary? Chances are, the child doesn’t call her mother “Mary.” Instead, the child
calls her mother “Mom” or something like that. For her mother’s birthday, she

NULL POUR LES NULS
You can declare a variable name without assigning anything to that variable. If you do,
the variable’s starting value is null, which means “absolutely nothing.” In many cases,
that’s exactly what you want to do. However, in many cases, Flutter will refuse to run
your program if a variable has the potential to be null.

That’s because an unwanted null value can be dangerous. For example, the following
code crashes like a reckless car on the New Jersey Turnpike:

main() {

 int quantity;

 print(quantity.isEven); // null.isEven -- You can't do this

}

On the other hand, if you assign something to the quantity variable, the code runs
without a hitch:

main() {

 int quantity = 22;

 print(quantity.isEven); // Outputs the word "true" (without quotes)

}

A frequent mistake in programming is to create a variable declaration that doesn’t
assign a value to its variable and then to forget to assign a value to that variable else-
where in the code. Oops! Your code crashes. Try not to make that mistake. If you need
to declare variables for later use, one way is to use the late keyword. The late key-
word lets you declare a variable and then give it a value (aka “initialize” it) later.

Interacting w
ith

the U
ser

0005390160.INDD 585 Trim size: 7.375 in × 9.25 in June 11, 2022 3:45 PM

CHAPTER 7 Interacting with the User 585

buys a souvenir mug displaying the words Super Mom, and her mother smiles
politely on receiving another mug as a gift.

The same kind of thing happens when two classes — a parent and its child — have
methods named initState. The child class (_MyHomePageState) has to call the
initState method belonging to its parent class (Flutter’s State class). To do so,
the child class calls super.initState(). Unlike the Mary situation, the use of the
keyword super isn’t meant to be flattering. It’s simply a reference to the init-
State method that’s defined in the parent class.

To stretch the mother/daughter metaphor a bit further, imagine that Super Mom
Mary is a real estate agent. In that case, the child can’t buy a house without first
consulting her mother. The child’s decideWhichHouse method must include a call
to the mother’s decideWhichHouse method, like so:

// The child's method declaration:

@override

void decideWhichHouse() {

 super.decideWhichHouse();

 // Etc.

}

That may be the situation when your code overrides Flutter’s initState method.
In some versions of Flutter, if you don’t call super.initState(), your code
won’t run.

Callout 3
Each TextField constructor can have its own controller parameter. A text
field’s controller mediates the flow of information between the text field and
other parts of the app. (For details, jump to the later section “Callout 4.”)

FIGURE 7-9:
Overriding an

extended class’s
initState

method.

0005390160.INDD 586 Trim size: 7.375 in × 9.25 in June 11, 2022 3:45 PM

586 BOOK 4 Creating Mobile Apps

Elsewhere in the TextField constructor call, the TextInputType.number param-
eter in the income text field’s constructor tells a device to display a soft key-
board with only digits on the keys. Alternatives include TextInputType.phone,
TextInputType.emailAdress, TextInputType.datetime, and others. For an
authoritative list of TextInputType choices, visit https://api.flutter.dev/
flutter/services/TextInputType-class.html.

This tip applies while you develop and test your app. The Android emulator and
iPhone simulator have options to suppress the appearance of the soft keyboard,
allowing input with only your development computer’s keyboard. If that option
is turned on, you don’t see the effect of the TextInputType.number parameter.
If you type a letter on your computer keyboard, that letter appears in your app’s
text field.

If you plan to run your app on a real, physical phone, you should test the app
with the virtual device’s soft keyboard enabled. When you do, you might see some
troublesome effects that you weren’t expecting. For example, when you move
from a text field to another kind of control, the soft keyboard doesn’t go away. To
make the soft keyboard go away automatically, enclose the scaffold in a gesture
detector. Here’s how you do it:

Widget build(BuildContext context) {

 return GestureDetector(

 onTap: () {

 final currentFocus = FocusScope.of(context);

 if (!currentFocus.hasPrimaryFocus) {

 currentFocus.unfocus();

 }

 },

 child: Scaffold(

 // ... Etc.

For more chitchat about the GestureDetector, see Book 4, Chapter 9.

Callout 4
In Figure 7-7, the expression _nameFieldController.text stands for the charac-
ters that appear in the Name text field, and _incomeFieldController.text stands
for the characters in the Income text field. If the code included the statement

_nameFieldController.text = "May I. Havanother";

execution of that statement would change whatever was already in the Name text
field to May I. Havanother.

Interacting w
ith

the U
ser

0005390160.INDD 587 Trim size: 7.375 in × 9.25 in June 11, 2022 3:45 PM

CHAPTER 7 Interacting with the User 587

In Figure 7-7, the expression _nameFieldController.text adds the user’s name
to the outgoing message. The expression _incomeFieldController.text stands
for whatever characters the user has entered in the app’s Income field, but those
characters come with a slight catch. The stuff in a text field is always a String
value, never a numeric value. In Figure 7-8, Pat enters 61937 in the Income text
field, so the value of _incomeFieldController.text is "61937" (the String), not
61937 (the number).

Luckily, Dart’s int class has a parse method. If the value of _incomeField
Controller.text is "61937" (the String), the value of int.parse(_incomeField
Controller.text) is 61937 (the int number value). In Figure 7-7, the code

int.parse(_incomeFieldController.text) >= 1000000

compares a number like 61937 to Irving’s high-demand number of 1000000. The
result of the comparison is true or false, so the value of _richUser becomes
true or false.

WHAT DOES A DARN DOT DO?
In object-oriented programming, an object can have certain things called properties.
Using dot notation, you can refer to each of those properties.

Here are a few examples:

• Every String instance has length and isEmpty properties.

The value of "Dart".length is 4, and the value of "".isEmpty is true.

• Every int value has isEven, isNegative, and bitLength properties.

The value of 44.isEven is true, and the value of 99.isNegative is false. The
value of 99.bitLength is 7 because the binary representation of 99 is 1100011,
which has 7 bits.

• Every TextEditingController instance has a text property.

In Figure 7-7, the value of _nameFieldController.text is whatever string of
characters appears in the Name text field.

You can apply dot notation to expressions of all kinds. For example, the value of (29 +
10).isEven is false. With phrase = "I like Dart", the value of phrase.
length is 11.

(continued)

0005390160.INDD 588 Trim size: 7.375 in × 9.25 in June 11, 2022 3:45 PM

588 BOOK 4 Creating Mobile Apps

Properties are examples of things called members. A class’s members also include the
class’s variables and methods. Consider the following:

• Every String instance has methods named toUpperCase, endsWith, split,
trim, and many others.

The value of "Attention!".toUpperCase() is "ATTENTION!".

The value of " Holy moly! ".trim() is "Holy moly!".

• Every int value has methods named abs, toRadixString, and several others.

The value of (-182).abs() is 182 because 182 is the absolute value of –182. The
value of 99.toRadixString(2) is 1100011 because the binary (base 2) represen-
tation of 99 is 1100011.

There’s nothing mysterious about the members of a class. Here’s a class named
Account and a main function that calls the Account class’s constructor:

class Account {

 // Two member variables:

 String customerName;

 int balance;

 // A member method:

 void deposit({int amount}) {

 balance += amount;
 }

}

void main() {

 // A call to the Account class's constructor:

 Account myAccount = Account();

 // References to the Account class's members:

 myAccount.customerName = "Barry Burd";

 myAccount.balance = 100;

 myAccount.deposit(amount: 20);

 print(myAccount.customerName);

 print(myAccount.balance);

}

/*

 * Output:

 * Barry Burd

 * 120

 */

(continued)

Interacting w
ith

the U
ser

0005390160.INDD 589 Trim size: 7.375 in × 9.25 in June 11, 2022 3:45 PM

CHAPTER 7 Interacting with the User 589

The classes in this book’s Flutter listings have members too. For example, the class in
Figure 7-7 has several members, including _nameFieldController, _income
FieldController, _messageToUser, initState, and build.

Some classes have things called static members. A static member belongs to an entire
class, not to any of the class’s instances. For example, the int class has a static method
named parse. Because the parse method is static, you put the name of the class (the
word int) before the dot. You don’t put any particular int value before the dot. Here
are some examples:

• The value of int.parse("1951") is the number 1951.

• Expressions such as 1951.parse("1951"), 1951.parse() and 1951.parse are
invalid.

None of these works because, in each case, the value before the dot isn’t the class
name int. Instead, the value before the dot is an object — an instance of the int
class.

• Putting any expression with an int value before .parse is invalid.

For example, the following code breaks your program:

int numberOfClowns;

int otherNumber = numberOfClowns.parse("2020");

Creating a static member is no big deal. Simply add the word static to your member
declaration, like so:

class Automobile {

 static int numberOfWheels = 4;

}

void main() {

 Automobile jalopy = Automobile();

 // print(jalopy.numberOfWheels); This is incorrect.

 print(Automobile.numberOfWheels);

}

/*

 * Output:

 * 4

 */

0005390160.INDD 590 Trim size: 7.375 in × 9.25 in June 11, 2022 3:45 PM

590 BOOK 4 Creating Mobile Apps

Figure 7-7 calls Dart’s int.parse method — a handy method indeed! But Dart
has an even better method. It’s called int.tryParse. It’s a lot like int.parse, but
it’s safer to use. When you call int.tryParse('This is not a number'), the app
doesn’t blow up in your face.

Callout 5
Much of the fuss in earlier paragraphs about the initState method applies
equally to Flutter’s dispose method. Before a State class gets the heave-ho, the
Flutter framework calls the code’s dispose method. In Figure 7-7, the dispose
method does these three things:

 » It calls the dispose method belonging to the _nameFieldController.

The dispose method for _nameFieldController trashes that controller,
freeing up any resources that the controller happens to be hogging.

 » It calls the dispose method belonging to the _incomeFieldController.

Goodbye, _incomeFieldController. Glad to see that your resources are
being freed up.

 » It calls the State class’s dispose method.

The State class’s dispose method, built solidly into the Flutter framework,
cleans up any other stuff having to do with _MyHomePageState. As it is with
initState, your own code’s dispose method must call super.dispose().

Creating Radio Buttons
Every dating app has a question about the user’s gender. For this question, Doris
decides on a group of radio buttons. Listing 7-4 includes much of Doris’s radio
button code.

For the rest of Doris’s practice app with radio buttons, see App0705 in the files
that you download from this book’s website.

LISTING 7-4: How Do You Identify?

// This is not a complete program.

enum Gender { Female, Male, Other, NoSelection }

Interacting w
ith

the U
ser

0005390160.INDD 591 Trim size: 7.375 in × 9.25 in June 11, 2022 3:45 PM

CHAPTER 7 Interacting with the User 591

String shorten(Gender gender) => gender.toString().replaceAll("Gender.", "");

class _MyHomePageState extends State<MyHomePage> {

 String _messageToUser = "";

 Gender _genderRadioValue = Gender.NoSelection;

// And later ...

 Widget _buildGenderRadio() {

 return Row(

 children: <Widget>[

 Text(shorten(Gender.Female)),

 Radio(

 value: Gender.Female,

 groupValue: _genderRadioValue,

 onChanged: _updateGenderRadio,

),

 SizedBox(width: 25.0),

 Text(shorten(Gender.Male)),

 Radio(

 value: Gender.Male,

 groupValue: _genderRadioValue,

 onChanged: _updateGenderRadio,

),

 SizedBox(width: 25.0),

 Text(shorten(Gender.Other)),

 Radio(

 value: Gender.Other,

 groupValue: _genderRadioValue,

 onChanged: _updateGenderRadio,

),

],

);

 }

 Widget _buildResultArea() {

 return Row(

 children: <Widget>[

 ElevatedButton(

 child: Text("Submit"),

 onPressed: _genderRadioValue != null ? _updateResults : null,

),

 SizedBox(

 width: 15.0,

),

 Text(

 _messageToUser,

 textAlign: TextAlign.center,

(continued)

0005390160.INDD 592 Trim size: 7.375 in × 9.25 in June 11, 2022 3:45 PM

592 BOOK 4 Creating Mobile Apps

),

],

);

 }

 /// Actions

 void _updateGenderRadio(Gender? newValue) {

 setState(() {

 _genderRadioValue = newValue!;

 });

 }

 void _updateResults() {

 setState(() {

 _messageToUser =

 "You selected ${shorten(_genderRadioValue)}.";

 });

 }

}

Figures 7-10 and 7-11 show snapshots from a run of the code in Listing 7-4.

FIGURE 7-10:
Before selecting a

radio button.

© John Wiley & Sons

LISTING 7-4: (continued)

FIGURE 7-11:
After selecting a

radio button and
pressing Submit.

© John Wiley & Sons

Interacting w
ith

the U
ser

0005390160.INDD 593 Trim size: 7.375 in × 9.25 in June 11, 2022 3:45 PM

CHAPTER 7 Interacting with the User 593

Creating an enum
Book 4, Chapter 3 introduces Flutter’s built-in systemOverlayStyle enum with
its values SystemUiOverlayStyle.light and SystemUiOverlayStyle.dark.
That’s nice, but why let the creators of Flutter have all the fun? You can define
your own enum by doing what you see in Listing 7-4.

 enum Gender { Female, Male, Other, NoSelection }

With this declaration, your code has four new values; namely, Gender.Female,
Gender.Male, Gender.Other, and Gender.NoSelection. You can use these values
in the rest of the app’s code.

Building the radio group
The code in Listing 7-4 has three radio buttons. Each radio button has its own
value but, taken together, all three buttons have only one groupValue. In fact,
the common groupValue is what ties the three buttons together. When a user
selects the button with value Gender.Female, the groupValue of all three becomes
Gender.Female. It’s as if part of the code suddenly looked like this:

// Don't try this at home. This is fake code.

Radio(

 value: Gender.Female,

 groupValue: Gender.Female,

),

Radio(

 value: Gender.Male,

 groupValue: Gender.Male,

),

Radio(

 value: Gender.Other,

 groupValue: Gender.Other,

),

Radio(

 value: Gender.NoSelection,

 groupValue: Gender.NoSelection,

),

Each radio button has its own onChanged parameter. In Listing 7-4, the function
that handles onChanged events (the _updateGenderRadio function) does exactly
what you would expect — it changes the radio buttons’ groupValue to whatever
value the user has selected.

0005390160.INDD 594 Trim size: 7.375 in × 9.25 in June 11, 2022 3:45 PM

594 BOOK 4 Creating Mobile Apps

WHY BOTHER?
A reader from Minnesota asks, “What good is the enum declaration in Listing 7-4? Why
can’t I assign the String values "Female", "Male", and "Other" directly to the three
radio buttons?”

Good question, reader! Thanks for asking. The answer is, “You can assign String values
to the radio buttons.” You don’t really need an enum to create a group of radio buttons.
The following code with no enum is valid:

String _genderRadioValue;

// And later ...

Radio(

 value: "Female",

 groupValue: _genderRadioValue,

 onChanged: _updateGenderRadio,

),

Radio(

 value: "Male",

 groupValue: _genderRadioValue,

 onChanged: _updateGenderRadio,

),

Radio(

 value: "Other",

 groupValue: _genderRadioValue,

 onChanged: _updateGenderRadio,

),

Radio(

 value: "NoSelection",

 groupValue: _genderRadioValue,

 onChanged: _updateGenderRadio,

),

// And later ...

void _updateGenderRadio(String newValue) {

 setState(() {

 _genderRadioValue = newValue;

 });

}

void _updateResults() {

Interacting w
ith

the U
ser

0005390160.INDD 595 Trim size: 7.375 in × 9.25 in June 11, 2022 3:45 PM

CHAPTER 7 Interacting with the User 595

Displaying the user’s choice
The shorten method in Listing 7-4 is a workaround for a slightly annoying Dart
language feature. In Dart, every enum value has a toString method which, in
theory, gives you a useful way to display the value. The problem is that, when
you apply the toString method, the result is always a verbose name. For exam-
ple, Gender.Female.toString() is "Gender.Female" and that’s not quite what
you want to display. In Figure 7-10, the user sees the sentence You selected Female
instead of the overly technical sentence You selected Gender.Female sentence.

Applying the replaceAll("Gender.", "") method call turns "Gender." into the
empty string, so "Gender.Female" becomes plain old "Female". Problem solved!

Look at the declaration of _genderRadioValue in Listing 7-4:

Gender _genderRadioValue = 'noSelection;

 setState(() {

 _messageToUser = "You selected $_genderRadioValue.";

 });

}

So, in Listing 7-4, why should you bother creating the Gender enum? And the answer is,
genders aren’t strings. Being male doesn’t mean that a person carries around the four let-
ters m, then a, then l, and then e. Instead, maleness is one of several possibilities, another
possibility being femaleness. The best way to represent genders in the code is to enumer-
ate the alternatives, not to use a few strings and hope that no one misspells them.

Consider this code that uses the String type:

String _genderRadioValue = "Femail";

The code is incorrect but, as far as the Dart language is concerned, the code is peachy
keen.

Now, consider this code that uses an enum type:

enum Gender { Female, Male, Other, NoSelection }

Gender _genderRadioValue = Gender.Femail;

The code is incorrect, and Dart refuses to accept it. With the declaration of the Gender
enum, the programmer guarantees that the only possible values of _gender
RadioValue are Gender.Female, Gender.Male, Gender.Other, and Gender.
NoSelection. That’s good programming practice. Safety first!

0005390160.INDD 596 Trim size: 7.375 in × 9.25 in June 11, 2022 3:45 PM

596 BOOK 4 Creating Mobile Apps

This declaration assigns _genderRadioValue a value of 'noSelection'. Since
none of the radio group’s buttons has a value of Gender.noSelection, none of
the radio group’s buttons is checked. That’s exactly what you want when the app
starts running.

Creating a Drop-Down Button
As soon as word gets around about Doris’s dating app, everyone wants a piece of
the action. Doris’s friend Hilda wants a drop-down button to gauge the potential
mate’s level of commitment. Hilda wants a committed relationship and possibly
marriage. Listing 7-5 shows the code that Doris writes for Hilda. Figures 7-12
and 7-13 show the code in action.

LISTING 7-5: What Are You Looking For?

import 'package:flutter/material.dart';

void main() => runApp(App0706());

class App0706 extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 return MaterialApp(

 home: MyHomePage(),

);

 }

}

class MyHomePage extends StatefulWidget {

 @override

 _MyHomePageState createState() => _MyHomePageState();

}

enum Relationship {

 None,

 Friend,

 OneDate,

 Ongoing,

 Committed,

 Marriage,

}

Interacting w
ith

the U
ser

0005390160.INDD 597 Trim size: 7.375 in × 9.25 in June 11, 2022 3:45 PM

CHAPTER 7 Interacting with the User 597

Map<Relationship, String> show = {

 Relationship.None: "None",

 Relationship.Friend: "Friend",

 Relationship.OneDate: "One date",

 Relationship.Ongoing: "Ongoing relationship",

 Relationship.Committed: "Committed relationship",

 Relationship.Marriage: "Marriage"

};

List<DropdownMenuItem<Relationship>> _relationshipsList = [

 DropdownMenuItem(

 value: Relationship.None,

 child: Text(show[Relationship.None]!),

),

 DropdownMenuItem(

 value: Relationship.Friend,

 child: Text(show[Relationship.Friend]!),

),

 DropdownMenuItem(

 value: Relationship.OneDate,

 child: Text(show[Relationship.OneDate]!),

),

 DropdownMenuItem(

 value: Relationship.Ongoing,

 child: Text(show[Relationship.Ongoing]!),

),

 DropdownMenuItem(

 value: Relationship.Committed,

 child: Text(show[Relationship.Committed]!),

),

 DropdownMenuItem(

 value: Relationship.Marriage,

 child: Text(show[Relationship.Marriage]!),

),

];

class _MyHomePageState extends State<MyHomePage> {

 Relationship _relationshipDropdownValue = Relationship.None;

 /// State

 @override

 Widget build(BuildContext context) {

 return Scaffold(

 appBar: AppBar(

 title: Text("Are you compatible with Hilda?"),

),

(continued)

0005390160.INDD 598 Trim size: 7.375 in × 9.25 in June 11, 2022 3:45 PM

598 BOOK 4 Creating Mobile Apps

 body: Padding(

 padding: const EdgeInsets.all(16.0),

 child: Column(

 children: <Widget>[

 SizedBox(

 height: 30.0,

),

 _buildRelationshipDropdown(),

 _buildResultsImage(),

],

),

),

);

 }

 /// Build

 Widget _buildRelationshipDropdown() {

 return Column(

 crossAxisAlignment: CrossAxisAlignment.start,

 children: <Widget>[

 Text("What kind of relationship are you looking for?"),

 _buildDropdownButtonRow(),

],

);

 }

 Widget _buildDropdownButtonRow() {

 return Row(

 mainAxisAlignment: MainAxisAlignment.start,

 children: <Widget>[

 DropdownButton<Relationship>(

 items: _relationshipsList,

 onChanged: _updateRelationshipDropdown,

 value: _relationshipDropdownValue,

),

 if (_relationshipDropdownValue != Relationship.None)

 TextButton(

 child: Text(

 "Reset",

 style: TextStyle(color: Colors.blue),

),

 onPressed: _reset,

),

],

LISTING 7-5: (continued)

Interacting w
ith

the U
ser

0005390160.INDD 599 Trim size: 7.375 in × 9.25 in June 11, 2022 3:45 PM

CHAPTER 7 Interacting with the User 599

);

 }

 Widget _buildResultsImage() {

 if (_relationshipDropdownValue != Relationship.None) {

 return Icon(

 (_relationshipDropdownValue.index >= 3)

 ? Icons.favorite

 : Icons.sentiment_dissatisfied,

 size: 96,

 color: Colors.pink,

);

 } else {

 return SizedBox();

 }

 }

 /// Actions

 void _reset() {

 setState(() {

 _relationshipDropdownValue = Relationship.None;

 });

 }

 void _updateRelationshipDropdown(Relationship? newValue) {

 setState(() {

 _relationshipDropdownValue = newValue!;

 });

 }

}

FIGURE 7-12:
A user with

cold feet.

© John Wiley & Sons

0005390160.INDD 600 Trim size: 7.375 in × 9.25 in June 11, 2022 3:45 PM

600 BOOK 4 Creating Mobile Apps

Building the drop-down button
A DropdownButton constructor has several parameters, one of which is a list
of items. Each item is an instance of the DropdownMenuItem class. Each such
instance has a value and a child.

 » An item’s value is something that identifies that particular item.

In Listing 7-5, the items’ values are Relationship.Friend, Relationship.
OneDate, and so on. They’re all members of the Relationship enum. You
don’t want things like Relationship.OneDate appearing on the surface of a
menu item, so . . .

 » An item’s child is the thing that’s displayed on that item.

In Listing 7-5, the items’ children are all Text widgets, but you can display all
kinds of things on the drop-down items. For example, an item’s child can be a
Row containing a Text widget and an Icon widget.

In addition to its list of items, the DropdownButton constructor has onChanged
and value parameters.

 » The onChanged parameter does what such parameters do in so many
other constructors.

The parameter refers to a function that handles the user’s taps, presses,
tweaks, and pokes.

 » At any moment, the value parameter refers to whichever drop-down
button item is selected.

FIGURE 7-13:
A serious user.

© John Wiley & Sons

Interacting w
ith

the U
ser

0005390160.INDD 601 Trim size: 7.375 in × 9.25 in June 11, 2022 3:45 PM

CHAPTER 7 Interacting with the User 601

The little Reset button
The Reset button in Listing 7-5 is interesting for more than one reason. First,
it’s not an ElevatedButton. Instead, it’s a TextButton. A TextButton is like an
ElevatedButton except . . . well, a TextButton is flat.

Another reason to wallow in the Reset button’s code is because of a peculiar Dart
language feature — one that’s available only from Dart 2.3 onward. Here’s an
abridged version of the _buildDropdownButtonRow method’s code in Listing 7-5:

Widget _buildDropdownButtonRow() {

 return Row(

 children: <Widget>[

 DropdownButton<Relationship>(

),

 if (_relationshipDropdownValue != Relationship.None)

 TextButton(

),

],

);

}

In this code, the Row widget’s children parameter is a list, and the list consists
of two items: a DropdownButton and something that looks like an if statement.
But appearances can be deceiving. The thing in Listing 7-5 isn’t an if statement.
The thing in Listing 7-5 is a collection if. In Book 4, Chapter 4, I unceremoniously
sneak in the word collection to describe Dart’s List, Set, and Map types. A collec-
tion if helps you define an instance of one of those types.

In Listing 7-5, the meaning of the collection if is exactly what you’d guess.
If _relationshipDropdownValue isn’t Relationship.None, the list includes a
TextButton. Otherwise, the list doesn’t include a TextButton. That makes sense
because, when _relationshipDropdownValue is Relationship.None, there’s no
sense in offering the user an option to make it be Relationship.None.

In addition to its collection if, the Dart programming language has a collection
for. You can read about the collection for in Book 4, Chapter 8.

0005390160.INDD 602 Trim size: 7.375 in × 9.25 in June 11, 2022 3:45 PM

602 BOOK 4 Creating Mobile Apps

Making a map
Book 4, Chapter 4 introduces Dart’s types, one of which is the Map type. A Map is
a lot like a dictionary. To find the definition of a word, you look up the word in
a dictionary. To find a user-friendly representation of the enum value Relation
ship.OneDate, you look up Relationship.OneDate in the show map.

To be a bit more precise, a Map is a bunch of pairs, each pair consisting of a
key and a value. In Listing 7-5, the variable show refers to a map whose keys
are Relationship.Friend, Relationship.OneDate, and so on. The map’s values
are "None", "Friend", "One date", "Ongoing relationship", and so on. See
Table 7-1.

In a Dart program, you use brackets to look up a value in a map. For example, in
Listing 7-5, looking up show[Relationship.OneDate] gives you the string "One
date".

In addition to their keys and values, each map entry has an index. An entry’s
index is its position number in the declaration of the map, starting with posi-
tion number 0. Doris’s buddy Hilda wants a committed relationship and possibly
marriage. So the code in Listing 7-5 checks this condition. When this condition
is true, the app displays a heart to indicate a good match. Otherwise, the app dis-
plays a sad face. (Sorry, Hilda.)

TABLE 7-1 The show Map
Key Value Index

Relationship.None "None" 0

Relationship.Friend "Friend" 1

Relationship.OneDate "One date" 2

Relationship.Ongoing "Ongoing relationship" 3

Relationship.Committed "Committed relationship" 4

Relationship.Marriage "Marriage" 5

Interacting w
ith

the U
ser

0005390160.INDD 603 Trim size: 7.375 in × 9.25 in June 11, 2022 3:45 PM

CHAPTER 7 Interacting with the User 603

Onward and Upward
Doris’s work on the dating app has paid off in spades. Doris is now in a commit-
ted relationship with an equally geeky Flutter developer — one who’s well over
18 and who earns just enough money to live comfortably. Doris and her mate will
live happily ever after, or at least until Google changes the Dart language speci-
fication and breaks some of Doris’s code.

The next chapter is about navigation. How can your app go from one page to
another? When the user finishes using the new page, how can your app go back?
With more than one page in your app, how can the pages share information? For
the answers to these questions, simply turn the next page!

0005390160.INDD 604 Trim size: 7.375 in × 9.25 in June 11, 2022 3:45 PM

CHAPTER 8 Navigation, Lists, and Other Goodies 605

0005390161.INDD 605 Trim size: 7.375 in × 9.25 in June 11, 2022 3:48 PM

 Navigation, Lists, and
Other Goodies

 U ntil now, every sample Flutter app you’ve built has been a single self-
contained page. They have some interactivity in the form of buttons and
drop-down menus, but they’re each like tiny, deserted islands. Once

you’ve walked from one edge of the island to the other, there’s not much else to
do and no way to get news from the outside world. Unlike Tom Hanks’s character
in Castaway, you can’t even befriend a volleyball.

 For the same reasons that being stuck on a deserted island isn’t much fun, apps
that are islands aren’t in high demand. In this lesson, you’ll learn to add more
complexity and variety to your apps by having multiple screens and by pulling
data in from the vast world outside.

 Extending a Dart Class
 As the example code gets more complex, the code listings in this book can become
unbearably long. A simple example to illustrate one new concept may consume
several pages. You’d need magic powers to fi nd each listing’s new and interesting
code. To combat this di� culty, examples can be split between two fi les — one

Chapter 8

 IN THIS CHAPTER

» Moving from one page to another

» Displaying a list of similar items

» Creating routes and lists

» Grabbing info from the Web

0005390161.INDD 606 Trim size: 7.375 in × 9.25 in June 11, 2022 3:48 PM

606 BOOK 4 Creating Mobile Apps

file containing boilerplate code and another file containing the section’s new
features.

This works fine until you try to split a particular class’s code between two files.
Imagine that you have two files. One file’s name is ReuseMe.dart:

// This is ReuseMe.dart

import 'MoreCode.dart';

class ReuseMe {

int x = 229;

}

main() => ReuseMe().displayNicely();

The other file’s name is MoreCode.dart.

// This is a bad version of MoreCode.dart

import 'ReuseMe.dart';

void displayNicely() {

print('The value of x is $x.');

}

What could possibly go wrong?
Here’s what goes wrong: The declaration of displayNicely isn’t inside the
ReuseMe class. In this pair of files, displayNicely is a lonely function that sits
outside of any particular class. This causes two problems:

 » The line ReuseMe().displayNicely() makes no sense.

 » The displayNicely function can’t casually refer to the ReuseMe class’s x
variable.

This code is bogus. Throw it out!

But wait! A sneaky trick can rescue this example. Since Dart’s 2.7 version, you can
add methods to a class without putting them inside the class’s code using Dart’s
extension keyword. Here’s how you do it:

// This is a good version of MoreCode.dart

import 'ReuseMe.dart';

extension MyExtension on ReuseMe {

void displayNicely() {

print('The value of x is $x.');

 }

}

N
avigation, Lists, and

O
ther G

oodies

0005390161.INDD 607 Trim size: 7.375 in × 9.25 in June 11, 2022 3:48 PM

CHAPTER 8 Navigation, Lists, and Other Goodies 607

After making this change, the displayNicely function becomes a method belong-
ing to the ReuseMe class. Dart behaves as if you had written the following code:

class ReuseMe {

int x = 229;

void displayNicely() {

print('The value of x is $x.');

 }

}

Inside the displayNicely method’s body, the name x refers to the ReuseMe class’s
x variable. Every instance of the ReuseMe class has a displayNicely method, so
the call ReuseMe().displayNicely() makes perfect sense.

Everything works. And, best of all, the MoreCode.dart file can be swapped for
another version of the file at any time.

// Another good version of MoreCode.dart

import 'ReuseMe.dart';

extension MyExtension on ReuseMe {

void displayNicely() {

print(' * $x * ');

print(' ** $x ** ');

print(' *** $x ***');

print('**** $x ****');

 }

}

The displayNicely function can be changed without touching the file that con-
tains the original ReuseMe class declaration. That’s handy!

Extensions aren’t available in all versions of Dart. If Android Studio complains to
you about your use of extensions, look for the environment section of your proj-
ect’s pubspec.yaml file. That environment section may look something like this:

environment:

sdk: ">=2.1.0 <3.0.0"

Change the lower Dart version number like so:

environment:

sdk: ">=2.6.0 <3.0.0"

0005390161.INDD 608 Trim size: 7.375 in × 9.25 in June 11, 2022 3:48 PM

608 BOOK 4 Creating Mobile Apps

The name of an extension distinguishes that extension from any other exten-
sions on the same class. For example, imagine that I’ve defined MyExtension and
you’ve defined YourExtension, both on the ReuseMe class:

extension YourExtension on ReuseMe {

void displayNicely() {

print('!!! $x !!!');

 }

}

With two extensions declaring displayNicely methods, the expression
ReuseMe().displayNicely() is ambiguous. To clear up the confusion, name one
of the extensions explicitly:

YourExtension(ReuseMe()).displayNicely()

Navigating from One Page to Another
You’ve probably used an app with a master-detail interface. A master-detail inter-
face has two pages. The first page displays a list of items. When the user selects an
item in the list, a second page displays details about that item. This chapter’s first
example (in Listings 8-1 and 8-2) has a stripped-down master-detail interface.
And why do I say “stripped-down”? The master page’s list consists of only one
item — the name of a particular movie.

LISTING 8-1: Reuse This Code

// app08main.dart

import 'package:flutter/material.dart';

import 'app0802.dart'; // Change this line to app0803, app0804, and so on.

void main() => runApp(App08Main());

class App08Main extends StatelessWidget {

@override

Widget build(BuildContext context) {

return MaterialApp(

home: MovieTitlePage(),

);

 }

}

class MovieTitlePage extends StatefulWidget {

N
avigation, Lists, and

O
ther G

oodies

0005390161.INDD 609 Trim size: 7.375 in × 9.25 in June 11, 2022 3:48 PM

CHAPTER 8 Navigation, Lists, and Other Goodies 609

@override

MovieTitlePageState createState() => MovieTitlePageState();

}

class MovieTitlePageState extends State<MovieTitlePage> {

@override

Widget build(BuildContext context) {

return Scaffold(

appBar: AppBar(

title: Text(

'Movie Title',

),

),

body: Padding(

padding: const EdgeInsets.all(16.0),

child: Center(

child: buildTitlePageCore(),

),

),

);

 }

}

class DetailPage extends StatelessWidget {

final overview = '(From themoviedb.com) One day at work, unsuccessful '

'puppeteer Craig finds a portal into the head of actor John '

'Malkovich. The portal soon becomes a passion for anybody who '

'enters its mad and controlling world of overtaking another human '

'body.';

@override

Widget build(BuildContext context) {

return Scaffold(

appBar: AppBar(

title: Text(

'Details',

),

),

body: Padding(

padding: const EdgeInsets.all(16.0),

child: Center(

child: buildDetailPageCore(context),

),

),

);

 }

}

0005390161.INDD 610 Trim size: 7.375 in × 9.25 in June 11, 2022 3:48 PM

610 BOOK 4 Creating Mobile Apps

LISTING 8-2: Basic Navigation

// app0802.dart

import 'package:flutter/material.dart';

import 'app08main.dart';

extension MoreMovieTitlePage on MovieTitlePageState {

goToDetailPage() {

Navigator.push(

context,

MaterialPageRoute(

builder: (context) => DetailPage(),

),

);

 }

Widget buildTitlePageCore() {

return Column(

crossAxisAlignment: CrossAxisAlignment.center,

children: <Widget>[

Text(

'Being John Malkovich',

textScaleFactor: 1.5,

),

SizedBox(height: 16.0),

ElevatedButton.icon(

icon: Icon(Icons.arrow_forward),

label: Text('Details'),

onPressed: goToDetailPage,

),

],

);

 }

}

extension MoreDetailPage on DetailPage {

Widget buildDetailPageCore(context) {

return Column(

crossAxisAlignment: CrossAxisAlignment.center,

children: <Widget>[

Text(

overview,

),

],

);

 }

}

N
avigation, Lists, and

O
ther G

oodies

0005390161.INDD 611 Trim size: 7.375 in × 9.25 in June 11, 2022 3:48 PM

CHAPTER 8 Navigation, Lists, and Other Goodies 611

To run this chapter’s first app, your project must contain both Listing 8-1 and
Listing 8-2. Each of these listings depends on code from the other listing. In fact,
many of this chapter’s listings depend on the code from Listing 8-1.

Listings 8-1 and 8-2 must be in separate .dart files because both listings contain
import declarations.

Listing 8-2 doesn’t have a main method. So, to run the app in Listings 8-1 and
8-2, you look for the App08Main.dart tab above Android Studio’s editor. You
right-click that tab and then select Run ‘App08Main.dart’ from the menu that
appears.

Figures 8-1 and 8-2 show the pages generated by the code in Listings 8-1 and 8-2.

Figure 8-1 shows the app’s starting page — a page with an ElevatedButton on
it. When the user presses this button, Flutter calls the goToDetailPage method
in Listing 8-2. The goToDetailPage method calls the Navigator class’s push
method. The parameters of the push method point directly to the DetailPage
class. So the app jumps to its second page — the DetailClass page in Figure 8-2.

FIGURE 8-1:
A very simple
master page.

© John Wiley & Sons

FIGURE 8-2:
A very simple

detail page.

© John Wiley & Sons

0005390161.INDD 612 Trim size: 7.375 in × 9.25 in June 11, 2022 3:48 PM

612 BOOK 4 Creating Mobile Apps

The upper-left corner of Figure 8-2 has a little backward-pointing arrow. Flutter
creates that arrow automatically whenever it navigates to a page that has an app
bar. When the user presses that arrow, the app returns to the first page — the
MovieTitlePage.

An icon on a button
For a tiny bit of cuteness, I add an icon (a little forward-pointing arrow) to the
ElevatedButton in Figure 8-1. To make this happen, you use the word icon a
bunch of times in Listing 8-2. Rather than call the ordinary ElevatedButton
constructor, you call Flutter’s ElevatedButton.icon constructor. Then, for the
constructor’s icon parameter, you write Icon(Icons.arrow_forward), which
means, “Construct an actual Icon widget whose appearance is that of Flutter’s
built-in Icons.arrow_forward value.”

Flutter has a whole bunch of built-in icons. Most of them are familiar user inter-
face icons, like volume_up, warning, and signal_cellular_4_bar. But others are
ones you don’t expect to find. For example, Flutter has a pets icon (a picture of a
paw), a casino icon (the face of a die), and an airline_seat_legroom_reduced
icon (a person scrunched into a small space).

Pushing and popping
Here’s some useful terminology:

 » A page that calls Navigator.push is a source page.

In Listings 8-1 and 8-2, the MovieTitlePage is a source page.

 » A page that the user sees as a result of a Navigator.push call is a destination
page.

In Listings 8-1 and 8-2, the DetailPage is a destination page.

Some transitions go from a source page to a destination page; others go from a
destination page back to a source page. In this section’s example,

 » The user presses the ElevatedButton in Figure 8-1 to go from the source to
the destination.

 » The user presses the app bar’s Back button in Figure 8-2 to go from the
destination to the source.

For the most part, a mobile app’s transitions form a structure known as a stack.
To create a stack, you pile each new page on top of all the existing pages. Then,

N
avigation, Lists, and

O
ther G

oodies

0005390161.INDD 613 Trim size: 7.375 in × 9.25 in June 11, 2022 3:48 PM

CHAPTER 8 Navigation, Lists, and Other Goodies 613

when you’re ready to remove a page, you remove the page that’s at the top of the
stack. It’s like a seniority system for pages. The youngest page is the first to be
removed. With this Last-In-First-Out (LIFO) rule, users form a clear mental image
of their place among the app’s pages.

Here’s a bit more terminology:

 » When you add something to the top of a stack, you’re pushing it onto
the stack.

 » When you remove something from the top of a stack, you’re popping it off the
stack.

In Listing 8-2, the name Navigator.push suggests the pushing of a page onto
a stack of pages. The most recent page obscures the older pages that lie below
it. During a run of this chapter’s first app, the DetailPage sits comfortably on
top of the MovieTitlePage, completely obscuring the MovieTitlePage from the
user’s view.

In some situations, the notion of piling one page on top of another isn’t appro-
priate. Maybe you don’t want to push a destination page on top of a source page.
Instead, you want to replace a source page with a destination page. To do this in
Listing 8-2, you make one tiny change: You change the words Navigator.push
to the words Navigator.pushReplacement. When you do, the MovieTitlePage
looks as it does in Figure 8-1, but the DetailPage differs a bit from the image in
Figure 8-2. In the new DetailPage, the app bar has no Back button.

In Flutter, screens and pages are called routes. That’s why Listing 8-2 contains a
MaterialPageRoute constructor call.

To make your app look like an iPhone app, use Flutter’s Cupertino widgets instead
of the Material Design widgets and construct a CupertinoPageRoute rather than
a MaterialPageRoute. A CupertinoPageRoute makes page transitions look
“Apple-like.” For more on Flutter’s Cupertino widgets, refer to Book 4, Chapter 3.

Passing Data from the Source
to a Destination

Sometimes, you want to pass information from one page to another. The next
example (see Listing 8-3) shows you how a source sends information to a
destination.

0005390161.INDD 614 Trim size: 7.375 in × 9.25 in June 11, 2022 3:48 PM

614 BOOK 4 Creating Mobile Apps

Before you try to run this section’s app, change one of the import lines in List-
ing 8-1. Change 'App0802.dart' to 'App0803.dart'. Make similar changes to
run Listings 8-3, 8-4, 8-5, 8-7, 8-8, and 8-10.

LISTING 8-3: From Movie Title Page to Detail Page

// App0803.dart

import 'package:flutter/material.dart';

import 'App08Main.dart';

extension MoreMovieTitlePage on MovieTitlePageState {

static bool _isFavorite = true; // You can change this to false.

goToDetailPage() {

Navigator.push(

context,

MaterialPageRoute(

builder: (context) => DetailPage(),

settings: RouteSettings(

arguments: _isFavorite,

),

),

);

 }

Widget buildTitlePageCore() {

return Column(

crossAxisAlignment: CrossAxisAlignment.center,

children: <Widget>[

Text(

'Being John Malkovich',

textScaleFactor: 1.5,

),

SizedBox(height: 16.0),

ElevatedButton.icon(

icon: Icon(Icons.arrow_forward),

label: Text('Details'),

onPressed: goToDetailPage,

),

],

);

 }

}

extension MoreDetailPage on DetailPage {

Widget buildDetailPageCore(context) {

return Column(

crossAxisAlignment: CrossAxisAlignment.center,

children: <Widget>[

Text(

N
avigation, Lists, and

O
ther G

oodies

0005390161.INDD 615 Trim size: 7.375 in × 9.25 in June 11, 2022 3:48 PM

CHAPTER 8 Navigation, Lists, and Other Goodies 615

overview,

),

Visibility(

visible: ModalRoute.of(context)?.settings.arguments as bool,

child: Icon(Icons.favorite),

),

],

);

 }

}

Figure 8-3 shows you the DetailPage generated by the code in Listings 8-1 and
8-3. A little heart indicates that Being John Malkovich is a favorite movie.

Figure 8-4 illustrates the trip made by the _isFavorite variable’s value in a run
of this section’s example.

FIGURE 8-3:
The Favorite icon

on the detail
page.

© John Wiley & Sons

FIGURE 8-4:
Passing the value
of _isFavorite

from place to
place.

0005390161.INDD 616 Trim size: 7.375 in × 9.25 in June 11, 2022 3:48 PM

616 BOOK 4 Creating Mobile Apps

When Flutter displays the detail page, the value of

ModalRoute.of(context)?.settings.arguments

is true. It’s as if the code near the bottom of Listing 8-3 looked like this:

// Remember, I said "as if" the code looked like this...

Visibility(

visible: true,

child: Icon(Icons.favorite),

),

A Visibility widget either shows or hides its child depending on the value of its
visible parameter. So, in this example, Flutter’s built-in favorite icon appears
on the user’s screen.

In Listing 8-3, you can change the declaration of _isFavorite like this:

static bool _isFavorite = false;

RUBE GOLDBERG WOULD BE PLEASED
You may be thinking at this point that you’ve never seen a more complicated way of
making a tiny icon appear than the way it’s done in Listing 8-3. But remember, passing
information from one page to another is important, whether you’re passing a simple
_isFavorite value or a large chunk of medical data. Dividing an app into pages keeps
the pages uncluttered. It also lends continuity to the flow of an app.

Book 4, Chapter 5 tells you that Dart has top-level variables — variables that aren’t
declared inside of a class. If you put all of your app’s code in one file, all the code in your
app can refer directly to those top-level variables. So why do you need this section’s
arguments feature? Why not let your master and detail pages share the values of top-
level variables?

The answer is, top-level variables can be dangerous. While Mary withdraws funds on
one page, another page processes an automatic payment and nearly empties Mary’s
account. As a result, Mary overdraws her account and owes a hefty fee to the bank.
That’s not good.

Use top-level variables sparingly. Don’t use top-level variables to pass information
between pages. Instead, use Flutter’s arguments feature.

N
avigation, Lists, and

O
ther G

oodies

0005390161.INDD 617 Trim size: 7.375 in × 9.25 in June 11, 2022 3:48 PM

CHAPTER 8 Navigation, Lists, and Other Goodies 617

When you do, the movie title page passes false to the detail page. So, the
Visibility widget’s visible property becomes false, and the little favorite
icon doesn’t appear.

In Listing 8-3, the variable _isFavorite is static. One consequence of this is
that hot restarting the app doesn’t work. If you change _isFavorite from true
to false and then save your code, the little heart icon doesn’t go away. To make
that change in the value of _isFavorite take effect, stop the run of the app and
then start it again.

A STATIC VARIABLE
In Listing 8-3, the declaration of _isFavorite starts with the word static. Any vari-
able that you declare in an extension, rather than inside any of the extension’s methods,
must be static. If you follow that rule blindly, you can understand Listing 8-3 without
knowing what static means.

But, if you want to know what static means, consider this tiny bit of code from Book 4,
Chapter 7:

... => _MyHomePageState();

// ... and later ...

class _MyHomePageState extends State<MyHomePage> {

bool _ageSwitchValue = false;

In the first line, a constructor call creates an instance of the _MyHomePageState
class. A bit later on, the code gives _MyHomePageState an instance variable named
_ageSwitchValue. The code doesn’t have any other _MyHomePageState constructor
calls, so you have only one _MyHomePageState instance, and only one _age
SwitchValue variable.

In some programs, you may have occasion to call the _MyHomePageState construc-
tor twice. If you do, you’ll have two instances of _MyHomePageState, each with its own
_ageSwitchValue variable. If you make an assignment such as _ageSwitchValue =
true in one of the instances, it has no effect on the _ageSwitchValue variable in the
other instance. That’s the way instance variables work, but that’s not the way static
variables work.

In Listing 8-3, the _isFavorite variable is static. If you happen to declare two
instances of MovieTitlePageState, both instances share one _isFavorite variable.
If you make an assignment such as _isFavorite = true in one of the instances, it
sets the _isFavorite value for both instances.

0005390161.INDD 618 Trim size: 7.375 in × 9.25 in June 11, 2022 3:48 PM

618 BOOK 4 Creating Mobile Apps

In a RouteSettings constructor call, the parameter name arguments is a bit mis-
leading. That parameter can have only one value at a time — a value such as
_isFavorite. So why is the parameter name plural (arguments) instead of singu-
lar (argument)? It’s plural because the single thing that you pass to another page
can have several parts. For example, you can pass many values by making the one
and only arguments value be a list:

settings: RouteSettings(

arguments: [_isFavorite, _isInTheaters, _isAComedy,],

),

Passing Data Back to the Source
In the previous section, the code uses Navigator.push to send a value from a
source to a destination. That’s cool, but how can the destination send values back
to the source? Listing 8-4 has an answer.

LISTING 8-4: From Detail Page to Movie Title Page

import 'package:flutter/material.dart';

import 'App08Main.dart';

extension MoreMovieTitlePage on MovieTitlePageState {

static bool? _isFavorite;

goToDetailPage() async {

_isFavorite = await Navigator.push(

context,

MaterialPageRoute(

builder: (context) => DetailPage(),

),

);

setState(() {});

 }

Widget buildTitlePageCore() {

return Column(

crossAxisAlignment: CrossAxisAlignment.center,

children: <Widget>[

Row(

mainAxisAlignment: MainAxisAlignment.center,

children: <Widget>[

Text(

'Being John Malkovich',

textScaleFactor: 1.5,

N
avigation, Lists, and

O
ther G

oodies

0005390161.INDD 619 Trim size: 7.375 in × 9.25 in June 11, 2022 3:48 PM

CHAPTER 8 Navigation, Lists, and Other Goodies 619

),

Visibility(

visible: _isFavorite ?? false,

child: Icon(Icons.favorite),

),

],

),

SizedBox(height: 16.0),

ElevatedButton.icon(

icon: Icon(Icons.arrow_forward),

label: Text('Details'),

onPressed: goToDetailPage,

),

],

);

 }

}

extension MoreDetailPage on DetailPage {

Widget buildDetailPageCore(context) {

return Column(

crossAxisAlignment: CrossAxisAlignment.center,

children: <Widget>[

Text(

overview,

),

SizedBox(height: 16.0),

ElevatedButton(

child: Text(

'Make It a Favorite!',

),

onPressed: () {

Navigator.pop(context, true);

 },

),

],

);

 }

}

Figure 8-5 illustrates the action that takes place during a run of this section’s
example.

The code in Listing 8-4 creates the DetailPage that you see in Figure 8-6.

0005390161.INDD 620 Trim size: 7.375 in × 9.25 in June 11, 2022 3:48 PM

620 BOOK 4 Creating Mobile Apps

The DetailPage has two buttons — one on the app bar (a Back button) and one
beneath the movie’s overview (the Make It a Favorite! button). If the user presses
the app bar’s Back button, nothing exciting happens. The app returns to a
MovieTitlePage like the one in Figure 8-1. But, if the user presses the Make It a
Favorite! button, Flutter executes the following statement:

Navigator.pop(context, true);

Flutter pops the DetailPage off of its stack and sends the value true back to the
MovieTitlePage. In the MovieTitlePage, an assignment with a mysterious look-
ing await word sets _isFavorite to true:

_isFavorite = await Navigator.push(

// ... Etc.

Finally, with _isFavorite set to true, the MovieTitlePage displays a little heart
icon, as you see in Figure 8-7.

FIGURE 8-5:
The flow of traffic

in Listing 8-4.

FIGURE 8-6:
A button on the

detail page offers
an option.

© John Wiley & Sons

N
avigation, Lists, and

O
ther G

oodies

0005390161.INDD 621 Trim size: 7.375 in × 9.25 in June 11, 2022 3:48 PM

CHAPTER 8 Navigation, Lists, and Other Goodies 621

Dart’s async and await keywords
A user launches the app in Listing 8-4, navigates from the MovieTitlePage to the
DetailPage, and then pauses to have a cup of coffee. This user insists on hav-
ing only the best coffee. With a smartphone displaying the DetailPage, this user
takes an airplane to Vietnam, buys a fresh cup of Kopi Luwak, and then flies home.
Finally, three days after having launched this section’s app, the user presses the
Make It a Favorite! button, which returns true to the app’s MovieTitlePage.

You never know how long a user will linger on the app’s DetailPage. That’s
why Flutter’s Navigator.push method doesn’t really get true back from the
DetailPage. Instead, a call to Navigator.push returns an object of type Future.

A Future object is a callback of sorts. It’s a box that may or may not contain a
value like true. While our coffee-loving user is visiting Vietnam, the Future box
has nothing inside of it. But later, when the user returns home and clicks the
Make It a Favorite! button, the Future box contains the value true. This is how
Flutter manages a “don’t know when” navigation problem.

What would happen with the following code?

// Bad code because await is missing:

static bool _isFavorite;

// And elsewhere, ...

_isFavorite = Navigator.push(

// ... Etc.

In this erroneous code, the call to Navigator.push tries to hand a Future object
to the _isFavorite variable. But the _isFavorite variable will have none of it
because the _isFavorite variable’s type is bool, not Future. What’s a developer
to do?

FIGURE 8-7:
A Favorite icon

on the movie title
page.

© John Wiley & Sons

0005390161.INDD 622 Trim size: 7.375 in × 9.25 in June 11, 2022 3:48 PM

622 BOOK 4 Creating Mobile Apps

Listing 8-4 solves this problem using Dart’s await keyword. An await keyword
does two things:

 » The await keyword tells Dart not to continue executing the current line until
the Future box has something useful inside it. In Listing 8-4, Dart doesn’t
assign anything to _isFavorite until the DetailPage has been popped.

 » When the DetailPage has been popped, the await keyword retrieves the
useful value from the Future box.

In Listing 8-4, the call to Navigator.push is a Future value, but the expression
await Navigator.push(// ... etc is a bool value. (See Figure 8-8.) The code
assigns this bool value to _isFavorite, which, appropriately enough, is a bool
variable.

A function that contains the await keyword may take a long time to finish execut-
ing. If you’re not careful, the entire app may come to a screeching halt while
await does its awaiting. So, in addition to the await keyword, Dart has an async
keyword and a rule to go along with this keyword:

If a function declaration contains the await keyword, that declaration must also
include the async keyword.

(Refer to Listing 8-4.) The async keyword tells Dart that it’s okay to execute
some other code while this function sits there, doing nothing, executing its await

FIGURE 8-8:
The correct

 combination of
types.

N
avigation, Lists, and

O
ther G

oodies

0005390161.INDD 623 Trim size: 7.375 in × 9.25 in June 11, 2022 3:48 PM

CHAPTER 8 Navigation, Lists, and Other Goodies 623

keyword. That way, the app may continue whatever else it’s doing while our
friend, the Kopi Luwak coffee lover, visits Vietnam.

Taking control of the app bar’s Back button
The app bar button in Figure 8-6 is a backward-pointing arrow. When the user
clicks this button, your app returns to its source page. These two facts are true by
default. But what if you don’t like the defaults? Can you change them? Of course
you can.

For example, you can change the button’s appearance from a backward arrow to a
red backspace button. To do so, add a leading parameter to an AppBar construc-
tor call in Listing 8-1.

appBar: AppBar(

title: Text(

'Details',

),

leading: IconButton(

icon: new Icon(Icons.keyboard_backspace, color: Colors.red),

onPressed: () => Navigator.pop(context),

),

)

If you don’t want a Back button to appear on the app bar, add an automatically
ImplyLeading parameter to the AppBar constructor call.

appBar: AppBar(

automaticallyImplyLeading: false,

Changing the app bar button’s behavior is trickier. In Listing 8-1, you surround
the Scaffold constructor call with a WillPopScope call:

@override

Widget build(BuildContext context) {

return WillPopScope(

onWillPop: () => _onPop(context),

child: Scaffold(

In the WillPopScope constructor call, the onWillPop parameter is a function
and, in keeping with the word Will in onWillPop, that function returns a Future.
Here’s a small example:

Future<bool> _onPop(BuildContext context) async {

return await showDialog(

0005390161.INDD 624 Trim size: 7.375 in × 9.25 in June 11, 2022 3:48 PM

624 BOOK 4 Creating Mobile Apps

context: context,

child: AlertDialog(

title: Text("The back button doesn't work"),

content: Text('Sorry about that, Chief.'),

actions: <Widget>[

new FlatButton(

onPressed: () => Navigator.pop(context, false),

child: Text('OK'),

),

],

),

) ??

false;

}

When the user clicks the Back button on the DetailPage app bar, Flutter displays
a dialog box containing a FlatButton labeled OK. (See Figure 8-9.) When the user
clicks the FlatButton, Flutter dismisses the dialog box.

Passing Data in Both Directions
This section’s example is a bit more realistic than examples in the previous sec-
tions. In this section, the source and destination pages pass information back and
forth. The code is in Listing 8-5.

LISTING 8-5: From Title Page to Detail Page and Back Again

// app0805.dart

import 'package:flutter/material.dart';

import 'app08main.dart';

extension MoreMovieTitlePage on MovieTitlePageState {

static bool _isFavorite = false;

goToDetailPage() async {

_isFavorite = await Navigator.push(

FIGURE 8-9:
You Can’t Go
Home Again

(Thomas Wolfe).

© John Wiley & Sons

N
avigation, Lists, and

O
ther G

oodies

0005390161.INDD 625 Trim size: 7.375 in × 9.25 in June 11, 2022 3:48 PM

CHAPTER 8 Navigation, Lists, and Other Goodies 625

context,

MaterialPageRoute(

builder: (context) => DetailPage(),

settings: RouteSettings(

arguments: _isFavorite,

),

),

);

setState(() {});

 }

Widget buildTitlePageCore() {

return Column(

crossAxisAlignment: CrossAxisAlignment.center,

children: <Widget>[

Row(

mainAxisAlignment: MainAxisAlignment.center,

children: <Widget>[

Text(

'Being John Malkovich',

textScaleFactor: 1.5,

),

Visibility(

visible: _isFavorite,

child: Icon(Icons.favorite),

),

],

),

SizedBox(height: 16.0),

ElevatedButton.icon(

icon: Icon(Icons.arrow_forward),

label: Text('Details'),

onPressed: goToDetailPage,

),

],

);

 }

}

extension MoreDetailPage on DetailPage {

Widget buildDetailPageCore(context) {

final bool _isFavoriteArgument =

ModalRoute.of(context)?.settings.arguments as bool;

return Column(

crossAxisAlignment: CrossAxisAlignment.center,

children: <Widget>[

Text(

overview,

(continued)

0005390161.INDD 626 Trim size: 7.375 in × 9.25 in June 11, 2022 3:48 PM

626 BOOK 4 Creating Mobile Apps

),

SizedBox(height: 16.0),

ElevatedButton(

child: Text(

_isFavoriteArgument == true

? 'Unfavorite this'

: 'Make It a Favorite!',

),

onPressed: () {

Navigator.pop(context, !_isFavoriteArgument);

 },

),

],

);

 }

}

In this section’s app, the MainTitlePage and DetailPage share the responsibil-
ity for the movie’s “favorite” status. When the Favorite icon appears, it appears
on the MainTitlePage, but the DetailPage has the button that switches between
“favorite” and “not favorite.”

Figure 8-10 describes the action of this section’s app. In the next several para-
graphs, I guide you through the numbered steps in that figure.

LISTING 8-5: (continued)

FIGURE 8-10:
Moving from

page to page.

N
avigation, Lists, and

O
ther G

oodies

0005390161.INDD 627 Trim size: 7.375 in × 9.25 in June 11, 2022 3:48 PM

CHAPTER 8 Navigation, Lists, and Other Goodies 627

1. When you launch this section’s app, the value of _isFavorite becomes false.
You see a page with a movie title and a Details button, but no Heart icon. To
see that page as it appears on your phone, refer to Figure 8-1.

When you press the Details button, the goToDetailPage method sends the
value of _isFavorite to the DetailPage:

MaterialPageRoute(

builder: (context) => DetailPage(),

settings: RouteSettings(

arguments: _isFavorite,

),

),

2. The DetailPage receives the value coming from the MovieTitlePage. The
DetailPage stores that value in its own _isFavoriteArgument variable:

final bool _isFavoriteArgument =

ModalRoute.of(context).settings.arguments as bool;

Using this variable’s value, the DetailPage decides what to display on the face
of a button:

ElevatedButton(

child: Text(

_isFavoriteArgument ? 'Unfavorite this' : 'Make It a Favorite!',

),

At this point in the app’s run, _isFavoriteArgument is false. So the raised
button displays the sentence Make It a Favorite! Figure 8-11 shows you the
DetailPage that appears on your phone.

FIGURE 8-11:
You can make

this movie a
favorite.

© John Wiley & Sons

0005390161.INDD 628 Trim size: 7.375 in × 9.25 in June 11, 2022 3:48 PM

628 BOOK 4 Creating Mobile Apps

If you press the Make It a Favorite! button, Dart’s exclamation point operator
(!) prepares the opposite of _isFavoriteArgument to be sent back to the
MovieTitlePage:

onPressed: () {

Navigator.pop(context, !_isFavoriteArgument);

},

Because _isFavoriteArgument is false, the DetailPage sends its opposite
(true) back to the MovieTitlePage.

3. Upon receipt of the value true, the MovieTitlePage displays the Heart icon.
Figure 8-12 shows you the MovieTitlePage that appears on your phone.

When you press the Details button, the MovieTitlePage sends true to the
DetailPage.

4. This time, the line

_isFavoriteArgument ? 'Unfavorite this' : 'Make It a Favorite!'

tells the DetailPage to display the Unfavorite This button. Figure 8-13 shows
you the DetailPage that appears on your phone.

If you press the Unfavorite This button, Dart’s exclamation point operator
prepares the opposite of _isFavoriteArgument to be sent back to the
MovieTitlePage. Because _isFavoriteArgument is true, the DetailPage
sends its opposite (false) back to the MovieTitlePage.

5. Upon receipt of the value false, the MovieTitlePage doesn’t display the
Heart icon.

The drawing in Figure 8-10 is what is known as a finite state machine diagram.
Diagrams of this kind help a lot when you want to organize your thoughts about
an app’s page transitions.

FIGURE 8-12:
This movie is a

favorite.

© John Wiley & Sons

N
avigation, Lists, and

O
ther G

oodies

0005390161.INDD 629 Trim size: 7.375 in × 9.25 in June 11, 2022 3:48 PM

CHAPTER 8 Navigation, Lists, and Other Goodies 629

Creating Named Routes
Navigation can be complicated. Here’s an example:

“Go where the user wants to go unless the user isn’t logged in, in which case, go to
the login page (but remember where the user wanted to go). If the user logs in
correctly, go where the user wanted to go. Otherwise, go to the ‘invalid login’ page,
where the user has the option to go to the ‘forgot password’ page. From the ‘forget
password’ page . . .” And so on.

In Flutter, screens and pages are called routes, and Flutter lets you assign a name
to each of your routes. This Named Routes feature makes your code a bit more
concise. More importantly, the feature keeps you from going crazy, keeping track
of the user’s paths and detours. The code in Listing 8-6 doesn’t display any
movie data — only app bars and buttons. Even so, the listing shows you how
named routes work.

LISTING 8-6: Let’s All Play “Name That Route”

// app0806.dart

import 'package:flutter/material.dart';

void main() => runApp(App0806());

class App0806 extends StatelessWidget {

@override

Widget build(BuildContext context) {

return MaterialApp(

routes: {

'/': (context) => MovieTitlePage(),

'/details': (context) => DetailPage(),

'/details/cast': (context) => CastPage(),

'/details/reviews': (context) => ReviewsPage(),

 },

);

FIGURE 8-13:
You can

 unfavorite this
movie.

© John Wiley & Sons

(continued)

0005390161.INDD 630 Trim size: 7.375 in × 9.25 in June 11, 2022 3:48 PM

630 BOOK 4 Creating Mobile Apps

 }

}

class MovieTitlePage extends StatelessWidget {

@override

Widget build(BuildContext context) {

return _buildEasyScaffold(

appBarTitle: 'Movie Title Page',

body: _buildEasyButton(

context,

label: 'Go to Detail Page',

whichRoute: '/details',

),

);

 }

}

class DetailPage extends StatelessWidget {

@override

Widget build(BuildContext context) {

return _buildEasyScaffold(

appBarTitle: 'Detail Page',

body: Column(

children: <Widget>[

_buildEasyButton(

context,

label: 'Go to Cast Page',

whichRoute: '/details/cast',

),

_buildEasyButton(

context,

label: 'Go to Reviews Page',

whichRoute: '/details/reviews',

),

],

),

);

 }

}

class CastPage extends StatelessWidget {

@override

Widget build(BuildContext context) {

return _buildEasyScaffold(

appBarTitle: 'Cast Page',

body: Container(),

);

 }

}

LISTING 8-6: (continued)

N
avigation, Lists, and

O
ther G

oodies

0005390161.INDD 631 Trim size: 7.375 in × 9.25 in June 11, 2022 3:48 PM

CHAPTER 8 Navigation, Lists, and Other Goodies 631

class ReviewsPage extends StatelessWidget {

@override

Widget build(BuildContext context) {

return _buildEasyScaffold(

appBarTitle: 'Reviews Page',

body: Container(),

);

 }

}

Widget _buildEasyScaffold({required String appBarTitle, required Widget body}) {

return Scaffold(

appBar: AppBar(

title: Text(appBarTitle),

),

body: body,

);

}

Widget _buildEasyButton(

BuildContext context, {

required String label,

required String whichRoute,

}) {

return ElevatedButton(

child: Text(label),

onPressed: () {

Navigator.pushNamed(

context,

whichRoute,

);

 },

);

}

The code in Listing 8-6 doesn’t depend on any other listing’s code. Simply place
this section’s code in a .dart file, and then run it. Figure 8-14 shows the tops
of the pages for the app in Listing 8-6.

Other listings in this chapter scatter their routing information willy-nilly
throughout the code. But Listing 8-6 summarizes its routing information in the
MaterialApp constructor’s routes parameter. Notice the hierarchical naming of
the routes in Figure 8-14. The more subordinate the route, the more slash char-
acters (/) in the route’s name.

0005390161.INDD 632 Trim size: 7.375 in × 9.25 in June 11, 2022 3:48 PM

632 BOOK 4 Creating Mobile Apps

As an added bonus, the Navigator class’s pushNamed method is a bit simpler than
the class’s plain old push method. With simpler code comes less anguish for you,
the developer, and a better chance that the code is correct.

In Listing 8-6, the MaterialApp constructor call has no home parameter. That’s
okay because the constructor’s routes parameter takes up the slack. By default,
a route named '/' is the starting point for your app.

If you decide not to have a route named '/', or if you want to override the default,
you can add the initialRoute parameter. For example, you can add one line to
the code in Listing 8-6, like so:

Widget build(BuildContext context) {

return MaterialApp(

routes: {

'/': (context) => MovieTitlePage(),

'/details': (context) => DetailPage(),

'/details/cast': (context) => CastPage(),

'/details/reviews': (context) => ReviewsPage(),

 },

initialRoute: '/details/cast',

);

}

When the app with this modified code starts running, the user sees the app’s
CastPage, and what happens next may or may not surprise you. When the user
presses the app bar’s Back button, Flutter navigates to the DetailPage. This hap-
pens because Flutter looks at the slashes in the route names. When you back away
from a route named /details/cast, /details/reviews, or /details/whatever,
Flutter takes you to the route named /details.

FIGURE 8-14:
One app; four

pages.

N
avigation, Lists, and

O
ther G

oodies

0005390161.INDD 633 Trim size: 7.375 in × 9.25 in June 11, 2022 3:48 PM

CHAPTER 8 Navigation, Lists, and Other Goodies 633

Creating a List
The beginning of this chapter describes the master-detail interface. It says, “The
first page [in a master-detail interface] displays a list of items.” You can’t cram
information about every item on the list into one page. So, for details about a par-
ticular item, the user clicks that item and navigates to a separate page.

This section shows you how to navigate between a list of items and a detail page.
The new example is much more useful than the chapter’s Being John Malkov-
ich examples. The app in Listing 8-7 lists 25 films in Sylvester Stallone’s Rocky
franchise.

LISTING 8-7: A Rather Long List

// App0807.dart

import 'package:flutter/material.dart';

import 'App08Main.dart';

extension MoreMovieTitlePage on MovieTitlePageState {

goToDetailPage(int index) {

Navigator.push(

context,

MaterialPageRoute(

builder: (context) => DetailPage(),

settings: RouteSettings(

arguments: index,

),

),

);

 }

Widget buildTitlePageCore() {

return ListView.builder(

itemCount: 25,

itemBuilder: (context, index) => ListTile(

title: Text('Rocky ${index + 1}'),
onTap: () => goToDetailPage(index + 1),
),

);

 }

}

extension MoreDetailPage on DetailPage {

Widget buildDetailPageCore(context) {

final sequelNumber = ModalRoute.of(context)?.settings.arguments as int;

final overview =

'For the $sequelNumber${getSuffix(sequelNumber)} time, palooka '

'Rocky Balboa fights to be the world heavyweight boxing champion.';

(continued)

0005390161.INDD 634 Trim size: 7.375 in × 9.25 in June 11, 2022 3:48 PM

634 BOOK 4 Creating Mobile Apps

return Column(

crossAxisAlignment: CrossAxisAlignment.center,

children: <Widget>[

Text(overview),

],

);

 }

String getSuffix(int sequelNumber) {

String suffix;

switch (sequelNumber) {

case 1:

case 21:

suffix = 'st';

break;

case 2:

case 22:

suffix = 'nd';

break;

case 3:

case 23:

suffix = 'rd';

break;

default:

suffix = 'th';

 }

return suffix;

 }

}

To run the app in Listing 8-7, your project must have at least two .dart files — one
containing the code in Listing 8-7 and another containing the code in Listing 8-1.

When you run the code in Listing 8-7, you get two pages — a front page with a
list of movie titles and, as usual, a detail page. Figure 8-15 shows you the page
with the list of movie titles, and Figure 8-16 shows you a detail page.

The ListView widget
The essence of Listing 8-7 is a call to Flutter’s ListView.builder constructor.
The constructor takes two parameters: an itemCount and an itemBuilder.

LISTING 8-7: (continued)

N
avigation, Lists, and

O
ther G

oodies

0005390161.INDD 635 Trim size: 7.375 in × 9.25 in June 11, 2022 3:48 PM

CHAPTER 8 Navigation, Lists, and Other Goodies 635

The itemCount parameter
To no one’s surprise, the itemCount tells Flutter how many items to display in
the list. With the code in Listing 8-7, the list’s last item is Rocky 25. But if you
omit the itemCount parameter, the list never ends. The user can scroll for hours
to see list items named Rocky 1000 and Rocky 10000.

The secret behind ListView with its itemCount is the ability to scroll. In theory,
the list has more items than the user sees on the device’s screen. In reality, Flut-
ter juggles list items and keeps only enough to fill the user’s screen. When an
item disappears off the edge of the screen, Flutter recycles that item by giving it
a new Rocky number and displaying it at the other end of the screen. By recycling
list items, Flutter saves memory space and processing time. So the scrolling of
the list goes smoothly.

The itemBuilder parameter
An itemBuilder parameter’s value is a function. In Listing 8-7, to create
25 items, Flutter starts by creating 25 indices with values 0, 1, 2, and so on, up
to and including 24. Flutter plugs these values into the itemBuilder function,
like so:

// This isn't real code. It's the way itemBuilder behaves.

(context, 0) => ListTile(

FIGURE 8-15:
The start of a

long list.

© John Wiley & Sons

FIGURE 8-16:
The user taps the

23rd item in
the list.

© John Wiley & Sons

0005390161.INDD 636 Trim size: 7.375 in × 9.25 in June 11, 2022 3:48 PM

636 BOOK 4 Creating Mobile Apps

title: Text('Rocky ${0 + 1}'),
onTap: () => goToDetailPage(0 + 1),
)

(context, 1) => ListTile(

title: Text('Rocky ${1 + 1}'),
onTap: () => goToDetailPage(1 + 1),
)

(context, 2) => ListTile(

title: Text('Rocky ${2 + 1}'),
onTap: () => goToDetailPage(2 + 1),
)

// ... and so on.

The result is a list containing 25 items. The Rocky number on each item’s Text
widget is one more than the index value. That way, the list doesn’t start with a
movie named Rocky 0. (Rocky: The Prequel?)

In Dart, anything that counts automatically starts with 0, not 1. This includes
things like the index of an itemBuilder, the position of a character in a String,
and the default for the minimum value of a Slider.

In addition to its Text widget, each item has an onTap function. Each onTap func-
tion sends its own value (a number from 1 to 25) to the goToDetailPage func-
tion. If you keep following the trail, you find that the goToDetailPage function
sends the number value onward as an argument to the app’s DetailPage. And,
in turn, the DetailPage uses that value to decide what information to display. In
a real-life app, the DetailPage might use the value to look up the overview of a
movie — maybe one of several thousand movies. But in Listing 8-7, the Detail-
Page simply composes a fake overview. To see a way of getting real movie info,
visit the later section “Fetching Data from the Internet.”

By the way, you may notice that Listings 8-1 and 8-7 both have overview
variables, and both of these variables live in the same DetailPage class. (The
overview in Listing 8-1 is in the original DetailPage declaration. The overview
in Listing 8-7 is in an extension of the DetailPage class.) This double-use of a
variable name is okay. The overview in Listing 8-1 is an instance variable, and the
overview in Listing 8-7 is local to the buildDetailPageCore method. So, when
you run the code in Listing 8-7, the name overview stands for a sentence about
Rocky Balboa. It’s all good.

Are you unsure about the difference between instance variables and local vari-
ables? If so, refer to Book 4, Chapter 5.

N
avigation, Lists, and

O
ther G

oodies

0005390161.INDD 637 Trim size: 7.375 in × 9.25 in June 11, 2022 3:48 PM

CHAPTER 8 Navigation, Lists, and Other Goodies 637

PUTTING A LISTVIEW INSIDE A COLUMN
Some layouts — ones that you might think are okay — send Flutter into an unending,
tail-chasing game. Book 4, Chapter 6 has a section about it. The game is especially frus-
trating when you try to put a list view inside a column. Here’s some bad code:

// Don't do this:

Widget buildTitlePageCore() {

return Column(

children: <Widget>[

Text('Rocky Movies'),

ListView.builder(

itemCount: 25,

itemBuilder: (context, index) => ListTile(

title: Text('Rocky ${index + 1}'),
onTap: () => goToDetailPage(index + 1),
),

),

],

);

}

When you run this code, no list view appears. Among dozens of lines of diagnostics,
Android Studio’s Run tool window reports that Vertical viewport was given
unbounded height. As it is in Book 4, Chapter 6, one widget (the Column widget) is
sending an unbounded height constraint to its children, and one of the children (the
ListView widget) can’t handle all that freedom. The result is an impasse in which the
ListView can’t be displayed. To fix the problem, do the same thing that helps in
Book 4, Chapter 6 — add an Expanded widget:

// Do this instead

return Column(

children: <Widget>[

Text('Rocky Movies'),

Expanded(

child: ListView.builder(

// ... etc.

The Expanded widget says, “Hey, Column. Figure out how tall the Text widget is and tell
the ListView how much vertical space is left over.” When the Column hands this infor-
mation to the ListView, the ListView says, “Thanks. I’ll use all of the left over space.”
The app displays itself correctly, and everyone’s happy.

0005390161.INDD 638 Trim size: 7.375 in × 9.25 in June 11, 2022 3:48 PM

638 BOOK 4 Creating Mobile Apps

Dart’s switch statement
In an early draft of Listing 8-7, the overview of Rocky 3 reads:

For the 3th time, palooka Rocky Balboa fights to be the world heavyweight boxing
champion.

That’s completely unacceptable, so we need to enlist the help of our friend — the
switch statement. A switch statement is like an if statement except that switch
statements lend themselves to multiway branching.

The switch statement in Listing 8-7 says:

Look at the value of sequelNumber.

If that value is 1 or 21,

assign 'st' to suffix,

and then break out of the entire switch statement.

If you've reached this point and that value is 2 or 22,

assign 'nd' to suffix,

and then break out of the entire switch statement.

If you've reached this point and that value is 3 or 23,

assign 'rd' to suffix,

and then break out of the entire switch statement.

If you've reached this point,

assign 'th' to suffix.

Each break statement sends you out of the switch statement and onward to
whatever code comes after the switch statement. What happens if you try to omit
the break statements?

// Dart doesn't tolerate this ...

switch (sequelNumber) {

case 1:

case 21:

suffix = 'st';

case 2:

// ... and so on.

In Dart, this is a no-no. If you type this code in Android Studio’s Dart edi-
tor, Android Studio complains immediately. Android Studio refuses to run your
program.

If you’re not fond of break statements, you can rewrite the getSuffix function
using return statements:

N
avigation, Lists, and

O
ther G

oodies

0005390161.INDD 639 Trim size: 7.375 in × 9.25 in June 11, 2022 3:48 PM

CHAPTER 8 Navigation, Lists, and Other Goodies 639

String getSuffix(int sequelNumber) {

switch (sequelNumber) {

case 1:

case 21:

return 'st';

case 2:

case 22:

return 'nd';

case 3:

case 23:

return 'rd';

 }

return 'th';

}

This new version of getSuffix is much more concise than the one in Listing 8-7.
In this version of getSuffix, each return statement jumps you entirely out of the
getSuffix function. You don’t even need a default clause, because you reach the
return 'th' statement when none of the case clauses applies.

Even this new-and-improved getSuffix function falters if Sylvester Stallone
makes Rocky 31. The movie’s overview will be, “For the 31th time, palooka Rocky
Balboa . . .” That doesn’t sound good.

There are dozens of ways to create more versatile versions of getSuffix, and it’s
fun to try to create one of your own. One of them looks like this:

String getSuffix(int sequelNumber) {

int onesDigit = sequelNumber % 10;

int tensDigit = sequelNumber ~/ 10 % 10;

Map<int, String> suffixes = {1: 'st', 2: 'nd', 3: 'rd'};

String suffix = suffixes[onesDigit] ?? 'th';

if (tensDigit == 1) suffix = 'th';

return suffix;

}

Creating list items one-by-one
From one row to another, the items in Figure 8-15 have no surprises. Each item
displays the name Rocky and a number. Each item exhibits the same behavior
when you tap on it. Because of this uniformity, you can create one itemBuilder
that describes all 25 of the list’s items.

0005390161.INDD 640 Trim size: 7.375 in × 9.25 in June 11, 2022 3:48 PM

640 BOOK 4 Creating Mobile Apps

SOME NEWS ABOUT SCROLLING
You don’t need a ListView to create a scrolling screen. You can enclose all kinds of
stuff inside a SingleChildScrollView. Here’s some code:

return MaterialApp(

home: Material(

child: Column(

children: <Widget>[

SizedBox(height: 200, child: Text("You've")),

SizedBox(height: 200, child: Text("read")),

SizedBox(height: 200, child: Text("many")),

SizedBox(height: 200, child: Text("chapters")),

SizedBox(height: 200, child: Text("of")),

Icon(Icons.book),

SizedBox(height: 100, child: Text("Flutter For Dummies")),

Icon(Icons.thumb_up),

],

),

),

);

It’s likely that your phone doesn’t have enough room for all this stuff. So if you don’t
add some sort of scrolling, you’ll see the dreaded black-and-yellow stripes along
the bottom of the screen. To avoid seeing these stripes, enclose the widgets in a
SingleChildScrollView:

return MaterialApp(

home: Material(

child: SingleChildScrollView(

child: Column(

children: <Widget>[

SizedBox(height: 200, child: Text("You've")),

// ... etc.

],

),

),

),

);

When you rerun the code, you’ll see the topmost few widgets with the option to scroll
and see others.

N
avigation, Lists, and

O
ther G

oodies

0005390161.INDD 641 Trim size: 7.375 in × 9.25 in June 11, 2022 3:48 PM

CHAPTER 8 Navigation, Lists, and Other Goodies 641

What do you do if there’s little or no uniformity? What if there’s some uniformity
among the items but so few items that creating an itemBuilder isn’t worth the
effort?

In such cases, you describe the items one-by-one using Flutter’s ListView con-
structor. Listing 8-8 has the code; Figures 8-17 and 8-18 show you some of the
results.

LISTING 8-8: A Small List

// app0808.dart

import 'package:flutter/material.dart';

import 'app08main.dart';

const Map<String, String> synopses = { 'Casablanca':

'In Casablanca, Morocco in December 1941, a cynical American expatriate '

'meets a former lover, with unforeseen complications.',

'Citizen Kane':

'... Charles Foster Kane is taken from his mother as a boy ... '

'As a result, every well-meaning, tyrannical or '

'self-destructive move he makes for the rest of his life appears '

'in some way to be a reaction to that deeply wounding event.',

'Lawrence of Arabia':

"The story of British officer T.E. Lawrence's mission to aid the Arab "

"tribes in their revolt against the Ottoman Empire during the "

"First World War.",

};

extension MoreMovieTitlePage on MovieTitlePageState {

goToDetailPage(String movieName) {

Navigator.push(

context,

MaterialPageRoute(

builder: (context) => DetailPage(),

settings: RouteSettings(

arguments: movieName,

),

),

);

 }

Widget buildTitlePageCore() {

return ListView(

children: [

ListTile(

title: Text('Casablanca'),

onTap: () => goToDetailPage('Casablanca'),

),

ListTile(

(continued)

0005390161.INDD 642 Trim size: 7.375 in × 9.25 in June 11, 2022 3:48 PM

642 BOOK 4 Creating Mobile Apps

title: Text('Citizen Kane'),

onTap: () => goToDetailPage('Citizen Kane'),

),

ListTile(

title: Text('Lawrence of Arabia'),

onTap: () => goToDetailPage('Lawrence of Arabia'),

),

],

);

 }

}

extension MoreDetailPage on DetailPage {

Widget buildDetailPageCore(context) {

final movieName = ModalRoute.of(context)?.settings.arguments;

final overview = '(From themoviedb.com) ${synopses[movieName]}';

return Column(

crossAxisAlignment: CrossAxisAlignment.center,

children: <Widget>[

Text(overview),

],

);

 }

}

If you visit https://api.flutter.dev/flutter/widgets/ListView-class.html,
you see the documentation for Flutter’s ListView class. In the page’s upper-right
corner, you see the class’s constructors, which include ListView and ListView.
builder. Listing 8-7 calls the named ListView.builder constructor. But in the
same place in Listing 8-8, you find the unnamed ListView constructor call. To
read about Dart’s named and unnamed constructors, refer to Book 4, Chapter 3.

FIGURE 8-17:
Three movies.

© John Wiley & Sons

LISTING 8-8: (continued)

N
avigation, Lists, and

O
ther G

oodies

0005390161.INDD 643 Trim size: 7.375 in × 9.25 in June 11, 2022 3:48 PM

CHAPTER 8 Navigation, Lists, and Other Goodies 643

Flutter’s unnamed ListView constructor has a children parameter, and that
children parameter’s value is . . . wait for it . . . a Dart language List. A Dart
language List is a bunch of objects inside a pair of square brackets, like this:

// A Dart language List:

 [

ListTile(...),

ListTile(...),

ListTile(...),

]

To read about Dart’s List type, refer to Book 4, Chapter 4.

In Listing 8-8, the Dart List is actually a bunch of ListTile widgets. (They’re
like bathroom tiles with no grout between them.) But Flutter’s ListView is
versatile. The children don’t have to be ListTile widgets. The children of a
ListView may be a mixture of Text widgets, SizedBox widgets, Image.asset
widgets, and any other kinds of widgets. It can be a big grab bag.

(If you’re keeping score, Listing 8-8 contains a ListView which contains a Dart
language List of ListTile widgets.)

Making loops with Dart
Most programming languages have statements that perform repetitive tasks. For
example, languages such as Java, C/C++, and Dart have a thing called a for state-
ment, also known as a for loop. Figure 8-19 shows you a tiny example.

The example in Figure 8-19 is a Dart program, but it’s not a Flutter program. To
run this program, there’s no need to bother creating a Flutter project. Instead,
you can visit https://dartpad.dev, type the code in the page’s big editor win-
dow, and then press Run.

FIGURE 8-18:
“Play it

again, Sam”
(misquoted).

© John Wiley & Sons

0005390161.INDD 644 Trim size: 7.375 in × 9.25 in June 11, 2022 3:48 PM

644 BOOK 4 Creating Mobile Apps

In Figure 8-19, the program’s output is a column containing the numbers 1
through 5. That’s because a for statement tells the device to repeat things over
and over again. Figure 8-20 shows you an English language paraphrase of the for
statement in Figure 8-19.

The fact that Dart has a for statement isn’t newsworthy. Dart’s for statement is
almost exactly the same as the C language for statement, which was created in
the early 1970s by Dennis Ritchie at Bell Labs. And the C language for statement
is a direct descendant of FORTRAN’s DO statement from the early 1960s. What’s
new and exciting in Dart is the idea that you can put a for construct inside a Dart
language list. Listing 8-9 has an enlightening code snippet.

LISTING 8-9: Interesting Code!

Widget buildTitlePageCore() {

return ListView(

children: <Widget>[

for (int index = 0; index < 25; index++)

FIGURE 8-19:
Dart’s for

 statement in
action.

© John Wiley & Sons

FIGURE 8-20:
Anatomy of a

for statement.

N
avigation, Lists, and

O
ther G

oodies

0005390161.INDD 645 Trim size: 7.375 in × 9.25 in June 11, 2022 3:48 PM

CHAPTER 8 Navigation, Lists, and Other Goodies 645

ListTile(

title: Text('Rocky ${index + 1}'),
onTap: () => goToDetailPage(index + 1),
),

],

);

}

If you replace the buildTitlePageCore method in Listing 8-7 with the code in
Listing 8-9, your app behaves exactly the same way. When Flutter encounters the
code in Listing 8-9, it starts creating 25 ListTile widgets.

Listings 8-7 and 8-9 give you two ways to create a 25-item ListView. Which
way is better? You can decide by asking, “Which way makes the code easier to
read and understand?” Most people would agree that the new code (the code in
Listing 8-9) is much clearer.

The stuff in Listing 8-9 looks like a for statement, but it’s not really a for state-
ment. It’s a collection for. The name collection for comes from the fact that a
List is one of Dart’s collection types. (See Table 4-2, over in Book 4, Chapter 4,
for more on collection types.) You can put a collection for inside any kind of
collection — a List, a Set, or a Map. The following code does all three of these
things:

main() {

List<int> myList = [for (int i = 1; i <= 5; i++) i];
Set<int> mySet = {for (int i = 1; i <= 5; i++) i};
Map<int, int> myMap = {for (int i = 1; i <= 5; i++) i: i + 100};
print(myList);

print(mySet);

print(myMap);

}

For some rollicking good fun, run this code at https://dartpad.dev. Compare
Dart’s collection for with its collection if. The collection if appears in Book 4,
Chapter 7.

Dart’s collection for is interesting because it’s a new kind of programming lan-
guage construct. The two pillars of programming languages are statements and
expressions, but the collection for is neither a statement nor an expression. If you
want to do some reading about all this geeky stuff, visit https://medium.com/
dartlang/making-dart-a-better-language-for-ui-f1ccaf9f546c.

0005390161.INDD 646 Trim size: 7.375 in × 9.25 in June 11, 2022 3:48 PM

646 BOOK 4 Creating Mobile Apps

Fetching Data from the Internet
Do this chapter’s examples remind you of movies that you’ve enjoyed? Would
you like an app that displays facts about these movies? If so, look no further than
Listing 8-10.

LISTING 8-10: Accessing Online Data

// app0810.dart

import 'dart:convert';

import 'package:flutter/material.dart';

import 'package:http/http.dart';

import 'app08main.dart';

extension MoreMovieTitlePage on MovieTitlePageState {

goToDetailPage(String movieTitle) {

Navigator.push(

context,

MaterialPageRoute(

builder: (context) => DetailPage(),

settings: RouteSettings(

arguments: movieTitle,

),

),

);

 }

Widget buildTitlePageCore() {

TextEditingController _controller = TextEditingController();

return Column(

crossAxisAlignment: CrossAxisAlignment.center,

children: <Widget>[

TextField(

decoration: InputDecoration(labelText: 'Movie title:'),

controller: _controller,

),

SizedBox(height: 16.0),

ElevatedButton.icon(

icon: Icon(Icons.arrow_forward),

label: Text('Details'),

onPressed: () => goToDetailPage(_controller.text),

),

],

);

 }

}

extension MoreDetailPage on DetailPage {

Future<String> _getMovieData(String movieTitle) {

N
avigation, Lists, and

O
ther G

oodies

0005390161.INDD 647 Trim size: 7.375 in × 9.25 in June 11, 2022 3:48 PM

CHAPTER 8 Navigation, Lists, and Other Goodies 647

return updateOverview(

movieTitle: movieTitle,

api_key: "Parents: Don't let your sons and "

"daughters put api keys in their code.",

);

 }

Widget buildDetailPageCore(context) {

final _movieTitle = ModalRoute.of(context)?.settings.arguments as String;

return Column(

crossAxisAlignment: CrossAxisAlignment.center,

children: <Widget>[

FutureBuilder<String>(

future: _getMovieData(_movieTitle),

builder: (context, snapshot) {

if (snapshot.hasData) {

return Text(snapshot.data as String);

 }

return CircularProgressIndicator();

 },

),

],

);

 }

Future<String> updateOverview({required String api_key, required String

movieTitle}) async {

final response = await get(Uri.parse(

'https://api.themoviedb.org/3/search/movie?api_key=' +

'$api_key&query="$movieTitle"'));

return json.decode(response.body)['results'][0]['overview'];

 }

}

Figures 8-21 and 8-22 show a run of the code in Listing 8-10.

There’s a lot to unpack in Listing 8-10, so I divide it into parts.

Using a public API
Before creating Listing 8-10, I searched the web for a site that provides free
access to movie information. Among the sites I found, the one I liked best was
The Movie Database (www.themoviedb.org). Like many such sites, The Movie
Database provides access through its own application programming interface (API).
When you use the prescribed API code to send a query to themoviedb.org, the site
spits back information about one or more movies.

0005390161.INDD 648 Trim size: 7.375 in × 9.25 in June 11, 2022 3:48 PM

648 BOOK 4 Creating Mobile Apps

For example, to get information about the movie THX 1138, you can try typing the
following URL in a browser’s address bar:

https://api.themoviedb.org/3/search/movie?api_key=XYZ&query="THX 1138"

When you do, the following message appears in your browser window:

Invalid API key: You must be granted a valid key.

Oops! Instead of typing XYZ, you should have typed a valid API key — a string of
characters you get when you sign up on The Movie Database website. Everyone
who signs up can get an API key by logging in and going to https://themoviedb.
org/settings/api and then clicking the Request an API Key link.

The site will give you a choice between a Developer API key and a Professional API
key. Select Developer, and then fill out the form on the next page, being sure to
select Personal for the Type of Use. You can enter your own information into this
form, or you can use the answers shown in Figure 8-23.

Once you get your own API key, replace XYZ with the API key and type the new
URL into a web browser’s address bar:

// Not a real API key ...

https://api.themoviedb.org/3/search/movie?api_key=4c23b2f8f&query="THX 1138"

FIGURE 8-21:
The user types a

movie’s name.

© John Wiley & Sons

FIGURE 8-22:
The app displays

info from The
Movie Database.

© John Wiley & Sons

N
avigation, Lists, and

O
ther G

oodies

0005390161.INDD 649 Trim size: 7.375 in × 9.25 in June 11, 2022 3:48 PM

CHAPTER 8 Navigation, Lists, and Other Goodies 649

When you do, you don’t see an error message, and you don’t get a fancy-looking
web page, either. Instead, you get code that looks something like the stuff in
Listing 8-11.

LISTING 8-11: JSON Code

{

"page": 1,

"total_results": 4,

"total_pages": 1,

"results”: [

 {

"popularity": 8.126,

 .

 .

 .

"title": "THX 1138",

"vote_average": 6.6,

"overview": "People in the future live in a totalitarian ... ",

"release_date": "1971-03-11"

 },

 {

FIGURE 8-23:
Requesting an

API key from the
moviedb.org.

© John Wiley & Sons

(continued)

0005390161.INDD 650 Trim size: 7.375 in × 9.25 in June 11, 2022 3:48 PM

650 BOOK 4 Creating Mobile Apps

"popularity": 3.11,

"id": 140979,

... and more ...

The text in Listing 8-11 isn’t Dart code. It’s JSON code. The acronym JSON stands
for JavaScript Object Notation. The best way to understand JSON code is to realize
that it describes a tree. Compare the code in Listing 8-11 with the upside-down
tree in Figure 8-24.

Sending an URL to a server and getting JSON code in return is an example of
Representational State Transfer, also known as REST.

As an app developer, your job is to make your app do two things:

 » Send an URL to The Movie Database.

 » Make sense of the JSON code that comes back from The Movie Database.

Sending an URL to a server
One way to enable web server communication is to import Dart’s http package.
An import line near the top of Listing 8-10 does the trick. The only “gotcha” is
that if you fail to add a line to your project’s pubspec.yaml file, Flutter can’t do
the importing:

FIGURE 8-24:
A JSON document

describes a tree.

LISTING 8-11: (continued)

N
avigation, Lists, and

O
ther G

oodies

0005390161.INDD 651 Trim size: 7.375 in × 9.25 in June 11, 2022 3:48 PM

CHAPTER 8 Navigation, Lists, and Other Goodies 651

dependencies:

flutter:

sdk: flutter

http: ^0.13.4

Of course, the strange looking version number ^0.13.4 is sure to be obsolete by
the time you read this book. To find out what number you should be using, visit
https://pub.dev/packages/http

In a .yaml file, indentation matters. So, in your project’s pubspec.yaml file,
be sure to indent the http line the way you see it here. To find out about your
project’s pubspec.yaml file, refer to Book 4, Chapter 3.

In your app’s Dart code, you use the package’s get function to send an URL out
onto the web:

final response = await get(

'https://api.themoviedb.org/3/search/movie?api_key=' +
'$api_key&query="$movieTitle"');

A simple function name like get doesn’t scream out at you, “I’m part of the
http package.” To make your code more readable, do two things: Add some extra
words to the http package’s import declaration

import 'package:http/http.dart' as http;

and add a prefix to your get function call:

final response = await http.get(// ... etc.

The need for await, async, and Future in Listing 8-10 comes from one unde-
niable fact: If you send a request to a web server, you don’t know when you’ll
get a response. You don’t want your Flutter app to freeze up while it waits for
a response from who-knows-where. You want to entertain the user while a
response makes its way along the Internet. That’s why, in Listing 8-10, you dis-
play a CircularProgressIndicator widget until the response has arrived.

Making sense of a JSON response
In Listing 8-10, the updateOverview method awaits a response from The Movie
Database. When a response arrives, the method assigns that response to its own
variable named response. (How clever!) The response variable contains all kinds
of information about HTTP headers and status codes, but it also contains a body,
and that body looks like the JSON code in Listing 8-11.

0005390161.INDD 652 Trim size: 7.375 in × 9.25 in June 11, 2022 3:48 PM

652 BOOK 4 Creating Mobile Apps

But wait! How do you sift information out of all that JSON code? I’ll tell you
how. You call the json.decode function — one of the many functions in Dart’s
convert package. (Refer to code near the top and bottom of Listing 8-10.) The
json.decode function turns the code in Listing 8-11 into a big Dart Map structure.
Like all of Dart’s maps, this map has keys and values, and some of the values can
be lists. You use square brackets to get the values from maps and lists. (Refer to
Book 4, Chapter 7.) So, to pull a movie’s overview out of the code in Listing 8-11,
write the following line:

return json.decode(response.body)['results'][0]['overview'];

Each pair of square brackets brings you closer to the bottom of the tree in
Figure 8-24.

What’s Next?
Navigator.push(

context,

MaterialPageRoute(

builder: (context) => Chapter_9(),

),

);

0005390162.INDD 653 Trim size: 7.375 in × 9.25 in June 11, 2022 3:49 PM

CHAPTER 9 Moving Right Along . . . 653

 Moving Right Along . . .

 T his chapter is about animation — making things change right before the
user ’ s eyes. When I think about animation, I immediately think of move-
ment, but Flutter provides a much broader defi nition of animation. With

Flutter, you can change almost any property of a widget on almost any time scale.

 Setting the Stage for Flutter Animation
 This chapter ’ s fi rst listing has a bunch of reusable code. Subsequent listings con-
tain code that works cooperatively with the code in the fi rst listing. Thanks to
Dart ’ s extensions feature, each new listing can create methods belonging to the
fi rst listing ’ s classes. You can read all about Dart extensions in Book 4, Chapter 8.

 The code in Listing 9-1 can ’ t do anything on its own. Instead, this code relies on
declarations in the chapter ’ s other listings.

Chapter 9

 IN THIS CHAPTER

» Creating animation

» Mixing other people ’ s code with your
own code

» Animating size and color changes

» Dragging widgets without dropping
them or breaking them

0005390162.INDD 654 Trim size: 7.375 in × 9.25 in June 11, 2022 3:49 PM

654 BOOK 4 Creating Mobile Apps

LISTING 9-1: Reuse This Code

// app09main.dart

import 'package:flutter/material.dart';

import 'app0902.dart'; // Change to app0903, app0904, and so on.

void main() => runApp(App09Main());

class App09Main extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 return MaterialApp(

 home: MyHomePage(),

);

 }

}

class MyHomePage extends StatefulWidget {

 @override

 MyHomePageState createState() => MyHomePageState();

}

class MyHomePageState extends State<MyHomePage>

 with SingleTickerProviderStateMixin {

 late Animation<double> animation;

 late AnimationController controller;

 @override

 void initState() {

 super.initState();

 controller =

 AnimationController(duration: const Duration(seconds: 3), vsync: this);

 animation = getAnimation(controller) as Animation<double>;

 }

 @override

 Widget build(BuildContext context) {

 return Material(

 child: SafeArea(

 child: Padding(

 padding: const EdgeInsets.all(8.0),

 child: Column(

 children: <Widget>[

 Expanded(

 child: Stack(

 children: <Widget>[

 buildPositionedWidget(),

M
oving Right A

long . . .

0005390162.INDD 655 Trim size: 7.375 in × 9.25 in June 11, 2022 3:49 PM

CHAPTER 9 Moving Right Along . . . 655

],

),

),

 buildRowOfButtons(),

],

),

),

),

);

 }

 Widget buildRowOfButtons() {

 return Row(

 mainAxisAlignment: MainAxisAlignment.center,

 children: <Widget>[

 ElevatedButton(

 onPressed: () => controller.forward(),

 child: Text('Forward'),

),

 SizedBox(

 width: 8.0,

),

 ElevatedButton(

 onPressed: () => controller.animateBack(0.0),

 child: Text('Backward'),

),

 SizedBox(

 width: 8.0,

),

 ElevatedButton(

 onPressed: () => controller.reset(),

 child: Text('Reset'),

),

],

);

 }

 @override

 void dispose() {

 controller.dispose();

 super.dispose();

 }

}

Figure 9-1 illustrates the concepts that come together to make Flutter animation.

0005390162.INDD 656 Trim size: 7.375 in × 9.25 in June 11, 2022 3:49 PM

656 BOOK 4 Creating Mobile Apps

You want something to change as the user looks on. To do this, you need four
things: an Animation, an AnimationController, a ticker, and a feature of the app
that changes. Here’s how it all works:

 » An Animation is a plan for changing a value.

In Listing 9-1, the words Animation<double> indicate that the changing
value is a number with digits beyond the decimal point — a number
like 0.0, 0.5, or 0.75. The plan in Figure 9-1 is to change a value in the
range from 1.0 to 200.0.

The Animation itself isn’t about movement of any kind. The value that goes
from 1.0 to 200.0 may be a position, but it may also be a size, an amount of
transparency, a degree of rotation, or whatever. For the animation variable in
Listing 9-1, values like 1.0 and 200.0 are only numbers. Nothing else.

By the way, if you’re looking in Listing 9-1 for a reference to an animation’s
double value, stop looking. The code in Listing 9-1 makes no reference
to such a value. If you peek ahead to the next section’s listing, you see
animation.value. That’s your tangible evidence that an Animation
instance holds a value of some kind.

FIGURE 9-1:
How Flutter

 animation works.

M
oving Right A

long . . .

0005390162.INDD 657 Trim size: 7.375 in × 9.25 in June 11, 2022 3:49 PM

CHAPTER 9 Moving Right Along . . . 657

Flutter’s Animation class is nice, but an Animation can’t do much without an
AnimationController. Here’s why:

 » An AnimationController makes the animation start, stop, go forward,
go backward, repeat, and so on.

Calls such as controller.forward(), controller.animateBack(0.0), and
controller.reset() push the animation in one direction or another.

In Listing 9-1, the AnimationController constructor call says that the
animation lasts for three seconds. If seconds aren’t good enough, you can use
other parameters, such as microseconds, milliseconds, minutes, hours,
and days. Each of the following constructors describes 51 hours:

Duration(hours: 51)

Duration(days: 1, hours: 27)

Duration(days: 2, hours: 3)

Duration(minutes: 3060)

 » In addition to its duration, the AnimationController in Listing 9-1 has a
vsync property. If you’re wondering what that is, keep reading.

 » A ticker notifies the AnimationController when each time interval
passes.

The words with SingleTickerProviderStateMixin in Listing 9-1 make
MyHomePageState into a ticker. The ticker wakes up repeatedly and says, “It’s
time to change a value.”

But which value gets changed? What part of the code hears the ticker’s
announcement? Making MyHomePageState be a ticker doesn’t connect
MyHomePageState with a particular AnimationController.

To make that connection, the AnimationController in Listing 9-1 has a vsync:
this parameter. That parameter tells Flutter that “this instance of MyHome
PageState is the ticker for the newly constructed AnimationController.”

In Listing 9-1, the name SingleTickerProviderStateMixin suggests that
the Dart programming language has something called a mixin. A mixin is
something like an extension, except that it’s not the same as an extension. For
a comparison, see the later sidebar “Another way to reuse code.”

0005390162.INDD 658 Trim size: 7.375 in × 9.25 in June 11, 2022 3:49 PM

658 BOOK 4 Creating Mobile Apps

Here’s the final ingredient in a Flutter animation:

 » Some feature changes as a result of the change in the Animation value.

In Figure 9-1, a balloon’s size changes with an Animation instance’s double
value. But the code in Listing 9-1 makes no reference to a balloon’s size, or to
any other use of the animation variable’s value. On this count, Listing 9-1 is
somewhat lacking.

The code to make things change is in the buildPositionedWidget function,
and that function’s body is in Listings 9-2 through 9-6. Each of those listings
does something different with the Animation object’s double values.

Listing 9-1 has one more interesting feature: It has a place where widgets can
move freely. Imagine making an icon the child of a Center widget. The Center
widget determines the icon’s position, and that’s the end of the story. A Center
widget’s constructor has no parameters that let you wiggle its child in one direc-
tion or another. Don’t bother trying to make a Center widget’s child move. You
have no vocabulary for moving it.

What you need is a widget that lets you mark its children’s exact coordinates
within the available space. For that, Flutter has a Stack.

A Stack is like a Row or a Column, but a Stack doesn’t place its children in a
straight line. Instead, a Stack has two kinds of children — Positioned widgets
and all other kinds of widgets. Each Positioned widget can have top, bottom,
left, and right properties, which determine the exact location of the Positioned
widget’s child. The other widgets (the ones that aren’t Positioned) get stuffed
into some default location.

Have a look at the following code:

Stack(

 children: <Widget>[

 Positioned(

 top: 100.0,

 left: 100.0,

 child: Container(

 width: 50.0,

 height: 50.0,

 color: Colors.black,

),

),

 Positioned(

 top: 120.0,

 left: 120.0,

M
oving Right A

long . . .

0005390162.INDD 659 Trim size: 7.375 in × 9.25 in June 11, 2022 3:49 PM

CHAPTER 9 Moving Right Along . . . 659

 child: Container(

 width: 25.0,

 height: 25.0,

 color: Colors.white,

),

),

],

)

This code creates the drawing shown in Figure 9-2.

The drawing consists of two Container rectangles — one black and the other
white. The white rectangle’s width and height are half those of the black rectangle.
But notice this: The two rectangles overlap because the rectangles’ top and left
edges are almost the same.

A Stack constructor has a children parameter, and that parameter’s value is a
list. The order of the widgets in the list matters. If two widgets overlap one another,
the widget that comes later in the list appears to be on top. In the code accompa-
nying Figure 9-2, you don’t want to change the order of the two Positioned
widgets in the list. If you do, the white rectangle becomes completely hidden
behind the bigger black rectangle.

You can download and run the little Stack app shown in Figure 9-2. It’s the project
named app0900 in the files that you download from this book’s website.

Moving Along a Straight Line
Listing 9-2 contains an extension for the code in Listing 9-1.

FIGURE 9-2:
Two containers

on a stack.

0005390162.INDD 660 Trim size: 7.375 in × 9.25 in June 11, 2022 3:49 PM

660 BOOK 4 Creating Mobile Apps

LISTING 9-2: Going Downward

// app0902.dart

import 'package:flutter/material.dart';

import 'app09main.dart';

extension MyHomePageStateExtension on MyHomePageState {

 Animation getAnimation(AnimationController controller) {

 Tween tween = Tween<double>(begin: 100.0, end: 500.0);

 Animation animation = tween.animate(controller);

 animation.addListener(() {

 setState(() {});

 });

 return animation;

 }

 Widget buildPositionedWidget() {

 return Positioned(

 left: 150.0,

 top: animation.value,

 child: Icon(

 Icons.music_note,

 size: 70.0,

),

);

 }

}

Taken together, Listings 9-1 and 9-2 form a complete Flutter app. Figure 9-3
shows you what the app looks like when it starts running. The dotted line is my
way of illustrating the movement of the app’s Musical Note icon. (The dotted line
doesn’t actually appear as part of the app.)

Listing 9-2 has the buildPositionedWidget method declaration that’s missing
from Listing 9-1. In the method’s body, a Positioned widget tells Flutter where
its child (the Musical Note icon) should appear. When the app starts running, the
numbers

left: 150,

top: animation.value,

M
oving Right A

long . . .

0005390162.INDD 661 Trim size: 7.375 in × 9.25 in June 11, 2022 3:49 PM

CHAPTER 9 Moving Right Along . . . 661

place the icon 150.0 dps from the left edge of the Stack, and 100.0 dps from the
top of the Stack. The number 100.0 comes from the animation’s begin value,
which is declared near the start of Listing 9-2. As animation.value increases,
the Musical Note icon moves downward. Recall from Book 4, Chapter 3 that dps
means density-independent pixels.

Listing 9-2 also has a getAnimation method — a method that’s called
in Listing 9-1 but not declared in Listing 9-1. The getAnimation method
in Listing 9-2 creates a Tween — a thing that comes from the world of ani-
mated cartoons. Imagine a cartoon character moving an arm from left to right.
A cartoonist draws the arm’s starting position and end position, and a computer
creates the arm’s “between” images. In the same way, an instance of Flutter’s
Tween class has begin and end values. When the animation moves forward, Flut-
ter changes these values gradually from the begin value to the end value.

FIGURE 9-3:
Drop me a note.

© John Wiley & Sons

0005390162.INDD 662 Trim size: 7.375 in × 9.25 in June 11, 2022 3:49 PM

662 BOOK 4 Creating Mobile Apps

The rest of the getAnimation method’s code connects the Tween with all the
other puzzle pieces:

 » The call to tween.animate(controller) creates an actual Animation
instance.

The way I describe a Tween, you may think that a Tween is the same as an
Animation. But it’s not. Fortunately, if you’ve created a Tween, you can make
an Animation from it. In Listing 9-2, the tween.animate(controller) call
creates an Animation object. That’s a step in the right direction.

 » The call to addListener tells the MyHomePageState to rebuild itself
whenever the animation’s value changes.

In app development, a listener is a generic name for something that listens for
events. The code in Listing 9-2 says,

Create a function that redraws the screen by calling setState. Make that function
listen for changes in the animation’s value. That way, Flutter redraws the screen
whenever the animation’s value changes.

 » Each call to setState makes Flutter update the left and top values of the
Positioned widget in Listing 9-2. Because left is always 150.0, the icon
doesn’t move sideways. But the animation object’s value property changes
from moment to moment, so the icon moves up and down along the screen.

The AnimationController in Listing 9-1 determines the icon’s movement:

 » When the user presses the app’s Forward button, Listing 9-1 calls the
controller.forward method.

The icon moves downward if it’s not already at the bottom of its trajectory.

 » When the user presses the app’s Backward button, Listing 9-1 calls
controller.animateBack(0.0).

The icon moves upward if it’s not already at the top.

In the world of animations, numbers from 0.0 to 1.0 are very useful. In an
animateBack call, the number 0.0 means “roll the animation backward until
it reaches its begin value.” To make the animation reach its midpoint, you’d
call controller.animateBack(0.5).

 » When the user presses the app’s Reset button, Listing 9-1 calls controller.
reset().

The icon jumps to its starting position. (If it’s already at the starting position, it
stays there.)

M
oving Right A

long . . .

0005390162.INDD 663 Trim size: 7.375 in × 9.25 in June 11, 2022 3:49 PM

CHAPTER 9 Moving Right Along . . . 663

You may never see the code in Listing 9-2 in any other book. This book’s version
of the getAnimation method avoids a trick that Flutter developers commonly use.
They summarize the entire method body in one statement:

return Tween<double>(begin: 100.0, end: 500.0).animate(controller)

 ..addListener(() {

 setState(() {});

 });

In this code, the pair of dots in front of addListener is Dart’s cascade operator.
The operator calls addListener on the Animation instance that’s about to be
returned. The use of this operator makes the code much more concise.

ANOTHER WAY TO REUSE CODE
Listing 9-2 has an extension, and Listing 9-1 has a mixin. Both extensions and mixins are
ways to make use of code from outside sources. How do mixins differ from extensions?

When you create an extension, you name the class that you intend to extend.

extension MyHomePageStateExtension on MyHomePageState

This code from Listing 9-2 adds functionality to only one class — the MyHomePageState
class in Listing 9-1. You can’t use this extension in any other context.

On the other hand, you can add a mixin to almost any class. Here’s the
SingleTickerProviderStateMixin declaration from Flutter’s API:

mixin SingleTickerProviderStateMixin<T extends StatefulWidget> on State<T>

 implements TickerProvider

The declaration says nothing about the MyHomePageState class or about any
other such class, so any class can use this mixin. (Well, any class that’s already a
StatefulWidget can use this mixin.)

The good thing about mixins is that they spread the wealth. The stewards of Flutter
write 75 lines of SingleTickerProviderStateMixin code and, as a result, anyone’s
StatefulWidget can become a ticker. How convenient!

0005390162.INDD 664 Trim size: 7.375 in × 9.25 in June 11, 2022 3:49 PM

664 BOOK 4 Creating Mobile Apps

Bouncing Around
The problem with a book chapter about animation is that the figures can’t do
justice to the apps they’re supposed to illustrate. Figure 9-3 has a dotted line
instead of real motion. Figure 9-4 is even worse because the dotted line isn’t
really accurate.

In this section’s app, the Cake icon doesn’t move sideways. The dotted line in
Figure 9-4 moves to the right only to show some up-and-down motion near the
end of the animation. Even so, Flutter’s API calls this motion a curve. The code for
Figure 9-4 is shown in Listing 9-3.

LISTING 9-3: Changing the Animation’s Velocity

// app0903.dart

import 'package:flutter/material.dart';

FIGURE 9-4:
A cake made of

rubber?

© John Wiley & Sons

M
oving Right A

long . . .

0005390162.INDD 665 Trim size: 7.375 in × 9.25 in June 11, 2022 3:49 PM

CHAPTER 9 Moving Right Along . . . 665

import 'app09main.dart';

extension MyHomePageStateExtension on MyHomePageState {

 Animation getAnimation(AnimationController controller) {

 return Tween<double>(begin: 100.0, end: 500.0).animate(

 CurvedAnimation(

 parent: controller,

 curve: Curves.bounceOut,

),

)..addListener(() {

 setState(() {});

 });

 }

 Widget buildPositionedWidget() {

 return Positioned(

 left: 150.0,

 top: animation.value,

 child: Icon(

 Icons.cake,

 size: 70.0,

),

);

 }

}

Once again, to change the properties of an object, you enclose that object inside of
another object. It’s a pattern that occurs over and over again in Flutter app devel-
opment. Rather than call animate(controller) the way you do in Listing 9-2,
you call

animate(

 CurvedAnimation(

 parent: controller,

 curve: Curves.bounceOut,

)

You wrap the controller inside a CurvedAnimation object. In Listing 9-2, the
object’s curve property is Curves.bounceOut, which means “bounce as the ani-
mation ends.” Table 9-1 lists some alternative curve values.

The Flutter API has many more curve values. Each value comes from a precise
equation and describes its own, special pattern for timing the animation. You can
see the whole list of ready-made curve values by visiting https://api.flutter.
dev/flutter/animation/Curves-class.html.

0005390162.INDD 666 Trim size: 7.375 in × 9.25 in June 11, 2022 3:49 PM

666 BOOK 4 Creating Mobile Apps

Animating Size and Color Changes
With Flutter’s Animation class, you’re not restricted to moving things. You can
control the change of any value you think needs changing. This section’s example
changes an icon’s size and color. The code is in Listing 9-4.

LISTING 9-4: Changing a Few Values

// app0904.dart

import 'package:flutter/material.dart';

import 'app09main.dart';

extension MyHomePageStateExtension on MyHomePageState {

 Animation getAnimation(AnimationController controller) {

 return Tween<double>(begin: 50.0, end: 250.0).animate(controller)

 ..addListener(() {

 setState(() {});

 });

 }

 Widget buildPositionedWidget() {

 int intValue = animation.value.toInt();

 return Center(

 child: Icon(

 Icons.child_care,

TABLE 9-1 Some Constants of the Curves Class
Value What It Does

Curves.bounceIn Bounces as the animation begins

Curves.decelerate Slows down as the animation progresses

Curves.slowMiddle Moves normally, and then slowly, and then normally

Curves.
fastOutSlowIn

Starts out fast and then eases into the end of the animation

Curve.ease Speeds up quickly but ends slowly

Curve.elasticOut Rushes in quickly enough to overshoot the end value and then settles in on
the end value

Curve.linear Doesn’t change anything (used whenever you must use CurvedAnimation for
some reason, but you don’t want to apply a curve)

M
oving Right A

long . . .

0005390162.INDD 667 Trim size: 7.375 in × 9.25 in June 11, 2022 3:49 PM

CHAPTER 9 Moving Right Along . . . 667

 size: animation.value,

 color: Color.fromRGBO(

 intValue,

 0,

 255 - intValue,

 1.0,

),

),

);

 }

}

When the app in Listing 9-4 starts running, a small, blue-colored baby face
appears on the screen. (See Figure 9-5. If you’re reading the printed version of
this book, ignore the fact that you don’t see the color.) When the user presses
Forward, the baby face grows and turns color from red to blue. (See Figure 9-6.)

FIGURE 9-5:
Little baby.

FIGURE 9-6:
Big baby.

0005390162.INDD 668 Trim size: 7.375 in × 9.25 in June 11, 2022 3:49 PM

668 BOOK 4 Creating Mobile Apps

The icon in Listing 9-4 has two properties whose values can change.

 » The size property changes along with animation.value.

The icon grows from 50.0 dps to 250.0 dps.

 » As the animation progresses, the color property’s redness shrinks and
its blueness grows.

Book 4, Chapter 6 introduces Flutter’s Color.fromRGBO constructor. The
constructor’s parameters are int values representing amounts of red, green,
and blue and a double value that represents opacity. In Listing 9-4, the
amount of red increases from 50 to 250, and the amount of blue decreases
from 205 to 5.

This section is almost at an end. The lesson of this section is, an Animation
instance’s value can mean anything you want it to mean. In Listings 9-2 and
9-3, the animation’s value controls an icon’s position. But in Listing 9-4, the
animation’s value controls an icon’s size and color.

What value would you like to animate? Rotation? Sound volume? Speed? Curva-
ture? Shadow? Background color? Border shape? Mood? Be creative.

Moving Along a Curve
Life doesn’t always move along a straight line. Sometimes, fate takes bends and
turns. To make this happen in Flutter, you don’t have to change anything about an
animation. Instead, you change the way you use the animation’s value.

The Tween constructor call in this section’s example is almost identical to the
calls in this chapter’s other listings. What’s different about this section’s exam-
ple is the Positioned widget’s parameters. It’s all in Listing 9-5.

LISTING 9-5: Fancy Parabolic Motion

// app0905.dart

import 'dart:math';

import 'package:flutter/material.dart';

import 'app09ain.dart';

M
oving Right A

long . . .

0005390162.INDD 669 Trim size: 7.375 in × 9.25 in June 11, 2022 3:49 PM

CHAPTER 9 Moving Right Along . . . 669

extension MyHomePageStateExtension on MyHomePageState {

 Animation getAnimation(AnimationController controller) {

 return Tween<double>(begin: 0.0, end: 400.0).animate(controller)

 ..addListener(() {

 setState(() {});

 });

 }

 Widget buildPositionedWidget() {

 double newValue = animation.value;

 return Positioned(

 left: 15 * sqrt(newValue),

 top: newValue,

 child: Icon(

 Icons.hot_tub,

 size: 70,

),

);

 }

}

In Figure 9-7, the dotted line shows the path taken by the Hot Tub icon when the
animation moves forward.

Have a look at the code in Listing 9-5. As the animation’s value increases, both
the icon’s left and top parameter values change. The top parameter is the same
as the animation’s value, but the left parameter is 15 times the square root of
the animation’s value.

FIGURE 9-7:
Since when do
hot tubs move
along a curve?

© John Wiley & Sons

0005390162.INDD 670 Trim size: 7.375 in × 9.25 in June 11, 2022 3:49 PM

670 BOOK 4 Creating Mobile Apps

You can use Dart’s sqrt function only if you import dart.math. When you forget
to import dart.math, Android Studio says, "Method 'sqrt' isn't defined."

To illustrate the effect of using this formula, take a look at the values of left
and top during a complete movement from the top left of the animation to the
bottom right:

left: top:

 0.0 0.0

 7.4 40.7

 22.1 70.5

 29.4 81.4

 41.2 96.2

 65.0 120.9

 71.8 127.1

 86.5 139.5

101.5 151.1

119.7 164.1

147.4 182.1

165.4 192.9

174.3 198.0

197.9 211.0

206.8 215.7

222.7 223.9

238.3 231.6

266.8 245.0

290.0 255.5

312.6 265.2

335.1 274.6

352.3 281.5

367.2 287.4

384.6 294.2

399.0 299.6

400.0 300.0

The Positioned widget’s left and top values both change. But, because of the
square root formula, the left and top values change at different rates. That’s why
the icon’s movement forms a curve.

Dragging Things Around
In this section’s app, the user drags a widget all around the screen. Since there’s
no way to show this in a figure, you have to use your imagination. Picture an
icon that looks like the infinity symbol (∞). As the user moves a finger, the icon
changes position.

M
oving Right A

long . . .

0005390162.INDD 671 Trim size: 7.375 in × 9.25 in June 11, 2022 3:49 PM

CHAPTER 9 Moving Right Along . . . 671

But wait! Rather than imagine a user dragging an icon, you can run the code in
Listing 9-6 and see it in action.

LISTING 9-6: Exercise for a User’s Index Finger

// app0906.dart

import 'package:flutter/material.dart';

import 'app09main.dart';

double distanceFromLeft = 100;

double distanceFromTop = 100;

extension MyHomePageStateExtension on MyHomePageState {

 Animation getAnimation(AnimationController controller) {

 Animation animation = controller;

 return animation;

 }

 Widget buildPositionedWidget() {

 return Positioned(

 top: distanceFromTop,

 left: distanceFromLeft,

 child: GestureDetector(

 onPanUpdate: (details) {

 setState(() {

 distanceFromLeft += details.delta.dx;
 distanceFromTop += details.delta.dy;
 });

 },

 child: Icon(

 Icons.all_inclusive,

 size: 70,

),

),

);

 }

}

Like other listings in this chapter, Listing 9-6 relies on the code in Listing 9-1.
Because of that, the app that’s generated by Listing 9-6 has Forward, Backward,
and Reset buttons. Even so, pressing these buttons has no effect.

In the same way, Listing 9-6 has a getAnimation method. That’s necessary
because the code in Listing 9-1 calls a getAnimation method. But to make a widget
move along with the user’s finger, you don’t need an Animation instance. In a

0005390162.INDD 672 Trim size: 7.375 in × 9.25 in June 11, 2022 3:49 PM

672 BOOK 4 Creating Mobile Apps

sense, the user is the app’s AnimationController, and the Animation instance is
somewhere inside the user’s mind. So, in Listing 9-6, the getAnimation method
returns the same thing that’s passed to it. In other words, it doesn’t do anything.

So what part of the code makes the all_inclusive icon move? The icon lives
inside of a GestureDetector — a widget that senses touches on the screen.
A GestureDetector has tons of properties such as onTap, onDoubleTap, onTapUp,
onTapDown, onLongPress, onLongPressStart, and onLongPressEnd. Other meth-
ods belonging to the GestureDetector class have names with less-than-obvious
meanings. The following list has a few (somewhat oversimplified) examples:

 » onSecondaryTapDown: While holding one finger on the screen, the user
places a second finger on the screen.

 » onScaleUpdate: With two fingers, the user pinches in or out.

 » onHorizontalDragUpdate: The user moves something sideways — a
common gesture for dismissing an item.

 » onPanUpdate: The user moves a finger in one direction or another.

The onPanUpdate parameter’s value is a method, and that method’s parameter is
a DragUpdateDetails object. In Listing 9-6, the DragUpdateDetails object goes
by the name details:

onPanUpdate: (details) {

 setState(() {

 distanceFromLeft += details.delta.dx;
 distanceFromTop += details.delta.dy;
 });

When the user moves a finger along the screen, Flutter fills details with infor-
mation about the movement and calls the onPanUpdate parameter’s method.

The details variable contains some useful pieces of information:

 » details.globalPosition: The distance from the upper-left corner of the
app screen to the current position of the user’s finger

 » details.localPosition: The distance from the place where the user’s
finger first landed on the screen to the current position of the user’s finger

 » details.delta: The distance from a finger’s previous position to its current
position

Each piece of information has two parts: dx (the horizontal distance) and dy
(the vertical distance). The Positioned widget in Listing 9-6 places the app’s

M
oving Right A

long . . .

0005390162.INDD 673 Trim size: 7.375 in × 9.25 in June 11, 2022 3:49 PM

CHAPTER 9 Moving Right Along . . . 673

all_inclusive icon at the points distanceFromLeft and distanceFromTop. When
Flutter detects finger movement, the code changes the values of distanceFromLeft
and distanceFromTop by adding the details.delta parameter’s dx and dy values.
That’s what makes the icon move around. It’s pretty clever!

The GestureDectector in Listing 9-6 has a child. But, for any old Gesture
Dectector constructor call, the child parameter is optional. A Gesture
Detector with no child grows to be as large as its parent widget. In contrast, a
GestureDetector with a child shrinks to fit tightly around the child. With the app
in Listing 9-6, the GestureDetector is about the same size as its child — the
all_inclusive icon. To make the icon move, the user’s finger must start right on
the icon. Otherwise, nothing happens.

Tearing Things Up
You’re near the end of this book, so maybe it’s time to relax and have some rau-
cous, carefree fun. Can destroying something be fun? Here are some ways to break
Listing 9-6:

 » Remove the setState call.

// Bad code:

onPanUpdate: (details) {

 distanceFromLeft += details.delta.dx;
 distanceFromTop += details.delta.dy;
}

Removing a setState call is almost never a good idea. If you remove the call
in Listing 9-6, the values of distanceFromLeft and distanceFromTop
change, but Flutter doesn’t redraw the screen. As a result, the icon doesn’t
budge.

 » Move the distanceFromLeft and distanceFromTop declarations so that
they’re immediately before the buildPositionedWidget method.

// More bad code:

Animation getAnimation(AnimationController controller) {

 return null;

}

double distanceFromLeft = 100;

double distanceFromTop = 100;

0005390162.INDD 674 Trim size: 7.375 in × 9.25 in June 11, 2022 3:49 PM

674 BOOK 4 Creating Mobile Apps

Widget buildPositionedWidget() {

// ... etc.

If you do this, you can’t even run the app. Dart’s rules include one about
declaring top-level variables inside of extensions. You’re simply not allowed to
do it. Book 4, Chapter 5 has some information about top-level variables.

 » Move the distanceFromLeft and distanceFromTop declarations so that
they’re inside the buildPositionedWidget method.

// Even more bad code:

Widget buildPositionedWidget() {

 double distanceFromLeft = 100;

 double distanceFromTop = 100;

 return Positioned(

 // ... etc.

The program runs, but the icon never moves. This happens because the code
sets distanceFromLeft and distanceFromTop to 100 whenever Flutter
redraws the screen. (Actually, the icon moves a tiny bit but not enough for you
to notice. You get a tiny bit of movement from the details.delta values, but
not the kind of movement you want.)

 » Rather than add to the distanceFromLeft and distanceFromTop values,
set them equal to the position of the user’s finger:

// You guessed it! Bad code!

onPanUpdate: (details) {

 setState(() {

 distanceFromLeft = details.globalPosition.dx;

 distanceFromTop = details.globalPosition.dy;

 });

}

The app runs, but the icon jumps when the user’s finger starts moving.
Throughout the dragging gesture, the icon stays half an inch away from the
user’s finger. This happens because Flutter doesn’t use the middle of the icon
as the Positioned widget’s top and left points.

Similar things happen if you try to use details.localPosition.

Flutter’s animation features don’t end with simple movements and basic size
changes. If you’re interested in making objects move, be sure to check Flutter’s
physics.dart package. With that package, you can simulate springs, gravity,
friction, and much more. You can get information about the package by visiting
https://api.flutter.dev/flutter/physics/physics-library.html.

5
0005390108.INDD 675	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	4:29	PM

Getting Started
with Python

Contents at a Glance
CHAPTER 1: Wrapping Your Head around Python 677

CHAPTER 2: Installing a Python Distribution 689

CHAPTER 3: Working with Real Data . 707

0005390108.INDD 676	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	4:29	PM

CHAPTER 1 Wrapping Your Head around Python 677

0005390163.INDD 677	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:55	PM

 Wrapping Your Head
around Python

I chose Python as a working title for the project, being in a slightly irreverent
mood (and a big fan of Monty Python ’ s Flying Circus).

 — GUIDO VAN ROSSUM, CREATOR OF PYTHON

 P ython is a server-side language created by Guido van Rossum, a developer
who was bored during the winter of 1989 and looking for a project to do.
At the time, Van Rossum had already helped create one language, called

ABC, and the experience had given him many ideas that he thought would appeal
to programmers. Although ABC never achieved popularity with programmers,
Python was a runaway success. Python is one of the world’s most popular pro-
gramming languages, used by beginners and professionals building heavy-duty
applications.

 In this chapter, you learn Python basics, including the design philosophy behind
Python, how to write Python code to perform basic tasks, and steps to create your
fi rst Python program.

Chapter 1

 IN THIS CHAPTER

» Understanding Python principles and
style

» Practicing Python code like assigning
variables and using if statements

» Working with text in Python

0005390163.INDD 678	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:55	PM

678 BOOK 5 Getting Started with Python

What Does Python Do?
Python is a general purpose programming language typically used for web devel-
opment. Python allows for storing data after the user has navigated away from
the page or closed the browser, unlike HTML, CSS, and JavaScript. Using Python
commands you can create, update, store, and retrieve this data in a database. For
example, imagine I wanted to create a local search and ratings site like Yelp.com.
The reviews users write are stored in a central database. Any review author can
exit the browser, turn off the computer, and come back to the website later to
find their reviews. Additionally, when others search for venues, this same central
database is queried, and the same review is displayed. Storing data in a database is
a common task for Python developers, and existing Python libraries include pre-
built code to easily create and query databases.

SQLite is one free lightweight database commonly used by Python programmers
to store data.

Many highly trafficked websites, such as YouTube, are created using Python.
Other websites currently using Python include:

 » Quora	for	its	community	question	and	answer	site.

 » Spotify	for	internal	data	analysis.

 » Dropbox	for	its	desktop	client	software.

 » Reddit	for	generating	crowd-sourced	news.

 » Industrial	Light	&	Magic	and	Disney	Animation	for	creating	film	special	effects.

From websites to software to special effects, Python is an extremely versatile
language, powerful enough to support a range of applications. In addition, to
help spread Python code, Python programmers create libraries, which are stand-
alone pre-written code that does certain tasks, and make them publicly available for
others to use and improve. For example, a library called Scrapy performs web
scaping, while another library called SciPy performs math functions used by
scientists and mathematicians. The Python community maintains thousands of
libraries like these, and most are free and open-source software.

You can generally confirm the frontend programming language used by any major
website with BuiltWith available at www.builtwith.com. After entering the web-
site address in the search bar, look under the Frameworks section for Python. Note
that websites may use Python for backend services not visible to BuiltWith.

W
rapping Your H

ead
around Python

0005390163.INDD 679	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:55	PM

CHAPTER 1 Wrapping Your Head around Python 679

Defining Python Structure
Python has its own set of design principles that guide how the rest of the language
is structured. To implement these principles, every language has its own conven-
tions, like curly braces in JavaScript or opening and closing tags in HTML. Python
is no different, and we will cover both design principles and conventions so you
can understand what Python code looks like, understand Python’s style, and learn
the special keywords and syntax that allow the computer to recognize what you
are trying to do. Python, like Dart and JavaScript, can be very particular about
syntax, and misspelling a keyword or forgetting a necessary character will result
in the program not running.

Understanding the Zen of Python
There are 19 design principles that describe how the Python language is
organized. Some of the most important principles include

 » Readability counts:	This	is	possibly	Python’s	most	important	design	principle.	
Python	code	looks	almost	like	English	and	even	enforces	certain	formatting,	
such	as	indenting,	to	make	the	code	easier	to	read.	Highly	readable	code	
means	that	six	months	from	now	when	you	revisit	your	code	to	fix	a	bug	or	
add	a	feature,	you	will	be	able	to	jump	in	without	trying	too	hard	to	remember	
what	you	did.	Readable	code	also	means	others	can	use	your	code	or	help	
debug	your	code	with	ease.

Reddit.com	is	a	top-10-most-visited	website	in	the	United	States,	and	a	
top-50-most-visited	website	in	the	world.	Its	co-founder,	Steve	Huffman,	
initially	coded	the	website	in	Lisp	and	switched	to	Python	because	Python	is	
“extremely	readable,	and	extremely	writeable.”

 » There should be one — and preferably only one — obvious way to do it:	In	
Python,	two	different	programmers	may	approach	the	same	problem	and	
write	two	different	programs,	but	the	ideal	is	that	the	code	will	be	similar	and	
easy	to	read,	adopt,	and	understand.	Although	Python	does	allow	multiple	
ways	to	do	a	task —	as,	for	example,	when	combining	two	strings —	if	an	
obvious	and	common	option	exists,	it	should	be	used.

 » If the implementation is hard to explain, it’s a bad idea:	Historically,	
programmers	were	known	to	write	esoteric	code	to	increase	performance.	
However,	Python	was	designed	not	to	be	the	fastest	language,	and	this	
principle	reminds	programmers	that	easy-to-understand	implementations	are	
preferable	over	faster	but	harder-to-explain	ones.

0005390163.INDD 680	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:55	PM

680 BOOK 5 Getting Started with Python

You can access the full list by design principles, which is in the form of a poem,
by typing import this; into any Python interpreter, or by visiting https://
www.python.org/dev/peps/pep-0020. These principles, written by Tim Peters, a
Python community member, were meant to describe the intentions of Python’s
creator, Van Rossum, who is also referred to as the Benevolent Dictator for
Life (BDFL).

Styling and spacing
Python generally uses less punctuation than other programming languages you
may have previously tried. Some sample code is included here:

first_name=input("What's your first name?")

first_name=first_name.upper()

if first_name=="NIK":

 print ("You may enter!")

else:

 print ("Nothing to see here.")

The examples in this book are written for Python 3. There are two popular ver-
sion of Python currently in use — Python 2.7 and Python 3. Python 3 is the latest
version of the language but it is not backward-compatible, so code written using
Python 2.7 syntax does not work when using a Python 3 interpreter. Although
there are still many programs that were written in Python 2.7, Python 2 offi-
cially reached its “end of life” on January 1, 2020. For more about the differences
between versions see https://wiki.python.org/moin/Python2orPython3.

If you ran this code it would do the following:

 » Print	a	line	asking	for	your	first	name.

 » Take	user	input	(input(What's your first name?))	and	save	it	to	the	
first_name	variable.

 » Transform	any	inputted	text	into	uppercase.

 » Test	the	user	input.	If	it	equals	“NIK,”	then	it	will	print	“You	may	enter!”	
Otherwise	it	will	print	“Nothing	to	see	here.”

Each of these statement types is covered in more detail later in this chapter. For
now, as you look at the code, notice some of its styling characteristics:

 » Less punctuation:	Unlike	JavaScript,	Python	has	no	curly	braces,	and	unlike	
HTML,	no	angle	brackets.

W
rapping Your H

ead
around Python

0005390163.INDD 681	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:55	PM

CHAPTER 1 Wrapping Your Head around Python 681

 » Whitespace matters:	Statements	indented	to	the	same	level	are	grouped	
together.	In	the	example,	notice	how	the	if	and	else	align,	and	the	print
statements	underneath	each	are	indented	the	same	amount.	You	can	decide	
the	amount	of	indentation,	and	whether	to	use	tabs	or	spaces	as	long	as	you	
are	consistent.	Generally,	four	spaces	from	the	left	margin	is	considered	the	
style	norm.

See	Python	style	suggestions	on	indentation,	whitespaces,	and	commenting	
by	visiting	https://www.python.org/dev/peps/pep-0008.

 » New lines indicate the end of statements:	Although	you	can	use	semico-
lons	to	put	more	than	one	statement	on	a	line,	the	preferred	and	more	
common	method	is	to	put	each	statement	on	its	own	line.

 » Colons separate code blocks:	New	Python	programmers	sometimes	ask	
why	using	colons	to	indicate	code	blocks,	like	the	one	at	the	end	of	the	if
statement,	is	necessary	when	new	lines	would	suffice.	Early	user	testing	with	
and	without	the	colons	showed	that	beginner	programmers	better	under-
stood	the	code	with	the	colon.

Coding Common Python
Tasks and Commands

Python, as with other programming languages like Dart and JavaScript, can do
everything from simple text manipulation to designing complex graphics in
games. The following basic tasks are explained within a Python context, but
they’re foundational in understanding any programming language. Even experi-
enced developers learning a new language, like Apple’s Swift programming lan-
guage, start by learning these foundational tasks.

Millions of people have learned Python before you, so it’s easy to find answers
to questions that might arise while learning simply by conducting an Internet
search. The odds are in your favor that someone has asked your question before.

Defining data types and variables
Variables, like the ones in algebra, are keywords used to store data values for
later use. Though the data stored in a variable may change, the variable name will
always be the same. Think of a variable as a gym locker — what you store in the
locker changes, but the locker number always stays the same.

0005390163.INDD 682	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:55	PM

682 BOOK 5 Getting Started with Python

Variables in Python are named using alphanumeric characters and the underscore (_)
character, and they must start with a letter or an underscore. Table 1-1 lists some
of the data types that Python can store.

To initially set or change a variable’s value, write the variable name, a single
equals sign, and the variable value, as shown in the following example:

myName = "Nik"

pizzaCost = 10

totalCost = pizzaCost * 2

Avoid starting your variable names with the number one (1), a lowercase “L” (l),
or uppercase i (I). Depending on the font used these characters can all look the
same, causing confusion for you or others later!

Variable names in Python are case sensitive, so when referring to a variable in
your program remember that MyName is a different variable from myname. In gen-
eral, give your variable a name that describes the data being stored.

Computing simple and advanced math
After you create variables, you may want to do some math on the numerical
values stored in those variables. Simple math like addition, subtraction, multi-
plication, and division is done using operators you already know. Exponentiation
(such as, for example, 2 to the power of 3) uses two asterisks, which is the same
as JavaScript’s exponentiation operator. Examples are shown here:

num1 = 1+1 #equals 2
num2 = 5-1 #equals 4

num3 = 3*4 #equals 12

num4 = 9/3 #equals 3

num5 = 2**3 #equals 8

TABLE 1-1 Data Stored by a Variable
Data	Type Description Example

Numbers Positive	or	negative	numbers	with	or	without	decimals 101.96

Strings Printable	characters Holly Novak

Boolean Value	can	be	true	or	false true

W
rapping Your H

ead
around Python

0005390163.INDD 683	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:55	PM

CHAPTER 1 Wrapping Your Head around Python 683

The # symbol indicates a comment in Python.

Don’t just read these commands, try them! Go to https://replit.com/new/
python3 for a lightweight in-browser Python interpreter that you can use right
in your browser without downloading or installing any software.

Advanced math like absolute value, rounding to the nearest decimal, rounding
up, or rounding down can be performed using math functions. Python has some
functions which are built-in pre-written code that can be referenced to make per-
forming certain tasks easier. The general syntax to use Python math functions is
to list the function name, followed by the variable name or value as an argument,
as follows:

method(value)

method(variable)

The math functions for absolute value and rounding follow this syntax, but some
math functions, like rounding up or rounding down are stored in a separate math
module. To use these math functions you must:

 » Write	the	statement	import math	just	once	in	your	code	before	using	the	
math	functions	in	the	math	module.

 » Reference	the	math	module,	as	follows:	math.method(value)	or	math.
method(variable).

See these math functions with examples in Table 1-2.

Modules are separate files that contain Python code, and the module must be ref-
erenced or imported before any code from the module can be used.

TABLE 1-2 Common Python Math Functions
Function	Name Description Example Result

abs(n) Return	the	absolute	value	of	a	number	(n) abs(-99) 99

round (n, d) Round	a	number	(n)	to	a	number	of	decimal	points	(d) round (3.1415, 2) 3.14

math.floor(n) Round	down	to	the	nearest	integer math.floor(4.7) 4.0

math.ceil(n) Round	up	to	the	nearest	integer math.ceil(7.3) 8.0

0005390163.INDD 684	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:55	PM

684 BOOK 5 Getting Started with Python

See all the functions in the math module by visiting https://docs.python.
org/3/library/math.html.

Using strings and special characters
Along with numbers, variables in Python can also store strings. To assign a value
to a string, you can use single or double quotation marks, as follows:

firstname = "Travis"

lastname = 'Kalanick'

Variables can also store numbers as strings instead of numbers. However, even
though the string looks like a number, Python will not be able to add, subtract, or
divide strings and numbers. For example, consider amountdue = "18" + 24 —
running this code as is would result in an error. Python does multiply strings but
in an interesting way — print ('Ha' * 3) results in 'HaHaHa'.

Including a single or double quote in your string can be problematic because the
quotes inside your string will terminate the string definition prematurely. For
example, if I want to store a string with the value ‘I’m on my way home’ Python
will assume the ' after the first letter I is the end of the variable assignment,
and the remaining characters will cause an error. The solution is to use special
characters called escape sequences to indicate when you want to use characters
like quotation marks, which normally signal the beginning or end of a string,
or other non-printable characters like tabs. Table 1-3 shows some examples of
escape sequences.

Escape sequences are interpreted only for strings with double quotation marks.
For a full list of escape sequences see the table under Section 2.4, “Literals,” at
https://docs.python.org/3/reference/lexical_analysis.html.

TABLE 1-3 Common Python Escape Sequences
Special	Character Description Example Result

\'	or	\" Quotation	marks print ("You had me at
\"Hello\"")

You had me
at "Hello"

\t Tab print ("Item\tUnits \tPrice") Item Units Price

\n New	line print ("Anheuser?\nBusch? \
nBueller? Bueller?")

Anheuser?

Busch?

Bueller? Bueller?

W
rapping Your H

ead
around Python

0005390163.INDD 685	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:55	PM

CHAPTER 1 Wrapping Your Head around Python 685

Deciding with conditionals: if, elif, else
With data stored in a variable, one common task is to compare the variable’s value
to a fixed value or another variable’s value, and then make a decision based on the
comparison. If you previously read the chapters on JavaScript or Dart, the discus-
sion and concepts here are very similar. The general syntax for an if-elif-else
statement is as follows:

if conditional1:

 statement1 to execute if conditional1 is true

elif conditional2:

 statement2 to execute if conditional2 is true

else:

 statement3 to run if all previous conditional are false

Notice there are no curly brackets or semicolons, but don’t forget the colons and
to indent your statements!

The initial if statement will evaluate to true or false. When conditional1 is
true, then statement1 is executed. This is the minimum necessary syntax needed
for an if-statement, and the elif and else are optional. When present, the elif
tests for an additional condition when conditional1 is false. You can test for as
many conditions as you like using elif. Specifying every condition to test for can
become tedious, so having a “catch-all” is useful. When present, the else serves
as the “catch-all,” and it executes when all previous conditionals are false.

You cannot have an elif or an else by itself, without a preceding if statement.
You can include many elif statements, but one and only one else statement.

The conditional in an if statement compares values using comparison operators,
and common comparison operators are described in Table 1-4.

Here is an example if statement.

carSpeed=55

if carSpeed > 55:

 print ("You are over the speed limit!")

elif carSpeed == 55:

 print ("You are at the speed limit!")

else:

 print ("You are under the speed limit!")

0005390163.INDD 686	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:55	PM

686 BOOK 5 Getting Started with Python

As the diagram in Figure 1-1 shows, there are two conditions, each signaled by
the diamond, which are evaluated in sequence. In this example, carSpeed is equal
to 55, so the first conditional (carSpeed > 55) is false, and the second condi-
tional (carSpeed==55) is true. The statement executes by printing “You are at
the speed limit!” When a conditional is true, the if statement stops executing,
and the else is never reached.

Input and output
Python can collect input from the user and display output to the user. To collect
user input use the input("Prompt") method, which stores the user input as a
string. In the following example, the users enter their full name, which is stored
in a variable called full_name.

full_name = input("What's your full name?")

TABLE 1-4 Common Python Comparison Operators
Type Operator Description Example

Less	than < Evaluates	whether	one	value	is	less	than	another	value x < 55

Greater	than > Evaluates	whether	one	value	is	greater	than	another	value x > 55

Equality == Evaluates	whether	two	values	are	equal x == 55

Less	than	
or	equal	to

<= Evaluates	whether	one	value	is	less	than	or	equal	to	
another	value

x <= 55

Greater	than	
or	equal	to

>= Evaluates	whether	one	value	is	greater	than	or	equal	to	
another	value

x >= 55

Inequality != Evaluates	whether	two	values	are	not	equal x != 55

FIGURE 1-1:
An	if-else
statement	

with	an	elif.

W
rapping Your H

ead
around Python

0005390163.INDD 687	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:55	PM

CHAPTER 1 Wrapping Your Head around Python 687

Imagine that the users entered the name, “Eneyen González Samaniego.” You
can display the value of the variable using print (full_name) and you would see
this:

Eneyen González Samaniego

At this point, you may feel like printing variables and values in a Python inter-
preter console window is very different from dynamically creating web pages
with variables created in Python. Integrating Python into a web page to respond
to user requests and generate HTML pages is typically done with a Python web
framework, like Django or Flask, which have pre-written code to make the pro-
cess easier. These frameworks typically require some installation and setup work,
and they generally separate the data being displayed from templates used to dis-
play the page to the user.

Shaping Your Strings
Whenever you collect input from users, you need to clean the input to remove
errors and inconsistencies. Here are some common data cleaning tasks:

 » Standardizing	strings	to	have	consistent	upper-	and	lowercase

 » Removing	whitespace	from	user	input

 » Inserting	a	variable’s	value	in	strings	displayed	to	the	user

Python includes many built-in methods that make processing strings easy.

Dot notation with upper(), lower(),
capitalize(), and strip()
Standardizing user input to have proper case and remove extra whitespace char-
acters is often necessary to easily sort the data later. For example, imagine you
are designing a website for the New York Knicks so fans can meet players after the
game. The page asks for fans to enter their names, so that team security can later
check fan names against this list before entry. Reviewing past fan entries, you see
that fans enter the same name several ways like “Mark”, “mark”, “marK”, and
other similar variants that cause issues when the list is sorted alphabetically. To
make the input and these names consistent, you could use the string functions
described in Table 1-5.

0005390163.INDD 688	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:55	PM

688 BOOK 5 Getting Started with Python

String formatting with %
To insert variable values into strings shown to the users, you can use the string
format operator %. Inserted into the string definition, %d is used to specify inte-
gers, %s is used to specify strings, and the variables to format (mapping key) are
specified in parentheses after the string is defined. See the example code and
result that follow.

Code:

yearofbirth = 1990

pplinroom = 20

name = "Mary"

print ("Your year of birth is %d. Is this correct?" % (yearofbirth))

print ('Your year of birth is %d. Is this correct?' % (yearofbirth))

print ("There are %d women in the room born in %d and %s is one of them." %

(pplinroom/2, yearofbirth, name))

Result:

Your year of birth is 1990. Is this correct?

Your year of birth is 1990. Is this correct?

There are 10 women in the room born in 1990 and Mary is one of them.

The first string used double quotes and the variable was inserted into the string
and displayed to the user. The second string behaved just like the first string,
because defining strings with single quotes does not affect the string formatting.
The third string shows that code can be evaluated (pplinroom / 2) and inserted
into the string.

The string.format() method is another way to format strings in Python.

TABLE 1-5 Select Python String Functions
Function	Name Description Example Result

string.upper() Returns	all	uppercase	characters "nY".upper() "NY"

string.lower() Returns	all	lowercase	characters "Hi".lower() "hi"

string.
capitalize()

Capitalizes	the	first	letter,	lowercases	the	
remaining	letters

"wake UP".
capitalize()

"Wake up"

string.strip() Removes	leading	and	trailing	whitespaces " Ny ".strip() "Ny"

CHAPTER 2 Installing a Python Distribution 689

0005390164.INDD 689 Trim size: 7.375 in × 9.25 in June 11, 2022 3:57 PM

 Installing a Python
Distribution

Life is short (you need Python).

 — BRUCE ECKEL

 B efore you can do too much with Python or use it to solve problems, you need
a workable installation. In addition, you need access to the data sets and
code used for this book. This chapter tells you how to perform the required

Python setups and downloads. Downloading the sample code (found at www.
dummies.com/go/codingallinonefd2e) and installing it on your system is the
best way to get a good learning experience from the book.

Using the downloadable source code doesn ’ t prevent you from typing the exam-
ples on your own, following them using a debugger, expanding them, or working
with the code in all sorts of ways. The downloadable source code is there to help
you get a good start with your Python learning experience. After you see how the
code works when it’s correctly typed and confi gured, you can try to create the
examples on your own. If you make a mistake, you can compare what you’ve typed
with the downloadable source code and discover precisely where the error exists.

Chapter 2

 IN THIS CHAPTER

» Determining which Python
distribution to use

» Performing a Linux, macOS X, and
Windows installation

» Obtaining the data sets and
example code

0005390164.INDD 690 Trim size: 7.375 in × 9.25 in June 11, 2022 3:57 PM

690 BOOK 5 Getting Started with Python

Using Anaconda
You can use a number of packages to write Python code. In fact, too many exist to
discuss adequately in a single chapter. This book uses Anaconda for a number of
reasons, as explained in the next section.

Getting Anaconda
The basic Anaconda package is a free download that you obtain at https://www.
anaconda.com/products/distribution. Simply click Download to start the down-
load of the most recent version. Anaconda supports the following platforms:

 » Windows 32-bit and 64-bit (the installer may offer you only the 64-bit or 32-bit
version, depending on which version of Windows it detects)

 » Linux 64-bit (x86 and PowerPC 8/9 installers)

 » macOS X 64-bit (graphical and command-line installer)

The latest version at the time of this writing is Anaconda3-2021.11. To guaran-
tee that the example code will work without modification, go to https://repo.
anaconda.com/archive/ and download the Anaconda3-2021.11 version for your
operating system.

Newer versions of Anaconda may work with the code in this book, but to guar-
antee the best and easiest experience, it’s recommended that you download the
Anaconda3-2021.11 version. If you want to upgrade at a later time, you can do so
easily.

The installation works best if you first remove previous versions of Anaconda
from your system. Otherwise, one version of the product can interfere with other
versions of the product. Anaconda provides a separate uninstall program in the
Anaconda executable folder on your system, the location of which can vary. For
example, to uninstall a previous version of Anaconda 3 on a Windows system, look
in the C:\Users\<UserName>\Anaconda3 folder on your system for Uninstall
Anaconda3.exe. Execute this file to uninstall the product. In addition, this book
doesn’t support the use of the Miniconda installer described at https://docs.
conda.io/en/latest/miniconda.html.

At the time of this writing, the default download version installs Python 3.9, which
is the version used in this book. Both Windows and macOS X provide graphical
installers. When using Linux, you rely on the bash utility.

Installing a Python
D

istribution

0005390164.INDD 691 Trim size: 7.375 in × 9.25 in June 11, 2022 3:57 PM

CHAPTER 2 Installing a Python Distribution 691

Defining why Anaconda is used in this book
Anaconda isn’t an Integrated Development Environment (IDE) like many other
products out there. Rather, it’s a centralized method of accessing a number of
packages. This book uses Jupyter Notebook as an IDE because it supports lit-
erate programming techniques. However, you could just as easily use Spyder
for development, and you might be happier with it because it provides a more
traditional interface. You can see a comparison at https://www.slant.co/
versus/1246/15716/~spyder_vs_jupyter. The point is that Anaconda helps you
manage both IDEs, along with a wealth of other packages. In addition, you can
create environments for using the IDEs in specific ways. For example, you could
have an environment for using Jupyter Notebook for Python and an entirely dif-
ferent environment for using Jupyter Notebook for R.

So, it’s important to know why this section emphasizes Jupyter Notebook when
Anaconda provides access to a number of IDEs. Most IDEs look like fancy text
editors, and that’s precisely what they are. Yes, you get all sorts of intelligent
features, hints, tips, code coloring, and so on, but at the end of the day, they’re
all text editors. Nothing is wrong with text editors, and this chapter isn’t telling
you anything of the sort. However, given that Python developers often focus on
scientific applications that require something better than pure text presentation,
using notebooks instead can be helpful.

A notebook differs from a text editor in that it focuses on a technique called lit-
erate programming, advanced by Stanford computer scientist Donald Knuth. You
use literate programming to create a kind of presentation of code, notes, math
equations, and graphics. In short, you wind up with a scientist’s notebook full of
everything needed to understand the code completely. You commonly see literate
programming techniques used in high-priced packages such as Mathematica and
MATLAB. Notebook development excels at

 » Demonstration

 » Collaboration

 » Research

 » Teaching objectives

 » Presentation

This book uses the Anaconda tool collection because it provides you with a great
Python coding experience but also helps you discover the enormous potential of
literate programming techniques. If you spend a lot of time performing scientific
tasks, Anaconda and products like it are essential. In addition, Anaconda is free,
so you get the benefits of the literate programming style without the cost of other
packages.

0005390164.INDD 692 Trim size: 7.375 in × 9.25 in June 11, 2022 3:57 PM

692 BOOK 5 Getting Started with Python

For more information about Anaconda and changes from previous editions,
make sure to view the Release Notes at https://docs.anaconda.com/anaconda/
reference/release-notes/. Most of the changes you find deal with bug fixes
and updates.

Installing Anaconda on Linux
You use the command line to install Anaconda on Linux — there is no graphical
installation option. The following procedure should work fine on any Linux sys-
tem, whether you use the Intel or PowerPC version of Anaconda:

1. Open a copy of Terminal.

The Terminal window appears.

2. Change directories to the downloaded copy of Anaconda on your system.

The name of this file varies, but normally it appears as Anaconda3-2021.11-
Linux-x86_64.sh for Intel systems and Anaconda3-2021.11-Linux-
ppc64le.sh for PowerPC systems. The version number is embedded as part
of the filename. In this case, the filename refers to version 3.2021.11, which is
the version used for this book. If you use some other version, you may
experience problems with the source code and need to make adjustments
when working with it.

3. Type bash Anaconda3-2021.11-Linux-x86_64.sh (for the Intel version) or
bash Anaconda3-2021.11-Linux-ppc64le.sh (for the PowerPC version) and
press Enter.

An installation wizard starts that asks you to accept the licensing terms for
using Anaconda.

4. Read the licensing agreement and accept the terms using the method
required for your version of Linux.

The wizard asks you to provide an installation location for Anaconda. The book
assumes that you use the default location for your platform. If you choose
some other location, you may have to modify some procedures later in the
book to work with your setup.

5. Provide an installation location (if necessary) and press Enter (or click
Next).

The application extraction process begins. The installer asks whether you want
to initialize Anaconda3 using the conda init command.

Installing a Python
D

istribution

0005390164.INDD 693 Trim size: 7.375 in × 9.25 in June 11, 2022 3:57 PM

CHAPTER 2 Installing a Python Distribution 693

6. Type yes and press Enter or click Yes.

After the extraction is complete, you see a completion message.

7. Add the installation path to your PATH statement using the method
required for your version of Linux.

You’re ready to begin using Anaconda.

Installing Anaconda on macOS X
The macOS X installation comes in only one form: 64-bit. The following steps
help you install Anaconda 64-bit on a Mac system using the GUI method:

1. Locate the downloaded copy of Anaconda on your system.

The name of this file varies, but normally it appears as Anaconda3-2021.11-
MacOSX-x86_64.pkg. The version number is embedded as part of the
filename. In this case, the filename refers to version 3.2021.11, which is the
version used for this book. If you use some other version, you may experience
problems with the source code and need to make adjustments when working
with it.

2. Double-click the installation file.

An introduction dialog box appears.

3. Click Continue.

The wizard asks whether you want to review the Read Me materials. You can
read these materials later. For now, you can safely skip the information.

4. Click Continue.

The wizard displays a licensing agreement. Be sure to read through the
licensing agreement so that you know the terms of usage.

5. Click I Agree if you agree to the licensing agreement.

The wizard asks you to provide a destination for the installation. The destina-
tion controls whether the installation is for an individual user or a group.

6. Click Continue.

This book assumes that you keep the default settings.

0005390164.INDD 694 Trim size: 7.375 in × 9.25 in June 11, 2022 3:57 PM

694 BOOK 5 Getting Started with Python

7. Click Install.

The installation begins. A progress bar tells you how the installation process
is progressing. When the installation is complete, you see a completion
dialog box.

8. Click Continue.

You’re ready to begin using Anaconda.

Installing Anaconda on Windows
Anaconda comes with a graphical installation application for Windows, so getting
a good install means using a wizard, as you would for any other installation. The
following procedure should work fine on any Windows system, whether you use
the 32-bit or the 64-bit version of Anaconda:

1. Locate the downloaded copy of Anaconda on your system.

The name of this file varies, but normally it appears as Anaconda3-
2021.11-Windows-x86.exe for 32-bit systems and Anaconda3-2021.11-
Windows-x86_64.exe for 64-bit systems. The version number is embedded
as part of the filename. In this case, the filename refers to version 3.2021.11,
which is the version used for this book. If you use some other version, you may
experience problems with the source code and need to make adjustments
when working with it.

2. Double-click the installation file.

You see a Welcome dialog box that tells you which version of Anaconda you
have — 32-bit or 64-bit. Make sure you have the correct one.

3. Click Next.

The wizard displays a licensing agreement. Be sure to read through the
licensing agreement so that you know the terms of usage.

4. Click I Agree if you agree to the licensing agreement.

You’re asked what sort of installation type to perform, as shown in Figure 2-1.
In most cases, you want to install the product just for yourself.

Installing a Python
D

istribution

0005390164.INDD 695 Trim size: 7.375 in × 9.25 in June 11, 2022 3:57 PM

CHAPTER 2 Installing a Python Distribution 695

5. Choose one of the installation types and then click Next.

The wizard asks where to install Anaconda on disk. The book assumes that you
use the default location. If you choose some other location, you may have to
modify some procedures later in the book to work with your setup.

6. Choose an installation location (if necessary) and then click Next.

You see the Advanced Installation Options, shown in Figure 2-2.

7. Leave the advanced options as they are and then click Install.

You see an Installing dialog box with a progress bar. The installation process
can take a few minutes, so get yourself a cup of coffee and read the comics for
a while. When the installation process is over, you see a Next button enabled.

8. Click Next.

(If you see a page with a link for PyCharm, https://www.jetbrains.com/
pycharm/, click Next again.) The wizard tells you that the installation is
complete. This page includes options for the Anaconda tutorial and learning
more about Anaconda. If you keep them selected, you see the appropriate
pages loaded into your browser.

9. Click Finish.

You’re ready to begin using Anaconda.

FIGURE 2-1:
Tell the wizard
how to install
Anaconda on
your system.

© John Wiley & Sons

0005390164.INDD 696 Trim size: 7.375 in × 9.25 in June 11, 2022 3:57 PM

696 BOOK 5 Getting Started with Python

Downloading the Data Sets
and Example Code

This book is about using Python to perform machine learning tasks. Of course,
you can spend all your time creating the example code from scratch, debugging
it, and only then discovering how it relates to machine learning, or you can take
the easy way and download the pre-written code at www.dummies.com/go/
codingallinonefd2e so that you can get right to work.

FIGURE 2-2:
Leave the
advanced

installation
options as they

are for now.

© John Wiley & Sons

A WORD ABOUT THE SCREENSHOTS
As you work your way through the book, you use an IDE of your choice to open the
Python and Python Notebook files containing the book’s source code. Every screenshot
that contains IDE-specific information relies on Anaconda because Anaconda runs on all
three platforms supported by the book. The use of Anaconda doesn’t imply that it’s the
best IDE; Anaconda simply works well as a demonstration product.

When you work with Anaconda, the name of the IDE, Jupyter Notebook, is precisely the
same across all three platforms, and you won’t even see any significant difference in the
presentation. The differences that you do see are minor, and you should ignore them as
you work through the book.

Installing a Python
D

istribution

0005390164.INDD 697 Trim size: 7.375 in × 9.25 in June 11, 2022 3:57 PM

CHAPTER 2 Installing a Python Distribution 697

Likewise, creating data sets large enough for machine learning purposes would
take quite a while. Fortunately, you can access standardized, precreated data sets
quite easily using features provided in some of the data science libraries (which
also work just fine for machine learning). The following sections help you down-
load and use the example code and data sets so that you can save time and get
right to work with data science–specific tasks.

Starting Anaconda Navigator
Find Anaconda Navigator in your Windows Start menu, your macOS Applica-
tions folder, or by opening a terminal window in Linux and typing anaconda-
navigator. The main Anaconda Navigator screen will appear, as shown in
Figure 2-3.

Using Jupyter Notebook
To make working with the relatively complex code in this book easier, you use
Jupyter Notebook. This interface lets you easily create Python notebook files
that can contain any number of examples, each of which can run individually.
The program runs in your browser, so which platform you use for development
doesn’t matter; as long as it has a browser, you should be okay.

Starting Jupyter Notebook
You access Jupyter Notebook from Anaconda Navigator, which also provides cen-
tralized access to the various applications supported by a particular environment.
The default environment or channel, base (root), supports Python development
directly. Figure 2-3 shows the content of the base (root) channel.

Notice that each entry tells which version of the product you’ll access. For this
book, you use Jupyter Notebook 6.4.8. If you don’t see version 6.4.8, click the
gear icon in the upper-right corner of the Jupyter Notebook entry and choose
Install Specific Version ➪ 6.4.8 from the menu. Anaconda Navigator will lead you
through the installation process for the correct version.

To start Jupyter Notebook, simply click Launch in the Jupyter Notebook entry.
Figure 2-4 shows how the interface looks when viewed in a Chrome browser.
This is the homepage, where you do things like create a new folder to contain a
project. The precise appearance on your system depends on the browser you use
and the kind of platform you have installed.

0005390164.INDD 698 Trim size: 7.375 in × 9.25 in June 11, 2022 3:57 PM

698 BOOK 5 Getting Started with Python

FIGURE 2-3:
Anaconda
Navigator
provides

 centralized
access to every

 development
need.

© John Wiley & Sons

FIGURE 2-4:
Jupyter Notebook
provides an easy
method to create
machine learning

examples.

© John Wiley & Sons

Installing a Python
D

istribution

0005390164.INDD 699 Trim size: 7.375 in × 9.25 in June 11, 2022 3:57 PM

CHAPTER 2 Installing a Python Distribution 699

Stopping the Jupyter Notebook server
No matter how you start Jupyter Notebook (or just Notebook, as it appears in the
remainder of the book), you need to click Quit in the upper-right corner of the
client window to exit Notebook. Otherwise, the Notebook server remains running
in the background and you leave your environment in an uncertain state, which
could cause data loss in some situations. After you click Quit, you see a Server
Stopped message box, which you can dismiss by clicking the X in the upper-right
corner. Close the browser window.

If you’re done working with Anaconda, you choose File ➪ Quit in the Anaconda
Navigator window. During the first (and possibly subsequent) shutdown, you see
a Quit Application dialog box, where you must click Yes to end Anaconda Naviga-
tor. If you don’t want to see this dialog box again, you can remove it by selecting
Don’t Show Again before you click Yes.

Sometimes the server shutdown process takes longer than expected. In this case,
Anaconda Navigator displays a message telling you that it’s still working in the
background. Allow it to complete whatever processes it needs to complete before
you quit. You could also see this message if you didn’t quit Jupyter Notebook cor-
rectly. In this case, you need to end Anaconda Navigator because the server will
never stop.

Defining the code repository
The code you create and use in this book will reside in a repository on your hard
drive. Think of a repository as a kind of filing cabinet where you put your code.
Notebook opens a drawer, takes out the folder, and shows the code to you. You
can modify it, run individual examples within the folder, add new examples, and
simply interact with your code in a natural manner. The following sections get
you started with Notebook so that you can see how this whole repository concept
works.

Defining the book’s folder
It pays to organize your files so that you can access them more easily later. This
book keeps your Python files in the CAIO4D2E folder. The following steps show
how to create the Python folder within Notebook.

1. After launching Notebook, choose New ➪    Folder.

Notebook creates a new folder named Untitled Folder, as shown in Figure 2-5.
The file appears in alphanumeric order, so you may not initially see it. You
must scroll down to the correct location.

0005390164.INDD 700 Trim size: 7.375 in × 9.25 in June 11, 2022 3:57 PM

700 BOOK 5 Getting Started with Python

2. Select the box next to the Untitled Folder entry.

3. Click Rename at the top of the page.

You see a Rename Directory dialog box.

4. Type CAIO4D2E and click the OK or RENAME button.

(This stands for Coding All-in-One For Dummies, 2nd Edition.) Notebook changes
the name of the folder for you.

5. Click the new CAIO4D2E entry in the list.

Notebook changes the location to the CAIO4D2E folder where you perform
tasks related to the exercises in this book.

Creating a new notebook
Every new notebook is like a file folder. You can place individual examples within
the file folder, just as you would sheets of paper into a physical file folder. Each
example appears in a cell. You can put other sorts of things in the file folder, too,
but you see how these things work as the book progresses. Use these steps to
create a new notebook:

1. Choose New ➪    Python 3.

A new tab opens in the browser with the new notebook, as shown in Figure 2-6.
Notice that the notebook contains a cell and that Notebook has highlighted the
cell so that you can begin typing code in it. The title of the notebook is Untitled
right now. That’s not a particularly helpful title, so you need to change it.

2. Click Untitled on the page.

Notebook asks what you want to use as a new name.

FIGURE 2-5:
New folders will

appear with a
name of Untitled

Folder.

© John Wiley & Sons

Installing a Python
D

istribution

0005390164.INDD 701 Trim size: 7.375 in × 9.25 in June 11, 2022 3:57 PM

CHAPTER 2 Installing a Python Distribution 701

3. Type CAIO4D2E_Sample and press Enter.

The new name tells you that this is a file for Coding All-In-One For Dummies, 2nd
Edition, Sample.ipynb. Using this naming convention will allow you to easily
differentiate these files from other files in your repository.

Of course, the Sample notebook doesn’t contain anything just yet. Place the cur-
sor in the cell and type the following code:

import sys
print('Python Version:\n', sys.version)

import os
result = os.popen('conda list anaconda$').read()
print('\nAnaconda Version:\n', result)

The first print() statement outputs the Python version number for your instal-
lation. The second print() statement prints the Anaconda version number for
your installation. Both of these outputs depend on using external code using the
import statement. The second call works directly with a command-line utility
named conda that you see used several times in this book.

Click the Save and Checkpoint button (the button that looks like a floppy disk) to
save your work.

Click the Run button (the button with the right-pointing arrow on the toolbar).
You see the output shown in Figure 2-7. The version numbers for your setup
should match the version numbers shown in Figure 2-7. The output is part of
the same cell as the code. However, Notebook visually separates the output from
the code so that you can tell them apart. Notebook automatically creates a new
cell for you.

FIGURE 2-6:
A notebook

contains cells
that you use to

hold code.

© John Wiley & Sons

0005390164.INDD 702 Trim size: 7.375 in × 9.25 in June 11, 2022 3:57 PM

702 BOOK 5 Getting Started with Python

When you finish working with a notebook, shutting it down is important. To
close a notebook, choose File ➪ Close and Halt. You return to the homepage,
where you can see the notebook you just created added to the list.

Exporting a notebook
Creating notebooks and keeping them all to yourself isn’t much fun. At some
point, you want to share them with other people. To perform this task, you must
export your notebook from the repository to a file. You can then send the file to
someone else, who will import it into their repository.

The previous section shows how to create a notebook named CAIO4D2E_
Sample. You can open this notebook by clicking its entry in the repository list.
The file reopens so that you can see your code again. To export this code, choose
File ➪ Download As ➪ Notebook (.ipynb). What you see next depends on your
browser, but you generally see some sort of dialog box for saving the notebook as
a file. Use the same method for saving the IPython Notebook file as you use for
any other file you save using your browser.

FIGURE 2-7:
The output

of your first
notebook.

© John Wiley & Sons

Installing a Python
D

istribution

0005390164.INDD 703 Trim size: 7.375 in × 9.25 in June 11, 2022 3:57 PM

CHAPTER 2 Installing a Python Distribution 703

Removing a notebook
Sometimes notebooks get outdated or you simply don’t need to work with them
any longer. Rather than allow your repository to get clogged with files you don’t
need, you can remove these unwanted notebooks from the list. Use these steps to
remove a notebook:

1. Select the box next to the CAIO4D2E_Sample.ipynb entry.

2. Click the trash can icon (Delete) at the top of the page.

You see a Delete notebook warning message.

3. Click Delete.

The file gets removed from the list.

Importing a notebook
To use the source code from this book, you must import the downloaded files
into your repository. The source code comes in an archive file that you extract
to a location on your hard drive. The archive contains a .ipynb (Notebook) file
containing the source code for this book and the data files that you’ll be using in
subsequent chapters. The following steps explain how to import these files into
your repository:

1. Click Upload at the top of the page.

What you see depends on your browser. In most cases, you see some type
of File Upload or Open dialog box that provides access to the files on your
hard drive.

2. Navigate to the directory containing the files that you want to import
into Notebook.

3. Highlight one or more files to import and click the Open (or other,
similar) button to begin the upload process.

You see the file added to an upload list, as shown in Figure 2-8. The file isn’t
part of the repository yet — you’ve simply selected it for upload.

4. Click the Upload button next to each file.

Notebook places the files in the repository so that you can begin using them.

0005390164.INDD 704 Trim size: 7.375 in × 9.25 in June 11, 2022 3:57 PM

704 BOOK 5 Getting Started with Python

Understanding the data sets
used in this book
Apart from the data sets offered by scikit-learn (https://scikit-learn.org/
stable/datasets/toy_dataset.html), this book uses a number of data sets that
you can access at https://github.com/lmassaron/datasets. These data sets
demonstrate various ways in which you can interact with data, and you use them
in the examples to perform a variety of tasks.

The technique for loading each of these data sets can vary according to the source.
The following example shows how to load the Air Passengers data set, which is a
.csv file containing the number of passengers on an example airline per month
for 12 years starting in 1949. You can find the code in the CAIO4D2E_Dataset_
Load.ipynb notebook.

The downloadable data sets are archived in the Apache Arrow-based Feather File
Format (https://arrow.apache.org/docs/python/feather.html). To make
this file format accessible in Notebook, open an Anaconda prompt in Windows

FIGURE 2-8:
The files that you

want to add to
the repository

appear as part of
an upload list.

© John Wiley & Sons

Installing a Python
D

istribution

0005390164.INDD 705 Trim size: 7.375 in × 9.25 in June 11, 2022 3:57 PM

CHAPTER 2 Installing a Python Distribution 705

(which is a separate program in your Program Files or Application folder) or a
Terminal window in macOS or Linux and type the following command:

conda install feather-format -c conda-forge

The command takes a while to complete as it collects the package information
and solves the environment (determines what to do to perform the installation).
At some point, you’ll need to type y and press Enter to complete the installation.
To verify that you have a good installation, use this command:

conda list feather-format

After a few moments, you see output similar to this:

packages in environment at C:\Users\John\anaconda3:
#
Name Version Build Channel
feather-format 0.4.1 pyh9f0ad1d_0 conda-forge

Now that you have the required library to use, you can load a data set from those
supplied on the book’s data set site. If you haven’t already downloaded air_
passengers.feather, which is one of the files available from this book’s website,
download it now and place it in folder you created for this book. (In later chapters,
you see how to download the .feather files directly from the book’s data set site,
but performing the download now keeps things simple.)

Once you’ve downloaded the .feather file, go back to Jupyter Navigator and run
CAIO4D2E_Dataset Load. Here is the code you use to load the Air Passengers data
set as a data frame.

import pyarrow.feather as feather
read_df =
 feather.read_feather('air_passengers.feather')
print(read_df)

The result is a 144-row data frame containing the number of passengers per
month. Figure 2-9 shows typical output.

0005390164.INDD 706 Trim size: 7.375 in × 9.25 in June 11, 2022 3:57 PM

706 BOOK 5 Getting Started with Python

FIGURE 2-9:
The read_df

object contains
the loaded data

set as a data
frame.

© John Wiley & Sons

CHAPTER 3 Working with Real Data 707

0005390165.INDD 707	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:58	PM

 Working with Real Data
Data is the new oil.

 — CLIVE HUMBY

 D ata science applications require data by defi nition. It would be nice if you
could simply go to a data store somewhere, purchase the data you need in
an easy-open package, and then write an application to access that data.

However, data is messy. It appears in all sorts of places, in many diff erent forms,
and you can interpret it in many diff erent ways. Every organization has a diff erent
method of viewing data and stores it in a diff erent manner as well. Even when the
data management system used by one company is the same as the data manage-
ment system used by another company, the chances are slim that the data will
appear in the same format or even use the same data types. In short, before you
can do any data science work, you must discover how to access the data in all its
myriad forms. Real data requires a lot of work to use and fortunately, Python is up
to the task of manipulating it as needed.

 This chapter helps you understand the techniques required to access data in a
number of forms and locations. For example, memory streams represent a form
of data storage that your computer supports natively; fl at fi les exist on your hard
drive; relational databases commonly appear on networks (although smaller rela-
tional databases, such as those found in Access, could appear on your hard drive
as well); and web-based data usually appears on the Internet. You won’t visit

Chapter 3

 IN THIS CHAPTER

» Manipulating data streams

» Working with fl at and unstructured
fi les

» Interacting with relational databases

» Using NoSQL as a data source

» Interacting with web-based data

0005390165.INDD 708	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:58	PM

708 BOOK 5 Getting Started with Python

every form of data storage available (such as that stored on a point-of-sale, or
POS, system). Quite possibly, an entire book on the topic wouldn’t suffice to cover
the topic of data formats in any detail. However, the techniques in this chapter
do demonstrate how to access data in the formats you most commonly encounter
when working with real-world data.

The scikit-learn library includes a number of toy data sets (small data sets meant
for you to play with). These data sets are complex enough to perform a number of
tasks, such as experimenting with Python to perform data science tasks. Because
this data is readily available, and making the examples too complicated to under-
stand is a bad idea, this book relies on these toy data sets as input for many of
the examples. Even though the book does use these toy data sets for the sake of
reducing complexity and making the examples clearer, the techniques that the
book demonstrates work equally well on real-world data that you access using the
techniques shown in this chapter.

You don’t have to type the source code for this chapter in by hand. In fact, it’s a
lot easier if you use the downloadable source (see Book 5, Chapter 2 for download
instructions).

It’s essential that the Colors.txt, Titanic.csv, Values.xls, Colorblk.jpg,
and XMLData.xml files that come with the downloadable source code appear in
the same folder (directory) as your Notebook files. Otherwise, the examples in
the following sections fail with an input/output (IO) error. The file location var-
ies according to the platform you’re using. For example, on a Windows system,
you find the notebooks stored in the C:\Users\Username\CAIO4D2E folder, where
Username is your login name. (The book assumes that you’ve used the prescribed
folder location of CAIO4D2E, as described in the “Defining the code repository”
section of Book 5, Chapter 2.) To make the examples work, simply upload the five
files from the downloadable source folder into your Notebook folder.

Uploading, Streaming, and Sampling Data
Storing data in local computer memory represents the fastest and most reliable
means to access it. The data could reside anywhere. However, you don’t actually
interact with the data in its storage location. You load the data into memory from
the storage location and then interact with it in memory. This is the technique the
book uses to access all the toy data sets found in the scikit-learn library.

Data scientists call the columns in a database features or variables. The rows are
cases. Each row represents a collection of variables that you can analyze.

W
orking w

ith Real D
ata

0005390165.INDD 709	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:58	PM

CHAPTER 3 Working with Real Data 709

Uploading small amounts of
data into memory
The most convenient method that you can use to work with data is to load it
directly into memory. This section uses the Colors.txt file, shown in Figure 3-1,
for input.

The example also relies on native Python functionality to get the task done. When
you load a file (of any type), the entire data set is available at all times and the
loading process is quite short. Listing 3-1 shows an example of how this tech-
nique works.

LISTING 3-1: Loading the Colors Data Set

with open("Colors.txt", 'r') as open_file:

 print('Colors.txt content:\n' + open_file.read())

The example begins by using the open() method to obtain a file object. The
open() function accepts the filename and an access mode. In this case, the access
mode is read (r). It then uses the read() method of the file object to read all the
data in the file. If you were to specify a size argument as part of read(), such as
read(15), Python would read only the number of characters that you specify or
stop when it reaches the End Of File (EOF). When you run this example, you see
the following output:

Colors.txt content:
Color Value
Red 1
Orange 2

FIGURE 3-1:
Format of the

Colors.txt	file.	

© John Wiley & Sons

0005390165.INDD 710	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:58	PM

710 BOOK 5 Getting Started with Python

Yellow 3
Green 4
Blue 5
Purple 6
Black 7
White 8

The entire data set is loaded from the library into free memory. Of course, the
loading process will fail if your system lacks sufficient memory to hold the data
set. When this problem occurs, you need to consider other techniques for working
with the data set, such as streaming it or sampling it. In short, before you use
this technique, you must ensure that the data set will actually fit in memory. You
won’t normally experience any problems when working with the toy data sets in
the scikit-learn library.

Streaming large amounts of
data into memory
Some data sets will be so large that you won’t be able to fit them entirely in mem-
ory at one time. In addition, you may find that some data sets load slowly because
they reside on a remote site. Streaming answers both needs by making it possible
to work with the data a little at a time. You download individual pieces, making
it possible to work with just part of the data and to work with it as you receive
it, rather than waiting for the entire data set to download. Listing 3-2 shows an
example of how you can stream data using Python.

LISTING 3-2: Streaming the Colors Data Set

with open("Colors.txt", 'r') as open_file:

 for observation in open_file:

 print('Reading Data: ' + observation)

This example relies on the Colors.txt file, which contains a header, and then a
number of records that associate a color name with a value. The open_file file
object contains a pointer to the open file.

As the code performs data reads in the for loop, the file pointer moves to the next
record. Each record appears one at a time in observation. The code outputs the
value in observation using a print statement. You should receive this output:

Reading Data: Color Value
Reading Data: Red 1

W
orking w

ith Real D
ata

0005390165.INDD 711	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:58	PM

CHAPTER 3 Working with Real Data 711

Reading Data: Orange 2
Reading Data: Yellow 3
Reading Data: Green 4
Reading Data: Blue 5
Reading Data: Purple 6
Reading Data: Black 7
Reading Data: White 8

Python streams each record from the source. This means that you must perform a
read for each record you want.

Generating variations on image data
At times, you need to import and analyze image data. The source and type of the
image does make a difference. A good starting point is to simply read a local image
in, obtain statistics about that image, and display the image on-screen, as shown
in Listing 3-3.

LISTING 3-3: Importing and Analyzing an Image

import matplotlib.image as img

import matplotlib.pyplot as plt

%matplotlib inline

image = img.imread("Colorblk.jpg")

print(image.shape)

print(image.size)

plt.imshow(image)

plt.show()

The example begins by importing two matplotlib libraries, image and pyplot.
The image library reads the image into memory, while the pyplot library displays
it on-screen.

After the code reads the file, it begins by displaying the image shape property —
the number of horizontal pixels, vertical pixels, and pixel depth. Figure 3-2 shows
that the image is 100 x 100 x 3 pixels. The image size property is the combination
of these three elements, or 30,000 bytes.

The next step is to load the image for plotting using imshow(). The final call, plt.
show(), displays the image on-screen, as shown in Figure 3-2. This technique
represents just one of a number of methods for interacting with images using
Python so that you can analyze them in some manner.

0005390165.INDD 712	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:58	PM

712 BOOK 5 Getting Started with Python

Sampling data in different ways
Data streaming obtains all the records from a data source. You may find that you
don’t need all the records. You can save time and resources by simply sampling the
data. This means retrieving records a set number of records apart, such as every
fifth record, or by making random samples. Listing 3-4 shows how to retrieve
every other record in the Colors.txt file.

LISTING 3-4: Retrieving Every Other Record

n = 2

with open("Colors.txt", 'r') as open_file:

 for j, observation in enumerate(open_file):

 if j % n==0:

 print('Reading Line: ' + str(j) + ' Content: ' + observation)

The basic idea of sampling is the same as streaming. However, in this case, the
application uses enumerate() to retrieve a row number. When j % n == 0, the
row is one that you want to keep and the application outputs the information. In
this case, you see the following output:

FIGURE 3-2:
The test image is
100	pixels	high	
and	100	pixels	

long.	

© John Wiley & Sons

W
orking w

ith Real D
ata

0005390165.INDD 713	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:58	PM

CHAPTER 3 Working with Real Data 713

Reading Line: 0 Content: Color Value
Reading Line: 2 Content: Orange 2
Reading Line: 4 Content: Green 4
Reading Line: 6 Content: Purple 6
Reading Line: 8 Content: White 8

The value of n is important in determining which records appear as part of the
data set. Try changing n to 3. The output will change to sample just the header
and rows 3 and 6.

You can perform random sampling as well. All you need to do is randomize the
selector, as shown in Listing 3-5.

LISTING 3-5: Random Sampling

from random import random

sample_size = 0.25

with open("Colors.txt", 'r') as open_file:

 for j, observation in enumerate(open_file):

 if random()<=sample_size:

 print('Reading Line: ' + str(j) + ' Content: ' + observation)

To make this form of selection work, you must import the random class. The ran-
dom method outputs a value between 0 and 1. However, Python randomizes the
output so that you don’t know what value you receive. The sample_size variable
contains a number between 0 and 1 to determine the sample size. For example,
0.25 selects 25 percent of the items in the file.

The output will still appear in numeric order. For example, you won’t see Green
come before Orange. However, the items selected are random, and you won’t
always get precisely the same number of return values. The spaces between return
values will differ as well. Here is an example of what you might see as output
(although your output will likely vary):

Reading Line: 1 Content: Red 1
Reading Line: 4 Content: Green 4
Reading Line: 8 Content: White 8

0005390165.INDD 714	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:58	PM

714 BOOK 5 Getting Started with Python

Accessing Data in Structured Flat-File Form
In many cases, the data you need to work with won’t appear within a library, such
as the toy data sets in the scikit-learn library. Real-world data usually appears
in a file of some type. A flat file presents the easiest kind of file to work with.
The data appears as a simple list of entries that you can read one at a time into
memory. Depending on the requirements for your project, you can read all or part
of the file.

A problem with using native Python techniques is that the input isn’t intelligent.
For example, when a file contains a header, Python simply reads it as yet more
data to process, rather than as a header. You can’t easily select a particular column
of data. The pandas library used in the sections that follow makes it much easier
to read and understand flat-file data. Classes and methods in the pandas library
interpret (parse) the flat-file data to make it easier to manipulate.

The least formatted and therefore easiest-to-read flat-file format is the text file.
However, a text file also treats all data as strings, so you often have to convert
numeric data into other forms. A comma-separated value (CSV) file provides more
formatting and more information, but it requires a little more effort to read. At
the high end of flat-file formatting are custom data formats, such as an Excel
file, which contains extensive formatting and could include multiple data sets in
a single file.

The following sections describe these three levels of flat-file data set and show
how to use them. These sections assume that the file structures the data in some
way. For example, the CSV file uses commas to separate data fields. A text file
might rely on tabs to separate data fields. An Excel file uses a complex method
to separate data fields and to provide a wealth of information about each field.
You can work with unstructured data as well, but working with structured data is
much easier because you know where each field begins and ends.

Reading from a text file
Text files can use a variety of storage formats. However, a common format is to
have a header line that documents the purpose of each field, followed by another
line for each record in the file. The file separates the fields using tabs. Refer to
Figure 3-1 for an example of the Colors.txt file used for the example in this
section.

Native Python provides a wide variety of methods you can use to read such a file.
However, it’s far easier to let someone else do the work. In this case, you can use
the pandas library to perform the task. Within the pandas library, you find a set

W
orking w

ith Real D
ata

0005390165.INDD 715	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:58	PM

CHAPTER 3 Working with Real Data 715

of parsers, code used to read individual bits of data and determine the purpose
of each bit according to the format of the entire file. Using the correct parser
is essential if you want to make sense of file content. In this case, you use the
read_table method to accomplish the task, as shown in Listing 3-6.

LISTING 3-6: Using read_table

import pandas as pd

color_table = pd.io.parsers.read_table("Colors.txt")

print(color_table)

The code imports the pandas library, uses the read_table method to read
Colors.txt into a variable named color_table, and then displays the resulting
memory data on-screen using the print function. Figure 3-3 shows the output
from Listing 3-6.

Notice that the parser correctly interprets the first row as consisting of field
names. It numbers the records from 0 through 7. Using read_table() method
arguments, you can adjust how the parser interprets the input file, but the
default settings usually work best. You can read more about the read_table()
arguments at http://pandas.pydata.org/pandas-docs/version/0.23.0/
generated/pandas.read_table.html.

Reading CSV-delimited format
A CSV file provides more formatting than a simple text file. In fact, CSV files can
become quite complicated. There is a standard that defines the format of CSV
files, and you can see it at https://tools.ietf.org/html/rfc4180. The CSV file
used for this example is quite simple:

FIGURE 3-3:
Reading	a	table	

with	pandas.	

© John Wiley & Sons

0005390165.INDD 716	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:58	PM

716 BOOK 5 Getting Started with Python

 » A	header	defines	each	of	the	fields

 » Fields	are	separated	by	commas

 » Records	are	separated	by	linefeeds

 » Strings	are	enclosed	in	double	quotes

 » Integers	and	real	numbers	appear	without	double	quotes

Figure 3-4 shows the raw format for the Titanic.csv file used for this example.
You can see the raw format using any text editor.

Applications such as Excel can import and format CSV files so that they become
easier to read. Figure 3-5 shows the same file in Excel.

FIGURE 3-4:
The raw format

of	a	CSV	file	is	still	
text	and	quite	

readable.	

© John Wiley & Sons

FIGURE 3-5:
Use	an	

application	such	
as	Excel	to	create	
a	formatted	CSV	

presentation.	

© John Wiley & Sons

W
orking w

ith Real D
ata

0005390165.INDD 717	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:58	PM

CHAPTER 3 Working with Real Data 717

Excel actually recognizes the header as a header. If you were to use features such
as data sorting, you could select header columns to obtain the desired result.
Fortunately, pandas also makes it possible to work with the CSV file as formatted
data, as shown in Listing 3-7.

LISTING 3-7: Using pandas with a CSV File

import pandas as pd
titanic = pd.io.parsers.read_csv("Titanic.csv")
X = titanic[['age']]
print(X)

Notice that the parser of choice this time is read_csv(), which understands CSV
files and provides you with new options for working with it. (You can read more
about this parser at http://pandas.pydata.org/pandas-docs/version/0.23.0/
generated/pandas.read_csv.html.) Selecting a specific field is quite easy — you
just supply the field name as shown. The output from Listing 3-7 is shown in
Figure 3-6.

Of course, a human-readable output like this one is nice when working through
an example, but you might also need the output as a list. To create the output as
a list, you simply change the third line of code to read X = titanic[['age']].
values. Notice the addition of the values property. The resulting output is shown
in Figure 3-7.

FIGURE 3-6:
The	result	of	
loading	a	CSV	
with	pandas.	

© John Wiley & Sons

0005390165.INDD 718	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:58	PM

718 BOOK 5 Getting Started with Python

Reading Excel and other
Microsoft Office files
Excel and other Microsoft Office applications provide highly formatted content.
You can specify every aspect of the information these files contain. The Values.
xls file used for this example provides a listing of sine, cosine, and tangent val-
ues for a random list of angles. You can see this file in Figure 3-8.

When you work with Excel or other Microsoft Office products, you begin to expe-
rience some complexity. For example, an Excel file can contain more than one
worksheet, so you need to tell pandas which worksheet to process. In fact, you
can choose to process multiple worksheets, if desired. When working with other
Office products, you have to be specific about what to process. Just telling pandas
to process something isn’t good enough. Listing 3-8 shows an example of work-
ing with the Values.xls file.

FIGURE 3-7:
Displaying	results	

as	a	list.	

© John Wiley & Sons

FIGURE 3-8:
An	Excel	file	is	

highly	formatted	
and	might	

contain	
	information	of	
various	types.	

© John Wiley & Sons

W
orking w

ith Real D
ata

0005390165.INDD 719	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:58	PM

CHAPTER 3 Working with Real Data 719

LISTING 3-8: Working with an Excel File

import pandas as pd

xls = pd.ExcelFile("Values.xls")

trig_values = xls.parse('Sheet1', index_col=None, na_values=['NA'])

print(trig_values)

The code begins by importing the pandas library as normal. It then creates a
pointer to the Excel file using the ExcelFile constructor. This pointer, xls, lets
you access a worksheet, define an index column, and specify how to present
empty values. The index column is the one that the worksheet uses to index the
records. Using a value of None means that pandas should generate an index for
you. The parse method obtains the values you request. You can read more about
the Excel parser options at https://pandas.pydata.org/pandas-docs/stable/
reference/api/pandas.ExcelFile.parse.html.

You don’t absolutely have to use the two-step process of obtaining a file pointer
and then parsing the content. You can also perform the task using a single step
like this:

trig_values = pd.read_excel("Values.xls", 'Sheet1', index_col=None,

na_values=['NA'])

Because Excel files are more complex, using the two-step process is often more
convenient and efficient because you don’t have to reopen the file for each read
of the data.

Sending Data in Unstructured File Form
Unstructured data files consist of a series of bits. The file doesn’t separate the
bits from each other in any way. You can’t simply look into the file and see any
structure because there isn’t any to see. Unstructured file formats rely on the file
user to know how to interpret the data. For example, each pixel of a picture file
could consist of three 32-bit fields. Knowing that each field is 32-bits is up to you.
A header at the beginning of the file may provide clues about interpreting the file,
but even so, it’s up to you to know how to interact with the file.

The example in this section shows how to work with a picture as an unstruc-
tured file. The example image is a public domain offering from http://commons.
wikimedia.org/wiki/Main_Page. To work with images, you need to access the
scikit-image library (http://scikit-image.org/), which is a free-of-charge

0005390165.INDD 720	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:58	PM

720 BOOK 5 Getting Started with Python

collection of algorithms used for image processing. You can find a tutorial for
this library at http://scipy-lectures.github.io/packages/scikit-image/.
The first task is to be able to display the image on-screen using the code in
Listing 3-9. (This code can require a little time to run. The image is ready when
the busy indicator disappears from the Notebook tab.)

LISTING 3-9: Image Processing with the scikit-image Library

from skimage.io import imread

from skimage.transform import resize

from matplotlib import pyplot as plt

import matplotlib.cm as cm

example_file = ("http://upload.wikimedia.org/wikipedia/commons/7/7d/Dog_face.

png")

image = imread(example_file, as_gray=True)

plt.imshow(image, cmap=cm.gray)

plt.show()

The code begins by importing a number of libraries. It then creates a string that
points to the example file online and places it in example_file. This string is part
of the imread() method call, along with as_gray, which is set to True. The as_
gray argument tells Python to turn any color images into grayscale. Any images
that are already in grayscale remain that way.

Now that you have an image loaded, it’s time to render it (make it ready to display
on-screen). The imshow() function performs the rendering and uses a grayscale
color map. The show() function actually displays image for you, as shown in
Figure 3-9.

You now have an image in memory and you may want to find out more about it.
When you run the following code, you discover the image type and size:

print("data type: %s, shape: %s" %
(type(image), image.shape))

The output from this call tells you that the image type is a numpy.ndarray and
that the image size is 90 pixels by 90 pixels. The image is actually an array of
pixels that you can manipulate in various ways. For example, if you want to crop
the image, you can use the following code to manipulate the image array:

image2 = image[5:70,0:70]
plt.imshow(image2, cmap=cm.gray)
plt.show()

W
orking w

ith Real D
ata

0005390165.INDD 721	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:58	PM

CHAPTER 3 Working with Real Data 721

The numpy.ndarray in image2 is smaller than the one in image, so the output is
smaller as well. Figure 3-10 shows typical results. The purpose of cropping the
image is to make it a specific size. Both images must be the same size for you to
analyze them. Cropping is one way to ensure that the images are the correct size
for analysis.

FIGURE 3-9:
The image

appears	on-
screen	after	

you	render	and	
show it.

© John Wiley & Sons

FIGURE 3-10:
Cropping	the	

image makes it
smaller.	

© John Wiley & Sons

0005390165.INDD 722	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:58	PM

722 BOOK 5 Getting Started with Python

Another method that you can use to change the image size is to resize it. The fol-
lowing code resizes the image to a specific size for analysis:

image3 = resize(image2, (30, 30), mode='symmetric')
plt.imshow(image3, cmap=cm.gray)
print("data type: %s, shape: %s" %
(type(image3), image3.shape))

The output from the print() function tells you that the image is now 30 pixels
by 30 pixels in size. You can compare it to any image with the same dimensions.

After you have all the images the right size, you need to flatten them. A data set
row is always a single dimension, not two dimensions. The image is currently an
array of 30 pixels by 30 pixels, so you can’t make it part of a data set. The fol-
lowing code flattens image3 so that it becomes an array of 900 elements that is
stored in image_row.

image_row = image3.flatten()
print("data type: %s, shape: %s" %
(type(image_row), image_row.shape))

Notice that the type is still a numpy.ndarray. You can add this array to a data
set and then use the data set for analysis purposes. The size is 900 elements, as
anticipated.

Managing Data from Relational Databases
Databases come in all sorts of forms. For example, AskSam (http://asksam.
en.softonic.com/) is a kind of free-form textual database. However, the vast
majority of data used by organizations rely on relational databases because these
databases provide the means for organizing massive amounts of complex data in
an organized manner that makes the data easy to manipulate. The goal of a data-
base manager is to make data easy to manipulate. The focus of most data storage
is to make data easy to retrieve.

Relational databases accomplish both the manipulation and data retrieval objec-
tives with relative ease. However, because data storage needs come in all shapes
and sizes for a wide range of computing platforms, there are many different
relational database products. In fact, for the data scientist, the proliferation of
different Database Management Systems (DBMSs) using various data layouts is
one of the main problems you encounter with creating a comprehensive data set
for analysis.

W
orking w

ith Real D
ata

0005390165.INDD 723	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:58	PM

CHAPTER 3 Working with Real Data 723

The one common denominator between many relational databases is that they all
rely on a form of the same language to perform data manipulation, which does
make the data scientist’s job easier. The Structured Query Language (SQL) lets
you perform all sorts of management tasks in a relational database, retrieve data
as needed, and even shape it in a particular way so that the need to perform addi-
tional shaping is unnecessary.

Creating a connection to a database can be a complex undertaking. For one thing,
you need to know how to connect to that particular database. However, you can
divide the process into smaller pieces. The first step is to gain access to the data-
base engine. You use two lines of code similar to the following code (but the code
presented here is not meant to execute and perform a task):

from sqlalchemy import create_engine
engine = create_engine('sqlite:///:memory:')

After you have access to an engine, you can use the engine to perform tasks spe-
cific to that DBMS. The output of a read method is always a DataFrame object that
contains the requested data. To write data, you must create a DataFrame object
or use an existing one. You normally use these methods to perform most tasks:

 » read_sql_table():	Reads	data	from	a	SQL	table	to	a	DataFrame	object

 » read_sql_query():	Reads	data	from	a	database	using	a	SQL	query	to	a	
DataFrame	object

 » read_sql():	Reads	data	from	either	a	SQL	table	or	query	to	a	DataFrame
object

 » DataFrame.to_sql():	Writes	the	content	of	a	DataFrame	object	to	the	
specified	tables	in	the	database

The sqlalchemy library provides support for a broad range of SQL databases. The
following list contains just a few of them:

 » SQLite

 » MySQL

 » PostgreSQL

 » SQL	Server

 » Other	relational	databases,	such	as	those	you	can	connect	to	using	Open	
Database	Connectivity	(ODBC)

0005390165.INDD 724	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:58	PM

724 BOOK 5 Getting Started with Python

You can discover more about working with databases at https://docs.
sqlalchemy.org/en/latest/core/engines.html. The techniques that you dis-
cover in this book using the toy databases also work with relational databases.

Interacting with Data from
NoSQL Databases

In addition to standard relational databases that rely on SQL, you find a wealth
of databases of all sorts that don’t have to rely on SQL. These Not only SQL
(NoSQL) databases are used in large data storage scenarios in which the relational
model can become overly complex or can break down in other ways. The data-
bases generally don’t use the relational model. Of course, you find fewer of these
DBMSes used in the corporate environment because they require special handling
and training. Still, some common DBMSes are used because they provide special
functionality or meet unique requirements. The process is essentially the same
for using NoSQL databases as it is for relational databases:

1. Import	required	database	engine	functionality.

2. Create	a	database	engine.

3. Make	any	required	queries	using	the	database	engine	and	the	functionality	
supported	by	the	DBMS.

The details vary quite a bit, and you need to know which library to use with
your particular database product. For example, when working with MongoDB
(www.mongodb.org), you must obtain a copy of the PyMongo library (https://
pymongo.readthedocs.io/en/stable/) and use the MongoClient class to create
the required engine.

The MongoDB engine relies heavily on the find() function to locate data. Follow-
ing is a pseudocode example of a MongoDB session. (You won’t be able to execute
this code in Notebook; it’s shown only as an example.)

import pymongo
import pandas as pd
from pymongo import Connection
connection = Connection()
db = connection.database_name
input_data = db.collection_name
data = pd.DataFrame(list(input_data.find()))

W
orking w

ith Real D
ata

0005390165.INDD 725	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:58	PM

CHAPTER 3 Working with Real Data 725

Accessing Data from the Web
It would be incredibly difficult (perhaps impossible) to find an organization today
that doesn’t rely on some sort of web-based data. Most organizations use web ser-
vices of some type. A web service is a kind of web application that provides a means
to ask questions and receive answers. Web services usually host a number of input
types. In fact, a particular web service may host entire groups of query inputs.

Another type of query system is the microservice. Unlike the web service,
microservices have a specific focus and provide only one specific query input and
output. Using microservices has specific benefits that are outside the scope of this
book to address, but essentially they work like tiny web services, so that’s how
this book addresses them.

Accessing XML data
One of the most beneficial data access techniques to know when working with
web data is accessing XML. All sorts of content types rely on XML, even some web
pages. Working with web services and microservices often means working with
XML. With this in mind, the example in this section works with XML data found in
the XMLData.xml file, shown in Figure 3-11. In this case, the file is simple and uses
only a couple of levels. XML is hierarchical and can become quite a few levels deep.

APIs AND OTHER WEB ENTITIES
A	data	scientist	may	have	a	reason	to	rely	on	various	web	Application	Programming	
Interfaces	(APIs)	to	access	and	manipulate	data.	In	fact,	the	focus	of	an	analysis	might	
be	the	API	itself.	This	book	doesn’t	discuss	APIs	in	any	detail	because	each	API	is	unique,	
and	APIs	operate	outside	the	normal	scope	of	what	a	data	scientist	might	do.	For	exam-
ple,	you	might	use	a	the	JavaScript	Fetch	API	or	Axios	(www.axios.com)	to	access	data;	
then	you	can	manipulate	it	in	various	ways	using	JavaScript	when	working	with	a	web	
application.	However,	the	techniques	for	doing	so	are	more	along	the	lines	of	writing	an	
application	than	employing	a	data	science	technique.

It’s	important	to	realize	that	APIs	can	be	data	sources	and	that	you	might	need	to	use	
one	to	achieve	some	data	input	or	data-shaping	goals.	In	fact,	you	find	many	data	enti-
ties	that	resemble	APIs	but	don’t	appear	in	this	book.	Windows	developers	can	create	
Component	Object	Model	(COM)	applications	that	output	data	onto	the	web	that	you	
could	possibly	use	for	analysis	purposes.	In	fact,	the	number	of	potential	sources	is	
nearly	endless.	This	book	focuses	on	the	sources	that	you	use	most	often	and	in	the	
most	conventional	manner.	Keeping	your	eyes	open	for	other	possibilities,	though,	is	
always	a	good	idea.

0005390165.INDD 726	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:58	PM

726 BOOK 5 Getting Started with Python

The technique for working with XML, even simple XML, can be a bit harder than
anything else you’ve worked with so far. Listing 3-10 shows the code for this
example.

LISTING 3-10: Working with XML Data

from lxml import objectify

import pandas as pd

xml = objectify.parse(open('XMLData.xml'))

root = xml.getroot()

df = pd.DataFrame(columns=('Number', 'String', 'Boolean'))

for i in range(0,4):

 obj = root.getchildren()[i].getchildren()

 row = dict(zip(['Number', 'String', 'Boolean'],[obj[0].text, obj[1].text,

obj[2].text]))

 row_s = pd.Series(row)

 row_s.name = i

 df = df.append(row_s)

print(df)

The example begins by importing libraries and parsing the data file using the
objectify.parse() method. Every XML document must contain a root node,
which is <MyDataset> in this case. The root node encapsulates the rest of the

FIGURE 3-11:
XML	is	a	

	hierarchical	
format	that	can	
become	quite	

complex.	

© John Wiley & Sons

W
orking w

ith Real D
ata

0005390165.INDD 727	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:58	PM

CHAPTER 3 Working with Real Data 727

content, and every node under it is a child. To do anything practical with the
document, you must obtain access to the root node using the getroot() method.

The next step is to create an empty DataFrame object that contains the correct col-
umn names for each record entry: Number, String, and Boolean. As with all other
pandas data handling, XML data handling relies on a DataFrame. The for loop fills
the DataFrame with the four records from the XML file (each in a <Record> node).

The process looks complex but follows a logical order. The obj variable contains
all the children for one <Record> node. These children are loaded into a dic-
tionary object in which the keys are Number, String, and Boolean to match the
DataFrame columns.

There is now a dictionary object that contains the row data. The code creates an
actual row for the DataFrame next. It gives the row the value of the current for
loop iteration. It then appends the row to the DataFrame. To see that everything
worked as expected, the code prints the result, which looks like this:

 Number String Boolean
0 1 First True
1 2 Second False
2 3 Third True
3 4 Fourth False

Using read_xml
If you’re using a pandas version 1.4 or newer, you’ll get a warning message when
you run the previous code. The message says that the append method is depre-
cated and will be removed in a future version. If your code runs and produces the
correct output, the warning message is nothing to worry about.

If you do see this warning message, or if you’re reading this book in a far future
time when the append method actually is removed from pandas, you can use a
much easier method of working with XML data: the pandas.read_xml method.
Listing 3-11 shows how to do the same thing as Listing 3-10, but using read_xml
instead.

LISTING 3-11: Using pandas.read_xml

import pandas as pd
df = pd.read_xml('XMLData.xml')

print(df)

0005390165.INDD 728	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	3:58	PM

728 BOOK 5 Getting Started with Python

Yes, that’s really all there is to it! If you get an error when you try to run
Listing 3-11, you can upgrade to the latest version of pandas by entering the fol-
lowing command into the Terminal (on macOS or Linux) or the Anaconda Prompt
(on Windows):

pip install pandas --upgrade

USING THE JSON ALTERNATIVE
You	shouldn’t	get	the	idea	that	all	data	you	work	with	on	the	web	is	in	XML	format.	You	
may	need	to	consider	other	popular	alternatives	as	part	of	your	development	plans.	
One	of	the	most	popular	today	is	JavaScript	Object	Notation	(JSON)	(www.json.org),	
which	you	learned	about	in	Book	4,	Chapter 8.	JSON	usually	takes	less	space,	is	faster	to	
use,	and	is	easier	to	work	with	than	XML	(see	www.w3schools.com/js/js_json_xml.
asp	for	details).	Consequently,	you	may	find	that	your	next	project	relies	on	JSON	out-
put,	rather	than	XML,	when	dealing	with	certain	web	services	and	microservices.

If	your	data	formatting	choices	consisted	of	just	XML	and	JSON,	you	might	feel	that	
interacting	with	data	is	quite	manageable.	However,	a	lot	of	other	people	have	ideas	of	
how	to	format	data	so	that	you	can	parse	it	quickly	and	easily.	In	addition,	developers	
now	have	a	stronger	emphasis	on	understanding	the	data	stream,	so	some	formatting	
techniques	emphasize	human	readability.	You	can	read	about	some	of	these	other	
alternatives	at	https://insights.dice.com/2018/01/05/5-xml-alternatives-
to-consider/.	One	of	the	more	important	of	these	alternatives	is	YAML —	Yet	Another	
Markup	Language	or	YAML	Ain’t	Markup	Language,	depending	on	whom	you	talk	to	and	
which	resources	you	use	(https://yaml.org/spec/1.2.2/).	Be	prepared	to	do	your	
homework	when	working	through	the	particulars	of	any	new	projects.

6
0005390109.INDD 729	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	4:31	PM

Data Analysis
with Python

Contents at a Glance
CHAPTER 1: Conditioning Your Data . 731

CHAPTER 2: Shaping Data . 759

CHAPTER 3:	 Getting	a	Crash	Course	in MatPlotLib 779

CHAPTER 4: Visualizing the Data . 795

0005390109.INDD 730	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	4:31	PM

CHAPTER 1 Conditioning Your Data 731

0005390166.INDD 731	 Trim	size:	7.375	in	×	9.25	in	 June	8,	2022	5:29	PM

 Conditioning Your Data
“In God we trust. All others must bring data.”

 — W. EDWARDS DEMING

 T he characteristics, content, type, and other elements that defi ne your data
in its entirety make up the data ’ s shape . The shape of your data determines
the kinds of tasks you can perform with it. In order to make your data ame-

nable to certain types of analysis, you must shape it into a diff erent form. Think
of the data as clay and you as the potter, because that’s the sort of relationship
that exists. However, instead of using your hands to shape the data, you rely on
functions and algorithms to perform the task. This chapter helps you understand
the tools you have available to shape data and the ramifi cations of shaping it.

 Also in this chapter, you consider the problems associated with shaping. For
example, you need to know what to do when data is missing from a data set. It’s
important to shape the data correctly or you end up with an analysis that simply
doesn’t make sense. Likewise, some data types, such as dates, can present prob-
lems. Again, you need to tread carefully to ensure that you get the desired result so
that the data set becomes more useful and amenable to analysis of various sorts.

Chapter 1

 IN THIS CHAPTER

» Working with NumPy and pandas

» Knowing your data

» Working with symbolic variables

» Fixing missing data

» Creating data slices

» Adding data elements and modifying
data type

0005390166.INDD 732	 Trim	size:	7.375	in	×	9.25	in	 June	8,	2022	5:29	PM

732 BOOK 6 Data Analysis with Python

The goal of some types of data shaping is to create a larger data set. In many
cases, the data you need to perform an analysis on doesn’t appear in a single
database or in a particular form. You need to shape the data and then combine
it so that you have a single data set in a known format before you can begin
the analysis. Combining data successfully can be an art form because data often
defies simple analysis or quick fixes.

You don’t have to type the source code for this chapter by hand. In fact, it’s a
lot easier if you use the downloadable source. The source code for this chapter
appears in the CAIO4DE2_0601_Getting Your Data in Shape.ipynb source code
file available at www.dummies.com/go/codingallinonefd2e.

Juggling between NumPy and pandas
One of the most essential tools for working with data in Python is NumPy. NumPy
is a library for working with arrays of data. There is no question that you need
NumPy at all times. In fact, the pandas library, which you learned about in Book 5,
Chapter 3, is built on top of NumPy. However, you do need to choose between
NumPy and pandas when performing tasks. You need the low-level functionality
of NumPy to perform some tasks, but pandas makes things so much easier that
you’ll want to use it as often as possible. The following sections describe when to
use each library in more detail.

Knowing when to use NumPy
It’s essential to realize that developers built pandas on top of NumPy. As a result,
every task you perform using pandas also goes through NumPy. To obtain the
benefits of pandas, you may pay a performance penalty that some testers say
is 100 times slower than NumPy for a similar task (see https://penandpants.
com/2014/09/05/performance-of-pandas-series-vs-numpy-arrays). Given
that computer hardware can make up for a lot of performance differences today,
the speed issue may not be a concern at times, but when speed is essential, NumPy
is always the better choice.

Knowing when to use pandas
You use pandas to make writing code easier and faster. Because pandas does a lot of
the work for you, you could make a case for saying that using pandas also reduces
the potential for coding errors. The essential consideration, though, is that the
pandas library provides rich time-series functionality, data alignment, NA-friendly
statistics, groupby, merge, and join methods. Normally, you need to code these fea-
tures when using NumPy, which means you keep reinventing the wheel.

Conditioning Your D
ata

0005390166.INDD 733	 Trim	size:	7.375	in	×	9.25	in	 June	8,	2022	5:29	PM

CHAPTER 1 Conditioning Your Data 733

As this book progresses, you’ll discover just how useful pandas can be for
 performing such tasks as binning (a data preprocessing technique designed to
reduce the effect of observational errors) and working with a data frame (a two-
dimensional labeled data structure with columns that can potentially contain dif-
ferent data types) so that you can calculate statistics on it. All you need to know at
this point is that pandas makes your work considerably easier.

Validating Your Data
When it comes to data, no one really knows what a large database contains. Yes,
everyone has seen bits and pieces of it, but when you consider the size of some
databases, viewing it all would be physically impossible. Because you don’t know
what’s in there, you can’t be sure that your analysis will actually work as desired
and provide valid results. In short, you must validate your data before you use it
to ensure that the data is at least close to what you expect it to be. This means
performing tasks such as removing duplicate records before you use the data for
any sort of analysis (duplicates would unfairly weight the results).

IT’S ALL IN THE PREPARATION
This	book	may	seem	to	spend	a	lot	of	time	massaging	data	and	little	time	on	actually	
analyzing	it.	However,	the	majority	of	a	data	scientist’s	time	is	spent	preparing	data	
because	the	data	is	seldom	in	any	order	to	perform	analysis.	To	prepare	data	for	use,	a	
data	scientist	must

• Get	the	data.
• Aggregate	the	data.
• Create	data	subsets.
• Clean	the	data.
• Develop	a	single	data	set	by	merging	various	data	sets	together.

Fortunately,	you	don’t	need	to	die	of	boredom	while	wading	your	way	through	these	
various	tasks.	Using	Python	and	the	various	libraries	it	provides	makes	the	task	a	lot	
simpler,	faster,	and	more	efficient.	The	better	you	know	how	to	use	Python	to	speed	
your	way	through	these	repetitive	tasks,	the	sooner	you	begin	having	fun	performing	
various	sorts	of	analysis	on	the	data.

0005390166.INDD 734	 Trim	size:	7.375	in	×	9.25	in	 June	8,	2022	5:29	PM

734 BOOK 6 Data Analysis with Python

However, you do need to consider what validation actually does for you. It doesn’t
tell you that the data is correct or that there won’t be values outside the expected
range. Validation ensures that you can perform an analysis of the data and rea-
sonably expect that analysis to succeed. Later, you need to perform additional
data massaging to obtain the sort of results that you need.

Figuring out what’s in your data
Figuring out what your data contains is important because checking data by hand
is sometimes simply impossible due to the number of observations and variables.
In addition, hand verifying the content is time consuming, error prone, and, most
important, really boring. Finding duplicates is important because you end up

 » Spending	more	computational	time	to	process	duplicates,	which	slows	your	
algorithms	down.

 » Obtaining	false	results	because	duplicates	implicitly	overweigh	the	results.	
Because	some	entries	appear	more	than	once,	the	algorithm	considers	these	
entries	more	important.

CHECKING YOUR VERSION OF PANDAS
The	examples	in	this	section	depend	on	your	having	a	minimum	version	of	pandas	
0.23.0	installed	on	your	system.	However,	your	version	of	Anaconda	may	have	a	previ-
ous	pandas	version	installed	instead.	Use	the	following	code	to	check	your	version	of	
pandas:

import pandas as pd
print(pd.__version__)

You	see	the	version	number	of	pandas	you	have	installed.	Another	way	to	check	the	
version	is	to	open	the	Anaconda	Prompt,	type	pip show pandas,	and	press	Enter.	
If	you	have	an	older	version,	open	the	Anaconda	Prompt,	type	pip install pandas
--upgrade,	and	press	Enter.	The	update	process	will	occur	automatically,	along	with	
a	check	of	associated	packages.	When	working	with	Windows,	you	may	need	to	open	
the	Anaconda	prompt	using	the	Administrator	option	(right-click	the	Anaconda	Prompt	
entry	in	the	Start	menu	and	choose	Run	as	Administrator	from	the	context	menu).

The	latest	version	of	pandas	that	the	code	in	this	book	has	been	tested	on	is	version	
1.3.5.	If	you	have	a	newer	version,	you	may	see	errors	or	warnings	when	you	run	the	
code.	To	downgrade	your	version	of	pandas,	open	the	Anaconda	Prompt	and	type	
conda install -c conda-forge pandas=1.3.5.	Whether	you	upgrade	or	down-
grade,	you’ll	need	to	restart	Jupyter	Notebook	for	the	change	to	take	effect.

Conditioning Your D
ata

0005390166.INDD 735	 Trim	size:	7.375	in	×	9.25	in	 June	8,	2022	5:29	PM

CHAPTER 1 Conditioning Your Data 735

As a data scientist, you want your data to enthrall you, so it’s time to get it to
talk to you — not figuratively, of course, but through the wonders of pandas, as
shown in Listing 1-1.

LISTING 1-1: Figuring Out What’s In Your Data

from lxml import objectify

import pandas as pd

xml = objectify.parse(open('XMLData2.xml'))

root = xml.getroot()

df = pd.DataFrame(columns=('Number', 'String', 'Boolean'))

for i in range(0,4):

 obj = root.getchildren()[i].getchildren()

 row = dict(zip(['Number', 'String', 'Boolean'],

 [obj[0].text, obj[1].text,

 obj[2].text]))

 row_s = pd.Series(row)

 row_s.name = i

 df = df.append(row_s)

search = pd.DataFrame.duplicated(df)

print(df)

print()

print(search[search == True])

This example shows how to find duplicate rows. It relies on a modified version of
the XMLData.xml file, XMLData2.xml, which contains a simple repeated row in it.
A real data file contains thousands (or more) of records and possibly hundreds of
repeats, but this simple example does the job. The example begins by reading the
data file into memory using the same technique you explore in Book 6, Chapter 2.
It then places the data into a DataFrame.

Place the XMLData2.xml data file in the same directory as your Python program.

At this point, your data is corrupted because it contains a duplicate row. However,
you can get rid of the duplicated row by searching for it. The first task is to cre-
ate a search object containing a list of duplicated rows by calling pd.DataFrame.
duplicated(). The duplicated rows contain a True next to their row number.

Of course, now you have an unordered list of rows that are and aren’t duplicated.
The easiest way to determine which rows are duplicated is to create an index in
which you use search == True as the expression. Following is the output you see

0005390166.INDD 736	 Trim	size:	7.375	in	×	9.25	in	 June	8,	2022	5:29	PM

736 BOOK 6 Data Analysis with Python

from this example. Notice that row 1 is duplicated in the DataFrame output and
that row 1 is also called out in the search results:

 Number String Boolean

0 1 First True

1 1 First True

2 2 Second False

3 3 Third True

1 True

dtype: bool

DEALING WITH DEPRECATED
LIBRARY ISSUES
One	of	the	major	advantages	of	working	with	Python	is	the	huge	number	of	packages	
that	it	supports.	Unfortunately,	not	every	package	receives	updates	quickly	enough	to	
avoid	using	deprecated	features	in	other	packages.	A	deprecated feature	is	one	that	still	
exists	in	the	target	package,	but	the	developers	of	that	package	plan	to	remove	it	in	an	
upcoming	update.	Consequently,	you	receive	a	deprecated	package	warning	when	you	
run	your	code.	Even	though	the	deprecation	warning	doesn’t	keep	your	code	from	run-
ning,	it	does	tend	to	make	people	leery	of	your	application.	After	all,	no	one	wants	to	
see	what	appears	to	be	an	error	message	as	part	of	the	output.	The	fact	that	Notebook	
displays	these	messages	in	light	red	by	default	doesn’t	help	matters.

These	messages	look	something	like	this:

/var/folders/cf/tfv1tkwj5mq_nvkcxn0fdjzr0000gn/T/
ipykernel_3375/957726744.py:13: FutureWarning: The frame.
append method is deprecated and will be removed from pandas
in a future version. Use pandas.concat instead.

One	way	to	deal	with	this	problem	is	to	downgrade	your	version	of	pandas,	as	men-
tioned	in	the	Checking	Your	Version	of	Pandas	sidebar,	by	using	the	following	command	
at	the	Anaconda	prompt:

conda install -c conda-forge pandas=1.3.5

The	problem	with	this	approach	is	that	it	can	also	cause	problems	for	any	code	that	
uses	the	newer	features	found	in	the	latest	versions	of	pandas.

Conditioning Your D
ata

0005390166.INDD 737	 Trim	size:	7.375	in	×	9.25	in	 June	8,	2022	5:29	PM

CHAPTER 1 Conditioning Your Data 737

Removing duplicates
To get a clean data set, you want to remove the duplicates. Fortunately, you don’t
have to write any weird code to get the job done — pandas does it for you, as
shown in Listing 1-2.

LISTING 1-2: Removing Duplicates

from lxml import objectify

import pandas as pd

xml = objectify.parse(open('XMLData2.xml'))

root = xml.getroot()

df = pd.DataFrame(columns=('Number', 'String', 'Boolean'))

for i in range(0,4):

 obj = root.getchildren()[i].getchildren()

 row = dict(zip(['Number', 'String', 'Boolean'],

 [obj[0].text, obj[1].text,

 obj[2].text]))

 row_s = pd.Series(row)

 row_s.name = i

 df = df.append(row_s)

print(df.drop_duplicates())

Another	solution	is	to	simply	admit	that	the	problem	exists	by	documenting	it	as	part	
of	your	code.	Documenting	the	problem	and	its	specific	cause	makes	it	easier	to	check	
for	the	problem	later	after	a	package	update.	To	do	this,	you	add	the	two	lines	of	code	
shown	here:

import warnings
warnings.filterwarnings("ignore")

The	call	to	filterwarnings()	performs	the	specified	action,	which	is	"ignore"	in	this	
case.	To	cancel	the	effects	of	filtering	the	warnings,	you	call	resetwarnings().	Notice	
that the module	attribute	is	the	same	as	the	source	of	the	problems	in	the	warning	
messages.	You	can	also	define	a	broader	filter	by	using	the	category	attribute.	This	
particular	call	is	narrow,	affecting	only	one	module.

0005390166.INDD 738	 Trim	size:	7.375	in	×	9.25	in	 June	8,	2022	5:29	PM

738 BOOK 6 Data Analysis with Python

As with the previous example, you begin by creating a DataFrame that contains
the duplicate record. To remove the errant record, all you need to do is call drop_
duplicates(). Here’s the result you get:

 Number String Boolean

0 1 First True

2 2 Second False

3 3 Third True

Creating a data map and data plan
You need to know about your data set — that is, how it looks statically. A data map
is an overview of the data set. You use it to spot potential problems in your data,
such as

 » Redundant	variables

 » Possible	errors

 » Missing	values

 » Variable	transformations

Checking for these problems goes into a data plan, which is a list of tasks you have
to perform to ensure the integrity of your data. Listing 1-3 shows a data map, A,
with two data sets, B and C.

LISTING 1-3: Creating a Data Map and Data Plan

import pandas as pd

pd.set_option('display.width', 55)

df = pd.DataFrame({'A': [0,0,0,0,0,1,1],

'B': [1,2,3,5,4,2,5],

'C': [5,3,4,1,1,2,3]})

a_group_desc = df.groupby('A').describe()

print(a_group_desc)

In this case, the data map uses 0s for the first series and 1s for the second series.
The groupby() function places the data sets, B and C, into groups. To determine
whether the data map is viable, you obtain statistics using describe(). What you
end up with is a data set B, series 0 and 1, and data set C, series 0 and 1, as shown
in the following output:

Conditioning Your D
ata

0005390166.INDD 739	 Trim	size:	7.375	in	×	9.25	in	 June	8,	2022	5:29	PM

CHAPTER 1 Conditioning Your Data 739

 B \

 count mean std min 25% 50% 75% max

A

0 5.0 3.0 1.581139 1.0 2.00 3.0 4.00 5.0

1 2.0 3.5 2.121320 2.0 2.75 3.5 4.25 5.0

 C

 count mean std min 25% 50% 75% max

A

0 5.0 2.8 1.788854 1.0 1.00 3.0 4.00 5.0

1 2.0 2.5 0.707107 2.0 2.25 2.5 2.75 3.0

These statistics tell you about the two data set series. The breakup of the two data
sets using specific cases is the data plan. As you can see, the statistics tell you that
this data plan may not be viable because some statistics are relatively far apart.

The default output from describe() shows the data unstacked. Unfortunately,
the unstacked data can print out with an unfortunate break, making it very hard
to read. To keep this from happening, you can set the width you want to use for
the data by calling pd.set_option('display.width', 55). You can set a number
of pandas options this way, by using the information found at https://pandas.
pydata.org/pandas-docs/stable/generated/pandas.set_option.html.

Although the unstacked data is relatively easy to read and compare, you may pre-
fer a more compact presentation. In this case, you can stack the data using the
following code:

stacked = a_group_desc.stack()

print(stacked)

Using unstack() creates a new presentation. Here’s the output shown in a com-
pact form:

 B C

A

0 count 5.000000 5.000000

 mean 3.000000 2.800000

 std 1.581139 1.788854

 min 1.000000 1.000000

 25% 2.000000 1.000000

 50% 3.000000 3.000000

 75% 4.000000 4.000000

 max 5.000000 5.000000

1 count 2.000000 2.000000

 mean 3.500000 2.500000

 std 2.121320 0.707107

0005390166.INDD 740	 Trim	size:	7.375	in	×	9.25	in	 June	8,	2022	5:29	PM

740 BOOK 6 Data Analysis with Python

 min 2.000000 2.000000

 25% 2.750000 2.250000

 50% 3.500000 2.500000

 75% 4.250000 2.750000

 max 5.000000 3.000000

Of course, you may not want all the data that describe() provides. Perhaps you
really just want to see the number of items in each series and their mean. Here’s
how you reduce the size of the information output:

print(a_group_desc.loc[:,(slice(None),['count','mean']),])

Using loc lets you obtain specific columns. Here’s the final output from the exam-
ple showing just the information you absolutely need to make a decision:

 B C

 count mean count mean

A

0 5.0 3.0 5.0 2.8

1 2.0 3.5 2.0 2.5

Manipulating Categorical Variables
In data science, a categorical variable is one that has a specific value from a limited
selection of values. The number of values is usually fixed. Many developers will
know categorical variables by the moniker enumerations. Each of the potential val-
ues that a categorical variable can assume is a level.

To understand how categorical variables work, say that you have a variable express-
ing the color of an object, such as a car, and that the user can select blue, red,
or green. To express the car’s color in a way that computers can represent and
effectively compute, an application assigns each color a numeric value, so blue is 1,
red is 2, and green is 3. Normally when you print each color, you see the value
rather than the color.

If you use pandas.DataFrame (http://pandas.pydata.org/pandas-docs/dev/
generated/pandas.DataFrame.html), you can still see the symbolic value (blue,
red, and green), even though the computer stores it as a numeric value. Some-
times you need to rename and combine these named values to create new sym-
bols. Symbolic variables are just a convenient way of representing and storing
qualitative data.

Conditioning Your D
ata

0005390166.INDD 741	 Trim	size:	7.375	in	×	9.25	in	 June	8,	2022	5:29	PM

CHAPTER 1 Conditioning Your Data 741

When using categorical variables for machine learning, it’s important to con-
sider the algorithm used to manipulate the variables. Some algorithms can work
directly with the numeric variables behind the symbols, while other algorithms
require that you encode the categorical values into binary variables. For example,
if you have three levels for a color variable (blue, red, and green), you have to
create three binary variables:

 » One	for	blue	(1	when	the	value	is	blue,	0	when	it	is	not)

 » One	for	red	(1	when	the	value	is	red,	0	when	it	is	not)

 » One	for	green	(1	when	the	value	is	green,	0	when	it	is	not)

Creating categorical variables
Categorical variables have a specific number of values, which makes them incred-
ibly valuable in performing a number of data science tasks. For example, imagine
trying to find values that are out of range in a huge data set. In Listing 1-4, you see
one method for creating a categorical variable and then using it to check whether
some data falls within the specified limits.

LISTING 1-4: Creating Categorical Variables

import pandas as pd

car_colors = pd.Series(['Blue', 'Red', 'Green'],dtype='category')

car_data = pd.Series(

 pd.Categorical(['Yellow', 'Green', 'Red', 'Blue', 'Purple'],

 categories=car_colors, ordered=False))

find_entries = pd.isnull(car_data)

print(car_colors)

print()

print(car_data)

print()

print(find_entries[find_entries == True])

The example begins by creating a categorical variable, car_colors. The variable
contains the values Blue, Red, and Green as colors that are acceptable for a car.
Notice that you must specify a dtype property value of category.

The next step is to create another series. This one uses a list of actual car colors,
named car_data, as input. Not all the car colors match the predefined acceptable

0005390166.INDD 742	 Trim	size:	7.375	in	×	9.25	in	 June	8,	2022	5:29	PM

742 BOOK 6 Data Analysis with Python

values. When this problem occurs, pandas outputs Not a Number (NaN) instead of
the car color.

Of course, you could search the list manually for the nonconforming cars, but the
easiest method is to have pandas do the work for you. In this case, you ask pandas
which entries are null using isnull() and place them in find_entries. You can
then output just those entries that are actually null. Here’s the output you see
from the example:

0 Blue

1 Red

2 Green

dtype: category

Categories (3, object): [Blue, Green, Red]

0 NaN

1 Green

2 Red

3 Blue

4 NaN

dtype: category

Categories (3, object): [Blue, Green, Red]

0 True

4 True

dtype: bool

Looking at the list of car_data outputs, you can see that entries 0 and 4 equal
NaN. The output from find_entries verifies this fact for you. If this were a large
data set, you could quickly locate and correct errant entries in the data set before
performing an analysis on it.

Renaming levels
There are times when the category names you use are inconvenient or otherwise
wrong for a particular need. Fortunately, you can rename the categories as needed
using the technique shown in Listing 1-5.

LISTING 1-5: Renaming Levels

import pandas as pd

car_colors = pd.Series(['Blue', 'Red', 'Green'],

 dtype='category')

car_data = pd.Series(

 pd.Categorical(

 ['Blue', 'Green', 'Red', 'Blue', 'Red'],

 categories=car_colors, ordered=False))

Conditioning Your D
ata

0005390166.INDD 743	 Trim	size:	7.375	in	×	9.25	in	 June	8,	2022	5:29	PM

CHAPTER 1 Conditioning Your Data 743

car_colors.cat.categories = ["Purple", "Yellow", "Mauve"]

car_data.cat.categories = car_colors

print(car_data)

All you need to do is set the cat.categories property to a new value, as shown.
Here is the output from this example:

0 Purple

1 Yellow

2 Mauve

3 Purple

4 Mauve

dtype: category

Categories (3, object): [Purple, Yellow, Mauve]

Combining levels
A particular categorical level might be too small to offer significant data for anal-
ysis. Perhaps there are only a few of the values, which may not be enough to cre-
ate a statistical difference. In this case, combining several small categories might
offer better analysis results. Listing 1-6 shows how to combine categories.

LISTING 1-6: Combining Levels

import pandas as pd

car_colors = pd.Series(['Blue', 'Red', 'Green'],

 dtype='category')

car_data = pd.Series(

 pd.Categorical(

 ['Blue', 'Green', 'Red', 'Green', 'Red', 'Green'],

 categories=car_colors, ordered=False))

car_data = car_data.cat.set_categories(["Blue", "Red", "Green", "Blue_Red"])

print(car_data.loc[car_data.isin(['Red'])])

car_data.loc[car_data.isin(['Red'])] = 'Blue_Red'

car_data.loc[car_data.isin(['Blue'])] = 'Blue_Red'

car_data = car_data.cat.set_categories(["Green", "Blue_Red"])

print()

print(car_data)

0005390166.INDD 744	 Trim	size:	7.375	in	×	9.25	in	 June	8,	2022	5:29	PM

744 BOOK 6 Data Analysis with Python

What this example shows you is that there is only one Blue item and only two
Red items, but there are three Green items, which places Green in the majority.
Combining Blue and Red first, you add the Blue_Red category to car_data. Then
you change the Red and Blue entries to Blue_Red, which creates the combined
category. As a final step, you can remove the unneeded categories.

However, before you can change the Red entries to Blue_Red entries, you must
find them. This is where a combination of calls to isin(), which locates the Red
entries, and loc[], which obtains their index, provides precisely what you need.
The first print statement shows the result of using this combination. Here’s the
output from this example:

2 Red

4 Red

dtype: category

Categories (4, object): ['Blue', 'Red', 'Green', 'Blue_Red']

0 Blue_Red

1 Green

2 Blue_Red

3 Green

4 Blue_Red

5 Green

dtype: category

Categories (2, object): ['Green', 'Blue_Red']

Notice that there are now three Blue_Red entries and three Green entries. The
Blue and Red categories are no longer in use. The result is that the levels are now
combined as expected.

Dealing with Dates in Your Data
Dates can present problems in data. For one thing, dates are stored as numeric
values. However, the precise value of the number depends on the representation
for the particular platform and could even depend on the users’ preferences. For
example, Excel users can choose to start dates in 1900 or 1904 (https://support.
microsoft.com/en-us/kb/180162). The numeric encoding for each is different,
so the same date can have two numeric values depending on the starting date.

In addition to problems of representation, you also need to consider how to work
with time values. Creating a time value format that represents a value the user can
understand is hard. For example, you might need to use Greenwich Mean Time
(GMT) in some situations but a local time zone in others. Transforming between

Conditioning Your D
ata

0005390166.INDD 745	 Trim	size:	7.375	in	×	9.25	in	 June	8,	2022	5:29	PM

CHAPTER 1 Conditioning Your Data 745

various times is also problematic. With this in mind, the following sections pro-
vide you with details on dealing with time issues.

Formatting date and time values
Obtaining the correct date and time representation can make performing analysis
a lot easier. For example, you often have to change the representation to obtain
a correct sorting of values. Python provides two common methods of formatting
date and time. The first technique is to call str(), which simply turns a datetime
value into a string without any formatting. The strftime() function requires
more work because you must define how you want the datetime value to appear
after conversion. When using strftime(), you must provide a string containing
special directives that define the formatting. You can find a listing of these direc-
tives at strftime.org.

Now that you have some idea of how time and date conversions work, it’s time to
see an example. Listing 1-7 creates a datetime object and then converts it into a
string using two different approaches.

LISTING 1-7: Formatting Date and Time Values

import datetime as dt

now = dt.datetime.now()

print(str(now))

print(now.strftime('%a, %d %B %Y'))

In this case, you can see that using str() is the easiest approach. However, as
shown by the following output, it may not provide the output you need. Using
strftime() is infinitely more flexible.

2022-02-27 05:50:39.309668

Sun, 27 February 2022

Using the right time transformation
Time zones and differences in local time can cause all sorts of problems when
performing analysis. For that matter, some types of calculations simply require
a time shift in order to get the right results. No matter what the reason, you may
need to transform one time into another time at some point. Listing 1-8 shows
some techniques you can employ to perform the task.

0005390166.INDD 746	 Trim	size:	7.375	in	×	9.25	in	 June	8,	2022	5:29	PM

746 BOOK 6 Data Analysis with Python

LISTING 1-8: Using the Right Time Transformation

import datetime as dt

now = dt.datetime.now()

timevalue = now + dt.timedelta(hours=2)

print(now.strftime('%H:%M:%S'))

print(timevalue.strftime('%H:%M:%S'))

print(timevalue - now)

The timedelta() function makes the time transformation straightforward. You
can use any of these parameter names with timedelta() to change a time and
date value:

 » days

 » seconds

 » microseconds

 » milliseconds

 » minutes

 » hours

 » weeks

You can also manipulate time by performing addition or subtraction on time val-
ues. You can even subtract two time values to determine the difference between
them. Here’s the output from this example:

05:51:52

07:51:52

2:00:00

Notice that now is the local time, timevalue is two time zones different from this
one, and there is a two-hour difference between the two times. You can perform
all sorts of transformations using these techniques to ensure that your analysis
always precisely shows the time-oriented values you need.

Conditioning Your D
ata

0005390166.INDD 747	 Trim	size:	7.375	in	×	9.25	in	 June	8,	2022	5:29	PM

CHAPTER 1 Conditioning Your Data 747

Dealing with Missing Data
Sometimes the data you receive is missing information in specific fields. For
example, a customer record might be missing an age. If enough records are miss-
ing entries, any analysis you perform will be skewed and the results of the analysis
weighted in an unpredictable manner. Having a strategy for dealing with missing
data is important. The following sections give you some ideas on how to work
through these issues and produce better results.

Finding the missing data
It’s essential to find missing data in your data set to avoid getting incorrect results
from your analysis. Listing 1-9 shows how you could obtain a listing of missing
values without too much effort.

LISTING 1-9: Finding the Missing Data

import pandas as pd

import numpy as np

s = pd.Series([1, 2, 3, np.NaN, 5, 6, None])

print(s.isnull())

print()

print(s[s.isnull()])

A data set could represent missing data in several ways. In this example, you see
missing data represented as np.NaN (NumPy Not a Number) and the Python None
value.

Use the isnull() method to detect the missing values. The output shows True
when the value is missing. By adding an index into the data set, you obtain just the
entries that are missing. The example shows the following output:

0 False

1 False

2 False

3 True

4 False

5 False

6 True

dtype: bool

0005390166.INDD 748	 Trim	size:	7.375	in	×	9.25	in	 June	8,	2022	5:29	PM

748 BOOK 6 Data Analysis with Python

3 NaN

6 NaN

dtype: float64

Encoding missingness
After you figure out that your data set is missing information, you need to con-
sider what to do about it. The three possibilities are to ignore the issue, fill in the
missing items, or remove (drop) the missing entries from the data set. Ignoring
the problem could lead to all sorts of problems for your analysis, so it’s the option
you use least often. Listing 1-10 shows one technique for filling in missing data or
dropping the errant entries from the data set.

LISTING 1-10: Encoding Missingness

import pandas as pd

import numpy as np

s = pd.Series([1, 2, 3, np.NaN, 5, 6, None])

print(s.fillna(int(s.mean())))

print()

print(s.dropna())

The two methods of interest are fillna(), which fills in the missing entries,
and dropna(), which drops the missing entries. When using fillna(), you must
provide a value to use for the missing data. This example uses the mean of all the
values, but you could choose a number of other approaches. Here’s the output
from this example:

0 1

1 2

2 3

3 3

4 5

5 6

6 3

dtype: float64

0 1

1 2

2 3

4 5

5 6

dtype: float64

Conditioning Your D
ata

0005390166.INDD 749	 Trim	size:	7.375	in	×	9.25	in	 June	8,	2022	5:29	PM

CHAPTER 1 Conditioning Your Data 749

Working with a series is straightforward because the data set is so simple. When
working with a DataFrame, however, the problem becomes significantly more
complicated. You still have the option of dropping the entire row. When a column
is sparsely populated, you might drop the column instead. Filling in the data also
becomes more complex because you must consider the data set as a whole, in
addition to the needs of the individual feature.

Imputing missing data
The previous section hints at the process of imputing missing data (ascribing
characteristics based on how the data is used). The technique you use depends on
the sort of data you’re working with. Listing 1-11 shows a technique you can use
to impute missing data values.

LISTING 1-11: Imputing Missing Data

import pandas as pd

import numpy as np

from sklearn.impute import SimpleImputer

s = [[1, 2, 3, np.NaN, 5, 6, None]]

imp = SimpleImputer(strategy='mean')

imp.fit([[1, 2, 3, 4, 5, 6, 7]])

x = pd.Series(imp.transform(s).tolist()[0])

print(x)

In this example, s is missing some values. The code creates a SimpleImputer to
replace these missing values. The strategy parameter defines how to replace the
missing values.

Before you can impute anything, you must provide statistics for the Simple
Imputer to use by calling fit(). The code then calls transform() on s to fill in the
missing values. However, the output is no longer a series. To create a series, you
must convert the SimpleImputer output to a list and use the resulting list as input
to Series(). Here’s the result of the process with the missing values filled in:

0 1.0

1 2.0

2 3.0

3 4.0

4 5.0

0005390166.INDD 750	 Trim	size:	7.375	in	×	9.25	in	 June	8,	2022	5:29	PM

750 BOOK 6 Data Analysis with Python

5 6.0

6 7.0

dtype: float64

Slicing and Dicing: Filtering
and Selecting Data

You may not need to work with all the data in a data set. In fact, looking at just
one particular column might be beneficial, such as age, or a set of rows with a
significant amount of information. You perform two steps to obtain just the data
you need to perform a particular task:

1. Filter rows to create a subject of the data that meets the criterion you
select (such as all the people between the ages of 5 and 10).

2. Select data columns that contain the data you need to analyze.

For	example,	you	probably	don’t	need	the	individuals’	names	unless	you	want	
to	perform	some	analysis	based	on	name.

The act of slicing and dicing data gives you a subset of the data suitable for analy-
sis. The following sections describe various ways to obtain specific pieces of data
to meet particular needs.

Slicing rows
Slicing can occur in multiple ways when working with data, but the technique
of interest in this section is to slice data from a row of 2D or 3D data. A 2D array
may contain temperatures (x axis) over a specific timeframe (y axis). Slicing a row
would mean seeing the temperatures at a specific time. In some cases, you might
associate rows with cases in a data set.

A 3D array might include an axis for place (x axis), product (y axis), and time
(z axis) so that you can see sales for items over time. Perhaps you want to track
whether sales of an item are increasing, and specifically where they are increas-
ing. Slicing a row would mean seeing all the sales for one specific product for all
locations at any time. Listing 1-12 demonstrates how to perform this task.

Conditioning Your D
ata

0005390166.INDD 751	 Trim	size:	7.375	in	×	9.25	in	 June	8,	2022	5:29	PM

CHAPTER 1 Conditioning Your Data 751

LISTING 1-12: Slicing Rows

x = np.array([[[1, 2, 3], [4, 5, 6], [7, 8, 9],],

 [[11,12,13], [14,15,16], [17,18,19],],

 [[21,22,23], [24,25,26], [27,28,29]]])

x[1]

In this case, the example builds a 3D array. It then slices row 1 of that array to
produce the following output:

array([[11, 12, 13],

 [14, 15, 16],

 [17, 18, 19]])

Slicing columns
Using the examples from the previous section, slicing columns would obtain data
at a 90-degree angle from rows. In other words, when working with the 2D
array, you would want to see the times at which specific temperatures occurred.
Likewise, you might want to see the sales of all products for a specific location
at any time when working with the 3D array. In some cases, you might associate
columns with features in a data set. Listing 1-13 demonstrates how to perform
this task using the same array as in the previous section.

LISTING 1-13: Slicing Columns

x = np.array([[[1, 2, 3], [4, 5, 6], [7, 8, 9],],

 [[11,12,13], [14,15,16], [17,18,19],],

 [[21,22,23], [24,25,26], [27,28,29]]])

x[:,1]

Notice that the indexing now occurs at two levels. The first index refers to the
row. Using the colon (:) for the row means to use all the rows. The second index
refers to a column. In this case, the output will contain column 1. Here’s the out-
put you see:

array([[4, 5, 6],

 [14, 15, 16],

 [24, 25, 26]])

This is a 3D array. Therefore each of the columns contains all the z axis elements.
What you see is every row — 0 through 2 for column 1 with every z axis element 0
through 2 for that column.

0005390166.INDD 752	 Trim	size:	7.375	in	×	9.25	in	 June	8,	2022	5:29	PM

752 BOOK 6 Data Analysis with Python

Dicing
The act of dicing a data set means to perform both row and column slicing such
that you end up with a data wedge. For example, when working with the 3D array,
you might want to see the sales of a specific product in a specific location at any
time. Listing 1-14 demonstrates how to perform this task using the same array as
in the previous two sections.

LISTING 1-14: Dicing

x = np.array([[[1, 2, 3], [4, 5, 6], [7, 8, 9],],

 [[11,12,13], [14,15,16], [17,18,19],],

 [[21,22,23], [24,25,26], [27,28,29]]])

print(x[1,1])

print(x[:,1,1])

print(x[1,:,1])

print()

print(x[1:2, 1:2])

This example dices the array in four different ways. First, you get row 1, column 1.
Of course, what you may actually want is column 1, z axis 1. If that’s not quite
right, you could always request row 1, z axis 1 instead. Then again, you may want
rows 1 and 2 of columns 1 and 2. Here’s the output of all four requests:

[14 15 16]

[5 15 25]

[12 15 18]

[[[14 15 16]]]

Concatenating and Transforming
Data used for data science purposes seldom comes in a neat package. You may
need to work with multiple databases in various locations — each of which has its
own data format. It’s impossible to perform analysis on such disparate sources of
information with any accuracy. To make the data useful, you must create a single
data set (by concatenating, or combining, the data from various sources).

Conditioning Your D
ata

0005390166.INDD 753	 Trim	size:	7.375	in	×	9.25	in	 June	8,	2022	5:29	PM

CHAPTER 1 Conditioning Your Data 753

Part of the process is to ensure that each field you create for the combined data
set has the same characteristics. For example, an age field in one database might
appear as a string, but another database could use an integer for the same field.
For the fields to work together, they must appear as the same type of information.

The following sections help you understand the process involved in concatenating
and transforming data from various sources to create a single data set. After you
have a single data set from these sources, you can begin to perform tasks such as
analysis on the data. Of course, the trick is to create a single data set that truly
represents the data in all those disparate data sets — modifying the data would
result in skewed results.

Adding new cases and variables
You often find a need to combine data sets in various ways or even to add new
information for the sake of analysis. The result is a combined data set that includes
either new cases or variables. Listing 1-15 shows techniques for performing both
tasks.

LISTING 1-15: Adding New Cases and Variables

import pandas as pd

df = pd.DataFrame({'A': [2,3,1],

 'B': [1,2,3],

 'C': [5,3,4]})

df1 = pd.DataFrame({'A': [4],

 'B': [4],

 'C': [4]})

df = df.append(df1)

df = df.reset_index(drop=True)

print(df)

df.loc[df.last_valid_index() + 1] = [5, 5, 5]
print()

print(df)

df2 = pd.DataFrame({'D': [1, 2, 3, 4, 5]})

df = pd.DataFrame.join(df, df2)

print()

print(df)

0005390166.INDD 754	 Trim	size:	7.375	in	×	9.25	in	 June	8,	2022	5:29	PM

754 BOOK 6 Data Analysis with Python

The easiest way to add more data to an existing DataFrame is to rely on the
append() method. You can also use the concat() method (a technique shown
in Book 6, Chapter 1). In this case, the three cases found in df are added to the
single case found in df1. To ensure that the data is appended as anticipated, the
columns in df and df1 must match. When you append two DataFrame objects in
this manner, the new DataFrame contains the old index values. Use the reset_
index() method to create a new index to make accessing cases easier.

You can also add another case to an existing DataFrame by creating the new case
directly. Any time you add a new entry at a position that is one greater than the
last_valid_index(), you get a new case as a result.

Sometimes you need to add a new variable (column) to the DataFrame. In this
case, you rely on join() to perform the task. The resulting DataFrame will match
cases with the same index value, so indexing is important. In addition, unless you
want blank values, the number of cases in both DataFrame objects must match.
Here’s the output from this example:

A B C

0 2 1 5

1 3 2 3

2 1 3 4

3 4 4 4

A B C

0 2 1 5

1 3 2 3

2 1 3 4

3 4 4 4

4 5 5 5

A B C D

0 2 1 5 1

1 3 2 3 2

2 1 3 4 3

3 4 4 4 4

4 5 5 5 5

Removing data
At some point, you may need to remove cases or variables from a data set because
they aren’t required for your analysis. In both cases, you rely on the drop()
method to perform the task. The difference in removing cases or variables is in
how you describe what to remove, as shown in Listing 1-16.

Conditioning Your D
ata

0005390166.INDD 755	 Trim	size:	7.375	in	×	9.25	in	 June	8,	2022	5:29	PM

CHAPTER 1 Conditioning Your Data 755

LISTING 1-16: Removing Data

import pandas as pd

df = pd.DataFrame({'A': [2,3,1],

 'B': [1,2,3],

 'C': [5,3,4]})

df = df.drop(df.index[[1]])

print(df)

df = df.drop(columns='B')

print()

print(df)

The example begins by removing a case from df. Notice how the code relies on
an index to describe what to remove. You can remove just one case (as shown),
ranges of cases, or individual cases separated by commas. The main concern is to
ensure that you have the correct index numbers for the cases you want to remove.

Removing a column is different. This example shows how to remove a column
using a column name. You can also remove a column by using an index. Here’s the
output from this example:

 A B C

0 2 1 5

2 1 3 4

 A C

0 2 5

2 1 4

Sorting and shuffling
Sorting and shuffling are two ends of the same goal — to manage data order. In
the first case, you put the data into order, while in the second, you remove any
systematic patterning from the order. In general, you don’t sort data sets for the
purpose of analysis because doing so can cause you to get incorrect results. How-
ever, you might want to sort data for presentation purposes. Listing 1-17 shows
sorting and shuffling.

0005390166.INDD 756	 Trim	size:	7.375	in	×	9.25	in	 June	8,	2022	5:29	PM

756 BOOK 6 Data Analysis with Python

LISTING 1-17: Sorting and Shuffling

import pandas as pd

import numpy as np

df = pd.DataFrame({'A': [2,1,2,3,3,5,4],

 'B': [1,2,3,5,4,2,5],

 'C': [5,3,4,1,1,2,3]})

df = df.sort_values(by=['A', 'B'], ascending=[True, True])

df = df.reset_index(drop=True)

print(df)

index = df.index.tolist()

np.random.shuffle(index)

df = df.loc[df.index[index]]

df = df.reset_index(drop=True)

print()

print(df)

It turns out that sorting the data is a bit easier than shuffling it. To sort the data,
you use the sort_values() method and define which columns to use for indexing
purposes. You can also determine whether the index is in ascending or descending
order. Make sure to always call reset_index() when you’re done so that the index
appears in order for analysis or other purposes.

To shuffle the data, you first acquire the current index using df.index.tolist()
and place it in index. A call to random.shuffle() creates a new order for the
index. You then apply the new order to df using loc[]. As always, you call reset_
index() to finalize the new order. Here’s the output from this example (but note
that the second output may not match your output because it has been shuffled):

 A B C

0 1 2 3

1 2 1 5

2 2 3 4

3 3 4 1

4 3 5 1

5 4 5 3

6 5 2 2

 A B C

0 2 1 5

1 4 5 3

2 5 2 2

3 3 5 1

4 2 3 4

5 1 2 3

6 3 4 1

Conditioning Your D
ata

0005390166.INDD 757	 Trim	size:	7.375	in	×	9.25	in	 June	8,	2022	5:29	PM

CHAPTER 1 Conditioning Your Data 757

Aggregating Data at Any Level
Aggregation is the process of combining or grouping data together into a set or
list. The data may or may not be alike. However, in most cases, an aggregation
function combines several rows together statistically using algorithms such as
average, count, maximum, median, minimum, mode, or sum. There are several
reasons to aggregate data:

 » Make	it	easier	to	analyze.

 » Obfuscate	personal	data	for	privacy	or	other	reasons.

 » Create	a	combined	data	element	from	one	data	source	that	matches	a	
combined	data	element	in	another	source.

The most important use of data aggregation is to promote anonymity in order
to meet legal or other concerns. Sometimes even data that should be anony-
mous turns out to provide identification of an individual using the proper analy-
sis techniques. For example, researchers have found that it’s possible to identify
individuals based on just three credit card purchases (see www.computerworld.
com/article/2877935/how-three-small-credit-card-transactions-could-
reveal-your-identity.html). Listing 1-18 shows how to perform aggregation
tasks.

LISTING 1-18: Aggregating Data at Any Level

import pandas as pd

df = pd.DataFrame({'Map': [0,0,0,1,1,2,2],

'Values': [1,2,3,5,4,2,5]})

df['S'] = df.groupby('Map')['Values'].transform(np.sum)

df['M'] = df.groupby('Map')['Values'].transform(np.mean)

df['V'] = df.groupby('Map')['Values'].transform(np.var)

print(df)

In this case, you have two initial features for this DataFrame. The values in Map
define which elements in Values belong together. For example, when calculating
a sum for Map index 0, you use the Values 1, 2, and 3.

To perform the aggregation, you must first call groupby() to group the Map val-
ues. You then index into Values and rely on transform() to create the aggregated

0005390166.INDD 758	 Trim	size:	7.375	in	×	9.25	in	 June	8,	2022	5:29	PM

758 BOOK 6 Data Analysis with Python

data using one of several algorithms found in NumPy, such as np.sum. Here are
the results of this calculation:

 Map Values S M V

0 0 1 6 2.0 1.0

1 0 2 6 2.0 1.0

2 0 3 6 2.0 1.0

3 1 5 9 4.5 0.5

4 1 4 9 4.5 0.5

5 2 2 7 3.5 4.5

6 2 5 7 3.5 4.5

CHAPTER 2 Shaping Data 759

0005390167.INDD 759 Trim size: 7.375 in × 9.25 in June 11, 2022 4:00 PM

 Shaping Data
“It is a capital mistake to theorize before one has data.”

 — SHERLOCK HOLMES

 B ook 6, Chapter 1 demonstrates techniques for working with data as an
entity — as something you work with in Python. However, data doesn’t
exist in a vacuum. It doesn’t just suddenly appear in Python for absolutely

no reason at all. As demonstrated in Book 5, Chapter 3, you load the data. However,
loading may not be enough — you may have to shape the data as part of loading
it. That’s the purpose of this chapter. You discover how to work with a variety
of container types in a way that makes it possible to load data from a number of
complex container types, such as HTML pages. In fact, you even work with graph-
ics, images, and sounds.

As you progress through the book, you discover that data takes all kinds of forms
and shapes. As far as the computer is concerned, data consists of 0s and 1s. Humans
give the data meaning by formatting, storing, and interpreting it in a certain way.
The same group of 0s and 1s could be a number, date, or text, depending on the
interpretation. The data container provides clues as to how to interpret the data,
so that’s why this chapter is so important as you use Python to discover data pat-
terns. You will fi nd that you can discover patterns in places where you might have
thought patterns couldn’t exist.

Chapter 2

 IN THIS CHAPTER

» Manipulating HTML data

» Manipulating raw text

» Discovering the bag of words model
and other techniques

» Manipulating graph data

0005390167.INDD 760 Trim size: 7.375 in × 9.25 in June 11, 2022 4:00 PM

760 BOOK 6 Data Analysis with Python

You don’t have to type the source code for this chapter manually. In fact, it’s
a lot easier if you use the downloadable source available at www.dummies.
com/go/codingallinonefd2e. The source code for this chapter appears in the
CAIO4D2E_0602_Shaping_Data.ipynb source code file.

Working with HTML Pages
HTML pages contain data in a hierarchical format. You often find HTML content
in a strict HTML form or as XML. The HTML form can present problems because
it doesn’t always necessarily follow strict formatting rules. XML does follow strict
formatting rules because of the standards used to define it, which makes it easier
to parse. However, in both cases, you use similar techniques to parse a page. The
first section that follows describes how to parse HTML pages in general.

Sometimes you don’t need all the data on a page. Instead you need specific data,
which is where XPath comes into play. You can use XPath to locate specific data
on the HTML page and extract it for your particular needs.

Parsing XML and HTML
Simply extracting data from an XML file as you do in Book 5, Chapter 3 may not be
enough. The data may not be in the correct format. Using the approach in Book 5,
Chapter 3, you end up with a DataFrame containing three columns of type str.
Obviously, you can’t perform much data manipulation with strings. Listing 2-1
shapes the XML data from Book 5, Chapter 3 to create a new DataFrame containing
just the <Number> and <Boolean> elements in the correct format.

LISTING 2-1: Parsing XML and HTML

from lxml import objectify

import pandas as pd

from distutils import util

xml = objectify.parse(open('XMLData.xml'))

root = xml.getroot()

df = pd.DataFrame(columns=('Number', 'Boolean'))

for i in range(0, 4):

 obj = root.getchildren()[i].getchildren()

 row = dict(zip(['Number', 'Boolean'],

 [obj[0].pyval,

 bool(util.strtobool(obj[2].text))]))

Shaping D
ata

0005390167.INDD 761 Trim size: 7.375 in × 9.25 in June 11, 2022 4:00 PM

CHAPTER 2 Shaping Data 761

 row_s = pd.Series(row)

 row_s.name = obj[1].text

 df = df.append(row_s)

print(type(df.loc['First']['Number']))

print(type(df.loc['First']['Boolean']))

The DataFrame df is initially instantiated as empty, but as the code loops through
the root node’s children, it extracts a list containing the following

 » A <Number> element (expressed as an int)

 » An ordinal element (a string)

 » A <Boolean> element (expressed as a string)

The code uses this list to increment df. In fact, the code relies on the ordinal num-
ber element as the index label and constructs a new individual row to append to
the existing DataFrame. This operation programmatically converts the informa-
tion contained in the XML tree into the right data type to place into the existing
variables in df. The number elements are already available as int type; the con-
version of the <Boolean> element is a little harder. You must convert the string to
a numeric value using the strtobool() function in distutils.util. The output
is a 0 for False values and a 1 for True values. However, that’s still not a Boolean
value. To create a Boolean value, you must convert the 0 or 1 using bool().

This example also shows how to access individual values in the DataFrame. Notice
that the name property now uses the <String> element value for easy access. You
provide an index value using loc and then access the individual feature using a
second index. The output from this example is

<class 'int'>
<class 'bool'>

Using XPath for data extraction
Using XPath to extract data from your data set can greatly reduce the complexity
of your code and potentially make it faster as well. Listing 2-2 shows an XPath
version of the example in the previous section. Notice that this version is shorter
and doesn’t require the use of a for loop.

0005390167.INDD 762 Trim size: 7.375 in × 9.25 in June 11, 2022 4:00 PM

762 BOOK 6 Data Analysis with Python

LISTING 2-2: Using XPath for Data Extraction

from lxml import objectify

import pandas as pd

from distutils import util

xml = objectify.parse(open('XMLData.xml'))

root = xml.getroot()

map_number = map(int, root.xpath('Record/Number'))

map_bool = map(str, root.xpath('Record/Boolean'))

map_bool = map(util.strtobool, map_bool)

map_bool = map(bool, map_bool)

map_string = map(str, root.xpath('Record/String'))

data = list(zip(map_number, map_bool))

df = pd.DataFrame(data,

 columns=('Number', 'Boolean'),

 index = list(map_string))

print(df)

print(type(df.loc['First']['Number']))

print(type(df.loc['First']['Boolean']))

The example begins just like the previous example, by importing data and obtain-
ing the root node. At this point, the example creates a data object that contains
record number and Boolean value pairs. Because the XML file entries are all
strings, you must use the map() function to convert the strings to the appropriate
values. Working with the record number is straightforward — all you do is map it
to an int. The xpath() function accepts a path from the root node to the data you
need, which is 'Record/Number' in this case.

Mapping the Boolean value is a little more difficult. As in the previous section, you
must use the util.strtobool() function to convert the string Boolean values to
a number that bool() can convert to a Boolean equivalent. However, if you try to
perform just a double mapping, you’ll encounter an error message saying that lists
don’t include a required function, tolower().To overcome this obstacle, you perform
a triple mapping and convert the data to a string using the str() function first.

Creating the DataFrame is different, too. Instead of adding individual rows, you
add all the rows at one time by using data. Setting up the column names is the
same as before. However, now you need some way of adding the row names, as in
the previous example. This task is accomplished by setting the index parameter
to a mapped version of the xpath() output for the 'Record/String' path. Here’s
the output you can expect:

Shaping D
ata

0005390167.INDD 763 Trim size: 7.375 in × 9.25 in June 11, 2022 4:00 PM

CHAPTER 2 Shaping Data 763

 Number Boolean

First 1 True

Second 2 False

Third 3 True

Fourth 4 False

<type 'numpy.int64'>

<type 'numpy.bool_'>

Working with Raw Text
Even though it might seem as if raw text wouldn’t present a problem in parsing
because it doesn’t contain any special formatting, you do have to consider how the
text is stored and whether it contains special words. The multiple forms of Uni-
code can present interpretation problems that you need to consider as you work
through the text. Using regular expressions can help you locate specific informa-
tion within a raw text file. You can use regular expressions for both data cleaning
and pattern matching. The following sections help you understand the techniques
used to shape raw text files.

Dealing with Unicode
Text files are pure text — this much is certain. The way the text is encoded can
differ. For example, a character can use seven, eight, or more bits for encoding
purposes. The use of special characters can differ as well. In short, the interpre-
tation of bits used to create characters differs from encoding to encoding. You can
see a host of encodings at www.i18nguy.com/unicode/codepages.html.

Sometimes you need to work with encodings other than the default encoding set
within the Python environment. When working with Python 3.x, you must rely
on Universal Transformation Format 8-bit (UTF-8) as the encoding used to read
and write files. This environment is always set for UTF-8, and trying to change
it causes an error message. The article at https://docs.python.org/3/howto/
unicode.html provides insights on how to get around the Unicode problems in
Python.

Dealing with encoding incorrectly can prevent you from performing tasks such
as importing modules or processing text. Make sure to test your code carefully
and completely to ensure that any problem with encoding won’t affect your abil-
ity to run the application. Good additional articles to read on this topic appear
at http://blog.notdot.net/2010/07/Getting-unicode-right-in-Python and
http://web.archive.org/web/20120722170929/http://boodebr.org/main/
python/all-about-python-and-unicode.

0005390167.INDD 764 Trim size: 7.375 in × 9.25 in June 11, 2022 4:00 PM

764 BOOK 6 Data Analysis with Python

Stemming and removing stop words
Stemming is the process of reducing words to their stem (or root) word. This task
isn’t the same as understanding that some words come from Latin or other roots,
but instead makes like words equal to each other for the purpose of comparison
or sharing. For example, the words cats, catty, and catlike all have the stem cat.
The act of stemming helps you analyze sentences by tokenizing them in a more
efficient way because the machine learning algorithm has to learn about the stem
cat and not about all its variants.

Removing suffixes to create stem words and generally tokenizing sentences are
only two parts of the process, however, of creating something like a natural lan-
guage interface. Languages include a great number of glue words that don’t mean
much to a computer but have significant meaning to humans, such as a, as, the,
that, and so on in English. These short, less useful words are stop words. Sentences
don’t make sense without them to humans, but for your computer, they can act as
a means of stopping sentence analysis.

The act of stemming and removing stop words simplifies the text and reduces the
number of textual elements so that just the essential elements remain. In addi-
tion, you keep just the terms that are nearest to the true sense of the phrase. By
reducing phrases in such a fashion, a computational algorithm can work faster
and process the text more effectively.

This example requires the use of the Natural Language Toolkit (NLTK), which
Anaconda doesn’t install by default. To use this example, you must download
and install NLTK using the instructions found at www.nltk.org/install.html
for your platform. Make certain that you install the NLTK for whatever version
of Python you’re using for this book when you have multiple versions of Python
installed on your system. After you install NLTK, you must also install the pack-
ages associated with it. The instructions at www.nltk.org/data.html tell you
how to perform this task (install all the packages to ensure you have everything).

The example in Listing 2-3 demonstrates how to perform stemming and remove
stop words from a sentence. It begins by training an algorithm to perform the
required analysis using a test sentence. Afterward, the example checks a second
sentence for words that appear in the first.

LISTING 2-3: Stemming and Removing Stop Words

from sklearn.feature_extraction.text import *

from nltk import word_tokenize

from nltk.stem.porter import PorterStemmer

stemmer = PorterStemmer()

Shaping D
ata

0005390167.INDD 765 Trim size: 7.375 in × 9.25 in June 11, 2022 4:00 PM

CHAPTER 2 Shaping Data 765

def stem_tokens(tokens, stemmer):

 stemmed = []

 for item in tokens:

 stemmed.append(stemmer.stem(item))

 return stemmed

def tokenize(text):

 tokens = word_tokenize(text)

 stems = stem_tokens(tokens, stemmer)

 return stems

vocab = ['Sam loves swimming so he swims all the time']

vect = CountVectorizer(tokenizer=tokenize,

 stop_words='english')

vec = vect.fit(vocab)

sentence1 = vec.transform(['George loves swimming too!'])

print(vec.get_feature_names_out())

print(sentence1.toarray())

At the outset, the example creates a vocabulary using a test sentence and places
it in vocab. It then creates a CountVectorizer, vect, to hold a list of stemmed
words, but excludes the stop words. The tokenizer parameter defines the func-
tion used to stem the words. The stop_words parameter refers to a pickle file that
contains stop words for a specific language, which is English in this case. There
are also files for other languages, such as French and German. (You can see other
parameters for the CountVectorizer() at https://scikit-learn.org/stable/
modules/generated/sklearn.feature_extraction.text.CountVectorizer.
html.) The vocabulary is fitted into another CountVectorizer, vec, which is used
to perform the actual transformation on a test sentence using the transform()
function. Here’s the output from this example.

['love', 'sam', 'swim', 'time']
[[1 0 1 0]]

The first output shows the stemmed words. Notice that the list contains only swim,
not swimming and swims. All the stop words are missing as well. For example, you
don’t see the words so, he, all, or the.

The second output shows how many times each stemmed word appears in the test
sentence. In this case, a love variant appears once and a swim variant appears once
as well. The words sam and time don’t appear in the second sentence, so those
values are set to 0.

0005390167.INDD 766 Trim size: 7.375 in × 9.25 in June 11, 2022 4:00 PM

766 BOOK 6 Data Analysis with Python

Introducing regular expressions
Regular expressions present the data scientist with an interesting array of tools
for parsing raw text. At first, it may seem daunting to figure out precisely how
regular expressions work. However, sites such as https://regexr.com/ let you
play with regular expressions so that you can see how the use of various expres-
sions performs specific types of pattern matching. Of course, the first require-
ment is to discover pattern matching, which is the use of special characters to tell
a parsing engine what to find in the raw text file. Table 2-1 provides a list of
pattern-matching characters and tells you how to use them.

TABLE 2-1 Pattern-Matching Characters Used in Python
Character Interpretation

(re) Groups regular expressions and remembers the matched text.

(?: re) Groups regular expressions without remembering matched text.

(?#...) Indicates a comment, which isn’t processed.

re? Matches 0 or 1 occurrence of preceding expression (but no more than 0 or 1 occurrence).

re* Matches 0 or more occurrences of the preceding expression.

re+ Matches 1 or more occurrences of the preceding expression.

(?> re) Matches an independent pattern without backtracking.

. Matches any single character except the new line (\n) character (adding the m option
allows it to match the new line character as well).

[^...] Matches any single character or range of characters not found within the brackets.

[...] Matches any single character or range of characters that appears within the brackets.

re{ n, m} Matches at least n and at most m occurrences of the preceding expression.

\n, \t, etc. Matches control characters such as new lines (\n), carriage returns (\r), and tabs (\t).

\d Matches digits (which is equivalent to using [0-9]).

a|b Matches either a or b.

re{ n} Matches exactly the number of occurrences of preceding expression specified by n.

re{ n,} Matches n or more occurrences of the preceding expression.

\D Matches nondigits.

\S Matches nonwhitespace.

Shaping D
ata

0005390167.INDD 767 Trim size: 7.375 in × 9.25 in June 11, 2022 4:00 PM

CHAPTER 2 Shaping Data 767

Using regular expressions helps you manipulate complex text before using other
techniques described in this chapter. In Listing 2-4, you see how to extract a tele-
phone number from a sentence no matter where the telephone number appears.
This sort of manipulation is helpful when you have to work with text of various
origins and in irregular format. You can see some additional telephone num-
ber manipulation routines at www.diveintopython.net/regular_expressions/
phone_numbers.html. The big thing is that this example helps you understand
how to extract any text you need from text you don’t.

Character Interpretation

\B Matches nonword boundaries.

\W Matches nonword characters.

\1...\9 Matches nth grouped subexpression.

\10 Matches nth grouped subexpression if it matched already (otherwise the pattern refers to
the octal representation of a character code).

\A Matches the beginning of a string.

^ Matches the beginning of the line.

\z Matches the end of a string.

\Z Matches the end of string (when a new line exists, it matches just before new line).

$ Matches the end of the line.

\G Matches the point where the last match finished.

\s Matches whitespace (which is equivalent to using [\t\n\r\f]).

\b Matches word boundaries when outside the brackets; matches the backspace (0x08)
when inside the brackets.

\w Matches word characters.

(?= re) Specifies a position using a pattern (this pattern doesn’t have a range).

(?! re) Specifies a position using pattern negation (this pattern doesn’t have a range).

(?-imx) Toggles the i, m, or x options temporarily off within a regular expression (when this pattern
appears in parentheses, only the area within the parentheses is affected).

(?imx) Toggles the i, m, or x options temporarily on within a regular expression (when this
pattern appears in parentheses, only the area within the parentheses is affected).

(?-imx: re) Toggles the i, m, or x options within parentheses temporarily off.

(?imx: re) Toggles the i, m, or x options within parentheses temporarily on.

0005390167.INDD 768 Trim size: 7.375 in × 9.25 in June 11, 2022 4:00 PM

768 BOOK 6 Data Analysis with Python

LISTING 2-4: Introducing Regular Expressions

import re

data1 = 'My phone number is: 800-555-1212.'
data2 = '800-555-1234 is my phone number.'

pattern = re.compile(r'(\d{3})-(\d{3})-(\d{4})')

dmatch1 = pattern.search(data1).groups()
dmatch2 = pattern.search(data2).groups()

print(dmatch1)
print(dmatch2)

The example begins with two telephone numbers placed in sentences in vari-
ous locations. Before you can do much, you need to create a pattern. Always read
a pattern from left to right. In this case, the pattern is looking for three digits,
followed by a dash, three more digits, followed by another dash, and finally four
digits.

To make the process faster and easier, the code calls the compile() function
to create a compiled version of the pattern so that Python doesn’t have to re-
create the pattern every time you need it. The compiled pattern appears in
pattern.

The search() function looks for the pattern in each of the test sentences. It then
places any matched text that it finds into groups and outputs a tuple into one of
two variables. Here’s the output from this example.

('800', '555', '1212')

('800', '555', '1234')

Using the Bag of Words Model and Beyond
The goal of most data imports is to perform some type of analysis. Before you can
perform analysis on textual data, you must tokenize every word within the data
set. The act of tokenizing the words creates a bag of words. You can then use the
bag of words to train classifiers, a special kind of algorithm used to break words
down into categories. The following section provides additional insights into the
bag of words model and shows how to work with it.

Shaping D
ata

0005390167.INDD 769 Trim size: 7.375 in × 9.25 in June 11, 2022 4:00 PM

CHAPTER 2 Shaping Data 769

Understanding the bag of words model
In order to perform textual analysis of various sorts, you need to first tokenize the
words and create a bag of words from them. The bag of words uses numbers to
represent words, word frequencies, and word locations that you can manipulate
mathematically to see patterns in the way that the words are structured and used.
The bag of words model ignores grammar and even word order — the focus is on
simplifying the text so that you can easily analyze it.

The creation of a bag of words revolves around Natural Language Processing
(NLP) and Information Retrieval (IR). Before you perform this sort of process-
ing, you normally remove any special characters (such as HTML formatting from
a web source), remove the stop words, and possibly perform stemming as well
(as described in the “Stemming and removing stop words” section, earlier this
chapter). For the purpose of this example, you use the 20 Newsgroups data set
directly. Listing 2-5 shows an example of how you can obtain textual input and
create a bag of words from it.

LISTING 2-5: Understanding the Bag of Words Model

from sklearn.datasets import fetch_20newsgroups

from sklearn.feature_extraction.text import *

categories = ['comp.graphics', 'misc.forsale',

 'rec.autos', 'sci.space']

GETTING THE 20 NEWSGROUPS DATA SET
The examples in the sections that follow rely on the 20 Newsgroups data set (qwone.
com/~jason/20Newsgroups) that’s part of the scikit-learn installation. The host site
provides some additional information about the data set, but essentially it’s a good data
set to use to demonstrate various kinds of text analysis.

You don’t have to do anything special to work with the data set because scikit-learn
already knows about it. However, when you run the first example, you see the message
"WARNING:sklearn.datasets.twenty_newsgroups:Downloading dataset from
http://people.csail.mit.edu/jrennie/20Newsgroups/20news-bydate.tar.
gz (14 MB)." All this message tells you is that you need to wait for the data down-
load to complete. There is nothing wrong with your system. Look at the left side of the
code cell in IPython Notebook and you see the familiar In [*]: entry. When this entry
changes to show a number, the download is complete. The message doesn’t go away
until the next time you run the cell.

(continued)

0005390167.INDD 770 Trim size: 7.375 in × 9.25 in June 11, 2022 4:00 PM

770 BOOK 6 Data Analysis with Python

twenty_train = fetch_20newsgroups(subset='train',

 categories=categories,

 shuffle=True,

 random_state=42)

count_vect = CountVectorizer()

X_train_counts = count_vect.fit_transform(

 twenty_train.data)

print("BOW shape:", X_train_counts.shape)

caltech_idx = count_vect.vocabulary_['caltech']

print('"Caltech": %i' % X_train_counts[0, caltech_idx])

A number of the examples you see online are unclear as to where the list of categories
they use come from. The host site at http://qwone.com/~jason/20Newsgroups/
provides you with a listing of the categories you can use. The category list
doesn’t come from a magic hat somewhere, but many examples online simply
don’t bother to document some information sources. Always refer to the host site
when you have questions about issues such as data set categories.

The call to fetch_20newsgroups() loads the data set into memory. You see the
resulting training object, twenty_train, described as a bunch. At this point, you
have an object that contains a listing of categories and associated data, but the
application hasn’t tokenized the data, and the algorithm used to work with the
data isn’t trained.

Now that you have a bunch of data to use, you can begin creating a bag of words
with it. The bag of words process begins by assigning an integer value (an index of
a sort) to each unique word in the training set. In addition, each document receives
an integer value. The next step is to count every occurrence of these words in each
document and create a list of document and count pairs so that you know which
words appear and how often in each document.

Naturally, some words from the master list aren’t used in some documents,
thereby creating a high-dimensional sparse data set. The scipy.sparse matrix is a
data structure that lets you store only the nonzero elements of the list in order to
save memory. When the code makes the call to count_vect.fit_transform(), it
places the resulting bag of words into X_train_counts. You can see the resulting
number of entries by accessing the shape property and the counts for the word
"Caltech" in the first document:

BOW shape: (2356, 34750)
"Caltech": 3

LISTING 2-5: (continued)

Shaping D
ata

0005390167.INDD 771 Trim size: 7.375 in × 9.25 in June 11, 2022 4:00 PM

CHAPTER 2 Shaping Data 771

Working with n-grams
An n-gram is a continuous sequence of items in the text you want to analyze.
The items are phonemes, syllables, letters, words, or base pairs. The n in n-gram
refers to a size. An n-gram that has a size of one, for example, is a unigram. The
example in this section uses a size of three, making a trigram. You use n-grams
in a probabilistic manner to perform tasks such as predicting the next sequence in
a series, which wouldn’t seem very useful until you start thinking about applica-
tions such as search engines that try to predict the word you want to type based
on the previous letters you’ve supplied. However, the technique has all sorts of
applications, such as in DNA sequencing and data compression. Listing 2-6 shows
how to create n-grams from the 20 Newsgroups data set.

LISTING 2-6: Working with n-Grams

from sklearn.datasets import fetch_20newsgroups

from sklearn.feature_extraction.text import *

categories = ['sci.space']

twenty_train = fetch_20newsgroups(subset='train',

 categories=categories,

 remove=('headers','footers','quotes'),

 shuffle=True,

 random_state=42)

count_chars = CountVectorizer(analyzer='char_wb',

 ngram_range=(3,3),

 max_features=10)

count_chars.fit(twenty_train['data'])

count_words = CountVectorizer(analyzer='word',

 ngram_range=(2,2),

 max_features=10,

 stop_words='english')

count_words.fit(twenty_train['data'])

X = count_chars.transform(twenty_train.data)

print(count_chars.get_feature_names_out())

print(X[1].todense())

print(count_words.get_feature_names_out())

The beginning code is the same as in the previous section. You still begin by
fetching the data set and placing it into a bunch. However, in this case, the vec-
torization process takes on new meaning. The arguments process the data in a
special way.

0005390167.INDD 772 Trim size: 7.375 in × 9.25 in June 11, 2022 4:00 PM

772 BOOK 6 Data Analysis with Python

In this case, the analyzer parameter determines how the application creates the
n-grams. You can choose words (word), characters (char), or characters within
word boundaries (char_wb). The ngram_range parameter requires two inputs in
the form of a tuple: The first determines the minimum n-gram size and the sec-
ond determines the maximum n-gram size. The third argument, max_features,
determines how many features the vectorizer returns. In the second vectorizer
call, the stop_words argument removes the terms contained in the English pickle
file (see the “Stemming and removing stop words” section, earlier in the chap-
ter, for details). At this point, the application fits the data to the transformation
algorithm.

The example provides three outputs. The first shows the top ten trigrams for
characters from the document. The second is the n-gram for the first document.
It shows the frequency of the top ten trigrams. The third is the top ten trigrams
for words. Here’s the output from this example:

[' an', ' in', ' of', ' th', ' to', 'he ', 'ing', 'ion',
'nd ', 'the']
[[0 0 2 5 1 4 2 2 0 5]]
['anonymous ftp', 'commercial space', 'gamma ray',
'nasa gov', 'national space', 'remote sensing',
'sci space', 'space shuttle', 'space station',
'washington dc']

Implementing TF-IDF transformations
The Term Frequency times Inverse Document Frequency (TF-IDF) transformation is a
technique used to help compensate for words found relatively often in different
documents, which makes it hard to distinguish between the documents because
they are too common (stop words are a good example). What this transformation
is really telling you is the importance of a particular word to the uniqueness of a
document. The greater the frequency of a word in a document, the more impor-
tant it is to that document. However, the measurement is offset by the document
size — the total number of words the document contains — and by how often the
word appears in other documents.

Even if a word appears many times inside a document, that doesn’t imply that
the word is important for understanding the document itself; in many docu-
ments, you find stop words with the same frequency as the words that relate
to the document’s general topics. For example, if you analyze documents with
scifi-related discussions (such as in the 20 Newsgroups data set), you may find
that many of them deal with UFOs; therefore, the acronym UFO can’t represent
a distinction between different documents. Moreover, longer documents contain
more words than shorter ones, and repeated words are easily found when the text
is abundant.

Shaping D
ata

0005390167.INDD 773 Trim size: 7.375 in × 9.25 in June 11, 2022 4:00 PM

CHAPTER 2 Shaping Data 773

In fact, a word found a few times in a single document (or possibly a few others)
could prove quite distinctive and helpful in determining the document type. If
you are working with documents discussing scifi and automobile sales, the acro-
nym UFO can be distinctive because it easily separates the two topic types in your
documents.

Search engines often need to weight words in a document in a way that helps
determine when the word is important in the text. You use words with a higher
weight to index the document so that when you search for those words, the search
engine will retrieve that document. This is the reason that the TD-IDF transfor-
mation is used quite often in search engine applications.

Getting into more details, the TF part of the TF-IDF equation determines how
frequently the term appears in the document, while the IDF part of the equa-
tion determines the term’s importance because it represents the inverse of the
frequency of that word among all the documents. A large IDF implies a seldom-
found word and that the TF-IDF weight will also be larger. A small IDF means
that the word is common, and that will result in a small TF-IDF weight. You can
see some actual calculations of this particular measure at www.tfidf.com. List-
ing 2-7 shows an example of how to calculate TF-IDF using Python.

LISTING 2-7: Implementing TF-IDF Transformations

from sklearn.datasets import fetch_20newsgroups

from sklearn.feature_extraction.text import *

categories = ['comp.graphics', 'misc.forsale',

 'rec.autos', 'sci.space']

twenty_train = fetch_20newsgroups(subset='train',

 categories=categories,

 shuffle=True,

 random_state=42)

count_vect = CountVectorizer()

X_train_counts = count_vect.fit_transform(twenty_train.data)

tfidf = TfidfTransformer().fit(X_train_counts)

X_train_tfidf = tfidf.transform(X_train_counts)

caltech_idx = count_vect.vocabulary_['caltech']

print('"Caltech" scored in a BOW:')

print('count: %0.3f' % X_train_counts[0, caltech_idx])

print('TF-IDF: %0.3f' % X_train_tfidf[0, caltech_idx])

This example begins much like the other examples in this section have, by fetch-
ing the 20 Newsgroups data set. It then creates a word bag, much like the example
in the “Understanding the bag of words model” section, earlier in this chapter.
However, now you see something you can do with the word bag.

0005390167.INDD 774 Trim size: 7.375 in × 9.25 in June 11, 2022 4:00 PM

774 BOOK 6 Data Analysis with Python

In this case, the code calls upon TfidfTransformer() to convert the raw news-
group documents into a matrix of TF-IDF features. The use_idf controls the use
of inverse-document-frequency reweighting, which it turned on in this case. The
vectorized data is fitted to the transformation algorithm. The next step, call-
ing tfidf.transform(), performs the actual transformation process. Here’s the
result you get from this example:

"Caltech" scored in a BOW:
count: 3.000
TF-IDF: 0.123

Notice how the word Caltech now has a lower value in the first document com-
pared to the example in the previous paragraph, where the counting of occur-
rences for the same word in the same document scored a value of 3. To understand
how counting occurrences relates to TF-IDF, compute the average word count and
average TF-IDF:

import numpy as np
count = np.mean(X_train_counts[X_train_counts>0])
tfif = np.mean(X_train_tfidf[X_train_tfidf>0])
print('mean count: %0.3f' % np.mean(count))
print('mean TF-IDF: %0.3f' % np.mean(tfif))

The results demonstrate that no matter how you count occurrences of Caltech in
the first document or use its TF-IDF, the value is always double the average word,
revealing that it is a keyword for modeling the text:

mean count: 1.698
mean TF-IDF: 0.064

TF-IDF helps you to locate the most important word or n-grams and exclude the
least important ones. It is also very helpful as an input for linear models, because
they work better with TF-IDF scores than word counts.

Working with Graph Data
Imagine data points that are connected to other data points, such as how one web
page is connected to another web page through hyperlinks. Each of these data
points is a node. The nodes connect to each other using links. Not every node links
to every other node, so the node connections become important. By analyzing the

Shaping D
ata

0005390167.INDD 775 Trim size: 7.375 in × 9.25 in June 11, 2022 4:00 PM

CHAPTER 2 Shaping Data 775

nodes and their links, you can perform all sorts of interesting tasks in data sci-
ence, such as defining the best way to get from work to your home using streets
and highways. The following sections describe how graphs work and how to per-
form basic tasks with them.

Understanding the adjacency matrix
An adjacency matrix represents the connections between nodes of a graph. When
there is a connection between one node and another, the matrix indicates it as
a value greater than 0. The precise representation of connections in the matrix
depends on whether the graph is directed (where the direction of the connection
matters) or undirected.

A problem with many online examples is that the authors keep them simple for
explanation purposes. However, real-world graphs are often immense and defy
easy analysis simply through visualization. Just think about the number of nodes
that even a small city would have when considering street intersections (with the
links being the streets themselves). Many other graphs are far larger, and simply
looking at them will never reveal any interesting patterns. Data scientists call the
problem in presenting any complex graph using an adjacency matrix a hairball.

One key to analyzing adjacency matrices is to sort them in specific ways. For
example, you might choose to sort the data according to properties other than the
actual connections. A graph of street connections might include the date the street
was last paved, making it possible for you to look for patterns that direct someone
based on the streets that are in the best repair. In short, making the graph data
useful becomes a matter of manipulating the organization of that data in specific
ways.

Using NetworkX basics
Working with graphs could become difficult if you had to write all the code from
scratch. Fortunately, the NetworkX package for Python makes it easy to create,
manipulate, and study the structure, dynamics, and functions of complex net-
works (or graphs). Even though this book covers only graphs, you can use the
package to work with digraphs and multigraphs as well.

The main emphasis of NetworkX is to avoid the whole issue of hairballs. The use of
simple calls hides much of the complexity of working with graphs and adjacency
matrices from view. Listing 2-8 shows how to create a basic adjacency matrix
from one of the NetworkX-supplied graphs.

0005390167.INDD 776 Trim size: 7.375 in × 9.25 in June 11, 2022 4:00 PM

776 BOOK 6 Data Analysis with Python

LISTING 2-8: Creating the Initial Graph

import networkx as nx
G = nx.cycle_graph(10)
A = nx.adjacency_matrix(G)
print(A.todense())

This book uses version 2.6 of NetworkX. If you get errors or warnings when you
run the above code, install NetworkX version 2.6 by opening a Terminal window
(on macOS) or the Anaconda Prompt (on Windows) and entering pip install
networkx==2.6.

The example begins by importing the required package. It then creates a graph
using the cycle_graph() template. The graph contains ten nodes. Calling
adjacency_matrix() creates the adjacency matrix from the graph. The final step
is to print the output as a matrix, as shown here:

[[0 1 0 0 0 0 0 0 0 1]

[1 0 1 0 0 0 0 0 0 0]

[0 1 0 1 0 0 0 0 0 0]

[0 0 1 0 1 0 0 0 0 0]

[0 0 0 1 0 1 0 0 0 0]

[0 0 0 0 1 0 1 0 0 0]

[0 0 0 0 0 1 0 1 0 0]

[0 0 0 0 0 0 1 0 1 0]

[0 0 0 0 0 0 0 1 0 1]

[1 0 0 0 0 0 0 0 1 0]]

You don’t have to build your own graph from scratch for testing purposes. The
NetworkX site documents a number of standard graph types that you can use, all
of which are available in IPython. The list appears at https://networkx.org/
documentation/stable/reference/classes/index.html.

It’s interesting to see how the graph looks after you generate it. Listing 2-9 dis-
plays the graph for you. Figure 2-1 shows the result of the plot.

LISTING 2-9: Visualizing the Graph

import matplotlib.pyplot as plt
%matplotlib inline
nx.draw_networkx(G)
plt.show()

Shaping D
ata

0005390167.INDD 777 Trim size: 7.375 in × 9.25 in June 11, 2022 4:00 PM

CHAPTER 2 Shaping Data 777

The plot shows that you can add an edge between nodes 1 and 5. Listing 2-10
shows the code needed to perform this task using the add_edge() function.
Figure 2-2 shows the result.

LISTING 2-10: Adding to the Graph

G.add_edge(1,5)
nx.draw_networkx(G)
plt.show()

FIGURE 2-1:
Plotting the

original graph.

© John Wiley & Sons

FIGURE 2-2:
Plotting the graph

addition.

© John Wiley & Sons

0005390167.INDD 778 Trim size: 7.375 in × 9.25 in June 11, 2022 4:00 PM

CHAPTER 3 Getting a Crash Course in MatPlotLib 779

0005390168.INDD 779	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	4:04	PM

 Getting a Crash Course
in MatPlotLib

“If we have data, let’s look at data. If all we have are opinions, let’s go
with mine.”

 — JIM BARKSDALE

 M ost people visualize information better when they see it in graphic, ver-
sus textual, format. Graphics help people see relationships and make
comparisons with greater ease. Even if you can deal with the abstraction

of textual data with ease, performing data analysis is all about communication.
Unless you can communicate your ideas to other people, the act of obtaining,
shaping, and analyzing the data has little value beyond your own personal needs.
Fortunately, Python makes the task of converting your textual data into graphics
relatively easy using MatPlotLib, which is actually a simulation of the MATLAB
application. You can see a comparison of the two at https://pyzo.org/python_
vs_matlab.html .

If you already know how to use MATLAB, moving over to MatPlotLib is relatively
easy because they both use the same sort of state machine to perform tasks and
have a similar method of defi ning graphic elements. A number of people feel that
MatPlotLib is superior to MATLAB because you can do things like perform tasks
using less code when working with MatPlotLib than when using MATLAB (see

Chapter 3

 IN THIS CHAPTER

» Creating a basic graph

» Adding measurement lines to your
graph

» Dressing your graph up with styles
and color

» Documenting your graph with labels,
annotations, and legends

0005390168.INDD 780	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	4:04	PM

780 BOOK 6 Data Analysis with Python

http://phillipmfeldman.org/Python/Advantages_of_Python_Over_Matlab.
html). Others have noted that the transition from MATLAB to MatPlotLib is rel-
atively straightforward (see https://vnoel.wordpress.com/2008/05/03/bye-
matlab-hello-python-thanks-sage). However, what matters most is what you
think. You may find that you like to experiment with data using MATLAB and then
create applications based on your findings using Python with MatPlotLib. It’s a
matter of personal taste rather than one of a strictly correct answer.

You don’t have to type the source code for this chapter manually. In fact, it’s
a lot easier if you use the downloadable source code available at www.dummies.
com/go/codingallinonefd2e. The source code for this chapter appears in the
CAIO4D2E_0603_Getting_a_Crash_Course_in_MathPlotLib.ipynb source code.

Starting with a Graph
A graph or chart is simply a visual representation of numeric data. MatPlotLib
makes a large number of graph and chart types available to you. Of course, you
can choose any of the common graph and graph types such as bar charts, line
graphs, or pie charts. As with MATLAB, you also have access to a huge number
of statistical plot types, such as box plots, error bar charts, and histograms. You
can see a gallery of the various graph types that MatPlotLib supports at https://
matplotlib.org/stable/gallery/index.html. However, it’s important to
remember that you can combine graphic elements in an almost infinite number
of ways to create your own presentation of data no matter how complex that
data might be. The following sections describe how to create a basic graph, but
remember that you have access to a lot more functionality than these sections
tell you about.

Defining the plot
Plots show graphically what you’ve defined numerically. To define a plot, you
need some values, the matplotlib.pyplot module, and an idea of what you want
to display, as shown in Listing 3-1.

LISTING 3-1: Defining the Plot

import matplotlib.pyplot as plt
%matplotlib inline
values = [1, 5, 8, 9, 2, 0, 3, 10, 4, 7]
plt.plot(range(1,11), values)
plt.show()

G
etting a Crash Course

in M
atPlotLib

0005390168.INDD 781	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	4:04	PM

CHAPTER 3 Getting a Crash Course in MatPlotLib 781

In this case, the code tells the plt.plot() function to create a plot using x axis
values between 1 and 11 and y axis values as they appear in values. Calling plot.
show() displays the plot in a separate dialog box, as shown in Figure 3-1. Notice
that the output is a line graph. Book 6, Chapter 4 shows you how to create other
chart and graph types.

Drawing multiple lines and plots
You encounter many situations in which you must use multiple plot lines, such
as when comparing two sets of values. To create such plots using MatPlotLib, you
simply call plt.plot() multiple times — once for each plot line — as shown in
Listing 3-2.

LISTING 3-2: Drawing Multiple Lines and Plots

values = [1, 5, 8, 9, 2, 0, 3, 10, 4, 7]
values2 = [3, 8, 9, 2, 1, 2, 4, 7, 6, 6]
import matplotlib.pyplot as plt
plt.plot(range(1,11), values)
plt.plot(range(1,11), values2)
plt.show()

When you run this example, you see two plot lines, as shown in Figure 3-2. Even
though you can’t see it in the printed book, the line graphs are different colors so
that you can tell them apart.

FIGURE 3-1:
Creating	a	basic	
plot that shows

just	one	line.	

0005390168.INDD 782	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	4:04	PM

782 BOOK 6 Data Analysis with Python

Saving your work
Jupyter Notebook makes it easy to include your graphs within the notebooks you
create, so that you can define reports that everyone can easily understand. When
you do need to save a copy of your work to disk for later reference or to use it
as part of a larger report, you save the graphic programmatically using the plt.
savefig() function, as shown in Listing 3-3.

LISTING 3-3: Saving Your Work

import matplotlib.pyplot as plt
%matplotlib auto
values = [1, 5, 8, 9, 2, 0, 3, 10, 4, 7]
plt.plot(range(1,11), values)
plt.ioff()
plt.savefig('MySamplePlot.png', format='png')

In this case, you must provide a minimum of two inputs. The first input is the
filename. You may optionally include a path for saving the file. The second input
is the file format. In this case, the example saves the file in Portable Network
Graphic (PNG) format, but you have other options: Portable Document Format
(PDF), Postscript (PS), Encapsulated Postscript (EPS), and Scalable Vector Graph-
ics (SVG).

Note the presence of %matplotlib auto. Using this call removes the inline display
of the graph. You do have options for other MatPlotLib backends, depending on
which version of Python and MatPlotLib you use. For example, some developers
prefer the notebook backend to the inline backend because it provides additional
functionality. However, to use the notebook backend, you must also restart the
kernel, and you may not always see what you expect. To see the backend list, use
%matplotlib -l. In addition, calling plt.ioff() turns plot interaction off.

FIGURE 3-2:
Defining	a	plot	
that	contains	
multiple	lines.	

G
etting a Crash Course

in M
atPlotLib

0005390168.INDD 783	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	4:04	PM

CHAPTER 3 Getting a Crash Course in MatPlotLib 783

Setting the Axis, Ticks, Grids
It’s hard to know what the data actually means unless you provide a unit of
measure or at least some means of performing comparisons. The use of axes,
ticks, and grids make it possible to illustrate graphically the relative size of data
elements so that the viewer gains an appreciation of comparative measure. You
won’t use these features with every graphic, and you may employ the features
differently based on viewer needs, but it’s important to know that these features
exist and how you can use them to help document your data within the graphic
environment.

The following examples use %matplotlib notebook so that you can see the dif-
ference between it and %matplotlib inline. The two inline displays rely on
a different graphic engine. Consequently, you must choose Kernel ➪ Restart to
restart the kernel before you run any of the examples in the sections that follow.

Getting the axes
The axes define the x and y plane of the graphic. The x axis runs horizontally, and
the y axis runs vertically. In many cases, you can allow MatPlotLib to perform any
required formatting for you. However, sometimes you need to obtain access to the
axes and format them manually. Listing 3-4 shows how to obtain access to the
axes for a plot.

LISTING 3-4: Setting the Axes

import matplotlib.pyplot as plt
%matplotlib notebook
values = [0, 5, 8, 9, 2, 0, 3, 10, 4, 7]
ax = plt.axes()
plt.plot(range(1,11), values)
plt.show()

The reason you place the axes in a variable, ax, instead of manipulating them
directly is to make writing the code simpler and more efficient. In this case, you
simply turn on the default axes by calling plt.axes(); then you place a handle to
the axes in ax. A handle is a sort of pointer to the axes. Think of it as you would
a frying pan. You wouldn’t lift the frying pan directly but would instead use its
handle when picking it up.

0005390168.INDD 784	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	4:04	PM

784 BOOK 6 Data Analysis with Python

Formatting the axes
Simply displaying the axes won’t be enough in many cases. You want to change
the way MatPlotLib displays them. For example, you may not want the highest
value t to reach to the top of the graph. Listing 3-5 shows just a small number of
tasks you can perform after you have access to the axes.

LISTING 3-5: Formatting the Axes

import matplotlib.pyplot as plt
%matplotlib notebook
values = [0, 5, 8, 9, 2, 0, 3, 10, 4, 7]
ax = plt.axes()
ax.set_xlim([0, 11])
ax.set_ylim([-1, 11])
ax.set_xticks([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
ax.set_yticks([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
plt.plot(range(1,11), values)
plt.show()

In this case, the set_xlim() and set_ylim() calls change the axes limits — the
length of each axis. The set_xticks() and set_yticks() calls change the ticks
used to display data. The ways in which you can change a graph using these calls
can become quite detailed. For example, you can choose to change individual tick
labels if you want. Figure 3-3 shows the output from this example. Notice how
the changes affect how the line graph displays.

FIGURE 3-3:
Specifying	how	
the	axes	should	

appear to the
viewer.

© John Wiley & Sons

G
etting a Crash Course

in M
atPlotLib

0005390168.INDD 785	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	4:04	PM

CHAPTER 3 Getting a Crash Course in MatPlotLib 785

As you can see by viewing the differences between Figures 3-1, 3-2, and 3-3,
%matlplotlib notebook produces a significantly different display. The controls
at the bottom of the display let you pan and zoom the display, move between
views you’ve created, and download the figure to disk. The button to the right of
the Figure 1 heading in Figure 3-3 lets you stop interacting with the graph after
you’ve finished working with it. Any changes you’ve made to the presentation of
the graph remain afterward so that anyone looking at your notebook will see the
graph in the manner you intended for them to see it. The ability to interact with
the graph ends when you display another graph.

Adding grids
Grid lines make it possible to see the precise value of each element of a graph.
You can more quickly determine both the x and y coordinate, which allow you to
perform comparisons of individual points with greater ease. Of course, grids also
add noise and make seeing the actual flow of data harder. The point is that you
can use grids to good effect to create particular effects. Listing 3-6 shows how to
add a grid to the graph in the previous section.

LISTING 3-6: Adding Grids

import matplotlib.pyplot as plt
%matplotlib notebook
values = [0, 5, 8, 9, 2, 0, 3, 10, 4, 7]
ax = plt.axes()
ax.set_xlim([0, 11])
ax.set_ylim([-1, 11])
ax.set_xticks([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
ax.set_yticks([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
ax.grid()
plt.plot(range(1,11), values)
plt.show()

All you really need to do is call the grid() function. As with many other MatPlot-
Lib functions, you can add parameters to create the grid precisely as you want to
see it. For example, you can choose whether to add the x grid lines, y grid lines,
or both. The output from this example appears in Figure 3-4.

0005390168.INDD 786	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	4:04	PM

786 BOOK 6 Data Analysis with Python

Defining the Line Appearance
Just drawing lines on a page won’t do much for you if you need to help the viewer
understand the importance of your data. In most cases, you need to use differ-
ent line styles to ensure that the viewer can tell one data grouping from another.
However, to emphasize the importance or value of a particular data grouping,
you need to employ color. The use of color communicates all sorts of ideas to the
viewer. For example, green often denotes that something is safe, while red com-
municates danger. The following sections help you understand how to work with
line style and color to communicate ideas and concepts to the viewer without
using any text.

Working with line styles
Line styles help differentiate graphs by drawing the lines in various ways. Using a
unique presentation for each line helps you distinguish each line so that you can
call it out (even when the printout is in shades of gray). You could also call out a
particular line graph by using a different line style for it (and using the same style
for the other lines). Table 3-1 shows the various MatPlotLib line styles.

The line style appears as a third argument to the plot() function call. You simply
provide the desired string for the line type, as shown in Listing 3-7.

FIGURE 3-4:
Adding	grids	

makes	the	values	
easier	to	read.	

© John Wiley & Sons

G
etting a Crash Course

in M
atPlotLib

0005390168.INDD 787	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	4:04	PM

CHAPTER 3 Getting a Crash Course in MatPlotLib 787

LISTING 3-7: Working with Line Styles

import matplotlib.pyplot as plt
%matplotlib inline
values = [1, 5, 8, 9, 2, 0, 3, 10, 4, 7]
values2 = [3, 8, 9, 2, 1, 2, 4, 7, 6, 6]
plt.plot(range(1,11), values, '--')
plt.plot(range(1,11), values2, ':')
plt.show()

In this case, the first line graph uses a dashed line style, while the second line
graph uses a dotted line style. You can see the results of the changes in Figure 3-5.

Using colors
Color is another way in which to differentiate line graphs. Of course, this method
has certain problems. The most significant problem occurs when someone makes
a black-and-white copy of your colored graph — hiding the color differences as
shades of gray. Another problem is that someone with color blindness may not be
able to tell one line from the other. All this said, color does make for a brighter,
eye-grabbing presentation. Table 3-2 shows the colors that MatPlotLib supports.

MAKING GRAPHICS ACCESSIBLE
Avoiding	assumptions	about	someone’s	ability	to	see	your	graphic	presentation	is	
essential.	For	example,	someone	who	is	color	blind	may	not	be	able	to	tell	that	one	
line	is	green	and	the	other	red.	Likewise,	someone	with	low-vision	problems	may	not	
be	able	to	distinguish	between	a	line	that	is	dashed	and	one	that	has	a	combination	
of	dashes	and	dots.	Using	multiple	methods	to	distinguish	each	line	helps	ensure	that	
everyone	can	see	your	data	in	a	manner	that	is	comfortable	to	each	person.

TABLE 3-1 MatPlotLib Line Styles
Character Line	Style

'-' Solid	line

'--' Dashed	line

'-.' Dash-dot	line

':' Dotted	line

0005390168.INDD 788	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	4:04	PM

788 BOOK 6 Data Analysis with Python

As with line styles, the color appears in a string as the third argument to the
plot() function call. In this case, the viewer sees two lines — one in red and the
other in magenta. The actual presentation looks like Figure 3-2, but with specific
colors, rather than the default colors used in that screenshot. Listing 3-8 shows
how to style two lines in different colors.

LISTING 3-8: Using Colors

values = [1, 5, 8, 9, 2, 0, 3, 10, 4, 7]

values2 = [3, 8, 9, 2, 1, 2, 4, 7, 6, 6]

import matplotlib.pyplot as plt

plt.plot(range(1,11), values, 'r')

plt.plot(range(1,11), values2, 'm')

plt.show()

FIGURE 3-5:
Line	styles	help	

differentiate	
between	plots.	

TABLE 3-2 MatPlotLib Colors
Character Color

'b' Blue

'g' Green

'r' Red

'c' Cyan

'm' Magenta

'y' Yellow

'k' Black

'w' White

G
etting a Crash Course

in M
atPlotLib

0005390168.INDD 789	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	4:04	PM

CHAPTER 3 Getting a Crash Course in MatPlotLib 789

Adding markers
Markers add a special symbol to each data point in a line graph. Unlike line style
and color, markers tend to be a little less susceptible to accessibility and printing
issues. Even when the specific marker isn’t clear, people can usually differentiate one
marker from the other. Table 3-3 shows the list of markers that MatPlotLib provides.

TABLE 3-3 MatPlotLib Markers
Character Marker	Type

'.' Point

',' Pixel

'o' Circle

'v' Triangle	1	down

'^' Triangle	1	up

'<' Triangle	1	left

'>' Triangle	1	right

'1' Triangle	2	down

'2' Triangle	2	up

'3' Triangle	2	left

'4' Triangle	2	right

's' Square

'p' Pentagon

'*' Star

'h' Hexagon	style	1

'H' Hexagon	style	2

'+' Plus

'x' X

'D' Diamond

'd' Thin	diamond

'|' Vertical	line

'_' Horizontal	line

0005390168.INDD 790	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	4:04	PM

790 BOOK 6 Data Analysis with Python

As with line style and color, you add markers as the third argument to a plot()
call. In Listing 3-9, you see the effects of combining line style with a marker to
provide a unique line graph presentation.

LISTING 3-9: Adding Markers

import matplotlib.pyplot as plt
%matplotlib inline
values = [1, 5, 8, 9, 2, 0, 3, 10, 4, 7]
values2 = [3, 8, 9, 2, 1, 2, 4, 7, 6, 6]
plt.plot(range(1,11), values, 'o--')
plt.plot(range(1,11), values2, 'v:')
plt.show()

Notice how the combination of line style and marker makes each line stand out
in Figure 3-6. Even when printed in black and white, you can easily differenti-
ate one line from the other, which is why you may want to combine presentation
techniques.

Using Labels, Annotations, and Legends
To fully document your graph, you usually have to resort to labels, annotations,
and legends. Each of these elements has a different purpose, as follows:

 » Label:	Provides	positive	identification	of	a	particular	data	element	or	group-
ing.	The	purpose	is	to	make	it	easy	for	the	viewer	to	know	the	name	or	kind	of	
data	illustrated.

FIGURE 3-6:
Markers	help	
to emphasize

individual	values.	

G
etting a Crash Course

in M
atPlotLib

0005390168.INDD 791	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	4:04	PM

CHAPTER 3 Getting a Crash Course in MatPlotLib 791

 » Annotation:	Augments	the	information	the	viewer	can	immediately	see	
about	the	data	with	notes,	sources,	or	other	useful	information.	In	contrast	to	
a	label,	the	purpose	of	annotation	is	to	help	extend	the	viewer’s	knowledge	of	
the	data	rather	than	simply	identify	it.

 » Legend:	Presents	a	listing	of	the	data	groups	within	the	graph	and	often	
provides	cues	(such	as	line	type	or	color)	to	make	identification	of	the	data	
group	easier.	For	example,	all	the	red	points	may	belong	to	group	A,	while	all	
the	blue	points	may	belong	to	group	B.

The following sections help you understand the purpose and usage of various
documentation aids provided with MatPlotLib. These documentation aids help
you create an environment in which the viewer is certain as to the source, pur-
pose, and usage of data elements. Some graphs work just fine without any docu-
mentation aids, but in other cases, you might find that you need to use all three
in order to communicate with your viewer fully.

Adding labels
Labels help people understand the significance of each axis of any graph you cre-
ate. Without labels, the values portrayed don’t have any significance. In addition
to a moniker, such as rainfall, you can also add units of measure, such as inches
or centimeters, so that your audience knows how to interpret the data shown.
 Listing 3-10 shows how to add labels to your graph.

LISTING 3-10: Adding Labels

import matplotlib.pyplot as plt
%matplotlib inline
values = [1, 5, 8, 9, 2, 0, 3, 10, 4, 7]
plt.xlabel('Entries')
plt.ylabel('Values')
plt.plot(range(1,11), values)
plt.show()

The call to xlabel() documents the x axis of your graph, while the call to
ylabel() documents the y axis of your graph. Figure 3-7 shows the output of
this example.

0005390168.INDD 792	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	4:04	PM

792 BOOK 6 Data Analysis with Python

Annotating the chart
You use annotation to draw special attention to points of interest on a graph. For
example, you may want to point out that a specific data point is outside the usual
range expected for a particular data set. Listing 3-11 shows how to add annota-
tion to a graph.

LISTING 3-11: Annotating the Chart

import matplotlib.pyplot as plt
%matplotlib inline
values = [1, 5, 8, 9, 2, 0, 3, 10, 4, 7]
plt.annotate(xy=[1,1], s='First Entry')
plt.plot(range(1,11), values)
plt.show()

If you’re using a newer version of MatPlotLib, you may get an error when you run
Listing 3-11, saying that annotate() is missing a required attribute. If this hap-
pens, change s='First Entry' to text='First Entry'.

The call to annotate() provides the labeling you need. You must provide a loca-
tion for the annotation by using the xy parameter, as well as provide text to place
at the location by using the s parameter. The annotate() function also provides
other parameters that you can use to create special formatting or placement on-
screen. Figure 3-8 shows the output from this example.

FIGURE 3-7:
Using	labels	to	

identify	the	axes.	

G
etting a Crash Course

in M
atPlotLib

0005390168.INDD 793	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	4:04	PM

CHAPTER 3 Getting a Crash Course in MatPlotLib 793

Creating a legend
A legend documents the individual elements of a plot. Each line is presented in
a table that contains a label for it so that people can differentiate the lines. For
example, one line may represent sales from the first store location and another
line may represent sales from a second store location, so you include an entry in
the legend for each line that is labeled first and second. Listing 3-12 shows how
to add a legend to your plot.

LISTING 3-12: Creating a Legend

import matplotlib.pyplot as plt
%matplotlib inline
values = [1, 5, 8, 9, 2, 0, 3, 10, 4, 7]
values2 = [3, 8, 9, 2, 1, 2, 4, 7, 6, 6]
line1 = plt.plot(range(1,11), values)
line2 = plt.plot(range(1,11), values2)
plt.legend(['First', 'Second'], loc=4)
plt.show()

The call to legend() occurs after you create the plots, not before, as with some of
the other functions described in this chapter. You must provide a handle to each
of the plots. Notice how line1 is set equal to the first plot() call and line2 is set
equal to the second plot() call.

FIGURE 3-8:
Annotation	can	

identify	points	of	
interest.	

0005390168.INDD 794	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	4:04	PM

794 BOOK 6 Data Analysis with Python

The default location for the legend is the upper-right corner of the plot, which
proved inconvenient for this particular example. Adding the loc parameter lets
you place the legend in a different location. See the legend() function documen-
tation at https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.
legend.html#matplotlib.pyplot.legend for additional legend locations.
Figure 3-9 shows the output from this example.

FIGURE 3-9:
Using	legends	

to	identify	
individual	lines.	

CHAPTER 4 Visualizing the Data 795

0005390169.INDD 795	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	4:10	PM

 Visualizing the Data
“Those who rule data will rule the entire world.”

 — MASAYOSHI SON

 B ook 6, Chapter 3 helped you understand the mechanics of working with
MatPlotLib, which is an important fi rst step toward using it. This chapter
takes the next step in helping you use MatPlotLib to perform useful work.

The main goal of this chapter is to help you visualize your data in various ways.
Creating a graphic presentation of your data is essential if you want to help other
people understand what you’re trying to say. Even though you can see what the
numbers mean in your mind, other people will likely need graphics to see what
point you’re trying to make by manipulating data in various ways.

 The chapter starts by looking at some basic graph types that MatPlotLib supports.
You don’t fi nd the full list of graphs and plots listed in this chapter — it would
take an entire book to explore them all in detail. However, you do fi nd the most
common types.

 In this chapter, you begin exploring specifi c sorts of plotting as it relates to data
science. Of course, no book on data science would be complete without exploring
scatterplots, which are used to help people see patterns in seemingly unrelated
data points. Because much of the data that you work with today is time-related
or geographic in nature, the chapter devotes two special sections to these topics.
You also get to work with both directed and undirected graphs, which is fi ne for
social media analysis.

Chapter 4

 IN THIS CHAPTER

» Selecting the right graph for the job

» Working with advanced scatterplots

» Exploring time-related data

» Exploring geographical data

» Creating graphs

0005390169.INDD 796	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	4:10	PM

796 BOOK 6 Data Analysis with Python

You don’t have to type the source code for this chapter manually. In fact, it’s a
lot easier if you use the downloadable source available at www.dummies.com/go/
codingallinonefd2e. The source code for this chapter appears in the CAIO4D2E_
Visualizing_the_Data.ipynb source code.

Choosing the Right Graph
The kind of graph you choose determines how people view the associated data, so
choosing the right graph from the outset is important. For example, if you want
to show how various data elements contribute toward a whole, you really need
to use a pie chart. On the other hand, when you want people to form opinions on
how data elements compare, you use a bar chart. The idea is to choose a graph
that naturally leads people to draw the conclusion that you need them to draw
about the data that you’ve carefully massaged from various data sources. (You
also have the option of using line graphs — a technique demonstrated in Book 6,
Chapter 3.) The following sections describe the various graph types and provide
you with basic examples of how to use them.

Showing parts of a whole with pie charts
Pie charts focus on showing parts of a whole. The entire pie would be 100 percent.
The question is how much of that percentage each value occupies. Listing 4-1
shows how to create a pie chart with many of the special features in place.

LISTING 4-1: Showing Parts of a Whole with Pie Charts

import matplotlib.pyplot as plt
%matplotlib inline

values = [5, 8, 9, 10, 4, 7]
colors = ['b', 'g', 'r', 'c', 'm', 'y']
labels = ['A', 'B', 'C', 'D', 'E', 'F']
explode = (0, 0.2, 0, 0, 0, 0)

plt.pie(values, colors=colors, labels=labels,
 explode=explode, autopct='%1.1f%%',
 counterclock=False, shadow=True)
plt.title('Values')

plt.show()

Visualizing the D
ata

0005390169.INDD 797	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	4:10	PM

CHAPTER 4 Visualizing the Data 797

The essential part of a pie chart is the values. You could create a basic pie chart
using just the values as input.

The colors parameter lets you choose custom colors for each pie wedge. You use
the labels parameter to identify each wedge. In many cases, you need to make
one wedge stand out from the others, so you add the explode parameter with a list
of explode values. A value of 0 keeps the wedge in place — any other value moves
the wedge out from the center of the pie.

Each pie wedge can show various kinds of information. This example shows the
percentage occupied by each wedge with the autopct parameter. You must pro-
vide a format string to format the percentages.

Some parameters affect how the pie chart is drawn. Use the counterclock param-
eter to determine the direction of the wedges. The shadow parameter determines
whether the pie appears with a shadow beneath it (for a 3D effect). You can find
other parameters at https://matplotlib.org/stable/api/pyplot_summary.html.

In most cases, you also want to give your pie chart a title so that others know
what it represents. You do this using the title() function. Figure 4-1 shows the
output from this example.

Creating comparisons with bar charts
Bar charts make comparing values easy. The wide bars and segregated mea-
surements emphasize the differences between values, rather than the flow of
one value to another as a line graph would do. Fortunately, you have all sorts of
methods at your disposal for emphasizing specific values and performing other

FIGURE 4-1:
Pie charts show

a	percentage	
of the whole.

0005390169.INDD 798	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	4:10	PM

798 BOOK 6 Data Analysis with Python

tricks. Listing 4-2 shows just some of the things you can do with a vertical bar
chart.

LISTING 4-2: Creating Comparisons with Bar Charts

import matplotlib.pyplot as plt

%matplotlib inline

values = [5, 8, 9, 10, 4, 7]

widths = [0.7, 0.8, 0.7, 0.7, 0.7, 0.7]

colors = ['b', 'r', 'b', 'b', 'b', 'b']

plt.bar(range(0, 6), values, width=widths,

color=colors, align='center')

plt.show()

To create even a basic bar chart, you must provide a series of x coordinates and
the heights of the bars. The example uses the range() function to create the x
coordinates, and the values variable contains the heights.

Of course, you may want more than a basic bar chart, and MatPlotLib provides
a number of ways to get the job done. In this case, the example uses the width
parameter to control the width of each bar, emphasizing the second bar by mak-
ing it slightly larger. The larger width would show up even in a black-and-white
printout. It also uses the color parameter to change the color of the target bar to
red (the rest are blue).

As with other chart types, the bar chart provides some special features that you
can use to make your presentation stand out. The example uses the align param-
eter to center the data on the x coordinate (the standard position is to the left).
You can also use other parameters, such as hatch, to enhance the visual appear-
ance of your bar chart. Figure 4-2 shows the output of this example.

This chapter helps you get started using MatPlotLib to create a variety of chart
and graph types. Of course, more examples are better, so you can also find some
more advanced examples on the MatPlotLib site at https://matplotlib.org/
stable/gallery/index.html. Some of the examples, such as those that demon-
strate animation techniques, become quite advanced, but with practice you can
use any of them to improve your own charts and graphs.

Visualizing the D
ata

0005390169.INDD 799	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	4:10	PM

CHAPTER 4 Visualizing the Data 799

Showing distributions using histograms
Histograms categorize data by breaking it into bins, where each bin contains a
subset of the data range. A histogram then displays the number of items in each
bin so that you can see the distribution of data and the progression of data from
bin to bin. In most cases, you see a curve of some type, such as a bell curve.
Listing 4-3 shows how to create a histogram with randomized data.

LISTING 4-3: Showing Data Progressions Using Histograms

import numpy as np

import matplotlib.pyplot as plt

%matplotlib inline

x = 20 * np.random.randn(10000)

plt.hist(x, 25, range=(-50, 50), histtype='stepfilled',

 align='mid', color='g', label='Test Data')

plt.legend()

plt.title('Step Filled Histogram')

plt.show()

In this case, the input values are a series of random numbers. The distribution of
these numbers should show a type of bell curve. As a minimum, you must pro-
vide a series of values, x in this case, to plot. The second argument contains the
number of bins to use when creating the data intervals. The default value is 10.
Using the range parameter helps you focus the histogram on the relevant data and
exclude any outliers.

You can create multiple histogram types. The default setting creates a bar chart.
You can also create a stacked bar chart, stepped graph, or filled stepped graph (the
type shown in the example). In addition, it’s possible to control the orientation of
the output, with vertical as the default.

FIGURE 4-2:
Bar charts make it
easier to perform

comparisons.	

0005390169.INDD 800	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	4:10	PM

800 BOOK 6 Data Analysis with Python

As with most other charts and graphs in this chapter, you can add special features
to the output. For example, the align parameter determines the alignment of
each bar along the baseline. Use the color parameter to control the colors of the
bars. The label parameter doesn’t actually appear unless you also create a legend
(as shown in this example). Figure 4-3 shows typical output from this example.

Data generated using the random function changes with every call. Every time
you run the example, you see slightly different results because the random-
generation process differs.

Depicting groups using box plots
Box plots provide a means of depicting groups of numbers through their quartiles
(three points dividing a group into four equal parts). A box plot may also have
lines, called whiskers, indicating data outside the upper and lower quartiles. The
spacing shown within a box plot helps indicate the skew and dispersion of the
data. Listing 4-4 shows how to create a box plot with randomized data.

LISTING 4-4: Depicting Groups of Numbers Using Box Plots

import numpy as np

import matplotlib.pyplot as plt

%matplotlib inline

spread = 100 * np.random.rand(100)

center = np.ones(50) * 50

flier_high = 100 * np.random.rand(10) + 100

FIGURE 4-3:
Histograms	
let	you	see	

distributions	of	
numbers.	

Visualizing the D
ata

0005390169.INDD 801	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	4:10	PM

CHAPTER 4 Visualizing the Data 801

flier_low = -100 * np.random.rand(10)

data = np.concatenate((spread, center,

 flier_high, flier_low))

plt.boxplot(data, sym='gx', widths=.75, notch=True)

plt.show()

To create a usable data set, you need to combine several different number-
generation techniques, as shown at the beginning of the example. Here are how
these techniques work:

 » spread:	Contains	a	set	of	random	numbers	between	0	and	100.

 » center:	Provides	50	values	directly	in	the	center	of	the	range	of	50.

 » flier_high:	Simulates	outliers	between	100	and	200.

 » flier_low:	Simulates	outliers	between	0	and	–100.

The code combines all these values into a single data set using concatenate().
Being randomly generated with specific characteristics (such as a large number of
points in the middle), the output will show specific characteristics but will work
fine for the example.

The call to boxplot() requires only data as input. All other parameters have
default settings. In this case, the code sets the presentation of outliers to green Xs
by setting the sym parameter. You use widths to modify the size of the box (made
extra-large in this case to make the box easier to see). Finally, you can create
a square box or a box with a notch using the notch parameter (which normally
defaults to False). Figure 4-4 shows typical output from this example.

FIGURE 4-4:
Use box plots to

present	groups	of	
numbers.	

0005390169.INDD 802	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	4:10	PM

802 BOOK 6 Data Analysis with Python

The box shows the three data points as the box, with the line in the middle being
the median. The two black horizontal lines connected to the box by whiskers show
the upper and lower limits (for four quartiles). The outliers appear above and
below the upper and lower limit lines as Xs.

Seeing data patterns using scatterplots
Scatterplots show clusters of data rather than trends (as with line graphs) or
discrete values (as with bar charts). The purpose of a scatterplot is to help you see
data patterns. Listing 4-5 shows how to create a scatterplot using randomized
data.

LISTING 4-5: Seeing Data Patterns Using Scatterplots

import numpy as np

import matplotlib.pyplot as plt

x1 = 5 * np.random.rand(40)

x2 = 5 * np.random.rand(40) + 25
x3 = 25 * np.random.rand(20)

x = np.concatenate((x1, x2, x3))

y1 = 5 * np.random.rand(40)

y2 = 5 * np.random.rand(40) + 25
y3 = 25 * np.random.rand(20)

y = np.concatenate((y1, y2, y3))

plt.scatter(x, y, s=[100], marker='^', c='m')

plt.show()

The example begins by generating random x and y coordinates. For each
x coordinate, you must have a corresponding y coordinate. It’s possible to create
a scatterplot using just the x and y coordinates.

It’s possible to dress up a scatterplot in a number of ways. In this case, the s
parameter determines the size of each data point. The marker parameter deter-
mines the data point shape. You use the c parameter to define the colors for all the
data points, or you can define a separate color for individual data points. Figure 4-5
shows the output from this example.

Visualizing the D
ata

0005390169.INDD 803	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	4:10	PM

CHAPTER 4 Visualizing the Data 803

Creating Advanced Scatterplots
Scatterplots are especially important for data science because they can show data
patterns that aren’t obvious when viewed in other ways. You can see data group-
ings with relative ease and help the viewer understand when data belongs to a
particular group. You can also show overlaps between groups and even demon-
strate when certain data is outside the expected range. Showing relationships
in the data is an advanced technique that you need to know in order to best use
MatPlotLib. The following sections demonstrate how to perform these advanced
techniques on the scatterplot you created earlier in the chapter.

Depicting groups
Color is the third axis when working with a scatterplot. Using color lets you high-
light groups so that others can see them with greater ease. Listing 4-6 shows how
you can use color to show groups within a scatterplot.

LISTING 4-6: Depicting Groups

import numpy as np

import matplotlib.pyplot as plt

x1 = 5 * np.random.rand(50)

x2 = 5 * np.random.rand(50) + 25
x3 = 30 * np.random.rand(25)

x = np.concatenate((x1, x2, x3))

y1 = 5 * np.random.rand(50)

y2 = 5 * np.random.rand(50) + 25

FIGURE 4-5:
Use scatterplots

to	show	groups	of	
data	points	and	
their associated

patterns.	

(continued)

0005390169.INDD 804	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	4:10	PM

804 BOOK 6 Data Analysis with Python

y3 = 30 * np.random.rand(25)

y = np.concatenate((y1, y2, y3))

color_array = ['b'] * 50 + ['g'] * 50 + ['r'] * 25

plt.scatter(x, y, s=[50], marker='D', c=color_array)

plt.show()

The example works essentially the same as the scatterplot example in the previ-
ous section, except that this example uses an array for the colors. Unfortunately,
if you’re seeing this in the printed book, the differences between the shades of
gray in Figure 4-6 will be hard to see. However, the first group is blue, followed
by green for the second group. Any outliers appear in red.

Showing correlations
In some cases, you need to know the general direction that your data is taking
when looking at a scatterplot. Even if you create a clear depiction of the groups,
the actual direction that the data is taking as a whole may not be clear. In this
case, you add a trendline to the output. Listing 4-7 is an example of adding a
trendline to a scatterplot that includes groups but isn’t quite as clear as the scat-
terplot shown in Figure 4-6.

LISTING 4-7: Showing Correlations

import numpy as np

import matplotlib.pyplot as plt

import matplotlib.pylab as plb

%matplotlib inline

FIGURE 4-6:
Color arrays

can	make	the	
scatterplot

groups	stand	
out	better.	

LISTING 4-6: (continued)

Visualizing the D
ata

0005390169.INDD 805	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	4:10	PM

CHAPTER 4 Visualizing the Data 805

x1 = 15 * np.random.rand(50)

x2 = 15 * np.random.rand(50) + 15
x3 = 30 * np.random.rand(25)

x = np.concatenate((x1, x2, x3))

y1 = 15 * np.random.rand(50)

y2 = 15 * np.random.rand(50) + 15
y3 = 30 * np.random.rand(25)

y = np.concatenate((y1, y2, y3))

color_array = ['b'] * 50 + ['g'] * 50 + ['r'] * 25
plt.scatter(x, y, s=[90], marker='*', c=color_array)

z = np.polyfit(x, y, 1)

p = np.poly1d(z)

plb.plot(x, p(x), 'm-')

plt.show()

The code for creating the scatterplot is essentially the same as in the example
in the “Depicting groups” section, earlier in the chapter, but the plot does-
n’t define the groups as clearly. Adding a trendline means calling the NumPy
polyfit() function with the data, which returns a vector of coefficients, p, that
minimizes the least-squares error. Least-square regression is a method for find-
ing a line that summarizes the relationship between two variables, x and y in this
case, at least within the domain of the explanatory variable x. The third polyfit()
parameter expresses the degree of the polynomial fit.

The vector output of polyfit() is used as input to poly1d(), which calculates the
actual data points on the y axis. The call to plot() creates the trendline on the
scatterplot. You can see a typical result of this example in Figure 4-7.

FIGURE 4-7:
Scatterplot

trendlines	can	
show	you	the	
general	data	

direction.	

0005390169.INDD 806	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	4:10	PM

806 BOOK 6 Data Analysis with Python

Plotting Time Series
Nothing is truly static. When you view most data, you see an instant of time — a
snapshot of how the data appeared at one particular moment. Of course, such
views are both common and useful. However, sometimes you need to view data
as it moves through time — to see it as it changes. Only by viewing the data as
it changes can you expect to understand the underlying forces that shape it. The
following sections describe how to work with data on a time-related basis.

Representing time on axes
Many times, you need to present data over time. The data could come in many
forms, but generally you have some type of time tick (one unit of time), followed
by one or more features that describe what happens during that particular tick.
Listing 4-8 shows a simple set of days and sales on those days for a particular
item in whole (integer) amounts.

LISTING 4-8: Representing Time on Axes

import pandas as pd

import matplotlib.pyplot as plt

import datetime as dt

%matplotlib inline

start_date = dt.datetime(2022, 7, 30)

end_date = dt.datetime(2022, 8, 5)

daterange = pd.date_range(start_date, end_date)

sales = (np.random.rand(len(daterange)) * 50).astype(int)

df = pd.DataFrame(sales, index=daterange,

 columns=['Sales'])

df.loc['Jul 30 2022':'Aug 05 2022'].plot()

plt.ylim(0, 50)

plt.xlabel('Sales Date')

plt.ylabel('Sale Value')

plt.title('Plotting Time')

plt.show()

The example begins by creating a DataFrame to hold the information. The source
of the information could be anything, but in this example, the data is generated
randomly.

Visualizing the D
ata

0005390169.INDD 807	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	4:10	PM

CHAPTER 4 Visualizing the Data 807

Using loc[] lets you select a range of dates from the total number of entries avail-
able. Notice that this example uses only some of the generated data for output. It
then adds some amplifying information about the plot and displays it on-screen.
The call to plot() must specify the x and y values in this case or you get an error.
Figure 4-8 shows typical output from the randomly generated data.

Plotting trends over time
As with any other data presentation, sometimes you really can’t see what direc-
tion the data is headed in without help. Listing 4-9 starts with the plot from the
previous section and adds a trendline to it.

LISTING 4-9: Plotting Trends Over Time

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import datetime as dt

%matplotlib inline

start_date = dt.datetime(2022, 7, 29)

end_date = dt.datetime(2022, 8, 7)

daterange = pd.date_range(start_date, end_date)

sales = (np.random.rand(len(daterange)) * 50).astype(int)

df = pd.DataFrame(sales, index=daterange,

 columns=['Sales'])

lr_coef = np.polyfit(range(0, len(df)), df['Sales'], 1)

lr_func = np.poly1d(lr_coef)

trend = lr_func(range(0, len(df)))

df['trend'] = trend

FIGURE 4-8:
Use	line	graphs	to	
show	the	flow	of	

data over time.

(continued)

0005390169.INDD 808	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	4:10	PM

808 BOOK 6 Data Analysis with Python

df.loc['Jul 30 2022':'Aug 05 2022'].plot()

plt.xlabel('Sales Date')

plt.ylabel('Sale Value')

plt.title('Plotting Time')

plt.legend(['Sales', 'Trend'])

plt.show()

The “Showing correlations” section, earlier in this chapter, shows how most
people add a trendline to their graph. In fact, this is the approach that you often
see used online. You’ll also notice that a lot of people have trouble using this
approach in some situations. This example takes a slightly different approach by
adding the trendline directly to the DataFrame. If you print df after the call to
df['trend'] = trend, you see trendline data similar to the values shown here:

Sales trend
2022-07-29 6 18.890909
2022-07-30 13 20.715152
2022-07-31 38 22.539394
2022-08-01 22 24.363636
2022-08-02 40 26.187879
2022-08-03 39 28.012121
2022-08-04 36 29.836364
2022-08-05 21 31.660606
2022-08-06 7 33.484848
2022-08-07 49 35.309091

Using this approach makes it ultimately easier to plot the data. You call plot()
only once and avoid relying on the MatPlotLib, pylab, as shown in the example in
the “Showing correlations” section. The resulting code is simpler and less likely
to cause the issues you see online.

When you plot the initial data, the call to plot() automatically generates a legend
for you. MatPlotLib doesn’t automatically add the trendline, so you must also cre-
ate a new legend for the plot. Figure 4-9 shows typical output from this example
using randomly generated data.

LISTING 4-9: (continued)

Visualizing the D
ata

0005390169.INDD 809	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	4:10	PM

CHAPTER 4 Visualizing the Data 809

Visualizing Graphs
A graph is a depiction of data showing the connections between data points using
lines. The purpose is to show that some data points relate to other data points,
but not all the data points that appear on the graph. Think about a map of a sub-
way system. Each of the stations connects to other stations, but no single station
connects to all the stations in the subway system. Graphs are a popular data sci-
ence topic because of their use in social media analysis. When performing social
media analysis, you depict and analyze networks of relationships, such as friends
or business connections, from social hubs such as Facebook, Twitter, or LinkedIn.

The two common depictions of graphs are undirected, where the graph simply
shows lines between data elements, and directed, where arrows added to the line
show that data flows in a particular direction. For example, consider a depiction
of a water system. The water would flow in just one direction in most cases, so
you could use a directed graph to depict not only the connections between sources
and targets for the water but also to show water direction by using arrows. The
following sections help you understand the two types of graphs better and show
you how to create them.

Developing undirected graphs
As previously stated, an undirected graph simply shows connections between
nodes. The output doesn’t provide a direction from one node to the next. For
example, when establishing connectivity between web pages, no direction is
implied. Listing 4-10 shows how to create an undirected graph.

FIGURE 4-9:
Add	a	trendline	

to show the
average	direction	

of	change	in	a	
chart	or	graph.	

0005390169.INDD 810	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	4:10	PM

810 BOOK 6 Data Analysis with Python

LISTING 4-10: Developing Undirected Graphs

import networkx as nx

import matplotlib.pyplot as plt

%matplotlib inline

G = nx.Graph()

H = nx.Graph()

G.add_node(1)

G.add_nodes_from([2, 3])

G.add_nodes_from(range(4, 7))

H.add_node(7)

G.add_nodes_from(H)

G.add_edge(1, 2)

G.add_edge(1, 1)

G.add_edges_from([(2,3), (3,6), (4,6), (5,6)])

H.add_edges_from([(4,7), (5,7), (6,7)])

G.add_edges_from(H.edges())

nx.draw_networkx(G)

plt.show()

In contrast to the canned example found in Book 6, Chapter 2, this example
builds the graph using a number of different techniques. It begins by importing
the NetworkX package you use in Book 6, Chapter 2. To create a new undirected
graph, the code calls the Graph() constructor, which can take a number of input
arguments to use as attributes. However, you can build a perfectly usable graph
without using attributes, which is what this example does.

The easiest way to add a node is to call add_node() with a node number. You can
also add a list, dictionary, or range() of nodes using add_nodes_from(). In fact,
you can import nodes from other graphs if you want.

Even though the nodes used in the example rely on numbers, you don’t have to
use numbers for your nodes. A node can use a single letter, a string, or even a
date. Nodes do have some restrictions. For example, you can’t create a node using
a Boolean value.

Nodes don’t have any connectivity at the outset. You must define connections
(edges) between them. To add a single edge, you call add_edge() with the num-
bers of the nodes that you want to add. As with nodes, you can use add_edges_
from() to create more than one edge using a list, dictionary, or another graph as
input. Figure 4-10 shows the output from this example (your output may differ
slightly but should have the same connections).

Visualizing the D
ata

0005390169.INDD 811	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	4:10	PM

CHAPTER 4 Visualizing the Data 811

Developing directed graphs
You use directed graphs when you need to show a direction, say from a start point
to an end point. When you get a map that shows you how to get from one specific
point to another, the starting node and ending node are marked as such, and the
lines between these nodes (and all the intermediate nodes) show direction.

Your graphs need not be boring. You can dress them up in all sorts of ways so
that the viewer gains additional information. For example, you can create custom
labels, use specific colors for certain nodes, or rely on color to help people see the
meaning behind your graphs. You can also change edge line weight and use other
techniques to mark a specific path between nodes as the better one to choose.
Listing 4-11 shows many (but not nearly all) the ways in which you can dress up a
directed graph and make it more interesting.

LISTING 4-11: Developing Direct Graphs

import networkx as nx

import matplotlib.pyplot as plt

%matplotlib inline

G = nx.DiGraph()

G.add_node(1)

G.add_by nodes_from([2, 3])

G.add_nodes_from(range(4, 6))

nx.add_path(G,[6, 7, 8])

G.add_edge(1, 2)

G.add_edges_from([(1,4), (4,5), (2,3), (3,6), (5,6)])

colors = ['r', 'g', 'g', 'g', 'g', 'm', 'm', 'r']

labels = {1:'Start', 2:'2', 3:'3', 4:'4',

 5:'5', 6:'6', 7:'7', 8:'End'}

FIGURE 4-10:
Undirected	

graphs	connect	
nodes	together	to	

form	patterns.	

(continued)

0005390169.INDD 812	 Trim	size:	7.375	in	×	9.25	in	 June	11,	2022	4:10	PM

812 BOOK 6 Data Analysis with Python

sizes = [800, 300, 300, 300, 300, 600, 300, 800]

nx.draw_networkx(G, node_color=colors, node_shape='D',

 with_labels=True, labels=labels,

node_size=sizes)

plt.show()

The example begins by creating a directional graph using the DiGraph() construc-
tor. You should note that the NetworkX package also supports MultiGraph() and
MultiDiGraph() graph types. You can see a listing of all the graph types at https://
networkx.org/documentation/stable/reference/classes/index.html.

Listing 4-11 requires version 2+ of NetworkX. If you get an error when you run it,
you can upgrade NetworkX using the following command:

pip install networkx==2.6

Adding nodes is much like working with an undirected graph. You can add single
nodes using add_node() and multiple nodes using add_nodes_from(). The add_
path() call lets you create nodes and edges at the same time. The order of nodes
in the call is important. The flow from one node to another is from left to right in
the list supplied to the call.

Adding edges is much the same as working with an undirected graph, too. You can
use add_edge() to add a single edge or add_edges_from() to add multiple edges
at one time. However, the order of the node numbers is important. The flow goes
from the left node to the right node in each pair.

This example adds special node colors, labels, sizes, and a shape (only one shape
is used) to the output. You still call on draw_networkx() to perform the task.
However, adding the parameters shown changes the appearance of the graph.
Note that you must set with_labels to True in order to see the labels provided by
the labels parameter. Figure 4-11 shows the output from this example.

FIGURE 4-11:
Use directed

graphs	to	show	
direction	between	

nodes.	

LISTING 4-11: (continued)

7
0005390110.INDD 813 Trim size: 7.375 in × 9.25 in June 11, 2022 4:33 PM

Career Building
with Coding

Contents at a Glance
CHAPTER 1:	 Exploring	Coding	Career Paths 815

CHAPTER 2: Exploring Undergraduate and Graduate
Degrees . 829

CHAPTER 3: Training on the Job . 843

CHAPTER 4: Coding Career Myths . 853

0005390110.INDD 814 Trim size: 7.375 in × 9.25 in June 11, 2022 4:33 PM

CHAPTER 1 Exploring Coding Career Paths 815

0005390170.INDD 815 Trim size: 7.375 in × 9.25 in June 11, 2022 4:12 PM

 Exploring Coding
Career Paths

We shall not cease from exploration, and the end of all our exploring will be to
arrive where we started and know the place for the fi rst time.

 — T.S. ELIOT

 F or many people, the words “coding career” evoke an image of a person
sitting in a dimly lit room typing incomprehensible commands into a com-
puter. The stereotype has persisted for decades — just watch actors such

as Matthew Broderick in War Games (1983), Keanu Reeves in The Matrix (1999),
or Jesse Eisenberg in The Social Network (2010). Fortunately, these movies are
not accurate representations of reality. Just like a career in medicine can lead to
psychiatry, gynecology, or surgery, a career in coding can lead to an equally broad
range of options.

 In this chapter, you see how coding can augment your existing job across a mix of
functions, and you explore increasingly popular careers based primarily on coding.

Chapter 1

 IN THIS CHAPTER

» Using coding in your existing job

» Exploring entry-level full-time coding
roles

» Understanding skills and tasks in
various coding roles

0005390170.INDD 816 Trim size: 7.375 in × 9.25 in June 11, 2022 4:12 PM

816 BOOK 7 Career Building with Coding

Augmenting Your Existing Job
Many people find coding opportunities in their existing job. It usually starts inno-
cently enough, and with something small. For example, you may need a change
made to the text on the company’s website, but the person who would normally
do that is unavailable before your deadline. If you knew how to alter the website’s
code, you could perform your job faster or more easily. This section explores how
coding might augment your existing job.

Creative design
Professionals in creative design include those who

 » Shape how messages are delivered to clients.

 » Create print media such as brochures and catalogs.

 » Design for digital media such as websites and mobile applications.

CHOOSING A CAREER PATH
Coding career paths are extremely varied. For some people, the path starts with using
code to more efficiently perform an existing job. For others, coding is a way to transition
to a new career. As varied as the career path is, so too are the types of companies that
need coders.

As more people carry Internet-capable mobile phones, businesses of every type are
turning to coders to reach customers and to optimize existing operations. No business
is immune. For example, FarmLogs is a company that collects data from farm equip-
ment to help farmers increase crop yields and forecast profits. FarmLogs needs coders
to build the software that collects and analyzes data, and farmers with large operations
may need coders to customize the software.

To build or customize software, you’ll need to learn new skills. Surprisingly, the time
required to learn and start coding can range from an afternoon of lessons to a ten-week
crash course to more time-intensive options, such as a four-year undergraduate degree
in computer science.

Exploring Coding
Career Paths

0005390170.INDD 817 Trim size: 7.375 in × 9.25 in June 11, 2022 4:12 PM

CHAPTER 1 Exploring Coding Career Paths 817

Traditionally, digital designers, also known as visual designers, created mockups,
static illustrations detailing layout, images, and interactions, and then sent these
mockups to developers who would create the web or mobile product. This process
worked reasonably well for everyday projects, but feedback loops started becom-
ing longer as mockups became more complex. For example, a designer would cre-
ate multiple mockups of a website, and then the developer would implement them
to create working prototypes, after which the winning mockup would be selected.
As another example, the rise of mobile devices has led to literally thousands of
screen variations between mobile phones and tablets created by Apple, Samsung,
and others. Project timelines increased because designers had to create five or
more mockups to cover the most popular devices and screen sizes.

As a designer, one way to speed up this process is to know just enough code to cre-
ate working prototypes of the initial mockups that are responsive, which means
one prototype renders on both desktop and mobile devices. Then project manag-
ers, developers, and clients can use these early prototypes to decide which ver-
sions to further develop and which to discard. Additionally, because responsive
prototypes follow a predictable set of rules across all devices, creating additional
mockups for each device is unnecessary, which further decreases design time. As
mobile devices have become more popular, the demand for designers who under-
stand how to create good user interactions (UI) and user experiences (UX) has
greatly increased.

Prototyping tools such as InVision and Axure provide a middle option between
creating static illustrations and coding clickable prototypes by allowing design-
ers to create working prototypes without much coding. Still, a person with basic
coding skills can improve a prototype generated with these tools by making it
more interactive and realistic. Designers who can design and code proficiently are
referred to as “unicorns” because they are rare and in high demand.

Content and editorial
Professionals in content and editorial perform tasks such as the following:

 » Maintain the company’s presence on social networks such as Twitter
and Facebook.

 » Create short posts for the company blog and for email campaigns.

 » Write longer pieces for articles or presentations.

At smaller companies, content creation is usually mixed with other responsi-
bilities. At larger companies, creating content is a full-time job. Whether you’re
blogging for a startup or reporting for The Wall Street Journal, writers of all types
face the same challenges of identifying relevant topics and backing it up with data.

0005390170.INDD 818 Trim size: 7.375 in × 9.25 in June 11, 2022 4:12 PM

818 BOOK 7 Career Building with Coding

Traditionally, content was written based on a writer’s investigation and leads
from a small group of people. For example, you might write a blog post about a
specific product’s feature because a major customer asked about it during a sales
call. But what if most of your smaller customers, whom you don’t speak with
regularly, would benefit from a blog post about some other product feature?

As a writer, you can produce more relevant content by writing code to analyze
measurable data and use the conclusions to author content. I Quant NY (http://
iquantny.tumblr.com), an online blog, is one shining example of data driving
content creation. In 2014, the site’s author, Ben Wellington, analyzed public data
on New York City parking tickets, bike usage, and traffic crashes, and wrote about
his conclusions. His analysis led to original stories and headlines in major news-
papers such as The New York Times and New York Post (see Figure 1-1).

Human resources
Those who work in human resources might be expected to do the following:

 » Source and screen candidates for open company jobs.

 » Manage payroll, benefits, performance, and training for employees.

 » Ensure company compliance with relevant laws and resolve disputes.

Traditionally, HR professionals have not performed much coding in the workplace.
The human- and process-driven components of the job generally outweighed
the need for automation that coding typically provides. For example, a dispute

FIGURE 1-1:
Article about a

ticket-generating
fire hydrant.

© John Wiley & Sons

Exploring Coding
Career Paths

0005390170.INDD 819 Trim size: 7.375 in × 9.25 in June 11, 2022 4:12 PM

CHAPTER 1 Exploring Coding Career Paths 819

between co-workers is usually resolved with an in-person meeting organized by
HR, not by a computer program. However, the recruiting function in HR may ben-
efit from coding. Hiring employees has always been challenging, especially for
technical positions where the demand for employees far exceeds the supply of
available and qualified candidates.

If you’re responsible for technical recruiting and want to increase the number of
candidates you reach out to and source, one solution is to develop some coding
experience that enables you to discover people who may not meet the traditional
hiring criteria. For example, a company might ordinarily look for developers from
a specific university with at least a 3.0 grade point average.

However, increasingly developers are self-taught and may have dropped out or
not attended university at all. A technical recruiter who can evaluate code that
self-taught developers have written and made publicly available on sites such
as GitHub or Bitbucket can qualify candidates who previously would have been
rejected. Additionally, recruiters working with technical candidates improve out-
comes by being able to speak their language.

Companies such as Google and Facebook have taken a technical approach to
managing the expensive and difficult problem of finding and retaining employ-
ees. These companies perform people analytics on their employees by looking at
everyone who applies and analyzing factors that contribute to hiring, promotion,
and departure, such as undergraduate GPA, previous employer, interview perfor-
mance, and on-the-job reviews. At Google, this analysis requires some serious
coding because more than two million people apply each year.

Product management
Product managers, especially those working on software and hardware products,
perform tasks like the following:

 » Manage processes and people to launch products on time and on budget,
maintain existing products, and retire old products.

 » Connect all departments that create a product, including sales, engineering,
marketing, design, operations, and quality control.

 » Guide the product definition, roadmap, and business model based on
understanding the target market and customers.

The product manager’s role can vary greatly because it is a function of the company
culture and the product being built. This is especially true for technical products;
in some companies, product managers define the problem and engineers design

0005390170.INDD 820 Trim size: 7.375 in × 9.25 in June 11, 2022 4:12 PM

820 BOOK 7 Career Building with Coding

hardware and software to solve those problems. In other companies, product
managers not only define the problem but also help design the technical solution.

One of the hardest challenges and main responsibilities of a product manager is
to deliver a product on time and within budget. Timelines can be difficult to esti-
mate, especially when new technology is used or existing technology is used in a
new way. When you manufacture, say, a chair, it has a set product definition. For a
product with a technical component, additional features can creep into the project
late in development, or a single feature might be responsible for the majority of
time or cost overruns. The product manager helps to keep these variables in check.

The product manager working on a technical product who has some coding skill
will be able to better estimate development cycles and anticipate the moving pieces
that must come together. In addition, solving technical challenges that arise and
understanding the tradeoffs of one solution versus another are easier with some
coding background.

Business analysts or integration specialists translate business requirements from
customers into technical requirements that are delivered to project managers and
that are eventually implemented by backend engineers.

Sales and marketing
Sales and marketing professionals perform tasks such as

 » Segment existing customers and identify new potential customers.

 » Generate and convert prospective leads into sold customers.

 » Craft product and brand images to reflect company and customer values.

Salespeople and marketers expend a great deal of effort placing the right message
at the right time before the right customer. For decades, these messages were
delivered in newspapers, in magazines, and on television and radio. Measuring
their effect in these channels was difficult, part art and part science. With the
movement of messages to the Internet, we can now measure and analyze every
customer view and click. Online marketing has created another problem: Online
customers generate so much data that much of it goes unanalyzed.

The salesperson or marketer who can code is able to better target customers
online. If you’re a salesperson, generating leads is the start of the sales funnel,
and coding enables you to find and prioritize online website visitors as poten-
tial customers. For example, when Uber launched their mobile application, it was
available only in San Francisco. The company tracked and analyzed the location of
users who opened the app to decide which city to launch in next.

Exploring Coding
Career Paths

0005390170.INDD 821 Trim size: 7.375 in × 9.25 in June 11, 2022 4:12 PM

CHAPTER 1 Exploring Coding Career Paths 821

If you’re in marketing, identifying whom to market to is as important as identify-
ing what message to market. Website visitors reveal behavioral and demographic
data about themselves, including location, web pages visited, visit duration, and
often gender, age, employer, and past online purchases. Even moderately suc-
cessful websites generate tens of millions of records a month, and coding can help
spot trends such as the 25-to-29-year-old females in Nebraska who are suddenly
interested in but aren’t purchasing your product. Marketing messages become
more efficient when you know the segments you’re targeting and how they are
responding.

Legal
Professionals providing legal services might perform the following tasks:

 » Identify and manage legal risks in agreements and transactions.

 » Ensure ongoing compliance with relevant laws and regulations.

 » Review documents such as prior cases, business records, and legal filings.

 » Resolve disputes through litigation, mediation, and arbitration.

Historically, the legal profession has been resilient to advances in technology.
I include it here because if lawyers who code are able to more efficiently perform
their jobs, professionals in any other industry should be able to benefit from cod-
ing as well.

Coding knowledge may not assist a lawyer with delivering a passionate argument
in court or finalizing a transaction between two Fortune 500 companies, but the
bulk of a lawyer’s time is spent on document review, a task that could benefit
from coding knowledge.

When reviewing legal documents, a lawyer might read previous cases in a litiga-
tion, check existing patent filings before filing a new patent, or examine a compa-
ny’s contracts in preparation for a merger. All these tasks involve processing large
amounts of text, and current legal tools enable, for example, wildcard searching
(such as using new* to find New York, New Jersey, and New Hampshire).

However, the use of regular expressions — code that searches for patterns in text —
could help lawyers review documents faster and more efficiently. See Figure 1-2.

For example, suppose you are a government lawyer investigating an investment
bank for fraudulently selling low-quality mortgages. The investment bank has
produced two million documents, and you want to find every email address men-
tioned in these documents. You could spend months reviewing every page and

0005390170.INDD 822 Trim size: 7.375 in × 9.25 in June 11, 2022 4:12 PM

822 BOOK 7 Career Building with Coding

noting the email addresses, or you could spend a few minutes writing a regular
expression that returns every email address automatically.

As the government lawyer reviewing those documents, one of many regu-
lar expressions you could use to find email addresses is .+@.+\..+. Much like the
* wildcard character, each symbol represents a pattern to match. This regular
expression first looks for a least one character before and after the @ symbol,
and at least one character before and after a period that appears following the @
symbol. This pattern matches the username@domain.com email address format.

Finding a New Coding Job
The career changer looking to transition to a coding job can choose from a vari-
ety of roles. This section describes the most popular coding jobs today. In these
roles at the entry level, your coding knowledge will be used daily. As you become
more skilled and senior, however, your people-management responsibilities will
increase while the number of lines of code you write will decrease. For example,
Mark Zuckerberg wrote the code for the initial version of Facebook and continued
to write code for two years after the website launched, after which he stopped
coding for almost six years to focus on managing the team’s growth.

Some coding roles may appeal to you to more than others. In addition to under-
standing jobs available in the market, some self-reflection can help you make the

FIGURE 1-2:
Use RegExr.

com to practice
searching

with regular
expressions.

© John Wiley & Sons

Exploring Coding
Career Paths

0005390170.INDD 823 Trim size: 7.375 in × 9.25 in June 11, 2022 4:12 PM

CHAPTER 1 Exploring Coding Career Paths 823

best choice possible. As you review the role descriptions in this section, take a
personal inventory of

 » Tasks you enjoy and dislike in your current role

 » Skills you already possess, and the skills you will need to learn

 » Interests you want to pursue that will make you excited about working
every day

Although no job is completely secure, the demand for technical roles is high and
continues to grow. The U.S. government estimates that employment in computer
science and information technology occupations will grow by 13 percent from
2020 to 2030, adding around 667,600 jobs. The median income for computer and
information technology jobs in 2020 was more than double the median annual
wage for all occupations.

Frontend web development
Web developers create websites. There are two types of web developers: frontend
developers and backend developers. Each requires different skills and tasks, which
are discussed in this section.

Frontend web developers code everything visible on the web page, such as the lay-
out, image placement and sizing, input features including buttons and text boxes,
and the site’s general look and feel. These effects are created with three major
programming languages: HTML (Hypertext Markup Language), which is used to
place content on the page, CSS (Cascading Style Sheets), which styles the text and
further contributes to its appearance, and JavaScript, which adds interactivity.

In addition to these three languages, frontend developer job postings reveal a
common set of skills that employers are looking for:

 » SEO (search engine optimization): Creating web pages for humans might
seem like the only goal, but machines, specifically search engines, are the
primary way most users find websites. Search engines “view” web pages
differently than humans, and certain coding techniques can make it easier for
search engines to index an individual web page or an entire website.

 » Cross-browser testing: Users navigate web pages by using four major
browsers (Chrome, Firefox, Edge, and Safari), each with two or three active
versions in addition to mobile versions of each browser. As a result, a web
developer must be skilled in testing websites across eight or more browser
versions. Developing for older browsers is typically more difficult because

0005390170.INDD 824 Trim size: 7.375 in × 9.25 in June 11, 2022 4:12 PM

824 BOOK 7 Career Building with Coding

they support fewer features and require more code to achieve the same
effect as modern browsers.

 » CSS tools: Developers use precompilers and CSS frameworks to make coding
in CSS easier:

• Precompilers extend CSS functionality with features such as variables and
functions, which make it easier to read and maintain CSS code.

CSS frameworks, such as Bootstrap and Foundation, provide prewritten
HTML and CSS code that makes it easier to develop a website with a
consistent look across desktop and mobile devices.

Proficiency in all precompilers and frameworks is unnecessary, but knowledge
of one precompiler and framework can be helpful.

 » JavaScript frameworks: Developers use prewritten JavaScript code called a
JavaScript framework to add features to web pages. Some popular JavaScript
frameworks are ReactJS, Vue.js, and Svelte. Proficiency in the over 30
JavaScript frameworks is unnecessary, but knowing one or two can be helpful.

None of the work a web developer does would be possible without product man-
agers and designers. Developers work with product managers to ensure that the
product scope and timelines are reasonable. Additionally, product managers make
sure that the technical and nontechnical teams are communicating and aligned.
Developers also work with designers who create mockups, or illustrations of the
website, images, and the flow users take to move between web pages. After the
mockups are created, frontend developers code the website to match the mockups
as closely as possible.

Backend web development
Backend web developers code everything that is not visible on the web page but is
necessary to support the frontend developer’s work. Backend development hap-
pens in the following three places:

 » Server: The server is the computer hosting the coding files that include the
website application and the database. When you visit www.google.com, for
example, your web browser requests the web page from Google servers,
which respond with a copy of the web page you see in your browser.

 » Application: The application handles the content in web pages sent to users
and the changes made to the database. Applications are written using
programming languages like Ruby, Python, and PHP, and run only on the
server. Proficiency in one language is usually sufficient.

Exploring Coding
Career Paths

0005390170.INDD 825 Trim size: 7.375 in × 9.25 in June 11, 2022 4:12 PM

CHAPTER 1 Exploring Coding Career Paths 825

 » Database: The database stores website and user data so it is available for
future browsing sessions. The simplest database is an Excel spreadsheet,
which is ill suited for web development. Databases such as PostgreSQL and
MongoDB are optimized for website use; usually only one of these databases
is used per website.

As an example of backend web development, suppose that you visit www.
amazon.com using your web browser. Your computer makes a request to the
Amazon server, which runs an application to determine what web content to serve
you. The application queries a database, and past purchases and browsing show
that you have an interest in technology, legal, and travel books. The application
creates a web page that displays books matching your interests and sends it to
your computer. You see a book on bike trails in New York and click to purchase it.
After you enter your credit card and shipping details, the application stores the
information in a database on the server for easy checkout in the future.

For backend developers, one major part of the job is writing code for the applica-
tion and database to render web pages in the browser. Employers are interested in
additional skills such as these:

 » Scaling: Backend developers must change and optimize application code,
servers, and databases to respond to increases in website traffic. Without the
right planning, a mention of your website on a morning talk show or in the
newspaper could result in a “website not available” error message instead of
thousands of new customers. Scaling involves balancing the cost of optimizing
the website with leaving the configuration as-is.

 » Analytics: Every online business, whether large or small, has key website
performance indicators, such as new user signups and retention of existing
users. Backend developers can implement and track these metrics by
querying information from the website database.

 » Security: Websites with a substantial number of users become a target for all
types of security risks. Attackers may automate signups, in which fake profiles
post spam that promotes unrelated products. Additionally, you may receive a
massive amount of traffic in a short period of time, called a denial of service
attack, which prevents legitimate customers from accessing your website. Or
attackers might try to detect weaknesses in your servers to gain unauthorized
access to sensitive information such as email addresses, passwords, and
credit card numbers. In 2021, major data breaches were uncovered at large
corporations including Facebook, T-Mobile, Neiman Marcus, and Kaseya.
Prevention of these attacks rests, in part, with backend developers.

The backend developer is a part of the product team and works closely with
 frontend developers and product managers. Unlike frontend developers, backend

0005390170.INDD 826 Trim size: 7.375 in × 9.25 in June 11, 2022 4:12 PM

826 BOOK 7 Career Building with Coding

developers do not interact frequently with designers because the job is not as
visual or based on website appearance.

Mobile application development
Mobile application developers create applications that run on cell phones, tablets,
and other mobile devices. Mobile applications can be more challenging to create
than browser-based websites because users expect the same functionality on a
device without a dedicated keyboard and with a smaller screen.

In 2014, users purchased and spent more time on mobile devices than traditional
PC desktops, marking a major milestone. Today, it’s estimated that 55 percent of
global Internet traffic comes from mobile devices.

Up to 90 percent of time users spend on mobile devices is spent using native apps
that are downloaded from an app store. The two most popular app stores are

 » The Apple App Store, which hosts apps for iOS devices such as
iPhones and iPads

 » The Google Play Store, which hosts apps for phones and tablets running the
Android operating system

Developers code apps for iOS devices by using the Objective-C and Swift pro-
gramming languages, and they code apps for Android devices by using Java or
Kotlin. Cross-platform mobile app development frameworks, such as Flutter and
React Native, make it possible for programmers to write their apps once (using the
JavaScript or Dart programming languages) and compile them for both Android
and iOS.

Mobile developers are in high demand as mobile usage overtakes browsing on tra-
ditional PCs. In addition to creating apps, employers also value these skills:

 » Location services: The service most frequently integrated into and used in
mobile applications is location. Maps, reservation, and transportation
applications all become more useful when they take into account your
current location.

 » Application testing: The number of devices that a mobile developer has to
consider is staggering. In addition, an errant line of code can cause a mobile
application to install incorrectly or to leak memory until the application
crashes. Mobile application-testing software automates the process of testing
your application across a variety of device types, saving a huge amount of
time and a drawer full of phones. Mobile developers who can integrate testing

Exploring Coding
Career Paths

0005390170.INDD 827 Trim size: 7.375 in × 9.25 in June 11, 2022 4:12 PM

CHAPTER 1 Exploring Coding Career Paths 827

software such as Crashlytics into their applications will get the data needed to
continuously improve their application code.

Mobile application developers work with designers to create easy and intuitive
mobile experiences, with backend developers to ensure that data submitted by
or received from the phone is in sync with data on the website, and with product
managers so that the application launches smoothly.

Data analysis
Data analysts sift through large volumes of data, looking for insights that help
drive the product or business forward. This role marries programming and sta-
tistics in the search for patterns in the data. Popular examples of data analysis
in action include the recommendation engines used by Amazon to make product
suggestions to users based on previous purchases and by Netflix to make movie
suggestions based on movies watched.

The data analyst’s first challenge is simply importing, cleaning, and processing
the data. A website can generate daily millions of database entries of users’ data,
requiring the use of complicated techniques, referred to as machine learning, to
create classifications and predictions from the data. For example, half a billion
messages are sent per day using Twitter; some hedge funds analyze this data and
classify whether a person talking about a stock is expressing a positive or nega-
tive sentiment. These sentiments are then aggregated to see whether a company
has a positive or negative public opinion before the hedge fund purchases or sells
any stock.

Any programming language can be used to analyze data, but the most popular
programming languages used for the task are R, Python, and SQL. Publicly shared
code in these three languages makes it easier for individuals entering the field to
build on another person’s work. While crunching the data is important, employers
also look for data analysts with skills in the following:

 » Visualization: Just as important as finding insight in the data is communicat-
ing that insight. Data visualization uses charts, graphs, dashboards, infograph-
ics, and maps, which can be interactive, to display data and reduce the
complexity such that one or two conclusions appear obvious, as shown in
Figure 1-3 (courtesy of I Quant NY). Common data visualization tools include
D3.js, a JavaScript graphing library, and ArcGIS for geographic data.

 » Distributed storage and processing: Processing large amounts of data on
one computer can be time-intensive. One option is to purchase a single faster
computer. Another option, called distributed storage and processing, is to
purchase multiple machines and divide the work. For example, imagine that

0005390170.INDD 828 Trim size: 7.375 in × 9.25 in June 11, 2022 4:12 PM

828 BOOK 7 Career Building with Coding

we want to count the number of people living in Manhattan. In the distributed
storage and processing approach, you might ring odd-numbered homes,
I would ring even-numbered homes, and when we finished, we would total
our counts.

Data analysts work with backend developers to gather data needed for their work.
After the data analysts have drawn conclusions from the data and come up with
ideas on improving the existing product, they meet with the entire team to help
design prototypes to test the ideas on existing customers.

FIGURE 1-3:
The two

Manhattan
addresses

farthest away
from Starbucks.

I Quant NY

CHAPTER 2 Exploring Undergraduate and Graduate Degrees 829

0005390171.INDD 829 Trim size: 7.375 in × 9.25 in June 11, 2022 4:15 PM

 Exploring Undergraduate
and Graduate Degrees

“When I was in college, I wanted to be involved in things that would change
the world.”

 — ELON MUSK

 G oing to college to learn how to code is probably the most traditional and
expensive path you can take. A bachelor’s degree, designed to take four
years, is rooted in the tradition of the English university system and was

made popular by the GI Bill after World War II. More recently, the two-year asso-
ciate degree has become more popular. It costs less than a bachelor’s degree, but
many are designed as a way to eventually transfer to a four-year bachelor degree
program.

 But when it comes to computer programmers, you likely know more people who
didn’t graduate from college than did. Entrepreneurs such as Bill Gates, Steve
Jobs, Mark Zuckerberg, and Larry Ellison dropped out of college to create tech-
nology companies worth billions of dollars. Still, the world’s biggest technology
companies continue to hire mainly college graduates.

Chapter 2

 IN THIS CHAPTER

» Learning to code with a bachelor’s or
master’s degree

» Coding outside class in clubs and
hackathons

» Securing an internship to learn on
the job

0005390171.INDD 830 Trim size: 7.375 in × 9.25 in June 11, 2022 4:15 PM

830 BOOK 7 Career Building with Coding

Whether you’re thinking about going to college, are already in college, or attended
college and want another degree, this chapter is for you. This chapter explores
learning to code in college or graduate school, and then building your credibility
with an internship.

Getting a College Degree
The recent media attention on coding, with movies such as The Social Network and
TV shows such as Silicon Valley, might make it seem like everyone in college is
learning how to program. Although computer science (CS) graduates earn some
of the highest salaries in the United States (see Figure 2-1), less than 3 percent of
students major in computer science, and less than 1 percent of AP exams taken in
high school are in computer science.

The supply of students is low but is improving relative to the jobs that are avail-
able. Companies such as Apple, Microsoft, Yahoo!, Facebook, and Twitter recruit
computer science engineers from schools such as Carnegie Mellon, MIT, and
Stanford. It’s not just the companies you read about in the news that are hiring
either. CS graduates are in high demand — in 2020, there were an estimated
1.4 million computing jobs but only 400,000 trained computer science students
to fill those jobs.

Yet far more important to employers than the name of the school you went to is
what you did while you were in school. Employers will ask how you challenged
yourself with your course load, and the applications you built and why.

FIGURE 2-1:
Bachelor’s

degrees
awarded in CS
over 40 years,

courtesy of NPR.

Source: Digest of Educational Statistics; credit: Quoctrung Bui/NPR

0005390171.INDD 831 Trim size: 7.375 in × 9.25 in June 11, 2022 4:15 PM

CHAPTER 2 Exploring Undergraduate and Graduate Degrees 831

Exploring U
ndergraduate

and G
raduate D

egrees

College computer science curriculum
College CS courses offer a sweeping survey of entire computer systems from the
hardware used to allocate memory to the high-level software that runs programs
and the theories used to write that software. As a result, you gain a great sense
of why computer systems behave as they do, which gives you the foundation to
advance a technology or a programming language when the need arises.

This approach differs dramatically from the learning you’d typically do by your-
self or in a boot camp, where the focus is only on software development in a
specific language such as Python or Ruby. Given the typical 12-week duration of a
boot camp, there isn’t much time for anything else.

The core CS curriculum across universities is similar. Table 2-1 compares select
core curriculum classes required as part of the Computer Science degree at Stanford
and Penn State — a private university on the West Coast and a public university
on the East Coast, respectively. Both have introductory classes to acquaint you
with programming topics, math classes that cover probability, hardware classes
for low-level programming and memory storage, software classes for designing
algorithms, and higher level classes that cover advanced topics such as artificial
intelligence and networking.

TABLE 2-1 CS Select Core Curriculum at Stanford and Penn State
Course Name Course Description Stanford Penn State

Programming
Abstractions

Intro to programming using C++
with sorting and searching

CS 106B CMPSC 121

Programming with
Web Applications

Intro to graphics, virtual
machines, and programming
concepts using Java

N/A CMPSC 221

Math Foundations
of Computing

Topics include proofs, logic,
induction, sets, and functions

CS 103 CMPSC 360

Probability Probability and statistics
relevant to computer science

CS 109 STAT 318

Algorithms Algorithm types (e.g., random)
and complexity

CS 161 CMPSC 465

Hardware Systems Machine registers, assembly
language, and compilation

CS 107 CMPSC 311

Computer Systems Storage and file management,
networking, and
distributed systems

CS 110 N/A

(continued)

0005390171.INDD 832 Trim size: 7.375 in × 9.25 in June 11, 2022 4:15 PM

832 BOOK 7 Career Building with Coding

Until recently, universities generally did not teach web programming courses. As
web programming has increased in popularity, this has begun to change — for
example, Stanford offers a web programming class (CS 142) that teaches HTML,
CSS, and Ruby on Rails, and Penn State has a similar class that teaches web
programming with Java.

TECHNICAL VERSUS PRACTICAL
EDUCATION
As you look at the courses offered in the Stanford and Penn State CS programs, you’ll
notice that the overwhelming majority speak to the theory of computer science and
aren’t always used every day. For example, as a person interested in software develop-
ment, you likely aren’t going to use much if any of your hardware systems courses. Note
that some classes will be very relevant — algorithms and databases are two topics fre-
quently used in web programming.

However, understanding the theory is useful. For example, database systems were ini-
tially created assuming that storage was expensive and the amount of data that needed
to be stored would grow linearly. The reality turned out to be different — the cost of
hardware plummeted and hard drives became bigger and cheaper, while people gen-
erated more data at a faster pace than ever before. Computer scientists, with a solid
understanding of databases, took advantage of cheap hardware and created distrib-
uted databases, which store data across multiple computers instead of a single one.

TABLE 2-1 (continued)

Course Name Course Description Stanford Penn State

Operating Systems Designing and managing
operating and system tasks

CS 140 CMPSC 473

Computer and
Network Security

Principles of building and
breaking secure systems

CS 155 CMPSC 443

Intro to Artificial
Intelligence

AI concepts such as searching,
planning, and learning

CS 121 CMPSC 448

Intro to Databases Database design and using SQL
and NoSQL systems

CS 145 CMPSC 431W

0005390171.INDD 833 Trim size: 7.375 in × 9.25 in June 11, 2022 4:15 PM

CHAPTER 2 Exploring Undergraduate and Graduate Degrees 833

Exploring U
ndergraduate

and G
raduate D

egrees

Doing extracurricular activities
Many students complement their coursework by applying what they’ve learned in
a tangible way. Your coursework will include project work, but projects assigned
in class may not have changed in a few years to make it easier for the instructor to
provide support and grade your work. Also, with so many technologies constantly
popping up, using your coding skills outside the classroom will help build confi-
dence and skill.

One option is to code side projects, which are personal coding projects that per-
form some small basic utility and can be built in a short amount of time, over
a weekend to a few months at most. For example, not many people know that
before Mark Zuckerberg built Facebook, he had coded many side projects, includ-
ing an instant messaging client for his dad’s dental practice, an MP3 player
that suggested the next song to listen to, and a tool that helped students choose
their semester schedule based on which classes their friends were enrolling
in. In another example, three students at Tufts University wanted an easy way
to find the cheapest place to buy all their textbooks. They created a site called
GetchaBooks, which lets students select the classes they would be taking in a
semester and then retrieved the full list of books needed and the total prices
across many stores to find the cheapest price. Although the site is no longer
actively developed, all the code is open sourced and can be viewed at github.com/
getchabooks/getchabooks.

In addition to coding on your own, coding and discussing technology topics with
others can be more engaging. On-campus clubs are usually formed by students
and cater to almost every interest. You can find clubs on robotics, financial tech-
nologies such as Bitcoin, technology investing from the venture capital stage to
the public equities stage, and more.

Whether or not you should learn programming in college comes down to your goal. If
you want to one day be in a position to change the industry or work on cutting-edge
technology, the theory you learn studying computer science is without substitute or
comparison. There are few other places where you can engage with a professional, in
this case a professor, of a high caliber to push the limits of fundamental understanding.
Also, specific programming languages and technologies are constantly changing, while
the underlying concepts and theories stay the same. Some of the most popular pro-
gramming languages in use today, including Python, Java, Ruby, and JavaScript, are
30 years old, while Go, R, Swift, and Dart are less than ten years old.

On the other hand, if your goal is to use these concepts to make a living in the industry
instead of trying to change the industry, you could learn to code in a less expensive and
less time-intensive way than obtaining a computer science degree.

0005390171.INDD 834 Trim size: 7.375 in × 9.25 in June 11, 2022 4:15 PM

834 BOOK 7 Career Building with Coding

The Dorm Room Fund is a student-run venture capital firm with locations in San
Francisco, Boston, New York, and Philadelphia that invests in student-run com-
panies. Backed by First Round Capital, the goal is to nurture and support young
technology companies, teach students how to evaluate and invest in technology
companies, and find the next billion-dollar company on a college campus.

The most intense extracurricular pursuit for a student is participating in
hackathons. A hackathon is a one-day to weekend-long event with the goal of
brainstorming, designing, and building a small useful app. Hackathons are most
popular among students, who often stay up all night coding their apps, while the
hosts are often technology companies. However, some of the largest hackathons,
such as Cal Hacks, which is hosted by UC Berkeley, and PennApps, which is hosted
by the University of Pennsylvania (see Figure 2-2), are organized by students and
attended by thousands of students from schools around the country.

Two-year versus four-year school
You may not be able to afford the time, expense, or commitment demanded by
a four-year degree. Even though some colleges offer financial aid, not earning
money for four years or earning a far-reduced wage may not be feasible, espe-
cially if you have to support yourself or family members.

FIGURE 2-2:
Students show

a mentor
their mobile

application at
PennApps.

Daniel Ge / Flickr / CC BY-SA 2.0

0005390171.INDD 835 Trim size: 7.375 in × 9.25 in June 11, 2022 4:15 PM

CHAPTER 2 Exploring Undergraduate and Graduate Degrees 835

Exploring U
ndergraduate

and G
raduate D

egrees

One alternative to the Bachelor of Arts (BA) degree is the Associate of Arts (AA)
degree, which is typically granted by community colleges or technical schools.
You can complete an AA degree in two years. In addition to taking less time,
according to the College Board, tuition and fees are on average $4,000 per year,
compared to $10,560 per year at public four-year institutions. Courses are also
offered during evenings and on weekends, so students can work while attend-
ing school. When evaluating an institution that grants the AA degree, review the
instructors teaching the courses and make sure they are experienced practitioners
in the field. Additionally, see the types of jobs recent graduates went on to do and
the employers they worked for to make sure that both match with your goals.

A close relative of the AA degree is a certificate granted by a school of continu-
ing education. Certificates are noncredit offerings completed within a year. They
usually cost less than $10,000 but don’t result in a degree. To get the most bang
for your buck, get your certificate from a school with a good regional or even
national reputation. For example, NYU has a Certificate in Web Development that
teaches web development basics with HTML, CSS, and JavaScript along with more
advanced topics such as PHP, a popular programming language for the web, and
SQL, a language used to query databases. (See Figure 2-3.) Learning these topics
in a structured way from an instructor can help jumpstart your learning so you
can teach yourself additional topics on your own.

FIGURE 2-3:
NYU’s Certificate

in Web
Development
offers classes

in JavaScript
and Python.

Credit: Courtesy of NYU

0005390171.INDD 836 Trim size: 7.375 in × 9.25 in June 11, 2022 4:15 PM

836 BOOK 7 Career Building with Coding

When enrolling in a certificate program, keep in mind that instructor quality can
be highly variable. Make sure you talk to current students or find some student
reviews before signing up for either the certificate program or courses that the
certificate requires.

Enrolling in an Advanced Degree Program
The options for learning how to code never seem to end, and advanced degrees
typically appeal to a particular group of people. While not necessary for either
learning to code or obtaining a coding job, an advanced degree can help accelerate
your learning and differentiate you from other job candidates. Here are the two
types of advanced degree programs:

 » Master’s degree: A technical degree that allows you to explore and specialize
in a particular area of computer science such as artificial intelligence, security,
database systems, or machine learning. Based on the course load, the degree
typically takes one or two years of full-time, in-person instruction to complete.
Upon completion, the degree can be a way for a student who pursued a
nontechnical major to transition into the field and pursue a coding job.
Alternatively, some students use the master’s degree experience as a way to
gauge their interest in or improve their candidacy for a PhD program.

A growing number of part-time online master’s degree programs are becom-
ing available. For example, Stanford and Johns Hopkins both offer a master’s
degree in Computer Science with a concentration in one of ten topics as part
of an online part-time degree that takes on average three to five years to
complete. Similarly, Northwestern University offers a master’s degree in
Predictive Analytics, an online part-time program in big data that teaches
students SQL, NoSQL, Python, and R.

 » Doctorate degree: A program typically for people interested in conducting
research into a specialized topic. PhD candidates can take six to eight years to
earn their degree, so it’s not the most timely way to learn how to code. PhD
graduates, especially those with cutting-edge research topics, differentiate
themselves in the market and generally work on the toughest problems in
computer science. For example, Google’s core search algorithm is technically
challenging in a number of ways — it takes your search request, compares it
against billions of indexed web pages, and returns a result in less than a
second. Teams of PhD computer scientists work to write algorithms that
predict what you’re going to search for, index more data (such as from social
networks), and return results to you five to ten milliseconds faster
than before.

0005390171.INDD 837 Trim size: 7.375 in × 9.25 in June 11, 2022 4:15 PM

CHAPTER 2 Exploring Undergraduate and Graduate Degrees 837

Exploring U
ndergraduate

and G
raduate D

egrees

Students who enroll and drop out of PhD programs early have often done
enough coursework to earn a master’s degree, usually at no cost to the
student because PhD programs are typically funded by the school.

Graduate school computer
science curriculum
The master’s degree school curriculum for computer science usually consists of
10 to 12 computer science and math classes. You start with a few foundational
classes, and then specialize by focusing on a specific computer science topic. The
PhD curriculum follows the same path, except after completing the coursework,
you propose a previously unexplored topic to further research, spend three to
five years conducting original research, and then present and defend your results
before other professors appointed to evaluate your work.

Table 2-2 is a sample curriculum to earn a master’s degree in CS with a concen-
tration in Machine Learning from Columbia University. Multiple courses can be
used to meet the degree requirements, and the courses offered vary by semester.

The curriculum, which in this case consists of ten classes, begins with three foun-
dational classes, and then quickly focuses on an area of concentration. Concentra-
tions vary across programs, but generally include the following:

 » Security: Assigning user permissions and preventing unauthorized access,
such as preventing users from accessing your credit card details on an
e-commerce site

 » Machine learning: Finding patterns in data, and making future predictions,
such as predicting what movie you should watch next based on the movies
you’ve already seen and liked

 » Network systems: Protocols, principles, and algorithms for how computers
communicate with each other, such as setting up wireless networks that work
well for hundreds of thousands of users

 » Computer vision: Duplicating the ability of the human eye to process and
analyze images, such as counting the number of people who enter or exit a
store based on a program analyzing a live video feed

 » Natural language processing: Automating the analysis of text and speech,
such as using voice commands to convert speech to text

0005390171.INDD 838 Trim size: 7.375 in × 9.25 in June 11, 2022 4:15 PM

838 BOOK 7 Career Building with Coding

Performing research
Students are encouraged in master’s degree programs and required in PhD
programs to conduct original research. Research topics vary from the theoreti-
cal, such as estimating how long an algorithm will take to find a solution, to the
practical, such as optimizing a delivery route given a set of points.

Sometimes this academic research is commercialized to create products and com-
panies worth hundreds of millions to billions of dollars. For example, in 2003
university researchers created an algorithm called Farecast that analyzed 12,000
airline ticket prices. Later, it could analyze billions of ticket prices in real time and
predict whether the price of your airline ticket would increase, decrease, or stay
the same. Microsoft purchased the technology for $100 million and incorporated
it into its Bing search engine.

TABLE 2-2 Columbia University MS in Computer Science
Course Number Course Name Course Description

W4118 Operating Systems I Design and implementation of operating
systems including topics such as process
management and synchronization

W4231 Analysis of
Algorithms I

Design and analysis of efficient algorithms
including sorting and searching

W4705 Natural Language
Processing

Natural language extraction,
summarization, and analysis of
emotional speech

W4252 Computational
Learning Theory

Computational and statistical possibilities
and limitations of learning

W4771 Machine Learning Machine learning with classification,
regression, and inference models

W4111 Intro to Databases Understanding of how to design and build
relational databases

W4246 Algorithms for
Data Science

Methods for organizing, sorting, and
searching data

W4772 Advanced
Machine Learning

Advanced machine learning tools
with applications in perception and
behavior modeling

E6232 Analysis of
Algorithms II

Graduate course on design and analysis
of efficient approximation algorithms for
optimization problems

E6998 Advanced Topic in
Machine Learning

Graduate course covers current research
on Bayesian networks, inference, Markov
models, and regression

0005390171.INDD 839 Trim size: 7.375 in × 9.25 in June 11, 2022 4:15 PM

CHAPTER 2 Exploring Undergraduate and Graduate Degrees 839

Exploring U
ndergraduate

and G
raduate D

egrees

In another example, Shazam was based on an academic paper that analyzed how
to identify an audio recording based on a short, low-quality sample, usually an
audio recording from a mobile phone. Today, Shazam lets a user record a short
snippet of a song, identifies the song title, and offers the song for purchase. The
company has raised over $100 million in funding for operations and is privately
valued at over $1 billion. Both products were based on published research papers
that identified a problem that could be addressed with technology and presented a
technology solution that solved existing constraints with high accuracy.

Your own research may not lead to the creation of a billion-dollar company, but it
should advance, even incrementally, a solution for a computer science problem or
help eliminate an existing constraint.

Interning to Build Credibility
Your classroom work helps create a theoretical foundation but can be divorced
from the real world. Actual real-world problems often have inaccurate or incom-
plete data and a lack of obvious solutions. One way to bridge the gap from the
classroom to the real world is to take on an internship.

Internships are 10- to 12-week engagements, usually over the summer, with an
employer on a discrete project. The experience is meant to help an intern assess
whether the company and the role are a good fit for permanent employment and
for the company to assess the intern’s abilities.

The competition for interns is just as strong as it is for full-time employees, so
interns can expect to be paid. Top tech companies pay interns between $6,000 and
$8,000 per month, with Palantir, LinkedIn, and Twitter topping the list. After the
internship is finished, companies offer successful interns anywhere from $5,000
to $100,000 signing bonuses to return to the firm to work full time.

Types of internship programs
Companies structure their internship program differently, but the following con-
figurations are more common than others:

 » Summer internship: The majority of internships happen during the summer.
Because of the work involved in organizing an intern class, larger companies
usually have a formal process with application deadlines and fixed dates
when interviews for the internship are conducted. After offers are extended,
companies ideally screen projects given to interns to make sure the work is

0005390171.INDD 840 Trim size: 7.375 in × 9.25 in June 11, 2022 4:15 PM

840 BOOK 7 Career Building with Coding

interesting and substantive. There are also a significant number of social
events so that full-time employees and interns can meet in an environment
outside work.

 » School-year internship: Some internships take place during the school year,
from September to May. These programs are usually smaller, hiring is on an
as-needed basis, and the entire process is less formalized. Usually, the intern
does more work to find divisions who need extra help, networks with
managers of those divisions, and then finally interviews for and accepts an
internship position. You can get a more realistic view of what working at the
company is like because there likely aren’t many other interns working with
you, and you might be able to integrate more closely with the team.

 » Fellowship: Many students get the itch to try a longer professional experience
before graduation. These experiences, called fellowship programs, last six to
twelve months and give a person enough time to work on a project to make a
substantive contribution. For undergraduates, the work confirms an existing
interest or creates an interest in a new area of technology. For graduate
students, the work can highlight the difference between theory and practice,
inform an area of research, or help them break into a new industry.

Positions for internships are often more selective than positions for full-time jobs,
so apply early and for more than one internship position. If you don’t receive an
internship, try again for a full-time position. Companies have large hiring needs,
and one purpose for hiring summer interns is to ensure that the interns have a
great time at the company so when they return to campus they tell other students,
who then feel more comfortable applying.

Securing an internship
Much of the advice for obtaining a full-time job applies to securing an intern-
ship offer as well. There are a few strategies to keep in mind when pursuing an
internship.

Choose products and companies you’re passionate about. As an intern, you join a
company for three months at most, and much of that time is spent meeting new
people, understanding the company, and fitting into existing processes. As a pas-
sionate power user of the product, your excitement will naturally show, and your
ideas will give the company a sense for what you want to work on and provide
a fresh and valuable perspective to the team, which likely feels that they have
already explored every possible idea. Be able to describe how you use the product
and what additional features would help increase your engagement or retention.

0005390171.INDD 841 Trim size: 7.375 in × 9.25 in June 11, 2022 4:15 PM

CHAPTER 2 Exploring Undergraduate and Graduate Degrees 841

Exploring U
ndergraduate

and G
raduate D

egrees

For any product that has a public profile, link to your profile so team members can
easily see how frequently you use the product.

After you’ve chosen a few companies, start looking for current students who have
worked at the company as well as school alumni who currently work at the com-
pany. Reach out by email and schedule short phone calls or a coffee chat no longer
than 30 minutes to try and build a connection. Current students can share infor-
mation about their experience, tell you which groups have the greatest need, and
share some of the company culture, such as what the company values. Alumni will
be able to share much of the same information, but they can also send a recom-
mendation to HR on your behalf or may be able to hire you.

There is a balance between the response rate, ability to help, and seniority of a
person you reach out to. Try to reach for the most senior alumni you can find at a
company, because a quick email from them to HR will guarantee an interview, but
recognize that they may not always have the time to respond. Alternatively, more
junior employees will likely have more time to chat with you but likely do not have
as much influence over interview or hiring decisions.

Finally, include a mix of startups and more established companies in your search
process. Given the number of interviews they do, established companies can be
formulaic in their interview and hiring decisions, often looking for candidates
from specific schools with a minimum GPA. If you aren’t attending a top school or
have below a 3.0 (out of 4.0) GPA, you should still apply to the larger companies
and include an explanation for your lower GPA if one applies. Another option is to
apply to startups, which will likely care more about the products you’ve built than
your grade in chemistry. The trade-off is that startups likely have less time and
people to help train you and a smaller selection of projects for you to choose from.
After you join a company and finish a brief orientation period, you’ll often need to
start coding right away and contributing to the product.

0005390171.INDD 842 Trim size: 7.375 in × 9.25 in June 11, 2022 4:15 PM

CHAPTER 3 Training on the Job 843

0005390172.INDD 843 Trim size: 7.375 in × 9.25 in June 11, 2022 4:16 PM

 Training on the Job
I hated every minute of training, but I said, ‘Don’t quit. Su� er now and live
the rest of your life as a champion.’

 — MUHAMMAD ALI

 A s an employee, whether you’re a marketer, a sales person, or a designer,
you likely fi nd that technology dominates more and more of your conver-
sations with your boss, co-workers, and clients. Perhaps your boss wants

to know which customer segments the company should target with online adver-
tising, and you need to analyze millions of customer records to provide an answer.
Or maybe a client wants to add or change a feature and will double the contract if
the process can be done in six weeks, and you need to know whether it’s possible.
More tangibly, you might fi nd yourself performing mundane and repetitive tasks
that you know a computer could do.

 You have probably found that an ability to code could help you perform your
current job more effi ciently. Companies are also noticing the value of having non-
technical employees learn to code, and off ering various on-site training options
and support. This chapter shows you how to learn to code on the job and ways to
incorporate what you’ve learned into your job.

Chapter 3

 IN THIS CHAPTER

» Choosing a task to practice coding
at work

» Learning to code during and
after work

» Transitioning to a coding role

0005390172.INDD 844 Trim size: 7.375 in × 9.25 in June 11, 2022 4:16 PM

844 BOOK 7 Career Building with Coding

Taking a Work Project to the Next Level
As a busy professional with a full work schedule, you need a tangible project to
work toward and keep you motivated while you learn how to code. Think of all the
tasks you perform during the week — how many could be automated if you had
the right tools and skills?

The following sample tasks can be done more efficiently with some coding and
could help you think of a goal of your own:

 » Spreadsheet consolidation: You have fifteen team members who submit
timesheets to you using spreadsheets, and you create a consolidated weekly
report by manually cutting and pasting entries from each spreadsheet.

 » Content updates: You cut and paste the latest press stories every week into a
content management system to update the company’s website.

 » Data retrieval: You work for a financial services company, and monitor
acquisitions and sales made by ten private equity firms. Every day you visit
each firm’s website to look for updates.

 » Quality assurance: You test updates made to the company’s website by
clicking the same set of links to make sure they work as expected.

 » Prototyping designs: You create website designs, but it’s difficult to explain
to clients the user experience and interactions through static illustrations.

Whatever task you choose, make sure that you can describe how to complete it
from start to finish. For example, the steps to complete the data retrieval task
might be listed as follows:

1. Visit the first firm’s website and download the list of companies on the
acquisitions page.

2. Permanently store the list. If the acquisition list has previously been retrieved,
compare the list downloaded today with yesterday’s version and note any
additions or deletions.

3. Display the additions or deletions.

4. Repeat Steps 1–3 for the next firm, until all the firm websites have been visited.

5. Repeat Steps 1–4 daily.

You may be part of a technical process, such as a designer who hands off mockups
to a developer to create. Instead of automating your existing work, you could try
to complete work the technical team normally does after you. For example, if you

0005390172.INDD 845 Trim size: 7.375 in × 9.25 in June 11, 2022 4:16 PM

CHAPTER 3 Training on the Job 845

Training on the Job

do customer or sales support, you regularly receive customer and client feedback
and file support tickets for issues that require an engineer. The number of support
tickets always exceeds the number of engineers, so choose a low-priority non-
mission-critical issue to fix.

Don’t worry about choosing a task that seems too simple. Fixing an issue on a live
site currently in use is always more complex than it initially appears. However, try
to choose a work-related task so you can ask for help from co-workers.

Learning on the Job and After Work
After you’ve selected a task, you need to learn some coding to be able to fix the
issue. Given that you’re already working, going back to school or taking a hiatus
from work to learn full-time is likely not feasible. Your next best option is to learn
coding on the job, ideally with your company’s support. Companies are increas-
ingly supporting employees who want to expand their technical skill set by pro-
viding resources to help them learn and by incentivizing those who learn tangible
skills.

WISTIA CODE SCHOOL
Companies are starting to recognize the demand for coding education and the ben-
efits of having more employees who can code. Wistia, a video-hosting and analytics
company, hosts a code school so that nontechnical employees can learn how to code.
Employees work as customer champions, or customer support agents, and are paired
with a developer who conducts an hourly mentoring session every week for five to six
months.

Normally, people learning to code usually practice their skills on personal projects. One
advantage Wistia employees have is that the programming skills they learn are used to
solve real problems that customers are experiencing. Solving coding issues, no matter
how small, for a live website is difficult because the fix will immediately affect customers
using the website.

As employees learn more, they still refer complex issues to the technical staff but are
able to handle the easier technical problems themselves, resulting in quicker resolution
times.

0005390172.INDD 846 Trim size: 7.375 in × 9.25 in June 11, 2022 4:16 PM

846 BOOK 7 Career Building with Coding

Training on the job
You are likely familiar with the compliance and leadership training available at
your company, especially in medium- to large-sized firms. However, you may
have never looked for the technical training options available to you. Here are
some tips to get started learning on the job:

 » Virtual training resources: Corporate training libraries such as Safari,
Skillsoft, Lynda, and Pluralsight are popular among companies, and are a
good place to start learning programming fundamentals. Each provider has a
mix of text and video content, which you can read and view on-demand.
Additionally, look for company generated wikis and other training resources
that describe internal programming tools and procedures.

 » In-person training programs: Company employees often teach orientation
training courses to introduce new engineers to basic concepts and the way to
code in the company. Additionally, outside vendors may occasionally conduct
specific training courses on more advanced programming topics and lan-
guages. Ask whether you can view the list of training topics typically made
available to engineers, and then attend introductory training sessions.

 » Let your supervisor know that learning to code is a development goal,
and include it in any reviews: Your supervisor can help you access training
programs not traditionally offered to nontechnical employees. Additionally,
letting as many co-workers as possible know about your goals will increase
your accountability and motivation.

 » Support from company developers: Your company likely has developers
who already assist you with the technical side of your projects. Whether
you’ve chosen a project to improve the efficiency of your own workflow or are
trying to complete work a developer would typically do, make sure to recruit a
developer, usually one you already have a relationship with, so you have a
resource to help you answer questions when you get stuck.

Your co-workers, especially on technical teams, are just as busy as you are. Before
asking for help, try finding the answer by reviewing internal materials, using
a search engine, or posting a question on a question-and-answer site such as
Stack Overflow. Include where you looked because developers might use the same
resources to answer questions.

Learning after work
Your company may be too small to have on-site technical training, or your office
may not have any developers. Don’t fret! You can take classes after work to learn
how to code. Look for classes that meet twice a week in the evenings, and set aside
time to do coursework during the weekend.

0005390172.INDD 847 Trim size: 7.375 in × 9.25 in June 11, 2022 4:16 PM

CHAPTER 3 Training on the Job 847

Training on the Job

Companies often partially or fully reimburse the cost for employees who success-
fully complete a job-related course. Think of a few tangible ways that learning to
code would help you do your job better or take on a new project and then make
the pitch to your manager. If you receive approval, make sure to keep up with the
coursework so you’re ready to contribute at work after the class is over.

A few places teach in-person coding classes designed for working professionals.
Because a live instructor is teaching and assisting you, many charge a fee.

Lower cost and free options are usually taught exclusively online, though comple-
tion rates for in-person classes are usually higher than online classes.

Here are some places where you can learn to code from a live instructor:

 » General Assembly: Teaches part-time classes across a range of subjects, and
has a presence in major cities in the United States and internationally. Topics
include frontend, backend, data science, and mobile development. Classes
typically meet twice a week for three hours over 12 weeks. General Assembly
is one of the largest companies teaching coding classes. You can view their
classes at www.generalassemb.ly.

 » Nucamp: A low-cost online bootcamp that offers classes in full stack web and
mobile development. Classes include online text and video content, with a
four-hour live online session each Saturday, led by a live instructor.

 » Local boot camps: As coding has become more popular, coding boot camps
have sprung up in many cities around the world. Many of these boot camps
offer part-time programs that don’t require you to quit your job. You can
search boot camps by subject, location, and cost by using Course Report,
available at www.coursereport.com, and CourseHorse, available at www.
coursehorse.com.

Before signing up, make sure you review the instructor, the physical location,
and the cost, which should be no more than $4,000 for a part-time program
with 70 hours of instruction. Course Report profiles ten part-time boot camps
at www.coursereport.com/blog/learn-web-development-at-these-
10-part-time-bootcamps.

 » College courses: Traditionally, college computer science courses were
theoretical, but colleges have recently started offering more applied web
development and data science courses. Check your local university or
community college’s continuing education departments to see what’s offered.
For example, the City College of New York offers an Intro to Web Development
class with 16 hours of instruction for $280.

 » Library classes: Public libraries offer desktop productivity and other
computer classes and have recently started offering web development

0005390172.INDD 848 Trim size: 7.375 in × 9.25 in June 11, 2022 4:16 PM

848 BOOK 7 Career Building with Coding

classes as well. For example, the New York Public Library has a free, ten-
week program called Project_<code>, in which you build a website for a
small business.

Freelancing to Build Confidence and Skills
You’ve taken training classes at work, found a coding mentor, and solved your
first problem by using code. Congratulations! So where do you go from here? Like
a foreign language, if you stop coding you’ll forget what you’ve learned. The most
important thing is to keep coding and building your confidence and skills.

Here are a few ideas for you to practice coding in the workplace:

 » Clone a website: Unlike programs that may have code you can’t access,
company websites allow you to see and save text and images. You may not
be able to re-create all the functionality, but choose a specific company’s web
page and try creating a copy of the layout, images, and text. This process will
help you practice your HTML, CSS, and JavaScript skills.

 » Build a mobile app: People purchase more mobile devices and spend more
time on them than desktops and laptops. Still, some companies have been
slow to adapt and don’t have a mobile presence. Create a mobile website
using HTML and CSS, or a native application using Swift for the iPhone, Java
for Android devices, or Flutter for both!

 » Code a small workplace utility app: There are many tasks that everyone at
your company and in your office performs. Your co-workers come to the
office around the same time, eat lunch at the same places, and leave work
using the same modes of transportation. They also share the same frustra-
tions, some of which might be solved with a simple program. Try building an
app that solves a small workplace annoyance — no one knows what would
appeal to your co-workers better than you. For example, build a website that
sends an email to those who opt-in whenever there is a traffic jam on the
highway that everyone uses to leave work. Similarly, you could build an app
that sends an alert if any of the restaurants close to work fails a health
inspection. The goal here is to learn a new technology to solve a problem and
get real feedback from other users.

After you’ve practiced and built a few things, publish your code on a hosting ser-
vice such as GitHub and create a portfolio website pulling everything you’ve built
into one place. You’ll be able to share and others will be able to find your work,
and the progression in your coding skills will be visible for anyone to see.

0005390172.INDD 849 Trim size: 7.375 in × 9.25 in June 11, 2022 4:16 PM

CHAPTER 3 Training on the Job 849

Training on the Job

If you are stuck and can’t think of anything to build, try freeCodeCamp, available
at www.freecodecamp.com. The website, shown in Figure 3-1, connects working
professionals with nonprofits who need a website or app built. After you complete
the challenges, you’ll start working on a vetted nonprofit project. Current proj-
ects include an animal adoption database for Latin America through the nonprofit
People Saving Animals, and a charity fundraiser website for the Save a Child’s
Heart Foundation.

Transitioning to a New Role
Like any skill, coding can take a lifetime to master, but after you learn a little you
may find that you want to move into a technology-based role. The first step is
to do a self-assessment and evaluate what you like and dislike about your cur-
rent role, and how that matches with the technology role you want. You’ll likely
also need input from others; networking and chatting with developers you trust
will help give you a balanced view of the job. If you decide to take the leap, you

FIGURE 3-1:
freeCodeCamp

connects
professionals

who code
together for
nonprofits.

© John Wiley & Sons

0005390172.INDD 850 Trim size: 7.375 in × 9.25 in June 11, 2022 4:16 PM

850 BOOK 7 Career Building with Coding

have the big advantage of being inside a company, so you’ll know what they need
before a job posting is ever written.

Assessing your current role
You’ve worked hard to get to where you are — perhaps you just landed a job in a
competitive industry or have been working and advancing in your role for a few
years. In either case, if you’re thinking about switching to a coding job, you should
do a self-assessment and decide whether a new role would be a better fit for you.

Think about what you like and dislike about your current job. For some people,
the issue is office politics or poor team dynamics, but these are present in every
role that involves working with other people, and switching to a coding job carries
the risk of seeing the same issues. On the other hand, if you are ready to learn a
new topic or have limited advancement opportunities, switching roles could be a
good idea.

After evaluating your current job, think about what you think you would like or
dislike about a coding job. For some, tech jobs seem attractive because companies
can become worth billions of dollars and employee salaries are reportedly in the
millions. It is true that companies such as Facebook and Twitter are worth billions
of dollars, and engineers at these companies are well compensated, but these are
the exceptions not the rule. According to the federal Bureau of Labor Statistics,
web developers and computer programmers make on average between $77,000
and $89,000, which is higher than many jobs but will not make you a millionaire
overnight.

Networking with developers
One major benefit you have over other job seekers is that you probably work with
developers who hold the position you’re trying to obtain. Seek out some of these
developers, either from people you already work with or in a department that you
think is interesting.

After you connect with a few people, ask them how they spend their days, what
they enjoy and what they would change about their job, and for any advice they
have for you on how to make the transition. These types of conversations hap-
pen less frequently than you might think, so don’t be shy about reaching out —
you might be surprised to find that some developers are happy to chat with you
because they are wondering how to transition into a nontechnical or business role.

The biggest constraint any company faces when hiring externally is not finding
people who are technically capable of doing the job but finding people who will

0005390172.INDD 851 Trim size: 7.375 in × 9.25 in June 11, 2022 4:16 PM

CHAPTER 3 Training on the Job 851

Training on the Job

fit in with the company and the team culturally. As a current employee, you’ve
already passed one culture screen, and you’re in a good position to learn about
how you might fit in with the existing developer culture at the company. After you
build relationships with developers, maintain them and keep them updated on
your goals. At some point, they’ll likely be asked how serious you are and whether
you’d be a good fit.

Identifying roles that match your
interest and skills
Technical roles are just as numerous and varied as nontechnical roles. The posi-
tions include data analysts who analyze big data, traffic analysts who monitor
website traffic and patterns, web developers who create website frontends and
backends, app developers who create mobile web apps and native apps for mobile
devices, and quality assurance testers who test for and help solve bugs in new
releases.

Apply for roles in which you have a strong interest. If you like working with sta-
tistics and math, a data analyst or traffic analytics role might suit you best. Or
if you’re a visual person and like creating experiences others can see, consider a
frontend developer role.

No matter the role, you should aim for a junior title and be committed to learn-
ing a lot on the job. Don’t be afraid of starting over. For example, if you’ve been
in marketing for four years and are interested in being a web developer, you will
likely start as a junior developer. Your previous job experience will help you be a
better team member and manager, which could help you advance more quickly,
but you’ll need to show that you’re able to complete basic technical tasks first.
Also, no matter the role, you’ll be spending a lot of time learning on the job, and
will be relying on your co-workers to teach you, so choose your role and team
carefully.

0005390172.INDD 852 Trim size: 7.375 in × 9.25 in June 11, 2022 4:16 PM

CHAPTER 4 Coding Career Myths 853

0005390173.INDD 853 Trim size: 7.375 in × 9.25 in June 11, 2022 4:17 PM

 Coding Career Myths

 T he tech profession is fi lled with myths and rumors. It can be hard to sepa-
rate fact from fi ction, especially given the reports of eye-popping salaries
and prices for company acquisitions in the news. After you cut through the

hype, the tech industry is like any other, with demand for talent far exceeding
supply.

 The following are ten myths about coding that just aren’t true. These myths
mainly apply to people learning to code for the fi rst time. Read on to separate
myth from reality.

 You Must Be Good at Math
 Developers who are building cutting-edge games, data scientists trying to create
the next big machine-learning algorithm, or engineers working in the fi nancial
services industry likely need some profi ciency in physics, statistics, or fi nancial

Chapter 4

 IN THIS CHAPTER

» You must be good at math or have
studied engineering

» You can learn coding in a few weeks

» Only college graduates receive coding
off ers

» Your previous experience isn’t
relevant

» And more!

0005390173.INDD 854 Trim size: 7.375 in × 9.25 in June 11, 2022 4:17 PM

854 BOOK 7 Career Building with Coding

math. However, many developers, such as those building e-commerce applica-
tions or typical web pages, do not need much more math than basic addition and
subtraction, and high school algebra.

A good deal of math operates and powers applications, but there often isn’t a need
to understand everything that is happening. Computer languages and programs
are designed to manage complexity by requiring that you understand the inputs
and outputs — but not what happens in between, a concept called abstraction.
For example, when driving a car, you don’t need to understand how the internal
combustion engine works or the physics behind converting the energy from the
piston to the wheels. To drive a car you need to understand how to operate the
accelerator, the brake, and the clutch for stick-shift cars. Similarly, programs
have functions that perform operations, but you need to understand only the
inputs you send a function and the output it returns.

In other words, you need to be able to understand math and have some basic math
skills, but you do not need to be the next Einstein to be able to program.

You Must Have Studied Engineering
Many people who study engineering learn how to program, but you do not need
to be an engineer to learn how to code. Engineering teaches skills that are useful
to programmers, such as how to solve a problem step-by-step as well as working
within and then designing around real-world constraints. These are useful skills,
but you can learn them outside the engineering curriculum.

Many topics that are part of an engineering curriculum vary in usefulness for
learning how to code. Topics such as algorithms can be directly applicable, espe-
cially if you’re working on cutting-edge problems. Other topics, such as assembly
language and computational theory, provide a good background but are rarely
used by most coders.

If your goal is to push the cutting edge of computer programs, a degree in com-
puter engineering might be useful. However, if you want to create a website to
solve a problem, learning to code in three to six months is probably sufficient
to start.

Coding Career M
yths

0005390173.INDD 855 Trim size: 7.375 in × 9.25 in June 11, 2022 4:17 PM

CHAPTER 4 Coding Career Myths 855

You Can Learn Coding in a Few Weeks
Like any passion or profession, coding is an art and coders hone their skills over
decades. Although you don’t need decades of study to start coding, the amount of
time needed to learn depends on your goals. For example:

 » One week: Learn enough HTML to put text, images, and other basic content
on the page. You’ll be able to operate site builders to create and customize
informational websites.

 » One month: Develop your frontend CSS skills so you can position and style
elements on the page. You’ll also be able to edit sites built with website
builders such as Wix, Weebly, or SquareSpace. For data science, you can learn
to import and handle large data sets and use Python or R to find insights
about the data.

 » Three to six months: Learn frontend and backend development skills to take
a concept, build a working prototype that can store data in a database, and
then code a version that can handle hundreds of thousands of users. In
addition, learn how to use a programming language’s external libraries to add
additional functionality, user management, and version control systems such
as Git so multiple people can work on a project at the same time. For data
science, you’ll be able to build an interactive visualization using a JavaScript
library such as d3.js. Whether learning web development or data science, it
will take approximately 800 hours of effort to be proficient enough to be hired
for a job.

You Need a Great Idea to Start Coding
Learning to code is a lengthy process, filled with ups and downs. You might get
stuck for days or see much progress. During periods of inevitable frustration, hav-
ing a bigger idea or a concrete reason to motivate you to keep learning can be
helpful. Instead of trying to build the next Facebook, YouTube, or Google, try to
build something that solves a problem you’ve personally faced. Or, focus on build-
ing a clone of something that already exists or that exists in a different form.
There’s no need for anyone to build a replica of Twitter, for example, but could
you do it? It doesn’t seem that complex, after all. You might be surprised by the
challenges you face and how much you learn while working on such a project.

0005390173.INDD 856 Trim size: 7.375 in × 9.25 in June 11, 2022 4:17 PM

856 BOOK 7 Career Building with Coding

Ruby Is Better than Python
You might wonder what language to learn first, especially given all the choices
out there. You could start with Ruby, Python, JavaScript, PHP, Swift, Dart,
Objective-C — the list goes on. To resolve this debate, you might search for which
language is the best, or which language to learn first. You’ll find articles and posts
advocating one language or another. Unlike comparing TVs or toasters, a clear
winner is unlikely to emerge. Sometimes you can spend more time deciding which
language to learn first than getting down to learning the language.

The most important thing is to learn a few easy scripting languages first and then
choose one all-purpose beginner programming language to learn thoroughly.

Usually, beginners start with HTML, CSS, and JavaScript. These languages are the
most forgiving of syntax mistakes and the easiest to learn. Then, after you learn
these basics, choose Python or Ruby if you are interested in web development.
You’ll find many online tutorials and help for both.

If you plan on doing work with a content management system such as WordPress
or Drupal, consider learning PHP.

Don’t spend too much time deciding which language to learn first, and don’t try
to learn all of them at the same time. Sometimes people hit a roadblock with one
language, give up, and start learning another language. However, the end result is
learning a little bit about many languages, instead of mastering a single language
and being able to build a complete and functioning application.

Only College Graduates Receive
Coding Offers

Both Bill Gates and Mark Zuckerberg left college before graduating to start their
own technology companies. To encourage more college dropouts, Peter Thiel, the
billionaire founder of PayPal and investor in Facebook, created a fellowship to pay
students $100,000 to start businesses and forgo school. Still, whether you can get
a coding offer without a degree varies by company type:

 » Elite technology companies: Google, Apple, Facebook, Microsoft, Twitter,
and Yahoo! are some of the world’s most elite technology companies. Because
of their sheer size and name recognition, they employ recruiters who screen
for certain attributes, such as college affiliation. College graduates from top

Coding Career M
yths

0005390173.INDD 857 Trim size: 7.375 in × 9.25 in June 11, 2022 4:17 PM

CHAPTER 4 Coding Career Myths 857

schools apply to these companies in overwhelming numbers. Although it is
not impossible to be hired at one of these companies without a college
degree, it is very difficult.

 » Fortune 1000 companies: Large companies such as Verizon and AT&T hire
thousands of engineers a year, making their initial requirements for hiring
slightly more flexible. These companies typically look for a college degree or
two to three years of relevant experience with a specific programming
language.

 » Startups and small companies: Startups are sympathetic to non-degree
holders, and many startup employees are currently in college or are college
dropouts. Although startups don’t require a college degree, a great deal of
emphasis is given on what you’ve built previously and your ability to code
under tight deadlines. Well-funded startups are often a good place to gain
experience because they need talent to keep growing and often compensate
employees as well as the more mature companies do.

 » Freelancing and contracting: When working for contracting websites such
as Upwork or for yourself, the main consideration is whether you can
complete the job. Few employers check whether you have a college degree;
a portfolio of past work, even if it was unpaid, is much more important to
securing the job and conveying the confidence that you’ll be able to deliver
the project on time and within budget.

You Must Have Experience
Studies have shown that there is no correlation between experience and perfor-
mance in software development. For the new programmer, after you master some
basic skills, your performance is affected by much more than the amount of time
you’ve spent on a job. Despite the research, however, some companies still screen
for years of experience when filling open positions.

Much of the same logic that applies to getting a coding job without a college degree
applies here as well. Elite technology companies receive so many resumes and are
in such high demand that they can be more selective and look first at experienced
candidates. Fortune 1000 companies usually take one of two approaches: They
look for a minimum one to two years of experience, or they understand that as a
new hire you’ll need training and use existing staff to help support you.

Startups and small companies typically pay the least attention to the number of
years of experience and more attention to your previous projects. Your contribu-
tions to an open-source project or a weekend project that attracted real users will

0005390173.INDD 858 Trim size: 7.375 in × 9.25 in June 11, 2022 4:17 PM

858 BOOK 7 Career Building with Coding

generate plenty of interest and enthusiasm for you as a candidate. Although it can
be easier to get your foot in the door at a startup, remember that the company’s
small size likely means there are fewer people and less money to devote to your
training and support, so much of your learning will be self-supported.

Companies of any size willing to invest in developing your programming abilities
will typically look for a positive attitude, a willingness to learn, and the persist-
ence to keep trying to solve problems and overcome obstacles.

Tech Companies Don’t Hire Women
or Minorities

Whether in the Law and Order: SVU portrayal of women in technology or the
national media reports of the high-powered lawsuit filed by Ellen Pao around her
treatment in the technology industry, the tech industry has not had the best track
record for being welcoming of women and minorities.

Admittedly, the numbers show a story that has improved but still has plenty of
room to grow, with the tech industry workforce made up of 29 percent women
and 22 percent minority workers, which is below the national averages for both
groups. A recent Deloitte Global report predicts that large global technology firms,
on average, will reach nearly 33 percent overall female representation in their
workforces in 2022, up slightly more than 2 percentage points from 2019.

Although many contributing causes have been identified, including the lack of a
pipeline of candidates studying computer science or applying to tech firms, many
leading companies and nonprofits are actively trying to increase the recruitment
and support of women and minorities in the workplace.

On the corporate side, larger companies are creating programs that train and
increase the number of pathways to join the workforce. For example, Google
launched a $50 million campaign called Made with Code to highlight women in
tech and provide opportunities for girls to learn to code.

Similarly, nonprofit organizations such as Code 2040 connect Black and Latino
talent to companies. On the training side, nonprofits such as Yes We Code, Girls
Who Code, Black Girls Code, and Women Who Code teach technical skills to
increase the number of women and minorities entering the jobs pipeline.

Many colleges offer scholarships that can subsidize or completely cover the cost of
attendance for women and minorities pursuing science and engineering degrees.

Coding Career M
yths

0005390173.INDD 859 Trim size: 7.375 in × 9.25 in June 11, 2022 4:17 PM

CHAPTER 4 Coding Career Myths 859

The Highest Paying Coding Jobs
Are in San Francisco

Many of the most famous tech companies, including Apple, Facebook, Google,
Twitter, and Yahoo!, are located in Silicon Valley. While these and other companies
in the San Francisco and Silicon Valley area hire a large number of tech workers
each year, that paints only part of the picture.

Cities across the United States pay tech salaries comparable to San Francisco but
have a much lower cost of living, as shown in Table 4-1. Two numbers to keep in
mind when evaluating a city are the average salaries paid to tech workers and the
average cost of living. Salary minus rent provides a simple and rough estimate
of take-home pay, though it doesn’t take into account taxes, transportation, and
cost of goods and services.

Although San Francisco does pay the most of any city in the country, it looks less
attractive after subtracting the cost of rent from annual pay. By contrast, cities
such as Austin and Seattle offer strong salaries with a much lower cost of living.

A cost of living calculator will help you compare salaries in different cities. See,
for example, the NerdWallet cost of living calculator by visiting www.nerdwallet.
com/cost-of-living-calculator.

TABLE 4-1 Salary and Median Rent by City
City Annual Salary Annual Rent Salary Less Rent

San Francisco, CA $96,500 $35,160 $61,340

Seattle, WA $84,500 $20,760 $63,740

Boston, MA $91,000 $32,400 $58,600

Austin, TX $81,500 $18,600 $62,900

Chicago, IL $76,000 $19,320 $56,680

New York, NY $84,000 $37,200 $46,800

Detroit, MI $73,000 $13,080 $59,920

Sources: CareerBuilder.com, Zumper.com median rent prices

0005390173.INDD 860 Trim size: 7.375 in × 9.25 in June 11, 2022 4:17 PM

860 BOOK 7 Career Building with Coding

Your Previous Experience Isn’t Relevant
Coding skill is one important factor that tech companies evaluate when hiring
coders. But just as important is your domain knowledge and ability to work and
lead a team. For example, perhaps you’re a lawyer looking to switch careers
and become a coder. Your legal knowledge will far exceed that of the average
programmer, and if you target companies making software for lawyers, your
perspective will be valuable.

Similarly, whether you previously were in finance or marketing, the issues around
managing and leading teams are similar. It is natural for a team of people to dis-
agree, have trouble communicating, and end up short of the intended goal. Your
previous experiences handling this type of situation and turning it into a positive
outcome will be valued in a tech company, where much of the coding is performed
in teams.

Finally, your current or previous job might not seem technical, but others
like you have made the transition into a coding job. People from a variety of
professions — such as lawyers, teachers, and financial analysts — have learned
how to code and found ways to incorporate their past work experiences into their
current coding careers.

Index 861

0005390113.INDD 861 Trim size: 7.375 in × 9.25 in June 11, 2022 4:18 PM

Index
Special
Characters
- (subtraction) operator, 232
/ (division) operator, 232
\\ (backslash), 206
\” (double quote), 206, 684
\’ (single quote), 206, 684
\b (backspace), 206
\f (formfeed), 206
\n (new line), 206, 684
\r (carriage return), 206
\t (tab), 206, 684
_ (underscore), 199, 525
+ (addition) operator, 232
++ (increment) operator, 232
== (equality) operator,

231, 686
=== (strict equality)

operator, 231
! (exclamation point), 628
!= (inequality) operator,

231, 686
!== (strict inequality)

operator, 231
$ (dollar sign), 199
% (modulus) operator, 232
% operator, string formatting

with, 688
(*) wildcard character, 822
* (multiplication) operator, 232
< (less than) operator,

231, 686
<= (less than or equal to)

operator, 231, 686
> (greater than) operator,

231, 686
>= (greater than or equal to)

operator, 231, 686

A
abort event, 328
abs(n) function, 683
abstraction, 853
accept-charset attribute, 341
acceptCharset property, 346
accessing online data

code, 646–647
JSON code, 649–650
public API, 647–649
sending URL to server,

650–651
accessKey property, 316
action attribute, 340
action property, 346
ad blockers, 24
addEventListener() method,

315, 318, 331–337
addition (+) operator, 232
addListener method, 662
adjacency matrix, 775
adoptNode() method, 315
afterprint event, 329
aggregation, 757–758
agile method, 34–35
ahead-of-time (AOT)

compiler, 395
Airbnb, 11
AJAX (asynchronous JavaScript

and XML)
examples of, 368–369
OV, 367–368
using CORS, 377–378
using same-origin policy,

375–377
using XMLHttpRequest object,

373–376
viewing requests and

responses, 370–373

alert() method, 304
align-items property,

134–135
alignment parameter, 540
Anaconda

downloading, 690
installing

on Linux, 692–693
on macOS X, 693–694
in Windows, 694–695

Navigator, 697, 698
analytics, 825
anchors property, 314
Android device

checking and breaking
connection, 421–422

running apps on, 418–419
testing apps on, 419–420, 423

Android operating system, 387
Android runtime (ART), 387
Android Studio

closed projects, 425
configuring, 407–408
downloading, 404–405
Editor area, 427
installing, 413
launching, 414–415
main window, 425–428
navigation bar, 426
open projects, 425
overview, 424
Project tool window,

426–427
running sample programs,

429–432
starting up, 425
status bar, 428
toolbar, 426

862 Coding All-in-One For Dummies

0005390113.INDD 862 Trim size: 7.375 in × 9.25 in June 11, 2022 4:18 PM

Android Virtual Device (AVD),
404, 415–416

animation, Flutter
Animation value, 656–658
AnimationController

construction call, 654–655
bouncing, 664–666
changing velocity of, 664–665,

670–673
codes, 654–655, 659–660,

664–665, 666–667, 668–669,
670–673

moving along a curve, 668–670
moving along a straight line,

659–663
overview, 653
parabolic motion, 666–668
size and color changes,

666–668
tearing things up, 673–674

AnimationController
construction call, 657, 662

annotations
in graphs, 792–793
override, 514–515

anonymous functions, 516–517
arrow functions, 270–271
creating, 270–271
versus named functions, 270

Apache Cordova, 392–393
APIs (application programming

interfaces), 387–388, 486,
647–649, 725

AppBar constructor call,
623–624

appCodeName property, 296
appendChild() method, 318
Apple App Store, 25, 826
application programming

interfaces (APIs), 387–388,
486, 647–649, 725

application programs
(apps), 387

application testing, 826–827
applications, 824

appName property, 296
appVersion property, 296
arguments

overview, 258
versus parameters, 264–265
passing

overview, 258
by reference, 267
by value, 265–267

arguments object, 268–269
arguments parameter, 618
arithmetic operators, 231–233
arrays

creating, 215
elements

accessing, 218–223
defined, 213

index numbers, 213
literal method, 215
looping through, 219
loops, 247–248
methods, 220–223
multidimensional, 215–218
overview, 213
populating, 215–216
properties, 220
storing data, 214
zero-indexed, 213–214

ART (Android runtime), 387
AskSam, 722
assignment operators, 197,

230–231, 240
assignment statement, 478
assumptions, in this book, 2–3
async keyword, 622
asynchronous JavaScript and

XML. See AJAX
atob() method, 304
Atom (code editor), 176
attribute nodes, 308
Attribute object, 324
attributes

defined, 170
setting, 320

@author tag, 261
autocomplete attribute,

341, 344
autocomplete property, 346
autopct parameter, 797
AVD (Android Virtual Device),

404, 415–416
await keyword, 622
axes

formatting, 784–785
handles, 783
obtaining, 783
representing time on, 806–807
setting, 783

B
Back button, 302–304, 622–624
backend, 24–25
backend web development

analytics, 825
application, 824
database, 825
scaling, 825
security, 825
server, 824

background images, 93–97
background-attachment

property, 96–97
background-color property, 93
background-image property,

93–97
background-position

property, 95
background-repeat property,

95–96
background-size property, 94
bag of words model

implementing TF-IDF
transformations, 772–774

n-grams, 771–772
overview, 769–770

0005390113.INDD 863 Trim size: 7.375 in × 9.25 in June 11, 2022 4:18 PM

Index 863

bar charts, 797–799
baseURI property, 314
BBEdit (code editor), 176
beforeprint event, 329
beforeunload event, 329
bigInt data type, 205
binning, 733
bitwise operators, 234–235
Black Girls Code, 858
block comments, 484
block doc comments, 484
block scoped variables,

197–199
blur() method, 304, 318
blur event, 329
body property, 314
bold, 58–59
bool type, 485
Boolean data type, 208–209, 682
boot camps, 847
Bootstrap

about, 824
breakpoints, 151
coding web page elements,

153–158
dragging and dropping to

website, 150
editors, 150
grid system, 147–149
installing, 145–146
layout for mobile, tablet. and

desktop, 151–152
layout options, 147–151
overview, 143–145
practicing with CodeSandbox.

io, 158
predefined templates, 151

border property, 105, 118, 541
border-collapse property, 107
borderRadius property,

541–542
bounded constraint, 557

box plots, 800–802
boxes

creating, 129–130
overview, 117–119
positioning, 119–122

 tag, 54–55
Brackets (code editor), 176
branching statements, 241
break statement, 244–245,

253–254, 638
breakpoints, 151
broadband Internet, 10
Browser Object Model (BOM)

Navigator object, 295–298
overview, 291
Window object, 298–305

browsers
CSS parsing, 294
HTML parsing, 294
JavaScript parsing, 294
layout, 295
loader, 293–294
most popular, 20
overview, 39, 291–292
rendering, 295
user interface, 292
window

changing web page based on
width of, 301–302

determining size of, 300
loading web page using

window.location
property, 300

overview, 298
bubbling up events,

335–336
build function, 492–493
build method, 498–502
buildColumn declaration,

533–534
buildDetailPageCore

method, 636

buildPositionedWidget method,
660, 674

buildRoundedBox declaration,
531–533, 550

buildTitleText declaration,
531–532

BuiltWith.com, 678
bunch, 770
button element, 344–345
button press, 575–576
button value, 343
buttons

creating, 153–155
icons on, 612

C
C Programming Language, The

(Kernighan and Ritchie), 433
C++, 32
Cal Hacks, 834
callbacks

defined, 356, 504
named functions as, using,

357–359
overview, 355–356
use of, 504–505

<caption> tag, 107
capturing events, 335–336
careers

augmenting existing job
content and editorial,

817–818
creative design,

815–817
human resources,

818–819
legal, 821–822
product management,

819–820
sales and marketing,

820–821
choosing path, 816

864 Coding All-in-One For Dummies

0005390113.INDD 864 Trim size: 7.375 in × 9.25 in June 11, 2022 4:18 PM

careers (continued)
finding new job

backend web development,
824–826

data analysis, 827–828
frontend web development,

823–824
mobile application

development, 826–827
overview, 822–823

misconceptions about,
855–860

overview, 815
cascade operator, 663
Cascading Style Sheets. See CSS
categorical variables

combining levels, 743–744
creating, 741–742
overview, 740–741
renaming levels, 742–743

cells, aligning, 72–74
Center widget, 448–450, 653
change event, 328
charAt function, 207
Cheat Sheet for this book, 4
checkbox value, 343
child nodes, 309–313
child parameter, 514
child selector, 108–110
childElementCount

property, 316
childNodes property, 316
children property, 316
Chrome browser

installing, 20, 174
using, 118
V8 JavaScript engine, 175

Chrome Developer Tools, 293,
370, 377

class attribute, 112
class keyword, 279
classes

Dart, 444–445
making objects with, 279

classList property, 316
className property, 316
clear property, 120
clearInterval() method, 304
clearTimeout() method, 304
click() method, 318
click event, 328
clientHeight property, 316
clientLeft property, 316
client-side JavaScript, 169
clientTop property, 316
clientWidth property, 316
cloneNode() method, 318
close() method, 304, 315
closed projects, 425
closed property, 299
closures

containing secret references
to outer function variables,
362–363

creating function using
function, 360–361

overview, 360–361
using, 363–365
using function to create

functions, 364
cloud, deploying web

applications in, 31–32
cloud computing, 32
code

compiled versus
interpreted, 15

defined, 8
Code 2040, 858
code decoration, 484
code editors, 174–176
Codeply.com, 150
CodeSandbox.io, 40–42, 60–61,

99–100, 140–141
coding

career myths, 855–860
defined, 8–9
on the job, 12
offline, 39–40

online, 40–42
online tutorial, 9
steps in

coding your app, 37–38
designing app, 36
researching what to build,

35–36
tools, 39–42
trends in, 10–11
uses of, 10–13
web applications

with CSS, 26–27
with HTML, 26–27
with JavaScript, 26–27
with PHP, 27
with Python, 27
with Ruby, 27

writing code, 34–38
collection, 601
collection for, 645
college courses, 847
colons, 681
Color class, 534
color property, 540–541
color value, 343
Color.fromRGBO constructor,

534–535
colors

in graphs, 787–788
in pie charts, 796–797

colors parameter,
796–797

Column constructor call, 456
Column widget, 456, 537–538
columns

nesting, 545–546
slicing, 751
stretching, 70–72

comma operators, 237
command line, 417
comma-separated value (CSV)

file, 715–718
comment nodes, 308

0005390113.INDD 865 Trim size: 7.375 in × 9.25 in June 11, 2022 4:18 PM

Index 865

comments, JavaScript
multi-line, 190
overview, 189–190
preventing code

execution, 191
single-line, 190

compareDocumentPosition()
method, 318

comparison operators, 231, 686
compile() function, 768
compiled code, 15
compiled programming

languages, 165–166
compiler

ahead-of-time, 395
defined, 165–166
just-in-time, 395
overview, 397–398

compiling, 394–395
composability, 449
composition hierarchy, 446
computer programs, 165
computer science curriculum,

831–832
computer vision, 837
concat function, 207
concat method, 221
concatenate() method, 801
concatenating data

adding new cases, 753–754
adding new variables, 753–754
overview, 752–753
removing data, 754–755
shuffling, 755–756
sorting, 755–756

concatenation operator, 204
conditional expression, 573–574
conditional operators, 237,

573–574
confirm() method, 304
const keyword, 196, 201–202,

571–572

constants, creating, 201–202
constraints

bounded, 557
loose, 559
passed, 557
tight, 559
unbounded, 557

ConstraintsLogger widget, 560
constructor calls, 438
constructor function, 278–280
@constructor tag, 261
Container widget

alignment parameter, 540
decoration parameter,

540–541
height parameter, 539–540
margin parameter, 542–544
overview, 539–540
padding parameter, 542–544
width parameter, 539–540

contains() method, 318
content property, 118
content services, careers in,

817–818
content updates, 844
contentEditable property, 316
continue statement, 253–254
contracting, 857
control statements, 241
controller parameter, 585
controls

overview, 567
Switch, 568–569

cookie property, 314
cookieEnabled property, 296
correlations, showing in

scatterplots, 804–805
CORS (Cross-Origin Resource

Sharing), 377–378
_counter variable, 519–524
counterclock parameter, 797
CountVectorizer(), 765

Course Report, 847
CourseHorse, 847
Craiglist.com, 64–65
Crashlytics, 827
createAttribute() method, 315
createComment() method, 315
createDocumentFragment()

method, 315
createElement() method,

315, 325
createPopup() method, 304
createTextNode() method, 315
creative design

careers in, 815–817
coding in, 12

crossAxisAlignment property,
537–538, 545

cross-browser testing, 823–824
Cross-Origin Resource Sharing

(CORS), 377–378
cross-platform development,

390–391
cross-platform framework, 393
CSS (Cascading Style Sheets)

accessibility, 81
adding to HTML, 97–99
code management in, 81
customizing links, 90–92
designing tables, 105–106
embedded, 98, 103
frameworks, 824
history of, 80
inline, 97–98, 103
JavaScript and, 171–172
modifying on web pages,

84–86
naming elements, 112–113
as one of first languages to

learn, 856
overview, 26–27, 79–80
parsing, 294
practicing with CodeSandbox.

io, 99–100, 122

866 Coding All-in-One For Dummies

0005390113.INDD 866 Trim size: 7.375 in × 9.25 in June 11, 2022 4:18 PM

CSS (Cascading Style Sheets)
(continued)

property, 82–83
selecting elements, 107–113
selector, 82
selectors, 86–97
in separate style sheets,

99–100
setting background images,

93–97
setting fonts, 86–90
structure of, 81–86
styling elements, 81–83
styling lists, 100–105
tasks, 86–97
tools, 824
value, 82–83

CSV (comma-separated value)
files, 715–718

Cupertino widget, 613
CupertinoPageRoute

constructor call, 613
curve, 664–666
CurvedAnimation object,

664–665
Curves class, 665–666

D
Dalvik bytecode, 398
Dart programming language

anonymous functions,
516–517

application programming
interface, 388–389, 486

async keyword, 622
await keyword, 622
build function, 492–493
built-in types, 476–477,

484–485
cascade operator, 663
classes, 444–445
comments, 483–484
conditional operator, 573–574

const keyword, 571–572
constructor calls, 438–439
declarations, 475–476
enum feature, 454
expressions, 477–480
extensions, 602–608
import declarations, 487
indentation, 442–443
literals, 477–478
loops, 643–645
main function, 490
naming parameters, 491–492
within-ness, 446–447
null safety, 480
objects, 444–445
overview, 386
parameters, 440–441
programming in, 475–487
statement, 475–476
strings, 458
switch statement, 638–639
var keyword, 483
variables

overview, 477–478
top-level, 616

widgets, 444–445
data

accessing from web
using read_xml, 727–728
XML data, 725–727

accessing in flat-file form,
714–719

Excel files, 718–719
text file, 714–715

aggregating at any level,
757–758

concatenating, 752–756
dates in, 744–746
dicing, 752
extracting with XPath, 761–763
generating variations on,

711–712

managing from relational
databases, 722–724

missing, 747–749
from NoSQL databases,

interacting with, 724
organizing on page, 114–115
overview, 707–708
removing, 754–755
sampling, 712–713
sending unstructured-file

form, 719–722
shuffling, 755–756
slicing, 750–751
sorting, 755–756
streaming, 710–711
uploading, 709–710

data analysts, 827–828
data conditioning

finding duplicates, 734–736
overview, 731–732
removing duplicates, 737–738
validation, 733–740

data frame, 733
data map, 738–740
data plan, 738–740
data retrieval, 844
data sets

downloading, 697–706
overview, 704–706

data shaping
bag of words model, 768–774
in graphs, 774–777
on HTML pages, 760–763
overview, 759–760
in raw text files, 763–768

data types
bigInt, 205
Boolean, 208–209
defining, 681–682
NaN, 209–210
number, 202–205
string, 205–207

0005390113.INDD 867 Trim size: 7.375 in × 9.25 in June 11, 2022 4:18 PM

Index 867

Symbol, 210
undefined, 210

data visualization
with bar charts, 797–799
with box plots, 800–802
careers in, 827
choosing graphs, 796–803
with graphs, 809–812
with histograms, 799–800
overview, 795
with pie charts, 796–797
plotting time series, 806–809
with scatterplots, 802–805

database management systems
(DBMSs), 722

databases
cases, 708
defined, 825
features, 708
variables, 708

DataFrame, 749, 806
DataFrame.to_sql() method, 723
date value, 343
dates

formatting time values, 745
formatting values, 745
overview, 744–745
using time transformation,

745–746
datetime value, 343
datetime-local value, 343
dbclick event, 328
DBMSs (database management

systems), 722
debugging, 38, 556
declarations, 475–476
decoration parameter, 540–541
decrement (--) operator, 232
default clause, 245
defaultStatus property, 299
deferred loading, 295
delete operator, 237–238, 283

denial of service attacks, 825
density-independent pixel, 535
deprecated feature, 736–737
@deprecated tag, 261
descendant selector, 111
design

careers in, 815–817
coding in, 12

desktop, 388
destination page

defined, 612
passing back data to source,

613–618
passing data from source to,

613–618
DetailPage app bar, 623
DetailPage class, 636
developers

full stack, 25
minority, 858
mobile applications, 826–827
networking with, 850–851
overview, 386
salaries, 859
women, 858

development computer, 394
DHTML (Dynamic HTML), 163
dicing, 752
DiGraph() constructor, 811–812
dir property, 316
directed graphs, 811–812
display errors, 38
dispose method, 590
distanceFromLeft

declaration, 674
distanceFromTop

declaration, 674
distributed storage and

processing, 827–828
<div> tag, 116–117
division (/) operator, 232
divisions parameter, 579–580

do...while loops, 252
doc comments, 484
doctorate degree, 836–837
doctype property, 314
document node, 308
Document Object Model (DOM)

accessing form by, 346
methods, 315
nodes, 308–313
overview, 108, 307–308
properties, 314–315

document property, 299
documentElement property, 314
documentMode property, 314
documentURI property, 314
dollar sign ($), 199
domain names, 23
domain property, 314
Dorm Room Fund, 834
dot notation, 220, 281, 687
double number type,

476–477, 485
drop-down button

building, 600
code, 596–599
making map, 602

dropna() method, 748
Drupal, 856
Dynamic HTML (DHTML), 163
dynamic scripting language, 165

E
EdgeInsets.symmetric

constructor, 535–536
editorial services, careers in,

817–818
editors, 39
education

computer science curriculum,
831–832, 837–838

doctorate degree, 836–837

868 Coding All-in-One For Dummies

0005390113.INDD 868 Trim size: 7.375 in × 9.25 in June 11, 2022 4:18 PM

education (continued)
extracurricular activities,

833–834
getting college degree, 830
graduate degrees, 836–839
master’s degree, 836
overview, 829–830
research, 838–839
technical versus practical,

832–834
two-year versus four-year

school, 834–836
undergraduate degrees,

829–836
element nodes, 308
Element object

methods, 318–319
properties, 316–317

elements, HTML
appending, 325
attaching events to, 331
choosing, 81–83
creating, 325
defined, 170
getting and setting values,

349–351
laying out, 113–122
naming, 112–113
overview, 47–49
removing, 325–326
styling, 107–111
using, 52–57

ElevatedButton widget., 574
elevation parameter, 453–454
elite technology companies,

856–857
Ellison, Larry, 829
else statement, 242–243
Emacs (code editor), 176
email value, 343
embeds property, 314
emulator, 402, 416
encapsulation, 519–523

encoding property, 346
enctype attribute, 341
enctype property, 346
ending tags, 170
end-of-line comments, 483–484
end-of-line doc comments, 484
enum, creating, 593
enum feature, 454
enumeration, 454, 740
equality (==) operator,

231, 686
error event, 329
errors, 38
escaping quotes, 207
event, 504
event handler, 504
events

bubbling up, 335–336
capturing, 335–336
handling

inline, 330
overview, 329–330
using addEventListener

method, 331–337
using element properties,

331–332
overview, 327–329
turning off propagation,

336–337
every method, 221
Excel files, 718–719
@exception tag, 261
exclamation point (!), 628
Expanded widget, 549–560
experience, 857–858, 860
explode parameter, 797
@exports tag, 261
expressions, 226, 477–480, 645
eXtensible Markup Language.

See XML
extension keyword, 603–608
extracurricular activities,

833–834

F
Facebook, 29, 30
fat arrow (=>), 489
features, deprecated, 736–737
fellowships, 840
field, 518
file value, 343
filename extensions, 405
fillna() method, 748
filter method, 221
finite machine diagram, 628
First Round Capital, 834
firstChild property, 311–313, 316
firstElementChild property, 316
FlatButton dialog box, 624
Flex class, 562
flex property, 138–139
flex value, 560–562
flex-basis property, 137, 139
Flexbox

aligning on cross-axis, 134–135
aligning on main axis, 136
changing order of, 139–140
creating boxes, 129–130
dimension, 130–132
items, 129
modifying flexible boxes,

137–139
multi-line containers, 133–134
overview, 123, 128–129
practicing with CodeSandbox.

io, 140–141
wrapping items in container,

133–134
flex-direction property, 130–

132, 135
flex-grow property, 137–139
Flexible class, 562
flex-shrink property, 138
flex-wrap property, 133–134
Flickr, 57
float property, 120

0005390113.INDD 869 Trim size: 7.375 in × 9.25 in June 11, 2022 4:18 PM

Index 869

floating action button, 495–497
Flutter

adding another widget,
456–457

adding visual tweaks, 453–454
animation

Animation value, 656–658
AnimationController

construction call, 654–655
bouncing, 664–666
changing velocity of, 664–

665, 670–673
codes, 654–655, 659–660,

664–665, 666–667, 668–669,
670–673

moving along a curve,
668–670

moving along a straight line,
659–663

overview, 653
parabolic motion, 666–668
size and color changes,

666–668
tearing things up, 673–674

API reference
documentation, 389

app bar’s Back button,
622–624

application programming
interface, 388–389

Center widget, 448–450
centering text, 449–450,

459–463
checking device orientation,

562–563
Color class, 534
Column widget, 537–538
configuring Android Studio,

407–408
Container widget, 539–544
creating and using function,

464–468
creating function declaration

variations, 487–490
creating list, 634–645

creating project, 434–439
creating scaffold, 451–453
cross-platform development,

390–391
Cupertino widget, 613
developing apps in, 396
development cycle, 394–395
displaying image, 464–468
documentation, 447–448
downloading and installing,

403–404
drop-down button, creating,

596–602
enhancing, 509–512
flex value, 560–562
floating action button, 495–497
framework, 500
function call, 472
function declaration, 471–472
history of, 393–394
hot reload, 396
hot restart, 396
icon on button, 612
installing, 416–418
layouts, 528–530
ListView constructor, 634–636,

641–643
main.dart file, 495–496
master-detail interface,

608–612
nesting rows and columns,

545–546
overview, 31, 389
Padding widget, 535–537
parameter list, 533–534
parameters, 512–514
passing data from source to

destination, 613–618
passing data in both

directions, 624–628
radio buttons, creating,

590–596
reusable codes, 528–529,

608–609, 654–655, 663

routes
defined, 613
named, creating, 629–632

running your first app,
408–413

SDK path, 404
SizedBox widget, 539
slider, 576–580
software development kit,

401–402
TextField constructor, 581–590

focus() method, 304, 318
focus event, 329
fonts, CSS properties for styling

color property, 88–89
font-family property, 89–90
font-size property, 87–88
font-style property, 89
font-weight property, 89
text-decoration property, 90

for...in loops, 248–251
for loop, 246–247, 643
for statement, 644
forEach method, 221
form element, 340–341
Form object

methods, 347–348
overview, 345
properties, 345–346

forms
accessing elements, 348–349
attributes, 76–77
basic, creating, 76–78
button element, 344–345
form element, 340–341
how it works, 75
HTML page, example, 340
index numbers, 348
input element, 342–343
input fields, 348–349
input validation, 351–354
label element, 341–342

870 Coding All-in-One For Dummies

0005390113.INDD 870 Trim size: 7.375 in × 9.25 in June 11, 2022 4:18 PM

forms (continued)
overview, 339
select element, 344
textarea element, 344
uses of, 75

forms property, 314
FORTRAN, 32
Fortune 100 companies, 857
Foundation, 824
four-year school, 834–836
fragmentation, 391
frameElement property, 299
frames property, 299
framework, 391
freeCodeCamp (website), 849
freelancing, 848–849, 857
frontend, 24–25
frontend web development

careers in, 823–824
cross-browser testing, 823–824
CSS tools, 824
JavaScript frameworks, 824
search engine

optimization, 823
full stack developers, 25
function call, 472
function declaration, 471–472
function factory, 363–365
function scoped variables,

197–199
functions

anonymous, 270–271, 516–517
arrow, 270–271
benefits of using, 258–262
body, 257
calling

with more arguments than
parameters, 268

overview, 258
without all the

arguments, 267
constructor, 278–280
creating, 470–471

creating, using function,
360–361

declarations, 487–490
defining, 257
within functions, 273–274
head, 257
overview, 255
programs, sample, 259–260
recursive, 271–273
scope, 269–270
simple, 255–256
using, 470–471
using, to create functions, 364
writing, 262–263
writing with callbacks, 356–357

Future object, 621

G
gasbuddy.com, 379
Gates, Bill, 829, 856
General Assembly, 847
generic, 515
geolocation property, 296
GestureDetector widget,

672–673
getAnimation method, 661–

663, 663
getAttribute() method, 318
getAttributeNode() method, 318
getElementById() method, 315,

321, 346, 349
getElementsByClassName()

method, 315, 318, 322–324
getElementsByName()

method, 315
getElementsByTagName()

method, 315, 318, 322
getFeature() method, 318
getSuffix function, 638–639
Girls Who Code, 858
global scoped variables,

197–199
Google Drive, 40

Google Images, 57
Google Play Store, 25, 826
Google Sites, 40
goToDetailPage function, 636
graduate degrees

computer science curriculum,
837–838

doctorate degree, 836–837
master’s degree, 836
research, 838–839

grandchildren, 545
graphical user interface

(GUI), 500
graphs

adding to, 777
adjacency matrix, 775
bar charts, 797–799
box plots, 800–802
choosing, 796–803
creating initial, 776
data shaping in, 774–777
defined, 809
defining plot, 780–781
directed, 811–812
drawing multiple lines and

plots, 781–782
histograms, 799–800
labels, 791–792
pie charts, 796–797
saving, 782
scatterplots, 802–805
undirected, 809–811
visualizing, 776–777,

809–812
greater than (>) operator,

231, 686
greater than or equal to (>=)

operator, 231, 686
grids, 784–785
Groupon, 11
groups, depicting in scatterplots,

803–804
groupValue., 593

0005390113.INDD 871 Trim size: 7.375 in × 9.25 in June 11, 2022 4:18 PM

Index 871

H
hackathon, 834
hairball, 775
handles, 783
hardware, 385
Hardware Accelerated Execution

Manager (HAXM), 419
hasAttribute() method, 318
hasAttributes() method, 318
hasChildNodes() method, 318
hashchange event, 329
HAXM (Hardware Accelerated

Execution Manager), 419
head property, 314
headlines, 52–54
height parameter, 531, 539–540
hidden value, 343
high-dimensional sparse data

set, 770
highlight function, 480
histograms, 799–800
history property, 299, 302
home directory, 404
Hook Model, 13
horizontal navigation, 114–115
hot reload, 396
hot restart, 396
hotlinking, 57, 93
Hotmail, 10
Hour of Code, 9
HTML (HyperText Markup

Language). See also CSS
(Cascading Style Sheets)

adding CSS to, 97–99
building sample webpages

using, 60–61
displaying text in paragraphs,

54–55
event attributes, 182–183
forms, 75–78
headings, 53–54
history of, 52

HTML5, 169–171
hyperlinks, 55–57
images, adding, 56–57
lists, 60–61, 66–68
as one of first languages to

learn, 856
overview, 26–27, 45–46
parsing, 294, 760–761
practicing with CodeSandbox.

io, 78
shaping data on pages,

760–763
simple HTML document,

169–171
structure of, 47–52

attributes, 49–50
body, 50–51
elements, 47–49, 52–57
head, 50–51
title, 50–51

tables
columns, 70–72
rows, 70–72

tags, 54–57, 57
text styling, 58–59

human resources, careers in,
818–819

hybrid app development, 392
hyperlinks. See links
HyperText Markup Language.

See HTML

I
icons
adding, 157–158

on buttons, 612
used in this book, 3
id attribute, 112–113, 346
id property, 316
IDE (integrated development

environment), 402, 691
If...else statements, 242–244

if statement, 242–243, 565
if-elif-else statement, 685–686
image data, generating

variations on, 711–712
image library, 711
image value, 343
images

adding, 56–57
background, 93–97
displaying, 464–468

images property, 314
Imgur, 57
implementation property, 314
implicit globals, 270
import declarations, 530
import statements, 519–523
importNode() method, 315
imputing data, 749–750
in operators, 238
increment (++) operator, 232
indented code, 442–443
index, 456
index numbers, 213, 346, 348
indexOf function, 207
indexOf method, 221
inequality (!=) operator, 231, 686
infinite loop, 190
information retrieval (IR), 769
inheritance
overview, 287
creating objects, 288–289
hierarchy, 446
initState method, 585, 590
inline event handler, 330
inner widgets, 527–528
innerHeight property, 299
innerHTML property, 316,

319–320
innerWidth property, 299
in-person training

programs, 845

872 Coding All-in-One For Dummies

0005390113.INDD 872 Trim size: 7.375 in × 9.25 in June 11, 2022 4:18 PM

input element, 342–343
input event, 328
insertBefore() method, 318
instance variable, 518
instanceof operators, 238
int number type, 476–477, 485
integrated development

environment (IDE), 402, 691
Intel Virtualization Technology

(VT), 419
Internet

connectivity, 10
fetching data from, 645–652

Internet Protocol (IP)
address, 23

internships
fellowships, 840
overview, 839
school-year, 840
securing, 840–841
summer, 839–840
types of, 839–840

interpreted code, 15
interpreted programming

languages, 166
iOS operating system, 387
iPhone, testing apps on,

422–423
iPhone apps, creating, 406–407
isContentEditable property, 316
isDefaultNamespace()

method, 318
isEqualNode() method, 318
isId property, 324
isnull() method, 742
isSameNode() method, 318
isSupported() method, 318
italics, 58–59
item() method, 319
itemBuilder parameter,

635–636, 639–641
itemCount parameter, 635
items, 129

J
Java, 32
Java Virtual Machine (JVM), 387
JavaScript. See also AJAX

client-side, 169
code editor, 174–176
comments

multi-line, 190
overview, 189–190
preventing code

execution, 191
single-line, 190

Console, 188–189
creating .js files, 186–187
creator of, 14, 162
CSS3 and, 171–172
development environment,

173–181
displaying JSON data with,

380–381
external files, including,

185–188
frameworks, 824
history of, 162–163
in HTML event attribute,

182–183
in HTML file, sample, 179
HTML5 and, 169–171
input validation, 351–354
misconceptions about, 164
as one of first languages to

learn, 856
organizing .js files, 187–188
overview, 26–27, 161–163
parsing, 294
reading code, 181
reasons for using, 167–172
reserved words, 181
rules, 181
running in browser window,

182–188
in script element, 183–185
special characters, 206

src attribute, 185
uses for, 166–167

JavaScript Object Notation
(JSON), 378–381,
649–650, 728

Jobs, Steve, 829
join method, 221
JOT (just-in-time) compiler, 395
JSDoc, 260–262
JSON (JavaScript Object

Notation), 378–381,
649–650, 728

json.decode function, 652
Jupyter Notebook

for Python, 691
for R, 691
starting, 697–698
stopping server, 699

justify-content property, 136
just-in-time (JOT) compiler, 395
JVM (Java Virtual Machine), 387

K
Kayak.com, 65
kernel, 387
Kernighan, Brian, 433
keydown event, 328
keyup event, 328

L
label element, 341–342
label parameter, 531, 580
labels, in graphs, 791–792
landscape mode, 562
lang property, 316
language property, 296
lastChild property, 311–313, 316
lastElementChild property, 317
lastindexOf method, 221
Last-In-First-Out (LIFO) rule, 613
lastModified property, 314
Layoutit.com, 150

0005390113.INDD 873 Trim size: 7.375 in × 9.25 in June 11, 2022 4:18 PM

Index 873

layouts, 528–530
legal services, careers in,

821–822
legends, in graphs, 793–794
length property, 299, 317, 346
less than (<) operator, 231, 686
less than or equal to (<=)

operator, 231, 686
let keyword, 196
library, 388
library classes, 847–848
lines, in MatPlotLib

colors, 787–788
markers, 789–790
overview, 786
styles, 786–787

LinkedIn, 29
links

to contents, 55–56
customizing, 90–92
destination of, 55
node, 774–775
on web pages, example of, 53

links property, 314
Linux, 387
List collection type, 485
listener, 662
lists

creating, 634–645
creating items one-by-one,

639–643
in Dart programming

language, 457
index, 457
making, 211–212
nesting, 67–68
ordered, 66–67, 103, 104
styling, 100–105
unordered, 66–67, 103, 104

list-style-image property, 103
list-style-type property, 103–106
ListTile widgets, 643

ListView constructor, 634–636,
641–643

literals, 477–478
literate programming, 691
LiveScript. See JavaScript
load event, 329
loader, 293–294
location property, 299
location services, 826
logic errors, 38
logical operators, 236–237
looping statements, 241
loops

for...in, 248–251
defined, 241
do...while, 252
for, 246–247
overview, 219
through arrays, 247–248
while, 251–252

loose constraint, 559
Lynda, 845

M
machine code, 14–15
machine learning, 827, 837
Made With Code campaign, 858
main function, 490
mainAxisAlignment property,

537, 545–546
main.dart file, 495–496
Map collection type, 485, 602
map method, 221
margin parameter, 542–544
margin property, 118–119
marketing, coding in, 12
master-detail interface, 608–612
master’s degree, 836
Material class, 446
Material Design language, 453
Material Design widget, 613

Material object, 438–439
MaterialApp object, 438–439
MaterialApp widget, 454–455
MaterialPageRoute constructor

call, 613, 632
math, 853
math.ceil(n) function, 683
mathematics

coding career myths and,
853–854

computing math in Python,
682–684

math.floor(n) function, 683
MatPlotLib

annotations, 790–794
axes, 783–785
graphs, 780–782
grids, 784–785
labels, 790–794
legends, 790–794
line appearance

colors, 787–788
markers, 789–790
overview, 786, 786–790
styles, 786–787

overview, 779–780
max parameter, 579
max_features, 772
MediaQuery, 565–566
members, 587
method attribute, 340
method property, 346
methods

calling, 285
creating, 284
defined, 498
Document object, 315
widgets, 498–500
Window object, 304–305

min parameter, 579
minimum viable product, 38
minorities, hiring, 858

874 Coding All-in-One For Dummies

0005390113.INDD 874 Trim size: 7.375 in × 9.25 in June 11, 2022 4:18 PM

missing data
encoding, 748–749
finding, 747–748
imputing, 749–750

mobile applications
building, 848
coding, 28–31
developers, 826–827

mobile devices, 10–11,
25–26

mobile web applications
building, 29–30
versus native mobile

applications, 25–26
mobile webs pages, 123
mobile-first design, 124
Mocha. See JavaScript
mockups, 36, 824
modules, 683
modulus (%) operator, 232
MongoClient class, 724
MongoDB, 724, 825
month value, 343
mousedown event, 328
mouseenter event, 328
mouseleave event, 328
mousemove event, 328
mouseout event, 328
mouseover event, 328
mouseup event, 328
mousewheel event, 328
moveBy() method, 304
moveTo() method, 304
The Movie Database (website),

647–648
MultiDiGraph(), 812
multidimensional arrays,

215–218
MultiGraph(), 812
multiplication (*) operator, 232
Musk, Elon, 829

myths, coding career
being good at math,

853–854
college graduates and,

856–857
engineering background, 854
experience and, 857–858
hiring women or minorities

and, 858
learning in few weeks, 854
need for great idea, 855
previous experience and, 860
programming languages

and, 856
salaries and, 859

N
name attribute, 340, 346
name property, 299,

324, 346
named constructor, 468
named parameter, 441
named routes, 629–632
namespaceURI property, 317
name/value pairs, 170
NaN data type, 209–210
native code, 391
native mobile applications

building, 29–30
versus mobile web

applications, 25–26
natural language processing

(NLP), 769, 837
Natural Language Toolkit

(NLTK), 764
navigation, master-detail

interface, 608–612
Navigator class, 632
Navigator object,

295–298
navigator property, 299
NerdWallet, 859

nesting
columns, 545–546
levels of, 546–549
rows, 545–546

nesting lists, 67–68
Netbeans (code editor), 176
network systems, 837
networking with developers,

850–851
NetworkX, 775–777
new keyword, 215
new operators, 238
nextElement Sibling

property, 317
nextSibling property, 309–

311, 317
ngram_range parameter, 772
n-grams, 771–772
Nitobi Software, 392
NLP (natural language

processing), 769, 837
NLTK (Natural Language

Toolkit), 764
nodeName property, 317
nodes

adding, 812
defined, 308
document, 308
links, 774–775
root element, 308

nodeType property, 317
nodeValue property, 317
nonprofit organizations, 858
normal flow, 127
normalize() method, 315, 318
NoSQL databases, 724
notch parameter, 801
notebook development, 691
Notepad++ (code editor), 176
Nova (code editor), 176
novalidate attribute, 341

0005390113.INDD 875 Trim size: 7.375 in × 9.25 in June 11, 2022 4:18 PM

Index 875

noValidate property, 346
Nucamp, 847
null safety, 480
null value, 584
num type, 485
number data type, 202–205, 682
Number function, 203–204
number value, 343
NumPy, 732

O
Object object, 287
Object.create method, 280
Objective C, 32
Objective C runtime, 387
objects

class, 279–280
creating

by using inheritance,
287–288

by using object constructor
method, 278–280

by using Object.create
method, 280

by writing object literals,
277–278

Dart, 444–445
defined, 279
literals, 277–278
modifying object type,

289–290
overview, 275–277
properties

deleting, 283
retrieving, 281–283
setting, 281–283

offsetHeight property, 317
offsetLeft property, 317
offsetParent property, 317
offsetTop property, 317
offsetWidth property, 317
onblur attribute, 183

onchange attribute, 183
onChanged event handler, 576
onChanged parameter,

568–569, 580
onclick attribute, 183
onclick event handler,

331–332
ondrag attribute, 183
ondrop attribute, 183
onfocus attribute, 183
onkeydown attribute, 183
onkeypress attribute, 183
onLine property, 296
onload attribute, 183
onmouseover attribute, 183
onPressed event handler, 576
onselect attribute, 183
onsubmit attribute, 183
onTap function, 636
onWillPop parameter, 623
open() method, 304
open projects, 425
opener property, 299
operating system (OS)

Android, 387
iOS, 387
overview, 387
user interface, 388

operators
arithmetic, 231–233
assignment, 197, 230–231, 240
bitwise, 234–235
combining, 239–240
comma, 237
comparison, 231
conditional, 237
defined, 226
delete, 237–238
in, 238
instanceof, 238
logical, 236–237
new, 238

precedence, 226–229
special, 237–239
string, 234
ternary, 237
this, 238
types of, 230–240
using parentheses, 227
void, 238

order property, 139–140
ordered lists, 66–67
outer widgets, 527–528
outerHeight property, 299
overflow, 550
ownerDocument property, 317

P
package, 409
padding parameter, 542–544
padding property, 118–119
Padding widget, 535–537
pagehide event, 329
pageshow event, 329
pageXOffset property, 299
pageYOffset property, 299
pandas

checking version of, 734
overview, 732

pandas.DataFrame, 740
parabolic motion, 666–668
paragraphs, 52
@param tag, 261
parameter list, 533–534
parameters

versus arguments, 264–265
lists, 440
named, 441
naming, 491–492
overview, 258
positional, 441
return value and, 472–475
setting default values, 267–268

876 Coding All-in-One For Dummies

0005390113.INDD 876 Trim size: 7.375 in × 9.25 in June 11, 2022 4:18 PM

parametrized list, 515
parent node, 309–310
parent property, 299
parentElement property, 317
parentNode property, 317
parseFloat function, 204
parseInt function, 204
parsing, 294
password value, 343
pattern matching, 766–767
PennApps, 834
photos. See images
PHP

as one of first languages to
learn, 856

overview, 27
physical device

defined, 402
testing apps on, 419–420

pictures. See images
pie charts, 796–797
Pingendo.com, 150
platform, 390–391
platform property, 296
plot() function call, 786
plotting

defining plots, 780–781
drawing plots, 781–782
multiple plots, 781–782
time series, 806–809
trends, 806–808

plug-ins, 393
Pluralsight, 845
polyfit() function, 805
pop method, 221
popping, 612–613
popstate event, 329
portrait mode, 562
positional parameter, 441
Positioned widget, 658–659, 668
PostgreSQL, 825
practical education, 832–833

precompilers, 824
previousElement Sibling

property, 317
previousSibling property,

309–311, 317
print() method, 304
@private tag, 261
product managers,

819–820
productAgent property, 296
program, 386
programmers, 386

full stack developers, 25
minority, 858
mobile application developers,

826–827
networking with, 850–851
overview, 386
salaries, 859
women, 858

programming. See coding
programming interface, 344
programming languages

coding career myths and, 856
compiled, 165–166
creators of, 14
first languages to learn, 856
functionality across, 14
interpreted, 166
lifespan of, 14
low-level versus high-level,

14–15
overview, 13–16, 386
versus spoken languages, 14
syntax and structure, 14

prompt() method, 304
properties

CSS rule, 82–83
deleting, 283
overview, 586
retrieving, 281–283
setting, 281–283

prototyping designs, 844

punctuation, 680
push method, 221
pushing, 612–613
pushNamed method, 632
PyMongo library, 724
pyplot library, 711
Python programming language

Anaconda distribution,
690–696

comparison operators, 686
conditionals, 685–686
creator of, 14, 677
data types, defining, 681–682
dot notation, 687
downloading data sets,

696–706
downloading sample code,

696–706
input, 686–687
installing, 689–697
math computations,

682–684
as one of first languages to

learn, 856
output, 686–687
overview, 27, 677–678
pattern-matching characters,

766–767
spacing in, 680–681
special characters, 684
strings, 684, 687–688
structure, 679–681
styling in, 680–681
variables, defining, 681–682
versions of, 680

Q
quality assurance, 844
quartiles, 800
querySelector() method,

315, 318
querySelectorAll() method,

315, 319

0005390113.INDD 877 Trim size: 7.375 in × 9.25 in June 11, 2022 4:18 PM

Index 877

R
radio buttons

building radio group, 593
creating, 590–592
creating enum, 593
displaying user’s choice,

595–596
radio value, 343
ramdom sampling, 712
random.shuffle(), 756
range() function, 797–799
range value, 343
raw text files, shaping data in

introducing regular
expressions, 765–768

removing stop words,
764–765

stemming stop words,
764–765

Unicode, 763
React Native, 30, 393
ReactJS, 824
read_sql() method, 723
read_sql_query() method, 723
read_sql_table() method, 723
read_xml, 727–728
readability, 679
readyState property, 314
real devices, 402
recommendation engines, 827
recursion, 271–272
recursive functions, 271–273
Reddfit.com, 679
reduce method, 221
reduceRight method, 221
references, passing arguments

by, 267
referrer property, 314
regular expressions, 765–

768, 821
relational databases, 722–724
removeAttribute() method, 319

removeAttributeNode()
method, 319

removeChild() method, 319
removeEventListener() method,

315, 319
removeFirstParagraph()

function., 326
renameNode() method, 315
replaceChild() method, 319
repository

creating folders, 699–700
creating notebooks, 700–702
exporting notebooks, 702
importing notebooks, 703–704
overview, 699
removing notebooks, 703

Representational State Transfer
(REST), 650

research, performing,
838–839

Reset button, 601
reset event, 328
reset method, 347
reset value, 343
reset_index() method,

755–756
resize event, 329
resizeBy() method, 304
resizeTo() method, 305
resources, 293
responsive design, 124–128
REST (Representational State

Transfer), 650
return statement, 474
@return tag, 261
return value, 472–475
@returns tag, 261
reverse method, 220
root element node, 308
round (n, d) function, 683
routes

defined, 613
named, creating, 629–632

RouteSettings constructor
call, 618

rows
nesting, 545–546
slicing, 750–751
stretching, 70–72

Ruby
creator of, 14
as one of first languages to

learn, 856
overview, 27

Runes type, 485
runtime, 387, 388

S
Safari, 845
salaries, 859
sales

careers in, 820–821
coding in, 12

same-origin policy, 375–377
scaffold, 451
Scaffold constructor, 451–453
scaling, 825
scatterplots

creating, 803–805
depicting groups, 803–804
overview, 802–803
showing correlations, 804–805

school-year internships, 840
scikit-image library, 719–722
scraping, 12
screen property, 299
screenLeft property, 299
screenTop property, 299
screenX property, 299
screenY property, 299
script element, 183–185
scroll event, 329
scrollBy() method, 305
scrollHeight property, 317

878 Coding All-in-One For Dummies

0005390113.INDD 878 Trim size: 7.375 in × 9.25 in June 11, 2022 4:18 PM

scrollLeft property, 317
scrollTo() method, 305
scrollTop property, 317
scrollWidth property, 317
search() function, 768
search engine optimization

(SEO), 823
search value, 343
security, 825, 837
@see tag, 261
select element, 344
select event, 328
selectors

background images, 93–97
child, 108–110
CSS rule, 82–83
customizing links, 90–92
defined, 172
descendant, 111
fonts, 86–90

self property, 299
semicolons, 181
SEO (search engine

optimization), 823
servers, 824
Set collection type, 485
set_xlim() call, 784
set_xticks() call, 784
set_ylim() call, 784
set_yticks() call, 784
setAttribute() method, 319, 320
setAttributeNode() method, 319
setInterval() method, 305
setState call, 507–509, 662
setTimeout() method, 305
shadow parameter, 797
shift method, 221
shuffling data, 755–756
sibling nodes, 309–311
simulator, 402
SizedBox widget, 539
Skillsoft, 845

slice method, 221
slider, apps, 579–580
Slider constructor, 576–580
small companies, 857
software

defined, 385
web-based, 10

software development kit (SDK),
401–402

some method, 221
sort method, 221
sort_values() method,

755–756
sorting data, 755–756
source code

defined, 385
editors, 174–176
for examples in this book, 5

source page
defined, 612
passing back data from to

destination, 613–618
passing data to destination,

613–618
Spacer, 539
speadsheet consolidation, 844
special characters, 206, 684
special operators, 237–239
specified property, 324
splice method, 221
split function, 207
spoken languages, versus

programming languages, 14
SQL (Structured Query

Language), 722
sqlalchemy library, 723
sqrt function, 670
square bracket notation,

281–282
src attribute, 185
Stack constructor, 658–659
startups, 857
State class, 585, 590

state management strategy,
506–507

stateful widgets, 498
stateless widgets, 498
StatelessWidget class, 501–502
statements, 475–476, 645
static app, 495
static members, 589
static variable, 617
stemming, 764–765
stop() method, 305
stop words

removing, 764–765
stopping, 764–765

Store Manager box, 553
strict equality (===)

operator, 231
strict inequality (!==)

operator, 231
strikethrough, 58–59
string data type, 205–207, 682
string functions, 207–208
string interpolation, 488–489
string operators, 234
String type, 476–477, 485
strings, 458, 684, 687–688
Structured Query Language

(SQL), 722
style property, 317
Sublime Text (code editor), 176
submit event, 328
submit method, 347
submit value, 343
subscript, 59
substr function, 207
substring function, 207
subtraction (-) operator, 232
summer internships, 839–840
superscript, 59
Svelte, 824
Swift programming language, 32
Switch control, 568–569

0005390113.INDD 879 Trim size: 7.375 in × 9.25 in June 11, 2022 4:18 PM

Index 879

switch statement, 243–245,
638–639

sym parameter, 801
Symbol data type, 210
Symbol type, 485
syntax

errors, 38
JavaScript, 168
overview, 14

system image, 416
systemOverlayStyle parameters,

453–454

T
tabIndex property, 317
tables

aligning, 72–74
attributes, 72–75
basic structure of, 69–70
columns, stretching, 70–72
creating, 69–70
designing, 105–106
rows, stretching, 70–72

tagName property, 317
tags, HTML, 47, 170. See also

elements, HTML
target attribute, 341
target devices, 402
target property, 346
technical education, 832–833
technology companies, 856–857
tel value, 343
template literals notation, 284
term frequency-inverse

document frequency
(TF-IDF) transformations,
772–774

Terminal, 416–417
ternary operators, 237, 574
Text class, 447–448
Text constructor call, 447–448

text file, accessing data from,
714–715

text nodes, 308
text value, 343
Text widget, 449–450, 636
text-align property, 105
textarea element, 344
TextButton, 601
textContent property, 317
TextEditingController object,

581–582
TextField constructor, 581–590
TextInputType.number

parameter, 586
TextMate (code editor), 176
TextPad (code editor), 176
TF-IDF (term frequency-inverse

document frequency)
transformations, 772–774

tfidf.transform(), 774
TfidfTransformer(), 774
theme parameter, 512–513
Thiel, Peter, 856
this keyword, 286
this operators, 238
@this tag, 262
@throws tag, 262
thumb, 579
ticker, 657
tight constraint, 559
time

formatting values, 745
plotting series, 806–809
representing on axes, 806–807
transformation, 745–746

time value, 343
title() function, 797
title parameter, 512–513
title property, 317
toLowerCase function, 207
toolbars, creating, 155–157

tooltip parameter, 514
top property, 299
top-level variables, 616
toString() method, 221, 319
toUpperCase function, 207
trailing commas, 442
training

by freelancing, 848–849
by learning after work,

846–848
by learning at work, 845–846
overview, 843
by taking work project to next

level, 844–845
by transitioning to new role,

849–851
transitioning to new role

assessing current role, 850
identifying roles that match

your interest and skills, 851
networking with developers

and, 850–851
overview, 849–850

Tween class, 661–663
Tween constructor call, 668
Twitter Boostrap. See Bootstrap
two-year school, 834–836
type attribute, 343

U
Uber, 11
UC Berkeley, 834
unbounded constraint, 557
undefined data type, 210
undergraduate degrees

computer science curriculum,
831–832

extracurricular activities,
833–834

getting college degree, 830
overview, 829–830

880 Coding All-in-One For Dummies

0005390113.INDD 880 Trim size: 7.375 in × 9.25 in June 11, 2022 4:18 PM

undergraduate degrees
(continued)

technical versus practical
education, 832–834

two-year versus four-year
school, 834–836

underline, 58–59
underscore (_), 199, 525
undirected graphs,

809–811
Unicode, 763
Universal Transformation

Format 8-bit (UTF-8), 763
University of Pennsylvania, 834
unload event, 329
unordered lists, 66–67
unshift method, 221
unzipping, 406
_updateAgeSwitch function,

570–571, 576
updateOverview method, 651
_updateResults function, 576
updates for this book, 4
url value, 343
user interface, browser, 292
UTF (Universal Transformation

Format 8-bit), 763

V
V8 JavaScript engine,

174–175
validating data, 733–740
value indicator, 580
value parameter, 580
value property, 324
ValueChanged function,

570–571
values

CSS rule, 82–83
passing arguments by,

265–267
returning, 258, 263–264

var keyword, 196, 483

variable declaration, 478
variable scope, 197–199
variables

block scoped, 197–199
in Dart programming

language, 477–478
data stored by, 682
defining, 681–682
function scoped, 197–199
global scoped, 197–199
initializing, 195–196
naming, 199–201
overview, 193–194
program for adding two

numbers, sample, 194–195
static, 617
top-level, 616

@version tag, 262
vertical navigation, 114–115
viewport meta tag, 125–127
vim (code editor), 176
virtual devices

adding, 415
examples of, 402

virtual training, 845
Virtualization Technology

(VT), 419
Visibility widget, 617
Visual Studio Code (VS Code)

getting started with, 176–178
installing, 176
overview, 60, 174–175, 405
syntax color scheme, 179–180

void operators, 238, 330
VoidCallback function,

518, 570
Vue.js, 824

W
waterfall method, 34–35
Weather Underground,

369–370, 377

web applications
coding

with CSS, 26–27
with HTML, 26–27
with JavaScript, 26–27
with PHP, 27
with Python, 27
with Ruby, 27

defined, 25–26
deploying in the cloud,

31–32
examples, 10, 16–17
overview, 10
purpose and scope of,

16–17
web browsers. See browsers
web host, 40
web pages

appearance, 24
cloning, 848
coding basic elements,

153–158
displaying, 20–26
hacking, 20–22
horizontal navigation,

115
infrastructure, 24
inspecting code, 20–22
logic, 24
organizing content on,

64–66
responsive, 125–128
storage, 24
vertical navigation, 115

web-based software, 10
websites. See web pages
Weebly, 40
week value, 343
while loops, 251–252
whiskers, 800
whitespace, 181, 681
<Widget>, 515–516

0005390113.INDD 881 Trim size: 7.375 in × 9.25 in June 11, 2022 4:18 PM

Index 881

widgets
Dart, 444–445
displaying, 557–558
expanded, 549–560
Flutter, 398–400, 449
inner, 527–528
methods, 498–500
outer, 527–528
stateful, 498
stateless, 498
unexpanded, 552–555

width parameter, 539–540
width property, 105
wildcard character (*), 822
WillPopScope constructor

call, 623
window, browser

changing web page based on
width of, 301–302

determining size of, 300
loading web page using

window.location
property, 300

overview, 298

Window object
methods, 304–305
opening web page with

window.location property,
298–300

overview, 298
properties, 299

window.location property,
298–300

wireframes, 36
Wistia, 845
Wix, 40
Women Who Code, 858
word processors, 402
WordPress, 856
working directory, 416
workplace utility apps,

coding, 848
write() method, 315
writeIn() method, 315
writing mode, 129
WunderMap, 369–370, 377

X
Xamarin, 394
Xcode, 403, 406–407
XML (eXtensible Markup

Language)
accessing data, 725–727
parsing, 760–761

XMLHttpRequest object,
373–376

XPath, 761–763
X-Ray Googles, 22

Y
Yelp, 16–17
Yes We Code, 858

Z
zip files, 406
Zuckerberg, Mark, 829, 856

0005390113.INDD 882 Trim size: 7.375 in × 9.25 in June 11, 2022 4:18 PM

0005390111.INDD 883 Trim size: 7.375 in × 9.25 in June 11, 2022 4:42 PM

About the Authors
Nikhil Abraham is currently the CFO of Udacity, a venture-backed education
technology startup that teaches its students how to code and that bridges the
gap between real-world skills, relevant education, and employment. Prior to
joining Udacity, he worked at Codecademy. At Codecademy, he helped technol-
ogy, finance, media, and advertising companies teach their employees how to
code. With his help, thousands of marketing, sales, and recruiting professionals
have written their first lines of code and built functional applications. In addition
to his day job, he has lectured at the University of Chicago Law School and cre-
ated a course that teaches students how to solve legal problems using open data
and software.

Prior to joining startups, Nikhil worked in a variety of fields, including manage-
ment consulting, investment banking, and law; he also founded a Y Combinator-
backed technology education startup. He received a JD and MBA from the
University of Chicago and a BA in quantitative economics from Tufts University.

Nikhil is a recent transplant from Manhattan, New York, and now lives in Moun-
tain View, California. Content from Nikhil’s books Coding For Dummies and Getting
a Coding Job For Dummies appears in this book.

Barry Burd received an MS degree in computer science at Rutgers University
and a PhD in mathematics at the University of Illinois. As a teaching assistant in
Champaign-Urbana, Illinois, he was elected five times to the university-wide List
of Teachers Ranked as Excellent by Their Students.

Since 1980, Barry has been a professor in the department of mathematics and
computer science at Drew University in Madison, New Jersey. He has spoken at
conferences in the United States, Europe, Australia, and Asia. He is the author
of several articles and books, including Java For Dummies, Beginning Programming
with Java For Dummies, and Java Programming for Android Developers For Dummies,
all from Wiley.

Barry lives in Madison, New Jersey, with his wife of 40 years. In his spare time, he
enjoys eating chocolate and avoiding exercise. Content from Barry’s book Flutter
For Dummies appears in this book.

Eva Holland is an experienced writer, trainer, and cofounder of WatzThis?. Eva
has written, designed, and taught online, in-person, and video courses. She has
created curriculum for web development, mobile web development, and search
engine optimization (SEO). Prior to founding WatzThis?, Eva served as COO of
MWS, where she provided astute leadership, management, and vision that
guided the company to its goals. Content from Eva’s book Coding with JavaScript
For Dummies appears in this book.

Luca Massaron is a data scientist and marketing research director who specializes
in multivariate statistical analysis, machine learning, and customer insight, with
more than a decade of experience in solving real-world problems and generat-
ing value for stakeholders by applying reasoning, statistics, data mining, and
algorithms. From being a pioneer of web audience analysis in Italy to achieving
the rank of top ten Kaggler on kaggle.com, he has always been passionate about
everything regarding data and analysis and about demonstrating the potentiality
of data-driven knowledge discovery to both experts and nonexperts. Content from
Luca’s books Machine Learning For Dummies and Python for Data Science For Dummies
appears in this book.

Chris Minnick has been a full-stack developer for over 25 years, a trainer for over
10 years, and a writer for much longer than he can remember. He has taught web
and mobile development, ReactJS, and advanced JavaScript at many of the world’s
largest companies as well as at colleges, public libraries, co-working spaces, and
meetups.

Minnick has written over a dozen books about coding and two novels about clowns.
He is also a painter, musician, swimmer, and avid indoorsman. Visit his website at
https://www.chrisminnick.com.

Original content and content from Chris’s book Coding with JavaScript For Dummies
appears in this book.

John Mueller is a freelance author and technical editor. He has writing in his
blood, having produced 100 books and more than 600 articles to date. His
technical editing skills have helped more than 63 authors refine the content
of their manuscripts. John has provided technical editing services to both Data
Based Advisor and Coast Compute magazines. It was during his time with
Data Based Advisor that John was first exposed to MATLAB, and he has con-
tinued to follow the progress in MATLAB development ever since. During his
time at Cubic Corporation, John was exposed to reliability engineering and has
continued his interest in probability. Be sure to read John’s blog at http://
blog.johnmuellerbooks.com. Content from John’s book Machine Learning
For Dummies and Python for Data Science For Dummies appears in this book.

Dedication
For my dad, who told me I’d never amount to anything, but who also bought me
my first three computers.

— Chris Minnick

0005390111.INDD 884 Trim size: 7.375 in × 9.25 in June 11, 2022 4:42 PM

Author’s Acknowledgments
This book would not have been possible without the help, support, experience,
and wisdom provided by my friends, family, colleagues, and the team at Wiley.
Thanks to everyone whose writing appears in this book. It was a pleasure and a
privilege to work on a book with so many amazing minds. I would love to thank
you all by name, but they tell me the book is already way too long. Thanks to you,
the reader, for beginning or continuing your coding journey with me.

—Chris Minnick

Publisher’s Acknowledgments

Executive Editor: Steve Hayes

Project Editor: Kezia Endsley

Copy Editor: Kezia Endsley

Proofreader: Penny Stuart

Production Editor: Tamilmani Varadharaj

Cover Image: © shutterstock/antoniodiaz

0005390111.INDD 885 Trim size: 7.375 in × 9.25 in June 11, 2022 4:42 PM

0005390111.INDD 886 Trim size: 7.375 in × 9.25 in June 11, 2022 4:42 PM

9781119889564_badvert01.indd 887 Trim size: 7.375 in × 9.25 in June 11, 2022 4:42 PM

Take dummies with you
everywhere you go!
Whether you are excited about e-books, want more

from the web, must have your mobile apps, or are swept
up in social media, dummies makes everything easier.

dummies.com

Find us online!

9781119889564_badvert01.indd 888 Trim size: 7.375 in × 9.25 in June 11, 2022 4:42 PM

Leverage the power
Dummies is the global leader in the reference category and one
of the most trusted and highly regarded brands in the world. No
longer just focused on books, customers now have access to the
dummies content they need in the format they want. Together
we’ll craft a solution that engages your customers, stands out
from the competition, and helps you meet your goals.

Connect with an engaged audience on a powerful multimedia site,
and position your message alongside expert how-to content.
Dummies.com is a one-stop shop for free, online information
and know-how curated by a team of experts.

• Targeted ads
• Video
• Email Marketing

• Microsites
• Sweepstakes

sponsorship

Advertising & Sponsorships

MILLION
PAGE VIEWS

M IL L I O N

NEWSLETTER

300,000 UNIQUE INDIVIDUALS
EVERY WEEK

UNIQUE

SUBSCRIPTIONS

EVERY SINGLE MONTH

15

700,000

20

43%
OF ALL VISITORS
ACCESS THE SITE
VIA THEIR MOBILE DEVICES

VISITORS PER MONTH

TO THE INBOXES OF

9781119889564_badvert01.indd 889 Trim size: 7.375 in × 9.25 in June 11, 2022 4:42 PM

of dummies

you from competitors, amplify your message, and encourage customers to make a
buying decision.

Leverage the strength of the world’s most popular reference brand to reach new
audiences and channels of distribution.

For more information, visit dummies.com/biz

• Apps
• Books

• eBooks
• Video

• Audio
• Webinars

Custom Publishing

Brand Licensing & Content

9781119889564_badvert01.indd 890 Trim size: 7.375 in × 9.25 in June 11, 2022 4:42 PM

9781119187790
USA $26.00
CAN $31.99
UK £19.99

9781119179030
USA $21.99
CAN $25.99
UK £16.99

9781119293354
USA $24.99
CAN $29.99
UK £17.99

9781119293347
USA $22.99
CAN $27.99
UK £16.99

9781119310068
USA $22.99
CAN $27.99
UK £16.99

9781119235606
USA $24.99
CAN $29.99
UK £17.99

9781119251163
USA $24.99
CAN $29.99
UK £17.99

9781119235491
USA $26.99
CAN $31.99
UK £19.99

9781119279952
USA $24.99
CAN $29.99
UK £17.99

9781119283133
USA $24.99
CAN $29.99
UK £17.99

9781119287117
USA $24.99
CAN $29.99
UK £16.99

9781119130246
USA $22.99
CAN $27.99
UK £16.99

PERSONAL ENRICHMENT

9781119311041
USA $24.99
CAN $29.99
UK £17.99

9781119255796
USA $39.99
CAN $47.99
UK £27.99

9781119293439
USA $26.99
CAN $31.99
UK £19.99

9781119281467
USA $26.99
CAN $31.99
UK £19.99

9781119280651
USA $29.99
CAN $35.99
UK £21.99

9781119251132
USA $24.99
CAN $29.99
UK £17.99

9781119310563
USA $34.00
CAN $41.99
UK £24.99

9781119181705
USA $29.99
CAN $35.99
UK £21.99

9781119263593
USA $26.99
CAN $31.99
UK £19.99

9781119257769
USA $29.99
CAN $35.99
UK £21.99

9781119293477
USA $26.99
CAN $31.99
UK £19.99

9781119265313
USA $24.99
CAN $29.99
UK £17.99

9781119239314
USA $29.99
CAN $35.99
UK £21.99

9781119293323
USA $29.99
CAN $35.99
UK £21.99

PROFESSIONAL DEVELOPMENT

dummies.com

