

Beginning
Programming

A L L - I N - O N E

2nd Edition

by Wallace Wang

Beginning Programming All-in-One For Dummies®, 2nd Edition
Published by: John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, www.wiley.com

Copyright © 2022 by John Wiley & Sons, Inc., Hoboken, New Jersey

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections
107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the Publisher. Requests
to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111
River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/
permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, Dummies.com, Making Everything Easier, and related
trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and may not be used without
written permission. All other trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not
associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: WHILE THE PUBLISHER AND AUTHORS HAVE USED THEIR BEST
EFFORTS IN PREPARING THIS WORK, THEY MAKE NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE
ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES,
INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES REPRESENTATIVES, WRITTEN
SALES MATERIALS OR PROMOTIONAL STATEMENTS FOR THIS WORK. THE FACT THAT AN ORGANIZATION,
WEBSITE, OR PRODUCT IS REFERRED TO IN THIS WORK AS A CITATION AND/OR POTENTIAL SOURCE OF FURTHER
INFORMATION DOES NOT MEAN THAT THE PUBLISHER AND AUTHORS ENDORSE THE INFORMATION OR SERVICES
THE ORGANIZATION, WEBSITE, OR PRODUCT MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. THIS WORK
IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING PROFESSIONAL
SERVICES. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR YOUR SITUATION. YOU
SHOULD CONSULT WITH A SPECIALIST WHERE APPROPRIATE. FURTHER, READERS SHOULD BE AWARE THAT
WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS
WRITTEN AND WHEN IT IS READ. NEITHER THE PUBLISHER NOR AUTHORS SHALL BE LIABLE FOR ANY LOSS
OF PROFIT OR ANY OTHER COMMERCIAL DAMAGES, INCLUDING BUT NOT LIMITED TO SPECIAL, INCIDENTAL,
CONSEQUENTIAL, OR OTHER DAMAGES.

For general information on our other products and services, please contact our Customer Care Department within
the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002. For technical support, please visit
https://hub.wiley.com/community/support/dummies.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with
standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to
media such as a CD or DVD that is not included in the version you purchased, you may download this material at
http://booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2022936302

ISBN 978-1-119-88440-8 (pbk); ISBN 978-1-119-88441-5 (ebk); ISBN 978-1-119-88442-2 (ebk)

http://www.wiley.com
http://www.wiley.com/go/permissions
http://www.wiley.com/go/permissions
https://hub.wiley.com/community/support/dummies
http://booksupport.wiley.com
http://www.wiley.com

Contents at a Glance
Introduction . 1

Book 1: Getting Started with Programming 5
CHAPTER 1:	 Getting	Started	Programming	a Computer . 7
CHAPTER 2:	 Different	Methods	for Writing	Programs . 29
CHAPTER 3:	 Types	of	Programming	Languages . 53
CHAPTER 4:	 Programming	Tools . 77

Book 2: Programming Basics . 101
CHAPTER 1:	 How	Programs	Work . 103
CHAPTER 2:	 Variables,	Data	Types,	and	Constants . 119
CHAPTER 3:	 Manipulating	Data . 141
CHAPTER 4:	 Making	Decisions	by Branching . 163
CHAPTER 5:	 Repeating	Commands	by Looping . 181
CHAPTER 6:	 Breaking	a	Large	Program	into	Subprograms . 197
CHAPTER 7:	 Breaking	a	Large	Program	into	Objects . 215
CHAPTER 8:	 Reading	and	Saving	Files . 243
CHAPTER 9:	 Documenting	Your	Program . 263
CHAPTER 10:	Principles	of	User	Interface	Design . 277
CHAPTER 11:	Debugging	and	Testing . 297

Book 3: Data Structures . 311
CHAPTER 1:	 Structures	and	Arrays . 313
CHAPTER 2:	 Sets	and	Linked	Lists . 333
CHAPTER 3:	 Collections	and	Dictionaries . 351
CHAPTER 4:	 Stacks,	Queues,	and Deques . 367
CHAPTER 5:	 Graphs	and	Trees . 381

Book 4: Algorithms . 397
CHAPTER 1:	 Sorting	Algorithms . 399
CHAPTER 2:	 Searching	Algorithms . 415
CHAPTER 3:	 String	Searching . 429
CHAPTER 4:	 Data	Compression	Algorithms . 441
CHAPTER 5:	 Encryption	Algorithms . 451

Book 5: Web Programming . 469
CHAPTER 1:	 HyperText	Markup	Language . 471
CHAPTER 2:	 CSS . 487
CHAPTER 3:	 JavaScript . 495
CHAPTER 4: PHP . 509
CHAPTER 5:	 Ruby . 523

Book 6: Programming Language Syntax . 537
CHAPTER 1:	 C	and	C++ . 539
CHAPTER 2:	 Java	and	C# . 557
CHAPTER 3:	 Perl	and	Python . 577
CHAPTER 4: Kotlin . 595
CHAPTER 5:	 Swift	and	SwiftUI . 613
CHAPTER 6:	 Flutter	and	Dart . 637

Book 7: Applications . 657
CHAPTER 1:	 Database	Management . 659
CHAPTER 2:	 Bioinformatics . 675
CHAPTER 3:	 Computer	Security . 685
CHAPTER 4:	 Artificial	Intelligence . 699
CHAPTER 5:	 Mobile	and	Wearable	Computing . 711
CHAPTER 6:	 Game	Engines . 721
CHAPTER 7:	 The	Future	of	Computer	Programming . 731

Index . 747

Table of Contents v

Table of Contents
INTRODUCTION . 1

About	This	Book .1
Foolish	Assumptions .2
Icons	Used	in	This	Book .2
Beyond	the	Book .3
Where	to	Go	from	Here .3

BOOK 1: GETTING STARTED WITH PROGRAMMING 5

CHAPTER 1:	 Getting	Started	Programming	a Computer 7
How	Computer	Programming	Works . 8

Identifying	the	problem .8
Defining	the	steps .9

The	History	of	Computer	Programming .10
Talking	to	a	processor	in	machine	language 11
Using	assembly	language	as	a	shortcut	to machine	language 12
Hiding	the	details	of	a	computer	with a high-level	language 15
Combining	the	best	of	both	worlds	with the	
C	programming	language .15
Weighing	the	pros	and	cons	of programming	languages 16

Figuring	Out	Programming .18
Desire	beats	technical	training	every	time .19
Picking	a	computer	and	an	operating system 19
Writing	programs	with	an	editor .21
Converting	source	code	with	an	assembler	or	compiler 23
Translating	source	code	with	an	interpreter 25
Combining	a	compiler	with	an	interpreter	to	create	p-code 25
Taking	the	time	to	understand .26

CHAPTER 2:	 Different	Methods	for Writing	Programs 29
Spaghetti	Programming .31
Structured	Programming .34

The	three	parts	of	structured	programming 34
Top-down	programming .36

Event-Driven	Programming .38
Designing	a	user	interface .41
Writing	event	handlers .42
Writing	your	program .44

Object-Oriented	Programming .44
Isolating	data .46
Simplifying	modifications .47

vi Beginning Programming All-in-One For Dummies

Using	Protocol-Oriented	Programming .49
Design	Patterns .50

CHAPTER 3: Types of Programming Languages 53
Your	First	Language .54

BASICally	disrespected .55
Visual	programming	with	Scratch .56
Programming	robots	with	LEGO	Mindstorms 57
Learning	object-oriented	programming	with	Alice 57
Programming	a	killer	robot .58

Curly-Bracket	Languages .60
Learning	programming	with	C .60
Adding	object-oriented	programming	with	C++ 62
Gaining	true	portability	with	Java .63
Programming	more	safely	with	C# .64
Choosing	a	curly-bracket	language .66

Artificial	Intelligence	Languages .67
Scripting	Languages .71

Automating	a	program .72
Customizing	a	program .73
Transferring	data	among	multiple	programs 74
Creating	stand-alone	programs .74

Database	Programming	Languages .75
Comparing	Programming	Languages .76

CHAPTER 4: Programming Tools . 77
Choosing	a	Compiler .78

Defining	your	needs	for	a	compiler .79
Evaluating	the	technical	features	of	a	compiler 80

Finding	an	Interpreter .84
Compiling	to	a	Virtual	Machine .86
Writing	a	Program	with	an	Editor .88

Stand-alone	editors .88
Integrated	development	environments .90

Fixing	a	Program	with	a	Debugger .91
Stepping	line-by-line .92
Watching	variables .95

Saving	Time	with	Third-Party	Components .96
Optimizing	a	Program	with	a	Profiler .97
Managing	Source	Code .97
Creating	a	Help	File .99
Installing	a	Program .99
Dissecting	Programs	with	a	Disassembler .99

Table of Contents vii

BOOK 2: PROGRAMMING BASICS . 101

CHAPTER 1: How Programs Work . 103
Using	Keywords	as	Building	Blocks .105
Organizing	a	Program .108
Dividing	a	Program	into	Subprograms .109
Dividing	a	Program	into	Objects .113
Creating	a	User	Interface .115

CHAPTER 2: Variables, Data Types, and Constants 119
Declaring	Variables .120

Variable	naming	conventions .121
Creating	variables	in	a	command .122
Declaring	the	data	type	of	a	variable .124

Using	Different	Data	Types .126
Storing Data in a Variable .130
Retrieving	Data	from	a	Variable .132
Using	Constant	Values .133
Defining	the	Scope	of	a	Variable .135

Handling	global	variables	with	care .136
Restricting	scope	to	a	module .137
Isolating	variables	in	a	subprogram .138
Passing	data	among	subprograms .139

CHAPTER 3: Manipulating Data . 141
Storing	Data	with	the	Assignment	Operator .142
Using	Math	to	Manipulate	Numbers .143

Organizing	equations	with	operator	precedence 144
Using	built-in	math	functions .146

Manipulating	Strings .147
Finding	Strings	with	Regular	Expressions .148

Pattern-matching	with	the	single	character (.)	wildcard 149
Pattern-matching	for	specific	characters .149
Pattern-matching	with	the	multiple-	character	(*)	
and	plus	(+)	wildcards .150
Pattern-matching	with	ranges .151

Using	Comparison	Operators .153
Using	Boolean	Operators .156

Using	the	Not	operator .156
Using	the	And	operator .157
Using	the	Or	operator .158
Using	the	Xor	operator .159

Converting	Data	Types .160

viii Beginning Programming All-in-One For Dummies

CHAPTER 4:	 Making	Decisions	by Branching . 163
Picking	One	Choice	with	the	IF-THEN	Statement 164
Picking	Two	Choices	with	the	IF-THEN-ELSE	Statement 166
Picking	Three	or	More	Choices	with	the	IF-THEN-ELSEIF	
Statement .168

Checking	a	condition	for	each	set	of	commands 168
Offering	three	or	more	choices .170

Playing	with	Multiple	Boolean	Operators .171
Making	Multiple	Choices	with	the	SELECT CASE	Statement 174

Matching	multiple	values	in	a	SELECT	CASE	statement 177
Checking	a	range	of	values .178
Comparing	values .179

CHAPTER 5:	 Repeating	Commands	by Looping 181
Looping	a	Fixed	Number	of	Times	with	the	FOR-NEXT	Loop 182

Using	a	FOR-NEXT	loop	variable .183
Counting	by	a	different	range .185
Counting	by	different	increments .186
Counting	backward .187
Counting	over	arrays	and	other	items .188

Looping	Zero	or	More	Times	with	the	WHILE	Loop 189
Looping	at	Least	Once	with	the	DO	Loop .192
Playing	with	Nested	Loops .193
Prematurely	Exiting	from	a	Loop .195
Checking	Your	Loops .195

CHAPTER 6: Breaking a Large Program into Subprograms 197
Creating	and	Using	Subprograms .199

Creating	a	subprogram .200
“Calling”	a	subprogram .201

Passing	Parameters . .203
Passing	parameters	by	reference .206
Storing	values	in	a	subprogram	name .210

Repeating	a	Subprogram	with	Recursion .212

CHAPTER 7: Breaking a Large Program into Objects 215
How	Object-Oriented	Programming	Works .216
Encapsulation	Isolates	Data	and Subprograms 219

Shielding	data	inside	an	object .221
Grouping	methods	inside	of	an	object .221
Protecting	code	from	other	programmers 222

Sharing	Code	with	Inheritance .223
Polymorphism:	Modifying	Code	without Changing	Its	Name 226
Design	Patterns .228

Table of Contents ix

Object-Oriented	Languages .230
Hybrid	languages .231
Pure	languages .231
Disadvantages	of	object-oriented	programming 232

Real-Life	Programming	Examples .233
Defining	an	object	with	a	class .233
Creating	an	object	from	a	class .236
Running	methods	stored	in	an	object .236
Inheriting	an	object .238
Using	method	overloading	to	rewrite	
an	inherited	subprogram .239

CHAPTER 8: Reading and Saving Files . 243
Storing	Data	in	Text	Files .243

Creating	a	text	file .246
Reading	a	text	file .247

Storing	Fixed-Size	Data	in	Random-Access	Files 250
Writing	data .251
Reading data .252

Storing	Varying-Size	Data	in	Untyped	Files .253
Writing	data .254
Reading data .255

Using	Database	Files .257
Looking	at	the	structure	of	a	database .257
Connecting	to	a	database .259

CHAPTER 9: Documenting Your Program . 263
Adding	Comments	to	Source	Code .264

Identifying	the	two	types	of	comments .265
Describing	code	and	algorithms .268
Documentation .270
Debugging .271

Writing	Software	Documentation .272
Documentation	types .272
Documentation	tools .274
Help	files .275

CHAPTER 10: Principles of User Interface Design 277
The	Evolution	of	User	Interfaces .278

Command-line	interface .278
Menus .278
Graphical	user	interface .280

Elements	of	a	User	Interface .281
Displaying	commands	to	a	user	interface .281
Giving	data	to	the	user	interface .284

x Beginning Programming All-in-One For Dummies

Showing	information	back	to	the	user .288
Organizing	a	user	interface .290

Designing	a	User	Interface .291
Know	the	user .291
Hide/disable	unusable	options .292
Tolerate	mistakes .293
Be	consistent .294
Give	the	user	freedom	to	customize	the	user	interface 295
Make	navigation	easy .295

CHAPTER 11: Debugging and Testing . 297
Common	Types	of	Programming	Errors .297
Debugging	with	Comments	and	Print	Statements 300
Breakpoints,	Stepping,	and	Watching .302

Stepping	through	code .304
Watching	variables .305

Testing	Code .306
Unit	tests .307
Integration	tests .308
User	interface	testing .309

BOOK 3: DATA STRUCTURES . 311

CHAPTER 1: Structures and Arrays . 313
Using	Structures .314

Storing data .315
Retrieving data .315

Using	an	Array .316
Defining	the	size .317
Storing data .320
Retrieving data .321

Working	with	Resizable	Arrays .321
BASIC .322
C# .323
Swift .323

Working	with	Multidimensional	Arrays .323
Creating	a	multidimensional	array .324
Storing and retrieving data .325

Using	Structures	with	Arrays .325
Drawbacks	of	Arrays .327

Data	types .328
Searching	and	sorting .328
Adding	and	deleting .329
Identifying	the	location	of	data	in	an	array 330

Table of Contents xi

CHAPTER 2: Sets and Linked Lists . 333
Using	Sets .334

Adding	and	deleting	data	in	a	set .335
Checking	for	membership .336
Avoiding	duplicate	data .337
Manipulating	two	sets .337

Using	Linked	Lists .342
Creating	a	linked	list .343
Modifying	a	linked	list .344
Creating	a	double	linked	list .345

Drawbacks	of	Sets	and	Linked	Lists .346
Problems	with	pointers .347
Problems	with	accessing	data .347

CHAPTER 3: Collections and Dictionaries . 351
Using	a	Collection .352

Adding	data	to	a	collection .352
Deleting	data	from	a	collection .354
Identifying	data	with	keys . .355
Searching	and	retrieving	data .356

Using	Dictionaries .358
Adding	data	to	a	dictionary .358
Searching	and	retrieving	data	from	a	dictionary 359

Understanding	Hash	Tables .360
Converting	keys	with	a	hash	function .360
Hash	function	collisions .362

CHAPTER 4:	 Stacks,	Queues,	and Deques . 367
Using	Stacks .368

Adding	data	to	a	stack .369
Removing	data	from	a	stack .370
Counting	and	searching	a	stack .371

Using	Queues .372
Adding	data	to	a	queue .373
Removing	data	from	a	queue .374
Counting	and	searching	a	queue .375

Using	Deques .376

CHAPTER 5: Graphs and Trees . 381
Understanding	Graphs .383

Types	of	graphs .384
Uses	for	graphs .385

Creating	Trees .386
Ordered	trees .387

xii Beginning Programming All-in-One For Dummies

Binary	trees .388
B-trees .389

Taking	Action	on	Trees .390
Traversing	a	tree	to	search	for	data .390
Adding	new	data .392
Deleting data .393
Pruning	and	grafting	sub-trees .394

BOOK 4: ALGORITHMS . 397

CHAPTER 1: Sorting Algorithms . 399
Using	Bubble	Sort .400
Using	Selection	Sort .402
Using	Insertion	Sort .403
Using	Shell	Sort .405
Using	Heap	Sort .406
Using	Merge	Sort .410
Using	Quick	Sort .411
Comparing	Sorting	Algorithms .412

CHAPTER 2: Searching Algorithms . 415
Sequential	Search .416

Backward	or	forward	searching .417
Block	searching .418
Binary	searching .419
Interpolation	searching .420

Using	Indexes .422
Creating	an	index . .422
Clustered	and	unclustered	indexes .423
Problems	with	indexes .424

Adversarial	Search .424
Depth	versus	time .426
Alpha-beta	pruning .426
Looking	up	a	library	of	good	moves .427

CHAPTER 3: String Searching . 429
Sequential	Text	Search .430

The	Boyer-Moore	algorithm .431
The	Rabin–Karp	algorithm .431
The	Shift	Or	algorithm .433
The	finite	automaton	algorithm .435

Searching	with	Regular	Expressions .436
Searching	for	single	character	patterns .436
Searching	for	multiple	character	patterns .437
Searching	for	alternate	patterns .438

Searching	Phonetically .438

Table of Contents xiii

CHAPTER 4: Data Compression Algorithms . 441
Lossless	Data	Compression	Algorithms .442

Run-length	encoding .442
The	Burrows–Wheeler	transform	algorithm 442
Dictionary	encoding .445

Lossy	Data	Compression .449

CHAPTER 5: Encryption Algorithms . 451
How	Encryption	Works .451
The	Basics	of	Encryption .453

Stream	ciphers .456
Block	ciphers .457

Symmetric/Asymmetric	Encryption Algorithms 459
Cracking	Encryption .463

Brute-force	attacks .463
Dictionary	attacks .464
Plaintext	and	ciphertext	attacks .466

BOOK 5: WEB PROGRAMMING . 469

CHAPTER 1: HyperText Markup Language . 471
The	Structure	of	an	HTML	Document .472

Creating	a	title .472
Creating	the	body	text .472
Aligning	text .474
Emphasizing	text .475
Adding	color .476
Changing	the	font	size .477
Adding	comments .478

Adding	Graphics .478
Defining	the	Background .479
Creating	Hyperlinks .480

Defining	an	anchor	point .480
Linking	to	an	anchor	point .480

Making	Tables .481
Defining	a	table .481
Defining	a	table	heading .482
Creating	table	rows	and	data .483
Displaying	a	table	caption,	header,	and footer 484

CHAPTER 2: CSS . 487
The	Structure	of	a	Stylesheet .488
Creating	Style	Classes .489
Separating	Styles	in	Files .491
Cascading	Stylesheets .493

xiv Beginning Programming All-in-One For Dummies

CHAPTER 3: JavaScript . 495
The	Structure	of	a	JavaScript	Program .496
Creating	Comments .497
Declaring	Variables .498
Using	Operators .498

Increment	and	decrement	operators .500
Assignment	operators .501

Branching	Statements .501
Looping	Statements .503
Creating	Functions .504
Using	Arrays .505
Designing	User	Interfaces .505

Creating	dialog	boxes .505
Creating	windows .507

CHAPTER 4: PHP . 509
Examining	the	Structure	of	a	PHP	Program .510
Creating	Comments .510
Declaring	Variables .511
Using	Operators .512

Increment	and	decrement	operators .513
Assignment	operators .515

Branching	Statements .515
Looping	Statements .517
Creating	Functions .518
Using	Arrays .519
Creating	Objects .520

CHAPTER 5: Ruby . 523
The	Structure	of	a	Ruby	Program .524
Creating	Comments .524
Declaring	Variables .525
Using	Operators .526
Branching	Statements .528
Looping	Statements .530
Creating	Functions .531
Using	Data	Structures .532
Creating	Objects .534

BOOK 6: PROGRAMMING LANGUAGE SYNTAX 537

CHAPTER 1: C and C++ . 539
Looking	at	the	Structure	of	a	C/C++	Program .540
Creating	Comments .541

Table of Contents xv

Declaring	Variables .542
Declaring	string	data	types .542
Declaring	integer	data	types .543
Declaring	floating-point	data	types .544
Declaring	Boolean	values .545

Using	Operators .545
Increment	and	decrement	operators .546
Assignment	operators .548

Branching	Statements .548
Looping	Statements .550
Creating	Functions .551
Data	Structures .553

Creating	a	structure .553
Creating	enumerations .554
Creating	an	array .554

Using	Objects .555

CHAPTER 2: Java and C# . 557
Looking	at	the	Structure	of	a	Java/C#	Program 558
Creating	Comments .559
Declaring	Variables .559

Declaring	string	data	types .560
Declaring	integer	data	types .560
Declaring	floating-point	data	types .561
Declaring	Boolean	variables .562

Using	Operators .562
Increment	and	decrement	operators .564
Assignment	operators .564

Branching	Statements .565
Looping	Statements .568
Creating	Functions .569
Data	Structures .571

Creating	a	C#	structure . .571
Creating	an	array .572
Creating	a	Java	linked	list .573
Creating	C#	data	structures .574

Using	Objects .574

CHAPTER 3: Perl and Python . 577
Reviewing	the	Structure	of	a	Perl	or Python	Program 578
Creating	Comments .579
Defining	Variables .580
Using	Operators .580

Increment	and	decrement	operators .582
Assignment	operators .583

xvi Beginning Programming All-in-One For Dummies

Branching	Statements .584
Looping	Statements .586
Creating	Functions .588
Making	Data	Structures .588

Perl	data	structures .589
Python	data	structures .590

Using	Objects .592

CHAPTER 4: Kotlin . 595
Looking	at	the	Structure	of	a	Kotlin	Program .596
Creating	Comments .596
Declaring	Variables .597

Declaring	string	data	types .597
Declaring	integer	data	types .598
Declaring	floating-point	data	types .599
Declaring	Boolean	values .599

Declaring	Constants .600
Using	Operators .600
Branching	Statements .601
Looping	Statements .605
Creating	Functions .606
Creating	Data	Structures .608

Creating	a	list .609
Creating	an	array .610
Creating	a	set .610

Creating	Objects .611

CHAPTER 5: Swift and SwiftUI . 613
Considering	the	Structure	of	a	Swift	Program 614

Understanding	SwiftUI .614
Creating	a	SwiftUI	user	interface .616
Understanding	SwiftUI	state	variables .616

Creating	Comments .618
Declaring	Variables .618

Declaring	string	data	types .619
Declaring	integer	data	types .620
Declaring	decimal	data	types .620
Declaring	Boolean	values .621

Declaring	Constants .621
Using	Operators .622
Branching	Statements .623
Looping	Statements .627
Creating	Functions .628

Table of Contents xvii

Data	Structures .630
Creating	an	array .630
Creating	a	dictionary .632
Creating	a	set .633

Creating	Objects .634

CHAPTER 6: Flutter and Dart . 637
Working	with	Flutter .638

Understanding	the	structure	of	a	Flutter	program 638
Working	with	widgets	in	Flutter .639
Aligning	widgets	in	rows	and	columns .642

Understanding	the	Dart	Language .645
Creating	comments .645
Declaring	variables .646
Using	operators .646
Using	branching	statements .649
Using	looping	statements .650
Creating	functions .652
Creating	data	structures .653
Using	objects .656

BOOK 7: APPLICATIONS . 657

CHAPTER 1: Database Management . 659
Understanding	the	Basics	of	Databases .659

Free-form	databases .660
Flat-file	databases .661
Relational	databases .663

Manipulating	Data .667
Writing	database	commands .669
The	SQL	language .670
Data integrity .671
Data mining .672

Database	Programming .672

CHAPTER 2: Bioinformatics . 675
The	Basics	of	Bioinformatics .676

Representing	molecules .676
Manipulating	molecules	in	a	computer .677

Database	Searches .679
Bioinformatics	Programming .681

xviii Beginning Programming All-in-One For Dummies

CHAPTER 3: Computer Security . 685
Stopping	Malware .686

Viruses .687
Worms .687
Trojan	horses .688
Spyware . .689
Distributed	denial-of-service	attacks .690

Stopping	Hackers . .691
Intrusion	detection	systems . .692
Rootkit	detectors .693
Forensics .694

Secure	Computing .695
Patching	as	an	afterthought .695
Security	in	coding .696
Security	by	design .697

CHAPTER 4:	 Artificial	Intelligence . 699
Problem Solving .700

Game-playing .701
Natural	language	processing .702
Speech	recognition .704
Image	recognition .705

Machine	Learning .706
Bayesian	probability .707
Neural	networks .707

Applications	of	Artificial	Intelligence .710

CHAPTER 5: Mobile and Wearable Computing . 711
Understanding	the	Different	Generations	of	Computing 712
Giving	Data	to	the	User .714
Getting	Data	from	the	User .716
Tracking	Motion	and	Location .717
Tracking	Real-Time	Health	Data .718
Looking	to	the	Future	of	Augmented	Reality	and	Wearable	
Computers .718

CHAPTER 6: Game Engines . 721
Understanding	Game	Engines .722
Picking	a	Game	Engine .723
Programming a Game Engine .724
Exploring	the	Future	Uses	of	Game	Engines .726

Filmmaking .726
Architecture	and	engineering	simulations .727
Marketing	and	advertising .728

Table of Contents xix

CHAPTER 7: The Future of Computer Programming 731
Picking	a	Programming	Language .732
Picking	an	Operating	System .733
Doing	Cross-Platform	Programming .735

The	portability	of	C .735
Cross-platform	languages .736
Virtual	machines .737
Software	as	a	service . .738
Data	science .739
Website	programming .740
Macro	programming .740
Robotics	programming .741
Blockchain	programming .742

Defining	Your	Future	in	Programming .743
Teaching	yourself	other	languages .743
Combining	other	interests	besides programming 744
Getting	experience	and	knowledge .744

INDEX . 747

Introduction 1

Introduction

If you enjoy using a computer, you may have even more fun learning to control a
computer by writing your own programs. To learn how to program a computer,
you need to:

 » Understand that computer programming is nothing more than problem
solving. Before you even think about writing a program, you need to know
what problem you want your program to solve and how it will solve it.

 » Learn the basic ideas behind computer programming that work with all
programming languages on any computer. Although programming a
Windows computer is different from programming a Mac, a smartphone, a
smart watch, or a super computer, the general principles remain the same. By
learning what these common programming principles are and why they exist,
you can learn different ways to tell a computer what to do, step-by-step.

 » Learn a specific programming language. A programming language
represents just one way to express your ideas in a language that the com-
puter can understand. By combining your knowledge of a programming
language with programming principles and the type of problem you want the
computer to solve, you can create your own computer programs for fun
or profit.

About This Book
If you have any interest in programming but don’t know where to start, this book
can give you a nudge in the right direction. You won’t learn how to write programs
in a specific programming language, but you’ll learn the basics of computer pro-
gramming so you’ll have no trouble learning more on your own.

If you already know something about programming, this book can still help you
learn more by introducing you to the variety of programming languages available
and make it easy for you to pick up different programming languages quickly. The
more you understand the advantages and disadvantages of different program-
ming languages, the better you’ll be able to choose the language that’s best suited
for a particular task.

2 Beginning Programming All-in-One For Dummies

Whether you’re a novice or an intermediate programmer, you’ll find this book can
work as a tutorial to teach you more and as a reference to help refresh your mem-
ory on programming topics you may not normally use every day. This book won’t
turn you into an expert overnight, but it will open the doors to more information
about programming than you may have ever known even existed.

This book is a reference — you don’t need to read the chapters in order from front
cover to back and you don’t have to commit anything you read here to memory.
Also, sidebars (text in gray boxes) and anything marked with the Technical Stuff
icon are skippable.

Finally, within this book, you may note that some web addresses break across two
lines of text. If you’re reading this book in print and want to visit one of these web
pages, simply key in the web address exactly as it’s noted in the text, pretending
as though the line break doesn’t exist. If you’re reading this as an e-book, you’ve
got it easy — just click the web address to be taken directly to the web page.

Foolish Assumptions
When writing this book, I made two assumptions about you, the reader:

 » You may have no experience in computer programming or a limited amount
of experience, but you’re eager to learn.

 » You have a computer (whether it’s the latest model on the market or simply
an older model that still works). Ideally, your computer can connect to the
Internet.

That’s it! As long as you have a computer and the desire to learn, you have every-
thing you need to learn computer programming.

Icons Used in This Book
Icons highlight important or useful information that you may want to know about.
Here’s a guide to the icons:

The Tip icon highlights information that can save you time or make it easier for
you to do something.

Introduction 3

The Remember icon emphasizes information that’s so important you should com-
mit it to memory.

Look out! The Warning icon highlights something dangerous that you need to
avoid before making an irreversible mistake that could make you curse your com-
puter forever.

The Technical Stuff icon highlights interesting technical information that you can
safely ignore, but which may provide additional background about programming
a computer.

Beyond the Book
In addition to what you’re reading right now, this product also comes with a free
access-anywhere Cheat Sheet that summarizes different types of programming
principles, common ways to store and organize data, and lists of suggested soft-
ware to use. To get this Cheat Sheet, simply go to www.dummies.com and type
Beginning Programming All-in-One For Dummies Cheat Sheet in the Search box.

Where to Go from Here
You can use this book as a tutorial or a reference. Although you can just flip
through this book to find the information you need, programming novices should
start with Book 1 before tackling any other books. After you understand the basics
of programming from Book 1, you can freely jump around to read only the infor-
mation that interests you.

Programming is more than learning a particular programming language or even
knowing how to program a particular type of computer. Basically, programming is
about tackling difficult problems and breaking them down into smaller problems
until you ultimately solve one much bigger problem. If you like the idea of solving
problems, this may be the perfect book to introduce you to the wonderful world of
computer programming!

http://www.dummies.com

1Getting
Started with
Programming

Contents at a Glance
CHAPTER 1:	 Getting	Started	Programming	a Computer 7

CHAPTER 2:	 Different	Methods	for Writing	Programs 29

CHAPTER 3:	 Types	of	Programming	Languages 53

CHAPTER 4: Programming Tools . 77

CHAPTER 1 Getting Started Programming a Computer 7

Getting Started
Programming
a Computer

Believe it or not, if you can write a recipe on an index card, you can program
a computer! At the simplest level, computer programming is nothing more
than writing instructions for a computer to follow, step-by-step. The most

important part of programming isn’t knowing how to write a program or how
to use a particular programming language, but knowing what to create in the
first place.

Some of the most popular and useful computer programs were created by people
who didn’t have any formal training in math or computer science. Dan Bricklin
invented the spreadsheet while studying for his MBA at Harvard. Scott Cook,
who worked in marketing and product development at Procter & Gamble, cre-
ated the popular money-management program Quicken after hearing his wife
complain about the tedium of paying bills. Nineteen-year-old Shawn Fanning
created Napster, the first peer-to-peer file-sharing network, after hearing a
friend complain about the difficulty of finding his favorite songs on the Internet.
Game developer Dona Bailey wanted to create a video game that would appeal to

Chapter 1

IN THIS CHAPTER

 » Understanding how computer
programming works

 » Diving into the history of computer
programming

 » Discovering programming

8 BOOK 1 Getting Started with Programming

both men and women; as the only woman working at Atari’s coin-op division,
she created the video game Centipede, which became Atari’s second best-selling
coin-op game.

The point is that anyone can figure out how to program a computer. What’s more
important than knowing how to program a computer is knowing what to do with
your programming skills. As Albert Einstein said, “Imagination is more important
than knowledge.” After you have an idea for a program, you can use programming
to turn your idea into reality.

How Computer Programming Works
Computer programming is nothing more than problem solving. Every program is
designed to solve a specific problem. The more universal the problem (calculating
formulas in a spreadsheet, managing your money, searching for music files over
the Internet, or keeping people amused playing a game creating virtual buildings),
the more useful and popular the program will be.

Identifying the problem
Before you even touch a computer, identify the specific problem you want the
computer to solve. For example, spreadsheets eliminate the tedium of writing
and calculating formulas manually. Word processors make editing and formatting
text fast and easy. Even video games solve the problem of challenging people with
puzzles, obstacles, and battles.

Although the most popular programs solve universal problems, literally thou-
sands of programs are designed to solve specific problems in niche markets, such
as hotel reservation software, construction billing and invoice management pro-
grams, and dental office management programs. If you can identify a problem
that a computer can solve or simplify, you have an idea for a computer program.

You must know exactly what you want your program to do before you start design-
ing and writing it. One of the most common reasons programs fail is because the
program doesn’t solve the right problem that people really need.

G
etting Started

Program
m

ing a Com
puter

CHAPTER 1 Getting Started Programming a Computer 9

Defining the steps
After you know what you want your program to do, you need to define all the steps
that tell the computer how to solve that particular problem. The exact steps that
define how the program should work is called an algorithm. An algorithm simply
defines one of many possible ways to solve a problem.

There’s no single “best” algorithm for writing a program. The same program can
be written in a million different ways, so the “best” way to write a program is any
way that creates a useful, working, and reliable program as quickly as possible.
Anything else is irrelevant.

Knowing what you want the computer to do is the first step. The second step is
telling the computer how to do it, which is what makes programming so difficult.
The more you want the computer to do, the more instructions you need to give
the computer.

THE FBI’S $170 MILLION FLOP
The Federal Bureau of Investigation (FBI) had a problem. It had so much information,
stored on paper, scattered among so many agents around the country that finding and
using this information was nearly impossible. One agent might have vital information
that could help a second agent crack a case, but unless those two agents knew what
each other had, that information might as well never have existed in the first place.

So, the FBI had a bright idea: Create a computer program that would allow agents to
store and share information through the computer. Several years and $170 million
later, the FBI had its program, dubbed Virtual Case File, which consisted of more than
700,000 lines of error-prone commands that never even worked. Rather than try to
salvage the project, the FBI decided it was easier just to cancel the whole thing and basi-
cally flush 170 million taxpayer dollars down the drain.

What went wrong? Although many factors contributed to the project’s failure, one rea-
son stands out in particular: According to an audit of the program conducted by the
U.S. Department of Justice, a prime cause for failure was “poorly defined and slowly
evolving design requirements.” In other words, the FBI never knew exactly what it
wanted the program to do.

How can you aim at a target if you don’t know what it is? You can’t. Or you can try, just
as long as you spend $170 million to discover that if you don’t know what you want,
you’re probably never going to get it.

10 BOOK 1 Getting Started with Programming

Think of a computer program as a recipe. It’s easy to write a recipe for making
spaghetti. Just boil water, throw in the noodles until they’re soft, drain, and serve.
Now consider a recipe for making butternut squash and potato pie with tomato,
mint, and sheep’s milk cheese from Crete. Not as simple as boiling water to make
spaghetti, is it?

The same principle holds true for computer programming. The simpler the task,
the simpler the program. The harder the task, the bigger and more complicated
the program. If you just want a program that displays today’s date on the screen,
you won’t need to write many instructions. If you want to write a program that
simulates flying a space shuttle in orbit around the Earth, you’ll need to write a
lot more instructions.

The more instructions you need to write, the longer it takes and the more likely
you’ll make a mistake somewhere along the way.

Ultimately, programming boils down to two tasks:

 » Identifying exactly what you want the computer to do

 » Writing step-by-step instructions that tell the computer how to do what
you want

The History of Computer Programming
Although computer programming may seem like a recent invention, the idea
behind writing instructions for a machine to follow has been around for over a
century. One of the earliest designs for a programmable machine (in other words,
a computer) came from a man named Charles Babbage way back in 1834.

That was the year Charles Babbage proposed building a mechanical, steam-driven
machine dubbed the Analytical Engine. Unlike the simple calculating machines of
that time that could perform only a single function, Charles Babbage’s Analytical
Engine could perform a variety of tasks, depending on the instructions fed into
the machine through a series of punched cards. By changing the number and type
of instructions (punch cards) fed into the machine, anyone could reprogram the
Analytical Engine to make it solve different problems.

The idea of a programmable machine caught the attention of Ada Lovelace, a
mathematician and daughter of the poet Lord Byron. Sensing the potential of a
programmable machine, Ada wrote a program to make the Analytical Engine cal-
culate and print a sequence of numbers known as the Bernoulli numbers.

G
etting Started

Program
m

ing a Com
puter

CHAPTER 1 Getting Started Programming a Computer 11

Because of her work with the Analytical Engine, Ada Lovelace is considered to be
the world’s first computer programmer. In her honor, the Department of Defense
named the Ada programming language after Ada Lovelace. Nvidia named a family
of graphics cards after Ada Lovelace as well.

Although Charles Babbage never finished building his Analytical Engine, his
steam-driven mechanical machine bears a striking similarity to today’s comput-
ers. To make the Analytical Engine solve a different problem, you just had to feed
it different instructions. To make a modern computer solve a different problem,
you just have to run a different program.

Over a century later, the first true computer appeared in 1943 when the U.S. Army
funded a computer to calculate artillery trajectories. This computer, dubbed ENIAC
(short for Electronic Numerical Integrator and Computer), consisted of vacuum
tubes, switches, and cables. To give ENIAC instructions, you had to physically flip
its different switches and rearrange its cables.

The first ENIAC programmers were all women.

Physically rearranging cables and switches to reprogram a computer worked, but
it was tedious and clumsy. Instead of having to physically rearrange the com-
puter’s wiring, computer scientists decided it would be easier if they could leave
the computer physically the same but just rearrange the type of instructions given
to it. By giving the computer different instructions, they could make the computer
behave in different ways.

In the old days, computers filled entire rooms and cost millions of dollars. Today,
computers have shrunk so far in size that they’re essentially nothing more than a
little silicon wafer, about the size of a coin.

A processor is essentially an entire computer. To tell the processor what to do, you
have to give it instructions written in machine language (a language that the pro-
cessor can understand).

To make faster computers, engineers combine multiple processors (called cores)
together and make them work as a team. So, instead of having a single processor
in your computer, the latest computers have multiple processors or cores working
together.

Talking to a processor in machine language
To understand how machine language works, you have to understand how pro-
cessors work. Basically, a processor consists of nothing more than millions of tiny

12 BOOK 1 Getting Started with Programming

switches that can turn on or off. By turning certain switches on or off, you can
make the processor do something useful.

Instead of physically turning switches on or off, machine language lets you turn a
processor’s switches on or off by using two numbers: 1 (one) and 0 (zero), where
the number 1 means “turn a switch on” and the number 0 means “turn a switch
off.” So a typical machine language instruction might look like this:

1011 0000 0110 0001

If the preceding instruction doesn’t make any sense, don’t worry. The point is that
machine language is just a way to tell a processor what to do.

Using 1s and 0s is binary arithmetic. Because binary arithmetic can be so hard to
read, programmers also represent binary numbers in hexadecimal. Where binary
arithmetic uses only 2 numbers, hexadecimal uses 16 numbers and letters (0–9
and A–F). So, the binary number 1011 0000 0110 0001 could be represented as the
hexadecimal number B061.

Machine language is considered the native language of CPUs, but almost no one
writes a program in machine language because it’s so tedious and confusing.
Mistype a single 1 or 0, and you can accidentally give the wrong instruction to
the CPU. Because writing instructions in machine language can be so difficult
and error-prone, computer scientists have created a somewhat simpler language:
assembly language.

Using assembly language as a shortcut
to machine language
The whole purpose of assembly language is to make programming easier than
machine language. Basically, one assembly language command can replace a
dozen or more machine language commands. So, instead of requiring you to write
ten machine language commands (and risk making a mistake in all ten of those
commands), assembly language lets you write one command that does the work
of ten (or more) machine language commands.

Not only does this reduce the chance of mistakes, but it also makes writing a pro-
gram in assembly language much faster and easier. Best of all, assembly language
commands represent simple mnemonics such as MOV (move) or JMP (jump). These
mnemonic commands make assembly language much easier to understand than a
string of binary commands (1s and 0s).

G
etting Started

Program
m

ing a Com
puter

CHAPTER 1 Getting Started Programming a Computer 13

The goal of every programming language is to make programming simpler and
easier. Unfortunately, because no one can define exactly what simpler and easier
really mean, computer scientists keep creating new and improved programming
languages that promise to make programming simpler and easier, at least until
someone else invents another new and improved programming language.

To understand how assembly language works, you must first understand how
processors store and manipulate data. The processor is the “brain” of the computer
that does all the work. By itself, the processor is fairly useless.

Think of Einstein’s brain floating in a jar of formaldehyde. It may be one of the
smartest brains in the world, but if it can’t communicate with the outside world,
it’s completely useless as anything other than a very unusual paperweight. Like
Einstein’s brain in a jar, your computer’s processor is useful only if it can commu-
nicate with the outside world. The processor communicates with the other parts of
the computer through a series of wires called a bus.

When a processor needs to work with data, it retrieves it from another part of the
computer (such as the hard disk or memory) and temporarily stores that data in a
storage area called a register, as shown in Figure 1-1.

The processor then edits the data in its registers and sends the changed data back
to another part of the computer, such as the memory or hard disk.

So, computer programming progressed from physically rearranging wires and
switches (with ENIAC), to flipping switches using 1s and 0s (with machine
language), to telling the computer which data to store in which registers and how
to manipulate that data (with assembly language).

FIGURE 1-1:
A processor

uses its registers
to temporarily

store data.

14 BOOK 1 Getting Started with Programming

A typical assembly language command might look like this:

mov al, 061h

This command tells the processor to move (mov) the hexadecimal number 061h
into the specific register named al. Other assembly language commands might
tell the processor to add (add) or subtract (sub) a value from the number stored
in a specific register.

When you use assembly language, you have to tell the processor what data to
store in which registers, how to manipulate the data in the registers, and when to
remove data out of the registers.

Sound tedious? It is. Although assembly language is far easier to understand and
write than machine language, it’s still too complicated to use for creating really
big computer programs, like word processors or video games.

In the old days, most programs were written in assembly language, but as pro-
grams grew larger and more complicated, assembly language proved too cumber-
some to write, edit, and modify.

The biggest problem with assembly language is that you need to manipulate the
processor’s registers just to do the simplest tasks. If you wanted to add two num-
bers together, you’d have to tell the processor to store a number in a register, add
a second number to the number in the register, and then yank the result out of
the register.

Forcing people to know how to manipulate the processor’s registers before they
can program a computer is like forcing people to know how their carburetor works
before they can drive a car. Ideally, you don’t want to tell the processor how to
manipulate data in its registers; you just want the processor to add two numbers
without worrying about specific registers. So, to make computer programming
even easier, computer scientists have hidden the technical details of manipulating
registers by creating high-level languages.

Every processor understands only its own particular assembly language. So an
Intel processor won’t understand the assembly language of an Advanced RISC
Machine (ARM) processor and vice versa. However, some companies make pro-
cessors that work identically to other processors. For example, a company called
Advanced Micro Devices (AMD) makes processors that work just like Intel proces-
sors, so an assembly language program written for an Intel processor also works
on an AMD processor.

G
etting Started

Program
m

ing a Com
puter

CHAPTER 1 Getting Started Programming a Computer 15

Hiding the details of a computer
with a high-level language
The whole purpose of high-level languages is to make programming more intu-
itive. So, rather than tell the computer to store the number 2 in register al, add
the number 3 to the number stored in register al, and then yank out the result
from register al, high-level languages let you tell the computer what to do and
not worry about how the computer does it. So, a typical high-level language com-
mand might look like this:

Total = 2 + 3

As you can see, high-level languages are much easier to read and understand,
even if you know nothing about programming. Where assembly language forces
you to tell the processor what to do and how to do it, high-level languages just let
you tell the processor what to do.

Early popular high-level languages include Fortran (formerly FORTRAN, short
for FORmula TRANslator), BASIC (short for Beginner’s All-purpose Symbolic
Instruction Code), COBOL (short for COmmon Business Oriented Language), and
Pascal (named after the French philosopher Blaise Pascal).

Besides making programming more intuitive, high-level languages also make
programming easier because a single high-level language command can do the
work of a dozen (or more) assembly language commands.

A thousand lines of assembly language commands might do nothing more than
multiply two numbers together. A thousand lines of high-level language com-
mands might create a video game, a music player, or a stock market analysis pro-
gram. By using high-level languages, programmers can spend more time being
productive and less time worrying about the technical details of the computer.

Combining the best of both worlds
with the C programming language
High-level languages isolate you from the technical details of programming,
but by isolating you from these details, high-level languages also limit what you
can do. So, as a compromise between assembly language (which can manipu-
late the processor) and high-level languages (which isolate you from the details
of manipulating the processor), computer scientists created an intermediate
language dubbed C.

16 BOOK 1 Getting Started with Programming

The idea behind the C programming language is to give programmers the ability to
manipulate the processor directly like assembly language, but also give them the
chance to ignore these technical details, if they want, like a high-level language.

As a result, a C program doesn’t look as cryptic as assembly language, but it
also isn’t as easy to read as a high-level language, as the following C program
demonstrates:

#include <stdio.h>
int main(void)
{
 printf("Hello World!\n");
 exit(0);
}

Just by looking at this C program, you can probably figure out that it prints Hello
World! on the screen. However, you may see a bunch of cryptic curly brackets,
back slashes, and other odd symbols and characters that may make no sense
whatsoever. Don’t worry. Just notice how confusing C programs can look while at
the same time being somewhat understandable.

Because C lets you directly control the processor like assembly language does,
but still write programs that look somewhat understandable and easy to read
and write, many operating systems — such as Linux, macOS, and Microsoft
Windows — are written all or partially in C.

Weighing the pros and cons
of programming languages
The whole purpose of machine language, assembly language, high-level lan-
guage, and the C language is to give you different ways to give instructions to
the processor (computer). Ultimately, it doesn’t matter which type of program-
ming language you use because it’s possible to write the exact same program
in machine language, assembly language, a high-level language (like BASIC or
Fortran), and C.

The only difference is that writing a program in machine language takes a really
long time and is very difficult to write, fix, and understand. A similar program
written in assembly language is smaller and simpler than an equivalent machine
language program.

Writing the same program in the C language makes the program even smaller
and much easier to write and understand. If you use a high-level language, the

G
etting Started

Program
m

ing a Com
puter

CHAPTER 1 Getting Started Programming a Computer 17

program would most likely require writing less code and be easiest to understand
out of them all.

So, given these advantages of C or high-level languages, why would anyone ever
use machine language or assembly language? The answer is simple: speed and
efficiency.

If you want to write the fastest program possible that uses the least amount of
memory, use machine language because machine language is the native language
of all computers. Unfortunately, machine language is so hard to understand,
write, and modify that writing anything but small programs in machine language
is nearly impossible.

Instead of using machine language, most programmers use assembly language
when they need speed and efficiency. Assembly language creates small and fast
programs, but they’ll never be as small or fast as machine language programs.
That’s because processors understand only machine language, so when you write
an assembly language program, you have to translate that assembly language
program into machine language.

Translating assembly language into machine language by hand would be slow and
error-prone, so computer scientists have created special programs that can do
this automatically. These programs are assemblers.

An assembler takes an assembly language program and converts it into machine
language, but this conversion process isn’t perfect. That’s why assembly lan-
guage tends to create bigger and slower programs than equivalent handcrafted
machine language programs. However, assembly language programs are much
easier to write and modify later than machine language programs are, so assem-
bly language is used much more often than machine language.

High-level languages are much easier to write and understand than machine
language or assembly language. The problem is that processors don’t under-
stand high-level languages either, so you have to translate a high-level language
program into equivalent machine language commands.

Doing this by hand is nearly impossible, so computer scientists have created spe-
cial programs — compilers — to do this for them. A compiler takes a program
written in a high-level language and translates it into equivalent commands
written in machine language.

This translation process isn’t perfect, which is why programs written in high-
level languages tend to be much bigger and slower than equivalent programs
written in machine language or assembly language. So, when programmers want

18 BOOK 1 Getting Started with Programming

to create large, complicated programs that still run fast and take up as little space
as possible, they tend to rely on the C programming language. That’s why so
many programs are written in C — C creates programs nearly as small and fast as
assembly language programs, while also being nearly as easy to write and under-
stand as high-level languages. (Note the emphasis on the word nearly.)

As a general rule, if you want to make programming easy where speed and effi-
ciency aren’t that crucial, use a high-level programming language. If you want to
make a small and fast program and don’t care how inconvenient it may be to write
it, use machine language or assembly language.

What if you want to write a big and fast program (like an operating system or word
processor) and also make it convenient for you to write? You’d use the C program-
ming language.

Although C is a fast and powerful language, it’s not the safest. C lets you access
all parts of a computer, which means if you’re not careful, your programs can
corrupt the computer’s memory (known as memory leaks) and cause all types
of unintended havoc. For that reason, computer scientists have used C as a
reference to create “safer” versions of the language. Many of today’s popu-
lar programming languages (such as C#, Java, Objective-C, Python, and Swift)
have been directly or indirectly inspired by C. Because C uses curly brackets to
define the beginning and end of code blocks, C-based languages are often called
curly-bracket languages.

Ultimately, no one cares what language you use as long as your program works.
A program that works is far better than a small, fast, and efficient program that
doesn’t work. Think of a programming language as a tool. A good programmer
can use any tool well, but a bad programmer can screw up using the best tool in
the world. The programmer’s skill always determines the quality of any program;
the type of programming language used is always secondary. So the goal isn’t to
become a “C programmer” or a “Fortran programmer.” The goal is to become a
good programmer, regardless of the language you ultimately use.

Figuring Out Programming
After you understand that programming is nothing more than telling a computer
how to solve a problem, you may wonder how you can get started figuring out
programming on your own. If you want to figure out how to program a computer,
this is what you need:

G
etting Started

Program
m

ing a Com
puter

CHAPTER 1 Getting Started Programming a Computer 19

 » Desire

 » A computer

 » An editor

 » An assembler or compiler

 » A lot of time on your hands

Find out more about programming tools, like an editor and a compiler, in Book 1,
Chapter 4.

Desire beats technical training every time
Desire is probably the biggest factor in studying how to program a computer.
Many people think that you need a college degree or a mathematical background
to know computer programming. Although a college degree and a mathematical
background can definitely help, they aren’t necessary. Saying you need to know
math before figuring out computer programming is like saying you need a college
degree in biology before you can reproduce.

Some of the most influential and popular programs in the world were created
by people who had no formal training in computer programming or computer
science. (Conversely, some of the most intelligent PhD candidates in computer
science have done nothing to make this world a better place using their program-
ming skills.)

So, if you have an idea for a program, you can create it. After you have the desire
to understand computer programming, you have (almost) everything you need to
program a computer.

Picking a computer and an
operating system
If you want to know how to program a computer, you need a computer to practice
on. You can actually discover programming on any computer, from a top-of-the-
line machine to an obsolete relic (that was once a top-of-the-line machine) to a
simple handheld computer. As long as you have a computer, you can figure out
how to program it.

Although it’s possible to figure out programming by using an ancient
Commodore 64 or an antique Radio Shack TRS-80, it’s probably best to figure out
programming on a computer that’s going to be around in the future. That way you

20 BOOK 1 Getting Started with Programming

can directly apply your programming skills to a computer used in the real world,
which boils down to a computer that runs one of the following operating systems:
Linux, macOS, or Windows.

Some websites let you practice writing and running code completely within a
browser. This spares you the trouble of installing a compiler directly on your com-
puter and lets anyone learn to program as long as they have a browser and access
to the Internet.

An operating system is a special program that makes all the hardware of your com-
puter work together. The operating system tells the processor how to work with
the hard disk, read keystrokes typed on a keyboard, and display information on
the monitor. Without an operating system, your computer is nothing more than
separate chunks of hardware that do absolutely nothing.

One of the most popular operating systems in the world is Unix, commonly run
on big, expensive computers. Linux is based on Unix, so if you understand how to
program a Linux computer, you can also program a Unix computer and vice versa.

It’s still possible to write programs for obsolete computers like the Atari ST,
PDP-11, or Commodore Amiga, but most people choose to write programs for one
of the following operating systems:

 » Linux: Linux is a free operating system for almost every computer (including
PCs). Linux is becoming more popular with big companies (as opposed to
individual users), so there’s a growing market for talented Linux programmers.

 » macOS: macOS is the operating system that runs the Apple Mac computer.
Although Macs aren’t as popular as Windows computers, macOS is still a large
and lucrative market.

 » Windows: Windows is the operating system that runs on most personal
computers (PCs). Because so many people use Windows PCs at work and at
home, the software market for Windows is huge and lucrative.

If you want to prepare yourself for the future, it’s probably best to begin program-
ming on any computer that runs Linux, macOS, or Windows.

With virtualization software such as VirtualBox (www.virtualbox.org), you can
run different operating systems at the same time, such as running both Linux and
Windows on a PC or running both Linux and macOS on a Mac. That way you can
practice writing programs for different operating systems on a single computer.

https://www.virtualbox.org/

G
etting Started

Program
m

ing a Com
puter

CHAPTER 1 Getting Started Programming a Computer 21

Most programmers use a desktop computer running Linux, macOS, or Windows
to write software. With the growing popularity of mobile devices, wearable com-
puters, and browser-based apps, there’s a huge market for writing apps for these
devices as well:

 » Android: Android is Google’s free operating system that runs on the majority
of smartphones and some tablets.

 » iOS and iPadOS: iOS and iPadOS are the operating systems that run on the
iPhone and iPad, respectively. The iPhone is the most popular smartphone in
the world, and the iPad is the dominant tablet in the world.

 » watchOS: watchOS is the operating system that runs on the Apple Watch.
The Apple Watch is one of the most popular wearable devices in the world.

 » Wear OS: Wear OS is Google’s free operating system for smart watches. It’s a
version of Android that runs on smart watches to compete against the
Apple Watch.

To write apps for mobile and wearable operating systems, you normally need to
use a computer that runs Linux, macOS, or Windows. However, you can use some
of the more powerful tablets to write apps for smartphones and tablets, too.

Writing programs with an editor
After you have a computer that runs Linux, macOS, or Windows (or a powerful
tablet), the next step is to get an editor. An editor acts like a simple word processor
that lets you type, change, and save program commands in a file.

In the world of computer programming, a single program command is a line of
code. Most programs consist of thousands of lines of code, although a large pro-
gram (like Microsoft Windows) consists of millions of lines of code. When you
write a program, you don’t tell people, “I’m writing a program.” You say, “I’m
writing code.” It sounds cooler — at least to other programmers.

In the old days, you had to buy a programming editor. Today, you can often get a
powerful, professional editor for free. Some editors are bundled with an integrated
development environment (IDE), which combines the features of an editor with a
compiler (to convert your code to assembly language or machine language) and a
debugger (to find and fix problems in your code).

22 BOOK 1 Getting Started with Programming

Some popular editors include the following:

 » GNU Emacs (www.gnu.org/software/emacs): Editor only for Linux, macOS,
and Windows

 » Playgrounds (www.apple.com/swift/playgrounds): iPadOS and macOS

 » Visual Studio (https://visualstudio.microsoft.com): macOS and
Windows, with a limited version available for Linux

 » Xcode (https://developer.apple.com/xcode): macOS only

Unlike a word processor, which offers commands for formatting text to make it
look pretty or appear in different colors, text editors are just designed for typing
commands in a particular programming language, such as C++, Java, or Swift:

 » The simplest editor just lets you type commands in a file.

 » More sophisticated editors can help you write a program by

• Color-coding program commands (to help you identify them easily)

• Indenting your code automatically (to make it easier to read)

• Typing in commonly used commands for you

Figure 1-2 shows a simple editor used to write a Swift program that creates a
hypotrochoid art figure.

FIGURE 1-2:
An editor lets you

write and edit
the source code

of a program.

https://www.gnu.org/software/emacs
https://www.apple.com/swift/playgrounds
https://visualstudio.microsoft.com/
https://developer.apple.com/xcode

G
etting Started

Program
m

ing a Com
puter

CHAPTER 1 Getting Started Programming a Computer 23

Without an editor, you can’t write a program. With an editor, you can write a pro-
gram. And with a really good editor, you can write a program quickly and easily.

Professional programmers often get passionate (to the point of fanaticism) about
their favorite editors. The quickest way to get into an argument with program-
mers is to either insult their favorite programming language or insult their favor-
ite editor. If you insult a programmer’s mother, the programmer will probably
just shrug and not care one bit.

Program commands stored in one or more files are called the program’s source
code. Think of a program’s source code as the recipe that makes the program work.
If someone can steal or copy your source code, they’ve effectively stolen your pro-
gram. That’s why companies like Microsoft jealously guard the source code to all
their programs, such as Windows or Excel.

Converting source code with an assembler
or compiler
An editor lets you type and save program commands (or source code) in a file.
Unless you’ve written a program completely in machine language, your source
code may as well have been written in Swahili because processors don’t under-
stand any language other than machine language.

So, to convert your source code into machine language commands, you have to use
an assembler (if you wrote your program commands in assembly language) or a
compiler (if you wrote your program commands in the C language or a high-level
language like Java).

After converting your source code into equivalent machine language commands,
an assembler or compiler saves these machine language commands in a separate
file, often called an executable file (or just an EXE file). When you buy a program,
such as a video game or an antivirus program, you’re really buying an executable
file. Without an assembler or a compiler, you can’t create your program.

Compilers translate source code into machine language, which is the native lan-
guage of a specific processor. But what if you want your program to run on dif-
ferent processors? To do this, you have to compile your program into machine
language for each different processor. You wind up with one executable file for
each processor, such as an executable file for an Intel processor and a separate
executable file for an ARM processor.

24 BOOK 1 Getting Started with Programming

Many Mac programs advertise themselves as a universal binary — which means
the program actually consists of two executable files smashed into a single file:

 » One executable file contains machine language code for the M-series processor
(used in newer Mac computers)

 » The second executable file contains machine language code for the Intel
processor (used in old Mac computers)

Most compilers work only on one specific operating system and processor. So, a
Windows compiler may only create programs that run under the Windows operat-
ing system. Likewise, a Linux compiler may only create programs that run under
the Linux operating system.

If you write a program that runs under Windows, you can recompile it to run
under Linux. Unfortunately, you may have to modify your program slightly (or a
lot) to make it run under Linux.

Big companies, like Adobe and Microsoft, can afford to pay programmers to write
and modify programs to run under different operating systems, such as macOS
and Windows. Most smaller companies and individuals don’t have the time to
rewrite a program to run under multiple operating systems. That’s why most
small companies write programs for Windows — because it’s the largest mar-
ket. If the program proves popular, they can later justify the time and expense to
rewrite that program and compile it to run under macOS.

Choose your compiler carefully. If you use a compiler that can create only Windows
programs, you may never be able to recompile that program to run on a different
operating system, such as Linux or macOS. One reason Microsoft gives away its
compilers for free is to trap people into writing programs that can run only under
Windows. For example, if you write a program in C#, you may not be able to run
that program on Linux or macOS without major modifications, which most people
will probably never do.

To make it easy to create programs for multiple operating systems, you can
use a cross-platform compiler. This means you can write a program once and
then choose to compile it for two or more operating systems such as macOS and
Windows or Android and iOS. Cross-platform tools make it easy to write the same
program for multiple operating systems, but you may need to write additional
code to take advantage of the unique features of each operating system.

G
etting Started

Program
m

ing a Com
puter

CHAPTER 1 Getting Started Programming a Computer 25

Translating source code with an interpreter
In the old days, compilers were notoriously slow. You could feed source code to
a compiler and literally come back the next morning to see if the compiler was
done. If you made a single mistake in your program, you had to correct it and
recompile your program all over again — with another overnight wait to see if it
even worked.

Trying to write a program with such slow compilers proved maddening, so com-
puter scientists created something faster called an interpreter. A computer inter-
preter is just like a foreign language interpreter who listens to each sentence you
speak and then translates that sentence into another language. Type a program
command into an interpreter, and the interpreter immediately translates that
command into its equivalent machine language command. Type in another com-
mand, and the interpreter translates that second command right away.

The problem with interpreters is that they only store the equivalent machine lan-
guage commands in memory instead of in a separate file like a compiler does. If
you want to sell or distribute your program, you have to give people your source
code, along with an interpreter that can convert your source code into machine
language commands. Because giving away your source code essentially means
giving away your program, everyone who wants to sell their programs uses a
compiler instead of an interpreter.

The original reason why computer scientists developed interpreters was because
compilers were so slow. But after computer scientists started creating faster com-
pilers, most people stopped using interpreters and just used compilers. Nowadays,
computer scientists use interpreters for running certain types of programming
languages known as scripting languages. (Find out more about scripting languages
in Book 1, Chapter 3.)

Combining a compiler with an interpreter
to create p-code
Creating separate executable files for each processor can get clumsy, and giving
away your source code with an interpreter may be unreasonable. A third approach
is to compile your program into an intermediate format called bytecode or
pseudocode (often abbreviated as p-code). Unlike compiling source code directly
into machine language, you compile your program into a p-code file instead.

You can take this p-code file and copy it on any computer. To run a p-code file,
you need a special p-code interpreter, or a virtual machine. The virtual machine
acts like an interpreter and runs the instructions compiled into the p-code file.

26 BOOK 1 Getting Started with Programming

The advantage of p-code is that you can distribute a single p-code version of
your program, which can run on multiple computers. But P-code has a couple
disadvantages:

 » P-code programs don’t run as fast as programs compiled into
machine language.

 » If a computer doesn’t have the right virtual machine installed, it can’t run
your program.

The most popular programming language that uses p-code is Java. After you
write a Java program, you can compile it into a p-code file, which can run on any
computer that has a copy of the Java virtual machine, such as Android, Linux,
macOS, and Windows. Microsoft’s .NET framework is similar to p-code that
(theoretically) lets you run a program on any computer that can run the complete
.NET framework.

The theory behind p-code is that you write a program once, and you can run it
anywhere. The reality is that every operating system has its quirks, so it’s more
common to write a program and be forced to test it on multiple operating sys-
tems. More often than not, a p-code program runs perfectly fine on one operating
system (like Windows) but suffers mysterious problems when running on another
operating system (such as Linux). Languages, such as Java, are getting better at
letting you run the same program on multiple operating systems without major
modifications, but be careful because p-code doesn’t always work as well as you
may think.

Taking the time to understand
Programming is a skill that anyone can acquire. Like any skill, the best way to
understand is to take the time to experiment, make mistakes, and learn from your
failures. Some programmers prefer to spend their time mastering a single pro-
gramming language. Others prefer to master the intricacies of writing programs
for a specific operating system, such as Windows. Still others spend their time
discovering a variety of programming languages and writing programs for differ-
ent operating systems.

There is no right or wrong way to figure out programming. The only “right” way
is the way that works for you. That’s why self-taught programmers can often
write programs that are just as good as (or even better than) programs written by
PhD computer scientists.

G
etting Started

Program
m

ing a Com
puter

CHAPTER 1 Getting Started Programming a Computer 27

Like any skill, the more time you spend programming a computer, the better you
get. This book is designed to help you get started, but ultimately, it’s up to you to
take what you know and start programming your own computer.

Believe it or not, programming a computer is actually fairly straightforward.
The hard part is trying to write a program that actually works.

KNOWING HOW TO PROGRAM VERSUS
KNOWING A PROGRAMMING LANGUAGE
There’s a big difference between knowing how to program and knowing a specific
programming language. This book describes how programming works, which means
you’ll understand the principles behind programming no matter what programming
language you decide to use.

When you understand a specific programming language, you’ll figure out how to write
a program using that language. Don’t confuse knowing how to program with knowing a
programming language!

When people learn to speak their native language, they often think their particular
spoken language is the only way to talk. So, when they learn a foreign language, they try
to speak the foreign language just like they speak their native language, but using differ-
ent words. That’s why literal translations of foreign languages can sound so funny and
awkward to a native speaker.

That’s exactly the same problem with understanding programming. To understand
programming, you have to use a specific programming language, but each program-
ming language works a certain way. So, if you know how to write programs in the
C programming language, you may mistakenly think that the way the C language works
is the way computer programming also works, but that’s not true.

Like human languages, programming languages differ wildly. Someone who knows how
to write programs in the C language thinks differently about programming than some-
one who knows how to write programs in assembly language.

To describe how programming works, this book uses a variety of examples from differ-
ent programming languages. You don’t have to understand how each program example
in this book works. Just understand that programming languages can look and solve
identical problems in very different ways.

(continued)

28 BOOK 1 Getting Started with Programming

First, try to understand general programming principles without worrying about the
way a particular programming language works. Then try to understand how a particular
programming language works. As long as you know how to keep these two topics
separate, you can figure out how to program a computer without the distraction of
knowing a particular programming language.

Besides, programming languages rise and fall in popularity all the time, so if you know
only one programming language, your skills may become obsolete within a few years.

At one time, most programmers used assembly language. For programmers who
wanted a simpler language, they used BASIC or Pascal. When BASIC and Pascal fell out
of favor, programmers gravitated toward C. Because C was so dangerous to use, many
people started using C++ and Java. Microsoft created its own version of C++ called C#.
Apple initially adopted a language similar to C++ called Objective-C, but then it created
its own language called Swift. After running into legal problems using Java, Google
adopted Kotlin as the official language for writing Android apps.

When learning any programming language, the only certainty is that new programming
languages will appear all the time, so you should master the popular programming
languages and keep learning the newer ones as well.

Remember: Focus on understanding programming, and then worry about understand-
ing a particular programming language. After you understand how programming works,
you can adapt to the next popular programming language of tomorrow, whatever that
may be.

(continued)

CHAPTER 2 Different Methods for Writing Programs 29

Different Methods
for Writing Programs

The goal of computer science is to find the best ways to write a program.
The reality of computer science is that nobody really knows what they’re
doing, so they’re making up stuff as they go along and pretending there’s

a scientific basis for everything they do. The fact that multimillion-dollar pro-
gramming projects routinely fall behind schedule and sometimes never work at all
pretty much shows that computer programming is still less a science than an art.

Despite these problems, computer scientists are always searching for ways to
make programming easier, faster, and more reliable by constantly developing

 » Better tools

 » Better programming languages

 » Better techniques for writing programs

Chapter 2

IN THIS CHAPTER

 » Spaghetti programming without
a plan

 » Planning ahead with structured
programming

 » Making user interfaces with event-
driven programming

 » Organizing a program with object-
oriented programming

 » Using protocol-oriented programming

 » Using design patterns

30 BOOK 1 Getting Started with Programming

Just as a carpenter doesn’t build a house with rusty saws and a broken hammer,
computer scientists are always developing better tools to help them write, fix, and
create programs. One of the first improvements computer scientists made was
in developing faster compilers. Instead of waiting overnight to see if a program
worked, programmers could use a fast compiler that could show them the results
in seconds. Other tool improvements included editors that would show program-
mers the specific line where an error occurred and special programs (known as
debuggers) for making sure that every part of a program worked correctly.

Another way to improve programmer efficiency involves creating better program-
ming languages. Assembly language was easier to write and modify than machine
language, and high-level languages are easier to write and modify than assembly
language.

Computer scientists are constantly inventing new programming languages or
improving existing ones. These improvements or new languages typically offer
some feature that existing languages don’t offer or solve certain types of problems
that existing languages do poorly. For example, the C++ language improves upon
the C language, whereas the Java language improves upon the C++ language.

Perhaps two of the biggest problems with programming involve writing a pro-
gram from scratch and modifying an existing program. When you write a program
from scratch, you want to write a working program quickly with as few problems
as possible.

That’s why programming languages include so many built-in commands. The
idea is that the more built-in commands available, the fewer commands you’ll
need to use to write a program and the shorter and easier your program will be to
write in the first place.

In addition, many programming languages include built-in error-checking
features to keep you from writing a program that doesn’t work. With some lan-
guages, it’s possible to write commands that work perfectly but can also crash the
computer if you give those commands the wrong type of data.

In Book 1, Chapter 3, you find out more about the features of different program-
ming languages.

More than half the battle of programming is writing a program that works. The
second half is modifying that program later. When you need to modify an existing
program, you must first understand how that existing program works and then
you need to modify it without messing up the existing program commands.

D
iff

erent M
ethods

for W
riting Program

s

CHAPTER 2 Different Methods for Writing Programs 31

To help you understand how a program works, many programming languages
let you divide a large program into separate parts. The theory is that if one part
of a program isn’t working or needs to be modified, you can yank out part of the
program, rewrite it, and then plug it back into the existing program, much like
snapping LEGO building blocks together.

Finally, the best tools and the latest programming languages won’t help you
unless you know how to use them correctly. That’s why computer scientists are
constantly developing new programming techniques that work no matter what
tools or language you use.

In Book 1, Chapter 4, you find out more about the different programming tools
computer scientists have created to make programming easier, faster, and more
reliable.

This chapter discusses programming techniques based on problems encountered
by programmers working in the real world. Basically, computer scientists keep
developing and refining programming techniques after they see what really works
and what doesn’t.

Spaghetti Programming
In the early days of programming, most programs were fairly short and simple.
A typical program may just calculate a mathematical equation, which to a com-
puter, is just a little more challenging than adding two numbers together.

To write such small, single-task programs, programmers would typically start
typing commands in their favorite programming language with little planning,
just to write a program quickly.

Unfortunately, many programs aren’t just written once and then used forever. If a
program isn’t working exactly right, or if the program needs to do something new
that the original programmer didn’t include, you must take an existing program
and modify it.

Modifying an existing program sounds simple, but it’s not. First, you have to
understand how the program works so you’ll know exactly how to modify that
program. If you try modifying a program without understanding how it works,
there’s a good chance you could wreck the program and keep it from working,
much like ripping out cables from your car engine without knowing what you’re
really doing.

32 BOOK 1 Getting Started with Programming

After you understand how a program works, the second step involves writing new
commands into the existing program. Now, here’s where the problem occurs.
Take an existing program and modify it once. Now take that same program and
modify it again. Now take that same program and modify it 20 more times, and
what do you get? Most likely, you’ll have a mishmash collection of code that works
but isn’t organized logically, as shown in Figure 2-1.

Modifying a program several times by yourself may not be so bad because you
probably remember what you changed and why. But what happens if seven other
programmers modify the same program seven different times and then none of
them is around to help you understand what changes they made? Yep, you’d wind
up with a bigger mess than before.

With constant modifications, a small, simple program can grow into a convo-
luted monstrosity that may work, but nobody quite understands how or why.
Because the program consists of so many changes scattered throughout the code,
trying to figure out how the program even works can get harder with each new
modification.

With a simple program, the computer follows each command from start to finish,
so it’s easy to see how the program works. After a program gets modified multiple
times, trying to follow the order of commands the computer follows can be like
untangling spaghetti (hence, the term spaghetti programming).

As programs kept getting bigger and more complicated, computer scientists real-
ized that just letting programmers rush out to write or modify a program wasn’t
going to work anymore. That’s when computer scientists created the first pro-
gramming techniques to help programmers write programs that would be easy to
understand and modify later.

FIGURE 2-1:
Constantly
modifying
a program

eventually creates
an unorganized

mess.

D
iff

erent M
ethods

for W
riting Program

s

CHAPTER 2 Different Methods for Writing Programs 33

SPAGHETTI PROGRAMMING
WITH THE GOTO COMMAND
Although you can write spaghetti programs in any language, the BASIC programming
language is most closely associated with spaghetti programming. Early versions of
BASIC used a GOTO command, which essentially told the computer to “go to” another
part of the program.

The problem with the GOTO command was that it could tell the computer to “go to”
any part of the program. If you had a large program that consisted of several hundred
(or several thousand) lines of code, the GOTO command could tell the computer to jump
from one part of the program to another in any order, as the following BASIC program
shows:

10 GOTO 50
20 PRINT "This line prints second"
30 END
40 GOTO 20
50 PRINT "This line prints first"
60 GOTO 40

Line 10 (the first line) tells the computer to “go to” line 50.

Line 50 tells the computer to print This line prints first onscreen. After the
computer follows this command, it automatically runs the next command below it,
which is line 60.

Line 60 tells the computer to “go to” line 40.

Line 40 tells the computer to “go to” line 20.

Line 20 tells the computer to print This line prints second onscreen. After the
computer follows this command, it automatically follows the command on the next line,
which is line 30.

Line 30 tells the computer this is the end of the program.

Even though this program consists of six lines, you can already see how the GOTO com-
mand makes the computer jump around, so it’s hard to understand how this program
works. Now imagine this program multiplied by over several hundred lines of code, and
you can see how spaghetti programming can make reading, understanding, and modi-
fying even the simplest program much harder.

34 BOOK 1 Getting Started with Programming

Structured Programming
The problem with creating programs without any planning is that it inevitably
leads to a mess. So, the first step involves keeping a program organized right from
the start.

The three parts of structured programming
To keep programs organized, structured programming teaches programmers that
any program can be divided into three distinct parts:

 » Sequences: Sequences are simply groups of commands that the computer
follows, one after another. Most simple programs consist of a list of com-
mands that the computer follows from start to finish, as shown in Figure 2-2.

 » Branches: Branches consist of two or more groups of commands. At any given
time, the computer may choose to follow one group of commands or another.
Branches allow a program to make a decision based on a certain condition.

For example, at the end of most video games, the program asks you, “Do you
want to play again (Yes or No)?” If you choose Yes, the program lets you play
the video game again. If you choose No, the program stops running, as shown
in Figure 2-3.

FIGURE 2-2:
Sequences

consist of
groups of

commands that
the computer

follows, one
after another.

D
iff

erent M
ethods

for W
riting Program

s

CHAPTER 2 Different Methods for Writing Programs 35

A branch starts with a command that evaluates a condition (such as determin-
ing whether the user chose Yes or No). Then, based on this answer, whether
it’s true or false, the branch chooses which group of commands to follow next.

 » Loops: Sometimes you may want the computer to run the same commands
over and over again. For example, a program may ask the user for a pass-
word. If the user types an invalid password, the program displays an error
message and asks the user to type the password again.

If you wanted your program to ask the user for a password three times, you
could write the same group of commands to ask for the password three
times, but that would be wasteful. Not only would this force you to type the
same commands multiple times, but if you wanted to modify these com-
mands, you’d have to modify them in three different locations as well. Loops
are basically a shortcut to writing one or more commands multiple times.

A loop consists of two parts:

• The group of commands that the loop repeats

• A command that defines how many times the loop should run

By combining sequences, branches, and loops, you can design any program and
understand how the program works at each step.

Dividing a program into sequences, branches, and loops can help you isolate and
organize groups of related commands into discrete “chunks” of code. That way,
you can yank out a chunk of code, modify it, and plug it back in without affecting
the rest of the program.

FIGURE 2-3:
Branches let the

computer choose
which group of

commands to run
at any given time.

36 BOOK 1 Getting Started with Programming

Top-down programming
For small programs, organizing a program into sequences, branches, and loops
works well. But the larger your program gets, the harder it can be to view and
understand the whole thing. So, a second feature of structured programming
involves breaking a large program into smaller parts where each part performs
one specific task. This is also known as top-down programming.

The idea behind top-down programming (as opposed to bottom-up program-
ming) is that you design your program by identifying the main (top) task that you
want your program to solve.

For example, if you wanted to write a program that could predict the next winning
lottery numbers, that is a top design of your program. Of course, you can’t just tell
a computer, “Pick the next winning lottery numbers.” You must divide this single
(top) task into two or more smaller tasks.

One of these smaller tasks may be, “Identify the lottery numbers that tend to
appear often.” A second task may be, “Pick the six numbers that have appeared
most often and display those as the potential future winning numbers.”

The idea is that writing a large program may be tough, but writing a small pro-
gram is easy. So, if you keep dividing the tasks of your program into smaller and
smaller parts, eventually you can write a small, simple program that can solve
that task. Then you can paste these small programs together like building blocks,
and you’ll have a well-organized big program — theoretically.

Now if you need to modify part of the large program, just find the small program
that needs changing, modify it, and plug it back into the larger program, and
you’ve just updated the larger program.

Ideally, each small program should be small enough to fit on a single sheet of
paper or a single screen. This makes each small program easy to read, understand,
and modify. When you divide a large program into smaller programs, each small
program is a subprogram.

If you divide a program into multiple subprograms, you have two options for
where to store your subprograms:

D
iff

erent M
ethods

for W
riting Program

s

CHAPTER 2 Different Methods for Writing Programs 37

 » Store all your subprograms in a single file.

This option is fine for small programs, but after you start dividing a program
into multiple subprograms, trying to cram all your subprograms into a single
file is like trying to cram your entire wardrobe into your sock drawer. It’s
possible, but it makes finding anything later that much more difficult.

 » Store subprograms in separate files, as shown in Figure 2-4.

Storing subprograms in separate files offers three huge advantages:

• The fewer subprograms crammed into a single file, the easier it is to find
and modify any of them.

• If you store subprograms in a separate file, you can copy that file (and any
subprograms stored in that file) and then plug it into another program.
In that way, you can create a library of useful subprograms and reuse
them later.

• By reusing subprograms that you’ve tested already to make sure they work
properly, you can write more complicated programs in less time, simply
because you’re reusing subprograms and not writing everything
from scratch.

FIGURE 2-4:
You can store

subprograms in
one big file or in

separate files.

38 BOOK 1 Getting Started with Programming

Event-Driven Programming
In the early days, using a program was fairly simple. After you typed the command
to run a particular program, that program might ask a question such as

What is your name?

At this point, you had no choice but to type a name, such as Charlie Smith. After
you typed in your name, the program might respond with

Hello, Charlie Smith. What month were you born?

STRUCTURED PROGRAMMING AND PASCAL
You can use structured programming techniques with any programming language,
including machine language or assembly language (see Book 1, Chapter 1). However,
the one language most closely associated with structured programming is Pascal.

Unlike other languages that later adopted structured programming, Pascal was
designed to encourage (force) programmers to use structured programming from the
start. A typical Pascal program may look like this:

Program Print2Lines;
Begin
 Writeln ('This line prints first');
 Writeln ('This line prints second');
End.

Without knowing anything about the Pascal language, you can immediately make sense
out of what it does.

• First, it prints the line, This line prints first.

• Next, it prints the second line, This line prints second.

Unlike the BASIC example that allows spaghetti programming (see “Spaghetti pro-
gramming with the GOTO command,” earlier in this chapter), Pascal forces program-
mers to structure programs using sequences, branches, and loops. As a result, Pascal
helps programmers create well-organized programs that are much easier to read and
understand.

D
iff

erent M
ethods

for W
riting Program

s

CHAPTER 2 Different Methods for Writing Programs 39

The moment you typed in a month, such as April, the program might respond:

What day were you born?

And so on. If you wanted to type your day of birth before your month of birth, you
couldn’t because the program controlled your options.

Not surprisingly, using a computer like this was frustrating to most people, so
computer scientists soon invented something called a graphical user interface
(GUI). A GUI displays multiple options to the user in the form of drop-down lists,
windows, buttons, and check boxes. Suddenly, instead of the computer dictating
what the user could do at any given time, the user could tell the computer what to
do at any given time, just by choosing one of many available commands.

Forcing each program to display menus and windows had two advantages for
users:

 » It made using a computer much easier. Instead of having to type in
commands, users could just click the command they wanted to use.

 » It’s fairly easy to figure out how to use different types of programs. After
you understand that you can choose the Print command from the File menu,
you know how to print in any program — whether it’s a word processor, a
database, or an image-editing program.

Unfortunately, although drop-down lists made programs easy for users, they
made writing programs much harder for programmers:

 » Programmers had to write extra commands just to display all these fancy
drop-down lists and windows. (Even worse, programmers had to make sure
all those extra commands used to create drop-down lists and windows
actually worked correctly.)

 » Programmers now had to write programs that could react to whatever
command the user chose. Instead of presenting the user with options in a
specific, predictable order, programs had to handle the unpredictable choices
of the user.

To solve this dual problem of creating drop-down lists and knowing how to
handle the different commands the user may choose at any given time, computer
scientists developed event-driven programming.

In event-driven programming, an event is something that the user does or that
the computer must respond to. The user might click a drop-down list or click a

40 BOOK 1 Getting Started with Programming

button displayed in a window. The computer might need to respond to an incom-
ing email or a file being added to a directory. Event-driven programming simply
focuses on displaying different commands onscreen and then handling these dif-
ferent events when they occur.

Event-driven programming divides programming into three distinct parts:

 » The user interface (UI): The commands the user sees onscreen

 » The event handler: The part of the program that reacts to the commands the
user chooses from the UI

 » The actual program: The part of the program that actually does something
useful, such as drawing pictures or predicting the winners of horse races

In the old days, creating a UI essentially tripled a programmer’s work. You had to:

1. Write your program.

2. Write commands to create a UI.

3. Write commands to make your UI actually work.

Instead of forcing you to write commands to display drop-down lists and windows
onscreen, a tool called a rapid application development (RAD) program lets you
visually design your UI, such as the number, placement, and size of buttons.

After you’ve designed your UI (without having to write a single command to do it),
you can write short programs that respond to everything the user could possibly
do, which is called an event. If the user clicks a drop-down list, that’s an event.
If the user clicks a button in a window, that’s a different event. When you write a
small program to handle an event, the program is called an event handler.

Without event-driven programming, you’d be forced to write commands to create
a UI and more commands to make the UI work. With event-driven programming,
you just have to write commands to make your UI work. The fewer commands you
have to write, the faster you can create a program and the easier the program will
be to read, understand, and modify later.

The most popular language that defined event-driven programming is Visual
Basic although other languages have adopted event-driven programming as well.

Event-driven programming doesn’t replace structured programming; it supple-
ments it. Structured programming techniques are useful for helping you write
your program. Event-driven programming is useful for helping you design a UI
for your program.

D
iff

erent M
ethods

for W
riting Program

s

CHAPTER 2 Different Methods for Writing Programs 41

Basically, event-driven programming divides programming into three distinct
steps: designing the UI, writing event handlers to make the UI work, and writing
the actual program.

Designing a user interface
The main advantage of event-driven programming is how quickly it allows you
to design a UI without writing a single command whatsoever. Instead of writing
commands, you create a UI using a two-step process:

1. Visually draw your UI on a window by choosing which UI parts you want,
such as buttons, check boxes, or menus, as shown in Figure 2-5.

After you’ve drawn your UI, you wind up with a generic UI.

2. Customize each part of your UI by defining its appearance and behavior.

To customize part of a UI, you must modify that UI’s properties. Each part of
your UI contains properties that define its appearance and behavior. For
example, if you wanted to change the size of a check box, you’d modify that
check box’s Width or Height property, as shown in Figure 2-6.

With event-driven programming, designing a UI involves drawing your UI and
then customizing it by changing its properties. After you’ve designed your UI,
it will appear to work, but it won’t actually do anything until you write an event
handler.

FIGURE 2-5:
Designing a UI

involves drawing
what you want to

appear on your
program’s UI.

42 BOOK 1 Getting Started with Programming

Writing event handlers
The whole purpose of an event handler is to work as a middleman between your
actual program and your program’s UI. To create an event handler, you need to
identify the following:

 » A UI item, such as a button or a check box

 » The event to respond to, such as a click of the mouse

FIGURE 2-6:
Properties define

how each part
of a UI looks and

behaves.

D
iff

erent M
ethods

for W
riting Program

s

CHAPTER 2 Different Methods for Writing Programs 43

An event handler responds to a certain event triggered by a specific UI item, as
shown in Figure 2-7. A UI item can have one or more event handlers so it can
respond to different types of events, such as the user clicking a mouse button or
pressing a key. A single event handler can respond to the same event coming from
different UI items such as three different buttons.

The user can do dozens of different possible events, but some common events
are clicking the mouse or pressing a key. Event handlers typically do one of three
things:

 » Identify what the user did, such as click a button

 » Retrieve information from the UI, such as when the user types something
in a text box

 » Display information to the user, such as an error message

FIGURE 2-7:
An event handler

tells the UI how
to behave when

the user does
something,

such as click
the mouse over

a button.

44 BOOK 1 Getting Started with Programming

After you’ve written one or more event handlers for your UI, you have a complete
working UI. Now you just have to attach this UI to a working program.

Writing your program
Some people write the program first and then design a UI around it. Other people
design the UI first and then write the program to work with it. The whole point of
event-driven programming is to separate your program from your UI so you can
focus on making each part work individually.

Event-driven programming focuses mostly on designing a UI and making it
work, but it does little to help you write your actual program. To write your pro-
gram, you can use structured programming or object-oriented programming
(or both, or neither).

After you’ve written your program, you “attach” the program to your UI by writ-
ing event handlers. Event handlers “glue” your UI to your actual program. With
event-driven programming, you can be pretty sure that your UI will always work
perfectly. You just have to worry about errors in your main program.

Object-Oriented Programming
Structured programming helps you organize and divide your program into
smaller, more manageable pieces. For small to medium programs, dividing a pro-
gram into smaller programs is fine, but the larger your program gets, the more
smaller programs you’ll have to worry about. Eventually, computer scientists
discovered that they needed another technique for dividing large programs into
parts. They called this new technique object-oriented programming (often abbre-
viated as OOP). Object-oriented programming solves two glaring problems with
structured programming: reusability and modeling.

Reusability means that you can collect smaller programs that work together, store
them in a larger group called an object, and then plug those objects into differ-
ent programs like LEGO building blocks. Where structured programming encour-
ages reusability by letting you reuse subprograms, object-oriented programming
encourages reusability on a larger scale by letting you reuse objects (which con-
tain multiple smaller programs). Reusing individual subprograms is like using
bricks to build a house. Reusing objects is more like using premanufactured walls
to build a house.

D
iff

erent M
ethods

for W
riting Program

s

CHAPTER 2 Different Methods for Writing Programs 45

Modeling means making the parts of a program more intuitive. One of the reasons
why assembly language is so hard to understand is because manipulating data in
the processor’s registers has nothing to do with solving problems like adding two
numbers together. Likewise, dividing a large program into smaller tasks, using
structured programming, does nothing to help you understand the actual problem
the program is trying to solve.

With modeling, you divide a problem into real-life objects. If you were writing a
program to control a car, one object might be the steering mechanism, another
object might be the braking mechanism, and a third object might be the electrical
system. By making each part of a program (each object) model a real-life object,
it can be far easier to understand the purposes of the different parts of a program
and how they work together.

For example, suppose you had to write a program to land a rocket on the Moon.
This is how you might write this program using structured programming:

Land a rocket on the Moon
 Launch rocket
 Guide rocket through space
 Find a landing area on the Moon
 Put rocket down on landing area

So far, structured programming seems logical, but what happens when you keep
dividing tasks into smaller tasks? Just focusing on the Guide rocket through
space task, you might wind up with the following:

Guide rocket through space
 Get current coordinates
 Compare current coordinates with Moon coordinates
 Adjust direction

Dividing the Adjust direction task into smaller tasks, you might get this:

Adjust direction
 Identify current speed and direction
 Determine angle needed to steer toward the Moon
 Fire thrusters to change the angle of the rocket

Notice that the deeper you keep dividing tasks, the more removed you get from
knowing what the main purpose of the program may be. Just by looking at the task
Identify current speed and direction, you have no idea whether this task
involves flying a rocket to the Moon, driving a car down a road, or controlling a
walking robot to an electric outlet to recharge its batteries.

46 BOOK 1 Getting Started with Programming

The more you divide a larger task into smaller tasks, the harder it can be to under-
stand what problem you’re even trying to solve. This gets even worse when you
start writing actual program commands.

The two parts of most programs are the commands that tell the computer what
to do and the data that the program manipulates. So, if you wrote a program to
identify the current speed and direction of a rocket, the commands would tell the
computer how to retrieve this information, and the speed and direction would be
the actual data the program uses.

Essentially, program commands are separate from the data they manipulate. If
one part of a program manipulates data incorrectly, the rest of the program winds
up using that contaminated data and you, as the programmer, won’t know which
part of the program screwed up the data. This is like sitting in a baseball game,
ordering a hot dog from a vendor, and having six people pass your hot dog down
to you. When you see fingerprints all over your hot dog, can you tell which person
touched your food?

Isolating data
Object-oriented programming avoids the problem of not knowing the purpose of
code by combining data and the commands that manipulate them into a single
entity called (surprise!) an object. With a well-designed object-oriented program,
each object models part of the real-life problem so it’s easier to understand the
purpose of the code inside that object.

So, if you were designing a program to launch a rocket to the Moon, object-
oriented programming would let you divide the program into objects. One object
might be the rocket, a second object might be the Moon, and a third object might
be the Earth.

You can also divide a large object into smaller ones. So the rocket object might be
divided into an engine object and a guidance object. The engine object could be
further divided into a fuel pump object, a nozzle object, and a fuel tank object.

Suppose you wrote a program to calculate a rocket’s trajectory to the Moon, and
the engineers suddenly designed the rocket with a more powerful engine? With
object-oriented programming, you could just yank the engine object out of your
program, rewrite or replace it, and plug it back into the program again.

In structured programming, modifying the program to reflect a new rocket engine
would mean finding the program commands that manipulate the data that rep-
resents the engine’s thrust, and then making sure that new data gets fed into the
program at the proper location and still works with any other program commands

D
iff

erent M
ethods

for W
riting Program

s

CHAPTER 2 Different Methods for Writing Programs 47

that also handle that same data. (If the explanation in this paragraph sounded
confusing and convoluted to you, that just shows you the less-than-intuitive
problem of modifying a structured program versus an object-oriented program.)

Simplifying modifications
Besides organizing a large program into logical pieces, objects have another pur-
pose: code reusability. In school, it was always easier to copy someone else’s
homework than it was to do it yourself. Similarly, programmers find that it’s
easier to copy and reuse somebody else’s program rather than write their own
program from scratch.

In structured programming, you could divide a large program into subprograms
and then store those subprograms in a separate file. Now you could copy that file
to reuse those subprograms in another program.

Copying subprograms makes programming easier, but here are two problems:

 » What if you copy a subprogram and then later find an error in that
subprogram? Now you have to fix that subprogram in every copy. If you
made 17 copies of a subprogram, you’d have to fix the same error 17 times in
17 different copies of the same subprogram.

 » What if you wanted to modify and improve a subprogram? Suppose you
find a subprogram that asks the user to type in a password of no more than
10 characters, but you want your program to allow users to type in passwords
up to 25 characters. At this point, you could either

• Write your own password-verifying subprogram from scratch (which
would take time).

• Copy the existing subprogram and modify it (which would take much
less time). It’s easier to make a copy of an existing subprogram and then
modify the copy. Now you have two copies of (almost) the same subpro-
gram, but uh-oh, suddenly you discover an error in the original subpro-
gram. Once again, you have to correct this error in the original subprogram
and also in the modified subprogram. If you made 20 different modifica-
tions to a subprogram, you would have the problem of not only correcting
the error in every copy of the original subprogram, but also fixing that
same error in all your modified versions of that original subprogram.

But after you modify a subprogram, will you remember which subprogram you
copied and modified originally? Even worse, you could copy a subprogram and
modify it, and then copy your modified subprogram and modify that copy. Do
this several times and you’ll wind up with several slightly different versions of

48 BOOK 1 Getting Started with Programming

the same subprogram, but now you may not have any idea which subprogram you
copied originally.

So, now if you find an error in the original subprogram, how can you find and fix
that same error in any modified copies of that subprogram? Most likely, you can’t
because you won’t know for sure which modified versions of the subprogram you
(or another programmer) might have created.

Because programmers are always going to copy an existing program that works,
object-oriented programming helps manage the copying process by using inheri-
tance. The whole idea behind inheritance is that instead of making physical copies
of code, you have only one copy of code (called a class) at all times.

Instead of physically copying all the code stored in a class, objects inherit all the
code in a class by essentially pointing to the subprogram that they want to copy.
This saves physical space by eliminating the need to make multiple copies of the
same code.

Now instead of copying code (and risking creating duplicate copies), you can reuse
existing code and add your own code. Now you can build more complicated pro-
grams by reusing existing objects like building blocks. If you modify code in one
class, that modification automatically appears in any classes that inherit from
that original class, as shown in Figure 2-8.

Object-oriented programming makes programs easier to write (by dividing a large
program into parts), easier to understand (by organizing code into classes that
mimic the actual problem the program is trying to solve), and easier to modify

FIGURE 2-8:
Object-oriented

programming
never physically
copies code but

“points to” or
“inherits” code.

D
iff

erent M
ethods

for W
riting Program

s

CHAPTER 2 Different Methods for Writing Programs 49

(by automatically updating any copies of code). All these advantages allow you, as
the programmer, to focus more on solving problems and less on keeping track of
trivial details.

Discover more about the details of object-oriented programming in Book 2,
Chapter 7. For now, it’s just important that you understand why programmers
use object-oriented programming. Then you can worry about figuring out how to
use object-oriented programming.

Using Protocol-Oriented Programming
As computer scientists started using object-oriented programming techniques,
they noticed the same limitations. Object-oriented programming encapsulates
variables (properties) and functions (methods) that manipulate that data to model
real-life objects like an engine. Object-oriented programming made it easy to
copy and reuse code, but it also added complexity by creating objects that inher-
ited more and more code that often wasn’t needed.

To help minimize the needless copying of code that would ultimately be ignored or
modified, computer scientists created protocol-oriented programming. The main
difference is that when you use object-oriented programming, you must define
the method names and code to make that method work. With protocol-oriented
programming, you can simply define the method name without writing any code
within that method at all.

The purpose of simply defining the method name without writing any actual
code is to create uniform method names that can be reused by your code just
like objects. However, the advantage is that each class can adopt or conform to
a protocol but write its own code for a particular method. Where object-oriented
programming forces you to copy method names and the code that you may not
need, protocol-oriented programming lets you just copy method names and cus-
tomize the code to make it work the way you want. This reduces complexity and
increases flexibility.

Protocol-oriented programming isn’t meant to replace object-oriented program-
ming; it’s meant to work with it. Sometimes you may want to use object-oriented
programming, and sometimes you may want to use protocol-oriented program-
ming. Protocol-oriented programming is simply a way to reduce the complexity
inherent in object-oriented programming.

50 BOOK 1 Getting Started with Programming

Design Patterns
Although every program is different, all programs tend to require similar types of
solutions. Rather than force programmers to reinvent solutions, computer scien-
tists have identified common solutions to specific types of problems. These com-
mon solutions are called design patterns.

The main idea behind a design pattern is to show the best way to solve a specific
type of problem. By following these best practices defined by a design pattern, you
can spend less time thinking about the optimal way to solve a problem and simply
use a design pattern to guide you into solving that particular problem using any
programming language.

Design patterns focus on solving three types of common programming problems:

 » Creational: Defines the best way to create classes for different purposes

 » Structural: Defines the best way to design classes

 » Behavioral: Defines the best way for classes to share data and communicate
with each other

Think of design patterns as cookie cutters to help you structure your code without
telling you specifically how to write that code. By using design patterns, you can
(hopefully) spend less time designing the structure of your program and more
time writing reliable code faster than before.

DESIGNING PROGRAMS WITH TODAY’S
METHODOLOGY
Each step — from spaghetti programming, to structured programming, to event-driven
programming, to object-oriented programming, to protocol-oriented programming,
to design patterns — is meant to guide programmers into writing better-organized
programs that can be modified quickly and easily. Today, object-oriented program-
ming, protocol-oriented programming, and design patterns are popular, but tomorrow,
another programming methodology will likely arrive to deal with the shortcomings of
object-oriented programming, protocol-oriented programming, and design patterns.

D
iff

erent M
ethods

for W
riting Program

s

CHAPTER 2 Different Methods for Writing Programs 51

You want to avoid spaghetti programming, but structured programming, event-driven
programming, object-oriented programming, and protocol-oriented programming
are often used in the same program. You may use object-oriented programming and
protocol-oriented programming to divide a program into objects, and then use struc-
tured programming to organize the commands you write and store inside each object.
Finally, you may use event-driven programming to design a fancy UI so people know
how to use your program.

By using each programming methodology’s strengths, you can create a well-designed
program, on time, that actually works. Given the track record of government agencies
and Fortune 500 corporations, creating working software on time is the closest thing to
a miracle that most people will ever experience in a lifetime!

CHAPTER 3 Types of Programming Languages 53

Types of Programming
Languages

After you understand how to plan, organize, and create a program through
one or more methodologies (such as structured programming, event-
driven programming, object-oriented programming, or protocol-oriented

programming), you’re ready to start learning a particular programming language.

Just as your native spoken language can shape the way you think and speak, so can
your first computer programming language influence the way you think, design,
and write a computer program.

You can choose from literally thousands of different programming languages with
obscure names, like Algol 60, APL, Forth, Icon, and Scheme. Although you can
understand programming by using any programming language, it’s probably best
to start with one of the more popular programming languages for the operating
system you want to target.

Chapter 3

IN THIS CHAPTER

 » Deciding on your first language

 » Understanding curly-bracket
languages

 » Determining artificial intelligence
languages

 » Figuring out scripting languages

 » Understanding database
programming languages

 » Weighing up different programming
languages

54 BOOK 1 Getting Started with Programming

In the world of Windows, one popular language is C#, which is Microsoft’s version
of Java and C++. In the world of Apple products (Mac, iPhone, iPad, Apple Watch,
and Apple TV), the most popular language is Swift, which replaces Apple’s former
official language of Objective-C.

If you want to write apps for Android, learn Kotlin, which has Google’s official
support to replace Java. Google also has another unique language called Flutter,
based on the Dart programming language, which can be used to create Android
and iOS apps at the same time.

If you want to write programs that run on servers to create interactive websites,
look at Java, JavaScript, or Python. If you want to get involved in low-level pro-
gramming, look at C and assembly language.

Because most popular programming languages are derived from C, learning C and
its object-oriented version, C++, will always provide you with a strong foundation
for learning practically any other programming language in the future.

Knowing a popular programming language simply gives you more opportunities.
Just as knowing Arabic, Chinese, English, or Spanish allows you to travel and
speak with more people around the world (compared to knowing Eskimo, Mayan,
or Swahili), so can knowing one or more popular programming languages give
you more opportunities to work and write programs anywhere you go.

Sometimes there’s a good reason to know an obscure programming language. One
of the oldest programming languages, COBOL, was heavily used by businesses
back when computers filled entire rooms and millions of dollars. Because many
COBOL programs are still running today, COBOL programmers can actually make
a nice living because so few programmers know COBOL. Knowing an obscure lan-
guage may limit your opportunities, but at the same time, if someone needs a
programmer who knows that language, you could be the only one they could hire
(and have to pay big bucks as a result).

Your First Language
So, should you start studying C as your first programming language? Yes and no.
C may be the foundation for nearly all popular programming languages, but it’s
not the easiest language to learn, especially for beginners. As a novice, learning C
can be difficult because it forces you to learn both the fundamentals of program-
ming and the confusing syntax of the C programming language at the same time.

Types of Program
m

ing
Languages

CHAPTER 3 Types of Programming Languages 55

As a result, many beginners get frustrated with C as their first programming
language and wind up more confused than ever. Imagine how many people would
want to drive a car if it meant knowing how to refine their own gasoline and build
their own engine. Understanding C isn’t quite as difficult as refining gasoline or
building an engine, but it can seem that way, especially when you’re program-
ming for the first time and you start with the C language.

If you’d rather learn the fundamentals of programming without getting bogged
down in the complexities of the C language, consider learning an alternative pro-
gramming language first, like one of the languages in the following sections.

BASICally disrespected
One of the first programming languages designed specifically to teach beginners
is BASIC (short for Beginner’s All-purpose Symbolic Instruction Code). Although
BASIC is one of the oldest programming languages around, it isn’t used often
in commercial applications. Currently the most popular version of BASIC is
Microsoft’s Visual Basic, which made designing user interfaces (UIs) easy.

However, Visual Basic has fallen out of favor despite its initial popularity. Even
worse from a financial point of view, BASIC programmers usually earn less than
C programmers, even if they’re doing the exact same job. Part of the reason is that
BASIC suffers from the perception that it’s a toy language — unsuitable for com-
mercial use. Although that was true at one time, the BASIC language has evolved
to the point where it can do almost anything C or other languages can do.

Microsoft created both Visual Basic and C# as nearly equivalent programming
languages, so when you learn Visual Basic, you’ll find it’s easy to learn C#.

Although you can use BASIC to create anything from satellite navigation sys-
tems to Wall Street financial trading programs, BASIC programmers will probably
always get paid less, so you’ll need to know another language like C anyway, just
to get paid more and have more opportunities. Because BASIC programmers tend
to get paid less than other programmers, many programmers feel that they may
as well skip BASIC and just figure out C instead.

However, if you want a much simpler introduction to programming, learning
BASIC through Visual Basic or another version of BASIC will be far easier than
learning C. When you understand the principles of programming through BASIC,
learning another programming language will be much easier.

56 BOOK 1 Getting Started with Programming

Visual programming with Scratch
To encourage children to learn programming, many organizations have created
programming languages designed to be easy to learn, yet powerful enough to
teach people the principles of programming. One popular language designed for
kids is called Scratch (https://scratch.mit.edu).

Instead of requiring you to type text like most programming languages do, Scratch
lets you design programs by connecting building blocks together like LEGO blocks,
as shown in Figure 3-1. This visual way of learning programming can make pro-
gramming easier to learn, more understandable, and more enjoyable because you
avoid the problem of typing (and mistyping) program commands.

Just keep in mind that Scratch is meant to teach programming principles, but it
doesn’t let you create commercial applications. When you learn C or any C-derived
language like C#, Python, or Swift, you’re forced to learn programming principles
and language syntax at the same time. When you learn Scratch, you can just focus
on learning programming principles so you’re learning one thing at a time.

When you feel ready, you can take your knowledge of programming principles
and then tackle the second problem of learning a particular language syntax. So,
learning programming through Scratch is a two-step process, while learning pro-
gramming through a language like C is a massive, and possibly overwhelming,
single-step process.

FIGURE 3-1:
Programming in

Scratch means
connecting visual

building blocks
together.

https://scratch.mit.edu/

Types of Program
m

ing
Languages

CHAPTER 3 Types of Programming Languages 57

Programming robots with LEGO
Mindstorms
Kids love building things with LEGO building blocks, so to encourage kids to
build actual working robots, LEGO released a LEGO robot-building kit called
Mindstorms. Not only can you build a working robot with LEGO building blocks,
but you can also program the robot using the Mindstorms programming language.

To write a program, you don’t have to type a thing. Instead, you arrange icons that
represent different types of actions your robot can do, such as move forward or
respond to a light, as shown in Figure 3-2. After writing the program on your
computer, you load that program into your LEGO robot and watch it go.

By using LEGO Mindstorms, anyone can figure out both programming skills and
robot-making skills. Unlike other programming languages, LEGO Mindstorms
lets you see your working program in action as a walking, rolling, or crawling
LEGO robot.

Learning object-oriented programming
with Alice
Nearly all modern programming languages support object-oriented program-
ming. Unfortunately, figuring out object-oriented programming can be difficult,
especially for beginners who already have enough trouble just figuring out how to
program a computer.

FIGURE 3-2:
LEGO

Mindstorms
programming

connects
visual building

blocks together
to control a

working robot.

58 BOOK 1 Getting Started with Programming

To help beginners understand object-oriented programming, Carnegie Mellon
University created a free programming language dubbed Alice (www.alice.org).
To make programming fun and teach object-oriented principles at the same time,
Alice lets beginners write simple programs to animate characters onscreen, as
shown in Figure 3-3.

When you write an Alice program, your commands create an animated charac-
ter onscreen. Then you need to write additional commands to tell that animated
character how to move to create a simple story. In the process of telling the ani-
mated character how to move, you wind up discovering both how to program and
how to use object-oriented principles, while having fun in the process.

Like most instructional programming languages, Alice programming uses plain
English commands, like move forward or play sound. By using simple com-
mands, Alice lets you focus on understanding the principles of object-oriented
programming without getting bogged down in understanding the peculiar syntax
of a specific programming language.

Programming a killer robot
Studying how to program by controlling a LEGO robot can be fun (see
“Programming robots with LEGO Mindstorms,” earlier in this chapter), but to
combine the thrill of controlling a robot with the joy of playing a video game,
computer scientists have also created games that let you write a simple program
for controlling a battling robot, as shown in Figure 3-4.

FIGURE 3-3:
An Alice program

creates an
animated
character

onscreen and
moves it around.

http://www.alice.org/

Types of Program
m

ing
Languages

CHAPTER 3 Types of Programming Languages 59

Instead of writing a program just to control a robot, these games force you to write
a program to move a robot onscreen, search for other robots nearby, and then
attack those other robots with a cannon.

After you finish your program, you can see the results by watching your robot
battle another robot in a gladiator-style battle. Write a “good” program, and
your robot can defeat another robot. Write a “bad” program, and your robot gets
blasted into chunks of (virtual) charred metal.

To program a “battling robot,” use a simplified version of a popular programming
language, such as C, C++, or Java. That way, not only do you figure out the basics of
a popular programming language, but you also can start writing “real” programs
that actually do something interesting right from the start. Table 3-1 lists some
popular “battling robot” programming games.

FIGURE 3-4:
Using a battling

robot to study
programming

can make
programming
more exciting.

TABLE 3-1	 Popular “Battling Robot” Programming Games
Program Language Used Where to Find It

C++ Robots C++ www.gamerz.net/c++robots

Crobots C https://crobots.deepthought.it

Robocode Java https://robocode.sourceforge.io

http://www.gamerz.net/c++robots
https://crobots.deepthought.it/
https://robocode.sourceforge.io/

60 BOOK 1 Getting Started with Programming

Curly-Bracket Languages
Whether you learn about programming using a simpler language or jump right
in and start with C, you’ll eventually need to learn one of the more popular pro-
gramming languages based on C. This family of related languages is known as the
curly-bracket language family.

The curly-bracket language family gets its name because all the languages use
curly brackets to define the start and end of a block of commands, like this:

#include <stdio.h>

void main()
{
 printf("Notice how the curly brackets\n");
 printf("identify the beginning and end\n");
 printf("of your commands?\n");
}

Rather than use curly brackets, programming languages like Ada or Pascal use
descriptive words, like Begin or End, to identify the start and end of a block of
code. Descriptive words look clearer but can be more cumbersome to type. To
eliminate curly brackets or descriptive words like Begin or End, Python uses
indentation to define the beginning and end of a block of code.

Learning programming with C
The most popular curly-bracket language is C. The C language is popular for sev-
eral reasons:

 » Power

 » Efficiency

 » Portability

The power of C
The C language is a curious combination of assembly language and high-level
languages, like BASIC. Like assembly language, C provides commands for directly
manipulating every part of the computer, including memory, hard disks, and
printers. Like a high-level language, C lets you focus on the logic of your program
without worrying about the technical details of the computer, so you get the best
of both assembly language and high-level languages.

Types of Program
m

ing
Languages

CHAPTER 3 Types of Programming Languages 61

Because C programs are nearly (note the emphasis on the word nearly) as easy
to write and understand as higher-level languages but still give you the power
of accessing the computer’s hardware like assembly language, C is often used
for creating large, complicated programs (such as operating systems and word
processors) along with more exotic programs (like antivirus utilities or disk diag-
nostic programs).

With great power comes great responsibility, and C is no exception. Because
C programs can access every part of the computer’s hardware, C programs can fail
dramatically by crashing other programs, including the entire operating system.

The efficiency of C
A C compiler tends to create smaller, faster, more efficient programs than com-
pilers for other programming languages. The reason is that the C language is
much simpler and, thus, easier to translate into equivalent machine language
commands.

What makes the C language simpler is its small number of commands or key-
words. Keywords are special commands used in every programming language. The
more keywords a programming language uses, the fewer commands you need to
make the computer do something. The fewer keywords a programming language
offers, the more commands you need to make the computer do something.

Think of keywords like words in a human language. The fewer words you know,
the more limited your communication is. If a little kid only knows the word hot,
they can only express themselves in a limited manner, such as describing some-
thing as “very hot,” “a little hot,” or “not so hot.” However, if the kid knows a
lot of different words, they can express themselves much better. Rather than use
two or more words to describe something as “very hot,” “a little hot,” or “not so
hot,” a kid with a richer vocabulary could describe the same items as “scalding,”
“warm,” or “cool.”

A programming language with a lot of keywords allows you to write a program
with fewer commands. That’s great from the programmer’s point of view but
inefficient from the computer’s point of view.

The more keywords used in a language, the more work the compiler needs to do to
translate all these keywords into machine language. As a result, programs written
in languages that use a lot of keywords tend to run much slower than programs
written in C.

A C program compiles to smaller, more efficient machine language commands
because instead of offering a large number of keywords, the C language offers just

62 BOOK 1 Getting Started with Programming

a handful of keywords. This makes it easy for a compiler to translate the limited
number of keywords into machine language.

However, as a programmer, you need to use C’s limited number of keywords to
create subprograms that mimic the built-in commands of other programming
languages. Because this can be impractical, the C language often includes librar-
ies of subprograms that mimic the built-in commands of other programming
languages.

The bottom line is that C programs tend to run faster and more efficiently than
equivalent programs written in other programming languages. So, if you need
speed, efficiency, and access to the computer hardware, the C language is the most
popular choice.

The portability of C
By using much fewer commands than most programming languages, the C lan-
guage makes it easy to create compilers that can translate a C program into
machine language. Because it’s so much easier to create C compilers than it is to
create compilers for other programming languages, you can find a C compiler for
nearly every computer and operating system.

Theoretically, this means it’s possible to take a C program, written on Windows,
copy it to another computer and operating system, and run that program on a
different operating system, like Linux or macOS, with little or no modifications.
When you can copy and run a program on multiple computers and operating sys-
tems, the program and the language it’s written in are portable.

So, not only does C create small, fast, and efficient programs, but C also allows
you to copy and run your program on different operating systems and computers.
Given all these advantages, the C language remains popular despite its age (it was
created in 1972).

Adding object-oriented programming
with C++
Although the C programming language is popular, it’s not perfect. When object-
oriented programming became popular for designing and maintaining large pro-
grams, computer scientists created an object-oriented version of C called C++.

Because more people are writing and organizing large programs with object-
oriented programming, more programs are being written in C++. Some people
study C so they can understand the peculiarities of the C language. When they feel
comfortable with C, they start studying C++ and object-oriented programming.

Types of Program
m

ing
Languages

CHAPTER 3 Types of Programming Languages 63

Other people just skip C and start studying C++ right away. The theory is that
as a professional programmer, you’ll probably wind up writing and modifying
C++ programs anyway, so you may as well study C++ from the start. After you
know C++, you pretty much know enough to teach yourself how to write and
modify C programs, too.

A far less popular object-oriented version of C is Objective-C, which used to be
Apple’s official programming language until Apple switched to Swift.

Gaining true portability with Java
Although C and C++ programs are supposed to be portable — you can copy and
run them on other computers — they’re not really. Sometimes you have to make
minor changes to get a C/C++ program to run on another computer, but more
often, you have to make major changes.

That’s why Sun Microsystems created the Java programming language. Like C++,
Java is also based on the C language, but it includes several features to make Java
programs safer than C or C++ programs. Specifically, Java isolates the programmer
from directly accessing the computer’s memory. This reduces the power of Java
somewhat but translates into safer programs that (hopefully) won’t crash as often
as C/C++ programs do.

Perhaps the most important feature of Java is its portability. Rather than try to
compile a Java program into machine language for different types of processors,
Java compiles Java programs into an intermediate file format called bytecode or
pseudocode (also called p-code).

To run a Java program that’s compiled into bytecode, you need a free Java virtual
machine (VM). As long as a computer has a Java VM, it can run a Java compiled
bytecode program.

Like most promises made by computer scientists, Java programs aren’t always
portable. You can write a Java program correctly, compile it to bytecode format,
and make the program run perfectly on a specific computer and operating system.
But copy that same bytecode program to another computer, and suddenly, the
Java program doesn’t run correctly. The problem can occur when the Java VM, on
either computer, has errors in it. So, although Java programs are more portable
than C/C++ programs, they still aren’t 100 percent portable.

Besides creating full-fledged programs, like word processors or spreadsheets,
Java can also create applets (smaller programs), which can be used to create inter-
active web pages.

64 BOOK 1 Getting Started with Programming

If you’re looking for a programming language that makes programming safer and
more portable, consider Java. Java programmers are in demand almost as much
as C/C++ programmers, and the similarities between Java and C/C++ make it rela-
tively easy to understand after you know C. (Or you can study Java first and then
study C/C++ later.)

Programming more safely with C#
Microsoft took one look at C/C++ and decided it could create an improved lan-
guage, which it dubbed C# (pronounced C-sharp).

C# advantages
C# has a couple advantages over languages such as C, C++, and even Java.

IT’S OBJECT-ORIENTED

One main advantage of C# over C++ is that C# is a true object-oriented program-
ming language, so you have to use object-oriented programming to write a pro-
gram in C#.

Being forced to use only object-oriented programming techniques may seem like
a drawback until you realize that C++ is a hybrid language that lets you choose
whether to use object-oriented programming. Although C++ gives you, the pro-
grammer, more flexibility, C++ programs can also be a mishmash of structured
programming mingled in with object-oriented programming.

Trying to decipher such a mix of programming techniques can be confusing. By
forcing all programmers to use object-oriented programming (and isolate their
structured programming techniques only inside objects), C# programs can be
much easier to understand and modify.

IT’S TYPE-SAFE

A second advantage of C# is that it’s a type-safe language. Basically, if a
C# program stores data, such as a whole number (such as 3 or 49, but not 5.48),
the C# compiler checks to make sure no other part of the program accidentally
changes that whole number into a decimal.

With languages that aren’t type-safe, the compiler lets a program change data
types, such as storing a decimal or negative number where the program expects
a whole number. Obviously, if your program is expecting a whole number but
instead receives a decimal number, the program may get confused and crash.

Types of Program
m

ing
Languages

CHAPTER 3 Types of Programming Languages 65

.NET compatibility
Because Microsoft invented C#, it also invented a special program — the .NET
framework. The idea behind the .NET framework is that instead of compiling
a C# program into machine language, you compile a C# program into p-code
or Common Intermediate Language (CIL), which is similar to the bytecode
intermediate file format of Java.

The .NET framework allows you to both

 » Run C# programs on any computer with the .NET framework.

 » Write programs in multiple languages that all link together through the .NET
framework, as shown in Figure 3-5.

THE PROS AND CONS OF TYPE-SAFE
LANGUAGES
So, why isn’t every programming language type-safe? Good question. Here are two
reasons:

• Creating a type-safe language means more work to create a compiler that can
examine an entire program and check to make sure data types (such as numbers
and text) aren’t getting changed around unexpectedly. This translates into a
slower and more complicated compiler, which is more work for the programmers
who have to create the compiler in the first place.

• Type-safe languages can be restrictive, like trying to ride a motorcycle in a pad-
ded suit. The padded suit may protect you, but it also restricts your movement.
Similarly, by not checking that data types remain consistent throughout a program,
other languages give the programmer more freedom.

Use this freedom wisely and you can create programs without the nuisance of type-
safe checking, which can feel like having your parents staring over your shoulder
every time you browse the Internet. Use this freedom poorly, and you’ll wind up
writing a program that crashes the computer.

Although non-type-safe languages are popular, the growing trend is to use type-safe
languages that protect the programmer from writing programs that can mess up its
data and crash the entire computer. C#, Java, and other languages, such as Swift, are
considered type-safe languages.

66 BOOK 1 Getting Started with Programming

By letting you write a program with different languages, the .NET framework lets
you use each language’s strengths without forcing you to put up with the lan-
guage’s weaknesses.

The only programming languages you can use with the .NET framework are lan-
guages specifically designed to work with the .NET framework. So, if you want to
write a program using a combination of C# and BASIC, you have to find a BASIC
compiler that works with the .NET framework, such as Microsoft’s own Visual
Basic language.

A final advantage of the .NET framework is that it lets you use event-driven pro-
gramming to create your UI and then write event handlers in any .NET language,
such as C#.

Because C# is similar to C, C++, and Java, you can study C# first and then study the
other languages (or vice versa).

For that reason, many programmers prefer to first understand C or C++, and then
understand C#.

Choosing a curly-bracket language
If you plan to write programs professionally, you’ll probably need to know a
curly-bracket language. If you know C, C++, Java, or C#, you can pick up any of the
other curly-bracket languages fairly easily:

FIGURE 3-5:
The .NET

framework can tie
programs, written

in multiple
languages, into a

single program.

Types of Program
m

ing
Languages

CHAPTER 3 Types of Programming Languages 67

 » Knowing C can be great because it’s the basis for all the other languages.
Plus, while figuring out C, you can get used to its cryptic syntax without having
to worry about understanding object-oriented programming at the
same time.

 » Begin with C++ if you want to get started using object-oriented program-
ming based on your knowledge of C. While figuring out C++, you can ignore
its object-oriented features. After you feel comfortable with writing C++
programs, you can gradually start developing object-oriented programming
techniques as well.

 » If you want to write programs that can run on different computers, use
Java. Java forces you to know object-oriented programming right from the
start (like C#), so knowing Java means you can figure out object-oriented
programming at the same time. Because Java isn’t as confusing as C or C++,
understanding Java first is likely much easier than understanding C or C++.

 » If you want to learn a safer version of C, consider trying C# or Python.
The C# language is quickly becoming the standard language for writing
Windows programs, while Python is popular for being easier to learn than C
and being nearly as versatile as C.

As long as you know at least one curly-bracket language, you know one of the
most popular programming languages in the world.

Artificial Intelligence Languages
Programming languages, such as C, are often considered procedural or functional
languages because they divide a large program into separate procedures or func-
tions that tell the computer how to solve a problem step-by-step.

Although telling the computer what to do step-by-step might seem like the
most logical way to program a computer, another way to program a computer
is by using a declarative language. Instead of describing how to solve a problem,
declarative programming languages describe

 » Facts: Information about the problem

 » Rules: Relationships between this information

By using facts and rules, programs written in declarative languages can literally
figure out an answer on their own without being told explicitly how to do it.

68 BOOK 1 Getting Started with Programming

Ultimately, every program, including those written in declarative languages, must
get translated into machine language. That means every program must eventu-
ally tell the computer how to solve a problem step-by-step. Declarative languages
simply free you from having to describe these steps to the computer.

The most popular declarative programming language is Prolog (short for Program-
ming in Logic). A typical Prolog fact might look like this:

father("Sally", "Jesse").

The preceding fact tells the computer that Jesse is the father of Sally. Now if you
want to know who the father of Sally might be, you could ask the following:

?- father("Sally", X).

Using the fact that earlier stated that the father of Sally was Jesse, the preceding
Prolog command would simply return:

X = "Jesse".

At this point, Prolog simply uses a predefined fact to come up with an answer.
Notice that even in this simple example, no instructions told the Prolog program
how to use the fact that Jesse is the father of Sally.

A list of facts by themselves can be made more useful by including rules that
define relationships between facts. Consider the following Prolog program that
defines two facts and one rule:

father("Jesse", "Frank").
father("Sally", "Jesse").

grandFather(Person, GrandFather) :-
 father(Person, Father),
 father(Father, GrandFather).

The two facts tell the computer that Frank is the father of Jesse, and Jesse is the
father of Sally. The grandfather rule tells the computer that someone is a grand-
father if they’re the father of someone’s father.

Suppose you typed the following Prolog command:

?- grandFather("Sally", Y).

Types of Program
m

ing
Languages

CHAPTER 3 Types of Programming Languages 69

The Prolog program tells the computer to use its known facts and rules to deduce
an answer, which is:

Y = "Frank".

In other words, Frank is the grandfather of Sally. (Frank is the father of Jesse, and
Jesse is the father of Sally.)

Just from this simple example, you can see how different a Prolog program works
compared to a program written in C or Java. Instead of telling the computer how
to solve a problem, declarative programming languages let you state the facts and
the rules for manipulating those facts so the computer can figure out how to solve
the problem.

A Prolog program can actually create additional facts (and delete old facts) while
it’s running, so it can appear to think. That’s why Prolog is commonly used in the
field of artificial intelligence (AI). The whole idea behind AI is to make computers
smarter and literally think for themselves. (That’s because computer scientists
have pretty much given up hope that people will ever get smarter or begin to think
for themselves.)

Just as knowing two or more human languages can help you better understand
how people communicate, so can knowing two or more drastically different pro-
gramming languages help you better understand how programming can work.
The key is to figure out two different programming languages, like C++ and Pro-
log. Knowing two similar programming languages, like C++ and C#, won’t show
you much of a difference.

One of the most popular programming languages favored by the AI community is
LISP (which stands for LISt Processing). The basic idea behind LISP is that every-
thing is a list that can be manipulated by the computer. For example, a typical
LISP command might look like this:

(print "Hello world")

This LISP command is a list that displays the following onscreen:

"Hello world"

The enclosing parentheses define the start and end of a list. A different way to
print "Hello world" onscreen would be to use this LISP command:

(list "Hello world")

70 BOOK 1 Getting Started with Programming

The preceding command would print the following:

("Hello world")

In this case, the list command tells the computer to treat "Hello world" as a list,
so it encloses it in parentheses. Now consider what happens if you insert a com-
mand (list) inside another command (list):

(list (print "Hello world"))

This is how the preceding LISP command works:

1. The innermost command (list) runs first, which is the (print "Hello world")
list.

This displays the following onscreen:

"Hello world"

From the computer’s point of view, the original LISP command now looks like
this:

(list "Hello world")

2. This command now displays the following onscreen:

("Hello world")

So, the command

(list (print "Hello world"))

prints the following:

"Hello world"
("Hello world")

In the previous example, LISP treats the (print "Hello world") list first as a
command (to print "Hello world" onscreen) and then as data to feed into the list
command to display the list ("Hello world") onscreen.

With traditional programming languages, like C or Java, commands and data are
separate where data may change but commands never change. With LISP, a list
can be both a command and data. That makes it possible for a program to change
its lists (treated either as data or as a command), essentially allowing a program
to modify itself while running, which can mimic the learning and thinking process
of a human being.

Types of Program
m

ing
Languages

CHAPTER 3 Types of Programming Languages 71

As you can see, both LISP and Prolog offer radically different ways to program a
computer compared to C or Java. Just as languages, like C and Java, free you from
the tedium of manipulating registers and memory addresses to program a com-
puter, so do LISP and Prolog free you from the tedium of writing explicit step-by-
step instructions to program a computer.

Although the idea that a LISP program can modify its own commands might seem
like science fiction, LISP is actually the second-oldest programming language still
in use today. (Fortran is the oldest programming language still in popular use.)
LISP was invented in 1958, and although it’s been used primarily as a research
tool, people have created commercial programs using LISP.

Scripting Languages
Languages, such as C and C++, are often dubbed system programming languages
because they can create programs that access and manipulate the hardware of a
computer, such as an operating system (for example, Linux or Windows) or a util-
ity program (for example, an antivirus or anti-spyware program). However, using
system programming languages, like C++, for everything can get clumsy. Instead
of writing an entirely new program from scratch using a system programming
language, more people are likely to use an existing program and customize it in
some way. Programming languages that customize existing programs are typi-
cally called scripting languages.

Scripting languages work with one or more existing programs and act as “glue”
that connects different parts of an existing program together. For exam-
ple, Microsoft Office consists of several programs including a word processor
(Microsoft Word), a spreadsheet (Microsoft Excel), and a database (Microsoft
Access). By using the scripting language that comes with Microsoft Office, you
can write a program that can automatically yank information from an Access
database, create a chart from that information in an Excel spreadsheet, and then
copy both the data and its accompanying chart into a Word document for printing.

Trying to yank information from a database, create a chart with it, and print the
data and chart using a system programming language, like C++ or Java, would
mean creating everything from scratch including a database, a spreadsheet, and a
word processor. By using a scripting language, you use existing components and
simply “glue” them together. The existing components do all the work, while the
scripting language just passes the data from one component to another.

Because scripting languages work with existing programs, they differ from tradi-
tional programming languages (like C++ or Java) in two important ways:

72 BOOK 1 Getting Started with Programming

 » Because scripting languages work with one or more existing programs,
scripting languages are usually interpreted rather than compiled.
Therefore, if someone else wants to run your program, written in a scripting
language, they need the source code to your program along with all the
programs your scripting program needs, such as Microsoft Word and
Microsoft Access. As a result, scripting languages are used less to create
commercial applications and more to create custom solutions.

 » To make scripting languages easy to understand and use, even for
nonprogrammers, most scripting languages are typeless languages.
System programming languages, like C++ and Swift, are strongly typed or
type-safe languages. Strongly-typed languages force you to define the type of
data your program can use at any given time. So, if your program asks the
user to type a name, a strongly typed language makes sure that the user
doesn’t type in a number by mistake. This protects a program from acciden-
tally trying to manipulate the wrong type of data, which could crash the
program as a result.

In comparison, typeless languages don’t care what type of data the program
stores at any given time. This makes writing programs much easier because
your program assumes if it’s going to yank data from a particular program,
such as Microsoft Excel, the data is probably going to be the right “type”
anyway, so type-checking would just be restrictive and tedious.

Scripting languages are typically used in four different ways:

 » To automate repetitive tasks

 » To customize the behavior of one or more programs

 » To transfer data between two or more programs

 » To create stand-alone programs

Automating a program
At the simplest level, scripting languages (also called macro languages) can auto-
mate repetitive tasks that essentially record your keystrokes so you can play them
back at a later time. For example, if you regularly type the term Campylobacteriosis
(a disease caused by the Campylobacter bacteria), you have two choices:

 » Type the term manually, and hope that you spell it correctly each time.

 » Type the term just once (the easier solution), record your keystrokes, and use
those captured keystrokes to create a scripting language program that you
can save and run in the future.

Types of Program
m

ing
Languages

CHAPTER 3 Types of Programming Languages 73

Figure 3-6 shows a scripting language, Visual Basic for Applications (VBA), that
has captured keystrokes and saved them in a VBA scripting language program.

Customizing a program
Besides letting you automate a program, scripting languages also let you custom-
ize a program, which can make the program easier to use. For example, you may
have a spreadsheet that calculates your company’s invoices. However, to use this
spreadsheet, you need to know the specific place in the spreadsheet to type new
invoice information. Type this information in the wrong place, and the spread-
sheet doesn’t work right.

To avoid this problem, you can write a program in a scripting language that can
display a window with boxes to type in new invoice information. Then the script-
ing language program automatically plugs that new information in the correct
place in the spreadsheet every time.

For even more power, a scripting language can combine automation with custom-
ization to make programs perform tasks on their own. By using VBA in Microsoft
Office, you could write a VBA program that tells your computer to copy data from
an Excel spreadsheet, paste it into a Word document at a specific time each day,
and then save your document.

FIGURE 3-6:
Recording

keystrokes
automatically

creates the
equivalent

VBA code in
Microsoft Word.

74 BOOK 1 Getting Started with Programming

Transferring data among multiple
programs
Built-in scripting languages can help you automate or customize a program, but
what if you use a program that doesn’t include a scripting language? Or what if
you need to transfer data between two or more programs, but neither program
uses the same scripting language? In these cases, you’ll need to use a script-
ing language that isn’t tied to any particular program, such as JavaScript, Perl,
Python, or Ruby.

When scripting languages link two or more programs together, the scripting lan-
guage programs are often referred to as glue. So, if you have a web page that lets
users type in their names, addresses, and credit card numbers, and a database
program that stores customer information, you could use a scripting program to
glue the web page to the database. The user would type information into the web
page, and the scripting language would then yank this data off the web page and
shove it into the database.

By gluing programs together, scripting languages let you combine existing pro-
grams to create custom applications. Because scripting languages are interpreted
rather than compiled, they can run on any computer with the proper language
interpreter. So, whether you use Linux, macOS, or Windows, you can still use the
same scripting language (and programs) on different computers.

Creating stand-alone programs
If you wanted to create your own program, you could write everything from
scratch. So, if you wanted to include features of a spreadsheet and a database, you
would have to create your own spreadsheet and database.

Obviously this would be difficult to do, so by using scripting languages within
existing programs, you can create custom programs that rely on the features of an
existing program like Microsoft Excel.

Now instead of writing a spreadsheet from scratch, you can use the features of the
Excel spreadsheet and create a custom program based on Excel. This lets you reuse
proven features of an existing program while letting you focus solely on writing
the features you need.

Stand-alone programs, based on existing programs, can simply make that exist-
ing program much easier to use. For example, Microsoft Excel is a powerful
spreadsheet that many people don’t know how to use. By creating a stand-alone
program based on Excel, your stand-alone program can gently guide users into
solving problems without forcing them to learn Excel.

Types of Program
m

ing
Languages

CHAPTER 3 Types of Programming Languages 75

Database Programming Languages
Programming languages, such as C++, are general-purpose languages because
they can literally be used to create any type of program from operating systems
and word processors to antivirus utilities and video games. However, in the busi-
ness world, the most common type of custom programs needed are those that
store and retrieve data, such as invoices, inventory, customer information, and
so on.

Although it’s possible to write a database program in C++, that essentially doubles
the amount of work you need to do. You have to write your program’s UI and
commands for manipulating data and write commands to store and retrieve data,
essentially creating a database program from scratch.

Instead of rewriting (and testing) your own database program, it’s much easier
just to customize an existing database program. Many database programs include
their own programming language. By using a database programming language,
you just have to customize the appearance of the database program by designing
a UI along with commands for manipulating data. The database program does all
the work of storing, retrieving, and rearranging the actual data so you can focus
on what your program should do with data and not with the technical details for
how it should store data.

One of the most popular Windows database programs, Microsoft Access, offers
the VBA scripting language. Of course, Microsoft Access runs only on the Windows
operating system, so if you need to create database applications that run on
both Windows and macOS, you can choose Claris FileMaker (www.claris.com/
filemaker).

Like Microsoft Access, FileMaker offers a scripting language: ScriptMaker. Best of
all, you can create stand-alone versions of your FileMaker databases and sell them
to anyone who uses macOS or Windows.

Many specialized database programs, such as medical office management pro-
grams or multilevel marketing programs, have been created using FileMaker.

https://www.claris.com/filemaker
https://www.claris.com/filemaker

76 BOOK 1 Getting Started with Programming

Comparing Programming Languages
With so many different programming languages available, the question isn’t
“Which programming language should I study and use?” Instead, the real ques-
tion is “How can I become a better programmer and choose the best language for
solving a particular problem?”

Programming languages just offer different ways to express your ideas, and
depending on what you need to accomplish, sometimes a language like C++ is best
and sometimes another language like LISP may be better. The goal is to choose the
best language for the job.

Unfortunately, it’s impossible to know and master every programming language,
so it’s usually best to focus on mastering two or three languages instead. The
more you know about using a particular language, the faster and more efficient
you can write programs in that language.

A mediocre programmer using a programming language designed for a specific
job is likely more efficient than an expert programmer using an inappropriate
language for that same job. Assembly language might create the fastest and most
efficient programs, but if you need to write a program quickly and you don’t care
about efficiency, a scripting language like JavaScript may be much easier, faster,
and less buggy. Sometimes, a program that gets the job done now is preferable to
a program that works ten times as fast but takes a million times longer to write.

CHAPTER 4 Programming Tools 77

Programming Tools

The two most important tools a programmer needs are an editor and a com-
piler. An editor lets you type and save language commands (called the source
code) in a plaintext file. (Unlike a word processor file, a plaintext file doesn’t

contain any formatting, like italics or fonts.) A compiler converts your source code
into machine code and stores those machine code commands in a separate file
(often called an executable file). After you store your program in an executable file,
you can sell and distribute that executable file to other people.

An editor and a compiler are absolutely necessary to write and distribute pro-
grams. However, most programmers also use a variety of other tools to make
programming easier. To help them track down bugs (problems) in a program, pro-
grammers use a special tool called a debugger. To help them identify which parts
of a program may be making the entire program run too slow, programmers can
use another tool, called a profiler.

For distributing programs, programmers often use a help file creator and an
installer program. The help file creator makes it easy for the programmer to create,
organize, and display help that the user can read while using the program. The
installer program makes it easy for users to copy all the necessary files on to their
computer so the program runs correctly.

Chapter 4

IN THIS CHAPTER

 » Choosing a compiler and interpreter

 » Using a virtual machine

 » Working with editors, debuggers,
toolkits, and profilers

 » Getting a handle on source code

 » Creating help files

 » Using installers and disassemblers

78 BOOK 1 Getting Started with Programming

Finally, programmers may also use a special tool called a disassembler, which can
pry open another program to reveal how it works. Disassemblers are often used
by security professionals to analyze how viruses, worms, and spyware programs
work. For less honorable uses, programmers can also use a disassembler to dissect
a rival program and study how it works.

In many cases, programmers use an integrated development environment (IDE)
that combines the features of an editor with a compiler and a debugger. That way,
they can just use a single program to write, debug, and compile a program, instead
of relying on two or more separate programs.

Programmers often get so attached to their favorite programming tools that they
argue the merits of their favorite editor or compiler with all the passion of a reli-
gious fanatic. Just as there is no single programming language that’s the best
language to use at all times, there is no single programming tool that’s the best
tool to use all the time.

Choosing a Compiler
No two compilers work exactly the same, even compilers designed for the same
language, such as two competing C++ compilers. It’s perfectly possible (and quite
common) to write a program that works perfectly with one compiler but doesn’t
run at all under another compiler without minor (or massive) changes.

When Microsoft wrote the Mac version of its Microsoft Office suite, it used Code-
Warrior, which is a C++ compiler. Unfortunately, the CodeWarrior compiler ran
only on the PowerPC processors, which were used in older Mac computers. When
Apple switched to Intel processors, Microsoft had to dump the CodeWarrior com-
piler and use a different compiler called Xcode.

Because CodeWarrior and Xcode are both C++ compilers, Microsoft could theoreti-
cally compile the same C++ program under both CodeWarrior and Xcode with no
problems. Realistically, Microsoft had to rewrite major portions of their C++ pro-
grams just to get them to run under the Xcode compiler. The moral of the story is
that switching compilers is rarely an easy decision, so it’s important to choose the
“right” compiler from the start.

At one time, the CodeWarrior compiler was considered the “right” compiler to
use for creating Mac programs. What made CodeWarrior suddenly turn into the
“wrong” compiler was when Apple switched from PowerPC processors to Intel
processors. Everyone who had used the CodeWarrior compiler had to switch to
the Xcode compiler. Bottom line: What may seem like the “right” compiler today

Program
m

ing Tools

CHAPTER 4 Programming Tools 79

could later turn out to be the “wrong” compiler through no fault of your own or
the compiler company.

When choosing a compiler, you have to consider your needs, the compiler com-
pany’s reputation, and the compiler’s technical features.

Defining your needs for a compiler
The most important choice for a compiler centers solely on what you need. Follow
these steps:

1. Decide which programming language you want to use.

If you want to write C++ programs, you need a C++ compiler. If you want to
write C# programs, you need a C# compiler.

Many compilers can work with multiple languages, such as C and C++.

2. Decide which operating system you want to use.

If you want to write C++ programs for macOS, your choices immediately
narrow to the small list of C++ compilers that run under macOS.

3. Choose a compiler that has the best chance of being around years
from now.

• Most companies prefer using compilers from brand-name companies, like
Apple or Microsoft.

Even compilers from big-name companies are no guarantee against
obsolescence. Microsoft has stopped supporting its compilers over the
years, such as Microsoft Pascal and Visual Basic 6. If you used either of
these compilers to write a program, you had to change compilers when
Microsoft stopped developing them.

• Many people are choosing open-source compilers. Open source simply
means that the source code to the compiler is available freely to anyone.
Not only does this mean that open-source compilers are free (compared to
the hundreds of dollars you can pay for a brand-name compiler), but it also
guarantees that the compiler can’t become obsolete due to lack of support.

If you use a compiler from a company that goes out of business, you’re
forced to port (transfer) your program to another compiler, which means
having to rewrite the program to run under a different compiler.

Because anyone can examine and modify the source code to an open-source com-
piler, anyone can make changes to the compiler to improve it. One of the most
popular open-source compilers is GCC (https://gcc.gnu.org), which stands for
GNU Compiler Collection.

https://gcc.gnu.org/

80 BOOK 1 Getting Started with Programming

Xcode, the free compiler that Apple distributes with every Mac computer, is
actually the GCC compiler.

Originally, GCC only compiled C source code, but later versions of GCC compile
several different languages, including Ada, C, C++, Java, and Objective-C, with
more programming languages being supported every year. Even better, the GCC
compiler also runs on a variety of operating systems, such as Linux and Windows,
so if you write a program using the GCC compiler, you can recompile your pro-
gram to run under another operating system with minimal changes (ideally).

The GCC compiler actually consists of two parts:

 » The front end of the compiler translates source code into an intermedi-
ate format:

• To write C++ programs, you must use the C++ front end of the GCC
compiler.

• To write Ada programs, use the Ada front end of the GCC compiler.

• By creating front ends for different languages, programmers can make the
GCC compiler compile more programming languages.

 » The back end of the compiler finishes translating the intermediate code into
actual machine code.

Evaluating the technical features
of a compiler
After you choose a particular programming language and pick which operating
systems you want your programs to run on, your list of compiler choices is likely
narrowed to one or two choices. Given two compilers that both meet your needs,
you can pick the “best” compiler by examining their technical features.

The technical features of a compiler are meaningless if

 » The compiler stops being developed and supported.

 » The compiler can’t run under the operating system or processor you need in
the future.

 » A particular technical feature is something you don’t need or care about.

Program
m

ing Tools

CHAPTER 4 Programming Tools 81

Supported language standards
No two compilers are alike, even those that compile the same programming
language, such as C++. The problem is that every programming language has an
official “standard,” but the standard for most programming languages is usually
far behind what people in the real world are actually using. (By the time an official
standards committee agrees on the features of a given programming language,
programmers have already created new features that eventually become standards
in future versions of that language.)

As a result, most compilers support a given language standard plus additional
features that programmers have developed. Therefore, every compiler actually
works with a different dialect of a programming language. So, C++ programs that
run under the Microsoft Visual Studio compiler may or may not run the same
when compiled under the GCC compiler, even though both compilers claim to
support the “standard” C++ programming language.

Language standards are nice but generally useless when comparing compilers.
What’s more important is whether a particular compiler offers the specific fea-
tures you need or want, regardless of whatever particular standard it may follow.

Code generation and optimization
Every compiler converts source code into machine language, but some compilers
can translate source code into more efficient machine language commands than
other compilers. As a result, it’s possible to compile the same C++ program under
two different C++ compilers and create identically working programs that consist
of different machine language instructions.

The goal of every compiler is to create a program that takes up as little memory
and disk space as possible while running as fast as possible. Usually, compilers
make a trade-off. To make a program run faster, the executable file may take up a
large amount of disk space or require a lot of memory. If the compiler can reduce
the size of your program and the amount of memory it needs to run, it may create
a slow program.

To help you tweak your program for the best balance of speed, size, and memory
requirements, many compilers offer optimization settings. By fiddling with these
optimization settings, you can tell the compiler how to speed up or shrink your
program, as shown in Figure 4-1.

82 BOOK 1 Getting Started with Programming

One major feature of a compiler’s code generation capabilities involves speed,
which can measure two different features:

 » How quickly the compiler works in translating your source code to
machine code: In the old days, compilers could take hours or days to compile
a simple program. Nowadays, compilers often work in minutes or even
seconds. Shove in a program that consists of 800,000 lines of code, and in less
than a minute, the compiler can create an executable file for you. The faster
the compiler works, the less time you waste waiting to run and test
your program.

 » The performance of the machine language code that the compiler
creates: Given the same program, one compiler may create a program that
runs quickly, whereas a second compiler may create that same program that
runs much slower.

Ideally, you want a compiler that both compiles fast and creates programs that
run fast.

Target platforms
Most compilers can compile programs only for a specific operating system, such
as Linux or Windows. However, what happens if you need to write a program that
runs on two or more operating systems?

You could write the program twice with two different compilers — one for each
operating system. So, if you wanted to write a C++ program that runs under

FIGURE 4-1:
Compiler

optimization
settings let

you make your
program as

small and as fast
as possible.

Program
m

ing Tools

CHAPTER 4 Programming Tools 83

macOS and Windows, you could compile that program by using Microsoft Visual
Studio (for Windows) and then write a similar program to compile by using Xcode
(for macOS).

Of course, writing the same program two times for two different compilers on
separate operating systems is a tremendous waste of time. As an alternative, some
compilers are known as cross-compilers — they can create programs that work
on multiple operating systems, such as Linux, macOS, and Windows. Figure 4-2
shows the Xojo cross-compiler, which lets you choose whether to compile a pro-
gram for Linux, macOS, or Windows.

With a cross-compiler, you can write a program once and compile it to run on
multiple operating systems, effectively doubling or tripling your potential market.
Without a cross-compiler, you may need to write a program for each compiler,
under a different operating system, essentially doubling or tripling your work.

Although the idea of writing a program once and having it run on multiple oper-
ating systems may seem appealing, cross-compilers aren’t perfect. Chances are,
you’ll have to tweak your program to run under each operating system, but those
minor tweaks will be much easier than rewriting huge chunks of your program if
you had to use two separate compilers.

FIGURE 4-2:
A cross-compiler

lets you write
a program

and compile
it for multiple

operating
systems at the

click of a mouse.

84 BOOK 1 Getting Started with Programming

Cost
Paying for a compiler doesn’t necessarily mean you’re getting a better compiler.
The GCC compiler is free and one of the best compilers available.

Generally, you should only pay for a compiler if it offers a unique feature or pro-
gramming language that you need or want to use. For learning purposes, you can
find plenty of free compilers so you can study different programming languages
without spending any money at all.

Windows users will most likely want to consider Microsoft Visual Studio (https://
visualstudio.microsoft.com), which comes in both free and commercial ver-
sions. Microsoft also offers a version of Visual Studio for the Mac to create macOS
and iOS apps.

To create Mac, iPhone, iPad, Apple Watch, or Apple TV apps, use Apple’s free
Xcode compiler (https://developer.apple.com/xcode), which only runs on
a Mac. Another free option from Apple is Swift Playgrounds (www.apple.com/
swift/playgrounds), which runs on a Mac or iPad and lets you write Swift code.

Because Linux is free, most Linux compilers are free, too, including the popular
GCC compiler (https://gcc.gnu.org), although you can buy commercial compil-
ers if necessary.

Finding an Interpreter
Interpreters are commonly used for scripting languages, such as Perl or Python,
but they’re rarely used for system programming languages, such as C++. That’s
because if you write a program and use an interpreter, you must distribute a copy
of your source code with the interpreter. Giving away your source code essentially
gives away your program, so most commercial programs use a compiler instead.

However, interpreters can be useful for learning a programming language. By
using an interpreter, you can focus solely on learning a programming language
without the distraction of creating a complete program.

One popular type of interpreter is the online interpreter, which lets you use any
browser to practice typing specific language commands. JDoodle (www.jdoodle.
com) lets you select from dozens of popular and obscure programming languages
such as C++ and Swift, along with less common languages like Forth and Smalltalk.

https://visualstudio.microsoft.com/
https://visualstudio.microsoft.com/
https://developer.apple.com/xcode
https://www.apple.com/swift/playgrounds
https://www.apple.com/swift/playgrounds
https://gcc.gnu.org/
https://www.jdoodle.com/
https://www.jdoodle.com/

Program
m

ing Tools

CHAPTER 4 Programming Tools 85

If you’re interested in Flutter, Google’s cross-platform tool for creating Windows,
Android, macOS, iOS, and Fuchsia apps, you can practice writing Dart code on the
Flutter website (https://flutter.dev), as shown in Figure 4-3.

Nearly every web browser comes with a JavaScript interpreter. Web designers use
JavaScript for creating interactive web pages, verifying information typed on a
web page (such as a username and password), or opening pop-up windows that
display advertisements.

Although JavaScript interpreters can be found in any web browser, you may have
to download and install interpreters for other programming languages. Some
popular programming languages for running programs on web servers (those
computers responsible for displaying and retrieving information from web pages,
such as shopping data) include

 » Perl (www.perl.com)

 » PHP (www.php.net)

 » Python (www.python.org)

 » Ruby (www.ruby-lang.org)

Not only do the preceding four languages have free interpreters that you can copy,
but their interpreters also run on different operating systems. That means a Perl
or Ruby program written on a Windows computer should run identically if it’s
copied and run on a Linux or Mac computer.

FIGURE 4-3:
The Flutter

website lets you
type and run

code using any
browser.

https://flutter.dev/
https://www.perl.com/
https://www.php.net/
https://www.python.org/
https://www.ruby-lang.org/

86 BOOK 1 Getting Started with Programming

Compiling to a Virtual Machine
The problem with compilers is that they’re difficult to make for multiple operat-
ing systems and processors. The problem with interpreters is that they need the
source code of a program to run, making interpreters unsuitable for distribut-
ing software. To solve both these problems, computer scientists created a third
alternative — a virtual machine (VM).

THE ADVANTAGES OF INTERPRETED
LANGUAGES
A program run by an interpreter is almost always slower than the same program
compiled into machine language, so why not compile every language rather than run
them under an interpreter?

One of the reasons is that creating a compiler for multiple operating systems is much
more difficult than creating an interpreter for multiple operating systems. To create a
compiler, you need to know how to translate a programming language into machine
code, but because operating systems can run under different processors (such as the
ARM or Intel processors), you have to translate language commands into completely
different machine language commands. Creating a compiler that works correctly for
one processor is hard enough, but creating that same compiler to work under multiple
processors identically and error-free is much more difficult.

Compiling a program into machine language is great when you want to distribute a
program to others. However, languages like Perl or Ruby are often used to create short
programs that run on a web server. Using an interpreter may run a program more
slowly, but you can write a program and run it right away without compiling it first. Also,
by running the source code directly, interpreters let you see the source code of each
program that’s running, so you can edit that source code and see how your changes
affect the program. You can still do this with a compiler, but having to compile a pro-
gram and then store a separate executable version of that program is a minor annoy-
ance that you can avoid completely just by using an interpreter.

Compilers are great for distributing programs. Interpreters are much better for writing
and running shorter programs when you don’t care whether anyone can see or copy
the source code.

Program
m

ing Tools

CHAPTER 4 Programming Tools 87

To speed up programs, computer scientists have developed just-in-time (JIT)
compilers. These types of compilers translate code into native code on the fly,
making programs run faster than ordinary interpreted programs running on a
virtual machine.

To protect the source code of a program, a VM lets you compile your program into
an intermediate file called bytecode or pseudocode (also known as p-code). To make
a program run on multiple operating systems, you need a VM that runs on each
operating system, as shown in Figure 4-4.

When you compile a program into bytecode, it’s still possible to disassemble
(reverse-engineer) that bytecode file and view the original source code.

The most popular programming language that uses a VM is Java (www.oracle.
com/java/technologies), which was created by Sun Microsystems and is now
owned by Oracle. The idea behind Java is to let you write a single program in Java,

FIGURE 4-4:
A virtual machine

acts like a
combination of

an interpreter
and a compiler.

https://www.oracle.com/java/technologies
https://www.oracle.com/java/technologies

88 BOOK 1 Getting Started with Programming

compile it into a bytecode file, and then distribute that bytecode file to any com-
puter that has a Java VM installed.

Theoretically, you can write a program once and make it run on Linux, macOS,
and Windows with no modifications whatsoever. Realistically, you may still need
to tweak the program a bit to get it to run flawlessly on different operating sys-
tems, but that’s still much easier than writing a program from scratch for another
operating system.

Despite these drawbacks, Java has grown in popularity. Many companies write
and sell programs entirely written in Java. As computers get faster and Oracle
improves the performance of its VM, programs written in Java probably will run
fast enough for most uses.

Writing a Program with an Editor
To write programs, you need an editor, which acts like a special word processor
just for helping you write commands in your favorite programming language.
After you type your program commands in an editor, you can save this file (known
as the source code). Then, you can feed this source code file into a compiler to turn
it into a working program.

You can choose from two types of editors: stand-alone or integrated development
environment (IDE). Your best bet probably depends on whether you write pro-
grams in more than one programming language.

Stand-alone editors
A stand-alone editor is nothing more than a separate program that you run when
you want to edit your program. You run the compiler separately.

If you regularly write programs in different programming languages, you may
want to use a stand-alone editor. That way you can get familiar with all the fea-
tures of a single editor.

You can buy stand-alone editors, but here are two popular free ones; both of these
editors run on multiple operating systems (such as Linux, macOS, and Windows):

 » GNU Emacs (www.gnu.org/software/emacs/emacs.html)

 » VIM (www.vim.org)

https://www.gnu.org/software/emacs/emacs.html
https://www.vim.org/

Program
m

ing Tools

CHAPTER 4 Programming Tools 89

The nearby sidebar, “Common editor features,” lists features you find in most
editors, including stand-alone editors.

COMMON EDITOR FEATURES
Whether you prefer a stand-alone editor or an integrated development environment,
most editors offer the following features:

• Multiple undo/redo commands let you experiment with making changes to your
source code. If they don’t work out, you can undo your changes. Typically, editors
let you undo a large number of changes you made, such as the last 100 changes.

• Multiple file editing comes in handy so you can view different files in separate
windows and copy code from one window to another, or just study how one part of
your program will interact with another part of that same program.

• Syntax completion and highlighting is when the editor recognizes certain pro-
gramming languages, such as C++ and Java. The moment you type a valid language
command, the editor can finish typing that command for you at the touch of a but-
ton, thereby saving you time. So, if you type a typical if-then statement, the editor
automatically types in a generic if-then statement (complete with necessary paren-
theses), so you just type in the actual data to use.

• Syntax highlighting occurs after you write a program; the editor highlights valid
language commands to help you separate language commands from any data and
commands you create. Without syntax highlighting, source code can look like a
mass of text. With syntax highlighting, source code can be easier to read and
understand.

• Automatic indentation and parentheses matching where indentation can align
your code to make it follow a standard indentation format while parentheses
matching helps you identify where an opening parenthesis, square bracket, or curly
bracket begins and ends.

• Macros let you customize the editor and essentially program the editor to repeat
commonly needed tasks, such as always displaying program commands in upper-
case letters. If the editor doesn’t offer a feature you want or need, its macro lan-
guage lets you add that feature. Without a macro language, an editor won’t give you
the flexibility to work the way you want.

• Project management helps you keep your source code files organized. Most pro-
grams no longer consist of a single file but of multiple files. Trying to keep track of
which files belong to which project can be confusing, so an editor can help you
store and organize your files so you won’t lose track of them.

90 BOOK 1 Getting Started with Programming

Integrated development environments
An IDE combines an editor with a compiler in a single program so you can eas-
ily edit a program and compile it right away. It gives you access to these features
within a consistent user interface (UI), as shown in Figure 4-5.

If you mostly write programs in a single programming language, using an IDE can
be more convenient than a stand-alone editor.

Features
In addition to a compiler and all the usual features of stand-alone editors (see the
“Common editor features” sidebar), many IDEs include other features in a con-
venient UI:

 » A debugger helps identify problems in your program.

 » File management helps organize the source code for your various projects.

 » A profiler helps identify which parts of your program may be slowing down
the performance of your entire program.

 » A graphical user interface (GUI) designer helps you design the appearance
of your program’s windows, drop-down lists, and buttons.

FIGURE 4-5:
An IDE provides

access to multiple
programming
tools within a

single UI.

Program
m

ing Tools

CHAPTER 4 Programming Tools 91

Free software
Many compilers come with their own IDE, but you can always use another IDE or
a stand-alone editor instead. These IDEs are popular (and free):

 » Apache NetBeans (https://netbeans.apache.org): Designed for writing
Java programs, it can be used for writing C and C++ programs as well.
NetBeans is available for multiple operating systems.

 » Atom (https://atom.io): Atom is an open-source editor for Linux, macOS,
and Windows.

 » Eclipse (www.eclipse.org): Designed for writing Java programs, it can also be
used for writing C, C++, PHP, and even COBOL programs. Eclipse is available
for multiple operating systems.

Fixing a Program with a Debugger
Eventually, everyone makes a mistake writing a program. That mistake could be
as simple as incorrectly typing a command or forgetting a closing parenthesis,
or it could be as complicated as an algorithm that works perfectly except when
receiving certain data. Because writing error-free programs is nearly impossible,
most programmers use a special tool called a debugger.

Program errors are called bugs, so a debugger helps you find and eliminate bugs
in your program.

Two common debugger features include

 » Stepping or tracing

 » Variable watching

Not all bugs are created equal:

 » Some bugs are just annoying, such as the wrong color on a drop-down list.

 » Some bugs are critical, such as a bug that adds two numbers wrong in an
accounting program.

 » Any bug that keeps a program from running correctly is a showstopper.

https://netbeans.apache.org/
https://atom.io/
https://www.eclipse.org/

92 BOOK 1 Getting Started with Programming

Stepping line-by-line
Stepping or tracing lets you run your program line-by-line, so you can see exactly
what the program is doing at any given time. The second you see your program
doing something wrong, you also see the exact command in your program that
caused that problem. Then you can fix the problem, as shown in Figure 4-6.

Sometimes when programmers find one error and fix it, their fix accidentally
creates another error in the program.

Here are the two types of debuggers:

 » Source level: Lets you examine your source code line-by-line. So if you write a
program in C++, a source-level debugger shows you each line of your entire
C++ program.

 » Machine language: Lets you examine the machine language code, line-by-
line, that your compiler created from your source code. Programmers often
use machine-language debuggers to examine programs when they don’t have
access to the source code, such as a computer virus or a rival’s program.

FIGURE 4-6:
Stepping through

a program, line-
by-line, can

help you find
errors or bugs in

your program.

Program
m

ing Tools

CHAPTER 4 Programming Tools 93

Stepping line-by-line through a small program may be feasible, but in a large
program that consists of a million lines of code, stepping line-by-line would take
far too long. So, to make stepping easier, most debuggers include breakpoints and
stepping over/stepping out commands.

Breakpoints
A breakpoint lets you skip over the parts of your program that you already know
work. So, if you have a program that’s 10,000 lines long and you know the prob-
lem is somewhere in the last 1,000 lines of code, there’s no point in stepping
through those first 9,000 lines of code.

A breakpoint lets you tell the computer, “Skip from the beginning of the pro-
gram to the breakpoint, and then step through the rest of the program line-by-
line.” Figure 4-7 shows how you can highlight a line with a breakpoint. That way
your program runs from the beginning to the first breakpoint. After your program
stops at a breakpoint, you can step through the rest of your program line-by-line.

FIGURE 4-7:
Breakpoints let

you skip over
parts of your
program that

you don’t want
to examine
line-by-line.

94 BOOK 1 Getting Started with Programming

Over and out
The stepping over and stepping out commands are used to debug a large program
that consists of multiple subprograms. Normally, stepping would force you to
examine every subprogram, line-by-line. However, what if you know the problem
isn’t in a specific subprogram?

By using the step over and step out commands, you can avoid stepping through
lines of code stored in a subprogram.

STEP OVER

To avoid stepping through every subprogram, debuggers let you use the step
over command. This command tells the computer, “See that entire subprogram?
Treat it as a single command, and don’t bother stepping through it line-by-line.”
Figure 4-8 shows how the step over command works.

The step over command lets you completely skip over any lines of code stored
inside of a subprogram.

STEP OUT

Suppose you start examining a subprogram line-by-line and suddenly want to
stop. As an alternative to stepping through the rest of the subprogram, you can

FIGURE 4-8:
The step over

command lets
you skip, or

“step over,” the
lines stored in a

subprogram.

Program
m

ing Tools

CHAPTER 4 Programming Tools 95

use the step out command, which tells the computer, “Stop stepping through
the subprogram line-by-line right now!”

Watching variables
When you step or trace through a program, line-by-line, you can see how the
program works. For more insight into your program’s behavior, you can watch
your variables.

You can read more about variables in Book 2, Chapter 2. For now, just think of a
variable as a temporary place to store data, such as a number or a word.

Watching a variable lets you see what data your program is storing and using at
any given time. That way, if your program is supposed to print a name but actually
prints that person’s phone number, you can step through your program line-by-
line and watch to see which line stores the wrong data for the program to print.

Not only can you “watch” how your program stores data, but a debugger lets you
change data while your program is running. By changing data, you can see how
your program responds.

For example, suppose a program converts temperatures between Celsius and
Fahrenheit. If you store a valid temperature, such as 15, you can see how your
program handles the number 15. But what happens if the user types in an invalid
number, such as 500000 or –1700000?

To find out how and why your program seems to randomly change the tempera-
ture, you can step through your program and watch the number stored as the age.
By changing your variable while the program is running, you can type in different
temperature values to see how your program responds.

When testing different values, always start off with values for which you already
know how your program should respond. For example, a temperature of 0 in Cel-
sius should be 32 in Fahrenheit. Likewise, a temperature of 100 in Celsius should
be 212 in Fahrenheit.

Without the ability to change the value of variables while the program is running,
debugging a program is much slower and more tedious. By changing the value
of variables while the program is running, you can test different values without
having to trace through the program multiple times using different values. Just
run the program once, and change the value of the variable as many times as you
want, as shown in Figure 4-9.

96 BOOK 1 Getting Started with Programming

Saving Time with Third-Party Components
Programmers are naturally lazy and often look for the simplest way to solve any
problem. When faced with creating a program, programmers prefer to cheat by
using third-party components, which are programs that somebody else has created
already (and, hopefully, tested).

Third-party components usually offer commonly needed features, such as a word
processor, a spreadsheet, or a database, that you can plug into your own program.
So, instead of having to write your own word processor, you can buy a word pro-
cessor component and plug it into your own program — now your program has
word-processing capabilities with little additional programming on your part.

Third-party components can give your program instant features, but they can
also give you instant problems, too. If the third-party component doesn’t work
right, your program won’t work right either, and you can’t fix the problem until
the company that sells the third-party component fixes the problem. Basically,
third-party components put you at the mercy of another company. If that other
company stops updating and improving their component, you’re stuck with an
outdated and possibly buggy component.

Depending on the features, third-party components can range in cost from a few
hundred dollars to a few thousand dollars or more. Most third-party components
aren’t cheap, but because they can save you a lot of time, they may be worth
the price.

FIGURE 4-9:
Watching

and changing
variables can

show you how a
program reacts to

different data.

Program
m

ing Tools

CHAPTER 4 Programming Tools 97

Optimizing a Program with a Profiler
Not all parts of a program are equal. Some parts of a program may run only once or
twice, whereas other parts of a program may run hundreds or even thousands of
times. For example, suppose you have a program that stores names and addresses.
To use this program, you must first type in your name and password before you
can sort and search through the program’s list of names and addresses.

In this example, the part of the program that asks for a username and password
runs only once, but the part of the program that searches and sorts through your
list of names and addresses may run multiple times. So, which part of your pro-
gram determines its speed? The part that runs once (asking for a username and
password) or the part that runs multiple times (searching and sorting names and
addresses)?

Obviously, if you wanted to speed up your program, you’d focus on the part that
runs most often, and that’s what a profiler does. A profiler examines your program
and identifies the most frequently used parts of that program. After you know
which parts of your program run most often, you can work on making that part of
the program run faster, a process known as optimizing.

Profilers typically use two methods for examining a program:

 » Sampling: Sampling examines your entire program at fixed time intervals.
Through sampling, a profiler can get a rough estimate on which parts of your
program (often referred to as hot spots) are being run most often.

 » Instrumentation mode: After you use sampling to identify hot spots, you can
use this mode to examine the program in more detail to determine exactly
what each program line does and how much time it takes.

By identifying the hot spots, you can speed up your entire program by
rewriting or optimizing those frequently run parts of the program.

By optimizing a small part of your program, such as 10 percent of it, you can
often improve the entire program’s performance dramatically.

Managing Source Code
In the old days, programs were often created by an individual or small teams of
people who worked in the same room. If they needed to talk to each other or share
code, they could simply copy files from one computer to another.

98 BOOK 1 Getting Started with Programming

However, as programs have gotten much larger and more complicated, it has
become common for multiple teams to work on a single program. Even worse,
these separate teams may be located in completely different parts of the world
and in different time zones. How can multiple teams work on the same program
simultaneously? The answer is through version control or source management.

The problem is that at any given time, only one person can work on a program.
Because most large programs are divided into multiple files, all files get stored in
a central repository so there’s only one copy of a program.

When someone needs to edit the program, they can check out the file they need.
When they check out the file, the repository stops anyone else from checking out
that same file. That way two or more people don’t try to modify separate copies
of the same file and then wind up not knowing which version of the file to use in
the future.

When someone gets done editing a file, they can return it back to the repository
for someone else to check out. Although there’s only one copy of a file that oth-
ers can check out, the repository will often save the previous versions of each file.
That way, if a modified version of a file causes catastrophic errors, it’s easy to
revert back to the previous version of that same file.

Sometimes two or more programmers will be allowed to check out the same file,
and when they’re done, the version control software can merge the two different
file versions into a single, new version. However, merging changes made in sep-
arate copies of a file can cause problems if the changes in one file interfere with
the changes in another file.

For example, suppose one programmer deletes a function in a file because it causes
problems, but a second programmer writes new code that relies on that function.
Merging the two changed files will then be tricky because if the deleted function
is added or kept out of the file, it risks causing problems either way.

Whether a program is small or massive, it can benefit from version control man-
agement. Version control makes sure you always work with the latest approved
versions of a file and that you’ll always have backup copies to fall back on in case
you make a mistake.

If you work alone, version control management can keep you from losing crucial
data. If you work in teams, version control management can improve everyone’s
efficiency by making it easy to work on multiple files simultaneously.

Program
m

ing Tools

CHAPTER 4 Programming Tools 99

Creating a Help File
Hardly anyone reads software manuals, so when people need help, they typically
turn to the program’s help file for answers. This help file is essentially the soft-
ware manual organized as miniature web pages that you can view and click to see
similar (linked) information.

Almost every program has a help file, but creating a help file can be tedious and
time-consuming. So, to simplify this process, many programmers use special
help file creation programs.

Just as a word processor makes it easy to write, edit, and format text, help file cre-
ators make it easy to write, edit, organize, and link text together to create a help file.

Installing a Program
Before anyone can use your program, they need to install it. Some programs are
simple enough that the user can simply copy it where they want to store it. How-
ever, most programs consist of multiple files that may require creating new fold-
ers to store data or allow access to the Internet.

Installation programs simply automate the process of storing a program on a com-
puter to make the process as simple and easy as possible. This may include adding
shortcuts or icons to the computer for faster access to running the program.

Even if a program is simple enough to be copied as a single file, it’s usually best to
use an installation program to install that program instead. That way you can be
certain all files are copied in the correct location.

Dissecting Programs with a Disassembler
A disassembler acts like a reverse compiler. A compiler converts your program
(written in any programming language, such as C++ or Swift) into machine lan-
guage; a disassembler takes an executable file (which contains machine-language
code) and converts it into assembly language.

Disassemblers can’t convert machine language back into its original source code
language (such as C++) because disassemblers can’t tell which programming lan-
guage was originally used. An executable file created from a C++ program looks no

100 BOOK 1 Getting Started with Programming

different from an executable file created from a Kotlin or Swift program. There-
fore, disassemblers can only convert machine language into assembly language.

Disassemblers have both honorable and shady uses. On the honorable side, anti-
virus companies use disassemblers to dissect how the latest viruses, worms, and
Trojan horses work. After they know how these nasty programs work, they can
figure out how to detect, stop, and remove them.

On the shady side, many companies use disassemblers to tear apart their rivals’
products and see how they work. After you know how a competitor’s program
works, you can copy those features and use them in your own program.

Programming languages, such as C#, Java, and Visual Basic .NET, get compiled
into bytecode format; therefore, a disassembler can reverse-compile a bytecode
file into its original source code. So, if you compile a Java program into bytecode
format, a Java disassembler can convert the bytecode file into Java source code.
Likewise, if you compile a C# or Visual Basic .NET program, you can disassemble
that bytecode file into its original C# or Visual Basic .NET source code.

To protect their bytecode files from disassemblers, programmers use another
program called an obfuscator. An obfuscator essentially scrambles a bytecode file.
The bytecode file can still run, but if other people try to disassemble an obfuscated
bytecode file, they can’t retrieve the original source code.

If you use a programming language that compiles into bytecode (such as C#, Java,
or Visual Basic .NET), consider using an obfuscator to protect your source code
from prying eyes.

At the bare minimum, all you need is an editor (to write programs) and a compiler
(to convert your programs into executable files). However, most programmers use
a debugger, version control software, and an installer. Although most program-
mers are happy when they can get their programs to work, some programmers
use a profiler to help them speed up and optimize their program.

Finally, some programmers use disassemblers to peek inside the inner workings
of other programs, such as viruses or rival software. Disassemblers are never nec-
essary for creating a program, but they can prove useful for legal and not-so-legal
purposes.

The tools of a programmer are highly subjective. Some programmers swear by
certain tools, such as their favorite editor or compiler, whereas others are happy
with whatever tool is available. Just remember that programmer tools can help
you write faster and more reliable programs, but the best tool in the world can
never substitute for decent programming skills in the first place.

2Programming
Basics

Contents at a Glance
CHAPTER 1: How Programs Work . 103

CHAPTER 2: Variables, Data Types, and Constants 119

CHAPTER 3: Manipulating Data . 141

CHAPTER 4:	 Making	Decisions	by Branching 163

CHAPTER 5:	 Repeating	Commands	by Looping 181

CHAPTER 6:	 Breaking	a	Large	Program	into	
Subprograms . 197

CHAPTER 7:	 Breaking	a	Large	Program	into	Objects 215

CHAPTER 8: Reading and Saving Files . 243

CHAPTER 9:	 Documenting	Your Program . 263

CHAPTER 10: Principles of User Interface Design 277

CHAPTER 11: Debugging and Testing . 297

CHAPTER 1 How Programs Work 103

How Programs Work

Programming is nothing more than problem-solving. Every program is
designed to solve a specific problem, such as taking the trouble out of edit-
ing text (a word processor), calculating rows and columns of numbers

(spreadsheets), or searching and sorting information (a database). Even a video
game solves the problem of keeping players entertained for hours at a time.

Before you write any program, you must first know what problem you want
the computer to solve. Computers are best at solving repetitive tasks, such as
calculating rows and columns of numbers in a spreadsheet. Anyone can do sim-
ilar calculations by hand, but computers make the task much faster and more
accurate.

After you know what problem to solve, the next step is figuring out how to solve
that problem. Many problems may have multiple solutions. For example, how can
someone get from the airport to your house? One way may be to take the highway,
which may be the simplest route although not necessarily the fastest. Another way
may take you through winding roads that can be harder to navigate.

Chapter 1

IN THIS CHAPTER

 » Using keywords

 » Arranging a program

 » Dividing programs into subprograms
and objects

 » Building a user interface

104 BOOK 2 Programming Basics

In general, every problem has multiple solutions, and each solution has pros and
cons. Should you tell someone to take the shortest way to your house (which may
be harder to follow) or the easiest way to your house (which may take longer)?

Computer programs face this same dilemma in choosing the “best” solution. One
solution may be slow but require less memory to run. Another solution may be
fast but require gobs of memory. When deciding on a solution, you always have to
consider additional factors, such as what type of computer the program runs on,
what type of environment the program is used in, and what type of people are
using it.

After you choose a solution, the next step involves dissecting how your chosen
solution works so you can translate those steps into instructions for the computer
to follow.

Every program consists of step-by-step instructions. Just as you can write the
same instructions for a person in English, French, Spanish, Arabic, or Japanese,
so can you write the same program for a computer in different programming
languages.

You can literally write a program with thousands of possible programming
languages. Every programming language is designed to solve some problems
exceptionally well but may solve other types of problems poorly.

For example, the BASIC programming language is meant to teach programming,
but it’s not very good for controlling the hardware of a computer, such as for
writing an operating system or antivirus program. On the other hand, the C pro-
gramming language is meant to give you absolute control over every part of the
computer, which is why most operating systems and antivirus programs are writ-
ten in C. However, the C language can be much more frustrating and confusing for
novices to understand than BASIC is.

Ideally, you want to pick the programming language best suited for solving your
particular problem. Realistically, you probably know only a handful of program-
ming languages, so out of all the languages you know, pick the one that’s best
suited for solving your problem.

You can write any program in any programming language. The only difference
is that some programming languages can make writing certain programs easier
than others. The “best” programming language to use is always the language that
makes writing a program easy for you.

H
ow

 Program
s W

ork

CHAPTER 1 How Programs Work 105

Using Keywords as Building Blocks
Every program consists of one or more commands (instructions), and each com-
mand typically represents a single line of code. The more lines of code, the more
complicated the program.

The goal of programming is to write the fewest lines of code that do the maximum
amount of work.

Each command tells the computer to do one thing. Put enough commands
together, and you can create a simple program, as shown in Figure 1-1.

Every programming language provides a list of commands dubbed keywords or
reserved words. By typing keywords one after another, you can tell the computer
what to do.

THE TROLLEY PROBLEM
There’s a philosophical thought exercise called the trolley problem, which highlights the
fact that some problems may have no good solutions at all. The idea behind the trol-
ley problem is that a runaway trolley is hurtling down the tracks, but you happen to be
standing near a switch that can redirect the trolley down a different track.

The dilemma is that if you do nothing, the trolley will hit and kill five people walking on
the tracks. However, if you pull the lever to switch the trolley to a different track, the
trolley will hit and kill just one person walking along those different tracks.

So, the choice is: Do you let five people die by doing nothing or do you save those five
people and deliberately let one other person die? This is essentially the same problem
that self-driving car algorithms will face. If a self-driving car drives down a street and a
child dashes in front, should the self-driving car hit and kill the child, or should it swerve
off the road to save the child, but risk killing the passengers and any pedestrians by the
side of the road?

Problems can’t always be solved through more processing power. The trolley problem
highlights the difficulties programmers face when creating programs that have to make
split-second decisions, based on incomplete information.

Some problems have one right answer, but most problems have either multiple
answers that are all equally good or multiple answers that are all equally bad.

106 BOOK 2 Programming Basics

A programming language’s keywords act like the letters of the alphabet. Type
letters in different combinations, and you can create different words. Type
keywords in different combinations, and you can create different commands, as
shown in Figure 1-2.

FIGURE 1-1:
If you put enough

commands
together, you can

create any type
of program.

FIGURE 1-2:
Multiple

keywords,
along with

various symbol
characters, can
create a single

command.

H
ow

 Program
s W

ork

CHAPTER 1 How Programs Work 107

MORE VERSUS FEWER KEYWORDS
Computer scientists are divided on whether it’s better for a programming language
to offer a lot of keywords. By offering a lot of keywords, a programming language can
let programmers write fewer keywords that do more work. By offering fewer keywords,
a programming language makes programmers write a lot of simple keywords just to
do something that another language may be able to do with one keyword.

Given these choices, having a lot of keywords in a programming language seems to
make more sense. The problem is that the more keywords that are used, the harder it is
to write a compiler for that programming language. And the harder it is to write a com-
piler, the less efficient that compiler is in converting source code into machine language,
just as it’s much harder to translate a Russian scientific paper into English than it is to
translate a Russian children’s story into English.

That’s one problem with the Ada programming language. Ada uses lots of keywords,
which makes programming easier but creating compilers for Ada much harder. This is
one of the reasons why Ada compilers are much less widespread than compilers for the
C programming language.

Unlike Ada, C offers a bare minimum of keywords. This makes programming in C harder
because you need to write a lot of keywords to do something as seemingly simple as storing
a text string. However, C’s handful of keywords makes it much easier to write a C compiler.

To compensate for the lack of keywords, most C compilers include libraries of com-
monly used subprograms that can make C programming easier and more useful.

As a result, you can find C compilers for practically every computer because it’s much easier
to write a C compiler than it is to write an Ada compiler. The more C compilers available,
the easier it is to port (transfer) a C program to another computer. The C programming lan-
guage is popular partly because you can run C programs on almost every computer.

With a lot of keywords, Ada makes programming easier for humans but harder for com-
puters. In contrast, the smaller number of keywords in C makes programming harder
for humans but much easier for computers. Given a choice between Ada and C, more
people choose C, so having a programming language with fewer keywords seems to be
more efficient (at least for the computer).

This creates a dilemma. On the one hand, some programming languages are easier for
people to read and understand but harder for computers to compile to create efficient,
portable programs. On the other hand, some programming languages are easier for
computers to compile but harder for people to read and understand. Programming
languages often fall into one category or another, which is partially why some program-
mers favor one language over another.

108 BOOK 2 Programming Basics

Organizing a Program
Every program consists of one or more commands, but there are different types
of commands. Some commands tell the computer how to manipulate data, such
as adding two numbers together. Other commands may tell the computer how to
print data, display it onscreen, or save it on a disc.

Although you could jumble all your commands together and still have a working
program (see Book 1, Chapter 2 for more on programs), you can make your pro-
gram easier to read and modify by organizing similar commands in different parts
of your program.

So, if your program isn’t printing correctly, you don’t have to search through
the entire program to find the faulty commands. Instead, you can just look at the
part of the program where you grouped all your printing commands, as shown in
Figure 1-3.

When you write a simple program that consists of a handful of commands, orga-
nizing related commands in groups isn’t too important, but when you start
writing bigger programs that consist of hundreds or thousands of commands,
organizing commands can mean the difference between writing a program that
nobody can understand and writing a program that’s easy for anyone to under-
stand and modify.

FIGURE 1-3:
Dividing a

large program
into parts can
make it easier
to find specific
commands in

your program.

H
ow

 Program
s W

ork

CHAPTER 1 How Programs Work 109

When you save your program, you can save it as a single file on the computer.
However, the more commands you write, the bigger your program gets and the
bigger the file you need to store the whole program.

No matter how carefully you organize your commands, eventually your program
will get too big and cumbersome as a single massive file to read and modify easily.
That’s when you need to break your program into smaller parts.

Dividing a Program into Subprograms
The smaller the program, the easier it is to write, read, and modify later. So rather
than create a massive program, with related commands organized into groups,
you can divide a large program into smaller pieces, called subprograms.

Every programming language has its own term for dividing a program into smaller
pieces. In BASIC, mini-programs are called subprograms, but in C and languages
inspired by C, mini-programs are called functions. Some other synonyms for mini-
programs include procedures, subroutines, and methods.

Subprograms essentially break up a large program into multiple miniature pro-
grams with each miniature program acting like a building block to create a much
larger program, as shown in Figure 1-4. So, rather than build a large program
entirely out of keywords, you can build a program out of keywords and subpro-
grams (which are themselves made up of keywords).

Think of subprograms as a way to create keywords that aren’t built into the pro-
gramming language. For example, the C programming language doesn’t have any
keywords for working with text strings, so programmers have used C’s existing
keywords to create subprograms that can work with text strings. By using these
existing subprograms, other C programmers can manipulate text strings without
writing their own commands.

Using keywords alone to create a program is like trying to build a skyscraper out
of bricks. It’s possible, but it takes a long time to layer enough bricks to reach the
height of a typical 50-story skyscraper.

Using subprograms to create a larger program is like using I beams to build a sky-
scraper. Essentially, I beams act like bigger bricks the same way that subprograms
act like bigger building blocks than keywords by themselves.

110 BOOK 2 Programming Basics

You can store subprograms in two ways:

 » In one file: Storing subprograms in the same file is no different from group-
ing related commands together in one file. It’s like storing your socks,
underwear, and T-shirts in the same drawer but pushing them into separate
corners. The drawer may be organized, but such an arrangement is suitable
only if you don’t have many clothes to worry about. When you get more
clothes, you need a bigger drawer to hold it all. The same holds true with
storing subprograms in a single file. Eventually, if you group enough com-
mands into subprograms, a single file crammed full of subprograms can still
be cumbersome to read and modify.

 » In separate files: To keep files down to a reasonable size, programmers store
subprograms in separate files, as shown in Figure 1-5. Not only does this
avoid cramming everything into a single file, but separate files also give you
the option of creating reusable libraries of subprograms that you can copy
and reuse in another program.

Libraries of subprograms, stored as separate files, make it easy to reuse code in
multiple projects. When you create a subprogram that works reliably, you can
share this subprogram with others so they don’t have to write their own subpro-
gram and test it.

FIGURE 1-4:
Subprograms

create reusable
building blocks

that you can
use to make

writing programs
even easier.

H
ow

 Program
s W

ork

CHAPTER 1 How Programs Work 111

Programmers often sell their libraries of subprograms to others, although each
library of subprograms is usually designed to work only with a specific program-
ming language and operating system, such as C++ running on Windows. Many
Windows libraries of subprograms are stored as dynamic link libraries (DLLs)
although you may see some libraries sold as something called .NET components.

The name simply tells you what type of programming languages and computers
you can use the programming library on. So, if you’re using a programming lan-
guage that can use .NET components, you can use subprogram libraries stored as
.NET components.

When you get a library of subprograms (for free or for a fee), you may also get
the source code to those subprograms. With the source code, you can modify the
subprograms. However, most subprogram libraries don’t include the source code,
so you have to pay for an updated version of the subprogram library in the future.

By storing subprograms in separate files, you can write a program in multiple
programming languages. That way, you can write your main program in C++ and
then write subprograms in C or Java. By doing this, you don’t have to limit your-
self to the strengths and weaknesses of a single programming language. Instead,
you can take advantage of the strengths of each programming language.

FIGURE 1-5:
Storing

subprograms in
separate files can
make it easier to
read and modify

one part of a
large program
without having

to see any other
part of that

same program.

112 BOOK 2 Programming Basics

If you’re writing a hard disk diagnostic program, you could write the whole thing
in C because C is great for accessing the hardware of a computer. However, you
may find that C is too clumsy for printing reports or displaying information
onscreen. In that case, what are your choices? You can

 » Use C to write the whole program. This option is great for accessing
computer hardware but hard for writing the rest of the program, like the user
interface (UI).

 » Use an easier language, like BASIC, to write the whole program. This is
great for writing every part of the program except the part needed to access
the computer hardware.

 » Use a mix of two or more programming languages. Use BASIC to write
most of the program and then use C to write a subprogram to access the
computer hardware.

By giving you the option to choose the best programming language for a specific
task, subprograms help make it easier for you to write larger programs, as shown
in Figure 1-6.

FIGURE 1-6:
Subprograms give

you the option
of using different

programming
languages to

write different
parts of a

larger program.

H
ow

 Program
s W

ork

CHAPTER 1 How Programs Work 113

Dividing a Program into Objects
The more complicated programs get, the larger they get. If programs get too big,
they get harder to write, understand, and modify. This is why dividing a large
program into multiple smaller subprograms can make programming much easier.
Just write a bunch of little programs and then paste them together to create a big-
ger program.

Unfortunately, dividing a large program into subprograms isn’t without its prob-
lems. In theory, if you want to update a program, you can modify a subprogram
and plug that modified subprogram back into the main program to create an
updated version.

In reality, that almost never works. The problem comes from the fact that sub-
programs aren’t always independent entities that you can yank out and replace
without affecting the rest of the program. Sometimes one subprogram relies on
data manipulated by a second subprogram. Change that first subprogram, and
those changes could affect the first subprogram in a domino-like effect, as shown
in Figure 1-7.

When subprograms are highly dependent on each other, they’re high, strong, or
tight coupling. When subprograms aren’t dependent on each other, they’re low,
weak, or loose coupling. You want your subprograms to have low, weak, or loose
coupling. That way, changing one part of your program doesn’t accidentally affect
another part of your program.

To enforce weak coupling, computer scientists have created object-oriented
programming (OOP). The main idea behind OOP is to divide a large program into
objects.

FIGURE 1-7:
Changing one

part of a program
can affect other

parts of that
same program.

114 BOOK 2 Programming Basics

Objects act like “super” subprograms. Whereas subprograms give programmers
the choice of making a tightly or loosely coupled subprogram, objects encourage
programmers to create loosely coupled subprograms.

By encouraging programmers to create loosely coupled subprograms, objects
make it easy to modify a program without worrying about any unintended side
effects. OOP lets you yank out an object, modify it, and plug it back in without
worrying if your changes may affect the rest of the program.

Objects offer another advantage over subprograms. Whereas subprograms typi-
cally represent a specific action, objects represent specific physical items in the
real world.

For example, if you’re writing a program to control a robot, you could divide the
program into the following subprograms that make the robot:

 » Move

 » Sense obstacles (through sight and touch) in its way

 » Navigate

If you’re using OOP, you could divide that same program into objects that repre-
sent the robot’s

 » Legs

 » Eyes (video camera)

 » Brain

The way you divide a large program into parts isn’t important. What’s important
is how easy it is to modify those separate parts later. Suppose you rip the legs off
your robot and replace them with treads. In an OOP, you can yank out the Legs
object and replace it with a Treads object, as shown in Figure 1-8.

Although the robot now uses treads instead of legs to move, the Brain object
can still give the same type of commands to make the robot move, such as Move
Forward, Move Backward, and Stop.

How do you change the equivalent program divided into subprograms? First, you
have to change the Move subprogram to reflect the change in movement from legs
to treads. Then you may need to change the Navigate subprogram so it knows
how to navigate in different directions with treads instead of legs. Finally, you
need to make sure the changes you make in the Navigate and Move subprograms
don’t accidentally affect the Sense subprogram.

H
ow

 Program
s W

ork

CHAPTER 1 How Programs Work 115

Sounds like a lot of work just to make a simple change, doesn’t it? That’s why
loose coupling between subprograms is so important. Programmers can’t always
be trusted to make sure their subprograms are loosely coupling, so OOP makes it
easier to do, which can make it easier to modify a program later.

Creating a User Interface
The three actions of most programs are:

1. Get data.

2. Manipulate that data.

3. Display a result.

A football-picking program takes in data about both teams, uses a formula to
predict a winner, and prints or displays its answer onscreen. A hotel reservation
program gets a request for a room from the user (hotel clerk), scans its list of
rooms for one that’s available and that matches the user’s criteria (no smoking,
two beds, and so on), and displays that result onscreen.

Basically, every program takes in data, calculates a result, and displays that result.
To accept data from the user and display a result back to the user again, every
program needs a UI, as shown in Figure 1-9.

FIGURE 1-8:
Object-oriented

programming
divides your

program into
logical parts that

correspond to the
real world.

116 BOOK 2 Programming Basics

The UI of most computer programs includes drop-down lists, buttons, and dialog
boxes. If a program doesn’t get data from a person, its UI may be just a physical
cable connection because its user could be another computer feeding it informa-
tion like stock quotes.

To create a program, you have to create both your program and your UI. The UI
acts like a middleman between the user and the program. Here are some common
ways to create a UI:

 » Create it from scratch by writing code.

 » Use a subprogram library.

 » Use a rapid application development (RAD) tool.

Creating your own UI takes time to write and even more time to test. Although
there’s nothing wrong with creating your own UI, the time you spend creating a
UI could be better spent writing your actual program. For that reason, few pro-
grammers create their own UIs unless they have special needs, such as designing
a UI for scuba divers to use underwater.

Because creating a UI can be so troublesome and most UIs look alike anyway,
some programmers create libraries of subprograms that do nothing but create a
UI. That way you can create your program, slap on the UI by adding the library of
subprograms, and have a finished program.

Such UI libraries can be particularly handy for creating a UI quickly. For example,
many financial applications use charts to display data. If you wanted to create and
display bar, pie, line, spider, radar, or stock charts, you could either write code to
create these charts yourself (time-consuming) or buy a library of subprograms
that can already do this. That way, you could save time by just combining this
library with your own program.

Because nearly every program needs a UI and most UIs look the same anyway
(at least on the same operating systems, such as Windows, Android, macOS, or
iOS), programmers have created RAD tools that simplify creating UIs, as shown
in Figure 1-10.

FIGURE 1-9:
The UI accepts

data and displays
the results of

its calculations
back to the user.

H
ow

 Program
s W

ork

CHAPTER 1 How Programs Work 117

A RAD tool lets you drag and drop items to create a UI without writing any code
at all. The only time you need to write code is to make your program respond to
that UI.

FIGURE 1-10:
Creating a UI

involves picking
common items,
such as buttons

and check
boxes, and then

drawing them on
a window.

PROGRAMMING IS ABOUT MAINTAINING
EXISTING PROGRAMS
Creating a new program can be fun and exciting. In the real world, it’s also extremely
rare. That’s because there’s less of a need to create new programs and a far more
pressing need to maintain existing programs.

Maintenance involves fixing bugs, adding new features, or optimizing code. No matter
how stable or useful a program might be, programs often need to be modified over
time. Adding new features is a great marketing tactic to convince more people to buy
that particular program.

Fixing bugs is necessary but far less glamorous compared to adding new features.
Operating systems constantly need updates to patch bugs and security flaws, but other
programs often need patching to make them more reliable.

Adding new features can increase the power of a program, while fixing bugs can make a
program more reliable. Both of these tasks translate into greater profitability.

(continued)

118 BOOK 2 Programming Basics

That’s why companies often ignore the third maintenance task of optimizing or refactor-
ing code because optimizing code simply means going through an existing program and
rewriting code to make it run faster and more efficiently or yanking out old code that
isn’t needed at all. Refactoring can often reduce the size of a program and make it run
faster at the same time, but because it’s such an arduous process, it’s often done rarely,
if at all.

If a program (mostly) works, people see less of a need to make it run faster and take up
less space. Customers always want new features or want to have bugs fixed. Customers
may not care if a program runs faster or takes up less space.

Because maintenance forms the bulk of software engineering, it’s important to write
programs that are easy to understand. That way, other programmers can easily add
new features, fix bugs, and optimize your code.

(continued)

CHAPTER 2 Variables, Data Types, and Constants 119

Variables, Data Types,
and Constants

Every program consists of a list of instructions that tell the computer what to
do. The simplest program consists of a single instruction, such as one that
tells the computer to display the words Hello, world! onscreen.

Of course, any program that does the same thing over and over again isn’t very
useful or interesting. What makes a program useful is when it can accept infor-
mation from the outside world and then respond to that information.

So, instead of just displaying Hello, world! onscreen, a more useful program
might ask for the user to type a name in so the program could display Hello, Bob!

Programs don’t always have to get information from a person. Sometimes, pro-
grams can retrieve data that’s stored somewhere else, such as a list of employees
stored on another computer.

That program could access a database over a network and determine which per-
son has been assigned to which computer in the building. Then the program can
retrieve each person’s name so when they turn on the computer, the program
displays their name on the screen.

Chapter 2

IN THIS CHAPTER

 » Declaring your variables

 » Defining data types

 » Storing data in and retrieving data
from a variable

 » Using constant values in variables

 » Defining a variable’s scope

120 BOOK 2 Programming Basics

An even more sophisticated program could work with a webcam hooked up to the
computer along with a database that includes employee names and their pho-
tographs. So every time any computer’s webcam spots someone sitting at the
computer, the program could examine the person’s image through the webcam,
compare that image to the photographs of all employees stored in the database,
and then find the name that matches the person. Then the program could display
that person’s name onscreen.

To be useful, every program needs to retrieve and respond to data from an out-
side source whether it comes from a person, a device such as a webcam, or even
another computer program. Where the data comes from is less important than
what the program does with the data after the program receives it.

Declaring Variables
If somebody handed you a $20 bill, you could put it in your pocket. When some-
one hands a program some data, the program also needs a place to put that data.
Programs don’t have pockets to store stuff, so they store stuff in a computer’s
memory.

However, keeping track of specific memory locations in a computer can be tedious
(that’s partly why assembly language is so complicated and confusing). Instead of
forcing programmers to manipulate specific memory locations (called registers),
programming languages let you store data in abstract locations called variables.

Just as your pockets can hold money, rocks, or dead frogs, so can a variable hold
different types of data, such as numbers or words. The contents of a variable can
vary, which is why they’re called variables.

The whole purpose of variables is to make a program more flexible. Instead of
behaving the same way using identical data, programs can retrieve, store, and
respond to data from the outside world.

You can’t shove anything in your pockets until you have a pocket. Likewise, you
can’t shove any data in a variable until you first create that variable. To create a
variable, you must first declare the variable.

Declaring a variable tells the computer, “I need a pocket to store data.” When you
declare a variable, the computer carves up a chunk of its memory for your pro-
gram to use for storing data. You don’t need to know exactly where in memory the
computer is going to store your data. You just need to know that you can retrieve
that data later.

Variables, D
ata Types,

and Constants

CHAPTER 2 Variables, Data Types, and Constants 121

Of course, you can’t just dump data in a variable without knowing how to find it
again. In the real world, you can find something by remembering whether you
stored it in the left or right pocket. In a program, you can remember where you
stored data by giving a variable a unique name. When you create a variable,
you declare that variable’s name at the same time as the following Swift code
demonstrates:

var x = 9

This Swift code tells the computer the following:

1. Create a variable (using a keyword called var).

2. Give that variable an arbitrary name such as x.

3. Store the number 9 in the variable named x.

Variable naming conventions
Variable names are for your convenience only; the computer doesn’t care what
names you choose for your variables. Computers are perfectly happy using
generic variable names, like X or Y, but the more descriptive the name, the easier
it will be for you (or another programmer) to understand what type of data the
variable holds.

For example, looking at the earlier Swift code of var x = 9, can you tell what the
x or the 9 represents? Now look at the same code, but using a descriptive variable
name:

var baseballPlayers = 9

By just changing the variable x to a more descriptive baseballPlayers name, you
can guess that the number 9 refers to the number of players on a baseball team.

Variable names can be as simple as a single word, such as Age, Name, or Salary.
However, a single word may not adequately describe the contents of some vari-
ables, so programmers often use two or more words for their variable names.

This is where different programmers use different styles. Some programmers like
to cram multiple words into one long variable name like this:

salestax

122 BOOK 2 Programming Basics

For two words, this can be acceptable, but when you’re creating variable names
out of three or more words, this can start getting messy:

salestaxfor2008

To help identify the separate words that make up a long variable name, some pro-
grammers use the underscore character (_):

sales_tax_for_2008

Other programmers prefer to use uppercase letters at the beginning of each new
word:

SalesTaxFor2008

You can always mix and match both conventions if you want:

SalesTaxFor_2008

No matter which naming style you prefer, it’s best to stick with one style to pre-
vent your program from looking too confusing with lots of different variable
naming styles all over the place.

Every variable needs a unique name. If you try to give two variables identical
names, the computer gets confused and refuses to run your program. In some
languages, the new variable will overwrite the earlier, identically named variable,
which probably isn’t what you want.

In some languages, such as the curly-bracket family, which includes C, C++, C#,
Java, and Swift, variable names are case-sensitive. So, the salestax variable is
completely different from the SalesTax variable.

Creating variables in a command
The simplest way to create a variable is when you need it in a command. Suppose
you have a program that asks the user for his annual salary, such as the following
command (written in the Python programming language):

salary = input("What is your annual salary?")

This command displays, "What is your annual salary?" onscreen and waits for
the user to type in a number.

Variables, D
ata Types,

and Constants

CHAPTER 2 Variables, Data Types, and Constants 123

As soon as the user types in a number, such as 20000, the program needs a vari-
able to store this number. In this example, the program creates a salary variable
and stores the number 20000 in that variable.

Creating variables whenever you need them in a command is simple and
convenient — and potentially troublesome if you aren’t careful. The biggest prob-
lem is that when you create a variable within a command, that variable can store
any type of data.

Two types of common data that variables can hold include

 » Numbers: Typically used to represent quantities or measurements

 » Text: Sometimes called strings, as in “text strings”; used to represent non-
numeric data, such as names or mailing addresses

You can always perform mathematical calculations on numbers, but never on text.
So, if a program expects to store a number in a variable, it gets confused if it
receives text instead. The following Python program works perfectly just as long
as the user types in a number.

salary = float(input("What is your annual salary?"))
taxrate = 0.30
print ("This is how much you owe in taxes = ", salary * taxrate)

CAMEL-CASE NAMING
One common way to create consistent, descriptive variable names is called camel case,
which gets its name because the way capital letters are used resemble the humps of a
camel. The idea behind camel case is that the first letter of every variable is lowercase,
but the first letter of each additional word is uppercase, like this:

thisIsAnExampleOfCamelCase

Camel case is just one way to standardize the appearance and naming of variables. Feel
free to develop your own naming style, but keep in mind that using a naming conven-
tion that’s common within a specific programming language can make it easier for other
programmers to understand your code. When you’re familiar with using camel case
(or any other naming convention), you’ll have a much easier time understanding other
people’s code as well.

124 BOOK 2 Programming Basics

This program works as follows:

 » Line 1: The program displays, "What is your annual salary?" and then
waits for the user to type in a number. If the user types in 20000, the program
stores the string 20000 in the salary variable but then converts it to a float
(decimal) number.

 » Line 2: Store the number 0.30 in the taxrate variable.

 » Line 3: Multiply the number in the salary variable by the number in the
taxrate variable and print out the result. If the salary variable holds the
number 20000, the program prints, "This is how much you owe in
taxes = 6000.0".

Instead of typing the number 20000, what if the user types 20,000? Because the
program doesn’t recognize 20,000 as a valid number (because of the comma), the
program treats 20,000 as text that’s no different than twenty thousand. Trying to
multiply the number 0.30 by the text twenty thousand doesn’t make sense, so
the program stops running, as shown in Figure 2-1.

Declaring the data type of a variable
You can never stop users from typing in the wrong type of data, such as typing in
the words twenty thousand instead of the number 20000. However, you can pro-
tect yourself from trying to do something wrong, like multiplying a number by
text. In the Python programming language, the following program actually runs:

FIGURE 2-1:
If a program

tries to store the
wrong type of

data in a variable,
the program

stops running.

Variables, D
ata Types,

and Constants

CHAPTER 2 Variables, Data Types, and Constants 125

salary = input("What is your annual salary?")
taxrate = "Thirty percent"
print ("This is how much you owe in taxes = ", salary * taxrate)

In this program, the third line tries to multiple the salary variable by the taxrate
variable. If the program asks the user, "What is your annual salary?", and
the user types 20000, the third line of the program tries to multiply the number
20000 (stored in the salary variable) by the text Thirty percent. Obviously, you
can’t multiply a number by a word, so this program would appear to work but
prints only:

This is how much you owe in taxes =

The problem occurs because the program multiplies the salary variable by the
text Thirty percent. This causes the program to crash.

If you’re writing a small program, you could examine your program, line-by-line,
to see where the problem might be, but in a large program that consists of thou-
sands of lines, trying to track down this simple problem could be time-consuming
and frustrating.

To avoid this problem, many programming languages force you to declare (define)
your variable names and the type of data they can hold. By doing this, you can
have the compiler check your program to make sure you aren’t mixing data types
accidentally, such as trying to multiply a number by text.

If your program does try to mix data types by multiplying a number by text, the
compiler refuses to run your program, displays an error message, and highlights
the problem so you can fix it right away, as shown in Figure 2-2.

FIGURE 2-2:
You can’t

compile your
program until

the compiler is
certain that you

aren’t mixing
different

data types.

126 BOOK 2 Programming Basics

Using Different Data Types
Defining a specific data type makes it easy to

 » Know the type of data a variable can hold (either numbers or text).

 » Restrict the range of data the variable can hold.

DECLARING VARIABLES
Every programming language has its own way of declaring variables and defining a
data type:

• In the C programming language, you declare the data type followed by the variable
name:

int salary;

• In the Swift programming language, you first define a variable declaration heading
(var) and then declare the variable name followed by the data type:

var salary : Int

• In the Visual Basic programming language, you declare the variable name by using
a Dim keyword, followed by the variable name, the As keyword, and then the data
type of that variable:

Dim salary As Integer.

All three programming language examples create the same salary variable and define
that variable to hold only integer data types, which are any whole number, such as 45,
1093, or -39.

In programming languages considered type-safe, you must always declare a variable
before you can use it (otherwise, the computer doesn’t know what type of data you
want to store in that variable). Most of the time, you declare your variables at the top of
a program. This makes it easy for anyone to see not only how many variables the pro-
gram uses, but also all their names and data types at a glance.

Some programmers prefer to declare all their variables in one place; other program-
mers prefer to declare a variable only when they need to use it. Whatever method you
use, it’s best to be consistent so other programmers will be able to understand and
modify your code easily.

Variables, D
ata Types,

and Constants

CHAPTER 2 Variables, Data Types, and Constants 127

Figure 2-3 shows common categories of data types.

Every programming language stores different ranges of data, so be sure you
understand the range of values different data types can hold in the programming
language you’re using.

Defining the range of data can prevent a variable from storing incorrect data. For
example, if your program asks the user to type in their age, invalid data would
include strings (such as "Fifty-six").

The range of numbers listed for Long (long integer), Single (single-precision
floating-point number), and Double (double-precision floating-point number)
data types are listed as exponential numbers (that’s the lowercase e). So, the Long
data type can store a number as large as 2.147 with the decimal place moved nine
places to the right, or approximately 2,147,000,000.

Every programming language offers different data types, so use Figure 2-3 as a
guideline rather than a strict reference.

For example, if you want to store a person’s age in a variable, you probably want
to store it as a whole number (such as 45) rather than a real number (such as
45.029).

Next, you want to choose a data type that contains the range of values a person’s
age might be. From Figure 2-3, you can see that a Boolean data type can hold only
a 0 or a 1. An Integer data type can hold negative numbers as small as –32,768 or
positive numbers as large as 32,767. However, the range of an Integer data type
is much larger for a person’s age. Nobody has a negative age and nobody has an
age anywhere close to 32,767.

FIGURE 2-3:
Different data
types that can

hold a range
of values.

128 BOOK 2 Programming Basics

The best data type to choose for storing a person’s age is the Byte data type, which
can store numbers from 0 to 255. If your program tries to store a number less than
0 or greater than 255 as a person’s age, the Byte data type screams in protest and
refuses to do it, a process known as type-checking.

Type-checking only makes sure that your program doesn’t try to store invalid
data in a variable, but it can’t protect against a clumsy user typing in their age
as a negative number or a massively unrealistic number. To prevent user input
error, programs must validate that the data is correct. If a person types 0 for their
age, your program must refuse to accept the incorrect data and ask the user to try
again. That means you must always write extra commands in your program to
check for valid data that’s received from the outside world.

Another reason to use different data types is to reduce the amount of memory
your program needs. You can declare an Age variable as either a Byte or Integer
data type, as shown in the following Visual Basic code:

Dim Age As Byte

Or

Dim Age As Integer

Although both Age variables can store whole numbers, such as 39, the Byte data
type uses less memory (1 byte) than the Integer data type (4 bytes). However,
saving a small amount of memory may not be worth the hassle of using different
data types, so you need to decide what’s best for your particular project.

A byte is just a measurement unit where 1 byte represents the space needed to
store a single character (such as B or 8). In comparison, a typical sentence requires
100 bytes of storage, a page in a book might require 10,000 bytes, and a novel
might require 1 million bytes.

Bytes measure both storage space and memory so a Byte data type (storing the
number 48) needs only 1 byte of space whereas an Integer data type (storing the
same number 48) would need four times as much space. If you choose the wrong
data type, your program will still work, but it’ll use up more hard disk space or
memory than necessary. Table 2-1 lists common storage requirements for differ-
ent data types. Notice that the more data you have to store, the larger the storage
requirements.

Variables, D
ata Types,

and Constants

CHAPTER 2 Variables, Data Types, and Constants 129

So, when declaring variables as specific data types, you want to choose the data
type that can

 » Hold a range of valid values.

 » Use the least amount of space possible.

TABLE 2-1	 Typical Storage Requirements for Different Data Types
Data Type Storage Size

Byte 1 byte

Boolean 2 bytes

Character 2 bytes

Integer 4 bytes

Single 4 bytes

Long 8 bytes

Double 8 bytes

String 10 bytes + (2 × string length)

(If you had a string consisting of three letters, that string would take
up 10 bytes of storage space + (2 × 3), which is 16 bytes.)

TYPE INFERENCE
To make programming easier, some languages use something called type inference.
That’s where you can declare a variable and assign it a value without declaring its data
type at all. Then the compiler infers the data type based on the value assigned to that
variable.

• In the Swift programming language, you can declare a variable and assign it a value
like this:

var salary = 8

(continued)

130 BOOK 2 Programming Basics

Storing Data in a Variable
After you declare a variable, store data in that variable as the following C program
demonstrates:

int age;
age = 15;

The first line declares the age variable as an integer (int) data type. The second
line stuffs the number 15 into the age variable.

You can assign a fixed value (like 15) to a variable or any equation that creates a
value, such as

taxes_owed = salary * 0.30;

Because 8 is an integer, the compiler infers that the data type of salary can only store
integer (Int) data types. So the preceding is equal to this:

var salary: Int = 8

Although type inference lets you omit an explicit data type declaration, it can be confus-
ing. In the following Swift variable declarations, what is the data type?

var salary = 8.0

Because 8.0 is a decimal value, Swift infers that the data type must be Double. When
working with decimal numbers, it’s often better to clarify exactly the data type you want
the variable to hold. That’s because decimal numbers can be of different data types
such as:

var salary: Double = 8.0
var newSalary: Float = 8.0

The salary variable can hold Double data types, but the newSalary variable can hold
only Float data types, even though they both store the exact same decimal number.

When using type inference, it’s a good idea to explicitly declare data types, especially
with decimal numbers, to make it clear exactly what data type a variable can hold.

(continued)

Variables, D
ata Types,

and Constants

CHAPTER 2 Variables, Data Types, and Constants 131

If the value of the salary variable is 1000, this command multiplies 1000 (the
salary variable’s value) by 0.30, which is 300. The number 300 then gets stored
in the taxes_owed variable.

When storing data in variables, make sure the variable either is empty or contains
data you can afford to lose. Variables can hold only one item at a time, so storing
a new value in a variable wipes out the old value, as shown in Figure 2-4 and in
the following BASIC code:

Salary = 25000
Salary = 17000 + 500
PRINT "This is the value of the Salary variable = ", Salary

If you store a value in a variable and then immediately store a second value in
that same value, you wipe out the first value in that variable. Obviously, there’s
no point in storing data in a variable only to wipe it out later, so when you store
a value in a variable, you’ll eventually want to use that value again. (Otherwise,
there’s no point in storing that data in the first place.)

FIGURE 2-4:
Assigning a

new value to a
variable wipes

out the old value.

132 BOOK 2 Programming Basics

Retrieving Data from a Variable
After you store data in a variable, you can treat that variable exactly like a fixed
value. In this first Python language example, the print command just prints,
"This is when I plan on retiring = 65".

print ("This is when I plan on retiring = ", 65)

Replacing the fixed value (65) with a variable and assigning the value of 65 to that
variable creates the following:

age = 65
print ("This is when I plan on retiring = ", age)

OPTIONAL VARIABLES
Suppose you declare a variable but don’t assign a value to it like this:

var x: Int

The above declaration defines a variable called x that can hold integer (Int) data types,
but doesn’t actually store anything in that variable. If you try to use that variable before
it gets assigned any data, your program will crash. One clumsy solution is to give every
variable a default value. However, you run the risk that your program will accidentally
use this default value instead of any actual data. The default value will keep your pro-
gram from crashing but could return an unexpected result such as your program claim-
ing someone’s age is –1.

To avoid this problem, some programming languages let you declare optional variables.
By default, an optional variable holds a nil value. This nil value prevents your program
from crashing if it tries to use the optional variable before you store any data in it.

In Swift, you can declare an optional variable like this with a question mark after the
data type declaration like this:

var x: Int?

The question mark just lets you know that this variable can contain nothing (nil).
Optional variables can be especially useful when retrieving data from a user interface
(UI) where the user might skip over an option — for example, leaving a text field empty
rather than typing in a value (their middle name).

Variables, D
ata Types,

and Constants

CHAPTER 2 Variables, Data Types, and Constants 133

The first line stores the value 65 into the age variable. The second line prints,
"This is when I plan on retiring = ", takes the last value stored in the age
variable (which is 65), and prints that value out so the entire message that appears
on the screen is:

This is when I plan on retiring = 65

In addition to using variables as if they’re a fixed value, you can also assign the
value of one variable to another, such as

first_number = 39
second_number = first_number + 6

Here, the first line stores the number 39 in the first_number variable. The second
line adds the number 6 to the value in the first_number variable (39) and assigns
this sum (45) into the second_number variable.

You can also modify a variable by itself, as shown in this example:

people = 5
people = people + 12

The first line stores the value of 5 into the people variable. The second line tells
the computer to do the following:

1. Find the value stored in the people variable (5) and add it to the number 12 for
a total of 17.

2. Store the value of 17 into the people variable, wiping out the last value stored
there (which was 5).

Essentially, variables are nothing more than values that can change while the
program runs. In the preceding example, one moment the value of the people
variable was 5, and the next moment the value of that same people variable
was 17.

Using Constant Values
As a general rule, never use fixed values directly in your program. The reason
for this is simple: Suppose you need to calculate the sales tax in three different
places in your program. Near the top of your program, you might have a command
like this:

134 BOOK 2 Programming Basics

Material_cost = Item_cost + (Item_Cost * 0.075)

Buried in the middle of your program, you might have another command like this:

Product_cost = Part_cost + (Part_Cost * 0.075)

Near the bottom of your program, you might have a third command like this:

Project_cost = Material_cost + Product_cost + (Material_cost +
Product_cost) * 0.075

In all three commands, the number 0.075 represents the current sales tax
(7.5 percent). What happens if the sales tax suddenly jumps to 8 percent? Now
you have to go through your entire program, find the number 0.075, and replace
it with the number 0.080.

Searching and replacing one value with another can be tedious, especially in a
large program. As an alternative to using fixed values directly in your commands,
you can use constants instead.

As the name implies, constants are like variables that hold only a single value that
never changes. So, you could define the value of your sales tax just once, as the
following Visual Basic code shows:

Const sales_tax As Single = 0.075

This command tells the computer:

 » Use the Const keyword to create a sales_tax constant.

 » Define the sales_tax variable as a Single data type.

 » Store the value 0.075 into the sales_tax variable.

By using constants, you can eliminate fixed values in your commands and replace
them with a constant instead, which no part of your program can ever change by
mistake, such as

Const sales_tax As Single = 0.075
Material_cost = Item_cost + (Item_Cost * sales_tax)
Product_cost = Part_cost + (Part_Cost * sales_tax)
Project_cost = Material_cost + Product_cost + (Material_cost +

Product_cost) * sales_tax

Variables, D
ata Types,

and Constants

CHAPTER 2 Variables, Data Types, and Constants 135

Now if the sales tax changes from 7.5 percent to 8 percent, you just need to change
this value in one constant declaration, such as

Const sales_tax As Single = 0.080

This one change effectively plugs in the value of 0.080 everywhere your program
uses the sales_tax constant. So, constants offer two advantages:

 » They let you replace fixed values with descriptive constant names.

 » They let you change the value of a constant once and have those changes
occur automatically in the rest of your program.

So, use constants to replace fixed values and use variables to store different types
of data retrieved from the outside world. Every program needs to use variables,
but not every program needs to use constants.

After you understand how to store data temporarily in variables, your program
can start manipulating that data to do something useful.

Defining the Scope of a Variable
The scope of a variable defines which part of your program can store and retrieve
data in a variable. Because variables store data that your program needs to work
correctly, your program must make sure that no other part of the program acci-
dentally modifies that data.

If your program stores a person’s credit card number in a variable, you don’t want
another part of your program to accidentally retrieve that data and change the
numbers around or send a hundred copies of each credit card number to custom-
ers outside the company.

So, when creating variables, limit the variables’ scope. The scope simply defines
which parts of your program can access a variable. When you declare a variable,
you also define one of three possible scope levels for that variable:

 » Global

 » Module

 » Subprogram

136 BOOK 2 Programming Basics

Handling global variables with care
In a global variable, any part of your program can access that variable, including
storing new data in that variable (and wiping out any existing data already stored
in that variable), changing the data in a variable, or wiping out the data in a vari-
able altogether, as shown in Figure 2-5.

Use global variables sparingly. If you create a global variable and some part of
your program keeps modifying that variable’s data by mistake, you have to search
through your entire program to find which command is messing up that variable.
If you have a million-line program, guess what? You have to examine a million
lines of code to find the one line that’s changing that variable by mistake. If that’s
your idea of fun, go ahead and use global variables.

In the old days, all programming languages let you create global variables, and it
was up to the programmer to make sure no commands accidentally modified that
variable in unintended ways. When working on small programs, programmers can
do this easily, but when working on massive programs created by teams of pro-
grammers, the odds of abusing global variables increases dramatically.

FIGURE 2-5:
Every part of a

program can
access and

change a global
variable.

Variables, D
ata Types,

and Constants

CHAPTER 2 Variables, Data Types, and Constants 137

Think of a shelf where you can store your books, wallet, and laptop computer. If
you’re the only person who has access to that shelf, you can be sure anything you
put on that shelf is there when you look for it again.

Now imagine putting your shelf of personal belongings (books, wallet, and laptop
computer) on a shelf located in Grand Central Station where thousands of people
can grab anything they want off that shelf or put something else on the shelf
instead. Would you feel safe leaving your wallet and laptop on such a shelf? If not,
you probably wouldn’t feel safe putting your data in a global variable either.

Because global variables can be so dangerous, most programming languages don’t
let you create a global variable unless you specifically tell the computer to create
one. To create a global variable, you often have to use a special keyword, such as
global or public, like this:

Global X : Integer

The preceding command tells the computer to create a global variable, called X,
that can hold an integer data type. You type a global variable declaration in any file
that contains your main program or a library of subprograms.

Restricting scope to a module
A module is another term for a separate file. If you divide a large program into
subprograms and store those subprograms in separate files, each file is a module.
A module variable lets you create a variable that can be accessed only by code stored
in that particular module, as shown in Figure 2-6.

The advantage of module variables is that they give you the convenience of a
global variable but without the danger of letting every part of a program access
that variable. Instead, module scope limits access only to code in that file.

Although they’re an improvement over global variables, module variables also
have some of the disadvantages of global variables. If a file contains a lot of sub-
programs, trying to find which line of code is messing up your module variable
can still be troublesome.

To create a module variable, you generally just declare a variable at the top of any
file except you don’t use the Global or Public keyword. In some programming
languages, you declare a module variable with the Private keyword, such as

Private X : Integer;

138 BOOK 2 Programming Basics

The preceding code would declare a module variable called X, which can hold an
integer data type.

Isolating variables in a subprogram
Because global and module variables can be dangerous to use because any part of
a program can change them, most programmers use global and module variables
sparingly. Most of the time, programmers declare variables within a subprogram.
Therefore, the only code that can access that variable is inside the subprogram
itself, as shown in Figure 2-7.

To create a variable with subprogram scope, you have to declare your variable at
the top of that particular subprogram. The subprogram effectively isolates that
variable from any other part of your program.

One main feature of object-oriented programming is that not only can you isolate
variables within an object, but you also can isolate any code that manipulates
those variables inside that same object as well. With both variables and the code
that manipulates those variables stored in the same object, you can easily find the
code that may be modifying a variable wrong.

FIGURE 2-6:
Module variables
restrict access to
code stored in a

particular file.

Variables, D
ata Types,

and Constants

CHAPTER 2 Variables, Data Types, and Constants 139

Passing data among subprograms
If one subprogram needs to use data stored in another subprogram, what’s the
solution? The easiest (and most dangerous) solution is to let multiple subpro-
grams access that variable as a global or module variable.

The better solution is to isolate that variable as a subprogram variable and then
pass (share) that data to another subprogram. This means you have to declare two
subprogram variables, one in each subprogram. Although cumbersome (now you
know why programs create global or module variables instead), passing data from
one variable to another, called parameter passing, helps keeps the data isolated in
the subprograms that actually need to use that data, as shown in Figure 2-8.

As a general rule, restrict the scope of your variables as small as possible. This
makes sure that the least lines of code can access that variable and potentially
mess up your program.

FIGURE 2-7:
Subprogram

variables restrict
access only to
code stored in
that particular

subprogram.

140 BOOK 2 Programming Basics

FIGURE 2-8:
To share

data among
subprograms,

you have to pass
that data from

one subprogram
to the other.

CHAPTER 3 Manipulating Data 141

Manipulating Data

E
very program accepts data from the outside world, manipulates that data in
some way, and then calculates a useful result. Data can be

 » Numbers

 » Text

 » Input from a keyboard, mouse, controller, or joystick (for a video game)

To manipulate numbers, computers can perform a variety of mathematical opera-
tions, which is just a fancy way of saying a computer can add, subtract, multi-
ply, and divide. To manipulate strings (as in text strings), computers can perform a
variety of string manipulation operations, which can chop out a letter of a word or
rearrange the letters that make up a word.

Every programming language provides operators (built-in commands) for manip-
ulating numbers and strings, but some programming languages are better at
manipulating numbers (or strings) than others.

For example, Fortran is specifically designed to make scientific calculations easy,
so Fortran has more operators for mathematical operations than a language such
as SNOBOL, which was designed primarily for manipulating text strings. You

Chapter 3

IN THIS CHAPTER

 » Using assignment and math
operators

 » Understanding string manipulation

 » Using comparison and Boolean
operators

 » Performing data type conversions

142 BOOK 2 Programming Basics

can still manipulate strings in Fortran or calculate mathematical equations in
SNOBOL; however, you need to write a lot more commands to do so.

Programming languages typically provide two types of data manipulation
commands:

 » Operators: Usually symbols that represent simple calculations, such as
addition (+) or multiplication (*)

 » Functions: Commands that perform more sophisticated calculations, such as
calculating the square root of a number. Unlike operators, which are usually
symbols, functions are usually short commands, such as SQRT (square root).

By combining both operators and functions, you can create your own commands
for manipulating data in different ways.

Storing Data with the Assignment
Operator

The simplest operator that almost every programming language has is the assign-
ment operator, which is nothing more than the equal sign (=), such as

VariableName = Value

The assignment operator simply assigns (stores) a value to a variable. That value
can be a fixed number, a specific string, or a mathematical equation that calculates
a single value. Some examples of the assignment operator are shown in Table 3-1.

TABLE 3-1	 Examples of Using the Assignment (=) Operator
Example What It Does

Age = 35 Stores the number 35 into the Age variable

Name = "Cat" Stores the string "Cat" into the Name variable

A = B + 64.26 Adds the value stored in the B variable to the number 64.26 and
stores the sum in the A variable

Answer = true Stores the Boolean value "true" in the Answer variable

M
anipulating D

ata

CHAPTER 3 Manipulating Data 143

Using Math to Manipulate Numbers
Because manipulating numbers (or number crunching) is such a common task
for computers, every programming language provides commands for addition,
subtraction, multiplication, and division. Table 3-2 lists common mathematical
operations and the symbols to use.

Integer division always calculates a whole number, which represents how many
times one number can divide into another one. In Table 3-2, the 6 \ 4 operation
asks the computer, “How many times can you divide 6 by 4?” You can only do it
once, so 6 \ 4 = 1. Here are some other examples of integer division:

23 \ 5 = 4
39 \ 7 = 5
13 \ 3 = 4

The modulo operator divides two numbers and returns the remainder. Most of the
curly-bracket languages, such as C++, use the percentage sign (%) as the modulo
operator whereas other languages, such as BASIC, use the mod command. Here are
some examples of modulo calculation:

23 % 5 = 3
39 % 7 = 4
13 % 3 = 1

TABLE 3-2	 Common Mathematical Operators
Operation Symbol Example Result

Addition + 3 + 10.27 13.27

Subtraction – 89.4 – 9.2 80.2

Multiplication * 5 * 9 45

Division / 120 / 5 24

Integer division \ 6 \ 4 1

Modulo % or mod 6 % 4 or

6 mod 4

2

Exponentiation ^ or ** 2^4 or 2**4 16

144 BOOK 2 Programming Basics

The exponentiation operator multiplies one number by itself a fixed number of
times. So, the 2^4 command tells the computer to multiply 2 by itself four times
or 2 * 2 * 2 * 2 = 16. Here are some other examples of exponentiation:

2^3 = (2 * 2 * 2) = 8
4^2 = (4 * 4) = 16
9^1 = (9 * 1) = 9

Organizing equations with operator
precedence
To do multiple calculations, you can type one mathematical calculation after
another, such as

X = 34 + 7
X = X * 89

Although this works, it can get clumsy, especially if you need to write more than a
handful of equations. As a simple solution, you can cram multiple equations into
a single, big equation, such as

X = 34 + 7 * 89

The problem is, how does the computer calculate this equation? Does it first add
34 + 7 and then multiply this result (41) by 89? Or does it first multiply 7 * 89
and then add this result (623) to 34? Depending on the order it calculates its
mathematical operators, the result is either 3649 or 657, two obviously different
answers.

To calculate any equation with multiple mathematical operators, computers fol-
low rules that define which mathematical operators get calculated first (known as
operator precedence). Table 3-3 lists common operator precedence for most pro-
gramming languages where the operator listed first in the table has the highest
precedence, and the operator listed last in the table has the lowest precedence.

Multiplication and division have equal precedence with each other. Similarly,
addition and subtraction have equal precedence with each other.

If an equation contains operators that have equal precedence, the computer cal-
culates the result from left to right, such as

X = 8 - 3 + 7

M
anipulating D

ata

CHAPTER 3 Manipulating Data 145

First, the computer calculates 8 – 3, which is 5. Then it calculates 5 + 7, which
is 12.

If an equation contains operators with different precedence, the computer calcu-
lates the highest-precedence operator first. Looking at this equation, you can see
that the multiplication (*) operator has higher precedence than the addition (+)
operator.

Y = 34 + 7 * 89

So, the computer first calculates 7 * 89, which is 623; then it adds 623 + 34 to
get 657.

What if you really wanted the computer to first calculate 34 + 7 and then multiply
this result (41) by 89? To do this, you have to enclose that part of the equation in
parentheses, such as

Y = (34 + 7) * 89

The parentheses tell the computer to calculate that result first. So, this is how the
computer calculates the preceding equation:

Y = (34 + 7) * 89
Y = 41 * 89
Y = 3649

You should always use parentheses to make sure the computer calculates your
equation exactly the way you want in case there could be multiple ways to calcu-
late the equation.

TABLE 3-3	 Operator Precedence
Operator Symbol

Exponentiation ^ or **

Multiplication *

Division /

Integer division \

Modulo % or mod

Addition +

Subtraction –

146 BOOK 2 Programming Basics

Using built-in math functions
Using basic mathematical operators, you can create any type of complicated for-
mulas, such as calculating a quadratic equation or generating random numbers.
However, writing equations to calculate something as common (to scientists and
mathematicians, anyway) as logarithms may seem troublesome. Not only do you
have to waste time writing such an equation, but you have to spend even more
time testing to make sure it works correctly as well.

So, to prevent people from rewriting commonly needed equations, most program-
ming languages include built-in math functions that are either

 » Part of the language itself (such as in many versions of BASIC)

 » Available as separate libraries (such as math libraries included with most
C compilers)

The advantage of using built-in math functions is that you can use them without
having to write any extra command that you may not want to do or may not know
how to do. For example, how do you calculate the square root of a number?

Most likely, you won’t have any idea, but you don’t have to because you can calcu-
late the square root of a number just by using that language’s built-in square-root
math function. So, if you wanted to know the square root of 34 and store it in an
Answer variable, you could just use the sqrt math function, such as

Answer = sqrt(34)

In some languages, such as BASIC, it doesn’t matter if you type a math function in
either uppercase or lowercase. In other languages, such as C, commands like SQRT
and sqrt are considered two completely different functions, so you have to know
whether your language requires you to type a math function in all uppercase, all
lowercase, or mixed case (such as Sqrt).

Table 3-4 lists some common built-in math functions found in many program-
ming languages.

By using math operators and math functions, you can create complex equations,
such as

x = 67 * cos (5) + sqrt (7)

M
anipulating D

ata

CHAPTER 3 Manipulating Data 147

Instead of plugging fixed values into a math function, it’s more flexible just to
plug in variables instead, such as

Angle = 5
Height = 7
X = 67 * cos (Angle) + sqrt (Height)

Manipulating Strings
Just as math operators can manipulate numbers, so can string operators manip-
ulate strings. The simplest and most common string operator is the concatenation
operator, which smashes two strings together to make a single string.

Most programming languages use either the plus sign (+) or the ampersand (&)
symbol as the concatenation operator, such as

Name = "Joe " + "Smith"

or

Name = "Joe " & "Smith"

In the Perl language, the concatenation symbol is the dot (.) character:

$Name = "Joe " . "Smith";

In the preceding examples, the concatenation operator takes the string "Joe "
and combines it with the second string "Smith" to create a single string that con-
tains "Joe Smith".

TABLE 3-4	 Common Built-In Math Functions
Math Function What It Does Example

abs (x) Finds the absolute value of x abs (–45) = 45

cos (x) Finds the cosine of x cos (2) = – 0.41614684

exp (x) Returns a number raised to the
power of x

exp (3) = 20.0855369

log (x) Finds the logarithm of x log (4) = 1.38629436

sqrt (x) Finds the square root of x sqrt (5) = 2.23606798

148 BOOK 2 Programming Basics

When concatenating strings, you may need to insert a space between the two
strings. Otherwise, the concatenation operator smashes both strings together like
"JoeSmith", which you may not want.

For more flexibility in manipulating strings, many programming languages
include built-in string functions. These functions can help you manipulate strings
in different ways, such as counting the number of characters in a string or remov-
ing characters from a string. Table 3-5 lists some common built-in string func-
tions found in many programming languages.

Not all programming languages include these string functions, and if they do,
they’ll likely use different names for the same functions. For example, Visual
Basic has a Substring function for removing characters from a string, but Perl
uses a substr function that performs the same task.

Finding Strings with Regular Expressions
Before you can manipulate a substring within a larger string, you first must find it.
Although some programming languages include string searching functions, most
of them are fairly limited to finding exact matches of strings.

To remedy this problem, many programming languages (such as Perl and Tcl) use
regular expressions. (A regular expression is just a series of symbols that tell the
computer how to find a specific pattern in a string.)

TABLE 3-5	 Common Built-In String Functions
String Function What It Does Example

length (x) Counts the number of characters in a
string (x), including spaces

length ("Hi there!") = 9

trim (x) Removes spaces from the beginning
and end of a string

trim (" Mary ") = "Mary"

index (x, y) Returns the position of a string within
another string

index ("korat", "ra") = 3

compare (x, y) Compares two strings to see if
they’re identical

compare ("A", "a") = False

replace (x, y, z) Replaces one string from
within another

replace ("Batter", "att", "ik") =
Biker

M
anipulating D

ata

CHAPTER 3 Manipulating Data 149

If a programming language doesn’t offer built-in support for regular expressions,
many programmers have written subprogram libraries that let you add regular
expressions to your program. By using regular expressions, your programs can
perform more sophisticated text searching than any built-in string functions
could ever do.

There are slightly different variations of regular expressions, so be aware of this
when using regular expressions in your favorite programming language.

Pattern-matching with the single
character (.) wildcard
The simplest way to search for a pattern is to look for a single character. For
example, you may want to know if a certain substring begins with the letter b,
ends with the letter t, and contains exactly one character between. Although you
could repetitively check every three-character string that begins with b and ends
with t, like bat or but, it’s much easier to use a single-character wildcard instead,
which is a period (.).

So if you want to find every three-letter substring that begins with a b and ends
with a t, you’d use this regular expression:

b.t

To search for multiple characters, use the single-character (.) wildcard multiple
times to match multiple characters. So, the pattern b..t matches the strings boot
and boat with the two-character wildcard (..) representing the two characters
between the b and the t.

Of course, the b..t pattern doesn’t match bat because bat has only one character
between the b and the t. Nor does it match boost because boost has more than two
characters between the b and the t.

When using this wildcard, you must know the exact number of characters
to match.

Pattern-matching for specific characters
The single-character wildcard (.) can find any character, whether it’s a letter,
number, or symbol. Instead of searching for any character, you can search for a
list of specific characters by using square brackets ([]).

150 BOOK 2 Programming Basics

Enclose the characters you want to find inside the square brackets. So, if you want
to find all strings that begin with b, end with t, and have an a, o, or u between, you
could use this regular expression:

b[aou]t

The preceding example finds strings like bat or bot but doesn’t find boat or
boot because the regular expression looks only for a single character sandwiched
between the b and the t characters.

As an alternative to listing the specific characters you want to find, you can also
use the not character (^) to tell the computer which characters you don’t want to
find, such as

b[^ao]t

This tells the computer to find any string that doesn’t have an a or an o between
the b and the t, such as but. If you have the string bat, the b[^ao]t regular expres-
sion ignores it.

Pattern-matching with the multiple-
character (*) and plus (+) wildcards
Sometimes you may want to find a string that has a specific character, but you
don’t care how many copies of that character you find. That’s when you can use
the multiple-character wildcard (*) to search for zero or more specific characters
in a string.

So, if you want to find a string that begins with bu and contains zero or more z
characters at the end, you could use this regular expression:

buz*

This finds strings like bu, buz, buzz, and buzzzzzz. Because you want to find zero
or more copies of the z character, you place the multiple-character wildcard after
the z character.

The multiple-character wildcard finds zero or more characters, but what if you
want to find at least one character? That’s when you use the plus wildcard (+)
instead. To search for a character, you place the plus wildcard after that character,
such as

buz+

M
anipulating D

ata

CHAPTER 3 Manipulating Data 151

This finds buz and buzzzz but not bu because the plus wildcard needs to find at
least one z character.

Pattern-matching with ranges
Wildcards can match zero or more characters, but sometimes you may want to
know whether a particular character falls within a range of characters. To do this,
you can use ranges. For example, if you want to know whether a character is any
lowercase letter, you could use the pattern [a-z] as follows:

bu[a-z]

This finds strings, such as but, bug, or bus, but not bu (not a three-character
string). Of course, you don’t need to search for letters from a to z. You can just as
easily search for the following:

bu[d-s]

This regular expression finds bud and bus but not but (because the t lies outside
the range of letters from d to s).

You can also use ranges to check whether a character falls within a numeric range,
such as

21[0-9]

This finds the strings 212 and 210. If you only wanted to find strings with num-
bers between 4 and 7, you’d use this regular expression:

21[4-7]

This finds the string 215 but not the strings 210 or 218 because both 0 and 8 lie
outside the defined range of 4 through 7. Table 3-6 shows examples of different
regular expressions and the strings that they find.

This section shows a handful of regular-expression wildcards you can use to
search for string patterns. A lot more regular expressions can perform all sorts of
weird and wonderful pattern searching. You can always find out more about these
other options by going to www.regular-expressions.info.

By stringing multiple regular-expression wildcards together, you can search for a
variety of different string patterns, as shown in Table 3-6.

https://www.regular-expressions.info/

152 BOOK 2 Programming Basics

You can always combine regular expressions to create complicated search pat-
terns, such as the last regular expression in Table 3-6:

p[aei].[0-9]

This regular expression may look like a mess, but you can dissect it one part at a
time. First, it searches for this four-character pattern:

 » The first character must start with p.

 » The second character must only be an a, e, or i: [aei].

 » The third character uses the single-character wildcard (.), so it can be anything
from a letter, number, or symbol.

 » The fourth character must be a number within 0 through 9: [0-9].

As you can see, regular expressions give you a powerful and simple way to search
for various string patterns. After you find a particular string, you can manipu-
late it with the built-in string manipulation functions and operators in a specific
programming language.

TABLE 3-6	 Examples of Pattern-Matching with
Different Regular Expressions

Pattern Matches These Strings

t..k talk tusk

f[aeiou]t fat fit fet

d[^ou]g dig dmg

zo* zo zoo z

zo+ zo zoo

sp[a–f] spa spe spf

key[0–9] key4

p[aei].[0–9] pey8 pit6 pa21

M
anipulating D

ata

CHAPTER 3 Manipulating Data 153

Using Comparison Operators
Unlike math and string operators that can change data, comparison operators
compare two chunks of data to determine which one is bigger than the other.
Table 3-7 lists common comparison operators. When comparison operators
compare two items, the comparison operator returns one of two values: True
or False.

A single comparison operation is also called a conditional expression.

The values True and False are known as Boolean values. (The mathematician who
invented Boolean arithmetic was named George Boole.) Computers are essentially
built on Boolean values because you program them by flipping switches either on
(True) or off (False). All programming ultimately boils down to a series of on/
off commands, which is why machine language consists of nothing but 0s and 1s.

Many curly-bracket languages, such as C, use != as their not-equal comparison
operator instead of <>.

Curly-bracket languages, such as C and C++, use the double equal sign (==) as
the equal comparison operator, whereas other languages just use the single equal
sign (=). If you use a single equal sign in C or C++, you’ll assign a value rather than
compare two values. In other words, your C or C++ program will work, but it won’t
work correctly.

TABLE 3-7	 Common Comparison Operators
Comparison
Operator

What It Means Example Result

= or == Equal to 45 = 37 "A" = "A" False True

< Less than 563 < 904 "a"< "A" True False

<= Less than or equal to 23 <= – 58
"b" <= – "B"

True False

> Greater than 51 > 4 "A" > "a" True False

>= Greater than
or equal to

76 >= 76 "z" >= – "a" True True

<> or != Not equal to 46 <> 9 "a" <> "g" True True

154 BOOK 2 Programming Basics

Knowing whether two values are equal, greater than, less than, or not equal to
one another is useful for making your program make decisions (see Chapter 4 of
this minibook).

Comparing two numbers is straightforward, such as

5 > 2

Comparing two numbers always calculates the same result. In this case, 5 > 2
always returns a True value. What gives comparison operators more flexibility is
when they compare variables, such as

Age > 2

Depending on what the value of the Age variable may be, the value of this com-
parison can be either True or False.

Comparing numbers may be straightforward, but comparing strings can be more
confusing. Remember: Computers only understand numbers, so they use numbers
to represent characters, such as symbols and letters.

Computers use the number 65 to represent A, the number 66 to represent B, all
the way to the number 90 to represent Z. To represent lowercase letters, comput-
ers use the number 97 to represent a, 98 to represent b, all the way up to 122 to
represent z.

The specific numbers used to represent every character on the keyboard can be
found on the ASCII table, which you can view at www.asciitable.com.

That’s why, in Table 3-7, the comparison between A > a is False because the
computer replaces each character with its equivalent code. So, the comparison of
characters

"A" > "a"

actually looks like this to the computer:

65 > 97

The number 65 isn’t greater than 97, so this comparison returns a False value.

https://www.asciitable.com/

M
anipulating D

ata

CHAPTER 3 Manipulating Data 155

Comparing a string of characters works the same way as comparing single char-
acters. The computer examines each string, character by character, and translates
them into their numeric equivalent. So, if you had the comparison

"aA" > "aa"

The computer converts all the characters into their equivalent values, such as

97 65 > 97 97

The computer examines the first character of each string. If they’re equal, it con-
tinues with a second character, a third character, and so on.

In the preceding example, the computer sees that the numbers 97 (which repre-
sent the character a) are equal, so it checks the second character. The number 65
(which represents the character A) isn’t greater than the number 97 (which rep-
resents the character a), so this comparison returns a False value.

What happens if you compare unequal strings, such as

"aA" > "a"

The computer compares each character as numbers, as follows:

97 65 > 97

The first numbers of each string (97) are equal, so the computer checks the
 second number. Because the second string (a) doesn’t have a second character, its
value is 0. Because 65 > 0, the preceding comparison returns a True value.

Now look at this comparison:

"Aa" > "a"

The computer translates these characters into their equivalent numbers, as
follows:

65 97 > 97

Comparing the first numbers (or characters), the computer sees that 65 > 97, so
this comparison returns a False value. Notice that as soon as the computer can
decide whether one character is greater than another, it doesn’t bother checking
the second character in the first string.

156 BOOK 2 Programming Basics

Using Boolean Operators
Comparison operators always return a True or False value, which are Boolean
values. Just as you can manipulate numbers (addition, subtraction, and so on)
and strings (trimming or searching for characters), so can you also manipulate
Boolean values.

When you manipulate a Boolean value, you get another Boolean value. Because
there are only two Boolean values (True or False), every Boolean operator returns
a value of either True or False.

Most programming languages offer four Boolean operators:

 » Not

 » And

 » Or

 » Xor

Like comparison operators, Boolean operators are most useful for making a pro-
gram evaluate external data and react to that data. For example, every time you
play a video game and get a score, the video game uses a comparison operator to
compare your current score with the highest score. If your current score is greater
than the highest score, your score now becomes the highest score. If your score
isn’t higher than the highest score, your score isn’t displayed as the highest score.

Using the Not operator
The Not operator, depicted with an exclamation point (!) in C and other curly-
bracket languages, takes a Boolean value and converts it to its opposite. So, if you
have a True value, the Not operator converts it to False, and vice versa. At the
simplest example, you can use the Not operator like this:

Not(True) = False

Like using fixed values in comparison operators (5 > 2), using fixed values with
Boolean operators is rather pointless. Instead, you can use variables and compari-
son operators with Boolean operators, such as

Not(Age > 2)

M
anipulating D

ata

CHAPTER 3 Manipulating Data 157

If the value of the Age variable is 3, this Boolean operation evaluates to

Not(Age > 2)
Not(3 > 2)
Not(True)
False

Using the And operator
The And operator depicted with double ampersands (&&) in C and many other
curly-bracket languages, takes two Boolean values and converts them into a sin-
gle Boolean value. If both Boolean values are True, the And operator returns a
True value; otherwise, the And operator always returns a False value, as shown in
Table 3-8, or the truth table.

So, if the value of the Age variable is 3, this is how the following And operator
evaluates an answer:

(Age > 2) AND (Age >= 18)
(3 > 2) AND (3 >= 18)
True AND False
False

If the value of the Age variable is 25, this is how the And operator evaluates an
answer:

(Age > 2) AND (Age >= 18)
(25 > 2) AND (25 >= 18)
True AND True
True

TABLE 3-8	 The And Truth Table
First Value Second Value Result

True True True

True False False

False True False

False False False

158 BOOK 2 Programming Basics

The And operator only returns a True value if both values are True.

Using the Or operator
Like the And operator, the Or operator, depicted with double vertical lines (||) in
C and many other curly-bracket languages, takes two Boolean values and converts
them into a single Boolean value. If both Boolean values are False, the Or operator
returns a False value; otherwise, the Or operator always returns a True value, as
shown in Table 3-9.

So, if the value of the Age variable is 3, this is how the following Or operator evalu-
ates an answer:

(Age > 2) OR (Age >= 18)
(3 > 2) OR (3 >= 18)
True OR False
True

If the value of the Age variable is 1, this is how the Or operator evaluates an
answer:

(Age > 2) OR (Age >= 18)
(1 > 2) OR (1 >= 18)
False OR False
False

The Or operator only returns a False value if both values are False.

TABLE 3-9	 The Or Truth Table
First Value Second Value Result

True True True

True False True

False True True

False False False

M
anipulating D

ata

CHAPTER 3 Manipulating Data 159

Using the Xor operator
The Xor operator, depicted with the caret symbol (^) in C and other curly-bracket
languages, is an exclusive Or. The Xor operator takes two Boolean values and con-
verts them into a single Boolean value. If both Boolean values are True or both
Boolean values are False, the Xor operator returns a False value; if one Boolean
value is True and the other Boolean value is False, the Xor operator returns a True
value, as shown in Table 3-10.

So, if the value of the Age variable is 3, this is how the following Xor operator
evaluates an answer:

(Age > 2) XOR (Age >= 18)
(3 > 2) XOR (3 >= 18)
True XOR False
True

If the value of the Age variable is 1, this is how the Xor operator evaluates an
answer:

(Age > 2) XOR (Age >= 18)
(1 > 2) XOR (1 >= 18)
False XOR False
False

The Xor operator returns a False value if both values are False or if both values
are True.

Boolean operators are used most often to make decisions in a program, such as a
video game asking, “Do you want to play again?” When you choose either Yes or
No, the program uses a comparison operator, such as

Answer = "Yes"

TABLE 3-10	 The Xor Truth Table
First Value Second Value Result

True True False

True False True

False True True

False False False

160 BOOK 2 Programming Basics

The result depends on your answer:

 » If your answer is Yes, the preceding comparison operation returns a True
value. If this comparison operation is True, the video game plays again.

 » If your answer is No, the preceding comparison operation returns a False
value. If this comparison operation is False, the video game doesn’t
play again.

Converting Data Types
Programming languages are often divided into two categories, depending on their
variables:

 » A strongly typed language forces you to declare your variables, and their
data types, before you can use them. (See Chapter 2 in this minibook for more
information about declaring variables types.)

 » A weakly typed language lets you store any type of data in a variable.

One moment, a weakly typed language variable can hold a string, another moment
it can hold an integer, and then another moment it may hold a decimal number.

Both options have their pros and cons, but one issue with strongly typed lan-
guages is that they prevent you from mixing data types. For example, suppose you
need to store someone’s age in a variable. You may declare your Age variable as a
Byte data type, like this in Visual Basic:

Dim Age As Byte

As a Byte data type, the Age variable can hold only numbers from 0 to 255, which
is exactly what you want. However, what if you declare an AverageAge variable as a
Single (decimal) data type, and a People variable as an Integer data type, such as

Dim People As Integer
Dim AverageAge As Single

At this point, you have three different data types: Byte, Integer, and Single. Now
what would happen if you try mixing these data types in a command, such as

AverageAge = Age / People

M
anipulating D

ata

CHAPTER 3 Manipulating Data 161

The AverageAge variable is a Single data type, the Age variable is a Byte data
type, and the People variable is an Integer data type. Strongly typed languages,
such as Swift, would scream and refuse to compile and run this program simply
because you’re mixing data types together.

To get around this problem, you must use special data conversion functions that
are built into the programming language. Data conversion functions simply con-
vert one data type into another so that all variables use the same data type.

Most programming languages have built-in data conversion functions, although
their exact names vary from one language to another.

In the preceding example, the AverageAge variable is a Single data type, so you
must make sure every variable is a Single data type before you can store its con-
tents into the AverageAge variable, such as

Dim People As Integer = 10
Dim AverageAge As Single = 45
Dim Age As Byte = 38
AverageAge = CSng(Age) / CSng(People)

The CSng function converts the Age variable from a Byte to a Single data type.
Then the second CSng function converts the People variable from an Integer to
a Single data type. Only after all values have been converted to a Single data
type can you store the value into the AverageAge variable, which can hold only a
Single data type.

When you convert data types, you may lose some precision in your numbers. For
example, converting an Integer data type (such as 67) to a Single data type
means converting the number 67 to 67.0. But what if you convert a Single data
type (such as 3.74) to an Integer data type? Then the computer may either round
the value to the nearest whole number, so the number 3.74 gets converted into 4,
or it may just drop the decimal values altogether so 3.74 gets converted into 3. So,
when converting between data types, make sure you can afford to lose any preci-
sion in your numbers, or else your program may wind up using inexact values,
which could wreck the accuracy of your calculations.

No matter what type of data you have, every programming language allows mul-
tiple ways to manipulate that data. The way you combine operators and functions
determines what your program actually does.

CHAPTER 4 Making Decisions by Branching 163

Making Decisions
by Branching

The simplest program lists commands one after another in a sequence, much
like following the steps of a recipe. Follow a recipe step-by-step, and you
always create the same dish. If a program lists commands step-by-step, the

computer always produces the same result.

In some cases, you may want a program to do the exact same thing over and
over again, such as a simple program to display traffic signals. However, for most
programs, you want the computer to react to outside data. To make a computer
respond in different ways, a program needs to offer two or more choices for the
computer to follow.

When you quit a program, the program may ask, “Do you really want to exit?” At
this point, the program is giving the computer a choice of two possible actions to
take based on your answer.

If you answer Yes, the computer quits the program. If you answer No, the com-
puter keeps running the program.

When a program gives the computer a choice of two or more commands to follow,
that’s called a branching or decision statement.

Chapter 4

IN THIS CHAPTER

 » Using the IF-THEN, IF-THEN-ELSE, and
IF-THEN-ELSEIF statements

 » Using multiple Boolean operators

 » Using the SELECT CASE statement

164 BOOK 2 Programming Basics

All branching statements work the same way:

 » A comparison operator (or a conditional expression) compares an expression
(such as A > 45) to determine a True or False value.

 » The branching statement offers at least two groups of commands for the
computer to follow based on whether its comparison is True or False.

Picking One Choice with
the IF-THEN Statement

The simplest branching statement is an IF-THEN statement, which looks like this:

IF (Something is True or False) THEN Command

The IF-THEN checks whether something is True or False:

 » If something is True, the IF-THEN command tells the computer to run exactly
one command.

 » If something is False, the computer doesn’t run this command.

An example of a simple IF-THEN statement might occur while playing a video
game:

IF (Player hits the Pause button) THEN Pause game

If the player hits the pause button (True), you want the computer to pause the
game. If the player doesn’t hit the pause button (False), you don’t want to pause
the game, as shown in Figure 4-1.

The simple IF-THEN statement runs only one command if a certain condition is
True. What if you want to run two or more commands? In that case, you must
define a list of commands to run. A group of commands is sometimes called a block
of commands or just a block.

So, if you want to run more than one command in an IF-THEN statement,
you must define a block of commands. In the curly-bracket language family,
such as C, you use curly brackets to define the beginning and end of a block of
commands:

M
aking D

ecisions
by Branching

CHAPTER 4 Making Decisions by Branching 165

if (True or False)
{
 command #1
 command #2
 .
 .
 command #3
}

In C/C++, there is no “then” keyword used to create the IF statement.

The curly brackets tell the IF-THEN statement to run the entire block of commands
enclosed within the curly brackets.

In other languages, the IF-THEN statement itself defines the start of a block, and
then you use an END IF command to define the end of a block, such as this BASIC
language example:

IF (True or False) THEN
 Command #1
 Command #2
 .
 .
 Command #3
END IF

FIGURE 4-1:
A simple
IF-THEN
 statement

runs one extra
command if

something
is True.

166 BOOK 2 Programming Basics

Finally, some languages, such as Pascal, force you to explicitly declare the begin-
ning and end of a block of commands with the begin and end keywords, such as:

If (True or False) then
 Begin
 Command #1
 Command #2
 .
 .
 Command #3
 End;

In Python, you specify a block of code solely using indentation.

No matter what language you use, the idea is the same; you must define the
beginning and end of all the commands you want the IF-THEN statement to run.

Picking Two Choices with
the IF-THEN-ELSE Statement

The simple IF-THEN statement either runs a command (or block of commands)
or it doesn’t. But what if you want the computer to take one action if something
is True and a completely different action if something is False? In that case, you
must use a variation: an IF-THEN-ELSE statement.

The IF-THEN-ELSE statement gives the computer a choice of two mutually exclu-
sive choices, as shown in Figure 4-2.

Like the simple IF-THEN statement, the IF-THEN-ELSE statement can run a single
command or a block of commands, such as:

if (True or False) then
{
 command #1
 command #2
 .
 .
 command #3
}
else
{

M
aking D

ecisions
by Branching

CHAPTER 4 Making Decisions by Branching 167

 command #1
 command #2
 .
 .
 command #3
}

The IF-THEN-ELSE statement tells the computer, “Check whether something is True.
If so, follow this set of commands. Otherwise, follow this second set of commands.”

One problem with the IF-THEN-ELSE statement is that it only checks a single
condition. If that single condition is False, it always runs its second set of com-
mands, such as:

IF (Salary > 100000) THEN
 TaxRate = 0.45
ELSE
 TaxRate = 0.30
END IF

In this BASIC language example, if the value of the Salary variable is greater than
100000, the TaxRate variable is always set to 0.45.

However, if the Salary variable isn’t greater than 100000 (it’s less than or equal
to 100000), the ELSE portion of the IF-THEN-ELSE statement always sets the
TaxRate variable to 0.30.

FIGURE 4-2:
An IF-THEN-

ELSE statement
offers two

different sets
of commands

to follow.

168 BOOK 2 Programming Basics

The IF-THEN-ELSE always gives the computer a choice of exactly two, mutually
exclusive choices. What if you want to give the computer three or more possible
choices? Then you must use the IF-THEN-ELSEIF statement.

Picking Three or More Choices
with the IF-THEN-ELSEIF Statement

The IF-THEN-ELSEIF statement offers two advantages over the IF-THEN-ELSE
statement:

 » You can check a condition for each set of commands.

 » You can define three or more separate sets of commands for the computer
to follow.

Checking a condition for each
set of commands
The IF-THEN-ELSEIF statement only runs a command (or block of commands) if
some condition is True, as shown in Figure 4-3.

If every conditional expression is False, the IF-THEN-ELSEIF statement doesn’t
run any commands. Only if one of its conditional expressions is True does the
IF-THEN-ELSEIF statement run exactly one set of commands, such as:

IF (Salary > 100000) THEN
 TaxRate = 0.45
ELSEIF (Salary > 50000) THEN
 TaxRate = 0.30
END IF

In this example, the computer has three possible choices:

 » If Salary > 100000, set TaxRate = 0.45.

 » If Salary > 50000 (but less than or equal to 100000), set TaxRate = 0.30.

 » If Salary <= 50000, do nothing.

M
aking D

ecisions
by Branching

CHAPTER 4 Making Decisions by Branching 169

The first choice checks whether the value of the Salary variable is greater than
100000, such as 250000. If so, it tells the computer to set the TaxRate variable to
0.45 and immediately exit out of the entire IF-THEN-ELSEIF statement.

The second choice only checks whether the value of the Salary variable is greater
than 50000. What happens if the Salary value is 150000? In that case, the first
choice runs (Salary > 100000), so this second choice would’ve never been checked
at all.

So, although the second choice might seem to run if the Salary variable is greater
than 50000, it really won’t run unless Salary > 50000 and the first choice did not
run, which means that the Salary variable must be less than or equal to 100000.

If the value of the Salary variable is less than or equal to 50000, the third choice
is to not run any additional commands at all. Unlike the IF-THEN-ELSE statement,
which always runs at least one set of commands, it’s possible for an IF-THEN-
ELSEIF statement to run no commands.

FIGURE 4-3:
An IF-THEN-

ELSEIF
statement offers

two different sets
of commands

to follow.

170 BOOK 2 Programming Basics

Offering three or more choices
The advantage of the IF-THEN-ELSEIF statement is that you can check for mul-
tiple conditions and give the computer three or more possible commands (or
blocks of commands) to follow.

To give the computer additional choices, you can just keep tacking on additional
ELSEIF statements:

IF (True or False) THEN
 Command
ELSEIF (True or False) THEN
 Command
ELSEIF (True or False) THEN
 Command
END IF

This example now gives the computer three possible sets of commands to fol-
low. If none of these conditions is True, the IF-THEN-ELSEIF statement may do
nothing.

To keep checking for additional conditions, you add as many additional ELSEIF
statements as you want.

The IF-THEN-ELSEIF statement makes the computer run exactly zero or one com-
mand (or block of commands), no matter how many additional ELSEIF statements
you add on.

If you want to make sure the IF-THEN-ELSEIF statement always runs one com-
mand (or block of commands), you can tack on the ELSE statement at the very end:

IF (True or False) THEN
 Command
ELSEIF (True or False) THEN
 Command
ELSEIF (True or False) THEN
 Command
ELSEIF (True or False) THEN
 Command
ELSE
 Command
END IF

M
aking D

ecisions
by Branching

CHAPTER 4 Making Decisions by Branching 171

The ELSE statement at the end ensures that the entire IF-THEN-ELSEIF statement
always runs at least one command. Notice that the ELSE statement doesn’t check
a condition because it runs only if all preceding conditions are False, such as in
the following example:

IF (Age > 65) THEN
 Status = Retired
ELSEIF (Age > 20) THEN
 Status = Working
ELSE
 Status = Bum
END IF

In this example, the IF-THEN-ELSEIF statement gives the computer three possible
choices:

 » Set Status = Retired only if Age > 65.

 » Set Status = Working only if Age > 20 (and less than or equal to 65).

 » Set Status = Bum only if Age is less than or equal to 20 (which means the
other two conditions are False).

Playing with Multiple Boolean Operators
To make a decision in an IF-THEN statement, the computer must use a conditional
expression that’s either True or False. Simple conditional expressions might be

Age = 55
Salary <= 55000
Name <> "John Smith"

You can also use Boolean operators (AND, OR, NOT, and XOR) to calculate multiple
conditions. Suppose you want to check whether a variable falls within a range of
values, such as being greater than 20 but less than or equal to 65:

(Age > 20) AND (Age <= 65)

Depending on the programming language, you may be able to type a Boolean
operator in lowercase (and), uppercase (AND), or a mix of both uppercase and
lowercase (And). Whichever style you like best, use it consistently throughout
your program.

172 BOOK 2 Programming Basics

Chapter 3 of this minibook contains more information about how Boolean
operators work.

Table 4-1 shows how different values for the Age variable determine the value of
the preceding Boolean expression.

Because multiple Boolean expressions ultimately evaluate to a single True
or False value, you can use multiple Boolean expressions in any IF-THEN
statements:

IF (Age > 20) AND (Age <= 65) THEN
 Status = Working
ELSE
 Status = Bum
END IF

There’s no limit to the number of Boolean expressions you can combine with
Boolean operators. The following is a perfectly valid Boolean expression that ulti-
mately evaluates to a single True or False value:

(Age > 20) AND (Age <= 65) OR (Age = 72) OR (Name = "John")

The more Boolean expressions you string together with Boolean operators, the
more confusing everything gets, so it’s generally best not to use multiple Boolean
expressions and Boolean operators (AND, OR, NOT, or XOR) at a time.

It’s possible for a SELECT CASE statement to run no commands if the CASE
statement can’t match a variable to any specific value:

SELECT CASE Age
CASE 65
 Status = Retired

TABLE 4-1	 Multiple Boolean Expressions Ultimately Evaluate
to a Single True or False Value

Value of the
Age Variable

Value of (Age
> 20) Expression

Value of (Age
<= 65) Expression

Value of Complete
Boolean Expression

15 False True False

35 True True True

78 True False False

M
aking D

ecisions
by Branching

CHAPTER 4 Making Decisions by Branching 173

CASE 21
 Status = Adult
END SELECT

The preceding SELECT CASE statement doesn’t do anything if the Age variable is
13, 25, or 81. To make sure the SELECT CASE statement always runs at least one
command, you must add the ELSE statement:

SELECT CASE Age
CASE 65
 Status = Retired
CASE 21
 Status = Adult
ELSE
 Status = Child
END SELECT

In this example, if the value of the Age variable is 24 or 5, it doesn’t match any
of the specific values, so the command under the ELSE statement runs instead
(Status = Child).

Instead of using the ELSE statement, the curly-bracket languages use a default
statement:

switch (age)
 {
 case 65: status = retired;
 break;
 case 21: status = adult;
 break;
 default: status = child;
 }

Both the ELSE and default statements force the SELECT CASE (or switch) state-
ment to always do something.

As a general rule, use the IF-THEN statements for making the computer choose
one or two commands (or blocks of commands). If you need the computer to
choose from three or more commands (or blocks of commands), the SELECT CASE
(switch) statement may be easier to read and write instead.

174 BOOK 2 Programming Basics

Making Multiple Choices with the
SELECT CASE Statement

The IF-THEN-ELSEIF statement can check multiple conditions and offer two or
more choices for the computer to follow. However, the more choices available,
the harder the IF-THEN-ELSEIF statement can be to understand, as shown in the
following example:

IF (Age = 65) THEN
 Status = Retired
ELSEIF (Age = 21) THEN
 Status = Adult
ELSE
 Status = Child
END IF

For two or three choices, the IF-THEN-ELSE statement may be easy to understand,
but after you need to offer four or more choices, the IF-THEN-ELSEIF statement
can start getting clumsy. As an alternative, most programming languages offer a
SELECT CASE statement:

SELECT CASE Variable
 CASE X
 Command #1
 CASE Y
 Command #2
END SELECT

The SELECT CASE statement examines a variable, and if it’s equal to a specific
value, the computer follows a command (or block of commands). The preceding
SELECT CASE statement is equivalent to the following IF-THEN-ELSEIF statement:

If Variable = X THEN
 Command #1
ELSEIF Variable = Y THEN
 Command #2
END IF

The basic idea behind the SELECT CASE statement is to make it easier to list mul-
tiple choices. Both an IF-THEN-ELSEIF statement and a SELECT CASE (also called
a switch statement) perform the same function; it’s just that the SELECT CASE
statement is easier to read and understand.

M
aking D

ecisions
by Branching

CHAPTER 4 Making Decisions by Branching 175

Consider the following IF-THEN-ELSEIF statement:

IF (Age = 65) THEN
 Status = Retired
ELSEIF (Age = 21) THEN
 Status = Adult
ELSE
 Status = Child
END IF

Rewriting this as a SELECT CASE statement might look like this:

SELECT CASE Age
 CASE 65
 Status = Retired
 CASE 21
 Status = Adult
 ELSE
 Status = Child
END SELECT

As you can see, the SELECT CASE statement is much less cluttered and easier to
read and understand than the IF-THEN-ELSEIF statement.

USING THE SWITCH STATEMENT
IN C AND SIMILAR LANGUAGES
Instead of using a SELECT CASE statement, curly-bracket languages, like C, use a
switch statement. The equivalent SELECT CASE statement written as a switch state-
ment in C looks like this:

switch (Variable)
 {
 case X: Command #1;
 break;
 case Y: Command #2;
 }

(continued)

176 BOOK 2 Programming Basics

A SELECT CASE statement in BASIC might look like this:

SELECT CASE Age
CASE 65
 Status = Retired
CASE 21
 Status = Working
ELSE
 Status = Child
END SELECT

The equivalent switch statement in C might look like this:

switch (age)
 {
 case 65: status = retired;
 break;
 case 21: status = adult;
 break;
 default: status = child;
 }

The most crucial difference between the SELECT CASE statement in other languages
and the switch statement in the curly-bracket languages is the use of the break com-
mand. If you omit the break command, the switch statement doesn’t know when to
stop running commands.

In the preceding example, the break command stops the computer from running the
other commands stored in the rest of the switch statement. So, if the value of the age
variable is 65, the preceding C program does the following:

1. Sets the status variable to retired

2. Stops running the switch statement

Suppose you didn’t include the break command, as follows:

switch (age)
 {
 case 65: status = retired;
 case 21: status = adult;
 default: status = child;
 }

(continued)

M
aking D

ecisions
by Branching

CHAPTER 4 Making Decisions by Branching 177

Matching multiple values
in a SELECT CASE statement
The simplest SELECT CASE statement checks whether a variable matches a single
value, such as:

SELECT CASE Age
CASE 65
 Status = Retired
CASE 21
 Status = Adult
ELSE
 Status = Child
END SELECT

This SELECT CASE statement doesn’t do anything unless the value of the Age vari-
able is exactly 65, 21, or 15. If the value of the Age variable is 66, 23, or 17, the
SELECT CASE statement does nothing.

Matching exact values may be useful, but sometimes you may want to run the
same command (or block of commands) if a variable matches one or more values.
For example, rather than match the number 65 exactly, you may want the SELECT
CASE statement to match 65, 66, or 67. In that case, you can write the SELECT CASE
statement like this:

SELECT CASE Age
CASE 65, 66, 67

If the value of the age variable is 65, this is how this C program works:

1. Sets the status variable to retired

2. Sets the status variable to working

3. Sets the status variable to student

Without the break command, many curly-bracket languages, like C, simply run every
command all the way through the switch statement until it reaches the bottom, which
probably isn’t what you want.

Remember: When using the switch statement in C (and many other curly-bracket
languages), always use the break command unless you specifically don’t need it, as
I explain in the following section.

178 BOOK 2 Programming Basics

 Status = Retired
CASE 21
 Status = Adult
ELSE
 Status = Child
END SELECT

With a switch statement in a curly-bracket language, like C, you can do the
following:

switch (age)
{
 case 67:
 case 66:
 case 65: status = retired;
 break;
 case 21: status = adult;
 break;
 default: status = child;
}

By not using the break command if the value of the age variable is 67 or 66, the
computer just continues down, line-by-line, until it runs the command if the age
variable was 65. Then it hits the break command directly under the status =
retired command and stops.

The switch command can be easier to read because all the matching values (67,
66, 65, 21, and 15) appear in a vertical column. The equivalent SELECT CASE state-
ment can be slightly harder to read because all the values don’t line up in a single
vertical column.

Checking a range of values
Matching values exactly can be cumbersome, as in the following, which sets Sta-
tus = Retired if the Age variable is between 65 and 75:

SELECT CASE Age
CASE 65, 67, 68, 69, 70, 71, 72, 73, 74, 75
 Status = Retired
CASE 21
 Status = Adult
ELSE
 Status = Child
END SELECT

M
aking D

ecisions
by Branching

CHAPTER 4 Making Decisions by Branching 179

To avoid this problem, many languages let you check for a range of values. So, if
you want to check whether a variable is greater than or equal to 65 and less than
or equal to 75, you could define the range of 65 TO 75 like this:

SELECT CASE Age
CASE 65 TO 75
 Status = Retired
CASE 21
 Status = Adult
ELSE
 Status = Child
END SELECT

Comparing values
Listing a range of values can be useful, but what if there’s no upper (or lower)
limit? For example, anyone over the age of 65 might be considered retired, so
you need to use a comparison operator to check a variable with a value, such as
Age >= 65.

To use a comparison operator in a SELECT CASE statement, languages such as
BASIC use the following syntax:

SELECT CASE Age
CASE IS >= 65
 Status = Retired
CASE 21 TO 64
 Status = Adult
ELSE
 Status = Child
END SELECT

In this example, the first part of the SELECT CASE statement tells the computer
to check whether the value in the Age variable is (note the IS keyword) >= 65.

The second part of the SELECT CASE statement checks whether the Age variable
falls within the range of 21 to 64.

The third part of the SELECT CASE statement runs if the value of the Age variable
is not within 21 through 64 or greater than 65.

180 BOOK 2 Programming Basics

As you can see, each part of a SELECT CASE statement can check a value by check-
ing a range of values or using a comparison operator.

Branching simply gives the computer multiple options to use when running. By
accepting outside information and comparing its value, a branching statement
can help the computer choose an appropriate response out of many possible
responses.

CHAPTER 5 Repeating Commands by Looping 181

Repeating Commands
by Looping

To write any program, you must specify what the computer needs to do at
any given time. Sometimes, you may need to write the same command mul-
tiple times. For example, suppose you want to print your name five times.

You could just write the same command five times like this:

PRINT "John Smith"
PRINT "John Smith"
PRINT "John Smith"
PRINT "John Smith"
PRINT "John Smith"

Writing the same five commands is cumbersome. Even worse, what if you sud-
denly decide you want to print your name not just 5 times, but 5,000 times? Do
you really want to write the same command 5,000 times?

Probably not, which is why computer scientists invented loops. A loop is just a
shortcut for making the computer run one or more commands without writing
those commands multiple times. So, rather than type the same command five
times as in the preceding example, you could use a loop like this:

Chapter 5

IN THIS CHAPTER

 » Looping a fixed number of times

 » Looping zero or more times

 » Looping at least once

 » Working with nested loops

 » Exiting early from a loop

 » Examining your loops

182 BOOK 2 Programming Basics

FOR I = 1 TO 5
 PRINT "John Smith"
NEXT I

This tells the computer to run the PRINT "John Smith" command five times. If
you want to print John Smith 5,000 times, you just have to change the number of
times you want the loop to run by replacing the 5 with 5000, such as:

FOR I = 1 TO 5000
 PRINT "John Smith"
NEXT I

Loops basically make one or more commands run more than once, as shown in
Figure 5-1.

Looping a Fixed Number of Times
with the FOR-NEXT Loop

The simplest loop runs one or more commands a fixed number of times, such as
five or ten times. Such loops that run a fixed number of times are FOR-NEXT loops,
and they look like this:

FOR Variable = InitialValue TO EndValue
 Command
NEXT Variable

FIGURE 5-1:
A loop can run

one or more
commands over

and over.

Repeating Com
m

ands
by Looping

CHAPTER 5 Repeating Commands by Looping 183

The first line serves two purposes: The first time the FOR-NEXT loop runs, this line
sets the value of the variable to an initial value, such as 1. The second and all addi-
tional times the FOR-NEXT loop runs, it checks whether its variable is still within
a range of values, such as between 1 and 10. If so, the FOR-NEXT loop runs again.

The second line consists of one or more commands that you want to run multiple
times.

The third line tells the FOR-NEXT loop to increase the value of its variable by 1 and
run the FOR-NEXT loop again.

The FOR-NEXT loop defines four items:

 » A variable

 » The initial value of the variable (often 0 or 1)

 » The ending value of the variable

 » One or more commands that run multiple times

Using a FOR-NEXT loop variable
Like all variables, the name of a FOR-NEXT loop variable can be anything,
although it’s best to use a descriptive name if possible. So, if you want to print
the names of all the employees of a company by using a FOR-NEXT loop, you could
use EmployeeID as a descriptive variable name, such as:

FOR EmployeeID = 1 TO 150
 PRINT EmployeeName(EmployeeID)
NEXT EmployeeID

This example would print out each name (EmployeeName) starting with the
employee who has the EmployeeID of 1 and continuing until it prints the employee
with the EmployeeID of 150.

If your FOR-NEXT loop variable is meant only for counting and doesn’t represent
anything, like employee numbers, you can just use a generic variable name, such
as I or J, such as:

FOR I = 1 TO 15
 PRINT "John Smith"
NEXT I

184 BOOK 2 Programming Basics

This FOR-NEXT loop just prints the name "John Smith" onscreen 15 times.

Never change the value of a FOR-NEXT loop’s variable within the loop or else you
risk creating an endless loop — the computer keeps running the same commands
over and over again without stopping. This makes your program appear to freeze
or hang, essentially stopping your program from working altogether. The follow-
ing example creates an endless loop:

FOR I = 1 TO 5
 PRINT "John Smith"
 I = 3
NEXT I

This FOR-NEXT loop should run five times. The first time the FOR-NEXT loop runs,
the value of the I variable is set to 1. But within the FOR-NEXT loop, the value
of the I variable is then set to 3. So each time the FOR-NEXT loop runs again, it
checks to see whether the I variable’s value is between 1 and 5.

Because the FOR-NEXT loop always resets the value of the I variable to 3, the I vari-
able never falls outside the range of 1 to 5, so this FOR-NEXT loop runs indefinitely.

The curly-bracket language family creates a FOR-NEXT loop that looks slightly dif-
ferent from the way other languages do. For example, this is how BASIC creates a
FOR-NEXT loop:

FOR I = 1 TO 15
 PRINT "John Smith"
NEXT I

This is the equivalent FOR-NEXT loop in C:

for (i = 1; i <= 15; i++)
{
 printf("John Smith");
}

The first line consists of three parts:

 » i = 1: Sets the value of the i variable to 1

 » i <= 15: Makes the FOR-NEXT loop keep repeating as long as the value of the
i variable is less than or equal to 15

 » i++: Increases the value of the i variable by 1

Repeating Com
m

ands
by Looping

CHAPTER 5 Repeating Commands by Looping 185

In any programming language, you can add 1 to any variable by doing this:

I = I + 1

The curly-bracket language family gives you a shortcut for adding 1 to any vari-
able, which is known as the increment operator, such as:

i++

This is equivalent to:

i = i + 1

The increment operator is used more often than writing out the entire i = i + 1
command because it’s shorter. There’s also a similar decrement operator that
looks like this:

i--

This is equivalent to:

i = i - 1

Counting by a different range
Normally, the FOR-NEXT loop counts from 1 to another number, such as 15.
However, you can also count from any number range, such as 23 to 41, 102 to 105,
or 2 to 8. The main reason to use a different range of numbers is if those numbers
represent something in your program.

For example, suppose employees are assigned an employee number starting with
120 and there are four employees, as shown in Table 5-1.

TABLE 5-1	 A Database of Employee Names Assigned
with Specific Employee ID Numbers

Employee Name Employee ID Number

John Smith 120

Maggie Jones 121

Susan Wilson 122

Emir Kelly 123

186 BOOK 2 Programming Basics

You could use a FOR-NEXT loop like this:

FOR EmployeeID = 120 TO 123
 PRINT EmployeeName (EmployeeID)
NEXT EmployeeID

Each time this FOR-NEXT loop runs, it prints the employee name associated with a
particular employee number, so it prints out the following:

John Smith
Maggie Jones
Susan Wilson
Emir Kelly

Counting by different number ranges is useful only if those numbers mean some-
thing to your program. If you just need to count a fixed number of times, it’s much
clearer to count from 1 to a specific value instead. The following FOR-NEXT loop
actually runs four times (120, 121, 122, and 123):

FOR EmployeeID = 120 TO 123
 PRINT EmployeeName
NEXT EmployeeID

Notice that counting from 120 to 123 doesn’t make it clear exactly how many times
the FOR-NEXT loop runs. At first glance, it appears that the FOR-NEXT loop may
repeat only three times.

To clarify exactly how many times the FOR-NEXT loop runs, it’s always much
clearer to count from 1, such as:

FOR EmployeeID = 1 TO 4
 PRINT EmployeeName(EmployeeID)
NEXT EmployeeID

Counting by different increments
Normally, the FOR-NEXT loop counts by 1. So consider the following FOR-NEXT loop:

FOR I = 1 TO 4
 PRINT "The value of I = ",I
NEXT I

Repeating Com
m

ands
by Looping

CHAPTER 5 Repeating Commands by Looping 187

This FOR-NEXT loop would print the following:

The value of I = 1
The value of I = 2
The value of I = 3
The value of I = 4

If you want to count by a number other than 1, you must define an increment. So,
if you want to count by 2, you’d have to define an increment of 2, such as:

FOR I = 1 TO 4 STEP 2
 PRINT "The value of I = ",I
NEXT I

This modified FOR-NEXT loop would only print the following:

The value of I = 1
The value of I = 3

Although many languages, such as BASIC, assume the FOR-NEXT loop always
increments by 1 unless you specifically tell it otherwise, the curly-bracket lan-
guages always force you to define an increment value. To define a FOR-NEXT loop
in C to increment by 2, you can define i = i + 2, as follows:

for (i = 1; i <= 4; i = i + 2)
 {
 printf("The value of i = %d", i);
 }

Counting backward
Rather than count forward from 1 to 4, you can also make a FOR-NEXT loop count
backward, like this:

FOR I = 4 DOWNTO 1
 PRINT "The value of I = ",I
NEXT I

Much like using different number ranges, such as 34 to 87, counting backward
makes sense only if those numbers have a specific meaning to your program,
such as:

FOR I = 10 DOWNTO 1

188 BOOK 2 Programming Basics

 PRINT I
NEXT I
PRINT "BLASTOFF!"

This example would print the following:

10
9
8
7
6
5
4
3
2
1
BLASTOFF!

Although languages, such as BASIC, use a specific keyword (DOWNTO) to make a
FOR-NEXT loop count backward, curly-bracket languages let you count backward
by changing both the initial and ending value of the for-next variable and then
defining an increment that subtracts instead of adds, such as:

for (i = 10; i >= 1; i = i - 1)
{
 printf("%d\n", i);
}
printf("Blastoff!");

Counting over arrays and other items
A for loop often specifies exactly how many times to loop. However, many pro-
gramming languages let for loops count over arrays and other data structures
that contain multiple items. By doing this, you don’t need to specify how many
times the for loop runs because the number of items defines how many times the
for loop runs.

In Python, you can retrieve each item in an array like this:

for x in ["Mustang", "VW", "Ferrari", "Humvee", "Jeep"]:
 print(x)

Repeating Com
m

ands
by Looping

CHAPTER 5 Repeating Commands by Looping 189

This array contains five items, so the for loop runs exactly five times and prints
out each item in the array like this:

"Mustang"
"VW"
"Ferrari"
"Humvee"
"Jeep"

In Swift, you can also define how many times a for loop runs by the number of
characters in a string like this:

for x in "Hello" {
 print (x)
}

This tells the for loop to keep running once for each character in the string
"Hello", which contains five characters. Thus, the for loop runs exactly five
times and prints:

"H"
"e"
"l"
"l"
"o"

By using a for loop with an array or list, you don’t need to define exactly how
many times the for loop should run. Instead, the for loop simply counts the total
number of items in the array or list and then runs once for each item in the array
or list.

Looping Zero or More Times
with the WHILE Loop

The FOR-NEXT loop is great when you know exactly how many times you want to
run one or more commands. However, what if the number of times you want
to run a loop can vary?

For example, you might have a loop that asks the user for a password, as shown in
Figure 5-2. How many times should this loop run?

190 BOOK 2 Programming Basics

The answer is that the loop should keep running until the user types in a valid
password. Because you don’t know how many times the loop needs to run, you
need to use a WHILE loop to check a True or False (Boolean) expression. In this
case, the Boolean expression is, “Did the user type in a valid password?” If the
answer is Yes (True), the user can run the program. If the answer is No (False),
the loop asks the user to try typing in a password again.

The WHILE loop typically looks like this:

WHILE (True or False Boolean expression)
 Command
 Command to change Boolean expression
WEND

With the curly-bracket languages, the WHILE loop looks like this:

while (True or False Boolean expression)
{
 command
 command to change Boolean expression
}

The WHILE loop consists of four parts:

 » The beginning of the WHILE loop, which checks a Boolean expression for a
True or False value

 » One or more commands to run

 » One or more commands that can change the Boolean expression in the
beginning of the WHILE loop

 » The end of the WHILE loop

FIGURE 5-2:
The WHILE loop

keeps running
as long as a

certain condition
remains true.

Repeating Com
m

ands
by Looping

CHAPTER 5 Repeating Commands by Looping 191

Before the WHILE loop runs even once, it checks a Boolean expression for a True
or False value. If this value is True, the WHILE loop runs. If this value is False,
the WHILE loop doesn’t run.

Within the WHILE loop, there must be one or more commands that can change the
Boolean expression of the WHILE loop to False.

If a WHILE loop doesn’t include at least one command that can change its Boolean
expression, the WHILE loop runs indefinitely, creating an endless loop that hangs
or freezes your program.

The following WHILE loop keeps asking for a password until the user types SECRET:

DIM Answer as String
PROMPT "Enter password: ", Answer
WHILE (Answer <> "SECRET")
 PRINT "Invalid password!"
 PROMPT "Enter password: ", Answer
WEND

Right before most WHILE loops is usually a line that sets an initial value to a vari-
able used in the loop’s Boolean expression. In the preceding example, the value of
the Answer variable is initialized (set) to whatever the user types in response to the
Enter password: prompt. Then the WHILE loop checks whether the value of the
Answer variable is SECRET.

The first line defines the Answer variable as a string data type. The second line
asks the user for a password and stores that answer in the Answer variable.

The WHILE loop first checks whether the Answer variable is SECRET. If not, the
loop runs the two commands that print Invalid password and then displays
Enter password: onscreen once more.

Whatever reply the user types gets stored in the Answer variable. Then the WHILE
loop checks this Answer variable again before running.

You can make a WHILE loop count like a FOR-NEXT loop. Suppose you had the fol-
lowing FOR-NEXT loop:

FOR I = 10 DOWNTO 1
 PRINT I
NEXT I
PRINT "BLASTOFF!"

192 BOOK 2 Programming Basics

The equivalent WHILE loop might look like this:

I = 10
WHILE (I >= 1)
 PRINT I
 I = I - 1
WEND
PRINT "BLASTOFF!"

Although the WHILE loop can count, notice that it takes more lines of code to do so,
and the WHILE loop isn’t as easy to understand as the FOR-NEXT loop. If you need a
loop to run a fixed number of times, use the FOR-NEXT loop. If you aren’t sure how
many times you need a loop to run, use the WHILE loop.

Looping at Least Once with the DO Loop
Before a WHILE loop runs, it checks a Boolean expression to see whether it’s True
or False. If this Boolean expression is False, the WHILE loop never runs at all.
What if you want to ensure that the loop runs at least once? In that case, you must
use a DO loop.

A DO loop acts like an upside-down WHILE loop. First, the DO loop runs once; then
it checks a Boolean expression. A typical DO loop looks like this:

DO
 Command
 Command to change the Boolean expression
LOOP WHILE (True or False Boolean expression)

This DO loop keeps repeating while a Boolean expression remains True. As long as
this Boolean expression stays True, the DO loop keeps running.

You could use a DO loop to ask the user to type in a password like this:

DIM Password as String
DO
 PROMPT "Enter password: ", Password
LOOP WHILE (Password <> "SECRET")

Repeating Com
m

ands
by Looping

CHAPTER 5 Repeating Commands by Looping 193

This DO loop always prints Enter your password: at least once before check-
ing its Boolean expression Password <> "SECRET". If this Boolean expression is
False, the DO loop stops running. If the Boolean expression is True, the DO loop
repeats again.

Like the WHILE loop, you often need to initialize a variable, which is part of the
loop’s Boolean expression to determine when the loop can stop running.

In the curly-bracket language family, the DO loop looks like this:

do
 {
 command
 command to change Boolean expression
 }
 while (True or False Boolean expression);

This DO loop keeps repeating while a Boolean expression is True. When this Bool-
ean expression becomes False, the DO loop stops running.

Playing with Nested Loops
Every loop (FOR-NEXT, WHILE, and DO) can run one or more commands multiple
times. Therefore, it’s possible for a loop to run another loop (which, in turn, can
run a third loop, and so on).

When loops appear inside one another, they’re nested loops.

The following shows a FOR-NEXT loop nested inside another FOR-NEXT loop, as
shown in Figure 5-3:

FOR I = 1 TO 4
 PRINT "Outer loop run #"; I
 FOR J = 1 TO 3
 PRINT " Nested loop run #"; J
 NEXT J
NEXT I

194 BOOK 2 Programming Basics

When one loop is nested inside another loop, the nested (inner) loop completely
finishes first. Then the outer loop runs once. Then the outer loop repeats running
the nested loop again.

The statements inside the nested loop run more often than those in the
outer loop.

In the preceding example, the outer loop runs 4 times and the nested loop runs
3 times every time the outer loop runs, so the nested loop ultimately runs 12 times
(3 × 4), as shown here:

Outer loop run #1
 Nested loop run #1
 Nested loop run #2
 Nested loop run #3
Outer loop run #2
 Nested loop run #1
 Nested loop run #2
 Nested loop run #3
Outer loop run #3
 Nested loop run #1
 Nested loop run #2
 Nested loop run #3
Outer loop run #4
 Nested loop run #1
 Nested loop run #2
 Nested loop run #3

The more nested loops you have, the harder it can be to tell exactly what your
program actually does. As a general rule, it’s best to nest only one loop inside
another.

FIGURE 5-3:
A nested loop

appears inside
another loop.

Repeating Com
m

ands
by Looping

CHAPTER 5 Repeating Commands by Looping 195

Prematurely Exiting from a Loop
Loops normally run a fixed number of times (with a FOR-NEXT loop) or until a
Boolean expression changes (with a WHILE or DO loop). However, it’s possible to
exit prematurely out of a loop by using a special EXIT command.

Prematurely exiting a loop means not waiting for the loop to stop on its own,
such as:

DO
 Play video game
 IF Player wants to quit THEN EXIT
LOOP WHILE (Game over <> true)

In this case, the loop ends in one of two ways: when the game ends or when the
user specifically quits the game.

To prematurely exit a loop, you always need to check whether another Boolean
expression is True or False. Generally, it’s not a good idea to prematurely exit
out of a loop because it can make your program harder to understand.

The curly-bracket languages don’t have an EXIT command; instead, they have a
break command, which works the same way, like this:

do
 {
 Play video game;
 if (Player wants to quit) break;
 }
while (Game over <> true);

Checking Your Loops
Although loops eliminate the need to write the same command multiple times,
loops also introduce the risk of making your program harder to understand as a
result (and also harder to fix and update). So, when using loops, keep these points
in mind:

 » To loop a fixed number of times, use a FOR-NEXT loop.

 » To loop zero or more times, use a WHILE loop.

196 BOOK 2 Programming Basics

 » To loop at least once, use a DO loop.

 » Both WHILE and DO loops usually need a variable or a Boolean expression to
determine when the loop ends.

 » A WHILE or DO loop always needs a command that changes its Boolean
expression that determines when the loop will eventually stop.

 » A loop that never stops running is an endless loop.

 » Some programming languages let you use an EXIT (or break command) to
stop a loop prematurely. Use this with caution because it can make your
program harder to understand.

When using a loop, always make sure you know how that loop will eventually stop.

Almost every program needs to use loops, so make sure you understand the dif-
ferences between all the different loop variations you can use. Ultimately, loops
let you run multiple commands without explicitly writing them all out, so think
of loops as a programming shortcut.

CHAPTER 6 Breaking a Large Program into Subprograms 197

Breaking a Large
Program into
Subprograms

The bigger the program, the harder that program is to read, fix, and modify.
Just as it’s easier to spot a spelling mistake in a recipe printed on a single
page than it is to find that same spelling mistake buried inside a 350-page

cookbook, it’s easier to fix problems in a small program than it is in a big one.

Because small programs can perform only simple tasks, the idea behind pro-
gramming is to write a lot of little programs and paste them together, like build-
ing blocks, creating one massive program. Because each little program is part
of a much bigger program, those little programs are subprograms, as shown in
Figure 6-1.

The biggest problem with dividing a large program into multiple subprograms
is to make each subprogram as independent, or loosely coupled, as possible. That
means if one subprogram fails, it doesn’t wreck the entire program along with it,
like yanking out a single playing card from a house of cards.

Chapter 6

IN THIS CHAPTER

 » Using a subprogram

 » Passing parameters

 » Using recursion

198 BOOK 2 Programming Basics

One major advantage of subprograms is that you can isolate common program
features in a subprogram that you can copy and reuse in another program. For
example, suppose you wrote a word processor. Although you could write it as one
massive, interconnected tangle of code, a better approach might be dividing the
program functions into separate parts. By doing this, you could create a separate
subprogram for

 » Displaying drop-down lists

 » Editing text

 » Spell-checking

 » Printing a file

If you wanted to write a horse-race prediction program, you wouldn’t have to
write the whole thing from scratch. You could copy the subprograms from another
program and reuse them in your new project, as shown in Figure 6-2.

By reusing subprograms, you can create more complicated programs faster than
before. After programmers create enough useful subprograms, they can store
these subprograms in a “library” that they and other programmers can use in
the future.

FIGURE 6-1:
Every large

program is made
up of smaller
subprograms

that act as
building blocks.

Breaking a Large Program

into Subprogram
s

CHAPTER 6 Breaking a Large Program into Subprograms 199

Creating and Using Subprograms
A subprogram essentially yanks out one or more commands from your main pro-
gram and stores them in another part of your main program or in a separate file,
as shown in Figure 6-3.

FIGURE 6-2:
Reusing

subprograms can
make writing new

programs easier
and faster.

FIGURE 6-3:
Subprograms

let you remove
and isolate
commands
out of your

main program.

200 BOOK 2 Programming Basics

The reasons for isolating commands in a subprogram (and out of your main pro-
gram) are to

 » Keep your main program smaller and, thus, easier to read and modify.

 » Isolate related commands in a subprogram that can be reused.

 » Make programming simpler and faster by just reusing subprograms from
other projects.

Creating a subprogram
Every subprogram consists of a unique name and one or more commands. You can
name a subprogram anything, although it’s usually best to give a subprogram a
descriptive name. So, if you create a subprogram to convert yards into meters, you
might name your subprogram Yards2Meters or MetricConverter.

A descriptive name for a subprogram can help you identify the purpose of that
subprogram.

After you define a name for your subprogram, you can fill it up with one or more
commands that tell that subprogram what to do. So, if you wanted to write a sub-
program that prints your name onscreen, your main subprogram might look like
this:

SUB PrintMyName
 FOR I = 1 TO 5
 PRINT "John Smith"
 NEXT I
END SUB

The preceding BASIC language example defines the beginning of a subprogram
by using the SUB keyword followed by the subprogram’s name, PrintMyName. The
end of the subprogram is defined by the END SUB keywords.

Not every language defines subprograms with keywords. In the curly-bracket lan-
guage family, the main program is called main and every subprogram is just given
its own name, like this:

print_my_name ()
{
 for (i = 1; i < 5; i++)
 {

Breaking a Large Program

into Subprogram
s

CHAPTER 6 Breaking a Large Program into Subprograms 201

 printf ("John Smith");
 }
}

Instead of using the term subprogram, the curly-bracket languages use the term
function.

You can store subprograms in the same file as the main program or in a separate
file. If you store a subprogram in the same file as the main program, you can place
the subprogram at the beginning or end of the file, as shown in Figure 6-4.

Programmers often put subprograms at the beginning or end of a file to make
them easy to find.

“Calling” a subprogram
After you isolate commands inside a subprogram, your program can’t run those
commands until it “calls” the subprogram. Calling a subprogram basically tells
the computer, “See those commands stored in that subprogram over there? Run
those commands now!”

To call a subprogram, you must use the subprogram’s name as a command. So, if
you had the following subprogram:

FIGURE 6-4:
Subprograms

usually appear at
the beginning or

end of a file.

202 BOOK 2 Programming Basics

SUB PrintMyName
 FOR I = 1 TO 5
 PRINT "John Smith"
 NEXT I
END SUB

To run this subprogram, you would use its name as a command in any part of your
program, like this:

PRINT "The subprogram is going to run now."
PrintMyName
END

The preceding BASIC program would print the following:

The subprogram is going to run now.
John Smith
John Smith
John Smith
John Smith
John Smith

Every subprogram needs a unique name so when you call that subprogram to run,
the computer knows exactly which subprogram to use. You can call a subprogram
from any part of a program, even from within another subprogram.

In the curly-bracket language family, calling a function (subprogram) is the
same. Use the subprogram’s name as a command. So, if you had the following
subprogram:

print_my_name ()
{
 for (i = 1; i < 5; i++)
 {
 printf ("John Smith");
 }
}

You could call that subprogram as follows:

main ()
{
 print_my_name ();
}

Breaking a Large Program

into Subprogram
s

CHAPTER 6 Breaking a Large Program into Subprograms 203

If you’ve stored a subprogram in a separate file, you may need to go through two
steps to call a subprogram. First, you need to specify the filename that contains
the subprogram you want to use. Second, you need to call the subprogram you
want by name.

In the curly-bracket languages, like C, you specify a filename where your subpro-
gram is stored, like this:

#include <filename>
main()
{
 subprogram name ();
}

In this C example, the #include<filename> command tells the computer that if it
can’t find a subprogram in the main program file, it should look in the file dubbed
filename.

The #include command tells the computer to pretend that every subprogram
stored in a separate file is actually included in the main program file.

Passing Parameters
Every time you call a subprogram, that subprogram runs its commands. So, if you
had a subprogram like this:

SUB PrintJohnSmith
 FOR I = 1 TO 5
 PRINT "John Smith"
 NEXT I
END SUB

Calling that subprogram from another part of your program would always print
the name John Smith exactly five times. If you wanted a subprogram that could
print the name Mary Jones 16 times, you’d have to write another similar subpro-
gram, like this:

SUB PrintMaryJones
 FOR I = 1 TO 16
 PRINT "Mary Jones"
 NEXT I
END SUB

204 BOOK 2 Programming Basics

Obviously, writing similar subprograms that do nearly identical tasks is waste-
ful and time-consuming. So, instead, you can write a generic subprogram that
accepts additional data, called parameters.

These parameters let you change the way a subprogram works. So, instead of
writing one subprogram to print the name John Smith 5 times and a second sub-
program to print the name Mary Jones 16 times, you could write a single subpro-
gram that accepts two parameters that define

 » The name to print

 » The number of times to print that name

Here’s what that would look like:

SUB PrintMyName (PrintTimes As Integer, Name As String)
 FOR I = 1 TO PrintTimes
 PRINT Name
 NEXT I
END SUB

The list of parameters, enclosed in parentheses, is a parameter list.

This BASIC language example defines a subprogram named PrintMyName,
which accepts two parameters. The first parameter is an integer variable —
PrintTimes — which defines how many times to print a name. The second
parameter is a string variable — Name — which defines the name to print
multiple times.

Every programming language offers slightly different ways of creating a subpro-
gram. Here’s what an equivalent Python subprogram might look like:

def print_my_name(print_times, name):
 for I in range(print_times):
 print (name)

By writing a generic subprogram that accepts parameters, you can create a single
subprogram that can behave differently, depending on the parameters it receives.

To give or pass parameters to a subprogram, you need to call the subprogram by
name along with the parameters you want to give that subprogram. So, if a sub-
program accepted two parameters (an integer and a string), you could call that
subprogram by doing the following:

Breaking a Large Program

into Subprogram
s

CHAPTER 6 Breaking a Large Program into Subprograms 205

PrintMyName (5, "John Smith")
PrintMyName (16, "Mary Jones")

The first command tells the PrintMyName subprogram to use the number 5 and
the string John Smith as its parameters. Because the number defines how many
times to print and the string defines what to print, this first command tells the
PrintMyName subprogram to print John Smith five times, as shown in Figure 6-5.

The second command tells the PrintMyName subprogram to use the number 16
and the string Mary Jones as its parameters, which prints Mary Jones 16 times.

Calling a subprogram works the same way in other programming languages. So, if
you want to call the following Python subprogram:

def print_my_name(print_times, name):
 for I in range(print_times):
 print (name)

You could print the name John Smith four times with this command:

print_my_name(4, "John Smith")

When you call a subprogram, you must give it the exact number and type of
parameters it expects to receive. So, the PrintMyName subprogram accepts
two parameters whereas the first parameter must be an integer and the second
parameter must be a string, such as the following:

PrintMyName (4, "Hal Berton")
PrintMyName (53, "Billie Buttons")

FIGURE 6-5:
When you call a

subprogram,
you may also
need to pass

parameters to
that subprogram.

206 BOOK 2 Programming Basics

If you don’t give a subprogram the right number of parameters, your program
doesn’t work. So, if a subprogram is expecting two parameters, the follow-
ing statements don’t work because they don’t give the subprogram exactly two
parameters:

PrintMyName (4)
PrintMyName (4, 90, "Roberta Clarence")

The first command doesn’t work because the PrintMyName subprogram expects
two parameters, but this command passes only one parameter. The second com-
mand doesn’t work because this command passes three parameters, but the
PrintMyName subprogram expects only two parameters.

Another problem is that you give the subprogram the exact number of parameters,
but not the right type of parameters. This subprogram expects to receive an inte-
ger and a string, so the following subprogram calls don’t work because they give
it the wrong data:

PrintMyName (98, 23)
PrintMyName ("Victor Harris", 7)

The first command doesn’t work because the PrintMyName subprogram expects
an integer and a string, but this command tries to give it two numbers. The second
command doesn’t work because the PrintMyName subprogram expects an integer
first and a string second, but this command gives it the data in the wrong order.

If a subprogram doesn’t need any parameters, you can just call that subprogram
by using its name, like this:

PrintMyName

If you aren’t passing any parameters in some programming languages, you must
leave the parameter list (the stuff between the parentheses) blank, like this:

PrintMyName ();

Passing parameters by reference
When a program calls and passes parameters to a subprogram, the computer
makes duplicate copies of those parameters. One copy of those parameters stays
with the main program, and the second copy gets passed to the subprogram.

Breaking a Large Program

into Subprogram
s

CHAPTER 6 Breaking a Large Program into Subprograms 207

Now if the subprogram changes those parameters, the values of those parameters
stay trapped within the subprogram, as shown in Figure 6-6.

When you pass parameters to a subprogram and make duplicate copies of those
parameters, that’s called passing by value.

Most of the time when you call a subprogram and pass it parameters, you don’t
want that subprogram to change the value of its parameters; you just want the
subprogram to modify its behavior based on the parameters it receives, such as
the subprogram that prints a name a specific number of times.

Instead of giving a subprogram parameters that modify its behavior, you can also
give a subprogram parameters that the subprogram can modify and send back to
the rest of the program.

To make a subprogram modify its parameters, you must use a technique called
pass by reference. Essentially, instead of letting a subprogram use a copy of data,
passing by reference gives the subprogram the actual data to manipulate, as
shown in Figure 6-7.

Suppose you have a subprogram that converts temperatures from Celsius to Fahr-
enheit with this formula:

Tf = ((9 / 5) * Tc) + 32

FIGURE 6-6:
Normally

when you pass
parameters to a

subprogram, the
computer makes

a second copy for
the subprogram

to use.

208 BOOK 2 Programming Basics

Your subprogram could look like this:

SUB ConvertC2F (ByRef Temperature as Single)
 Temperature = ((9 / 5) * Temperature) + 32
END SUB

This is how the preceding subprogram works:

 » The first line defines the subprogram name — ConvertC2F — and its
parameter list as accepting one Single variable called Temperature. To
specify that this parameter will be passed by reference, this BASIC language
example uses the ByRef keyword.

 » The second line plugs the value of the Temperature variable into the conver-
sion equation and stores the result back in the Temperature variable, erasing
the preceding value that was stored there.

 » The third line ends the subprogram. At this point, the modified value of the
Temperature variable is sent back to the main program to use.

Every programming language uses different ways to identify when a parameter
will be passed by reference. The BASIC language uses the ByRef keyword, whereas
the C language uses the ampersand symbol (&) to identify parameters passed by
reference. In the following C example, the a parameter is passed by value but the
x parameter is passed by reference:

subprogram_example (int a, float &x);

FIGURE 6-7:
Passing by

reference means
the subprogram
can manipulate

data that another
part of the

program will use.

Breaking a Large Program

into Subprogram
s

CHAPTER 6 Breaking a Large Program into Subprograms 209

If you had the following BASIC subprogram:

SUB ConvertC2F (ByRef Temperature as Single)
 Temperature = ((9 / 5) * Temperature) + 32
END SUB

You could call that subprogram like this:

DIM Temp AS SINGLE
Temp = 12
PRINT "This is the temperature in Celsius = "; Temp
ConvertC2F (Temp)
PRINT "This is the temperature in Fahrenheit = "; Temp
END

Running this program would produce the following:

This is the temperature in Celsius = 12
This is the temperature in Fahrenheit = 53.6

Notice that right before calling the ConvertC2F subprogram, the value of the Temp
variable is 12, but the ConvertC2F subprogram changes that value because the
subprogram was passed the Temp value by reference. What happens if you run
the same program except change the subprogram to accept parameters passed by
value instead, such as the following?

DIM Temp AS SINGLE
Temp = 12
PRINT "This is the temperature in Celsius = "; Temp
ConvertC2F (Temp)
PRINT "This is the temperature in Fahrenheit = "; Temp
END
SUB ConvertC2F (Temperature as Single)
 Temperature = ((9 / 5) * Temperature) + 32
END SUB

This program would print the following:

This is the temperature in Celsius = 12
This is the temperature in Fahrenheit = 12

Although the ConvertC2F subprogram changed the value of the Temperature
parameter, it never passes the changed value back to the main program. So, the
main program blissfully uses the current value of the Temp variable, which is
always 12.

210 BOOK 2 Programming Basics

Passing data by reference means that the subprogram can change any data used
by another part of a program. This can increase the chance of problems because
the more ways data can be changed, the harder it can be to track down errors.

Storing values in a subprogram name
One problem with passing parameters by reference is that you may not always
know when a subprogram will change its parameter values. To make it clear when
a subprogram returns modified data, you can create a special type of subprogram
called a function.

A function is nothing more than a subprogram with the subprogram name repre-
senting a value. So a typical function might look like this:

FUNCTION Name (parameter list) As DataType
 Commands
 RETURN value
END FUNCTION

In BASIC, you identify a function with the FUNCTION keyword to define a subpro-
gram as a function. After listing a parameter list, the first line also defines the
data type that the function name can hold, such as an integer, a string, or a
single (decimal) number.

Defining a function in the C language to return a value looks like this:

datatype function_name (parameter list)
 {
 commands
 return value;
 }

Defining a function in the Swift language to return a value looks like this:

func_function_name (parameter list) -> DataType
 {
 commands
 return value;
 }

In this Swift example, you specify the data type to return such as an Int or String.
Then you use the return keyword to define the value to return, such as 78 or
"Greetings".

Breaking a Large Program

into Subprogram
s

CHAPTER 6 Breaking a Large Program into Subprograms 211

Inside the function, one or more commands must calculate a new result. Then you
use the RETURN (or return) keyword to define what value to store in the function
name. Whatever value this is, it must be the same data type that you defined for
the function name in the first line. So, if you defined a function as a String data
type, you can’t return an integer value from that function.

A typical function in BASIC might look like this:

FUNCTION ConvertC2F (Temperature As Single) As Single
 Temperature = ((9 / 5) * Temperature) + 32
 RETURN Temperature
END FUNCTION

The function name ConvertC2F can hold a Single data type.

Unlike a subprogram that may or may not return a modified value, functions
always return a value. To call a function, you must assign the function name to a
variable or use the function name itself as a variable, such as

PRINT "Temperature in Fahrenheit = "; ConvertC2F (12)

Because functions always return a value, they (almost always) have a parameter
list. So, you can identify functions in a program by looking for the parameter list
in parentheses.

DIM Temp As Single
Temp = 12
PRINT "Temperature in Celsius = "; Temp
PRINT "Temperature in Fahrenheit = "; ConvertC2F (Temp)
END

FUNCTION ConvertC2F (Temperature AS SINGLE) AS SINGLE
 Temperature = ((9 / 5) * Temperature) + 32
 RETURN Temperature
END FUNCTION

Unlike a subprogram that you can call just by typing its name on a line by itself,
you can call a function only by using that function name as if it’s a variable.

This same function as seen in the Python language might look like this:

def convertc2f(temperature):
 new = ((9.0 / 5.0) * temperature) + 32
 return new

212 BOOK 2 Programming Basics

To run this function, you could use the following program:

temp = 12
print ("Temperature in Celsius = ", temp)
print ("Temperature in Fahrenheit = ", convertc2f(temp))

Repeating a Subprogram with Recursion
In Chapter 5 of this minibook, you can read about loops that can repeat one or
more commands multiple times. If you want to repeat the commands stored in a
subprogram, you can just call that subprogram from within a loop, such as

FOR I = 1 TO 4
 Subprogram name
NEXT I

This example would run all the commands in a subprogram four times. However,
here’s another way to run a subprogram multiple times: recursion. The idea behind
recursion is that instead of defining how many times to run a subprogram, you let
the subprogram call itself multiple times, like this:

SUB MySubprogram
 MySubprogram
END SUB

When this subprogram runs, it calls itself, essentially making a second copy of
itself, which then makes a third copy of itself, and so on. A common problem used
to demonstrate recursion is calculating a factorial (which multiplies a number by a
gradually decreasing series of numbers).

Not every programming language supports recursion, including some versions of
BASIC.

A factorial is often written like this:

4!

To calculate a factorial, you multiply a number (4, in this case) by a number that’s
one less (3) and keep repeating this until you get the value of 1, such as

4! = 4 * 3 * 2 * 1
 = 24

Breaking a Large Program

into Subprogram
s

CHAPTER 6 Breaking a Large Program into Subprograms 213

To calculate a factorial, you could use a BASIC program like this:

FUNCTION Factorial (N as INTEGER) As REAL
 IF N > 1 THEN
 Factorial = N * Factorial (N – 1)
 ELSE
 Factorial = 1
 END IF
END FUNCTION

This function uses recursion to run another copy of itself, as shown in Figure 6-8.

Ultimately, every subprogram that calls itself needs to end. (Otherwise, it can
get trapped in an endless series of function calls that never end, which hangs or
freezes your computer.) When a subprogram finally ends, it returns a value to the
preceding subprogram, which returns its value to the preceding subprogram, and
so on until a value is finally calculated by the first copy of the subprogram that
initially ran.

The advantage of recursion is that it’s much simpler to write. If you didn’t
use recursion, this is how you could calculate factorials using an ordinary
FOR-NEXT loop:

FUNCTION Factorial (N as INTEGER) as REAL
 DIM Total as REAL
 DIM M as INTEGER
 Total = 1
 FOR M = N DOWNTO 1
 Total = Total * M
 Factorial = Total
 NEXT M
END FUNCTION

FIGURE 6-8:
Recursion makes

multiple copies
of the same

subprogram.

214 BOOK 2 Programming Basics

This subprogram calculates the exact same results as the recursion version.

Naturally, recursion has its disadvantages:

 » Recursion can gobble up lots of memory. It runs the same subprogram
multiple times, so it makes additional copies of itself.

 » Recursion can crash your computer if it doesn’t end. Your subprogram can
keep making endless copies of itself until it runs out of memory.

If you couldn’t isolate commands in a subprogram, you could never have
recursion.

The whole idea behind subprograms is to make programming easier by breaking
a large problem into progressively smaller problems. As long as you understand
that subprograms are one technique for helping you write larger programs, you
can use subprograms as building blocks to create anything you want.

CHAPTER 7 Breaking a Large Program into Objects 215

Breaking a Large
Program into Objects

Breaking a large program into multiple subprograms makes programming
easier. Instead of trying to write a single, monolithic chunk of code, you just
have to write small subprograms that work as building blocks that you can

stack together to create a much larger program.

Unfortunately, computer scientists found that just dividing a large program into
multiple subprograms didn’t magically solve all the problems of creating soft-
ware. Some of the most prominent problems of subprograms include

 » Interconnectedness: Instead of acting as independent entities, subprograms
are often allowed to interfere with other parts of a program. Not only does
this cause problems in tracking down bugs (problems), but it also prevents
subprograms from being reused easily in other projects. Instead of easily
sliding a subprogram out of a program like a building block, it’s more like
ripping a plant out of the ground by its roots.

 » Task orientation: Subprograms focus on solving one specific task.
Unfortunately, trying to understand how this one task fits into the overall

Chapter 7

IN THIS CHAPTER

 » Understanding object-oriented
programming

 » Clarifying encapsulation, inheritance,
and polymorphism

 » Explaining design patterns

 » Using object-oriented languages

 » Providing real-life programming
examples

216 BOOK 2 Programming Basics

design of a large program can be confusing, much like trying to understand
how a car works by studying a single gear. As a result, subprograms make
large programs hard to understand and modify. Not only do you not know
how a subprogram works with the rest of the program, but you also don’t
know how changing a subprogram might inadvertently affect other parts of
the program.

 » Reusability: Theoretically, you can yank out a subprogram and reuse it in
another program. However, if you copy and later modify a subprogram, you
now have two nearly identical copies of the same subprogram. If you find a
problem in the original subprogram, you now have to find and fix that same
problem in any copies you made of that subprogram — provided you can find
them all in the first place.

To overcome the limitations of subprograms, computer scientists invented object-
oriented programming (OOP). Like structured programming, which encourages
you to break a large program into subprograms, OOP encourages you to break a
large program into smaller parts, called objects.

OOP has actually been around since 1962 when two Norwegian computer scien-
tists Ole-Johan Dahl and Kristen Nygaard developed a language called SIMULA,
which was designed to help simulate real-world events. It took nearly 40 more
years for OOP to finally be accepted as a practical tool, so just because an idea
is proven to work, doesn’t mean people will accept it if they can continue being
comfortable (and getting paid) to keep doing something that doesn’t work.

How Object-Oriented Programming Works
Like subprograms, objects divide a large program into smaller, interchangeable
parts. The main difference is that subprograms divide a program into separate
tasks, whereas objects divide a program into real-world items.

For example, consider a hotel reservation program used by the front desk when a
guest checks in. Dividing this problem into tasks might create the following:

 » Subprogram #1: RoomAvailable (checks if a hotel room is available)

 » Subprogram #2: RoomBeds (checks if the room has one or two beds)

 » Subprogram #3: RoomType (checks if it’s a smoking or a nonsmoking room)

 » Subprogram #4: RoomPrice (checks the price)

Breaking a Large
Program

 into O
bjects

CHAPTER 7 Breaking a Large Program into Objects 217

Dividing this problem into objects, you could create the following:

 » Object #1: Guest

 » Object #2: Front desk clerk

 » Object #3: Hotel room

Figure 7-1 shows how a task-oriented solution might break a program into mul-
tiple subprograms. The main program works by running each subprogram, one
at a time, with each subprogram performing a specific task (such as determining
whether a room is smoking or nonsmoking).

Figure 7-2 shows an equivalent object-oriented solution to the same program
where each object represents a real-world item. Instead of having a single main
program controlling multiple subprograms (like one boss controlling a dozen
subordinates), OOP divides a program into multiple objects that pass messages
to one another (like having a bunch of workers cooperating with one another
as equals).

FIGURE 7-1:
Dividing a

program into
tasks can

obscure the
actual purpose of

a program.

FIGURE 7-2:
Object-oriented

programming
divides a large

program into
objects that
behave like

their real-world
counterparts.

218 BOOK 2 Programming Basics

Although both subprograms and objects solve the same problem, they use dif-
ferent solutions. OOP is basically a different way of thinking about how to solve
problems.

Objects aren’t an alternative to subprograms. Subprograms solve a single task.
Objects just organize related subprograms together.

There’s no single “right” way to divide a large program into objects. Two pro-
grammers tackling the same problem will likely divide the same program into dif-
ferent objects. The way you define your objects reflects how you view a particular
problem.

Every object consists of two parts, as shown in Figure 7-3:

 » Properties (data)

 » Methods (subprograms)

Objects contain two types of properties:

 » Public properties are accessible by other parts of the program.

 » Private properties within the object are hidden from the rest of the program.

Objects contain two types of methods:

 » Public methods allow other parts of a program to control an object.

 » Private methods are used by an object to calculate a result needed by its
public subprograms.

FIGURE 7-3:
The parts of a
typical object.

Breaking a Large
Program

 into O
bjects

CHAPTER 7 Breaking a Large Program into Objects 219

The difference between public and private is accessibility:

 » Public properties and methods are what the rest of a program can “see” and
use in an object:

• Public properties typically describe the object in some way. For example,
a video-game program might create an object that represents a monster.
This object may need data, representing x- and y-coordinates, to define the
monster’s location onscreen.

• Public methods allow other parts of a program to manipulate an object.
For example, an object representing a monster might include a Move
method that can change the value of the object’s x- and y-coordinates
(to determine where to display the cartoon monster onscreen).

 » Private properties and methods are what an object uses to do something
useful, so the object doesn’t need to allow other parts of the program to
access this information.

The Monster object might contain a private method that calculates exactly how
the Monster object moves. Because other parts of the program don’t need to know
exactly how the Monster object calculates its movement, this type of information
would be private and hidden from the rest of the program.

Ultimately, OOP is another way to make programming easier. Just as high-level
languages (like BASIC) simplify programming by using real-life commands (such
as PRINT), OOP simplifies organizing programs by modeling real-life items. The
three advantages that objects have over ordinary subprograms are encapsulation,
inheritance, and polymorphism (all of which I cover in the following sections).

OOP provides tools for making programming easier, but it’s still possible to write
horrible software with OOP. Think of OOP like lines painted on the highway. If
you follow the lines, you’ll probably arrive safely at your destination, but if you
ignore the lines and do whatever you want, you’ll probably crash your car. Like
traffic lines painted on the road, OOP guides you into writing software that can be
created and modified easily, but you can still mess things up if you’re not careful.

Encapsulation Isolates Data
and Subprograms

Subprograms have two problems. First, subprograms can work with data from
any part of a program. That’s what makes subprograms useful, but that’s also
what makes subprograms harder to modify and fix. If you don’t know what data a

220 BOOK 2 Programming Basics

subprogram might manipulate and when, any changes you make to that subpro-
gram could affect a program in unpredictable ways.

For example, suppose someone writes a weather forecasting program that has
a subprogram for predicting tomorrow’s temperature measured in Fahrenheit.
What happens if another programmer modifies this subprogram to forecast tem-
peratures in Celsius?

Figure 7-4 shows two phases of a program:

 » The first phase (on the left) shows the main program sending the current
temperature (32°F) to the forecasting subprogram, which then returns its
prediction (as 30°F).

 » The second phase (on the right) shows the same program except now the
forecasting subprogram has been modified to return Celsius temperatures.
So now when the main program sends the current temperature
(in Fahrenheit) to the forecasting subprogram, this subprogram returns its
forecast in Celsius. The main program now uses this faulty value.

This problem occurs because the forecasting subprogram has no idea how its data
is being used by another part of the program. OOP can partially solve this problem
by organizing data, and all the subprograms that manipulate that data, into a single
location, or an object. By grouping properties and all the methods that manipulate
that data in one place, it’s much easier to understand how that data is being used.

The whole idea behind an object is to isolate and “hide” properties and methods
by using encapsulation. Encapsulation acts like a wall, as shown in Figure 7-5, that
wraps around properties and methods to

 » Keep other parts of a program from manipulating properties inside an object.

 » Keep methods inside that object from manipulating data outside that object.

 » Keep programmers from modifying code stored in another object.

FIGURE 7-4:
Changing a

subprogram can
wreck a perfectly

working program.

Breaking a Large
Program

 into O
bjects

CHAPTER 7 Breaking a Large Program into Objects 221

Shielding data inside an object
Think of data as a wallet full of cash. The more people who handle your wallet
before giving it back to you, the greater the chance that someone takes money out
of that wallet (manipulating the properties). Ideally, you want as few people to
handle your wallet as possible and if people absolutely must handle your wallet,
you want them close enough so you can keep an eye on them.

That’s the same idea behind encapsulating properties inside an object. In a pro-
gram divided into multiple subprograms, data gets passed around like a hot potato.
The more subprograms capable of changing a chunk of data, the more likely one of
those subprograms can accidentally change that data incorrectly.

By encapsulating properties inside of an object, you prevent anything outside that
object from manipulating the properties.

Grouping methods inside of an object
After you isolate properties inside an object, you also need to isolate all the meth-
ods that manipulate that data inside that same object. By storing all methods that
manipulate the same properties, objects make it easy to isolate any problems.

If a property inside an object gets messed up, the faulty method can be located
only inside that same object. This makes troubleshooting easier. In comparison,
if data gets messed up in a non-object-oriented program, the faulty subprogram

FIGURE 7-5:
Encapsulation

isolates a chunk
of code as an
independent

object.

222 BOOK 2 Programming Basics

could be located anywhere. Trying to find a faulty method in an object is like try-
ing to find your lost keys in your apartment. Trying to find a faulty subprogram
in an entire program is like trying to find your lost keys in a 20-story apartment
building.

Protecting code from other programmers
Objects isolate data from other parts of the program, but objects can also isolate
methods from other programmers.

Without objects, someone might write a useful subprogram that everyone else
working on the program can use. One programmer might find that subprogram
perfect, whereas a second programmer might find that subprogram doesn’t quite
do what they want it to do, so they go into the subprogram and change the code.

These changes wreck the subprogram for the first programmer, who now has
to go back and fix the changes made by the second programmer. These changes
make the subprogram work well for the first programmer, but now wreck the
subprogram for the second programmer, and so on in an endless cycle.

The problem is that the more people you have working on the same program,
the more likely someone might accidentally modify one part of a program with-
out notifying the other programmers. Even one change in a program can affect
another part of that same program, so OOP defines distinct boundaries that keep
programmers from modifying code stored in objects created by someone else.

When creating an object-oriented program, every programmer is given control
of certain objects and no one is supposed to modify the code in any objects but
their own.

To define an object, you must first create a class. You can create a class in a sep-
arate file or store several classes in the same file. At this point, a class is no dif-
ferent from storing a group of related subprograms in a separate file and keeping
other programmers from modifying that separate file. However, the difference
becomes more apparent when you want to reuse code.

Encapsulation serves two purposes:

 » It protects properties from being changed by other parts of a program.

 » It isolates methods to minimize the chances they’ll be changed by other
programmers.

Breaking a Large
Program

 into O
bjects

CHAPTER 7 Breaking a Large Program into Objects 223

Sharing Code with Inheritance
After programmers write some useful subprograms, they often store those
subprograms in separate files for other programmers to use. However, no one is
supposed to modify these subprograms.

So, what happens if someone creates a subprogram that almost does what you
need, but not quite? You can’t modify the subprogram without the risk of wreck-
ing it for other parts of the program, but you can copy that subprogram and then
modify that copy. Now you’ll have two separate and nearly identical copies of the
same subprograms, as shown in Figure 7-6.

What happens if the original subprogram (that you copied) gets modified to make
it even more awesome and useful? Now you’re stuck with two equally unappealing
choices with your modified version of that same subprogram:

 » Dump your modified subprogram, copy the new modified subprogram, and
re-modify this new version.

 » Modify your subprograms yourself to incorporate the changes made to the
subprogram you originally copied.

Neither solution will be easy because with the first option, you must modify the
revised original subprogram all over again. If you made extensive modifications
to that subprogram, you’ll have to make those same extensive modifications once
more. Each time the original subprogram gets modified, you’ll have to repeat this
step over and over again.

FIGURE 7-6:
If you modify a

subprogram,
you need to

 create a separate
copy of that

subprogram and
modify that copy.

224 BOOK 2 Programming Basics

The second option is just as difficult because now you have to study the changes
made in the original subprogram and add those changes to your modified sub-
program. If you do this incorrectly, your modified version won’t work right. Each
time the original subprogram gets modified, you’ll have to keep up with those
changes so you can add them to your modified version of that same subprogram.

Sound like a lot of trouble? It is, which is what makes inheritance so attrac-
tive. With inheritance, you don’t make multiple, physical copies of subprograms.
Instead, you first store the subprogram in a class file.

Next, you inherit that class. Inheritance tells the computer to copy a class (along
with all the methods stored inside that class) and store all the properties and
methods from that first class into the second class.

Physically, this second class contains no code of its own. Instead, the second class
points to the code of the original class. Then you create objects from both classes,
as shown in Figure 7-7.

When you run methods in this second object, the second object tells the computer,
“Hey, those methods are really stored in this other object that I inherited them
from.”

Inheritance offers two advantages:

 » Because it doesn’t make multiple copies of the same methods, inheritance
saves space.

 » Because only one copy of a method physically exists, inheritance makes it
easy to update a method.

FIGURE 7-7:
Inheritance

lets you reuse
another object’s

subprograms
without physically

copying them.

Breaking a Large
Program

 into O
bjects

CHAPTER 7 Breaking a Large Program into Objects 225

Make a change to the original method, and those changes instantly appear in any
object that inherited that method. The reason for this instant update is because all
those other objects always point to the same method in the first place.

Inheritance lets you reuse code from another object without physically copying
that code. Now you can add methods to your new object and your new object con-
tains only your new methods, as shown in Figure 7-8.

By keeping the amount of code stored inside each object to a minimum, OOP
makes it easy to understand how each object works. Through inheritance, OOP
makes it easy to update one method that’s reused in other objects.

As a result, inheritance makes reusing objects (and their methods) practical and
modifying those objects’ methods fast, simple, and easy.

Inheritance offers the convenience of reusing code without the inconvenience of
updating duplicate code stored in multiple locations.

FIGURE 7-8:
Objects contain

code that’s
unique to only

that object.

226 BOOK 2 Programming Basics

Polymorphism: Modifying Code
without Changing Its Name

Besides reusing existing methods (without modifying them) and adding new meth-
ods to an object, you can also modify an inherited method through polymorphism.

Polymorphism allows something called method overloading, which lets you inherit
a subprogram from another object and then replace the code in that subprogram
with brand-new code. So, essentially, all you’re really reusing is the original
method’s name, as shown in Figure 7-9.

SINGLE VERSUS MULTIPLE INHERITANCE
When one object inherits everything from another object, that’s single inheritance.
Some programming languages, such as C++, also can allow objects to inherit from two
or more objects, which is multiple inheritance. Here’s the good news and the bad news
when it comes to multiple inheritance:

• Good news: Multiple inheritance can use the best parts from two or more objects
and smash them together to create a new object.

Without multiple inheritance, you can only inherit code from one object and then
you must duplicate code from a second object. Because duplicating code is what
OOP tries to avoid in the first place, multiple inheritance is yet another way to make
creating objects easy and fast by reusing existing code from other objects.

• Bad news: Multiple inheritance can make programs harder to understand.

By inheriting parts from so many objects, an object can become a hodgepodge col-
lection of parts from everywhere. So, a single object that inherits code from multi-
ple objects is not only harder to understand, but also dependent on too many other
parts of a program. Such interdependency of code is a problem OOP tries to elimi-
nate in the first place.

If your programming language offers multiple inheritance, try it to see if its benefits out-
weigh its drawbacks. If your programming language doesn’t offer multiple inheritance,
don’t feel that you’re missing out on anything because most programming languages
don’t offer multiple inheritance.

Breaking a Large
Program

 into O
bjects

CHAPTER 7 Breaking a Large Program into Objects 227

The purpose of method overloading is to let multiple objects use the same
descriptive method name. Normally, two subprograms can’t share the same
name. Otherwise, when you call a subprogram by name, the computer doesn’t
know which subprogram you actually want to use.

However, when you call a method inside an object, you must specify both the
object and the method name stored inside that object. So, if you wanted to run the
Move subprogram inside an Airplane object, you could call that method by using
this command:

Airplane.Move

This Airplane.Move command might tell the computer to move a cartoon
airplane in a video game. Now what if this video game needs to display a space-
ship onscreen? You could write a new Spaceship object from scratch (which takes
time) or you could just inherit all the code stored in the Airplane object to create
a Spaceship object.

Of course, a spaceship moves differently from an airplane, so you could inherit the
Move method from the Airplane object and modify that subprogram’s code, and
you’ve instantly created a new Spaceship object in very little time. Now you can
use the same method name (Move) to change the position of two different objects,
like this:

Airplane.Move
Spaceship.Move

Encapsulation protects properties and methods from being changed. Method
overloading reuses and modifies code without affecting the original method name.
Inheritance reuses code without physically copying it.

FIGURE 7-9:
Polymorphism

lets you reuse a
method name in

another object.

228 BOOK 2 Programming Basics

Design Patterns
There’s no single “right” way to divide a program into objects. When faced with
the same problem, two programmers may divide up the program into completely
different objects.

However, the more that programmers used OOP, the more they noticed that some
ways of dividing a program into objects worked better than other ways. These
specific ways of dividing a program into objects is called a design pattern.

A design pattern provides a blueprint for the best way to divide specific types of
problems into objects. Because these design patterns have been proven already to
work, you can use a design pattern to help solve your particular problem.

Without design patterns, you’re forced to design objects by yourself and risk
choosing a faulty design that you wouldn’t know about until you might have
already created most of your program.

Three examples of different design patterns (and their unusual names) include

 » Interface pattern: Defines an object that simplifies access to something else.
For example, suppose someone has written a library of useful subprograms.
Rather than let other programmers access these subprograms directly, an
interface pattern defines an object to provide access to these subprograms
instead. By doing this, an interface pattern keeps your program focused on
using object-oriented features.

This library might contain subprograms for displaying graphics and calculating
mathematical equations. You could use the interface pattern to define one
object for accessing the graphics subprograms and a second object for
accessing the mathematical equations subprograms, as shown in Figure 7-10.

 » Flyweight pattern: A flyweight pattern is used to create multiple objects. For
example, you could create a word processor with every character defined as
an object that contains formatting information, such as font, font size,
underlining, and so on. However, a typical word processor document would
contain thousands of objects, and because each object gobbles up memory,
creating so many objects would likely swamp the computer’s memory.

The flyweight pattern solves this problem by removing repetitive information
from multiple objects (such as formatting information) and replacing it with a
pointer to another object that contains this information, as shown in
Figure 7-11.

Breaking a Large
Program

 into O
bjects

CHAPTER 7 Breaking a Large Program into Objects 229

FIGURE 7-10:
An interface

pattern provides
an object-

oriented interface
to a non-object-

oriented item,
such as a library
of subprograms.

FIGURE 7-11:
The flyweight

pattern simplifies
objects that

contain repetitive
information.

230 BOOK 2 Programming Basics

 » Memento pattern: A memento pattern is used to allow an object to restore
itself to a previous state. For example, you might use an object to represent a
line in a drawing program. If you change that line to make it thicker or a
different color, those changes are stored in the line object. If you suddenly
decide you want to undo your changes, your program can restore those
changes by using the memento object, as shown in Figure 7-12.

These are just a sampling of different design patterns available and how they
solve specific problems that occur when using OOP. Before rushing out to create a
program using OOP, take some time to learn about design patterns. That way, you
can pick a design pattern that solves your program’s specific needs, and you save
time designing your program.

Design patterns are guidelines for creating an OOP program, so it’s possible to use
multiple design patterns in different parts of a program. Even if you use the right
design pattern, you can still write poorly organized and sloppy code, so design
patterns are just another guideline that can help create better software.

Object-Oriented Languages
Two types of OOP languages exist: hybrid languages and pure languages.

FIGURE 7-12:
The memento

pattern uses one
object to store

information
about another

object’s
previous state.

Breaking a Large
Program

 into O
bjects

CHAPTER 7 Breaking a Large Program into Objects 231

Hybrid languages
A hybrid language is simply a language originally designed without object-
oriented features, but with object-oriented features added on. Here are some
popular examples of hybrid languages:

Original Language Hybrid, Object-Oriented Version

Ada ObjectAda

BASIC Visual Basic, Xojo

C C++, C#, Objective-C

COBOL Object-Oriented COBOL

Pascal Delphi

Because hybrid languages are based on popular languages, they make it easy
for current programmers to understand and use. Unlike “pure” object-oriented
languages that force you to design a program completely around objects, hybrid
languages often let you write programs by using the traditional task-oriented,
subprogram approach and only add object-oriented features sparingly until you
get comfortable using and designing programs with OOP.

Because hybrid languages are based on languages that have been around for
decades, a hybrid language lets you take an existing program and add object-
oriented features to it. COBOL programs have been around since the 1960s, so
companies are reluctant to rewrite working programs in another language just
to gain object-oriented features. Rather than rewrite a perfectly working COBOL
program in C++, programmers can just use Object-Oriented COBOL instead, which
effectively extends the life of ancient COBOL programs.

Hybrid languages do have one major drawback. Because programs written
in hybrid languages tend to be a mishmash of traditional and object-oriented
programming, they can be hard to understand and even harder to modify.

Pure languages
Although programmers can quickly adapt to the object-oriented language based
on a language they already know, most programmers tend to stick with writing
programs the way they’ve always done it, which often means not using OOP tech-
niques at all or using the object-oriented features poorly.

232 BOOK 2 Programming Basics

To get around this problem, computer scientists have developed pure object-
oriented languages, which forces programmers to use object-oriented techniques,
whether they like it or not. Some popular pure OOP languages include

 » Java

 » Perl

 » JavaScript

 » Smalltalk

 » Swift

By forcing you to use OOP techniques, pure object-oriented languages make sure
that every program written in that particular language can be easily understood
in terms of objects. A program written in a hybrid language can be as sloppy as a
native Arabic speaker writing a letter in both Arabic and English. A program writ-
ten in a pure object-oriented language may be sloppy and poorly written, but it’s
like forcing a native Arabic speaker to write a letter completely in English, so at
least it’s easier for English speakers to understand.

So, which type of language should you learn and use? If you need to update pro-
grams written in older programming languages, like C, BASIC, or Pascal, you may
have no choice but to update those programs by using a hybrid language.

Ultimately, it’s probably best to force yourself to know at least one pure object-
oriented language so you fully understand the benefits of OOP and put those ben-
efits into practical use. After you completely understand how to design and use
object-oriented techniques, you’re more likely to use OOP features in a hybrid
language.

The programming language you use is less important than designing a program
correctly from the start. Languages are tools to help you achieve a goal, so don’t
get caught up in the “religious” wars arguing whether one programming lan-
guage is “better” than another. The “best” programming language is the one that
makes you most efficient.

Disadvantages of object-oriented
programming
Despite its clear-cut advantages, OOP isn’t perfect and suffers its share of
drawbacks:

Breaking a Large
Program

 into O
bjects

CHAPTER 7 Breaking a Large Program into Objects 233

 » OOP is best suited for organizing large programs. If you need to write a
small program to make a printer work with an operating system, organizing
your program into objects won’t likely give you any benefits and may take
more time to write.

 » OOP requires more memory to run than non-OOP programs. So, if you’re
writing a small program that needs to be fast and use as little memory as
possible, OOP actually makes your program slower to run.

Like all programming techniques, such as structured programming, OOP isn’t a
magical solution for writing large programs flawlessly. Instead, OOP is more of a
guideline for steering you into using proven techniques for organizing programs
and making them easier to modify and update.

The ultimate goal of any programmer is to write software that works, is easy to fix
and modify, and gets completed on time. If you can achieve these three goals on a
consistent basis, you’ll always have plenty of people wanting to hire you.

Real-Life Programming Examples
To fully understand OOP, you need to see how to use OOP in a real programming
language. Basically, the steps to using OOP involve

 » Defining an object with a class file

 » Creating an object based on a class

 » Using methods in an object

 » Inheriting an object

 » Using polymorphism to rewrite an inherited method

Although the following examples use Swift, don’t worry about the particular syn-
tax of the programming language examples. Every programming language uses
different syntax and commands, so focus on understanding the principles behind
creating and using objects.

Defining an object with a class
To create an object, you must first create a class, stored in a separate file that
defines

234 BOOK 2 Programming Basics

 » The properties the object contains

 » The methods the object uses to manipulate its data

At the simplest level, a Swift class consists of the class keyword along with a
descriptive name for your class, such as

class ClassName
{
}

So, if you wanted to name your class Animal, your class would now look like this:

class Animal
{
}

Next, you need to define the public properties and methods by optionally using
the public keyword. Then you must define the private properties and methods by
using the private keyword, like this:

class Animal
{
 public var variableName1: dataType

 private var variableName2: dataType

}

If you omit the public keyword in Swift, Swift assumes the property or method
is public.

If you wanted to define an x_coordinate and y_coordinate variable as public
and an X variable as private, you’d do this:

class Animal
{
 public var x_coordinate: Int = 0
 public var y_coordinate: Int = 0

 private var x: Int = 0

}

Breaking a Large
Program

 into O
bjects

CHAPTER 7 Breaking a Large Program into Objects 235

Not all objects have both public and private properties and methods. Some
objects may just have public properties and methods.

The preceding code creates three integer variables — x_coordinate,
y_coordinate, and x and assigns an initial value of zero (0) to each variable.
After you define the properties your object will use, the next step is to define the
methods it will use, such as an initial_position and a move method:

class Animal {
 public var x_coordinate: Int = 0
 public var y_coordinate: Int = 0
 private var x: Int = 0
 func initial_position (init_x: Int, init_y: Int) {
 x_coordinate = init_x
 y_coordinate = init_y
 }
 func move (new_x: Int, new_y: Int) {
 x = 5
 x_coordinate = x_coordinate + new_x + x
 y_coordinate = y_coordinate + new_y
 }
}

The preceding code defines two methods — initial_position and move. The
initial_position and move methods both accept two integers in their parameter
list. Inside each method is the actual Swift code to make each method work.

The initial_position method defines an initial value for the two public vari-
ables x_coordinate and y_coordinate.

The move method adds a new value to the current x_coordinate and y_coordinate
values. This method also uses the private variable (x), sets its value to 5, and
uses that value to modify the value of the x_coordinate variable.

At this point, you’ve defined a class. The next step is to use this class in an actual
program.

Every class defines exactly one object. If a program needs a dozen different objects,
you need to create a dozen different classes.

When you define an object from a class, that’s often called instantiating an object.
Classes are like cookie cutters that define the details. Objects are like the cookies
created by the class.

236 BOOK 2 Programming Basics

Creating an object from a class
Before you can use a class in your program, you need to

 » Declare a name for your object.

 » Define your object based on a class.

If you wanted to create an object based on the Animal class, you could do the fol-
lowing in Swift:

var cat = Animal()

Right away, this cat object would contain three properties, all set to an initial
value of zero (0) because this value of 0 is what is defined inside the Animal class:

 » x_coordinate

 » y_coordinate

 » x

Running methods stored in an object
After you define an object in your main program, you can run a method stored
in that object. So, if you wanted to run the initial_position method, stored in
the cat object, you’d identify the object name followed by the object’s method to
run, like this:

var cat = Animal()
cat.initial_position(init_x: 5, init_y: 7)

The preceding code creates a cat object based on the Animal class. Next, it runs
the initial_position method, which accepts two integer parameters named
init_x and init_y. The init_x parameter gets assigned the value of 5 and the
init_y parameter gets assigned the value of 7.

If you wanted to run the move method, you’d define the object name (cat) fol-
lowed by the method name (move) and wind up with a command like this:

cat.move(new_x: 10, new_y: 10)

The move method accepts two parameters named new_x and new_y. Both the new_x
parameter and the new_y parameter get assigned a value of 10.

Breaking a Large
Program

 into O
bjects

CHAPTER 7 Breaking a Large Program into Objects 237

Running the whole program together might look like this:

class Animal {
 public var x_coordinate: Int = 0
 public var y_coordinate: Int = 0
 private var x: Int = 0
 func initial_position (init_x: Int, init_y: Int) {
 x_coordinate = init_x
 y_coordinate = init_y
 }
 func move (new_x: Int, new_y: Int) {
 x = 5
 x_coordinate = x_coordinate + new_x + x
 y_coordinate = y_coordinate + new_y
 }
}
var cat = Animal()
cat.initial_position(init_x: 5, init_y: 7)
print (cat.x_coordinate)
print (cat.y_coordinate)
cat.move(new_x: 10, new_y: 10)
print (cat.x_coordinate)
print (cat.y_coordinate)

If you ran this Swift program, the following would appear onscreen:

5
7
20
17

The print (cat.x_coordinate) command prints 5.

The print (cat.y_coordinate) command prints 7.

The move method adds x (5) to the value of new_x (10) and the value of x_coordi-
nate (5) so the new x_coordinate value is now 20.

The move method adds the value of new_y (10) and the value of y_coordinate (7)
so the new x_coordinate value is now 17.

238 BOOK 2 Programming Basics

Inheriting an object
To inherit an object, you must first create another class file. So, if you wanted to
create a Human class and have it inherit from the Animal class, you’d do this:

class Human : Animal {

}

Although the Human class behaves identically to the Animal class, the Human class
is actually empty because it inherits all its code from the Animal class. Now any
code you add to the Human class is unique just to that Human class, like this:

class Human: Animal {
 public var iq: Int = 0
 func getSmart(iq_boost: Int) {
 iq = iq + iq_boost
 }
}

Because this inherits all the code from the Animal class, the Human class is actu-
ally equivalent to the following, where the highlighted code highlights the code
unique to the Human class:

class Human: Animal {
 public var x_coordinate: Int = 0
 public var y_coordinate: Int = 0
 private var x: Int = 0
 func initial_position (init_x: Int, init_y: Int) {
 x_coordinate = init_x
 y_coordinate = init_y
 }
 func move (new_x: Int, new_y: Int) {
 x = 5
 x_coordinate = x_coordinate + new_x + x
 y_coordinate = y_coordinate + new_y
 }

 public var iq: Int = 0
 func getSmart(iq_boost: Int) {
 iq = iq + iq_boost
 }
}

Breaking a Large
Program

 into O
bjects

CHAPTER 7 Breaking a Large Program into Objects 239

As you can see, without inheritance, the code stored inside an object can soon grow
out of control, but by using inheritance, each object contains only unique code.

An object that inherits code is treated no differently from an object created entirely
from scratch. The following program shows how to use the Human class:

class Animal {
 public var x_coordinate: Int = 0
 public var y_coordinate: Int = 0
 private var x: Int = 0
 func initial_position (init_x: Int, init_y: Int) {
 x_coordinate = init_x
 y_coordinate = init_y
 }
 func move (new_x: Int, new_y: Int) {
 x = 5
 x_coordinate = x_coordinate + new_x + x
 y_coordinate = y_coordinate + new_y
 }
}
class Human: Animal {
 public var iq: Int = 0
 func getSmart(iq_boost: Int) {
 iq = iq + iq_boost
 }
}
var timmy = Human()
timmy.getSmart(iq_boost: 125)
print (timmy.iq)

Running this program displays the following onscreen:

125

The iq property is initially set to 0. When the getSmart method runs, it passes in
a value of 125 to the iq_boost parameter, which gets added to the current value
of iq (0). Thus, printing timmy.iq displays 125.

Using method overloading to rewrite
an inherited subprogram
After you inherit code from another object, you can use method overloading to
rewrite the code inside of a method. To overload a method, you may need to define
which methods in an object can be changed.

240 BOOK 2 Programming Basics

In Swift, you define a method to be overloaded by using the override keyword.
So, if you wanted to overload the move method in the Human class, you’d have to
rewrite the move method inside the Human class like this:

class Human: Animal {
 public var iq: Int = 0
 func getSmart(iq_boost: Int) {
 iq = iq + iq_boost
 }
 override func move(new_x: Int, new_y: Int) {
 x_coordinate = x_coordinate + new_x
 y_coordinate = (y_coordinate + new_y) * 2
 }
}

The override keyword lets you reuse the move method name and parameter list,
but change the code inside.

Not every object-oriented language requires you to identify polymorphic
methods. Some languages let you inherit and modify methods without identify-
ing them first.

Suppose you write an entire Swift program like this:

class Animal {
 public var x_coordinate: Int = 0
 public var y_coordinate: Int = 0
 private var x: Int = 0

 func initial_position (init_x: Int, init_y: Int) {
 x_coordinate = init_x
 y_coordinate = init_y
 }

 func move (new_x: Int, new_y: Int) {
 x = 5
 x_coordinate = x_coordinate + new_x + x
 y_coordinate = y_coordinate + new_y
 }
}

Breaking a Large
Program

 into O
bjects

CHAPTER 7 Breaking a Large Program into Objects 241

class Human: Animal {
 public var iq: Int = 0

 func getSmart(iq_boost: Int) {
 iq = iq + iq_boost
 }

 override func move(new_x: Int, new_y: Int) {
 x_coordinate = x_coordinate + new_x
 y_coordinate = (y_coordinate + new_y) * 2
 }
}

var timmy = Human()
print (timmy.x_coordinate)
print (timmy.y_coordinate)
timmy.move(new_x: 5, new_y: 3)
print (timmy.x_coordinate)
print (timmy.y_coordinate)

Running the main program would now print the following onscreen:

0
0
5
6

Notice that the program prints 0 (x_coordinate) and 0 (y_coordinate). Then it
uses the move method stored in the Human class, which adds a new value to the
x_coordinate but adds a new value to the y_coordinate before multiplying it
by 2. So the timmy.move (new_x: 5, new_y: 3) command sets the human’s
x_coordinate to 5 (0 + 5) and the y_coordinate to 6 ((0 + 3) × 2).

Although these examples use Swift, the basic steps to using objects remain the
same:

1. Create a class that defines properties and methods.

These can be a mixture of public and private.

2. Create one or more additional classes that inherit code from
another class.

242 BOOK 2 Programming Basics

3. Use method overloading to rewrite code inherited from another object.

4. Declare an object as a specific class type.

5. Use an object’s methods to manipulate that object’s properties.

OOP can help you design large programs faster, but ultimately, your own skill as
a programmer determines the quality of your programs.

CHAPTER 8 Reading and Saving Files 243

Reading and Saving Files

Almost every program needs to save data. Spreadsheets need to save
numbers and formulas, word processors need to store text, databases need
to store names and addresses, and even video games need to store the top

ten highest scores.

To save data, programs store information in a file. After a program stores data in a
file, it eventually needs to open that file and retrieve that data again. To save data
in files, programs generally use one of four methods:

 » Text files

 » Random-access files

 » Untyped files

 » Database files

Storing Data in Text Files
A text file, sometimes called a plaintext file, contains nothing but characters, such
as letters, numbers, and symbols.

Chapter 8

IN THIS CHAPTER

 » Storing data in text files

 » Storing fixed-size data in random-
access files

 » Using untyped files to store data of
varying sizes

 » Working with database files

244 BOOK 2 Programming Basics

Text files only store actual data, such as names and addresses, but they don’t
contain any formatting information, such as fonts or underlining. Because
text files contain only data, they represent a universal file format that any
computer — from an ancient Commodore 64 to a Cray supercomputer — can
read and use.

Text files typically store data as one long string of data like this:

Joe Smith 123 Main Street New York NY 10012

However, to identify data that should logically be lumped together, programs such
as databases and spreadsheets offer the option of saving text files as either

 » A comma-delimited text file (also known as a comma separated value, or
CSV, file) simply divides text into logical chunks, such as

Joe Smith, 123 Main Street, New York, NY, 10012

 » A tab-delimited text file divides text by tabs, like this:

Joe Smith 123 Main Street New York NY 10012

A comma- or tab-delimited text file makes it easy for database and spreadsheet
programs to read data from a text file and know which data to store in separate
fields (for databases) or cells (for spreadsheets).

THE “OTHER” UNIVERSAL FILE FORMAT
The biggest drawback with text files is that they can’t contain any formatting
information. So, if you need to transfer a word processor document from an ancient
Atari ST computer to a modern iPad, you lose all formatting in that document.

To prevent this problem, computer scientists have created multiple universal file
formats that can retain both data and formatting. One popular universal file format,
XML (short for Extensible Markup Language), contains both data and instructions for how
to display the data. For example, the sentence “This is the text you would actually see”
looks like this in an XML file:

<para>This is the text you would actually see</para>

Reading and Saving
Files

CHAPTER 8 Reading and Saving Files 245

Back in 1987, Microsoft tried to define another universal, cross-platform, file
format that could retain both data and formatting instructions. This file format,
Rich Text Format (RTF), creates tags that define the appearance of text. Consider
the following text:

 » This is bold.

 » This is italicized.

The RTF file of the preceding text looks like this:

 » This is \b bold\b0 .\par

 » This is \i italicized\i0 .\par

So, if you ever want to transfer text from one computer or program to another,
your safest bet if you want to retain all the formatting is to save the file as an
RTF file.

An XML file is a text file that contains formatting instructions or tags that define the
appearance of data. Because XML files are text files, any computer can read them.
To fully read an XML file, a computer needs a special program — called an XML
parser — which not only reads the data but also translates the XML formatting tags
that tell the computer how to display that data.

To create a universal file format for word processor documents, spreadsheets, data-
bases, and presentation files, computer scientists have created a new file format, based
on XML — the OpenDocument standard. The main idea behind the OpenDocument
standard is to define a universal file format that retains both data and formatting
commonly found in word processors, spreadsheets, databases, and presentation
program files. Unlike proprietary file formats, which a single company can control, the
OpenDocument standard is freely available to anyone.

The OpenDocument file format has even gained the support of many governments,
which want to ensure that people can still read and edit their files no matter what
computer or software they may be using in the future. If you store important files in a
proprietary file format, such as Microsoft Word or Microsoft Access, there’s a chance
that programs in the future won’t know how to open those files, which means your
data could potentially be lost forever. By using the OpenDocument standard, your
data can remain accessible forever (or at least until computer scientists create another
“universal” file format).

246 BOOK 2 Programming Basics

Creating a text file
A text file stores data as lines of text. So, if you want to store three names in a text
file, you could store those names on a single line like this:

Joe Smith Mary Evans Donna Dickens

Of course, the more names you want to store, the longer this single line of text
gets. That’s why most text files store data on separate lines, where each line of
text contains a single chunk of data, such as

Joe Smith
Mary Evans
Donna Dickens

The end of each line in a text file actually contains invisible codes that define the
end of a line:

 » Carriage return (CR): The CR code tells the computer to move to the front
of the line.

 » Line feed (LF): The LF code tells the computer to move down to the next line.

Unix systems only use the line feed character to define the end of a line, while
Windows systems use both a carriage return and a line feed character.

So, the preceding example of a text file actually looks like this:

Joe Smith <CR><LF>
Mary Evans <CR><LF>

Donna Dickens <CR><LF>

Creating a text file typically requires three steps:

1. Name the text file.

2. Assign a variable to that text file.

3. Store one or more lines of text in the text file.

The following Python language example creates a text file named mytext.txt and
stores the names Joe Smith, Mary Evans, and Donna Dickens in that file:

names = """Joe Smith
Mary Evans
Donna Dickens"""

Reading and Saving
Files

CHAPTER 8 Reading and Saving Files 247

myfile = open("mytext.txt", "w")
myfile.write(names)
myfile.close()

The Python program follows these steps:

1. The Python program stores the names Joe Smith, Mary Evans, and Donna
Dickens in a names variable.

In Python and some other programming languages, triple quotation marks let
you define multiple lines of text.

2. The program opens (creates) a text file named mytext.txt and assigns this file
to a myfile variable.

The "w" symbol tells the program to open the mytext.txt file so that you can
write or add data to that text file.

The "w" symbol tells the computer to erase any existing text inside the
mytext.txt text file. If you want to add new data to a text file without erasing
its entire contents, replace the "w" symbol with the "a" (append) symbol
instead, like this:

scraps = open("mytext.txt", "a")
scraps.write("\nSal Lankins")

scraps.close()

The preceding three lines of code would open the mytext.txt file, add a new
line (the \n characters), and tack the name Sal Lankins at the end of the
text file.

3. The myfile.write(names) command tells the computer to take the data
stored in the names variable and write (save) it in the text file assigned to the
myfile variable.

4. The myfile.close() command tells the computer to shut or close the file.

Reading a text file
After you store data in a text file, you eventually need to retrieve it again by
“reading” the text file. Reading a text file means retrieving data, starting from the
beginning of a text file, line-by-line, until the computer reaches the end of the
file. So, if the name Donna Dickens was stored as the third line in a text file,
the computer couldn’t retrieve Donna Dickens until it first scanned the first and
second lines of the text file.

248 BOOK 2 Programming Basics

A computer can only retrieve data from a text file starting at the beginning and
reading the entire file until it reaches the end. That’s why text files are sometimes
called sequential files because they act like an audio tape that doesn’t let you hear
the fifth song until you fast-forward past the first four songs. Likewise, comput-
ers can’t retrieve the fifth line in a text file until it scans past the first four lines
in that text file.

Reading a text file typically requires three steps:

1. Identify the name of a text file.

2. Assign the name of the text file to a variable name.

3. Read all the lines of data stored in the text file until the end of the text
file is reached.

So, if you had a text file named mytext.txt, you could retrieve data out of that file
by using the following Python language example:

fu = open("mytext.txt", "r")
while True:
 line = fu.readline()
 if not line:
 break
 print (line)
fu.close()

First, this program identifies the text file to use (mytext.txt) and assigns the text
file to the fu variable. (The "r" symbol tells the computer to read the data from
the mytext.txt file.)

Next, a while loop reads the text file, identified by the fu variable, line-by-line,
and prints each line. As soon as this loop reaches the end of the file, the while
loop stops running.

The fu.close() command closes the text file.

Text files are useful for transferring data between different programs or comput-
ers and for storing small amounts of data. If you need to store and retrieve large
amounts of data, or if you need to preserve formatting information, you have to
use another type of a file besides a text file.

Reading and Saving
Files

CHAPTER 8 Reading and Saving Files 249

Many websites can store information on your computer in a cookie (a text file that
stores your website settings, such as your username). That way if you visit that
website again, the website retrieves the cookie off your computer and uses that
information to customize the web page that you see.

For programmers, the most common text file is the source code to any program
no matter which programming language is used, such as C++, Perl, Prolog, or Tcl.

THE PORTABLE DOCUMENT FORMAT (PDF)
Although you can share plaintext files among different computers, you always lose the
formatting of that data. To avoid this problem, Adobe developed its own “universal” file
format — the Portable Document Format (PDF). The idea behind PDF files is to allow
people to create and distribute files that display data exactly the same no matter what
computer they may use. So, if you create a flyer or a newsletter, the appearance of your
flyer or newsletter looks the same on a Mac as it does on a computer running a com-
pletely different operating system, such as Linux or Windows.

PDF files have two drawbacks:

• You can’t edit them without special software. For this reason, PDF files are
meant more for displaying information than for letting you actually change that
information. That’s why many governments distribute documents and forms as
PDF files so people can see the information, such as tax forms, but they can’t
change it.

• You can’t view the contents of a PDF file unless you have a special PDF viewing or
reader program, which Adobe gives away for free. Most browsers can open and
display PDF files, and nearly every operating system includes a program capable of
opening and displaying PDF files.

Despite these drawbacks, PDF files are popular for sharing information among different
computers and operating systems while retaining the original appearance of a file, such
as a word processor document. If you just want to share information, PDF files are cur-
rently the most popular way to do so.

250 BOOK 2 Programming Basics

Storing Fixed-Size Data in
Random-Access Files

One of the biggest problems with text files is that retrieving data requires reading
the entire text file from beginning to end. In a large text file, this makes retrieving
data clumsy and slow.

Whereas text files act more like old audiocassette tapes, random-access files are
more like compact discs (CDs) that allow you to skip right to the data you want to
retrieve (which is why they’re random-access files).

A random-access file organizes data in equally sized chunks called records or
structures. A record defines what type of data to store, such as a first and last name,
age, and phone number, as shown in Figure 8-1.

Not only do records define what type of data to store, but they also define
how much space to allocate for each chunk of data. So, if you want to allocate
20 characters for a person’s first and last name and 12 characters for a person’s
phone number, you could define a record in BASIC, as follows:

Type PeopleRecord
 LastName as String * 20
 FirstName as String * 20
 Age as Integer
 Phone as String * 12
End Type

The preceding code defines the LastName and FirstName variables to hold a maxi-
mum of 20 characters. The Age variable is an integer. The Phone variable can hold
a maximum of ten characters. The combination of all these variables represents a
single chunk of data.

FIGURE 8-1:
A record

organizes related
data together.

Reading and Saving
Files

CHAPTER 8 Reading and Saving Files 251

A record is a user-defined data type because the user (you) defines the type of
information the record can hold. Just as you can’t store data directly into other
data types (integers, strings, and so on), you can’t store data in a record until you
first declare a variable to represent your record.

Dividing a random-access file into fixed chunks of space makes it easy to find
data later. If you store 26 records in a file and want to retrieve the first record, the
computer knows that each record takes up a fixed amount of space. By knowing
exactly where each record begins and ends, the computer knows how to find each
record quickly, as shown in Figure 8-2.

Writing data
To write data to a random-access file, define a variable that represents your
records like this:

Type PeopleRecord
 LastName as String * 20
 FirstName as String * 20
 Age as Integer
 Phone as String * 12
End Type

Dim Contact as PeopleRecord

After you define a variable to represent your record, store data in the Contact
variable, like this:

Contact.LastName = "Smith"
Contact.FirstName = "Joey"
Contact.Age = 28
Contact.Phone = "310-123-1234"

FIGURE 8-2:
The fixed size

of each record
makes it easy
to identify the

physical location
of each record

in a file.

252 BOOK 2 Programming Basics

The next step is to create a random-access file by defining a filename like this:

Open "MyFile.dat" for Random as #1 Len = Len(Contact)

This code opens a random-access file named Myfile.dat, identified by the
number 1 (#1) and divided into chunks defined by the size or length (Len) of the
Contact record.

You can choose any number to represent the random-access file. Using a number,
such as #1 or #8, is much easier than typing out the entire filename every time you
need to identify which file to use again.

When you open a random-access file to store data, you must correctly define the
size of the records. If you define the record size too small, you may lose data.
If you define the record size too large, you waste space.

After you create and open a random-access file, you have to store data into that
file like this:

Put #1, 1, Contact

The Put command tells the computer to use the file identified as #1 and store the
Contact data as the first (1) record. To add more data to the random-access file,
you’d have to store different data into the Contact variable and use additional
Put commands, such as the following, to store data as the second record in the
random-access file:

Put #1, 2, Contact

When you’re done adding records to a random-access file, close the file, like this:

Close #1

This command tells the computer that you’re done working with that file.

Reading data
After you store one or more records in a random-access file, you can read data
from that random-access file by identifying the file to use, assigning a number to
that file, and defining the size of each record in that file, like this:

Open "MyFile.dat" For Random As #1 Len = Len(Contact)

Reading and Saving
Files

CHAPTER 8 Reading and Saving Files 253

When you open a random-access file to read data, you must correctly define the
size of the records stored in that file. If you incorrectly define the size of the
records, the computer can’t retrieve the data correctly.

After you open an existing random-access file, you can retrieve data by using the
Get command like this:

Get #1, 2, Contact

This command tells the computer to get information out of the file identified as
the #1 file, retrieve the second record, and store it back into the Contact variable.
At this point, you could store the data from the Contact variable into another
variable and then retrieve another record from the random-access file. When
you’re done using the random-access file, you have to close it like this:

Close #1

Random-access files make it easy to store and retrieve data. Because you
retrieve only the data you want, random-access files don’t waste time reading
the entire file.

Storing Varying-Size Data in Untyped Files
Random-access files are great for storing chunks of data of equal size. However,
what if you want to store data that may vary in size? You could define a record
as the largest size data you need to store, but that means you wind up wasting
space. As a more efficient alternative, you can store data in untyped files. Untyped
files still organize data in records, but each record can vary in size, as shown in
Figure 8-3.

FIGURE 8-3:
Untyped files

contain records
that can vary

in size.

254 BOOK 2 Programming Basics

Writing data
To store data in an untyped file, you must first name and create an untyped file.
In the Delphi programming language, you can create an untyped file by declaring
a variable as a File type, such as

var
 myFile : File;

After you create a variable name, you need to assign that variable name to an
actual filename, such as

 AssignFile(myFile, 'MyData.dat');

In some languages, such as BASIC, you assign a number to an actual filename. In
Delphi and other languages, you assign a name to an actual file. The purpose of
assigning a number or a name is so that you can refer to a file without typing the
complete filename.

Before you can add any data to an untyped file, use the ReWrite command, which
defines the filename to use and the number of blocks to add to the file. (Each block
of data typically corresponds to one byte of data.) So, if you wanted to define a
5-byte block of data, you’d use the following:

ReWrite(myFile, 5);

After you define the filename (through the myFile variable name) and the block
size, you can start adding actual data by using the BlockWrite command, which
specifies the filename to use, the actual data to add, and the number of records to
add, like this:

BlockWrite(myFile, MyData, 1);

The preceding command tells the computer to use the file defined by the myFile
variable and store the data from the MyData variable as a single record into the
file. After you’re done writing data to a file, you need to close the file by using
the CloseFile command, like this:

CloseFile(myFile);

Reading and Saving
Files

CHAPTER 8 Reading and Saving Files 255

Reading data
After you store data in an untyped file, you can retrieve it again by first using the
Reset command that defines the filename to use and the size of the records you
want to retrieve.

If you want to retrieve data from an untyped MyData.dat file, you could assign the
variable name myFile to the MyData.dat file, like this:

AssignFile(myFile, 'MyData.dat');

Then you could use the Reset command to tell the computer to open the file
defined by the myFile variable, like this:

Reset(myFile, 5);

The Reset command also defines the size of each block of data to retrieve, typi-
cally measured in bytes. The preceding command defines a block of 5 bytes.

Because untyped files contain records of varying sizes, there are two ways to read
an untyped file:

 » Scanning the file from beginning to end, like a text file: To do that in
Delphi, you can use a while loop. Inside the while loop, you can put a
BlockRead command that defines which file to read data from, a variable to
store the data, and how many bytes to retrieve at a time like this:

while not Eof(myFile) do
 begin
 BlockRead(myFile, Storage, 1);
 ShowMessage(IntToStr(Storage));

 end;

The while loop tells the computer to keep looping as long as the computer
hasn’t reached the end of the file (Eof) identified by the myFile variable.
Inside the while loop is the BlockRead command, which tells the computer
to read one (1) block of data at a time (when each block of data is defined in
size by the Reset command), as shown in Figure 8-4.

After the BlockRead command retrieves data from the file identified by the
myFile variable, it stores this data in a Storage variable. The ShowMessage
command displays the value of the Storage variable onscreen.

 » Using a pointer: Reading an untyped file from start to finish can be as slow
and cumbersome as reading an entire text file from start to finish. So, as a
second way to retrieve data from an untyped file, you can use a pointer to
“point” to different data blocks.

256 BOOK 2 Programming Basics

For example, suppose you use the Reset command to define a block of
5 bytes:

Reset(myFile, 5);

This command divides an untyped file into 5-byte blocks.

To access an untyped file, like a random-access file, you can use the Seek
command, which defines which untyped file to use and which data chunk to
retrieve, like this:

Seek(myFile, 3);

This command tells the computer to use the untyped file identified by the
myFile variable and retrieve all the data in the third block of data, as shown
in Figure 8-5.

After the computer finishes retrieving data from the file, it needs to close the file
by using the CloseFile command:

CloseFile(myFile);

The main idea behind untyped files is that they can hold records of varying sizes.
When you retrieve data from an untyped file, you have to read the data in chunks
that you define.

FIGURE 8-4:
The computer

can retrieve data
from an untyped

file in blocks
or chunks.

FIGURE 8-5:
By defining which
chunk of data you

want to retrieve,
you can retrieve

data from an
untyped file

without scanning
the entire file

from start
to finish.

Reading and Saving
Files

CHAPTER 8 Reading and Saving Files 257

In many programming languages, such as C++, an untyped file is considered to be
a stream of data.

Using Database Files
One problem with random-access and untyped files is that two programs can
use untyped files but the structure of one untyped file can differ wildly from the
structure of a second untyped file. As a result, transferring or sharing data from
one program to another can be difficult.

Proprietary file formats are nothing more than random-access or untyped files
that store data in a specific way that only a single company truly understands.

To solve this problem, many programs simply store data in popular file formats
used by other programs. Because many programs need to store large amounts of
data, they often store data in file formats used by popular database programs to
make it easy to share this data.

The most popular databases are Structured Query Language (SQL) databases.
Some popular programs used to create and manipulate SQL databases are MySQL
and PostgreSQL.

At one time, dBASE was the most popular database file format, so you still see
many programs that can create, store, and save data in a dBASE file. Because
many companies made dBASE-compatible programs, the dBASE file format is also
known by the generic term xBASE.

Looking at the structure of a database
To understand how programs can store information in a database file, you need
to understand the basic structure of a database. A database file (which is what you
physically store and save on a disk) typically consists of one or more tables, with
each table organizing related data. For example, you might have a database file
containing customer information. Then you might divide that database file into
three tables, with one table containing current customers, a second table con-
taining potential customers, and a third table containing inactive customers, as
shown in Figure 8-6.

258 BOOK 2 Programming Basics

Each table is further divided into records, with each record containing informa-
tion about a single item, such as a customer. Each record is further divided into
fields, with each field storing a single chunk of data, such as a name, a telephone
number, or an email address.

Most database files are relational databases because information, stored in sepa-
rate tables, can be linked or related to one another. For example, one table might
contain a list of customers, and a second table might contain a list of orders that
each customer placed. Even though each table is separate, the information each
one contains is related.

Relational databases make it easy to group data logically but keep them sepa-
rated physically. Without a relational database, you would have to cram all data
together, and that would likely be clumsy and cumbersome to manage.

A prospect table might physically contain the customer information, whereas the
customer table might only contain unique information, such as the type of prod-
uct the customer bought and the total sales amount. To retrieve the customer’s
name and address, the customer table simply points to that information stored in
the prospect table, as shown in Figure 8-7.

FIGURE 8-6:
Database files

are divided
into tables, and

each table is
further divided

into records
and fields.

Reading and Saving
Files

CHAPTER 8 Reading and Saving Files 259

Connecting to a database
To save information to a database file, a program needs to identify

 » The database file to use

 » The table to use

 » The record to use

 » The specific field to view, edit, or store data

Although you can write your own subprograms to access a database file; retrieve
information from a specific table, record, and field; and then save those changes
again, this usually takes way too long to write and test. As a faster alternative,
most programmers either buy a third-party database toolkit or (if they’re lucky)
use the built-in database controls that come with their language compiler.

FIGURE 8-7:
Relational

databases link
tables to group
logically related

information
together.

260 BOOK 2 Programming Basics

A database toolkit essentially acts like a middleman between your program and
a database file, as shown in Figure 8-8. So, instead of worrying about the physi-
cal details of a particular database file, you just have to tell the database toolkit
what you want to do (such as saving new information in a database table), and the
toolkit figures out how to do it.

When using any toolkit from a third-party, your program is essentially held
“hostage” by that toolkit. If the company making the toolkit goes out of business
or doesn’t sell a version of its toolkit for a different operating system, you can’t
do anything about it. So, if your program uses a database toolkit that runs only
on Windows, you can only write programs that run on Windows but never for
Linux or macOS. If a toolkit doesn’t offer the features you need or work with your
favorite language or compiler, you have to write your own code or find another
toolkit — and risk running into the same problems all over again.

Because database access is so common, many compilers include database con-
nectivity features. That way, you don’t have to buy a separate database toolkit or
worry about the database toolkit not working with your favorite programming
language.

To add database connectivity, you use database controls, which let you define the
database file, table, and field to use. After you define what parts of a database file
to use, you can then use database viewing controls to display and edit data stored
in specific fields.

Database connectivity may let you write commands in a database language, such
as SQL, and link it to your program. By linking database commands to what-
ever programming language you’re using, you don’t have to write commands to
manipulate data in a programming language like C or Java, as shown in Figure 8-9.

Database controls take care of the details of how to connect to a database so you
can just focus on using a database file.

FIGURE 8-8:
Database toolkits

take care of the
technical details
of manipulating

a database file
so you can focus

on just making
your program do

something useful.

Reading and Saving
Files

CHAPTER 8 Reading and Saving Files 261

When a program connects to a database file, that program often acts as a front end
to that database. A front end basically wraps a friendly user interface (UI) around
the database file. So, instead of forcing users to figure out arcane commands to
retrieve, print, edit, search, or sort through a database file, a front end provides a
simplified interface for manipulating data, as shown in Figure 8-10.

Database files are best for storing large amounts of information that you can share
with other people and programs. If sharing data with other programs isn’t impor-
tant, use a random-access or untyped file. The drawback is that both of these files
force you to write additional commands to store and retrieve data. For storing
small amounts of data, use a text file.

Storing information in a file is a crucial part of most programs, so determine what
type of data you need to save and then choose the file format that makes the most
sense for your program.

FIGURE 8-9:
A database toolkit

can manipulate
data using a

familiar database
language like

SQL so you don’t
have to use a
programming
language that

isn’t designed for
managing data.

FIGURE 8-10:
Programs often

act as a front end
to a database file.

CHAPTER 9 Documenting Your Program 263

Documenting Your
Program

There are two big problems with writing programs. First, you have to worry
about getting the program to work. Second, you’ll probably need to fix and
modify it later. To solve both types of problems, you have to understand

how the program works in the first place. To understand how a program works,
programmers have to explain

 » What problem the program is trying to solve

 » How the program is designed

 » How each part of the program works

In the early days when programs were small, programmers could figure out all
the preceding questions by studying the source code of the program. When pro-
grams got bigger and tackled more complicated problems, programmers could
no longer understand how a program worked by examining the source code.
That’s when programmers were forced to start writing additional explanations,
or documentation. By studying this documentation, other people could under-
stand how a program works without trying to decipher the actual source code of
a program.

Chapter 9

IN THIS CHAPTER

 » Adding comments to your
source code

 » Constructing software
documentation

264 BOOK 2 Programming Basics

Adding Comments to Source Code
One of the first attempts at explaining how a program worked was by making the
source code more understandable by using high-level languages, like BASIC or
Pascal, to create self-documenting code. So, rather than try to decipher cryptic code
like this:

SECTION .data
 msg db "It's alive!!",0xa;
 len equ $ - msg

SECTION .text
 global main
main:
 mov eax,4;
 write system call
 mov ebx,1
 mov ecx,msg
 mov edx,len
 int 0x80
 mov eax,1 system call
 mov ebx,0
 int 0x80

You could replace the preceding assembly language commands with a shorter,
more descriptive, high-level language command like this:

PRINT "It's alive!"

Such self-documenting code helps explain what a single line of code does, but
it doesn’t necessarily tell you how the entire program works as a whole or what
problem the program even solves.

Instead of relying on “self-explanatory” language commands, programmers
started adding explanations directly into the source code itself by using comments.

A comment is nothing more than text embedded in the source code. To keep the
compiler from thinking a comment is an actual command, every comment needs
a special symbol in front of the comment, like this:

REM This is a comment in BASIC.
' This is another comment in BASIC.
// This is a comment in C++ and Java.
This is a comment in Perl and Python.
; This is a comment in LISP and assembly language.

D
ocum

enting Your
Program

CHAPTER 9 Documenting Your Program 265

Comments allow you to write short explanations, directly in the source code, that
describe what the source code does. Looking at the following code, can you under-
stand what it does?

C = SQRT(A * A + B * B)

Deciphering this code is straightforward. This command multiplies two variables
by themselves, A and B; adds the results together; and finds the square root of the
sum, which gets stored in the C variable. However, knowing how the command
works doesn’t tell you what this code is doing or why it’s doing this. By adding
comments to the source code, you can explain this, as follows:

' Calculates the hypotenuse of a triangle (C) using the

' Pythagorean theorem: C = Square root (A * A + B * B)
C = SQRT(A * A + B * B)

Even if you don’t know (or care) about the Pythagorean theorem, the comments
help you understand what the command is calculating.

Some programmers use comments to insert jokes, profanity, or remarks about
their coworkers directly in their source code. Just be aware that other people
besides you may need to look at your source code. So, if you’ve laced your program
with profanity-ridden tirades against your coworkers, don’t be surprised if one of
your coworkers finds and reads the comments you made about them, which could
be humorous or embarrassing.

You can put comments anywhere in a program because the compiler ignores them
anyway. Don’t be afraid to add comments because they won’t increase the pro-
gram size or slow it down in any way.

Identifying the two types of comments
The two types of comments are line comments and block comments.

Line comments
Line comments appear directly on a line that already contains a command
like this:

C = SQRT(A * A + B * B) ' Calculates Pythagorean theorem

266 BOOK 2 Programming Basics

The problem with line comments is that they can make source code somewhat
harder to read. That’s why some programmers prefer putting comments on
separate lines like this:

' Calculates Pythagorean theorem
C = SQRT(A * A + B * B)

Comments exist purely for other people to read, so it doesn’t matter whether you
put them on a line with a command or on a separate line.

To make comments easier to read, use plenty of blank lines and spaces. The fol-
lowing example looks crowded:

' Calculates the hypotenuse of a triangle (C)
C = SQRT(A * A + B * B) ' Calculates Pythagorean theorem

By adding blank lines and extra spaces, you can make each comment easier to find
and read:

' Calculates the hypotenuse of a triangle (C)

C = SQRT(A * A + B * B) ' Calculates Pythagorean theorem

Block comments
If you need to write several lines of comments, typing the comment character in
front of each line can get annoying. As a simpler alternative, many programming
languages let you create block comments.

A block comment lets you identify the beginning and end of a comment. So, if you
wanted to write a comment on two separate lines in C++, you’d have to type the //
symbols in front of each line, such as

// Calculates the hypotenuse of a triangle (C) using the
// Pythagorean theorem: C = square root (A * A + B * B)

If you created this as a block comment, you could use the /* and */ symbols to
mark the start and end of a comment like this:

/* Calculates the hypotenuse of a triangle (C) using the
 Pythagorean theorem: C = square root (A * A + B * B)
*/

D
ocum

enting Your
Program

CHAPTER 9 Documenting Your Program 267

No matter how many comments you add, you only need to use the /* and */ com-
ment symbols once, like this:

/* Calculates the hypotenuse of a triangle (C) using the
 Pythagorean theorem C = square root (A * A + B * B).
 The length of the hypotenuse is then used to move a
 cartoon figure on the screen.
*/

Block comments just make it easier to add multiple lines of comments. Program-
mers often use both line and block comments in a single program like this:

/* Calculates the hypotenuse of a triangle (C) using the
 Pythagorean theorem: C = square root (A * A + B * B).
 The length of the hypotenuse is then used to move a
 cartoon figure on the screen.
*/

c = sqrt(a * a + b * b) // Pythagorean theorem

The comment symbol in one language may have a completely different meaning
in another language, so make sure you don’t mix them up.

 » In the curly-bracket languages (such as C++ and Java), the curly brackets are
used to define a block of commands like this:

int main()
{
 cout << "Hello, world!\n";

}

 » In Pascal, the curly brackets are used to create block comments like this:

{ Calculates the hypotenuse of a triangle (C) using the
 Pythagorean theorem: C = square root (A * A + B * B).
 The length of the hypotenuse is then used to move a
 cartoon figure on the screen.

}

To make important block comments stand out, many programmers surround
comments with additional symbols. So, instead of writing a simple block com-
ment like this:

/* This code calculates how many megatons will
 be needed to blow up at least 75 percent of

268 BOOK 2 Programming Basics

 the Earth and throw huge chunks of the
 planet into orbit around the moon.
*/

Many programmers emphasize the block comments by inserting extra symbols,
such as asterisks, as follows:

/***\
 * This code calculates how many megatons will *
 * be needed to blow up at least 75 percent of *
 * the Earth and throw huge chunks of the *
 * planet into orbit around the moon. *
***/

The compiler ignores all these extra symbols and just focuses on the /* symbols
to identify the beginning of the comments and the */ symbols to identify the end
of the comments.

Instead of surrounding comments with extra symbols, some programmers use
extra symbols in the left margin, like this:

/*
** This code calculates how many megatons will
** be needed to blow up at least 75 percent of
** the Earth and throw huge chunks of the
** planet into orbit around the moon.
*/

Every programmer eventually develops a preferred style for writing comments.
As long as you’re consistent, other programmers will have no trouble finding and
reading your comments.

Describing code and algorithms
Comments are typically used to explain what one or more lines of code do or how
they work. For example, suppose you had the following code:

F = P / (1 + (B * exp(-c * t)))

Looking at this code, you can tell how the computer calculates a result, but you
have no idea what result this code is calculating. So, you could add a comment that
explains what this code does, like this:

D
ocum

enting Your
Program

CHAPTER 9 Documenting Your Program 269

' This formula calculates the spread of
' a flu epidemic as a function of time.

F = P / (1 + (B * exp(-c * t)))

Now that you’ve identified what the code does, you can use additional comments
to explain how it works:

' This formula uses the epidemic model to calculate the
' spread of a flu epidemic as a function of time.

' F = Function of time
' P = Current population of a city
' t = Time measured in weeks
' c = Number of people in contact with an infected person
' B = A constant value that can be determined by the initial
' parameters of the flu epidemic

F = P / (1 + (B * exp(-c * t)))

Although you may still not understand what the preceding code does, the com-
ments can help you understand what the code does (calculating a flu epidemic)
and how it works. Without these comments, the code itself tells you little about
what it does.

You may also want to add links or references to books to make it easy for anyone
to get further information to understand your code.

Sometimes you may write code, put it aside, and then look at it three weeks
later — and find nothing seems to make sense anymore. So, write comments to
help other programmers (and also to help yourself) in the future.

There are two schools of thought regarding comments. One says to use comments
liberally to explain both what code does and how it works. The other believes
that if you have to add comments to explain what and how your code works, your
code is probably too complicated in the first place. This second school of thought
believes that, instead of writing comments, programmers should focus on writing
self-explanatory code. Most programmers try to write self-explanatory code and
use comments whenever necessary.

Another use for comments is to explain the logic behind your code. For example,
if you declared a variable as a Byte data type instead of an Integer data type,

270 BOOK 2 Programming Basics

you might include a comment explaining why you chose one data type or another
like this:

' Declared the "Age" variable as a Byte data type because
' Byte data types only accept values from 0 to 255.

Dim Age As Byte

Use comments sparingly only when the purpose of the code isn’t obvious. Redun-
dant comments help no one, as the following example shows:

' Calculates interest payments by multiplying the
' principal by the interest rate and the time.

Payments = Principal * Rate * Time

If a comment repeats information that anyone could read from the source code,
take the comment out. You don’t want to clutter your source code with useless
comments. You want to add comments that can help someone (even you) easily
understand the code as quickly as possible. When in doubt, add clarifying com-
ments wherever there’s even the remote possibility that there could be confusion
on what the code is doing and why.

Documentation
Comments can explain the purpose of one or more lines of code, but many pro-
grammers also use comments to document entire subprograms, such as the
following:

 » Describing what the subprogram does

 » Listing the original programmer (along with contact information, such as an
email address)

 » Defining the original creation date and last date of modification

The following code shows how to use a block comment to document a subprogram:

/***\
 * Description: *
 * *
 * This subprogram calculates the angle needed *
 * to track and aim a laser for shooting down *
 * anti-aircraft missiles fired at airplanes *

D
ocum

enting Your
Program

CHAPTER 9 Documenting Your Program 271

 * as they land or take off. *
 * *
 * Author: John Smith (Jsmith@dodwaste.com) *
 * *
 * Creation date: January 21, 2026 *
 * *
 * Last modified: September 5, 2027 *
***/

When you place such a descriptive comment at the beginning of every sub-
program, you ensure that other people can understand what the subprogram
does and who to contact (blame) without having to examine the source code
line-by-line.

Debugging
Comments can temporarily ignore lines of code for testing. For example, suppose
your program included the following:

Y = log(Y) – (500 + sin(Angle))
X = Rate * exp(X) / Y
PRINT "The value of x = ", X

If you wanted to see how your program would work if you eliminated the first line
of code and replaced it with a new line of code, you could delete the top line and
type a new line, like this:

Y = cos(Angle) * Y
X = Rate * exp(X) / Y
PRINT "The value of x = ", X

Now if you wanted to replace the top line with the previously erased line, you’d
have to delete the top line and retype the preceding line all over again. A simpler
method would be to comment out the top line and type in a new line, like this:

' Y = log(Y) – (500 + sin(Angle))
Y = cos(Angle) * Y
X = Rate * exp(X) / Y
PRINT "The value of x = ", X

272 BOOK 2 Programming Basics

This causes the compiler to ignore the top line (treating it as a comment). Now if
you want to “insert” the top line back into the program, you can comment out the
second line and remove the comment symbol from the first line:

Y = log(Y) – (500 + sin(Angle))
' Y = cos(Angle) * Y
X = Rate * exp(X) / Y
PRINT "The value of x = ", X

The preceding code is equivalent to the following:

Y = log(Y) – (500 + sin(Angle))
X = Rate * exp(X) / Y
PRINT "The value of x = ", X

By commenting out code, you can temporarily ignore code without deleting it. Then
you can add the code back into your program by removing the comment symbol
rather than retyping the entire line again.

In some editors, such as Xcode, you can use comments to define the beginning of
a chunk of code. Then you can browse through a list of comments so you can jump
to the beginning of the code chunk you want to view.

Writing Software Documentation
Most source code makes no sense to nonprogrammers. Even worse, most source
code often makes no sense even to the original programmers after they stop
working on it.

Many programmers work on a program and understand all the idiosyncrasies and
quirks of that program. Then they work on another program and forget how the
first program worked. When they return to the first program, the source code can
look as alien as someone else’s handwriting. For that reason, software documen-
tation is crucial.

Documentation types
Documentation typically consists of text that’s physically separate from the source
code. The three types of documentation are

D
ocum

enting Your
Program

CHAPTER 9 Documenting Your Program 273

 » Design specifications

 » Technical designs

 » User manuals

Although software documentation is often treated as an afterthought, it can be a
crucial step in completing any program. The key to software documentation is to
make it easy to create while still being useful. If you can do that, your software
documentation will be a success no matter how much (or how little) time you
spend putting it together.

Design specifications
Design specifications list the program requirements so the programmers can
understand what problem they need to solve. Unfortunately, projects tend to
change over time, so it’s common to specify one type of program and then halfway
through the project, someone suddenly decides to add an entirely new feature.

Trying to design everything beforehand is like trying to describe the perfect apple
pie without even knowing what an apple pie looks or tastes like. Design specifica-
tions can help give a project focus, but their ultimate goal is to help programmers
create a useful, working program.

Technical design
Programmers use a technical design document to organize how to write the
program. This means specifying how the program will work, what programming
language and compiler to use, and how to divide the program into parts, as well as
assigning teams of programmers to work on each part.

Technical design documents usually start off being fairly complete and accurate,
but trying to design a program is much different than actually writing that same
program. Therefore, the design of a program can change as programmers run into
obstacles that they didn’t foresee ahead of time.

When this happens, the programmers often focus on solving the problem and
forget about updating the technical design documents, so the technical design
documents eventually become inaccurate and obsolete. Programmers rarely want
to update technical design documents because the program may likely change
again later anyway.

274 BOOK 2 Programming Basics

User manuals
User manuals are meant to teach people how to use the program. Ideally, a pro-
gram should be so intuitive that users don’t need a user manual. Because that
rarely happens, most programs include a user manual that explains how to use
every feature in a program.

Documentation tools
Unfortunately, most user manuals are notoriously inaccurate, confusing, and
incomplete. If the programmers write the user manual, they tend to write instruc-
tions geared more toward other programmers. If other people write the user man-
ual, they often don’t fully understand how the program actually works.

The problem with all forms of documentation stems from the dual nature of a
software project:

 » Writing a program is completely different from writing documentation.

 » Writing the best documentation in the world is useless if the program never
gets done or works incorrectly.

Programmers can use a couple of techniques for writing better documentation.

VIDEO TUTORIALS
Because most people don’t read user manuals, many companies are resorting to video
tutorials that show movies of the program in action. That way users can see exactly how
to use the program without having to search for that information buried somewhere
inside a thick manual.

Unfortunately, video tutorials are limited. They take time to create, so they usually cover
only the more common features of a program. If you need help with a specific com-
mand, you need to find the video file that contains the answer and then skim through
the video until you find the information you need.

As a result, video tutorials act more as supplements to the user manual than as replace-
ments for it. Video tutorials work best when they’re kept short and focused on common
tasks that every user needs to know. After users get familiar with a program with the
help of video tutorials, they’ll feel more confident using the help files and reading the
user manual.

D
ocum

enting Your
Program

CHAPTER 9 Documenting Your Program 275

Agile documentation
Many programmers prefer using agile documentation methods. Just as
agile programming means being able to adapt to changing conditions, agile
documentation means updating the documentation just enough to be accurate
but without wasting time trying to make it perfect.

Automation
Computer scientists have developed special documentation generators that can
examine source code and create simple explanations for how different parts of a
large program work.

By using such automated tools, keeping documentation updated is much faster
and easier than forcing a reluctant programmer to write and update documenta-
tion manually. After documentation has been partially completed with an auto-
mated tool, the programmers can edit the documentation to keep it up to date.

Help files
Partially to avoid writing and printing manuals that few people bother to read
anyway, programmers are writing help files instead. Help files essentially con-
dense the user manual into short explanations that give users three options for
finding help by

 » Browsing through a table of contents of logically organized topics

 » Searching an index for specific commands or topics organized alphabetically

 » Searching for specific terms or phrases

Help files can be read like a book, browsed through like a dictionary, or searched
like a search engine that returns pages of related information. Like ordinary user
manuals, help files often require the aid of programmers to explain and verify that
the explanations in the help files are accurate and complete.

To make creating help files easier, many programmers use special help file creation
programs, which can turn an ordinary user manual into a help file. By using such
tools, programmers don’t have to create user manuals and help files separately;
they can just create a user manual and then turn that user manual into a help file.

Ultimately, any form of documentation is meant to help explain what a program
does and how it works. When writing documentation for your program, make it
easy on yourself and write as little as possible while trying to be as complete as
possible. It’s not an easy task, but it’s a necessary one.

CHAPTER 10 Principles of User Interface Design 277

Principles of User
Interface Design

You can divide every program into two parts: a user interface (UI) and the
part of the program that actually does something useful, such as predicting
winning lottery numbers or editing video images.

The whole purpose of a UI is to give a program a way to

 » Accept commands from the user.

 » Accept data from the user.

 » Display information back to the user.

The UI basically lets you give information to a program and receive useful infor-
mation back again, as shown in Figure 10-1. Without a UI, you can’t control a
program or retrieve any useful information from the program. The best UI is the
one that makes it easy for someone to use the program regardless of how ugly the
UI may look to others.

Chapter 10

IN THIS CHAPTER

 » Following the evolution of user
interfaces

 » Defining the elements of a user
interface

 » Designing a user interface

278 BOOK 2 Programming Basics

The Evolution of User Interfaces
To better understand UIs, you need to know how they’ve evolved and how current
UI designs are meant to solve the problems of the past.

Command-line interface
In the old days, programmers focused on writing the useful part of their program.
Then, as an afterthought, they created a simple UI for controlling that program.
Because the programmers already knew how to control their own programs, they
often created a bare-bones UI that looked as confusing as this:

A:\>

At this point, the user is supposed to know not only all possible valid commands to
use, but also how to spell and use each command. Such bare-bones UIs are called
command-line interfaces because they force users to type in commands one line at
a time.

The problem with command-line interfaces is that they’re too hard to use:

 » You have to know all valid commands you can use.

 » You have to know what each command does so you know which one to pick.

 » You have to type each command in correctly. Spell a command wrong or
leave out a space, and the program rejects that command and makes you
type it all over again.

Menus
Command-line interfaces made using programs too difficult for the average
person, so UIs soon evolved from primitive command-line interfaces to simple
menus that listed options for the user to choose from, as shown in Figure 10-2.

FIGURE 10-1:
The user interface
lets you control a

program, give it
commands, and

retrieve useful
information back.

Principles of U
ser

Interface D
esign

CHAPTER 10 Principles of User Interface Design 279

To choose a command listed in a menu, you had to either press a function key
(such as F3) or a unique keystroke combination (such as Ctrl+K+X). The problem
with these simple menus was that they gobbled up space onscreen. The more
commands a program offered, the bigger the menus got.

The solution to this problem was to organize commands in different menus that
would appear only when the user needed them. Such menus typically appeared at
the top of the screen and would appear when the user clicked or pulled down the
menu, like pulling down a window shade, as shown in Figure 10-3.

The main advantages of drop-down lists are that they hide program commands
until you need them, and you can choose a command from a drop-down list by
clicking it with the mouse as opposed to typing a cryptic keystroke command.

FIGURE 10-2:
Early user

interfaces were
simple menus

of keystroke
combinations.

FIGURE 10-3:
Drop-down lists

help organize
commands and

tuck them out
of sight until

needed.

280 BOOK 2 Programming Basics

Eventually, more programs started using drop-down lists. To make using
different programs even easier, programs started organizing their commands
under identical drop-down list categories.

For example, the File menu typically lists commands that manipulate your data,
such as Save, Open, or Print a file. The Edit menu typically lists commands for
changing your data, such as Cut, Copy, and Paste. By offering standard drop-
down lists, users could figure out one program and then quickly adapt to using
another program.

Graphical user interface
The next great leap forward in user interface design occurred with operating
systems. In the early days of computers, most operating systems offered only
command-line interfaces, so programmers had to create their own drop-down
list UIs themselves. Therefore, every program tended to look slightly different
even if it used nearly identical drop-down lists.

To create a consistent appearance for all programs and give users the ability to run
two or more programs at the same time, operating systems soon abandoned their
clunky command-line interfaces and adapted a graphical user interface (GUI).

The main purpose of a GUI is to give users the chance to point and click the com-
mands they want rather than force them to type in the actual command name.

An operating system’s GUI offered three advantages:

 » All programs had a consistent look.

 » Each program appeared in its own window.

 » Users could cut, copy, and paste data from one program to another.

Before GUI operating systems, such as macOS or Microsoft Windows, two
programs might both display similar drop-down lists, but one program might
display it in black against a white background whereas the other program might
display it in red against a blue background. Such visual differences might be
 functionally trivial, but they could make figuring out different programs harder
for many people.

By forcing all programs to look similar, GUI operating systems made figuring out
programs much easier. After you knew how one program worked, you could easily
switch to another program.

Principles of U
ser

Interface D
esign

CHAPTER 10 Principles of User Interface Design 281

The only purpose of a UI is to make it easy for people to use a program. The best
user interface is transparent to the user — someone can use the program just by
looking at it, instead of being forced to read 300-page manuals first.

Elements of a User Interface
To create a UI, you have two choices:

 » Write it from scratch. Writing a UI from scratch basically means writing and
testing your program and then writing and testing a UI, essentially doubling
your work. Because the code that creates a UI can be separate from the code
that actually makes your program do something useful, many programmers
use UI frameworks that contain libraries of subprograms for creating the
standard elements of a UI, such as drop-down lists and windows.

 » Use a rapid application development (RAD) tool. As an even simpler
alternative, programmers also use RAD tools that let you visually design your
UI. After you design your UI, you write code that attaches this UI to the rest of
your program.

No matter which method you use to create a UI, every UI needs to offer ways to
do the following:

 » Let the user control (give commands) to the program.

 » Let the user give data to the program.

 » Display information for the user to see.

The UI has to make sense only to the people who want to use the program. If you
design a UI that looks great to you but confuses the people who use the program,
the UI fails no matter how pretty it may look.

Displaying commands to a user interface
Unlike command-line interfaces that force users to memorize and type com-
mands, GUIs always display commands onscreen so the user can point and click
with the mouse to choose a command.

The simplest way to display a command to the user is through a button. Because
buttons can take up so much space onscreen, buttons are most useful for display-
ing a limited number of common commands to the user, such as two or three
possible choices, as shown in Figure 10-4.

282 BOOK 2 Programming Basics

The problem with buttons is that they take up screen space, so using more than
a handful of buttons can crowd the screen and confuse the user. Instead of bom-
barding users with screens full of buttons, programs generally use buttons to offer
choices that users need to make frequently.

For example, when quitting a program, the program may ask the user if they want
to save the file before quitting. The limited number of choices are Don’t Save,
Save, and Cancel.

Buttons are useful for limiting the user’s choices to a handful of options. However,
buttons are impractical for displaying a large number of commands.

The most popular way for displaying multiple commands to the user is through
drop-down lists. drop-down lists organize commands into categories, such as
File, Edit, Window, and Help.

Unfortunately, drop-down lists aren’t easy to use when a program has hundreds
of possible commands. As a result, commands often get buried within multiple
drop-down lists.

To solve this problem, many programs group related commands within sub-
menus, but now you have the problem of trying to find a command buried within
a submenu, which is buried in a drop-down list, as shown in Figure 10-5.

Because drop-down lists can get overloaded with so many commands, UI designers
started displaying commands as icons and grouping icons together in toolbars that
usually appear directly underneath drop-down lists, as shown in Figure 10-6.

The advantage of icons is that they take up much less space than buttons with
command names written inside them. The disadvantage of icons is that users
have no idea which icons represent which commands.

FIGURE 10-4:
Buttons can

display the entire
command name

for the user
to see.

Principles of U
ser

Interface D
esign

CHAPTER 10 Principles of User Interface Design 283

As a result, most programs display short descriptions of each icon’s purpose if
you move the mouse pointer over that icon. So, if you move the mouse pointer
over a disk icon, the program might display the word Save underneath in a little
window to let you know that clicking the disk icon represents the Save command.

Microsoft groups related icons together under tabs, which is called the Ribbon.
When you click a tab, you can find related commands represented as icons. The
trouble is finding the command you want if you don’t know which tab it’s stored
under. Because Microsoft developed the Ribbon, many Windows programs have
adopted the Ribbon as well.

Another way to organize icons is in a toolbox on the side of the screen, which
is popular for accessing groups of commonly used commands, as shown in
Figure 10-7.

Icons provide one-click access to commonly used commands. However, users
should still be able to choose the same command from a drop-down list if
they want.

FIGURE 10-5:
Submenus
reduce the
 number of

 commands in
a drop-down
list but make

it harder to
find a specific

command.

FIGURE 10-6:
Icons, organized

in toolbars, allow
one-click access

to multiple
commands.

284 BOOK 2 Programming Basics

Giving data to the user interface
Besides giving a program commands, users also need to give a program data to
use for calculating a useful result. At the simplest level, users can just type in data
they want to give the program. To accept typed-in data, UIs need to display a text
box (a box for the user to click and type something in). Text boxes are commonly
used when the program needs data that can’t be predicted in advance, such as
asking for someone’s name, as shown in Figure 10-8.

FIGURE 10-7:
Toolboxes pro-

vide another way
to group icons for

easy access.

FIGURE 10-8:
Users can type

any information
inside a text

box, including
invalid data.

Principles of U
ser

Interface D
esign

CHAPTER 10 Principles of User Interface Design 285

Text boxes are great for accepting textual data, such as names, passwords, or
search phrases, but text boxes also allow users to type in invalid data such as
 typing “twelve” instead of “12.” To weed out invalid data, write extra code to
verify that any information typed into a text box is actually valid.

If the type of data the user can give to the program is limited to a fixed range of
choices, it’s better to use one of the following UI elements instead:

 » Radio buttons

 » Check boxes

 » List boxes

 » Combo boxes

 » Sliders

Restricting choices to one option
with radio buttons
Radio buttons (also called option buttons) get their name from old car radios that let
you assign a favorite radio station to a button. Instead of having to tune in your
favorite radio station manually, you pressed a radio button, and the radio would
jump to a preset station. Just as you can only listen to one radio station at a time,
you can only choose one option at a time with radio/option buttons on a UI.

UI radio buttons work the same way. Each radio button represents one possible
choice, and the user can pick only one of them, as shown in Figure 10-9.

FIGURE 10-9:
Radio buttons can

display multiple
choices, but they
only let you pick

one option.

286 BOOK 2 Programming Basics

The main advantage of radio buttons is that they show the user all possible choices,
so instead of typing in the data (and risk spelling it wrong), users can just click the
radio button that represents the one choice they want to give a program.

Restricting choices with check boxes
Radio buttons are useful for restricting the type of data the user can give to a pro-
gram. However, if you want to display all possible choices but allow the user to
choose two or more of those choices, you can use check boxes instead, as shown
in Figure 10-10.

The drawback of both radio buttons and check boxes is that they take up space
onscreen. Displaying 4 or 5 radio buttons or check boxes onscreen is reasonable,
but displaying 20 or 30 radio buttons or check boxes can get cumbersome.

Displaying multiple choices in a list box
or combo box
If you need to display a large number of choices, you may find it easier to display
all those choices in a list box. A list box can display all choices or a limited number
of choices.

If the list box is large enough, it can display all choices. If the number of options
is more than the list box can display at once, the list box displays a scroll bar so
users can scroll through the list of all available options, as shown in Figure 10-11.

FIGURE 10-10:
Check boxes can
display multiple

choices and allow
users to pick

more than one
option.

Principles of U
ser

Interface D
esign

CHAPTER 10 Principles of User Interface Design 287

Similar to list boxes are combo boxes (also called drop-down boxes), which combine
the features of a text box with a list box. Like a text box, a combo box lets users
type data directly into the program. Like a list box, a combo box also displays a list
of options that the user can choose, as shown in Figure 10-12.

Unlike list boxes, combo boxes always hide all choices until the user clicks the
combo box.

Restricting numeric choices with a slider
If users need to give numeric data to a program, they can type the numeric values
in a text box. However, if you want to restrict the range of valid numbers that the
user can type in, you can use a slider.

FIGURE 10-11:
List boxes display

a list of options.

FIGURE 10-12:
Combo boxes let
you either make
a choice or type

data directly.

288 BOOK 2 Programming Basics

A slider moves along a ruler, with the position of the slider determining a specific
numeric value or setting, as shown in Figure 10-13. Not only can sliders limit the
range of a number that users can give a program (such as from 0 to 100), but slid-
ers can also define the increments of numeric data.

If a slider restricted values from 0 to 100 with increments of 0.5, that means the
user could give the program numbers such as 0, 0.5, 1, 1.5, 2, 2.5, and so on.

Showing information back to the user
UIs can show information to the user in a variety of ways, such as through text,
graphics, or even sound. Typically, a UI displays data in a window where users
can manipulate that data and see their changes directly, as shown in Figure 10-14.

Using any program is like talking to the computer. You tell the computer what you
want to do (start writing a letter), the computer obeys (loads your word proces-
sor) and waits for you to do something else, you give another command to the
computer (to format text you just typed), the computer obeys and waits until you
decide what to do next, and so on.

FIGURE 10-13:
A slider lets users

visually choose
a numeric value

or setting by
dragging a slider

along a ruler.

Principles of U
ser

Interface D
esign

CHAPTER 10 Principles of User Interface Design 289

Normally, when you give a command to a program, the program responds right
away. However, sometimes the program asks the user for more information. For
example, if you give the command to print a document, the program may want to
know how many pages to print. Whenever a program needs more information to
carry out a command, it displays a dialog box, as shown in Figure 10-15.

A dialog box is the computer’s way of saying, “I’m trying to obey your instruc-
tions, but I’m not quite sure exactly what you want.” Some common dialog boxes
are used to

FIGURE 10-14:
A user interface

displays data
in a window

that users can
manipulate,

whether that
data represents

text, numbers,
pictures, or

sound.

FIGURE 10-15:
Dialog boxes

ask the user for
more data before

carrying out a
command.

290 BOOK 2 Programming Basics

 » Open a file.

 » Save a file.

 » Print a file.

Because dialog boxes are so common in every program, many programming lan-
guages provide built-in features for displaying dialog boxes. That way, you don’t
have to create your own dialog boxes from scratch.

The Open dialog box lets you click a filename that you want to open. The Save dia-
log box lets you click a drive or folder where you want to store a file and then type
a name for your file. The Print dialog box lets a program ask the user how many
pages and copies to print, as well as the page size or orientation.

Dialog boxes provide standard ways for performing common tasks needed by
almost every program.

Organizing a user interface
One problem with designing a UI is fitting everything in a single window. To help
organize a UI, many programs use either boxes or tabs.

Boxes draw lines around items on the UI, such as multiple radio buttons, and
visually separate items, as shown in Figure 10-16.

Another way to organize a UI is to use tabs. Each tab can display entirely different
UI items (buttons, text labels, check boxes, and so on). When you click a different
tab, the tab shows you different UI items, as shown in Figure 10-17.

FIGURE 10-16:
Boxes draw lines
to separate and

organize different
user interface

items.

Principles of U
ser

Interface D
esign

CHAPTER 10 Principles of User Interface Design 291

The goal of boxes and tabs is to organize your UI. As far as users are concerned, the
UI is the only part of your program that they can see, so if you design a cluttered or
confusing UI, people think of your program as cluttered and confusing.

Designing a User Interface
There’s a big difference between knowing the elements of a UI and knowing how
to put together an effective UI. That’s like the difference between knowing how to
write every letter of the alphabet and knowing how to write a best-selling novel.

That’s why designing a UI is part art and part science. After you design enough UIs
and use the UIs of different programs, you can see what you like and don’t like.
Then you can apply your own ideas to designing your idea of a perfect UI.

Although it’s difficult to teach the art of designing a UI, it’s much easier to teach
the science behind designing a UI. By following certain UI principles, you can
increase the chances that your UI will at least be competent and usable.

To see drastic differences between UIs, compare the UIs of commercial programs
from Adobe, Apple, or Microsoft, and then look at the UIs on open-source or niche
commercial programs (such as astrology charting programs or horse race predic-
tion programs). Big companies spend a lot of time and money testing their UIs. In
comparison, many individual programmers just slap together a UI and start sell-
ing their program — and you can see the difference.

Know the user
Most people find computers hard to use because the UIs of most programs are too
confusing. Usually the problem lies with the fact that the programmers know how
their program works, so they automatically assume that everyone else must also

FIGURE 10-17:
Tabs let you

organize and
display different

user interface
items in the same

window.

292 BOOK 2 Programming Basics

know how the program works, too. Essentially, too many programs are written by
programmers for other programmers and ignore the ordinary user.

Before you design your UI, you have to know what your users expect. A program
designed for other programmers (such as a compiler or a debugger) can have a
drastically different UI than an educational program designed for 6-year-olds.

No matter who the typical user might be, the UI’s sole purpose is to communicate
with the user. Just as you’d talk to a college professor differently than you’d talk
to a 6-year-old child, so must you adapt a UI to the person most likely to use your
program. After you know who the user is, you’ll know the best ways your UI can
“talk” to that person.

Hide/disable unusable options
At any given time, the users should know what they can do. Unfortunately, poor
UIs either

 » Expect the user to know what to do next.

 » Bombard the user with so much information that the user still doesn’t know
what to do next.

The command-line prompt is an example of a poor UI that expects that the user
already knows all valid commands and how to spell them. If you don’t know which
commands may be valid, the UI won’t help you.

Even worse than sparse UIs are UIs that show too much information, such as the
drop-down lists in Figure 10-18. The program in this figure displays an Attribute
submenu within the Text menu title.

However, every option on the Attribute submenu appears dimmed, which makes
the Attribute submenu useless. This can frustrate users if they never know how
they can access that particular command.

To avoid this problem, many UIs simply hide commands if they aren’t available at
the moment. Although this strategy can simplify the UI, it can also confuse users
if certain commands seem to appear and disappear for no reason and they have no
idea how to make a command appear again that was once visible.

A well-designed UI should always show all possible choices and not overwhelm
the users with choices they can’t pick anyway. It’s up to you as the programmer to
choose whether it’s best to show all commands (and disable the ones users can’t
choose at the moment) or hide commands that can’t be selected at the moment.

Principles of U
ser

Interface D
esign

CHAPTER 10 Principles of User Interface Design 293

Tolerate mistakes
UIs are meant for people to use, and it’s no surprise that people make mistakes.
Sometimes they type in the wrong data and sometimes they give a command that
they didn’t really want to give.

If users make a mistake, they should be able to

 » Undo or take back that mistake.

 » Give the right command or data.

Unfortunately, too many UIs don’t let users undo their mistakes, which can make
users anxious and timid because they’re afraid that if they do something wrong,
they can’t reverse that mistake. As a result, anxious and timid users tend not to
trust a program or use it to its maximum capabilities.

Even worse is when UIs provide cryptic feedback if the user does something
wrong. Examining the error message in Figure 10-19, can you tell what you might
have done wrong and what you can do in the future to make sure this error mes-
sage doesn’t appear again?

FIGURE 10-18:
This program’s
drop-down list

lets you view
a bunch of

 submenus that
you can’t access.

294 BOOK 2 Programming Basics

Cryptic messages can make users feel as if the program is scolding them. As a
result, users are less likely to enjoy using the program and probably won’t take
full advantage of all its features, if they even bother using the program at all.

UIs should tolerate and expect that the user will make a mistake and then find a
way to recover from these mistakes gracefully. This can be as simple as having the
program beep if the user tries to type their name instead of their Social Security
number, or having the program display a descriptive error message that not only
tells users what they did wrong but also tells them what to do right.

This way, a UI can give the user confidence to experiment with a program and
learn its features without reading a 300-page manual. Instead, the user can grad-
ually figure out how to use a program with the program guiding them every step
of the way.

Be consistent
One reason chain restaurants are so popular is because people know what to expect
when they eat there. UIs also need to make a great first impression on users and
then remain consistent so users generally know what to expect from a program
at any given time.

For example, suppose a program displays a toolbox of icons on the left side of
the screen. Now what happens if the user chooses a command and suddenly the
toolbox of icons either disappears or appears on another part of the screen for no
apparent reason at all?

Having the UI suddenly change its appearance or behavior while the program is
running is certain to confuse and annoy users. By staying consistent in appear-
ance and behavior, a UI can be predictable so the user feels more comfortable
using it (just as long as the UI was designed properly in the first place).

FIGURE 10-19:
A cryptic error

message is
meaningless

and frustrating
because the

program never
explains how
to avoid this

problem in the
future.

Principles of U
ser

Interface D
esign

CHAPTER 10 Principles of User Interface Design 295

Give the user freedom to customize
the user interface
Many UIs can overwhelm the user with so many options that it’s hard to see what
to do first. That’s why many programs give the user options to hide certain parts
of the UI or modify what appears on the UI, as shown in Figure 10-20.

Such customization options can make even the most intimidating program feel
easier to use. However, give the user a simple way to return to the default appear-
ance of the UI. That way if the user makes a mistake customizing the UI, they can
go back to the beginning and start all over again.

Make navigation easy
After users start working with a program, they need to switch back and forth
between viewing their data in different ways. For example, a web browser lets
users view web pages (data) and new or previous web pages easily by either typing
in a new website address, clicking a hyperlink, or clicking the Back and Forward
buttons. By making it easy for the user to do what they want, the UI aids the user
without drawing attention to itself.

FIGURE 10-20:
Customization

options let a user
change the user
interface to suit

their preferences.

296 BOOK 2 Programming Basics

At any given time, users should always be able to view their data in a previous
state (such as seeing the preceding web page) or view their data in a new way
(such as seeing a new web page or changing the size of text on the current web
page). By making it easy and predictable for users to manipulate data, a good UI
can make even the most complicated program simple to understand and eventu-
ally master.

There’s no “perfect” UI because every UI must cater to different types of users and
programs. However, by following UI design guidelines, you can make sure your
program not only looks good but also helps the user get some work done, which is
the ultimate goal of any program.

CHAPTER 11 Debugging and Testing 297

Debugging and Testing

Writing a program isn’t easy. Not only do you have to write a program
that solves a big problem, but you must also solve a bunch of little
problems along the way. Some of those problems might be mini-steps

on the way to solving the big problem (such as how to predict whether a given
sports team will win this week) while other problems may simply involve working
with the hardware such as correctly printing data.

Writing a program takes time. However, a program is never done until it has been
tested. Testing helps ensure the program works correctly and reliably. When test-
ing reveals problems, the programmers must fix them, whether they’re minor
(such as displaying the wrong icon on the screen) or major (the program crashes).
That’s why testing is a crucial part of any software project.

Common Types of Programming Errors
Ultimately, there are a nearly infinite number of ways a program can fail. The
simplest problems involve typing a command wrong, forgetting a comma, or add-
ing too many parentheses or curly brackets. These types of problems, called syn-
tax errors, occur when you don’t type in commands exactly the way the compiler
expects.

Chapter 11

IN THIS CHAPTER

 » Identifying common types of
programming errors

 » Using comments and print
statements to debug

 » Working with breakpoints and watch
variables

 » Running tests

298 BOOK 2 Programming Basics

Syntax errors are the easiest problems to fix because the editor will often catch
these problems and highlight them. To minimize the chances of typing anything
wrong, many editors include code snippets that act like templates for common
programming commands, such as creating an if-then statement or a loop, as
shown in Figure 11-1.

Because programming languages offer so many commands, most programmers
will never remember how to spell every command from memory. That’s why
many editors offer a code completion feature that detects what you’re typing so it
can display a pop-up menu of options it thinks you want to type.

Now instead of typing an entire command, you can type part of the command,
wait for the editor to display a pop-up menu, and then choose the option you want
from that pop-up menu as shown in Figure 11-2. As soon as you choose an option,
the editor automatically types your chosen command correctly so there’s no risk
of mistyping anything.

By using code snippets and code completion, you can minimize your chances of
mistyping commands to avoid common syntax errors. Syntax problems are fairly
easy for the editor to spot, but logic errors are much harder to spot.

FIGURE 11-1:
Code snippets

can provide
templates for

writing common
statements.

D
ebugging and Testing

CHAPTER 11 Debugging and Testing 299

A logic error occurs when you (the programmer) write commands that you think
are correct, but when you run the program, it doesn’t work. Because you already
thought you did everything correctly, the problem lies in identifying your faulty
logic.

Suppose you need to write a simple function that converts temperatures in
 Fahrenheit into Celsius. You might write a formula like this:

tempC = tempF – 32 * 5/9

This formula is correct, but it neglects mathematical precedence, which defines
the order that the computer calculates operations. In this case, multiplication and
division have higher precedence than addition and subtraction. That means the
formula actually multiples 32 by 5 (to get 160) and then divides 160 by 9 (to get
17.78). Finally, it subtracts 17.78 from the temperature measured in Fahrenheit.

So, if the temperature were 212 degrees Fahrenheit, the formula would calculate
the equivalent Celsius temperature as 194.22. Although the formula is correct, the
mathematical precedence of computers makes this formula fail. The real formula
should be this:

tempC = (tempF – 32) * 5/9

The parentheses force the formula to subtract 32 from the temperature in
 Fahrenheit first. Just this subtle difference makes the formula work. Yet the
incorrect version of this formula looked like it should’ve worked as well. Because
logic errors require you to fix code you already think should work, it can be hard
to find your mistake.

FIGURE 11-2:
Code completion

displays several
commands so

you can choose
the one you want.

300 BOOK 2 Programming Basics

Debugging with Comments
and Print Statements

To find a bug (problem) in a program, you need to identify what the problem is
and where it’s occurring. When you know where to find the problem, you can fix
the code that’s causing the problem.

That means debugging is mostly like hunting for a needle in a haystack. The
smaller the program, the less code you’ll need to examine to find the bug. The
larger the program, the more code you’ll need to examine.

Therefore, the first goal of debugging is to narrow your search by eliminating
chunks of code that cannot possibly be causing the problem. If a program is poorly
organized, you may need to examine the entire program from beginning to end.
However, if a program is properly organized into separate files, subprograms,
and objects, then you can often narrow down your search to the most likely areas
where the bug could be occurring.

RUBBER-DUCK DEBUGGING
Because it can be difficult to find problems in your code when you already think your
code should work, programmers have created an unusual technique called rubber-duck
debugging (https://rubberduckdebugging.com). The idea is that you talk to a rub-
ber duck and explain what you want your code to do. By talking out loud and explaining,
step-by-step, what you want your code to do, you can often spot flaws in your logic and
your code.

Rubber-duck debugging may seem silly, but just speaking your thoughts out loud can
often clarify your thinking and identify flaws in your logic. Because talking to a rubber
duck is far less threatening and intimidating than talking to a live person, rubber-duck
debugging is actually considered a valid way to find and fix problems in a program.

If talking to a rubber duck feels silly, feel free to talk to any inanimate object, such as
a plant or a chair, or talk to a pet, such as your dog or cat. Ultimately, it doesn’t matter
how silly you look to others as long as the technique helps you create better and more
reliable software.

https://rubberduckdebugging.com

D
ebugging and Testing

CHAPTER 11 Debugging and Testing 301

Perhaps the most primitive, yet effective way to search for bugs is to rely on

 » Comments

 » The print statement

Comments are usually reserved for documenting your code. However, comments
can temporarily remove code without forcing you to delete it entirely. That way
you can see how the program reacts without one or more lines of code.

If the program still has the bug despite commenting out one or more lines of code,
then you can be certain the bug isn’t being caused by the commented-out code. If
the bug magically goes away, then you can be nearly certain that the commented
code is the culprit.

By commenting out less and less code, you can eventually find the one line that’s
causing all the problems. When you find that one line, the next step is figuring out
why it’s causing the problem.

When you find a line of code that’s causing problems, there might be two reasons:

 » The line is actually causing the problem.

 » The line is getting bad data from another part of the program.

Suppose you have a line of code that adds two numbers together as follows:

age = x + y

Yet when you run the program, it appears that the code is actually subtracting two
numbers.

If the line of code is at fault, you might have typed a minus sign (–) instead of a
plus sign (+). By fixing that line, you can fix the problem.

However, what if the line of code is correctly adding two numbers together.
Perhaps the real culprits are the variables this one line of code is trying to add
together. Specifically, what if your code expects to add two positive numbers, but
somewhere in your program, your code is actually sending negative numbers?

When the line of code adds a negative number to a positive number, it will appear
to be subtracting. So, the problem may not be the line of code you’re examining,
but another line of code spitting out incorrect data.

302 BOOK 2 Programming Basics

Now you have to repeat the entire process of guessing where in your program the
error may be occurring, commenting out chunks of code, and removing the com-
ments until you find the error.

If multiple lines of code calculate a result, you can insert the print statement
throughout your code to print out the values of different variables. Now as your
program runs, you can see the results of the print statements and see what part
of your code may be storing the wrong data.

Suppose a line of code is adding two numbers wrong. Just inserting two print
statements can let us see exactly the values of those two variables before the addi-
tion happens like this Swift code shows:

print ("The value of x = \(x)")
print ("The value of y = \(y)")
age = x + y

In Swift, you can print out any data by enclosing it within the back slash character
followed by parentheses like this: \(). Swift calls this string interpolation.

With these two print statements inserted in the code, you can see the exact value
of the two variables (x and y). If one of them prints a negative number, the next
step would be to find the code creating this negative number.

As you can see, debugging requires lots of detective work digging through your
code to find the one line of code that’s causing the problem. In many cases, you’ll
find a bug, but the line you think is causing the problem may really just be receiv-
ing invalid data from another part of the program.

Using comments and print statements is a simple, but effective way to debug a
program. However, it’s clumsy because you must constantly comment out code
and then uncomment it back out again. Then you must insert print statements
throughout your code and remember to take all those print statements back out
again before you actually ship your program. Because comments and print state-
ments can be so tedious to use, programmers have created special debugging tools.

Breakpoints, Stepping, and Watching
When looking for bugs in a program, you may need to run the program over and
over again so you can identify which line of code may be causing the problem. If
you suspect one part of your program may be causing the bug, you can create a
breakpoint, as shown in Figure 11-3.

D
ebugging and Testing

CHAPTER 11 Debugging and Testing 303

A breakpoint essentially tells the computer, “See this line of code? When you reach
this line, stop running the program.”

When the breakpoint temporarily halts your program, you can then step through
your code, line-by-line. Each time you step through a line of code, you can watch
how the variables in that code may change or see what happens on the user inter-
face (UI).

This combination of breakpoints (to halt execution of a program), stepping (to
examine each line of code one by one), and watching (to see how values in vari-
ables may change) can help you find the line of code that’s causing an error.

Breakpoints don’t physically alter your code, so you can freely place them wher-
ever you want. To make breakpoints even more versatile, you may be able to create
conditional breakpoints.

A normal breakpoint halts execution of a program at a specific line of code every
time. A conditional breakpoint only halts execution of a program at a specific line
if a certain condition is true.

For example, a conditional breakpoint may only halt execution if a variable is
greater, less than, or equal to a certain value. That way the breakpoint only stops
your program under certain conditions that may be causing problems, as shown
in Figure 11-4.

FIGURE 11-3:
Breakpoints

identify lines of
code where

you want the
 program to stop.

304 BOOK 2 Programming Basics

Make sure you clear all breakpoints in your program before you ship it to custom-
ers. Otherwise the breakpoints will halt execution of your program and keep it
from running properly.

Stepping through code
When a breakpoint has temporarily halted execution of a program, you can step
through your code line-by-line to identify which line of code may be causing an
error. When stepping through code, you may have several options:

 » Step over: You go through each line of code, but the moment you come
across a subprogram/function call, you treat that subprogram/function name
as a single command and you step over (ignore) all the code stored in that
subprogram/function.

 » Step into: You go through each line of code, but the moment you come
across a subprogram/function call, you start examining all the code inside
that subprogram/function, line-by-line.

 » Step out: When you’re inside a subprogram/function and examining its code,
line-by-line, you can immediately jump out of the subprogram/function so
you don’t have to continue stepping through all the code inside that particular
subprogram/function.

 » Continue: You stop stepping altogether and simply run all code to the next
breakpoint, if any. Some compilers may include a Continue to Cursor option,
which lets you click the mouse or move the cursor using the keyboard to a
specific line of code. Then the Continue to Cursor option simply runs to the
cursor’s location. That way you don’t have to add a new breakpoint and run
your program from the beginning all over again.

By using these various stepping options, you can choose to examine code inside of
subprograms/functions or simply step over them if you realize the error couldn’t
possibly be inside of those subprograms/functions.

FIGURE 11-4:
Conditional

breakpoints can
halt execution
only if specific

conditions
are true.

D
ebugging and Testing

CHAPTER 11 Debugging and Testing 305

Watching variables
Each time you step through a line of code, the compiler displays a debug window
where you can also see the current value of all your variables. Watching lets you
see which line of code changes the value of a variable. The moment a line of code
changes a variable incorrectly, you can further pinpoint where the error may be
occurring.

Because a program may contain multiple variables, you may realize not all of those
variables have anything to do with the error you’re trying to find. For example,
if you’re looking for the bug that’s causing incorrect mathematical calculations,
you would want to watch all variables that hold numbers, but there’s no point in
watching other variables that may only hold string or Boolean values. So, you may
have the option of hiding variables you don’t want to watch so you can focus your
time watching the variables that may be causing the problem.

Many compilers put special debugging information in a project that can help
you find bugs in your program. You may also be able to select different types
of debugging information for your particular project, as shown in Figure 11-5.
When you’re ready to ship your program, you can compile a final release
build, which strips away debugging information so it doesn’t clutter the file
unnecessarily.

FIGURE 11-5:
You can often

select different
debugging

 information to
use in a project.

306 BOOK 2 Programming Basics

Testing Code
Debugging can find many problems, but a final step should be testing. The simplest
way to test a program is simply to use it. That means letting potential customers
try out the program to make sure it works correctly. Such manual testing is often
called alpha testing and beta testing.

An alpha test is where people (often the programmers themselves and a select
group of other people) try using the program and then document any problems
they find. During alpha testing, the program’s existence may still be kept a secret.

When a program seems mostly stable, that’s when it goes into beta testing, which
typically means letting the general public test the program. The idea is that the
more people who use a program, the more likely someone will find a bug that can
be fixed before the program actually ships.

EVERY PROGRAM HAS BUGS
Although alpha and beta testing are meant to find and eliminate bugs, every program
still ships with bugs. The main goal of alpha and beta testing is to find and eliminate
showstopper bugs, which are bugs that stop the program from working.

After a company ships a program, that’s when they go back to hunt down and kill the
most annoying bugs. Unfortunately, fixing bugs isn’t quite as lucrative as adding new
features, so that’s why most companies focus more on adding new features (to sell
more programs) instead of fixing bugs to make an existing program more reliable.

Even rarer is optimizing, or refactoring, a program, which involves taking perfectly good,
working code and rewriting it to make it smaller, faster, or both. Because refactoring
simply makes a program work exactly the same way as it did before, it’s far less lucrative
for a company to focus on when they could be adding new features instead.

Because the incentive is toward adding new features rather than fixing bugs, most pro-
grams will always have bugs in them because companies have little reason to find and
fix them. One notable exception to this is when companies offer bounties or rewards
for anyone who finds security bugs.

A security bug is an error that allows hackers to circumvent security, steal data, or gain
unauthorized access. Because security bugs can scare away both potential and current
customers, many companies pay large amounts of money (five or six figures) to anyone
who can find security bugs and bring it to the attention of the company so they can fix it
as soon as possible.

D
ebugging and Testing

CHAPTER 11 Debugging and Testing 307

Usually during beta testing, people try using a program in its intended manner.
This process can uncover common bugs, but a far more effective technique is to
deliberately try to break a program by using it in unintended ways.

For example, if a database expects someone to type a name, what happens if you
simply bang on the keyboard instead? How does the program react? If a pro-
gram expects someone’s age, what happens if you type in an extremely large or
extremely small number? Will the program still allow someone’s age as 902847
or –0.00012?

If a video game lets players control racing cars, what happens if a player tries to go
backward or steer off the racetrack completely? What happens if the player simply
rams another player’s car? What happens if the player tries running the video
game on a computer that’s connected to four different monitors? By looking for
extreme cases, testers can often find bugs that ordinary people would normally
overlook.

Letting hordes of people loose on a program through alpha and beta testing is
one way to find bugs, but it’s a little like giving a roomful of monkeys typewriters
and hoping they’ll write something coherent. A more systematic approach is to
use automated testing where the computer tests your code. Common ways to use
automated testing include

 » Unit tests: Testing individual blocks of code

 » Integration tests: Testing that separate blocks of code work correctly
together

 » User interface tests: Testing that the UI works

Automated testing lets the computer run multiple tests while changing one part.
By running dozens, hundreds, thousands, or even millions of tests, the computer
can often find bugs that alpha and beta testers may have overlooked.

Unit tests
Unit tests focus on verifying that a chunk of code, such as a subprogram/function,
works exactly as intended. By focusing on small chunks or units of code at a time,
you can verify that the code is reliable.

Automated testing can verify that your code works as intended, but if the logic
behind your code is faulty, unit tests will just verify that your code works but not
identify whether it works the way you really need it to work.

308 BOOK 2 Programming Basics

Unit testing is meant to verify that a chunk or unit of code is behaving correctly.
If code accepts a string and outputs an integer, unit testing can verify that this
always works regardless of the size of the text it receives.

Essentially unit testing is about

 » Telling the computer what you expect the code to do

 » Letting the computer run multiple tests to verify the code does what you want
it to do

By letting the computer run multiple tests using slightly different data, you can
gain more confidence that your code will work in the real world with all possible
types of input.

Integration tests
Where unit tests are about verifying that code works, integration testing is about
verifying that two or more units of code work together. At the simplest level, inte-
gration testing makes sure that one unit of code passes the right data to another
unit of code.

On a more sophisticated level, integration testing can identify which unit of code
may fail when something goes wrong. Suppose one unit of code requests data over
the Internet and then feeds this data into a second unit of code. What happens if
there is no Internet connection? What happens if the data received over the Inter-
net is corrupted or simply the wrong type of data? How should these two units of
code react to unexpected problems?

It’s possible that two units of code may work perfectly well individually but fail
when working together. By testing two or more units of code, integration testing
can gradually verify all units of code work together, which eventually verifies that
the entire program will work correctly. Some different ways to test for integration
include

 » Testing everything at once: The idea behind testing everything at once is to
see how everything works (or doesn’t work) and then zero in on the problems.
This method can identify problems, but it can also overwhelm developers. It
can be like building a 70-story skyscraper and then worrying if the foundation
and walls were built correctly.

 » Testing in increments: Because testing everything at once can be too late,
testing in small increments is often the much better solution. That way as you

D
ebugging and Testing

CHAPTER 11 Debugging and Testing 309

go along, you can test different units of code to make sure they work. This
gradual testing approach is much easier and simpler to implement and can
catch problems early.

 » Conducting top-down integration tests: Top-down integration tests the big
units of code first and then gradually filters down to smaller units of code.

 » Conducting bottom-up integration tests: Bottom-up integration tests begin
testing small units of code before building up to larger units of code.

Ultimately the “best” way to test integration is to do a little testing of every type.
The more tests you perform, the more likely you’ll find different types of bugs.
The sooner you can spot problems, the sooner you can fix them.

User interface testing
The whole purpose of a UI is to get out of the way so the user can do what they
want. When programmers design UIs, they need to know that every element of the
UI works as intended.

If the user clicks or taps a button, that button should respond in the way the user
intended — a Print button should start printing, and a Cancel button should can-
cel a pending task. UI testing can often reveal buttons that don’t work or buttons
that do work but display the wrong information on the screen.

More important, UI testing can check if a text box can handle if the user types a
thousand characters for a name, if the user types a letter instead of a number for
a quantity, or if a list scrolls and displays all items whether it displays a dozen
items or a thousand.

The main idea behind UI testing is to make sure the UI works as intended and
responds to possible problems without crashing.

UI testing can verify that a UI works, but it can’t identify whether the UI is well
designed. Creating intuitive UIs is still an art more than a science. Copying UIs of
other programs may make your program easier to learn, but that doesn’t neces-
sarily mean the UI is the best design for your particular program.

The ultimate goal of software development is to create a program that solves a
problem, works reliably, and is easy to use. That may sound obvious, but you’d
be surprised by how many corporations and government agencies forget this time
and time again, which is why debugging and testing are so crucial for any project.

3Data Structures

Contents at a Glance
CHAPTER 1: Structures and Arrays . 313

CHAPTER 2: Sets and Linked Lists . 333

CHAPTER 3: Collections and Dictionaries . 351

CHAPTER 4:	 Stacks,	Queues,	and Deques . 367

CHAPTER 5: Graphs and Trees . 381

CHAPTER 1 Structures and Arrays 313

Structures and Arrays

All programs need to store data. If a program asks the user to type in their
name, the program needs to store that name somewhere so it can find the
name again. The most common way programs store data is to dump data

in a variable.

Unfortunately, a simple variable can hold only one chunk of data at a time, such
as a single number or a single name. If you want to store a person’s first and last
name along with their age, you have to create three separate variables, like this:

Dim FirstName As String
Dim LastName As String
Dim Age As Integer

Creating separate variables to store related data can be like carrying around three
separate wallets — one wallet for your cash, a second wallet for your credit cards,
and a third wallet for your driver’s license. Just as it’s more convenient to store
your cash, credit cards, and driver’s license in a single wallet, so it’s also more
convenient to store related data in a single variable. Two ways to store related data
in one place are structures and arrays.

Chapter 1

IN THIS CHAPTER

 » Using structures to store and
retrieve data

 » Creating and working with arrays

 » Using resizable arrays

 » Running multidimensional arrays

 » Combining structures with arrays

 » Detailing the drawbacks of arrays

314 BOOK 3 Data Structures

Because structures and arrays are two ways to store data, they’re often called data
structures.

Using Structures
A structure (known as a record in some programming languages) does nothing
more than group separate variables together. So, instead of requiring you to create
and keep track of three separate variables, a structure lets you store multiple vari-
ables within another variable. If you had three variables — FirstName, LastName,
and Age — you could store them all within a structure, like this:

Structure Person
 Dim FirstName as String
 Dim LastName as String
 Dim Age as Integer
End Structure

A structure is a user-defined data type. The different variables grouped together
inside of a structure are called fields. You can’t use a structure until you declare a
variable to represent that structure, like this:

Dim Employee As Person

The preceding code creates an Employee variable that actually contains the
FirstName, LastName, and Age fields, as shown in Figure 1-1.

FIGURE 1-1:
A structure
can contain

multiplefields.

Structures and A
rrays

CHAPTER 1 Structures and Arrays 315

Storing data
To store data in a structure, you must

1. Identify the variable that represents that structure.

2. Identify the specific field inside the structure to use.

So, if you wanted to store the name Joe in the FirstName field inside the Employee
variable, you could do the following:

Employee.FirstName = "Joe"

If you wanted to store the name Smith in the LastName variable and the number 24
in the Age variable, inside the Employee field, you could do the following:

Employee.FirstName = "Joe"
Employee.LastName = "Smith"
Employee.Age = "24"

Retrieving data
After you store data in a structure, you can always retrieve it again. Just identify

 » The variable that represents that structure

 » Theactualvariablenamethatholdsthedata

Suppose you defined a structure, as follows:

Structure Worker
 Dim Name as String
 Dim ID as Integer
 Dim Salary as Single
End Structure

To retrieve data from this structure, identify the variable name that represents
that structure and the field that holds the data, like this:

Print Employee.FirstName

This would retrieve the data in the FirstName variable, stored in the Employee
variable structure. If you stored the string "Joe" in the FirstName property, this
command would print Joe onscreen.

316 BOOK 3 Data Structures

Structures are just a way to cram multiple fields into a single variable. A structure
can hold only one group of related data. To make structures more useful, pro-
grammers typically use structures with another data structure such as an array.

Using an Array
The problem with a single variable is that it can hold only a single chunk of data.
So, if you wanted to store a name, you could create a variable, like this:

Dim Name as String

If you wanted to store a second name, you’d have to create a second variable, like
this:

Dim Name as String
Dim Name2 as String

The more names you wanted to store, the more separate variables you’d need to
create. Because creating separate variables to store similar types of information
can get tedious, computer scientists have created a “super” variable, called an
array. Unlike an ordinary variable that can hold only one chunk of data, an array
can hold multiple chunks of data.

To create an array, you need to define these three items:

 » A variable name

 » The number of items you want to store (the array size)

 » Thetypeofdatatostore(suchasintegers or strings)

If you wanted to store four names in a variable, you could create a name array,
like this:

Dim NameArray(4) as String

The preceding code tells the computer to create a NameArray array, which can hold
up to 4 strings, as shown in Figure 1-2.

FIGURE 1-2:
An array can
holdmultiple

chunksofdata.

Structures and A
rrays

CHAPTER 1 Structures and Arrays 317

Many languages just let you define a variable name for an array and the data type
it can hold but don’t require you to define the array size. This means your array
can grow and shrink as needed while your program runs. By defining arrays that
can change size, you never have to worry about defining an array too large (and
waste memory) or too small (and not be able to hold any more data).

Defining the size
An array acts like a bunch of buckets (dubbed elements) that can hold exactly one
item. When you create an array, you must first define the size of the array, which
defines how many elements that the array can hold.

Bounds
The size of an array is defined by two numbers:

 » The lower bounddefinestheindex number(oftenreferredtoasjustthe
index) of the firstarrayelement.

 » The upper bounddefinestheindexnumberofthelastarrayelement.

DEFAULT BOUNDS

The default value of the lower bound depends on the programming language:

 » Manyprogramminglanguages,includingthecurly-bracketlanguagefamilyof
CandJava,alwaysdefinethelowerboundofanarraystartingwiththe
number 0 (known as zero-based arrays).

 » Otherprogramminglanguagesalwaysdefinethelowerboundofanarray
starting with the number 1 (known as one-based arrays).

The following BASIC code actually creates a zero-based array that can hold six
elements, numbered 0 through 5, as shown in Figure 1-3:

Dim LotteryNumbers(5) as Integer

If the programming language created a one-based array, the array would hold
only five elements.

318 BOOK 3 Data Structures

Zero-based arrays were made popular in the C language. As a result, any language
derived from the C language, such as C++, C#, Java, Python, and Objective-C, will
also use zero-based arrays. Because many programmers are familiar with zero-
based arrays, many other programming languages also use zero-based arrays,
such as Visual Basic and Xojo. One-based arrays are less common, but they’re
found in some versions of BASIC along with less popular languages like Pascal
and Smalltalk.

When defining arrays, always make sure you know whether your programming
language creates zero-based or one-based arrays. Otherwise, you may try to store
data in nonexistent array elements.

DEFINABLE BOUNDS

To avoid confusion, some programming languages (such as Pascal) let you define
both the lower and upper bound arrays.

If you wanted to create an array to hold five integers, you could use the following
code:

Var
 LotteryNumbers[1..5] of Integer;

This would number the LotteryNumbers array from 1 to 5. However, you could
choose any number range of five like this:

Var
 LotteryNumbers[33..37] of Integer;

This would create an array of five elements, numbered from 33 to 37, as shown
in Figure 1-4.

FIGURE 1-3:
One-based

arrays number
array elements
differentlythan

zero-based
arraysdo.

Structures and A
rrays

CHAPTER 1 Structures and Arrays 319

One advantage of defining the numbering of an array is that you can use mean-
ingful numbers. For example, if you wanted to store the names of employees in
an array, you could number the array so each array element is identified by an
employee number. So, if Jan Howards has employee ID number 102, Mike Edwards
has employee ID number 103, and John Perkins has employee ID number 104,
you could create a three-element array, as shown in Figure 1-5, like this:

Var
 EmployeeList[102..104] of String;

Initializing
When you define an array, you can create either an empty array or an array filled
with initial values such as

 » Zeroes for storing numbers in an array

 » Empty strings for storing strings in an array

FIGURE 1-4:
Some

 programming
languages let
youdefinethe

numbering
ofanarray.

FIGURE 1-5:
Bydefiningyour
own numbering

for an array, you
can make those
numbers useful
andmeaningful.

320 BOOK 3 Data Structures

LOOPS

To initialize an array, most programmers use a loop. This code uses a For-Next
loop to initialize an array with zeroes:

Dim LotteryNumbers(5) as Integer
For I = 1 to 5
 LotteryNumbers(I) = 0
Next I

DECLARATIONS

Some programming languages let you initialize an array without a loop. Instead,
you declare an array and its initial data on the same line. This C++ code declares an
array that can hold five integers and stores 0 in each array element:

int lotterynumbers[] = {0, 0, 0, 0, 0};

Storing data
To store data in an array, you need to define two items:

 » The array name

 » Thearrayelementwhereyouwanttostorethedata

If you wanted to store data in the first element of a zero-based array, you could
do this:

int myarray[5];
myarray[0] = 357;

If you wanted to store data in the first element of a one-based array, you could
do this:

Dim myarray(5) as Integer
myarray(1) = 357

You can store data in array elements in any order you want — for example, stor-
ing the number 47 in the first array element, the number 91 in the fourth array
element, and the number 6 in the second array element, like this:

int myarray[5];
myarray[0] = 47;

Structures and A
rrays

CHAPTER 1 Structures and Arrays 321

myarray[3] = 91;
myarray[1] = 6;

Retrieving data
To retrieve data from an array, you need to identify

 » The array name

 » Thearrayelementnumberthatcontainsthedatayouwanttoretrieve

Suppose you had the following BASIC code that creates an array that stores three
names:

Dim Names(3) as String
Names(1) = "Nancy Titan"
Names(2) = "Johnny Orlander"
Names(3) = "Doug Slanders"

If you wanted to retrieve and print the data stored in the second element of the
Names array, you could use the following:

Print Names(2)

This would print Johnny Orlander onscreen.

Working with Resizable Arrays
One problem with arrays is that you must define their size before you can use
them. If you define an array too large, you waste memory. If you define an array
too small, your program can’t store all the data it needs to keep.

To get around these problems, some programming languages let you create
dynamic or resizable arrays. A resizable array lets you change the array’s size while
your program is running.

Here are pros and cons of using resizable arrays:

 » Pros:Youcanmakethearrayexpandorshrinkasneededsoyoudon’twaste
memory creating an array too large or limit your program by creating an array
toosmall.

322 BOOK 3 Data Structures

 » Cons:Constantlyhavingtodefinethesizeofanarrayisanuisance,asisthe
possibilitythatsomeprogramminglanguageswon’tletyoupreservethe
contentsofaresizablearrayeachtimethearrayexpandsorshrinks.

To create a resizable array, every programming language requires different steps.
The following sections provide a couple of examples.

BASIC
In BASIC, you can declare an array like this:

Dim BigArray(5) as String

Then to change the size of that array, you have to use the ReDim command and
define a new upper bound for the array like this (see Figure 1-6):

ReDim BigArray(2)

Resizing an array erases everything currently stored in that array.

If you want to resize an array and save the data in the array, you can use the
Preserve command, like this:

ReDim Preserve BigArray(2)

Not every programming language lets you resize an array and preserve its contents.

FIGURE 1-6:
Resizing an

array lets you
expandor

shrinkanarray.

Structures and A
rrays

CHAPTER 1 Structures and Arrays 323

C#
To create an array in C#, you have to go through slightly different steps.

First, you must define an array like this:

int[] arr = {3, 6, 9, 12, 15, 18, 21};

This creates an array that can hold integers. If you wanted to resize the array to
hold only three elements (numbered 0 through 2), you could use the following:

int[] arr = {3, 6, 9, 12, 15, 18, 21};
Array.Resize(ref arr, 3);

After resizing, the array now only contains three elements (3, 6, and 9).

Swift
Defining an array size and then resizing it (and preserving its contents) can be
tedious. That’s why modern languages, such as Swift, make every array resizable.
You can define an array by specifying the data type it can hold, like this:

var numberArray = [Int]()

This creates an empty array that can hold only integer (Int) values. Then you can
add new items to expand the size of the array or delete items to shrink the size of
the array. You never have to specify a new size for the array or worry about losing
the contents of an array when you expand or shrink it.

Because resizing arrays automatically can be so convenient, many other program-
ming languages offer similar features. Some languages use a similar data struc-
ture called a list.

Working with Multidimensional Arrays
Most arrays are one-dimensional because you define only the array’s length.
However, you can create multidimensional arrays by defining multiple array sizes.

The most common multidimensional array is a two-dimensional array, which
looks like a grid, as shown in Figure 1-7.

324 BOOK 3 Data Structures

You can create 3-, 4-, or even 19-dimensional arrays. However, after you get
past a three-dimensional array, understanding how that array works can be too
confusing, so most programmers stick to two-dimensional or three-dimensional
arrays.

Creating a multidimensional array
To create a multidimensional array, you have to define the upper bound for each
dimension of the array. So, if you wanted to create a 4-x-2 two-dimensional
array, you could use the following BASIC code:

Dim BigArray(4,2) as String

To create the same two-dimensional array in C++, you could use the following
code:

string bigarray[4][2];

To create three or more dimensional arrays, keep adding on additional bounds,
like this:

Dim BigArray(2,4,3,8) as String

The equivalent multidimensional array in C++ would look like this:

string bigarray[2][4][3][8];

FIGURE 1-7:
Atwo-

dimensional
array lets you

storedata
inagrid.

Structures and A
rrays

CHAPTER 1 Structures and Arrays 325

Storing and retrieving data
To store data in a multidimensional array, you need to specify the specific array
location. If you had a two-dimensional array, you’d have to specify each of the
two dimensions, like this:

Dim BigArray(4,2) as String
BigArray(4,1) = "Ollie Bird"

After you store data in a multidimensional array, you can retrieve that data again
by specifying the array name and the specific array element that contains the
data you want. If you had previously stored the string "Ollie Bird" in a two-
dimensional array, you could retrieve the data stored in the 4,1 array element,
like this:

Print BigArray(4,1)

This command would print the string "Ollie Bird".

The more dimensions you add to your array, the more space you create in your
array, and the more memory your program needs. Don’t be afraid to use a multi-
dimensional array; just don’t create one unless you really need one.

Two-dimensional arrays can be useful for modeling real-life items, such as
checkerboards or tic-tac-toe games, which already look like two-dimensional
arrays (grids) anyway.

Using Structures with Arrays
All arrays can hold only one specific data type, such as integers or strings. So, if
you create an array that contains five elements, all the elements must contain the
same data type, such as all integers.

Instead of defining an array to contain a simple data type, like strings or inte-
gers, you can also define an array to contain a structure. A structure lets you cram
multiple variables into a single variable, but a single structure by itself is fairly
useless. After you store data in a single structure, you don’t have any room left to
store anything else, as shown in Figure 1-8.

326 BOOK 3 Data Structures

To use a structure with an array, you must first define a structure and the fields
you want to store inside that structure. If you wanted to store a company name,
contact person, and total sales made to the company, you could define a structure
like this:

Structure Company
 Dim Name as String
 Dim Contact as String
 Dim Sales as Single
End Structure

Next, you can define your array, but instead of making your array hold a simple
data type, like strings or integers, you can make your array hold your structure
like this:

Dim Customers(3) as Company

This code creates an array, with elements numbered from 0 to 3, which holds the
Company structure that you defined, as shown in Figure 1-9.

FIGURE 1-8:
A structure

canholdonly
one group of
relateddata,

but an array of
 structures can
holdmultiple

groups of
relateddata.

FIGURE 1-9:
An array of

 structures acts
like a simple

database.

Structures and A
rrays

CHAPTER 1 Structures and Arrays 327

To store data in an array of structures, you need to identify the array element
(in this example numbered 0 to 3) and the specific variable inside the structure
to store your data. So, if you wanted to store data in array element number 2, you
could do the following:

Customers(2).Name = "Microsoft"
Customers(2).Contact = "Bill Gates"
Customers(2).Sales = 50195.27

Retrieving data from an array of structures means you must identify

 » The array name

 » The array element

 » Thefieldnamestoredinthatstructure

If you wanted to print the name stored in the Contact variable of array element
number 2, you could do the following:

Print Customers(2).Contact

This code would print Bill Gates onscreen. Storing and retrieving data from an
array of structures means identifying the following items:

 » The array name (such as Customers)

 » The array element number (such as 2)

 » Thefieldinsidethestructure(suchasContact)

Drawbacks of Arrays
Arrays can be handy for storing lists of related data in a single location. However,
arrays have several drawbacks:

 » Largearrayscantakeupmemoryunnecessarilyifmostofthearrayisempty.

 » Arrayscanholdonlyonedatatypeatatime.

328 BOOK 3 Data Structures

 » Searchingandsortingarraysisdifficult.

 » Thespecificlocationofanydatastoredinanarraycanconstantlychange.

 » Insertingandremovingdatafromarraysisclumsy.

I cover these issues in more detail in the following sections.

Data types
One major limitation of arrays is that they can hold only one data type at a time.
If you want to store a list of names and numbers, you have to create two separate
arrays:

 » One array to store the names

 » Another array to store the numbers

Some programming languages allow you to create a data type called a variant.
A variant data type can hold any type of data, so if you create an array of vari-
ant data types, you can create an array that can hold both strings and num-
bers. However, if your program expects to retrieve an integer from an array
but winds up retrieving a string instead, that program might crash unless you
write extra code to check and verify that it’s retrieving the right data type at
any given time.

Searching and sorting
Another problem with arrays is searching and sorting an array. If you create an
array to hold 10,000 names, how can you find the name Bill Gates stored in
that array? To search for data stored in an array, you have to search through
the entire array from start to finish. For a small array, this can be acceptable,
but searching through an array that contains thousands of names or numbers
can get tedious and slow, especially if you need to search through an array on a
regular basis.

If an array contains 10,000 names and the name you want is the last element in
that array, you have to search through 10,000 array elements just to find the name
you want.

More cumbersome than searching an array is sorting an array. If you store
10,000 names in an array and suddenly decide you want to sort those names in

Structures and A
rrays

CHAPTER 1 Structures and Arrays 329

alphabetical order, you have to move and sort the entire list one array element at
a time. Doing this once may be acceptable, but doing it on a regular basis can be
cumbersome and slow.

Adding and deleting
Instead of dumping all your data in an array and trying to sort it out later, you
might want to sort data while you store it. Adding data to an empty array is easy:
Dump the data in any array element. The problem comes when you want to add
data in between two array elements.

Suppose you have the names "Charles Green" and "Mary Hall" in an array, as
shown in Figure 1-10. If you wanted to insert the name "Johnny Grey" in between
"Charles Green" and "Mary Hall", you’d have to copy all array elements starting
with "Mary Hall" and move them to the next array element.

For a small array, this isn’t a problem, but for a large array of 10,000 names, copy-
ing and moving several thousand names consistently is cumbersome and slow.

Even worse, what if you want to delete an array element? It’s easy to delete an
array element by just setting that array element to a blank value, such as zero or
an empty string. However, the more items you delete from an array, the more
empty spaces you have, wasting space.

FIGURE 1-10:
Insertingdata
into an array

means copying
andmoving

datafromone
array element to

another.

330 BOOK 3 Data Structures

The time to use arrays depends on both the amount of data you need to store and
whether you need to manipulate that data later:

 » Perfect:Storeasmall,fixed-sizelistofonedatatype.

 » Not so good:Storelargeamountsofdatathatcanchangeinquantity,needs
tobesortedorsearched,ordatathatcontainsdifferenttypesofinformation,
suchasnumbersandtext.Inthiscase,arrayscanbetoorestrictive.You
may wanttolookatotherdatastructures,suchascollections (see Book 3,
Chapter 3).

Identifying the location
of data in an array
The location of any data within an array is defined by its index position. The
 following Swift code stores three names in an array:

var nameArray = ["Bob", "Janice", "Pat"]

To retrieve "Janice" from this array, you would need to specify the array name
(nameArray) and its index position like this:

print (nameArray[1])

Because "Janice" is stored in the second position of the array, it’s located at
index position 1 ("Bob" is at index position 0, and "Pat" is at index position 2).
Anything beyond index position 2 is undefined and will cause your program to
crash if you try to access any index position greater than 2 for this array.

However, what happens if you delete "Bob" from the array? Now the array looks
like this:

["Janice", "Pat"]

"Janice" is now at index position 0, and "Pat" is at index position 1. If you insert
two names in the beginning, the index position of "Janice" would now change
once more:

["Walter", "Mary", "Tammy", "Oliver", "Janice", "Pat"]

Structures and A
rrays

CHAPTER 1 Structures and Arrays 331

Now the index position of "Janice" is 4. Because the same data in an array can
change its index position as an array shrinks or grows, it can be hard to predict
exactly where data may be stored.

The data structure you choose for your program can determine the speed and
efficiency of your program:

 » Choosetherightdatastructure,andwritingyourprogramiseasy.

 » Choosethewrongdatastructure,andyoumaywastetimewritingcodeto
overcomethelimitationsofyourchosendatastructure,suchaswritingcode
tosortanarraythatcontains10,000names.

CHAPTER 2 Sets and Linked Lists 333

Sets and Linked Lists

An array can be handy for storing data that consists of the same type of
information, such as integers. However, arrays can often be too restrictive.
You must define the size of an array ahead of time, and you can only store

one data type. In addition, searching, rearranging, or deleting data from an array
can be cumbersome.

To solve the problems of arrays, programming languages have come up with
a variety of solutions. The obvious solution involves modifying the way arrays
work, such as letting you create dynamic (resizable) arrays that can store a spe-
cial Variant data type. Unlike an Integer data type (which can hold only whole
numbers) or a String data type (which can hold only text), a Variant data type
can hold both numbers and text. (Not all programming languages offer dynamic
arrays or Variant data types.)

Instead of modifying the way arrays work, many programming languages allow
you to create other types of data structures. Two popular alternatives to arrays are
sets and lists. This chapter shows you how to use sets and lists when arrays are
too restrictive and cumbersome.

Chapter 2

IN THIS CHAPTER

 » Working with sets

 » Creating and modifying a linked list

 » Identifying problems with sets and
linked lists

334 BOOK 3 Data Structures

Using Sets
If someone showed you the days of the week (Monday, Tuesday, Wednesday,
Thursday, Friday, Saturday, and Sunday), you’d know that those days are related
as a group that defines a week, but how do you tell a computer that? Here’s
one way:

1. Create an array to hold seven separate variables, like this:

Dim Day(6) as String

2. Assign each variable a different name, like this:

Day(0) = "Monday"
Day(1) = "Tuesday"
Day(2) = "Wednesday"
Day(3) = "Thursday"
Day(4) = "Friday"
Day(5) = "Saturday"

Day(6) = "Sunday"

This would store all the days of the week inside a single array variable.

However, there’s a simpler way to lump related data together: Use a data structure
called a set. Like an array, a set groups data in a single variable name, but a set has
several advantages:

 » You don’t have to define a fixed size ahead of time.

 » You don’t have to identify each chunk of data with an index number.

Defining a set lists all the data you want to store, as shown in this Python pro-
gramming language example:

days = {'Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday',
'Saturday', 'Sunday'}

In this Python language example, the variable days contains the entire set or
group of the days. To print the contents of this set, you can use a print command
followed by the name of the set like this:

print (days)

Sets and Linked Lists

CHAPTER 2 Sets and Linked Lists 335

This command may print the following:

{'Monday', 'Sunday', 'Thursday', 'Friday', 'Wednesday',
'Saturday', 'Tuesday'}

Sets don’t store data in any particular order. If you print out the contents of a set,
the items in that set could come out in a different order than the way you may
have stored those items in the set.

Adding and deleting data in a set
To add data to or delete data from a set, use the add and delete commands. In
Python, the add command is add, and the delete command is remove.

Every programming language uses slightly different names for the same com-
mand, so don’t worry about the particular command names. You just need to
understand the basic principles.

To add more data to a set in Python, you have to identify the set name followed
by the add command and the data you want to add. So, if you had a set called
clubmembers, you could use the following commands:

clubmembers = {'Bill Evans', 'John Doe', 'Mary Jacobs'}

You could add a new name to that set by using the following command:

clubmembers.add('Donna Volks')

To remove a name from a set, you have to identify the set name, use the remove
command, and specify which data you want to remove, like this:

clubmembers.remove('Bill Evans')

Figure 2-1 shows how add and remove commands change the contents of a set:

 » When you delete data from a set, the set is just one item smaller.

 » When you delete data from an array, you’re left with an empty space in the
array.

To remove all data in a set, most programming languages include a command that
clears out an entire set. In Python, the command is clear:

clubmembers.clear()

336 BOOK 3 Data Structures

Checking for membership
If you store a bunch of names in an array, how could you verify whether a specific
name is in that array? Older programming languages often had to examine each
element in the array and compare it with the name you’re looking for until you
either found a match or reached the end of the array.

Sets avoid this problem by making it easy to check whether a chunk of data is
stored in a set. If you had a list of country club members stored in a set, it might
look like this in Python:

clubmembers = {'Bill Evans', 'John Doe', 'Mary Jacobs'}

To check whether a name is in a set (that is, a member of that set), use a simple
in command like this:

'John Doe' in clubmembers

If this command finds the name John Doe in the set defined by the clubmembers
set, this would return a True value. If this command can’t find the name John Doe
in the clubmembers set, the command would return a False value.

Another way to check for membership is to use the not command with the in
command like this:

'Hugh Lake' not in clubmembers

FIGURE 2-1:
Adding and

removing data
in a set is easier
than adding and
removing data in

an array.

Sets and Linked Lists

CHAPTER 2 Sets and Linked Lists 337

This command asks the computer whether the name Hugh Lake is not in the
clubmembers set. In this case, the name Hugh Lake is not in the clubmembers set,
so the preceding command would return a True value.

If you used the following command to check whether the name John Doe is not in
the clubmembers set, the following command would return a False value because
the name John Doe is in the clubmembers set:

'John Doe' not in clubmembers

Avoiding duplicate data
One huge advantage of sets is that they won’t store duplicate data. With an array,
it’s possible to store duplicate data multiple times, like this:

var nameArray = ["Bob", "Sally", "Bob", "Peter", "Bob",
"Hannah"]

In this array, “Bob” gets stored three times. However, sets automatically exclude
duplicate data. That way you can be sure that all data in a set is unique. Let’s cre-
ate a set in Swift and print it, like this:

var nameSet: Set = ["Bob", "Sally", "Bob", "Peter", "Bob", "Hannah"]

print(nameSet)

The first line creates a set and fills it with strings. Notice that "Bob" appears three
times. The second line prints the set, but because the set strips out duplicate data,
it prints the following:

["Bob", "Sally", "Peter", "Hannah"]

Manipulating two sets
A set by itself can be handy for grouping related data together, but if you have two
or more sets of data, you can manipulate the data in both sets. For example, sup-
pose you have a set of country club members and a second set of people applying
for membership.

You can combine both sets together to create a third set (a union), find the com-
mon data in both sets (an intersection), or take away the common data in both sets
(the difference).

338 BOOK 3 Data Structures

Combining two sets into a third set with the
union command
A union simply takes data from two sets and smashes them together to create a
third set that includes all data from the first two sets, as shown in Figure 2-2.

To use the union command in Python, you need to identify the two set names with
the union command. Suppose you had one set called club-members and another
set called applicants, as follows:

club_members = {'Bill Evans', 'John Doe', 'Mary Jacobs'}
applicants = {'Bo Biggs', 'Tasha Korat'}

Now if you wanted to combine the data in both sets and store it in a third set called
every_member, you could use the union command as follows:

every_member = club_members.union(applicants)

This creates a third set called every_member and stores the data from both sets
into the every_member set. The data in the other sets isn’t modified in any way.

FIGURE 2-2:
The union

command
 combines data

from two sets to
create a third set.

Sets and Linked Lists

CHAPTER 2 Sets and Linked Lists 339

The order in which you define the two sets is irrelevant:

 » You can put the club_members set name first, like this:

every_member = club_members.union(applicants)

 » You could switch the two set names around, like this:

every_member = applicants.union(club_members)

The end result is identical to creating a third set and dumping data from both sets
into this third set. If you combine two sets that happen to contain one or more
identical chunks of data, the union (combination of the two sets) is smart enough
not to store duplicate data twice.

Combining the common elements of two sets into
a third set with the intersection command
Whereas the union command combines two sets into one, the intersection
command creates a third set that only includes data stored in both sets, as shown
in Figure 2-3.

FIGURE 2-3:
The

 intersection
command

takes only data
 common in both

sets and stores
that data in a

third set.

340 BOOK 3 Data Structures

To use the intersection command in Python, you need to identify the two
set names with the intersection command. Suppose you had one set called
club_members and another set called politicians, as follows:

club_members = {'Bill Evans', 'John Doe', 'Mary Jacobs'}
politicians = {'Bo Biggs', 'John Doe'}

Now if you wanted to find only that data stored in both sets, you could use the
intersection command to store this data in a third set, as follows:

new_set = club_members.intersection(politicians)

This creates a third set — new_set — which contains the name John Doe. The
other names are omitted because they aren’t in both original sets.

Combining the different elements of two sets into
a third set with the difference command
If you have two sets, you may want to identify all the data stored in one set that
isn’t stored in a second set. To do this, you’d use the difference command, as
shown in Figure 2-4.

FIGURE 2-4:
The difference
command strips

out data in
common with a

second set.

Sets and Linked Lists

CHAPTER 2 Sets and Linked Lists 341

To use the difference command in Python, you need to identify the two set names
with the difference command. Suppose you had one set called club_members and
another set called politicians, as follows:

club_members = {'Bill Evans', 'John Doe', 'Mary Jacobs'}
politicians = {'Bo Biggs', 'John Doe'}

Now if you wanted to store data from the first set that is not in the second set, you
could use the difference command to store this data in a third set, as follows:

newset = club_members.difference(politicians)

This creates a third set — newset — which contains the names Bill Evans and
Mary Jacobs.

The third set does not contain the name Bo Biggs. That’s because the order in
which you list the sets determines how the difference command works. If you
list the sets in this order:

newset = club_members.difference(politicians)

You’re telling the computer to take all the data from the first set (club_members),
find all the data common in both the club_members and politicians sets, and
remove that common data from the first set. Now take what’s left and dump this
data into the newset (refer to Figure 2-4).

If you switched the commands around, like this, you’d get an entirely different
result:

newset = politicians.difference(club_members)

This tells the computer to take the data stored in the politicians set, find all
the data common in both the politicians and club_members sets, and remove
this common data from the politicians set. Now store what’s left in the newset,
as shown in Figure 2-5.

342 BOOK 3 Data Structures

Using Linked Lists
Sets are handy for lumping related data in a group. However, sets aren’t orga-
nized. So, if you want to group related data together and keep this data sorted, you
can use another data structure: a linked list.

Whereas an array creates a fixed location for storing data (think of an egg carton),
a linked list more closely resembles beads tied together by a string. It’s impossible
to rearrange an array (just as you can’t rip an egg carton apart and put it back
together again in a different way). However, you can rearrange a linked list easily
just as you can rearrange beads on a string.

The basic element of a linked list is a node, which is just a structure (see Book 3,
Chapter 1) that contains two parts:

 » A pointer

 » A variable for storing data

Figure 2-6 shows how the parts of a linked list work.

FIGURE 2-5:
The order in

which you list set
names with the

difference
command

 determines which
data gets stored
in the third set.

Sets and Linked Lists

CHAPTER 2 Sets and Linked Lists 343

Pointers are often used to access specific locations in the computer’s memory. If
you’ve stored data in memory and you need to share that data, you could make
duplicate copies of that data, which would take up space. Or you could use a
pointer, which allows different parts of a program to access that same data with-
out creating duplicate copies of that data and wasting space.

Accessing the computer’s memory is like probing your brain with a sharp needle.
If you know what you’re doing, pointers can give you complete control over a
computer, but if you make a mistake, pointers can mess up the computer’s mem-
ory, causing the entire operating system to crash.

Creating a linked list
A linked list consists of one or more identical nodes that can hold the same num-
ber and types of data, such as a string and an integer. Each time you create a
node, you have to define the following:

 » The data to store in the node

 » The node to point at

Nodes in a linked list must all contain the same data types, much like an array.

A node can store either

 » A single data type (such as a string)

 » Another data structure (such as a structure or an array)

Each time you create a node, the node is empty. To make the node useful, you
must store data in that node and define which node to point at:

 » The first node you create simply points at nothing.

The term nil or null is commonly used in programming languages to
represent the absence of data.

FIGURE 2-6:
A node consists

of a pointer
and one or

more variables
to store data.

344 BOOK 3 Data Structures

 » Any additional nodes you create point to the previous existing nodes, so you
create a daisy-chain effect of nodes linked to one another by pointers, as
shown in Figure 2-7.

Modifying a linked list
After you create a linked list and store data in it, you can easily modify that linked
list by rearranging the pointers, as shown in Figure 2-8.

To add data to a linked list, you can just rearrange pointers to include the new data
in any position within the linked list, as shown in Figure 2-9.

To delete data from a linked list, you can delete an entire node. Then you must
change the pointers to keep your linked list together, as shown in Figure 2-10.
Unlike arrays, linked lists give you the flexibility to rearrange data without physi-
cally moving and copying it to a new location.

FIGURE 2-7:
A linked list

stores data in
each node that

points to
another node.

FIGURE 2-8:
Rearranging the
order of a linked

list is as simple
as rearranging

pointers.

Sets and Linked Lists

CHAPTER 2 Sets and Linked Lists 345

Linked lists also let you add data anywhere just by rearranging the pointers (refer
to Figure 2-9 and Figure 2-10). By using linked lists, you can add, delete, and
rearrange data quickly and easily.

Creating a double linked list
An ordinary linked list contains pointers that point in one direction only. That
means if you start at the beginning of a linked list, you can always browse the data
in the rest of the linked list. However, if you start in the middle of a linked list, you
can never browse the previous nodes.

To fix this problem, you can also create a double linked list, which essentially cre-
ates nodes that contain two pointers:

 » One pointer points to the previous node in the list.

 » The other pointer points to the next node in the list.

FIGURE 2-9:
Adding data

from a linked
list also involves

rearranging
pointers.

FIGURE 2-10:
Deleting data
from a linked

list involves
 removing

data and then
rearranging

pointers.

346 BOOK 3 Data Structures

By using double linked lists, you can easily browse a linked list in both directions,
as shown in Figure 2-11.

Another type of linked list you can create is a circular linked list, as shown in
 Figure 2-12. Circular linked lists more closely resemble a doughnut with no begin-
ning or ending node. For more flexibility, you can even create a double linked,
circular linked list, which lets you traverse the list both backward and forward.

Linked lists are often used to create other types of data structures, such as queues,
graphs, and binary trees, which you can read more about in Chapters 4 and 5 of this
minibook.

Drawbacks of Sets and Linked Lists
Sets make it easy to group and manipulate related data, but unlike arrays, there
isn’t always an easy way to access and retrieve individual items in a set. Sets are
best used for treating data as a group rather than as separate chunks of data.

Linked lists are much more flexible than arrays for adding, deleting, and
 rearranging data. However, the two biggest drawbacks of linked lists are the com-
plexity needed to create them and the potentially dangerous use of pointers.

FIGURE 2-11:
A double linked

list lets you
traverse a linked

list in both
directions.

FIGURE 2-12:
A circular linked

list has no
 beginning or end.

Sets and Linked Lists

CHAPTER 2 Sets and Linked Lists 347

Problems with pointers
The most common problem with linked lists occurs when pointers fail to point to
either nil or a valid node of a linked list. If you delete a node from a linked list
but forget to rearrange the pointers, you essentially cut your linked list in two, as
shown in Figure 2-13.

Even worse, you could create a dangling pointer (the pointer no longer points to a
valid node). Dangling pointers can wind up pointing to any part of the computer’s
memory, usually with catastrophic consequences that crash the entire computer.

Dangling pointers are a common cause of problems using languages like C or C++.
Other languages (such as C#, Java, Python, and Swift) prevent dangling pointers.

Problems with accessing data
Accessing data in an array is easy. You can access data by its index number or by
starting at the beginning of the array and browsing through each element until
you reach the end of the array.

If you want to access data stored in a linked list, you have to start at the beginning.
If you start in the middle, you can never go backward to the front of the linked list
(unless you’re using a double linked list). Arrays let you jump straight to specific
data by using an index number. Linked lists don’t offer that same feature.

For ease in storing, adding, and removing data, linked lists are more flexible than
arrays. For retrieving data, arrays are much simpler and faster.

FIGURE 2-13:
Pointers must

always point to
a valid node of a

linked list.

348 BOOK 3 Data Structures

COMPLEXITY OF CREATING LINKED
LISTS AND POINTERS
Creating and managing a linked list with all its pointers is easy in theory, but writing
the code to create and manage a linked list can get complicated in a hurry. The more
confusing and complicated the code, the more likely errors will creep in and cause your
linked list to not work at all or to work in unexpected ways.

To show you how confusing pointers and nodes can be to create, study the following
Pascal programming language examples. Pascal is actually designed to be an easy-to-
read language, but even creating linked lists in Pascal can get clumsy. (Don’t worry too
much about the details of the Pascal code. Just skim through the examples and follow
along the best you can. If you get confused, you can see how implementing linked lists
in any programming language can get messy.)

To create a linked list, you must first create a node, which is a structure. (In Pascal, struc-
tures are called records.) To define a structure in Pascal, you could do this:

Type
 NodePtr = ^Node;
 Node = RECORD
 Data : String;
 Next : NodePtr;
 END;

This Pascal code creates a NodePtr variable, which represents a pointer to the Node
structure (record). The caret symbol (^) defines a pointer, whereas the Node name
defines what structure the pointer can point at.

The Node structure declares two variables: Data and Next. The Data variable holds
a string (although you can change this to Integer or any other data type). The Next
variable represents a pointer to the Node record. Every node absolutely must have
a pointer because pointers are how the nodes can point, or link, together to form a
linked list.

If this were a double linked list, you’d have two variables (such as Previous and Next)
declared as node pointers like this:

Type
 NodePtr = ^Node;
 Node = RECORD
 Data : String;

Sets and Linked Lists

CHAPTER 2 Sets and Linked Lists 349

 Previous, Next : NodePtr;
 END;

After you define a node as a structure, you can’t use that node until you declare a vari-
able to represent that node, like this:

Var
 MyNode : NodePtr;

After you declare a variable to represent a pointer to a node (structure), you must cre-
ate a new node, stuff data into it, and then set its pointer to point at something, such as
NIL or another node:

Begin
 New (MyNode); (* Creates a new node *)
 With MyNode^ do (* Stores data in the node *)
 Begin
 Data := 'Joe Hall';
 Next := NIL;
 End;
End.

To create a linked list in a language like Pascal, you must

1. Define a node structure.

2. Declare a pointer to that node (structure).

3. Declare a variable to represent that pointer.

Now you can use your node to store data and link with other nodes.

If you mess up on any one of those steps, your linked list won’t work, and because
linked lists use pointers, your pointers could point anywhere in memory, causing all
sorts of random problems. The bottom line: Linked lists are a powerful and flexible
data structure, but they come at a price of added complexity for the programmer.
Accidentally create one dangling pointer, and you can bring your entire program
 crashing to a halt.

CHAPTER 3 Collections and Dictionaries 351

Collections and
Dictionaries

An array can be handy when you need to store the same type of informa-
tion, such as a group of integers. However, if you need to store different
information, such as both integers and strings, and you aren’t sure how

many items you need to store, you probably can’t use an array. Instead, you can
use a collection or a dictionary.

A collection (also called a list in some languages) acts like a resizable array that can
hold different data types at the same time while identifying each chunk of data
with a number. A dictionary acts like a collection that identifies each chunk of data
with a unique key.

The purpose of both collections and dictionaries is to make it easier to store dif-
ferent types of data and retrieve them again with the size and single data type
restrictions of an array.

Chapter 3

IN THIS CHAPTER

 » Storing data in a collection

 » Organizing data in a dictionary

 » Understanding hash tables and
collisions

352 BOOK 3 Data Structures

Using a Collection
A collection acts like a super array that can grow and expand without requir-
ing any special commands. In addition, a collection can store different data types
(such as integers or strings) or even other data structures, such as an array.

Not all programming languages offer the collection data structure:

 » In some programming languages (like Python and Smalltalk), collections are a
built-in feature of the language.

 » In other languages (like C or Pascal), you have to use more primitive data
structures (like arrays) to mimic the features of a collection.

 » In many newer languages (like C# and Visual Basic), someone else has already
created a collection out of more primitive data structures, so you can use
them without knowing how they were created.

Because a collection is nothing more than a data structure, like an array, the first
step to creating a collection is to declare a variable as a collection, such as the fol-
lowing Visual Basic example shows:

Dim MyStuff As New Collection

This command simply identifies a MyStuff variable as a collection data structure.
The New command tells the computer to create a new collection.

Adding data to a collection
When you first create a collection, it contains zero items. Each time you add a new
chunk of data to a collection, it expands automatically so you never have to spec-
ify a size beforehand (like an array) or deliberately resize it later (like a dynamic
array).

To add data to a collection in Visual Basic, you must use an Add command like this:

Dim MyStuff As New Collection
MyStuff.Add("Dirty socks")

Each time you add another element to a collection, the computer tacks that new
data at the end of the collection. So, if you added the string "Dirty socks", the
number 7348, and the number 4.39, the collection would look like Figure 3-1.

Collections and
D

ictionaries

CHAPTER 3 Collections and Dictionaries 353

Dim MyStuff As New Collection
MyStuff.Add("Dirty socks")
MyStuff.Add(7348)
MyStuff.Add(4.39)

Every element in a collection gets numbered with the first element given an
index number of 1, the second given an index number of 2, and so on, similar to a
one-based array.

Although some programming languages number the first element of an array
as 0, they often number the first item in a collection as 1.

For greater flexibility in adding data to a collection, you may be able to insert data
before or after existing data, depending on the programming language. (In Visual
Basic, you can add data before or after existing data in a collection, but in Xojo,
you can’t.)

Suppose you had the following Visual Basic code to create a collection:

Dim HitList As New Collection
HitList.Add("Billy Joe")
HitList.Add(99)
HitList.Add("Johnny McGruffin")

If you wanted to add the name Hal Perkins to the end of the collection, you could
use this command:

HitList.Add("Hal Perkins")

Instead of always adding data to the end of a collection, you can also specify that
you want to store new data before or after a specific location in the array. The
location is specified by the collection’s index number.

FIGURE 3-1:
Collections

expand
 automatically

each time you
store new data.

354 BOOK 3 Data Structures

So, if you wanted to add the number 3.14 before the second element in a collec-
tion, you could use the following:

HitList.Add(3.14,,2)

The preceding command inserts the number 3.14 before the second element of
the collection, as shown in Figure 3-2.

If you wanted to add the name Gini Belkins after the third element in the col-
lection, you could use the following command:

HitList.Add("Gini Belkins",,,3)

This command would insert the name Gini Belkins after the third element in the
collection, as shown in Figure 3-3.

Deleting data from a collection
After you store data in a collection, you can always delete data from that collec-
tion. To delete data, you must specify the location of that data by defining an index

FIGURE 3-2:
You can insert
data before a

specific location
in an array.

FIGURE 3-3:
You can insert

new data after an
existing location

in a collection.

Collections and
D

ictionaries

CHAPTER 3 Collections and Dictionaries 355

number. So, if you want to delete the fourth item in a collection, you’d specify
deleting data stored at index 4 like this:

HitList.Remove(4)

When you delete data from an array, that array now contains empty space, but
when you delete data from a collection, the collection automatically renumbers
the rest of its data so there isn’t any empty space, as shown in Figure 3-4.

Identifying data with keys
One problem with collections implemented in some languages is that they identify
data by their position in the collection. If you don’t know the location of specific
data in a collection, you have to search the entire collection, item by item, to
find specific data. Another option is to identify data with any descriptive string,
called a key.

For example, if you stored the name of your boss in a collection, you could iden-
tify it with the key boss. If you stored the name of your friend in a collection,
you could identify it with the key best friend. And if you stored the name of
your ex-boss in a collection, you could identify it with the key moron, as shown
in Figure 3-5.

FIGURE 3-4:
When you

remove data
from a collection,

the collection
renumbers the
rest of its data.

FIGURE 3-5:
Identify data

by its location
or by a key.

356 BOOK 3 Data Structures

When you add data to a collection, you can optionally also assign a key to that
data, which you can later use to search and retrieve that data again. So, if you
wanted to add the data Mike Ross along with the key moron, you could use the
following command:

HitList.Add("Mike Ross", "moron")

When adding a key to data in a collection, your key must meet these criteria:

 » You must add a key at the same time you add data to a collection. After
you add data to a collection, you can’t go back later and add a key to that data.

 » Every key must be a string.

 » Every key must be unique; no two items in a collection can share the
same key.

Searching and retrieving data
After you store data in a collection, here are two ways to search and retrieve data
from that collection:

 » Use the index number of that data.

 » Use the key of that data.

If you don’t store a key with data originally, you can’t retrieve that data with a key.

Index numbers
To retrieve data based on its location, you can do something as simple as the
following:

Dim Junk As New Collection
Junk.Add(3.1415)
Junk.Add(99)
Junk.Add("Bo")

If you wanted to retrieve the name Bo from the collection, you’d have to know that
Bo is stored as the third item (index number 3), so the following would store the
string "Bo" in the Good variable:

Dim Good As String = Junk.Item(3)

Collections and
D

ictionaries

CHAPTER 3 Collections and Dictionaries 357

The problem with relying on index numbers alone is that as you add and delete
items from a collection, the index numbers may change, as shown in Figure 3-6.

Because index numbers don’t always stay matched with each item in a collection,
a better solution is to assign a key to each item, as described in the following
section.

Keys
By assigning a descriptive key to each item, you can use that key to retrieve that
item no matter where it may be stored in the collection.

The following code assigns the key "pi" to the first item, the key "secret agent"
to the second item, and the key "my cat" to the third item:

Dim MoreJunk As New Collection
MoreJunk.Add(3.1415, "pi")
MoreJunk.Add(99, "secret agent")
MoreJunk.Add("Bo", "my cat")

To retrieve items from a collection with a key, you have to remember the key
associated with each chunk of data. The following code stores the number 3.1415
into the CircleSecret variable:

Dim CircleSecret As Single = MoreJunk.Item ("pi")

The preceding code tells the computer to find the chunk of data assigned the "pi"
key and then store that data in the CircleSecret variable.

The preceding code retrieves the number 3.1415 no matter where its location may
be in a collection.

FIGURE 3-6:
Retrieving data by

index numbers
is unreliable

because they
can change.

358 BOOK 3 Data Structures

You can always retrieve data with either its key or its location (index number).

Using Dictionaries
Essentially, a dictionary is like a collection but with two additional advantages:

 » Searching for that data in a dictionary is much faster. Dictionaries use
a data structure known as a hash table (which you read more about later in
this chapter). Every item stored in a dictionary must include a unique key.
Collections don’t require keys because searching for data in a collection is
sequential — the computer must start at the beginning of the collection and
examine each item, one by one, to retrieve a specific item. The more items in
a collection, the slower the search process.

If a programming language offers collections, it usually also offers dictionar-
ies. If a programming language doesn’t offer collections, it probably doesn’t
offer dictionaries either.

 » In a dictionary, the key can be any value, including strings or numbers,
which gives you greater flexibility in assigning keys to data. If a collection
uses a key to identify data, that key is usually limited to a specific data type
such as a string.

Dictionaries are also called associative arrays. When you store data and a key, that’s
known as a key-value pair (refer to Figure 3-5).

Like a collection, a dictionary is a data type, so you must first declare a variable
as a dictionary. Then you must create a new dictionary and store data in that
dictionary.

To create a dictionary in the Smalltalk programming language, you could use the
following:

blackbook := Dictionary new.

This code declares the blackbook variable as a Dictionary data type. The new
command simply creates an empty dictionary.

Adding data to a dictionary
After you declare a variable as a Dictionary data type, you can start adding data
to that Dictionary by defining both the data and the key you want to associate

Collections and
D

ictionaries

CHAPTER 3 Collections and Dictionaries 359

with that data. So, if you want to add the name Dick Ross to a dictionary and
assign it a moron key, you could use the following:

blackbook := Dictionary new.
blackbook at: 'moron' put: 'Dick Ross'.

Every time you add data to a dictionary, you must include a corresponding key.

In Smalltalk, the key appears directly after the at command, and the data appears
after the put command, as shown here:

blackbook := Dictionary new.
blackbook at: 'moron' put: 'Dick Ross'.
blackbook at: 'imbecile' put: 'John Adams'.
blackbook at: 'idiot' put: 'Sally Parker'.

Searching and retrieving data
from a dictionary
To access and retrieve data from a dictionary, you need to identify the diction-
ary variable and the key associated with the data you want to find. So, if you
wanted to find the data associated with the key idiot, you could use the following
command:

blackbook at: 'idiot'

This would return:

'Sally Parker'

Dictionaries are more efficient at searching and retrieving data because the com-
puter doesn’t need to search through the entire dictionary sequentially. Instead,
the computer searches through data using a hash table. This is like the differ-
ence between looking through the phone book, starting from page one, trying
to find the phone number of Versatile Plumbing and just skipping straight to
the V section of the phone book and looking alphabetically from the beginning
of that V section to find the phone number of Versatile Plumbing, as shown in
Figure 3-7.

360 BOOK 3 Data Structures

Understanding Hash Tables
If you stored data without a key in a collection, searching for a specific chunk of
data is difficult because the data isn’t sorted. So, to ensure you find data in a col-
lection, you must search the entire collection from start to finish. The more data
you store, the longer the search takes, just as it takes longer to find a specific
playing card in a deck of 52 cards than it does in a deck of only 4 cards.

When you store data with a unique key in a collection, the key is used to help iden-
tify and retrieve the data. However, just using a key alone is no better than storing
data alone because keys are just another chunk of data. The more data (and keys)
you store, the longer it takes the computer to search through its entire list of keys.

Converting keys with a hash function
To speed up searching, dictionaries use hash tables. Basically, a hash table takes
the key used to identify data and then converts that key into a hash value. This
hash value gets stored in a list (known as a table), as shown in Figure 3-8.

The exact method used to convert a key into a value is a hash function. The con-
verted key, or hash, now points directly to the stored data. At this point, the com-
puter actually stores just two chunks of data:

FIGURE 3-7:
Hash tables

make searching
faster by dividing
data into distinct

sections.

Collections and
D

ictionaries

CHAPTER 3 Collections and Dictionaries 361

 » The data itself

 » A hash value calculated from the key

When you want to retrieve data, you give the computer the key associated with
the data that you want. The computer takes the key and uses its hash function to
convert the key to a value.

Now the computer tries to match this calculated value to its list of values stored
in the hash table. When it finds a match, it can then find the data associated with
that key.

A simple hash function might just count all the characters in a key and use that
total as a value. For example, consider the keys moron and imbecile.

blackbook := Dictionary new.
blackbook at: 'moron' put: 'Dick Ross'.
blackbook at: 'imbecile' put: 'John Adams'.

FIGURE 3-8:
Hash tables

convert each
key into a

numeric value.

362 BOOK 3 Data Structures

Such a simple hash function could create a table like this:

Hash Table Data

5 Dick Ross

8 John Adams

If you wanted to find the data associated with the key moron, the computer would
first calculate its hash value, which is 5. Next, it would try to match this value with
an existing value stored in the hash table. In this case, it finds that the hash value
of 5 matches up to the key moron and the data Dick Ross, which is the data you
wanted in the first place.

Basically, a hash table works by searching through a table of data (the hash values
calculated from the key) rather than the unsorted list of data.

Hash function collisions
The hash function used to create a hash table can greatly determine the efficiency
of that hash table. Ideally, the hash function should create a different hash value
for every key. Unfortunately, that’s not always possible, which means that some-
times the hash function can create identical hash values from different keys.

In the previous example, the hash function converted a key to a hash value just by
counting the number of characters used in the key. So, if two different keys have
the same number of characters, the hash function will create the same hash value
like this:

blackbook := Dictionary new.
blackbook at: 'moron' put: 'Dick Ross'.
blackbook at: 'imbecile' put: 'John Adams'.
Blackbook at: 'idiot' put: 'Sally Evans'.

Using the simple hash function to count the number of characters in each key
would create a table like this:

Hash Table Data

5 Dick Ross

8 John Adams

5 Sally Evans

Collections and
D

ictionaries

CHAPTER 3 Collections and Dictionaries 363

Hash tables can’t have duplicate values because every hash value must match with
a single chunk of data. A collision occurs when a hash function creates duplicate
values from different keys. Here are two ways to prevent collisions:

 » Develop a better hash function. Unfortunately, no matter how many
different hash functions you create, the more data stored, the greater the
chance that any hash function will eventually calculate a duplicate value from
two different keys.

 » Find a way to deal with hash value collisions. The following sections
provide solutions.

Solving collisions by chaining
The simplest way to deal with collisions (duplicate hash values) is chaining.

Normally, each hash value points to a single chunk of data. The idea behind
chaining is that each hash value can actually point to a list of data, as shown in
Figure 3-9.

Now if you search for data using a key, the computer

1. Calculates the hash value of that key, which points to a list of data

2. Searches through this list sequentially, one by one

FIGURE 3-9:
Chaining lets a

single hash value
point to a list of
multiple items.

364 BOOK 3 Data Structures

Chaining works because searching a shorter list sequentially is faster than
searching the whole list sequentially. (It’s like finding Versatile Plumbing in the
phone book by starting with the V section instead of the first page of the phone
book.)

Avoiding collisions with double hashing
Another way to avoid collisions is to use double hashing:

1. The hash function calculates a hash value for each key.

2. If a collision occurs, the computer calculates a second hash value.

Essentially, you wind up with a much shorter list of items within the hash table,
as shown in Figure 3-10.

FIGURE 3-10:
Double hashing

creates miniature
hash tables

within a larger
hash table.

Collections and
D

ictionaries

CHAPTER 3 Collections and Dictionaries 365

Double hashing can reduce the number of collisions, but here are a couple of
drawbacks:

 » A collision can still occur even after the double hashing.

 » Double hashing is a more complicated solution than chaining. And the
more complex a program, the greater the chances of something going wrong.

In general, the simpler the data structure (such as arrays), the easier they are to
implement and the lower the odds that something will go wrong. Of course, the
simpler the data structure, the more restrictive the data structure.

Both collections and dictionaries (using hash tables) give you added flexibility but
at the cost of added complexity:

 » In many programming languages, such as C, you have to create dictionaries
and hash tables from scratch.

 » In other programming languages, such as C# or Python, collections and
dictionaries are built-in features of that language, which makes these data
structures easy to use and implement.

Sometimes you may find collections or dictionaries easier to use, and other times
you may find arrays or sets easier to use. By understanding the different types
of available data structures and the pros and cons of each, you’re more likely to
choose the one that will make it easy to solve your particular problem.

CHAPTER 4 Stacks, Queues, and Deques 367

Stacks, Queues,
and Deques

Collections and dictionaries are best suited for storing and organizing data,
but they aren’t as useful for retrieving data in an orderly fashion. Trying to
keep track of data stored by index numbers or by keys can get cumbersome.

As a simpler alternative, computer scientists have created three other data struc-
tures: stacks, queues, and deques. Unlike collections or dictionaries, these three
data structures are designed for storing and removing data in a predictable order.

A list or an array is much simpler to use but much less flexible than a queue or a
stack. Unfortunately, stacks, queues, and deques add greater complexity to your
program in exchange for their added flexibility.

If you need to store and remove data that’s often stored and removed within short
periods of time, stacks, queues, and deques are better suited than arrays, collec-
tions, or dictionaries. A queue might be useful for an online reservation system
that handles the oldest request first.

Different data structures can be useful for different purposes. Choose the right
data structure, and a program can suddenly be easier to write. Choose the wrong
data structure, and your program can suddenly be much more difficult to write.

Chapter 4

IN THIS CHAPTER

 » Adding data to and removing data
from the top of a stack

 » Adding data to one end of a queue
and removing it from the other end

 » Adding or removing data from either
end of a deque

368 BOOK 3 Data Structures

Using Stacks
The stack data structure gets its name because it resembles a stack of clean dishes,
typically found in a cafeteria. When you put the first plate on the counter, that
plate appears at the bottom of the stack. Each time you add a new plate to the
stack, the first plate gets buried farther underneath. Add another plate to the
stack, and the newest plate appears on top. To remove a plate, you have to take
the top plate off.

That’s the same way the stack data structure works, as shown in Figure 4-1. With
a stack, you don’t keep track of the data’s location. Instead, you can keep adding
new data to store, and the stack expands automatically.

The only way to remove data from a stack is from the top. Each time you remove
data, the stack shrinks automatically. Because a stack only lets you remove the
last item stored on the stack, it’s often called a last in, first out (LIFO).

Few programming languages offer the stack data structure as a built-in feature.
Instead, you have to create a stack using other data structures, such as an array or
a linked list. When you create another data structure out of a built-in data struc-
ture, the new data structure created is an abstract data structure. To save you the
time and trouble of creating a stack data structure, many programming language
compilers come with libraries (or classes in object-oriented languages) of subpro-
grams that have created the stack data structure for you.

Because a stack is just a data structure, you can declare a variable to represent a
stack in Visual Basic by doing the following:

Dim BlowMyStack As New Stack

FIGURE 4-1:
Stacks store the

oldest data on
the bottom and
the newest data

on top.

Stacks, Q
ueues, and

D
eques

CHAPTER 4 Stacks, Queues, and Deques 369

This command simply identifies a BlowMyStack variable as a stack data structure.
The New command tells the computer to create a new stack.

Adding data to a stack
When you first create a stack, it contains zero items. Each time you add a new
chunk of data to a stack, it expands automatically. Unlike other data structures,
such as collections, you can only add new data to the top of the stack; you can
never add data in a specific location in a stack.

Like a collection or a dictionary, a stack can typically hold different data, such as
both numbers and strings.

The only way you can store or remove data from a stack is through the top of the
stack. To add data to a stack, you push that data on the stack. In Visual Basic, you
specify the Push command along with the stack name like this:

Dim BlowMyStack As New Stack
BlowMyStack.Push("My cat")

This command stores the string "My cat" on top of the stack. Each time you
add another chunk of data to a stack, you have to put that data on the top, which
pushes any existing data farther down the stack.

If you added the string "My cat", the number 108.75, and the string "Fat dog",
the stack would look like Figure 4-2.

Dim BlowMyStack As New Stack
BlowMyStack.Push("My cat")
BlowMyStack.Push(108.75)
BlowMyStack.Push("Fat dog")

FIGURE 4-2:
When you add

data to a stack,
the oldest data

keeps getting
pushed farther

down the stack.

370 BOOK 3 Data Structures

Removing data from a stack
When you store data in a stack, the only way you can remove data from that stack
is by removing the top item. Removing data from a stack is known as popping
the data off the stack. If you just want to retrieve the data from a stack without
removing it, you may be able to use the Peek command, which lets you retrieve
the top item from a stack.

To use the Peek command, you have to assign the value of the Peek command to
a variable, like this:

Dim BlowMyStack As New Stack
Dim X As Object
BlowMyStack.Push("My cat")
BlowMyStack.Push(108.75)
BlowMyStack.Push("Fat dog")
X = BlowMyStack.Peek

The preceding code assigns the value "Fat dog" to the X variable, which is declared
as an Object data type. (In Visual Basic, an Object data type can hold any type of
data, including integers, strings, and decimal numbers, such as 108.75.)

The Peek command retrieves the data but leaves it on top of the stack.

If you want to remove data, you use the Pop command, which retrieves and
removes data, as shown in the following Visual Basic example:

Dim BlowMyStack As New Stack
Dim X As Object
BlowMyStack.Push("My cat")
BlowMyStack.Push(108.75)
BlowMyStack.Push("Fat dog")
X = BlowMyStack.Pop

Figure 4-3 shows the difference between the Peek and the Pop commands.

Although the idea of removing the last item first might seem counterintuitive,
stacks are a commonly used data structure. Most programs offer an Undo com-
mand, which lets you undo the last command you gave the computer. If you give
five different commands, the program may store each command in a stack.

When you want to undo a command, you want to start with the last command
you gave it, which appears on the top of the stack, as shown in Figure 4-4. Each
succeeding Undo command removes an additional command until you get to the
last command, which is the oldest one that was buried at the bottom of the stack.

Stacks, Q
ueues, and

D
eques

CHAPTER 4 Stacks, Queues, and Deques 371

Counting and searching a stack
Because stacks can expand and shrink depending on the amount of data you push
on them, many programming languages give you commands to count the total
number of items currently stored in a stack.

In Visual Basic, you can count the number of items currently stored in a stack by
using the Count property. Here’s an example:

Dim BlowMyStack As New Stack
Dim X As Integer
BlowMyStack.Push("My cat")
BlowMyStack.Push(108.75)
BlowMyStack.Push("Fat dog")
X = BlowMyStack.Count

FIGURE 4-3:
The Peek

 command
retrieves data,

but the Pop
 command

retrieves and
removes data

from the stack.

FIGURE 4-4:
The Undo

command
offered in

most programs
can be easily

 implemented
in a stack.

372 BOOK 3 Data Structures

In this example, Count stores the number 3 in the X variable.

Visual Basic also provides a Contains command, which tells you whether a chunk
of data is stored in a stack (but doesn’t tell you the location of that data in the
stack). To use the Contains command, you have to specify the data you want to
find like this:

Dim BlowMyStack As New Stack
Dim X, Y As Boolean
BlowMyStack.Push("My cat")
BlowMyStack.Push(108.75)
BlowMyStack.Push("Fat dog")
X = BlowMyStack.Contains("Good dog")
Y = BlowMyStack.Contains("Fat dog")

In this example, the first Contains command looks for the "Good dog" string.
Because this string isn’t stored in the stack, the Contains command returns a
False value, which it stored in the X variable.

The second Contains command looks for the "Fat dog" string. Because this
string is stored in the stack, this Contains command returns a True value, which
is stored in the Y variable.

The Contains command tells you whether a chunk of data is in a stack, but it
doesn’t tell you where in the stack that data might be.

Using Queues
Similar to a stack is another data structure: a queue.

A queue gets its name because the data structure resembles a line of waiting peo-
ple, such as a line at a bank teller. The first person in the queue (line) is also the
first person who gets to leave the queue. As a result, a queue is often called a first
in, first out (FIFO) data structure, as shown in Figure 4-5.

Like a stack, a queue can expand and shrink automatically, depending on the
amount of data you store in it. Unlike a stack that only lets you store and retrieve
data from the top, a queue lets you store data on one end but remove that data
from the opposite end.

Stacks, Q
ueues, and

D
eques

CHAPTER 4 Stacks, Queues, and Deques 373

Most programming languages don’t offer the queue data structure as a built-in
feature. Instead, you have to create a queue with other data structures, such as
an array or a linked list, to create an abstract data structure. Fortunately, many
programming language compilers come with libraries (called classes in object-
oriented languages) of subprograms that have created the queue data structure
for you.

Because a queue is just a data structure, you can declare a variable to represent a
queue in Visual Basic by using the following command:

Dim LongLine As New Queue

This command simply identifies a LongLine variable as a queue data structure.
The New command tells the computer to create a new queue.

Adding data to a queue
New data always gets stored at the end of the queue:

 » When you first create a queue, it contains zero items.

 » Each time you add a new chunk of data to a queue, the queue expands
automatically.

 » The front of the queue always contains the first or oldest data.

Like a collection or a dictionary, a queue can hold different data, such as both
numbers and strings.

FIGURE 4-5:
The queue data

structure mimics
a line of people.

374 BOOK 3 Data Structures

To add data to a queue, Visual Basic uses the Enqueue command along with the
queue name like this:

Dim LongLine As New Queue
LongLine.Enqueue("Tasha")

This command stores the string "Tasha" as the first item in the queue. Each time
you add another chunk of data to this queue, the new data gets tacked on to the
end. That means the oldest data always remains at the front of the queue.

If you added the string "Tasha", the number 7.25, and the string "Gray", the
stack would look like Figure 4-6.

Dim LongLine As New Queue
LongLine.Enqueue("Tasha")
LongLine.Enqueue(7.25)
LongLine.Enqueue("Gray")

Removing data from a queue
You always remove data from a queue by taking that data off the front of the
queue. The front of the queue always contains the data that’s been stored in the
queue the longest.

In Visual Basic, you can remove and retrieve data off a queue by using the Dequeue
command, as shown in the following Visual Basic example:

Dim LongLine As New Queue
Dim X As Object
LongLine.Enqueue("My cat")
LongLine.Enqueue(108.75)
LongLine.Enqueue("Fat dog")
X = LongLine.Dequeue

FIGURE 4-6:
The oldest data
appears at the
front while the

newest data
appears at the

end of the queue.

Stacks, Q
ueues, and

D
eques

CHAPTER 4 Stacks, Queues, and Deques 375

As an alternative to removing data from a queue, you can retrieve data by using
the Peek command. To use the Peek command, you have to assign the value of the
Peek command to a variable like this:

Dim LongLine As New Queue
Dim X As Object
LongLine.Enqueue("Tasha Korat")
LongLine.Enqueue(7.25)
LongLine.Enqueue("Gray")
X = LongLine.Peek

The preceding code assigns the value "Tasha Korat" to the X variable, which is
declared as an Object data type.

The Peek command only retrieves the data but leaves it at the front of the queue.
Figure 4-7 shows the difference between the Peek and the Dequeue commands.

Counting and searching a queue
Because a queue expands each time you add more data to it, most programming
languages provide a way to count the total number of items currently stored in
the queue.

In Visual Basic, you can count the number of items currently stored in a queue by
using the Count property. Here’s an example:

Dim LongLine As New Queue
Dim X As Object
LongLine.Enqueue("Tasha")
LongLine.Enqueue(7.25)

FIGURE 4-7:
The Peek

 command
retrieves data,

but the Dequeue
command

retrieves and
removes data.

376 BOOK 3 Data Structures

LongLine.Enqueue("Gray")
X = LongLine.Count

In this example, Count stores the number 3 in the X variable.

Visual Basic also provides a Contains command, which tells you whether a chunk
of data is stored in a queue (but doesn’t tell you the location of that data in the
queue). To use the Contains command, you have to specify the data you want to
find, like this:

Dim LongLine As New Queue
Dim X, Y As Boolean
LongLine.Enqueue("Tasha")
LongLine.Enqueue(7.25)
LongLine.Enqueue("Gray")
X = LongLine.Contains("Gray")
Y = LongLine.Contains("Orange juice")

In this example, the first Contains command looks for the "Gray" string. Because
this string is stored in the queue, the Contains command returns a True value,
which it stored in the X variable.

The second Contains command looks for the "Orange juice" string. Because this
string isn’t stored in the stack, this Contains command returns a False value,
which is stored in the Y variable.

The Contains command just tells you whether a chunk of data is in a queue, but
it doesn’t tell you where in the queue that data might be.

Using Deques
A queue only lets you add data on one end of the data structure and remove data
from the opposite end. A deque (pronounced deck) acts like a queue that lets you
add or remove data from either end, as shown in Figure 4-8.

Most programming languages don’t deque the deque data structure as a built-in
feature. Instead, you have to create a queue with other data structures, such as a
linked list, and then write code to manage the storage and removal of data from
both ends of the deque.

Stacks, Q
ueues, and

D
eques

CHAPTER 4 Stacks, Queues, and Deques 377

A deque is similar to a linked list of nodes that contain data and two pointers:

 » One pointer points to the previous node.

 » The second pointer points to the next node, as shown in Figure 4-9.

Initially, a deque consists of a single node with both pointers pointing to nothing,
which is often defined in most programming languages as a NIL value. When you
add (or remove) data, you must specify on which end of the deque to put that data,
either the front or the back.

Deques can either be implemented as a double-linked list, as shown in Figure 4-10.
That means you need to keep track of which node represents the front and which
represents the end.

Typical command names used for adding or removing data from a deque include

 » push_front: Adds data to the front of the deque

 » push_back: Adds data to the end of the deque

 » pop_front: Removes data from the front of the deque

 » pop_back: Removes data from the end of the deque

FIGURE 4-8:
A deque acts like

a two-way queue.

FIGURE 4-9:
Each node in a

deque contains
two pointers that
point to the next

and previous
nodes.

378 BOOK 3 Data Structures

Because you can add data to both ends of a deque, a deque can grow in both direc-
tions, as shown in Figure 4-11.

Unlike a stack that always removes the newest data or a queue that always removes
the oldest data, a deque can never predictably remove either the oldest or newest
data. When you add data to both ends of the deque, the oldest data tends to get
sandwiched and buried in between the newest data on both ends.

FIGURE 4-10:
Two ways to
implement a

deque as a
linked list.

FIGURE 4-11:
A deque can grow

in two different
directions.

Stacks, Q
ueues, and

D
eques

CHAPTER 4 Stacks, Queues, and Deques 379

Like stacks and queues, deques only allow you to remove data from a specific part
of the data structure. Every data structure has pros and cons depending on what
your program may need.

A deque might be useful for an antivirus program that needs to examine messages
being sent out and coming in to a particular computer. When messages come
in, the antivirus program stores each message in the deque. Messages scanned
as virus-free are sent through the other end of the deque, whereas messages
caught carrying a virus are rejected from the same end of the deque, as shown in
Figure 4-12.

FIGURE 4-12:
A deque could

be used by
an antivirus

program to scan
messages.

CHAPTER 5 Graphs and Trees 381

Graphs and Trees

Most data structures (such as arrays, dictionaries, and queues) store data
in a linear format with one chunk of data neatly sandwiched in between
exactly two other chunks of data. Linear data structures can be fine for

just storing data, but what if you want a data structure that can model a real-life
problem?

Picking the right data structure to model a real-life problem can greatly simplify
programming. One advantage of a queue is that it closely mimics a line of people
(or orders on a website) that need to be handled one at a time, starting with the
oldest item. Using a queue data structure to handle incoming orders from a web-
site makes logical sense, but using a dictionary or even an array makes less sense
because dictionaries require keys assigned to each item (which isn’t needed) and
arrays need to be resized constantly.

So, if you have a problem that doesn’t mimic a linear data structure, using a lin-
ear data structure can just make programming harder, much like trying to use a
screwdriver to pound in a nail when you really need a hammer.

For example, suppose you’re creating a chess game. You could use a collection
data structure to represent each space on the chessboard, but a more intuitive data
structure would just be a two-dimensional array.

Chapter 5

IN THIS CHAPTER

 » Understanding and using graphs

 » Creating different types of trees

 » Manipulating a tree

382 BOOK 3 Data Structures

Modeling a chessboard with a two-dimensional array works because both a
two-dimensional array and a chessboard are uniformly shaped grids. Now, what
if you need to model a real-life problem that doesn’t neatly match a uniformly
shaped grid?

Suppose you need to keep track of trucks traveling to different cities so you can
route them to the shortest distance between two cities, as shown in Figure 5-1.

You could model this problem as a two-dimensional array like this:

Los Angeles San Diego Las Vegas San Francisco Salt Lake
City

Los Angeles 0 153 287 387 X

San Diego 153 0 325 509 X

Las Vegas 287 325 0 504 406

San Francisco 387 X 504 0 457

Salt Lake City X X 406 457 0

Although this two-dimensional array accurately models the map of different city
distances, it’s not easy to understand what this data represents. A better data
structure would be a graph.

FIGURE 5-1:
Modeling
a map of

different cities.

G
raphs and Trees

CHAPTER 5 Graphs and Trees 383

Understanding Graphs
A graph is typically created by using a linked list that can point to multiple nodes.
As a result, a graph doesn’t follow a linear structure but has a more haphazard
appearance, which makes it perfect for modeling nonlinear data, such as the map
of different cities and distances, as shown in Figure 5-2.

The two parts of every graph are

 » Nodes (or vertices): Contain data.

 » Connections (or edges): Represent some relationship between two or more
nodes.

In the map example, nodes represent cities, and connections represent distances.

An entire branch of mathematics, called graph theory, is dedicated to studying
graphs.

Graph data structures are used less for storing and retrieving data and more for
understanding the relationship between data.

FIGURE 5-2:
A graph data

structure
can model

the mapping
 problem better

than an array.

384 BOOK 3 Data Structures

Types of graphs
Three types of graphs are shown in Figure 5-3:

 » Undirected graph: Connects data in different ways to show a relationship,
such as modeling all the links connecting the pages of a website.

 » Directed graph: Adds arrows to show you the direction of a relationship
between data. For example, a directed graph could model the flow of
messages passed between computers in a network.

 » Weighted graph: Labels each link with a value or weight; each weight might
measure distances, resistance, or cost between nodes. In the example of the
graph in Figure 5-3, each weight represents a distance measured in miles. The
higher the weight, the farther the distance.

FIGURE 5-3:
The three types

of graphs.

G
raphs and Trees

CHAPTER 5 Graphs and Trees 385

You can also combine weights with direction and create a directed, weighted graph.

Uses for graphs
Graphs are used to model a variety of real-world problems, such as finding the
most efficient way to route email through a computer network or finding the
shortest way for airplanes to travel to different cities. Molecular biologists even
use graphs to model the structure of molecules.

Designing a single path with the Seven
Bridges of Königsberg
One of the first uses for graphs appeared in 1736 in a problem known as the Seven
Bridges of Königsberg. The question was whether it was possible to walk across all
seven bridges of Königsberg exactly once, as shown in Figure 5-4.

A mathematician named Leonhard Euler used a graph to prove that this was
impossible. In the Seven Bridges problem, one node has five bridges leading to
it (5 degrees), while each of the other three nodes only have three bridges lead-
ing to it (3 degrees). Euler proved that the only way you could cross every bridge
exactly once was if a graph had, at the most, two nodes with an odd number of
bridges (degrees), and each odd-numbered degree node had to be the starting
and ending point.

Although solving a problem of walking across a bridge exactly once might seem
trivial, knowing how to solve this problem can help design truck or airplane routes
as efficiently as possible.

FIGURE 5-4:
The Seven
Bridges of

 Königsberg
 represented

as a graph.

386 BOOK 3 Data Structures

Finding the shortest path through a graph
After using Euler’s proof to design a graph that can be traversed in a single path,
graph theory can now help you find the shortest path through that graph.

A problem, dubbed the Traveling Salesman problem, tries to find the shortest
round-trip route through a graph where the same node is both the starting and
ending point. In this case, the shortest route through a graph may not necessarily
be the shortest round-trip route to return to the same starting point.

The Traveling Salesman problem can get more complicated with a weighted or
directed graph. A directed graph may restrict movement in one direction, such
as traveling through one-way streets in a city, whereas a weighted graph can
make one route longer than two shorter routes combined. Adding in directed and
weighted graphs can alter the best solution.

If you ever looked up directions on a mapping website or app, such as Google
Maps, you’ve used a graph to find the most efficient way from one location to
another.

Connecting nodes in a graph
Another use for graphs involves topological graph theory. This problem is high-
lighted by the Three Cottages problem, in which three cottages need to connect to
the gas, water, and electricity companies, but their lines can’t cross each other.
(It’s impossible, by the way.)

Connecting lines in a graph without crossing is a problem that circuit board
designers face in the placement of chips. Another example of eliminating inter-
sections involves transportation designs, such as the design of highways or rail-
road tracks.

Creating Trees
Graphs typically represent a chaotic arrangement of data with little or no struc-
ture. To give graphs some form of organization, computer scientists have created
special graphs dubbed trees. Like a graph, a tree consists of nodes and edges, but
unlike a graph, a tree organizes data in a hierarchy, as shown in Figure 5-5.

A tree arranges a graph in a hierarchy with a single node (called the root node)
appearing at the top and additional nodes appearing connected underneath. If a
node has no additional nodes connected underneath, those nodes are leaf nodes, as
shown in Figure 5-6.

G
raphs and Trees

CHAPTER 5 Graphs and Trees 387

Ordered trees
When a tree stores information at random in its different nodes, it’s dubbed an
unordered tree. However, the tree is already in the form of a hierarchy, so it may
make sense to take advantage of this built-in structure and create an ordered tree.

An ordered tree provides a distinct beginning node (the root node) with additional
nodes organized in a hierarchy, such as organizing nodes alphabetically from left
to right. Such a hierarchy can store and show relationships of a corporate man-
agement team or the spread of a flu epidemic through different cities. As a result,
ordered trees are a common data structure used to both model and organize data.

One common use for ordered trees involves storing data. Under each root node,
you can have 26 internal nodes, each of which represents a single letter of the
alphabet from A to Z. Under each of these letter nodes, you can have multiple
nodes that contain the actual data, as shown in Figure 5-7.

FIGURE 5-5:
A tree is a

hierarchical
graph.

FIGURE 5-6:
A tree consists

of one root node
and multiple

leaf and internal
nodes.

388 BOOK 3 Data Structures

To save the name David Bally, the computer stores the name under the B node. To
save the name John Burkins, the computer also stores this name under the B node.
To determine whether to store this new name before or after any existing data, the
computer examines the data and sorts it alphabetically. In this way, the tree data
structure not only stores data, but sorts and organizes it as well.

If you had a long list of names stored in an array or a collection, finding a name
would require searching through the entire array or collection. However, if that
same list of names is stored in a tree, a name would be much simpler to find
because you’d only need to look at the first letter of a person’s last name to find
where it might be stored.

So, if you want to find the name John Bally, start at the B node and ignore any
data stored under the other nodes. This makes searching and retrieving data much
faster than other types of data structures, which is why trees are so commonly
used in databases.

Binary trees
A binary tree is a variation of an ordered tree. Unlike an ordinary tree, every node in
a binary tree has, at most, two nodes connected underneath. To sort data, the left
node contains values less than its parent node whereas the right node contains
values greater than its parent node, as shown in Figure 5-8. By limiting each node
to a maximum of two connected nodes, binary trees make searching and sorting
data fast and efficient.

For example, an ordinary tree allows each node to have multiple nodes under-
neath. As a result, the more data an ordinary tree stores, the more nodes that can
appear directly underneath a single node, as shown in Figure 5-9.

To find the number 11 in an ordered binary tree is simple. Start with the root (top)
node and compare the number 11 to the root node value (10). Because the number
you want to find is greater than the root node, you’d branch to the right. At this
next node (12), the computer repeats the process and determines that 11 is less
than 12, so it branches to the left node, which is where it finds the number 11.

FIGURE 5-7:
A tree can

organize names
alphabetically by

last name.

G
raphs and Trees

CHAPTER 5 Graphs and Trees 389

Searching through a sorted binary tree is simple, especially when compared to
searching through an unordered tree. Because an unordered tree can scatter data
anywhere, searching an unordered tree means methodically searching each node,
one by one, until you find the data you want. In a large unordered tree, this search
time can be slow and inefficient.

B-trees
Another variation of a tree is a B-tree. Here are the two main features of a B-tree:

 » All nodes can store multiple nodes underneath it, such as three nodes.

 » All leaf nodes remain at the same level as or depth of the tree, as shown in
Figure 5-10.

When you add or subtract data, the B-tree constantly adjusts to keep all leaf nodes
at the same level. Keeping all leaf nodes at the same level ensures that searching
for some data (stored farther down a tree) won’t take a long time compared to
searching for other data (stored closer to the root node of the tree).

A variation of a B-tree is a B+ tree. A B+ tree stores data only in its leaf nodes.
Because all leaf nodes are the same distance from the root node, this makes
searching for any type of data equal.

FIGURE 5-8:
An ordered
binary tree

stores and sorts
data by value.

FIGURE 5-9:
An ordinary
tree is more

 difficult to search
than an ordered

binary tree.

390 BOOK 3 Data Structures

Operating systems often use B+ trees for keeping track of files on a disk.

Taking Action on Trees
Trees are flexible data structures because they organize data and allow fast retrieval
of that data. Some of the different actions you can perform on trees include

 » Searching for a specific item

 » Adding a new node or a sub-tree

 » Deleting data or a sub-tree

Traversing a tree to search for data
When you store data in an array or a collection, that data is stored in a line so you
can search the entire data structure by starting at one end and examining each
data chunk, one by one, until you get to the end. However, trees are different
because they offer multiple branches.

To search a tree, the computer must examine multiple nodes exactly once, which
is known as traversing a tree. There are four popular ways to search a tree, as
shown in Figure 5-11:

 » Preorder traversal

 » In-order traversal

 » Postorder traversal

 » Level-order traversal

FIGURE 5-10:
In a B-tree, all leaf

nodes appear at
the same level.

G
raphs and Trees

CHAPTER 5 Graphs and Trees 391

Preorder traversal
Preorder traversal starts at the top of a tree (the root node) and then traverses
the left nodes. When it reaches a leaf node, it backtracks and goes down the right
nodes, as follows:

1. Visit the root node.

2. Traverse the left sub-tree in preorder.

3. Traverse the right sub-tree in preorder.

In-order traversal
When traversing an ordered binary tree, the in-order traversal retrieves data in
order by following these steps:

1. Traverse the left sub-tree using in-order.

2. Visit the root node.

3. Traverse the right sub-tree by using in-order.

Postorder traversal
Postorder traversal traverses the left and right sub-trees first and then visits the
root node, as follows:

1. Traverse the left sub-tree in postorder.

2. Traverse the right sub-tree in postorder.

3. Visit the root node.

Level-order traversal
Level-order traversal starts at the top level of a tree and traverses the row of
nodes on the same level, from left to right. Then it drops to the next lower level
and repeats the process all over again.

FIGURE 5-11:
The four different

ways to traverse
a tree.

392 BOOK 3 Data Structures

When writing actual code to traverse a tree, it’s often easier to write a recursive
subprogram that calls itself and traverses a successively smaller part of the tree
(or sub-tree) until it finally stops.

Adding new data
Adding data to a linear structure, like a collection or a stack, is straightforward
because the data structure simply gets bigger. Adding data to a tree is slightly
more complicated because you can add new data at the end of a tree (on one of its
leaf nodes) or anywhere in the middle of the tree.

In an unordered tree, you can insert data anywhere, but in an ordered binary
tree, inserting new data means sorting the data at the same time, as shown in
Figure 5-12.

FIGURE 5-12:
Inserting

new data in
an ordered
binary tree.

G
raphs and Trees

CHAPTER 5 Graphs and Trees 393

The order in which you store data determines the position of that data in a tree
because newly added data gets added based on the existing data’s values.

Deleting data
Deleting data from a tree can cause special problems because after deleting data,
you may need to rearrange any nodes that were underneath the deleted data, as
shown in Figure 5-13.

If you delete data and immediately add it back to the tree again, the tree looks
different because reinserting the data sorts and organizes it based on the exist-
ing data. So, if you delete the 12 node and immediately add it back again, it now
appears as a left node under the 19 node.

FIGURE 5-13:
After deleting

data from a tree,
you may need

to rearrange the
remaining data

to keep the tree
sorted.

394 BOOK 3 Data Structures

Pruning and grafting sub-trees
A sub-tree is a smaller tree, such as part of an existing tree. Instead of deleting a
single node, you can delete an entire sub-tree, which is known as pruning a tree,
as shown in Figure 5-14.

After pruning a sub-tree, there may be more than one way to rearrange the
remaining nodes.

Adding or grafting a sub-tree to an existing tree can cause problems if the sub-
tree data contains different values than the original tree. In that case, you can’t
just graft the sub-tree to the existing tree; you have to rearrange the data in both
the tree and the grafted sub-tree to sort data once more, as shown in Figure 5-15.

Tree data structures are most useful for storing and sorting data, such as for data-
bases. However, tree data structures are also handy for creating artificial intel-
ligence in games, such as chess.

FIGURE 5-14:
Pruning a

tree removes
two or more
nodes from

a tree.

G
raphs and Trees

CHAPTER 5 Graphs and Trees 395

The computer might use a tree data structure to represent all possible moves
when the root node represents one possible move. Then each alternating level in
the tree represents the possible human responses and the best possible computer
responses, as shown in Figure 5-16.

By organizing possible moves in a tree, a computer can determine the best pos-
sible move to make that will give its human opponent the worst possible moves
later. This strategy is minimax — the computer minimizes the human’s best pos-
sible moves and maximizes its own best moves.

Despite having to create trees out of other data structures (such as linked lists)
and being more complicated to create and manage than other data structures,
trees are one of the most useful and flexible data structures available.

FIGURE 5-15:
Grafting a

sub-tree
can require
rearranging

the entire
 modified tree.

FIGURE 5-16:
A tree can help a

computer plan its
next move.

4Algorithms

Contents at a Glance
CHAPTER 1: Sorting Algorithms . 399

CHAPTER 2: Searching Algorithms . 415

CHAPTER 3: String Searching . 429

CHAPTER 4: Data Compression Algorithms . 441

CHAPTER 5: Encryption Algorithms . 451

CHAPTER 1 Sorting Algorithms 399

Sorting Algorithms

Every program handles data (numeric or text). Besides saving data, most
programs also need to organize that data in some way, which involves
sorting that data in a specific order, such as alphabetically or numerically.

A database needs to sort names alphabetically by last name or by sales region,
whereas a video game needs to sort the top-ten highest scores.

Despite the simple idea behind sorting a list of names or numbers, sorting is
practically a field of computer science in itself. Computer scientists constantly
study different ways to sort through data to find the fastest, most efficient method
possible. Each of these different sorting methods is a sorting algorithm. Algorithm is
a fancy term for a method of doing something, so a sorting algorithm is a specific
method for telling the computer how to sort data. The reason computer scien-
tists keep creating and studying sorting algorithms is because no single sorting
algorithm is best for all purposes.

Some sorting algorithms are easy to create but work slowly. Other sorting algo-
rithms are much harder to create but work much faster. Ironically, some sorting
algorithms work horribly when sorting a small number of items, such as a dozen
numbers, but work quickly when sorting thousands of items.

Chapter 1

IN THIS CHAPTER

 » Using bubble, selection, and
insertion sorts

 » Using shell, heap, merge, and
quick sorts

 » Comparing different sorting
algorithms

400 BOOK 4 Algorithms

Four factors for considering sorting algorithms include

 » Ease of implementation: Defines how complicated the sorting algorithm is
to implement in any programming language. Some sorting algorithms are
easy to write but slow in actual use. Other sorting algorithms are much harder
to write but perform much faster.

 » Speed: Measures how fast the algorithm can sort data of different sizes. Some
sorting algorithms work quickly with small lists but slow down dramatically
when dealing with larger lists. Other sorting algorithms work quickly when a
list is mostly sorted but slow to a crawl when working with completely
unsorted lists.

 » Memory requirements: Define how much memory the sorting algorithm
needs to run. Some sorting algorithms can accept and sort data while they
receive the data, which is an online algorithm. (An offline algorithm has to wait
to receive the complete set of data before it can even start the sorting
process.) Sorting algorithms that use recursion (see Book 2, Chapter 6) may be
easy to implement and fast but can require lots of memory to sort large
amounts of data.

Another factor that determines a sorting algorithm’s memory requirements is
whether the algorithm is an in-place algorithm. An in-place algorithm can sort
data by using the existing data structure that holds the data. For example, if
you have an array of numbers, an in-place algorithm can sort the data in that
array without needing a separate data structure to hold the data temporarily.

 » Stability: Refers to whether a sorting algorithm preserves the order of identical
data. Suppose you had a list of first and last names, such as John Smith and
Mary Smith, and John Smith appears at the beginning of a list and Mary Smith
appears at the end. A stable sorting algorithm sorts both names and keeps
John Smith ahead of Mary Smith, but an unstable algorithm might move Mary
Smith ahead of John Smith. (Out of all the sorting algorithms presented in this
chapter, heap sort and selection sort are unstable algorithms.)

Ultimately, there’s no perfect sorting algorithm. However, a trade-off in size,
speed, ease of implementation, and stability finds the best sorting algorithm for
your specific needs.

Using Bubble Sort
The simplest way to sort any amount of data is to start at the beginning and com-
pare the first two adjacent items. So, if you need to sort a list of numbers, you
compare the first number with the second number. If the first number is bigger,

Sorting A
lgorithm

s

CHAPTER 1 Sorting Algorithms 401

you swap its place with the second number. If the second number is bigger, you
don’t do anything at all.

After comparing the first two items, you move down to comparing the second and
third items, and so on. Repetitively comparing two adjacent items is the basic idea
behind the bubble sort algorithm, as shown in Figure 1-1. The bubble sort algo-
rithm gets its name because small values tend to bubble up to the top.

Basically the bubble sort algorithm works like this:

1. Compare two adjacent items.

2. Swap the two items if necessary.

3. Repeat Steps 1 and 2 with each pair of adjacent items.

4. Repeat Steps 1–3 to examine the entire list again until no swapping occurs and
then the list is sorted.

Although the bubble sort algorithm is easy to implement, it’s also the slowest and
most inefficient algorithm because it must examine an entire list multiple times.

FIGURE 1-1:
A bubble sort

repetitively
compares two

adjacent items.

402 BOOK 4 Algorithms

For sorting a small list of mostly sorted data, the bubble sort algorithm works
efficiently. For sorting large lists of unsorted data, any other sorting algorithm is
much faster than the bubble sort algorithm, as shown in Figure 1-2.

Using Selection Sort
Another simple way to sort a list is to search the entire list until you find the
smallest value. Then swap that value to the front of the list. Now repeat the pro-
cess all over again, skipping the first item. By repetitively searching for the small-
est item and moving it to the front of the list, the selection sort algorithm can
eventually sort an entire list, as shown in Figure 1-3.

FIGURE 1-2:
The bubble

sort algorithm
examines the

entire list of data
several times.

Sorting A
lgorithm

s

CHAPTER 1 Sorting Algorithms 403

The selection sort algorithm works like this:

1. Find the smallest item in a list.

2. Swap this value with the value currently at the front of the list.

3. Repeat Steps 1 and 2 with the current size of the list minus one (list size = list
size – 1).

For sorting small lists, selection sort can actually be faster than other sorting
algorithms, but for sorting large lists, selection sort needs too much time pro-
gressively examining smaller sections of a list. Despite this drawback with sorting
large lists, selection sort is popular because it’s simple to implement.

Using Insertion Sort
The insertion sort algorithm acts like a cross between the bubble sort and the
selection sort algorithm. Like bubble sort, insertion sort examines two adjacent
values. Like selection sort, insertion sort moves smaller values from their current
location to an earlier position near the front of the list.

FIGURE 1-3:
Selection sort

repetitively
moves the

smallest value
to the front of

the list.

404 BOOK 4 Algorithms

The insertion sort algorithm works like this:

1. Start with the second item in the list.

2. Compare this second item with the first item. If the second value is smaller,
swap places in the list.

3. Compare the next item in the list and insert it in the proper place in relation to
the previously sorted items.

4. Repeat Step 3 until the entire list is sorted.

The main difference between insertion sort and selection sort is that the selection
sort swaps only two adjacent values whereas insertion sort can move a value to a
nonadjacent location, as shown in Figure 1-4.

One major advantage of the insertion sort algorithm is that it only needs to exam-
ine an entire unsorted list once to sort it. In comparison, bubble sort must repeti-
tively examine the entire list multiple times, and selection sort must repetitively
examine progressively smaller lists multiple times. As a result, the insertion sort
algorithm is much faster while being easy to implement as well.

FIGURE 1-4:
Insertion sort

only examines a
list once to sort it.

Sorting A
lgorithm

s

CHAPTER 1 Sorting Algorithms 405

Using Shell Sort
To speed up the performance of the insertion sort algorithm, Donald Shell,
a computer scientist, created a variation of the insertion sort algorithm dubbed
shell sort.

One problem with insertion sort is that it must examine one value at a time. In
a long list, this can take a long time. Shell sort works by dividing a long list into
several smaller ones and then performing an insertion sort on each smaller list.
After each smaller list gets sorted, the shell sort algorithm uses an ordinary inser-
tion sort to sort the entire list one last time. By this time, the longer list is nearly
sorted, so this final insertion sort occurs quickly, as shown in Figure 1-5.

FIGURE 1-5:
Shell sort
performs

multiple insertion
sorts on parts of

a long list.

406 BOOK 4 Algorithms

Basically, shell sort works like this:

1. Divide a long list into multiple smaller lists.

2. Arrange each list in a grid or table consisting of rows and columns. Each row
represents the original, unsorted list. Each column holds one item in the list.

3. Use an insertion sort to sort the columns.

4. Repeat Steps 1–3 with progressively smaller lists until only a single list is left to
be sorted with the insertion sort algorithm.

The shell sort algorithm isn’t necessarily a different sorting algorithm. Instead,
shell sort is a way to use the insertion sort algorithm more efficiently.

Using Heap Sort
The heap sort algorithm works by using a separate data structure — a heap (which
is a binary tree data structure). The highest value gets stored in the root node,
while the remaining values get tossed on the heap.

The two criteria for storing data in a heap are that

 » Every parent node must contain a value greater than or equal to either of its
child nodes.

 » The tree must fill each level before adding nodes to the next lower level. If
there aren’t enough nodes to fill out an entire level, the nodes must fill out as
much of the last level as possible, starting from the left.

Figure 1-6 shows a valid heap and two invalid heaps.

The heap sort algorithm works like this:

1. Store an unsorted list in a heap data structure, which sorts data so the highest
values appear near the top of the heap.

2. Yank off the highest value stored in the root node, and store this value as the
end of the sorted list.

3. Re-sort the heap so the highest values appear near the top of the heap.

4. Repeat Steps 2 and 3 until all values have been removed from the heap and
sorted.

Sorting A
lgorithm

s

CHAPTER 1 Sorting Algorithms 407

Heap sort dumps an unsorted list of data into the heap, always making sure the
highest value appears in the root node. Then this highest value in the root node
gets stored at the end of the list. Now the heap rearranges its values again, putting
the highest remaining value in the root node and repeating the process all over
again, as shown in Figure 1-7.

Initially, the heap sort algorithm may seem complicated because you need to cre-
ate a heap data structure, copy and sort values among nodes, and delete nodes
while you remove values and store them back in a sorted list. Although you can
create a heap data structure by using a linked list, a much simpler method is to
create a heap data structure by using an array, as shown in Figure 1-8.

The first array element represents the root node, the next two elements repre-
sent the child nodes of the root, and so on. Instead of manipulating a linked list
as a heap, it’s much simpler to rearrange values stored in an array, as shown in
Figure 1-9. Because arrays are easy to implement in any programming language,
the heap sort algorithm is also easy to implement. Although slightly more com-
plicated than bubble sort or selection sort, the heap sort algorithm offers faster
performance.

FIGURE 1-6:
Valid and invalid

heap binary trees.

408 BOOK 4 Algorithms

FIGURE 1-7:
Heap sort uses

a tree data
structure to sort
and store items

temporarily.

Sorting A
lgorithm

s

CHAPTER 1 Sorting Algorithms 409

FIGURE 1-8:
An array can

mimic a heap
data structure.

FIGURE 1-9:
Manipulating

data in an array
that mimics

a heap.

410 BOOK 4 Algorithms

Using Merge Sort
The merge sort algorithm works on the principle that it’s easier to sort a small list
than a large list. So, merge sort breaks a large list of data into two or more smaller
lists. Then it sorts each small list and smashes or merges them together.

The merge sort algorithm works like this:

1. Divide a large list in half.

2. Divide each smaller list in half until each small list consists only of one value.

3. Sort this single value with a neighboring single value list.

4. Merge these smaller, sorted lists into larger lists.

5. Repeat Steps 3 and 4 until the entire list is sorted.

Figure 1-10 shows how merge sort works.

FIGURE 1-10:
Merge sort

breaks a long
list into several

smaller lists and
then merges

these lists back
into a longer list.

Sorting A
lgorithm

s

CHAPTER 1 Sorting Algorithms 411

Because the merge sort algorithm successively divides a list in half, merge sort
often creates temporary data structures (such as arrays) to store data while it
divides and merges values. When sorting a small list, creating a temporary data
structure is simple, but when sorting a large list, creating a temporary large data
structure can gobble up memory.

Using Quick Sort
The quick sort algorithm gets its name because it’s generally the fastest sorting
algorithm in most cases. Like the merge sort algorithm, the quick sort algorithm
works on the principle that it’s easier and faster to sort a small list than a large
list, so quick sort divides a large list into two parts.

To divide a list into two parts, quick sort picks a pivot (value) from the list:

 » Any value less than the pivot goes into one list.

 » Any value greater than the pivot goes into the second list.

Quick sort repetitively divides each list into two parts until it creates multiple lists
that contain only one value each. By then, the entire list will be sorted, as shown
in Figure 1-11.

The quick sort algorithm uses a pivot value to presort values into two different
lists. Sorting values by this pivot value alone makes quick sort generally faster
than merge sort.

Basically, the quick sort algorithm works like this:

1. Pick a pivot value from the list.

2. Divide the list in two, placing values less than the pivot value in the first list and
values greater than the pivot value in the second list.

3. Repeat Steps 1 and 2 until the lists contain only one item.

The key to speeding up the quick sort algorithm is to choose the proper pivot for
dividing each list. Ideally the pivot value will be a middle value in a list. Notice that
the merge sort algorithm (refer to Figure 1-10) still sorts values through every
step, whereas pivot values make the quick sort algorithm (refer to Figure 1-11)
sort the entire list in fewer steps.

412 BOOK 4 Algorithms

Comparing Sorting Algorithms
To compare the speed of sorting algorithms, computer scientists consider the
following scenarios:

 » Best-case scenario: Measures the speed of different algorithms sorting a list
of values that are already completely sorted

 » Worst-case scenario: Measures the speed of different algorithms sorting a
list that’s completely unsorted

 » Average-case scenario: Measures the speed of different algorithms sorting
random values in a list

To measure the speed and efficiency of an algorithm, computer scientists measure
how much time an algorithm needs to run based on different sizes of input, which

FIGURE 1-11:
Quick sort

repetitively
divides a large list

into two smaller
lists, sorting

items based on a
pivot value.

Sorting A
lgorithm

s

CHAPTER 1 Sorting Algorithms 413

is designated by the letter n. A small value of n means the input is short whereas
a large value of n means the input is large.

Thus, an algorithm’s efficiency (how fast it runs) is based on its input size n. In
mathematical terms, this is referred to as an order of n. If an algorithm runs at the
same speed no matter how much data it receives, it’s said to run at constant time,
which can be written in Big O notation as O(1).

If an algorithm’s speed depends directly on the number of items it receives, it’s
said to run at a linear time, written as O(n). Some common Big O notations for
different algorithms include

 » O(log n): Logarithmic time

 » O(nc): Polynomial

 » O(cn): Exponential

 » O(n!): Factorial

Describing algorithm efficiency as its order is known as Big O notation because the
letter O is always capitalized.

Computer scientists have already calculated the Big O values of different sorting
algorithms. Table 1-1 gives different Big O values for different sorting algorithms
for the best-case, worst-case, and average-case scenarios.

To compare the efficiency of different algorithms, plug in different values for n.

For example, the Big O notation for the bubble sort algorithm is O(n2). To sort one
item, the bubble sort algorithm’s efficiency is O(12) or O(1). To sort five items, the

TABLE 1-1	 Comparison of Different Sorting Algorithms
Algorithm Average Best Worst

Bubble sort O(n2) O(n) O(n2)

Selection sort O(n2) O(n2) O(n2)

Insertion sort O(n2) O(n) O(n2)

Heap sort O(n[log n]) O(n[log n]) O(n[log n])

Merge sort O(n[log n]) O(n[log n]) O(n[log n])

Quick sort O(n[log n]) O(n[log n]) O(n2)

414 BOOK 4 Algorithms

bubble sort’s efficiency is O(52) or O(25). The higher the Big O value, the slower
and less efficient the algorithm is, which means that the more items the bubble
sort algorithm needs to sort, the slower it runs.

The quick sort algorithm has a Big O notation of O(n[log n]). To see how quick sort
compares to bubble sort when sorting five items, plug in a value of 5 for n, such as
O(5[log 5]), O(5[0.70]), or O(3.5).

With the bubble sort algorithm, the more items needed to sort n, the higher its
Big O value. To sort five items, the bubble sort algorithm’s Big O notation is O(25),
which is much larger than the quick sort algorithm’s similar Big O notation of
O(3.5). The difference in these two values can give you a rough idea how much
slower bubble sort works compared to quick sort when sorting the same number
of items.

Table 1-1 shows that some algorithms, such as bubble sort, may be superior to
other sorting algorithms depending on whether the data is mostly sorted.

The insertion sort algorithm is unique in that it runs the fastest in a best-case
(already-sorted) scenario. Although the quick sort algorithm is considered the
fastest, notice that in a worst-case scenario, it’s actually one of the slowest
algorithms. If your data will be completely unsorted, avoid using the quick sort
algorithm.

The best sorting algorithm is the one that’s the fastest for sorting your type of
data. If you need to write a program that regularly needs to sort random data
(average-case scenario), you might choose one sorting algorithm, whereas if
you need to sort completely unsorted data (worst-case scenario), you’d prob-
ably choose a different algorithm. The fastest sorting algorithm always depends
partially on the sorted (or unsorted) data that the algorithm needs to manipulate.

The three fastest sorting algorithms are heap sort, merge sort, and quick sort.
Although quick sort is considered the fastest of the three algorithms, merge sort
is faster in worst-case scenarios.

CHAPTER 2 Searching Algorithms 415

Searching Algorithms

One of the most common functions of a computer program is searching.
A database needs to search through names and addresses, a word proces-
sor needs to search through text, and even a computer chess game needs

to search through a library of moves to find the best one.

Because searching is such an important part of computer programming, computer
scientists have developed a variety of algorithms to search for data. When search-
ing for data, the main limitation is time. Given enough time, any search algorithm
can find what you want, but there’s a big difference between finding data in five
seconds and finding it in five hours.

The time a search algorithm takes is always related to the amount of data to
search, which is the search space. The larger the search space, the longer the search
algorithm takes. If you only need to search a small search space, even a simple and
slow search algorithm can be fast enough.

The two main categories of search algorithms are

 » Uninformed (brute-force): Uninformed, or brute-force, search algorithms
work by simply examining the entire search space, which is like losing your car
keys in your apartment and searching every apartment in the entire building.
Eventually, you find your keys, but it may take a long time to do it.

Chapter 2

IN THIS CHAPTER

 » Conducting sequential searches

 » Using an index

 » Doing an adversarial search

416 BOOK 4 Algorithms

 » Informed (heuristic): Informed, or heuristic, search algorithms work by
selectively examining the most likely parts of the search space. This is like
losing your car keys in your apartment but only examining the bedroom
where you last saw your car keys. By using knowledge of the search space,
informed search algorithms can speed up a search algorithm by eliminating
obvious parts of the search space that don’t contain the data you want to find.

Uninformed search algorithms are much simpler and faster to write in any
programming language, but the price you pay may be slower searching speed.
Informed search algorithms always take more time to write, but the speed advan-
tage may be worth it especially if your program needs to search data on a regular
basis. One problem with informed search algorithms is that they often require
that the data be sorted first or stored in a data structure that requires more com-
plicated traversing through all items, such as a tree data structure.

The perfect search algorithm is easy for you to implement in your favorite pro-
gramming language while also being fast enough for your program.

Sequential Search
A sequential search is an example of an uninformed search algorithm because
it searches data one item at a time, starting from the beginning and searching
through to the end. In the best-case scenario, a sequential search finds data stored
as the first element in a data structure. In the worst-case scenario, a sequential
search has to search an entire data structure to find the last item stored, as shown
in Figure 2-1.

FIGURE 2-1:
The speed of

sequential search
depends directly

on the size of
the data to be

searched.

Searching A
lgorithm

s

CHAPTER 2 Searching Algorithms 417

To speed up sequential searching, you can add simple heuristics. Some popular
ways to speed up sequential searching include

 » Backward or forward searching

 » Block searching

 » Binary searching

 » Interpolation searching

Backward or forward searching
If the data is sorted, you can make the sequential search start looking through a
data structure from either the beginning or the end. So, if you need to search an
array that contains numbers organized in ascending order from 1 to 100, search-
ing for the number 89 will probably be faster if you start at the end of the array,
as shown in Figure 2-2.

The backward or forward searching algorithm works like this:

1. In a sorted data structure, compare the value to find with the average of the
first and last item.

2. If the data to find is in the first half of the data structure, start at the front of
the data structure; otherwise, start at the end.

3. Search sequentially until the data is found or confirmed not to exist in the data
structure.

FIGURE 2-2:
Sequential

search can be
made faster by
searching from
either the front

or end of a data
structure.

418 BOOK 4 Algorithms

Searching either backward or forward also has an advantage when searching
through data structures that organize data by age. If data is stored in a queue, the
oldest data appears at the front, and the newest data appears at the end. So, if you
can identify the age of the data you want to find, you could speed up the search for
knowing whether to start at the beginning of the queue or the end.

Block searching
Another technique to speed up sequential searching on sorted data is block
searching (also known as jump searching). Instead of searching one item at a time,
this method jumps over a fixed number of items (such as five) and then examines
the last item:

 » If the last item is greater than the value the algorithm is trying to find, the
algorithm starts searching backward.

 » If the last item is less than the value the algorithm is trying to find, the
algorithm jumps another block forward, as shown in Figure 2-3.

The block searching algorithm works like this:

1. Jump ahead a fixed number of items (a block).

2. Compare the last value of the block.

If this value is less than the data to find, search sequentially within the block;
otherwise, jump to the end of a new block and repeat Step 2.

FIGURE 2-3:
Block searching
can speed up a

sequential search
on sorted data.

Searching A
lgorithm

s

CHAPTER 2 Searching Algorithms 419

The basic idea behind block searching is to skip ahead through a sorted list of data
and then slow down when it gets closer to that data. This is like looking through
a phone book for the name Winston Smith by skipping every ten pages until you
reach the S section and then searching sequentially until you find the name Smith
and finally the name Winston Smith.

Block searching can work only with sorted data. If data isn’t sorted, block search-
ing can’t work at all.

Binary searching
A variation of block searching is binary searching, which essentially uses a block
half the size of the list. After dividing a list in half, the algorithm compares the
last value of the first half of the list. If this value is smaller than the value it’s
trying to find, the algorithm knows to search the second half of the list instead.
Otherwise, it searches the first half of the list.

The algorithm repeatedly divides the list in half and searches only the half of the
list that contains the range of values it’s trying to find. Eventually, the binary
search finds the data, as shown in Figure 2-4.

FIGURE 2-4:
Binary searching

divides a list
in half until

it eventually
finds its data.

420 BOOK 4 Algorithms

The binary search algorithm works like this:

1. Divide a sorted list in half.

2. Compare the last value of the first half of the list.

If this last value is greater than the desired value, search this half of the list;
otherwise, search the other half of the list.

3. Repeat Steps 1 and 2 until the desired value is found or confirmed not to exist.

Interpolation searching
Instead of jumping a fixed number of items (like block searching) or dividing a list
in half (like binary searching), interpolation searching tries to guess the approxi-
mate location of data in a sorted list. After it jumps to the approximate location,
the algorithm performs a normal sequential search, as shown in Figure 2-5.

Interpolation searching mimics the way a person might look up a name in a
phone book. If you’re looking for the name Winston Smith, you jump straight to the
S section. Then you slow down to look for the Smith name, and slow down even
more to look for all Smith names whose first name begins with W until you find
Winston Smith.

Although potentially faster than other forms of sequential searching, interpola-
tion searching requires enough knowledge to jump as close to the desired data
as possible. Because this might not always occur, interpolation searching isn’t
always faster than other forms of searching, such as binary searching.

Interpolation searching follows these steps:

1. Jump to the approximate location of the target data in a sorted list.

2. Start searching sequentially until the desired data is found or confirmed not
to exist.

FIGURE 2-5:
Interpolation

searching tries to
jump straight to

the approximate
location of the

target data.

Searching A
lgorithm

s

CHAPTER 2 Searching Algorithms 421

The key to interpolation searching relies on the computer accurately jumping to
the position where the data is likely to be stored. One way of guessing the location
of data is to use Fibonacci numbers, creating the Fibonacci searching technique.

Fibonacci numbers are a series of numbers that are calculated by adding the last
two numbers in a series to determine the next number in the series. The first
Fibonacci number is 0, the second is 1, the third is 1 (0 + 1), the fourth is 2 (1 + 1),
the fifth is 3 (1 + 2), the sixth is 5 (2 + 3), and so on like this:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 . . .

Fibonacci numbers tend to occur in nature, such as measuring the branching of
trees or the curves of waves. Instead of dividing a list in half, like binary search-
ing, Fibonacci searching divides a sorted list into progressively smaller lists,
based on Fibonacci numbers, until it finally finds the data or confirms that the
data doesn’t exist.

Fibonacci searching works like this, as shown in Figure 2-6:

1. Determine the size of the sorted list (dubbed n).

2. Find the largest Fibonacci number that’s less than the size of the sorted list
(dubbed p).

FIGURE 2-6:
Fibonacci

numbers divide
and search
a list more

efficiently than a
binary search.

422 BOOK 4 Algorithms

3. Examine the value stored at the pth location of the sorted list.

If this value is the one you want to find, stop.

4. If the value at this pth location is less than the data you’re searching for, search
the list to the right of the pth location. If the value at this pth location is greater
than the data you’re searching for, search the list to the left of the pth location.

5. Repeat Steps 1–4.

Using Indexes
Imagine yourself trying to find a certain store in a large shopping mall. You could
wander up and down the corridors and examine each store, one by one, which is
like a sequential search. Even if you use the various sequential search tactics, like
block searching, sequential searching can still take a long time.

Instead of searching each store sequentially, here’s a faster way: Look at the mall
directory, find the store you want, and then walk straight to that store. That’s
the difference between sequential searching and indexes. An index points you
directly toward the item you want to find no matter how many items there may
be. Indexes basically act like a shortcut to searching.

Creating an index
Indexes are similar to hash tables (see Book 3, Chapter 3). The main difference is
that a hash table calculates a unique value based on the total data stored, whereas
an index typically stores part of the data in a separate table that points to the rest
of the data, as shown in Figure 2-7.

Indexes are most often used in databases. If you organize a list of data in rows and
columns, with each column representing a field (such as Name or Phone Number)
and each row representing a record (that contains one person’s name and phone
number), an index can be as simple as a single column that consists of the data
you’re most likely to use for searching.

For example, if you have a database of names, addresses, and phone numbers,
you probably spend more time looking up someone’s phone number by looking up
their last name. So, you could use the Last Name field as an index. At the simplest
level, an index is nothing more than an organized list of existing data, such as a
list of last names organized alphabetically (see Figure 2-7).

Searching A
lgorithm

s

CHAPTER 2 Searching Algorithms 423

If you create an index based on last names and you need to search by last name,
an index can find your data easily. However, what if you want to search by phone
number or city, but your index consists only of last names? In that case, you can
create multiple indexes, one for each type of data.

Clustered and unclustered indexes
There are two types of indexes:

 » Clustered: A clustered index sorts the actual data. If you have a list of names
and addresses, a clustered index could sort the data by last name, which
physically rearranges the data in order. Because a clustered index physically
rearranges data, you can have only one clustered index per file. Sorting data
by a single field, such as last name, is an example of a clustered index.

 » Unclustered: An unclustered index doesn’t physically rearrange data but
creates pointers to that data. Because unclustered indexes don’t rearrange
the data, you can have as many unclustered indexes as you need. The
drawback of unclustered indexes is that they’re slower than clustered indexes.

FIGURE 2-7:
Comparison

of hash tables
and indexes.

424 BOOK 4 Algorithms

A clustered index finds the data right away, whereas an unclustered index
needs an extra step to search the index and then follow the pointer to the
actual data, as shown in Figure 2-8.

Problems with indexes
A single clustered index makes sense because it rearranges data in a specific way.
Multiple, unclustered indexes can help search data in different ways. Although
indexes make searching faster, they make inserting and deleting slower because
every time you add or delete data, you must update and organize the index at the
same time.

If you’ve created multiple indexes, adding or deleting data means having to update
every multiple index. If you have a small amount of data, creating and using an
index may be more trouble than it’s worth. Only when you have large amounts of
data is an index (or multiple indexes) worth using.

Also consider how often you may need to search on that index. You may need to
search a customer database using a name or ID number fairly often, but you prob-
ably won’t often need to search for a customer based on their gender or marital
status, so these would be poor choices for an index.

Adversarial Search
One of the most popular uses for searching is an adversarial search. This type of
search is often used to create artificial intelligence in video games.

FIGURE 2-8:
Clustered indexes

physically
rearrange

data, whereas
unclustered

indexes point
to data.

Searching A
lgorithm

s

CHAPTER 2 Searching Algorithms 425

Essentially, the computer analyzes the current game situation, such as a tic-tac-
toe game, and calculates its list of possible moves. For each possible move, the
computer creates a tree where the root node represents one of the computer’s
possible moves and each alternating level represents the human opponent’s pos-
sible counter-moves, as shown in Figure 2-9.

Each possible move is given a specific value:

 » A positive value signifies a good move.

 » A negative value signifies a bad move.

Assuming the human opponent chooses one possible counter-move, the next level
of the tree displays the computer’s possible responses and so on. The more levels
(or plys) the computer can analyze, the more it can anticipate and plan ahead and
the smarter the computer can appear.

FIGURE 2-9:
A tree can

analyze the best
possible move.

426 BOOK 4 Algorithms

Depth versus time
Given enough time, the computer can examine every possible move and all possible
counter-moves until it finds the best move to make that will lead to its inevita-
ble victory. In simple games, like tic-tac-toe, where the number of choices is
relatively small, this brute-force approach of searching all possible moves works.
When applied to more complicated games, like chess or Go, such a brute-force
approach takes way too long.

To reduce the amount of time needed to search, computer scientists have come up
with a variety of solutions. The simplest method is to reduce the number of plys
the computer examines for each move.

This is how many games offer beginner, intermediate, and expert modes. The
expert mode may search 24 levels in each tree, the intermediate mode may only
search 12 levels, and the beginner mode may only search 4 levels. Because the
beginner mode searches far fewer levels than the expert mode does, it runs faster
and doesn’t appear as smart as the intermediate or expert modes.

When a computer doesn’t search beyond a fixed number of levels, it can miss
potential problems that it might have discovered if it had just searched a little bit
deeper. This event is dubbed the horizon effect because the computer doesn’t see
the consequences beyond a certain move, so the problem appears to lie outside the
computer’s sight, or beyond the horizon.

Alpha-beta pruning
Another way to speed up searching is to use alpha-beta pruning. The idea behind
this tactic is that it’s relatively pointless to keep searching a tree if a potential
move would represent a horrible choice. For example, in a chess game, two possi-
ble moves might be moving the king into a position where it’ll get checkmated in
two moves or moving a pawn to protect the king.

If a computer always searches every possible move down to 12 levels, it wastes
time evaluating the bad move that results in the king getting checkmated in two
moves. To save time, alpha-beta pruning immediately stops searching a tree the
moment it detects a terrible move and makes the computer focus on studying
good moves instead. As a result, the computer’s time can be spent more profitably
examining potentially good moves.

For example, consider the tree in Figure 2-10; the boxes represent possible moves
for the computer, and the circles represent possible counter-moves by a human
opponent. The higher the value in each box or circle, the better the move. So, the
human opponent will most likely choose moves with high values. In response, the

Searching A
lgorithm

s

CHAPTER 2 Searching Algorithms 427

computer must look at the best possible counter-moves based on what the human
opponent is likely to choose.

So, if the computer considers a move with a value of 6 (the root node), the human
opponent might have 4 possible moves with values ranging from –45 to 68.
Assuming the human chooses the best move (68), the computer may have a choice
of only 2 possible moves (–6 and 8). The goal is to choose the best possible move
(max) for the computer that leaves the human opponent with a choice of nothing
but the worst possible moves (min), so arranging moves on a tree and assigning
values is known as a minimax tree.

The goal is to minimize the best choices your opponent can choose while maxi-
mizing the best choices you can choose. Assuming the computer chooses this
original move (6) and the human opponent responds with the best possible move
of 68, the computer now has a choice of evaluating the –6 or 8 move. Because
evaluating the –6 move appears to be a losing option, alpha-beta pruning would
stop the computer from further evaluating this move and just focus on the 8
move instead.

Looking up a library of good moves
Alpha-beta pruning relies on examining every tree of possible moves and imme-
diately cutting off the least promising ones. Obviously, some moves aren’t worth
considering, but the computer has no way of knowing that until it evaluates
every move.

However, at the beginning of every game, there’s always a list of good and bad
moves, so many games include a library of these good moves. Now at the start
of the game, the computer doesn’t have to waste time searching every move but
can just pick from its library of best possible moves and examine those moves
in depth.

FIGURE 2-10:
Assigning values

to possible
moves helps

the computer
evaluate the best

possible move.

428 BOOK 4 Algorithms

A way to use this technique in the middle of a game is to analyze all possible
moves in two steps. In the first step, the computer only examines every possi-
ble move through a small number of levels, such as two. The idea is that most
bad moves can be identified immediately, like moving a queen in a chess game so
it can be captured by the opponent’s pawn in the next move.

After the computer examines all possible moves in such shallow depth, it can
eliminate the obviously bad moves and then for the second step, examine the
remaining moves in more detail. Although this technique takes slightly more time
to examine all possible moves through a shallow depth, it ultimately saves time
by preventing the computer from examining both bad and good moves at a much
deeper level.

Ultimately, searching always involves examining every item in a list, which means
the larger the list, the longer the search time. The only way to speed up searching
algorithms is to use different techniques to maximize the chances of finding data
as soon as possible.

The simplest way to speed up any search algorithm is to sort the data beforehand.
After a list has been sorted, the computer can use various techniques, such as
block jumping or Fibonacci searching, to speed up the search.

If data isn’t sorted, it may be possible to use an index. An index works most effec-
tively when it organizes part of the stored data, such as indexing the last names
of a customer list that contains names, addresses, and phone numbers. Although
indexes can speed up searching, their need for constant updating makes adding
and deleting data slower.

Instead of searching through stored data, strategy games such as chess must
search through continuously changing data based on the position of the game
pieces. To search through this ever-changing data, strategy games must rely on
techniques to quickly eliminate bad moves so the computer can spend its time
focusing only on evaluating the best moves.

CHAPTER 3 String Searching 429

String Searching

Searching for data is one of the most common functions in writing a com-
puter program. Most searching algorithms focus on searching a list of val-
ues, such as numbers or names. However, there’s another specialized type

of searching, which involves searching text.

Searching text poses unique problems. Although you can treat text as one long list
of characters, you aren’t necessarily searching for a discrete value, like the num-
ber 21 or the last name Smith. Instead, you may need to search a long list of text
for a specific word or phrase, such as ant or cat food. Not only do you need to find
a specific word or phrase, but you also may need to find that same word or phrase
multiple times. Because of these differences, computer scientists have created a
variety of searching algorithms specifically tailored for searching text.

Computers only recognize and manipulate numbers, so every computer repre-
sents characters as a universally recognized numeric code. Two common numeric
codes include the American Standard Code for Information Interchange (ASCII)
and Unicode. ASCII contains 256 codes that represent mostly Western charac-
ters whereas Unicode contains thousands of codes that represent languages as
diverse as Arabic, Chinese, and Cyrillic. When searching for text, computers
actually search for numeric codes that represent specific text, so text searching is
ultimately about number searching.

Chapter 3

IN THIS CHAPTER

 » Searching text sequentially

 » Searching by using regular
expressions

 » Searching strings phonetically

430 BOOK 4 Algorithms

One of the most popular uses for text searching algorithms involves a field called
bioinformatics, which combines molecular biology with computer programming.
The basic idea is to use long text strings, such as gcacgtaag, to represent a DNA
structure and then search for a specific string within that DNA structure (such as
cgt) to look for matches that could indicate how a particular drug could interact
with the DNA of a virus to neutralize it.

Sequential Text Search
The simplest text-searching algorithm is the brute-force sequential search, which
simply examines every character. To look for the string GAG in text, the brute-
force sequential search examines the text character by character. The moment it
finds the letter G, it checks to see whether the next letter is A and so on. To find
anything, this search algorithm must exhaustively examine every character, as
shown in Figure 3-1.

FIGURE 3-1:
Sequential search

examines every
character.

String Searching

CHAPTER 3 String Searching 431

In searching for the string GAG, a brute-force search starts with the first character
and finds a matching G character. Next, it checks whether the next two characters
are an A and a G.

In this example, the third character (T) doesn’t match, so the brute-force
algorithm starts all over again by examining the second character, even though it
had previously examined that character. Because the brute-force method exam-
ines every character individually, this method is the slowest and least efficient
method for finding text.

Although the brute-force method works, it can take too much time, especially
when searching through large amounts of text. To make text searching faster
and more efficient, computer scientists have developed a variety of alternative
algorithms.

The Boyer-Moore algorithm
To speed up text searching, the computer should skip any previously examined
text and jump straight to unexamined text. That’s the basis for a text-searching
algorithm developed by two computer scientists, Bob Boyer and J. Strother Moore,
called the Boyer–Moore algorithm.

Like the brute-force algorithm, the Boyer–Moore algorithm examines text
character by character. After the Boyer–Moore algorithm finds a partial match,
it’s smart enough to skip over any previously examined characters that couldn’t
possibly be the beginning of the text string to find. By skipping previously exam-
ined characters that can’t match the search criteria, the Boyer–Moore algorithm
speeds up the entire search process, as shown in Figure 3-2.

The Rabin–Karp algorithm
Although much faster than a brute-force search, the Boyer–Moore algorithm still
searches one character at a time. If you’re searching for a text string, you can
speed up the search by examining blocks of text rather than individual characters.

For example, if you’re searching for the string GAG, you could examine three char-
acters at a time instead of examining a single character three times. To make
searching blocks of characters faster, two computer scientists, Michael O. Rabin
and Richard M. Karp, created the Rabin–Karp algorithm.

432 BOOK 4 Algorithms

This algorithm uses a hash function to convert a block of characters into a numeric
value. Instead of examining individual characters, the Rabin–Karp algorithm uses
its hash function to convert the original search string into a numeric value. So,
a hash function might convert the three-character string to search (GAG) into a
numeric value of 3957.

After converting the search string into a numeric value, the Rabin–Karp algo-
rithm repetitively searches for blocks of characters that are the same length of
the search string (such as three characters) and uses its hash function to convert
those blocks of text into a numeric value. Now instead of searching for matching
characters, the Rabin–Karp algorithm searches just for matching hash values, as
shown in Figure 3-3.

The key to the Rabin–Karp algorithm is the speed and method of its hash func-
tion. If the hash function can create values quickly and ensure that different
strings never create the same hash value, this algorithm can run quickly. If the
hash function calculates hash values slower than the computer can examine char-
acters individually, this algorithm may run slower than another algorithm, such
as the Boyer–Moore algorithm. Also, if the hash function calculates identical hash
values for two different strings, this algorithm won’t be accurate enough because
it finds the wrong data.

FIGURE 3-2:
The Boyer–Moore

algorithm skips
over partially

matched
characters.

String Searching

CHAPTER 3 String Searching 433

The Shift Or algorithm
The Shift Or algorithm takes advantage of the fact that computers are much faster
at manipulating 1s and 0s than they are at manipulating and comparing charac-
ters. First, the algorithm creates an empty array the same length as the text that
you want to search. Then it compares the first character of the target string (what
you’re trying to find) with each character in the search string. Every time it finds
a match, it stores a 0 in the array element. Every time it doesn’t find a match, it
stores a 1 in the array element, as shown in Figure 3-4.

After creating an array by comparing the first character with each character in
the search string, the algorithm next looks only for a 0, which identifies where
the first character of the target string was found. Now it compares the character
to the right. If a match is found, it stores a 0 in a second array that represents
matching the first and second characters of the target string. If a match isn’t
found, it stores a 1 in this second array.

FIGURE 3-3:
The Rabin–Karp

algorithm
searches for
hash values.

434 BOOK 4 Algorithms

The algorithm repeats this step for each character in the target string, eventually
creating a two-dimensional array of 1s and 0s, as shown in Figure 3-5.

When searching for the first character (G), in Figure 3-5, the algorithm must
check every character in the entire string. However, when searching for the
second character (A), the algorithm only has to look for the 0s in the previous row
of the two-dimensional array, which identifies where the G character appears. In
Figure 3-5, this means only searching three characters out of the entire string to
look for a possible match of the GA string.

When searching for the third character (G), the algorithm now only checks for 0s
in the second row of the two-dimensional array, which means it only checks three
characters out of the entire string.

As soon as the algorithm finds three 0s that form a diagonal line in the two-
dimensional array, it can identify the exact location of the GAG string in the much
larger string. The Shift Or algorithm gets its name because the matching string
patterns look like binary numbers where the 0 constantly gets shifted one place
to the right, like this:

FIGURE 3-4:
The Shift Or

algorithm
creates an array

of matching
characters.

FIGURE 3-5:
The Shift Or

algorithm
creates a two-

dimensional
array.

String Searching

CHAPTER 3 String Searching 435

G → 011

A → 101

G → 110

Although the Shift Or algorithm takes more steps than a simple brute-force
search, it’s another way to search that could be faster, depending on the data.
Sometimes the simplest algorithms aren’t always the best.

The finite automaton algorithm
In the finite automaton algorithm, first, the algorithm creates a finite state
machine, which is a directed graph (see Book 3, Chapter 5). Each node represents
a state such as finding a single character in the target string, and each link rep-
resents finding a specific character. So, if you wanted to find the string GAG, this
algorithm creates a finite state machine where the first node represents a starting
state where no characters of the string have been found yet.

The second node represents finding the first letter, G; the third node represents
finding the second letter, A (GA); and the fourth node represents finding the final
letter, G (GAG), as shown in Figure 3-6.

After this algorithm creates a finite state machine for the target string, it exam-
ines each character in the search string. In this example, the search string is
GAAGGAGAA.

Initially, the algorithm starts at node 0. The first character it finds is the letter
G, so it moves to node 1. The second character it finds is the letter A, so it moves
to node 2. However, the third character it finds is the letter A, so it starts back

FIGURE 3-6:
A finite state

machine consists
of nodes

and arrows.

436 BOOK 4 Algorithms

at node 0 again. (The algorithm would jump back to the starting state for any
character that does not represent the third character it’s looking for, such as G.)

The fourth character it finds is the letter G, so it moves back to node 1. The fifth
character it finds is also the letter G, so it stays at node 1. The sixth character
that it finds is the letter A, so now it moves to node 2. The seventh character that
it finds is the letter G, so it moves to the last node, which signals a match has
been found.

This algorithm is commonly used in Internet search engines, such as Google
and Yahoo!

Searching with Regular Expressions
The finite automaton algorithm is the basis for a special text-searching technique
known as regular expressions (sometimes abbreviated as RegEx). Instead of writing
your own code to implement a finite automaton search algorithm, you can use
regular expressions that are built in to many languages (such as Perl and PHP)
or added as libraries (such as Java and .NET languages like C# and Visual Basic).

The basic idea behind regular expressions is to search not just for specific strings
but also for patterns. This provides greater flexibility because you may not always
know exactly what you want to find. For example, a normal search algorithm
doesn’t find a string unless you know the entire string you want to find, such as
the last name of Smith. If you only know some of the characters of a last name
(such as searching for Smith or Smyth), you can use regular expressions instead.

Searching for single character patterns
The simplest regular expression pattern searches for a single character. Some
single character patterns are shown in Table 3-1.

Suppose you want to search for a string that begins with the letters c or f. To spec-
ify specific characters, you can define your own set, like this:

[cf]at

String Searching

CHAPTER 3 String Searching 437

This regular expression finds strings, such as cat and fat but not rat. Sometimes it
may be easier to define which characters you don’t want rather than the ones you
do want. In that case, you can use the ^ character in a set to define which charac-
ters you don’t want, like this:

[^rht]oss

This finds any four-character strings that end with oss except for ross, hoss, and
toss. The ^rht expression tells the computer to match any characters except for
r, h, and t.

In addition to matching individual characters, regular expressions can match
ranges of characters, such as all lowercase letters from a to z (like this: [a–z]) or
all uppercase letters from C to G (like this: [C–G]).

Searching for multiple character patterns
If you want to search for multiple characters, you could use a single character
pattern several times. For example, to find a three-number string, you could use
this regular expression pattern:

\d\d\d

However, if you want to find a string consisting of 100 numbers, typing \d
100 times is impractical. If you need to search for a string multiple times and the
specific number of patterns isn’t important, you can specify multiple patterns
with either the * or + symbol.

Both symbols appear directly after a single-character pattern, such as \d* or \d+.
The * symbol looks for zero or more instances of the pattern, whereas the + symbol
looks for one or more instances of the pattern. So, \d*123 finds the strings
9123, 899123, and 123, but \d+123 finds only the 9123 and 899123 strings.

TABLE 3-1	 Single Pattern Regular Expressions
Pattern Character What It Finds Example Find

. (period) Any single character s.m sum sam

\w Any letter or number \wats cats 8cats

\W Any character except
a letter or number

213\W 213- 213@

\d Any digit from 0 to 9 \d\d\d-1234 597-1234 409-1234

\D Any character except
a digit from 0 to 9

W\D9-1234 WP9-1234 W$9-1234

438 BOOK 4 Algorithms

The * and + symbols can also work with single character sets, like this:

[rht]*oss

This searches for any string that ends with oss and contains zero or more of
the r, h, or t characters, such as oss, thtrtoss, and tthrrhhhhhtoss.

Searching for alternate patterns
If you want to find the names John Smith and Mary Smith, you could search twice.
However, a simple solution is to search for both patterns at the same time with the
alternation operator (|), like this:

John Smith|Mary Smith

This regular expression tells the computer to find either the string John Smith or
the string Mary Smith. You can combine the alternation operator with any pattern,
like this:

[rht]*oss|\d+ -1234

This regular expression finds strings, such as rthrross and 5-1234.

Every programming language implements regular expressions slightly differ-
ently, so the examples shown here may not work in your favorite programming
language without modification.

Searching Phonetically
Regular expressions can make it easy to find strings when you know only part of
the characters to find. However, sometimes you may know the pronunciation of
a string you want to find, but you aren’t sure of the exact spelling. Trying to find
the word elephant with a regular expression of elefa\w* doesn’t work if you don’t
realize that the letters ph in elephant makes an f sound. To search strings pho-
netically, use a phonetic algorithm, such as the Soundex algorithm.

The Soundex algorithm was actually patented in 1918 by Margaret O’Dell and
Robert C. Russell. This algorithm is based on dividing spoken speech into
six phonetic classifications based on where you put your lips and tongue to
make sounds.

String Searching

CHAPTER 3 String Searching 439

Basically, the Soundex algorithm converts each string into an alphanumeric code
that begins with the first letter of the string. So, if you had the name Harry, the
Soundex algorithm might convert that name into the alphanumeric code H600 by
following these steps:

1. Capitalize all letters in the string.

2. Retain the first letter of the word.

3. Change all occurrences of the following letters to 0 (zero): A, E, I, O, U, H, W, Y.

4. Replace any letters with the following numbers:

• 1 = B, F, P, V

• 2 = C, G, J, K, Q, S, X, Z

• 3 = D, T

• 4 = L

• 5 = M, N

• 6 = R

5. Replace all pairs of identical digits with a single digit, such as replacing 66 with
just 6.

6. Remove all zeros from the string.

7. Pad the string with trailing zeros so the entire Soundex code consists of the
following format:

<uppercase letter> <digit> <digit> <digit>

Table 3-2 shows how the Soundex algorithm calculates identical Soundex codes
for the strings Harry and Hairy.

If you had the string Harry stored in a file, the Soundex algorithm would convert
that string into the H600 code. Now if you searched for the string Hairy with the
Soundex algorithm, the computer would convert Hairy into the Soundex code H600
and then find the same H600 code stored at the string Harry, thus finding a match-
ing string phonetically.

Phonetic algorithms are used in spellcheckers. The algorithm calculates a code
for each misspelled word and then matches that code to correctly spelled words
that have the same phonetic code. There are also specialized algorithms to handle
other languages such as the Daitch–Mokotoff Soundex algorithm, which better
matches surnames of Slavic and Germanic origin.

440 BOOK 4 Algorithms

String-searching algorithms must examine every character, so the only
way to speed up an algorithm is to simplify how it examines a string of text.
Paradoxically, string-searching algorithms often run faster by organizing text
in a specific way and then searching that method of organization rather than the
actual text itself, which is how the Shift Or and Soundex algorithms work. As
a general rule, the faster the string-searching algorithm, the harder and more
complicated it is to implement.

TABLE 3-2	 Calculating a Soundex Code
Soundex Algorithm Step String #1 (Harry) String #2 (Hairy)

1 HARRY HAIRY

2 H H

3 H0RR0 H00R0

4 H0660 H0060

5 H060 H060

6 H6 H6

7 H600 H600

CHAPTER 4 Data Compression Algorithms 441

Data Compression
Algorithms

The main idea behind data compression is to shrink information. Not only
does compressed data take up less storage space, but it also takes less time
to transfer.

There are two types of data compression algorithms: lossless and lossy.

With lossless compression, the algorithm can compress the data without losing any
information, which is used for archiving and compressing multiple files into a
single file, such as a ZIP archive. Think of lossless compression as a way to pack
existing data more efficiently, like refolding clothes to make them fit in a suitcase.

With lossy compression, the algorithm actually loses some information to compress
data. Typically, this lost information isn’t noticed anyway. The most common
examples of lossy compression involve MP3 audio files and video files. When
compressing audio, the MP3 standard throws out the audio parts that the human
ear can’t distinguish. When compressing video, compression algorithms toss out
colors that the human eye doesn’t notice. By throwing out information, lossy
compression algorithms can save space, much like throwing away clothes to make
packing the remaining clothes in a suitcase easier.

Chapter 4

IN THIS CHAPTER

 » Using lossless compression

 » Compressing audio and video files
with lossy compression

442 BOOK 4 Algorithms

Because lossy compression throws out data, it can compress the same data much
smaller than lossless compression. However, lossy compression has only limited
use. You wouldn’t want to use lossy compression when storing documents because
you can’t afford to lose any data, for example. If you absolutely must preserve
data, use lossless compression. If you can afford to lose some data in exchange for
tighter compression, use lossy compression.

Lossless Data Compression Algorithms
The basic idea behind lossless data compression is to find a way to pack data in
a smaller space more efficiently without losing any of the data in the process. To
do this, lossless data compression algorithms are typically optimized for specific
data, such as text, audio, or video, although the general principles remain the
same no matter what type of data the algorithm is compressing.

Run-length encoding
The simplest lossless data compression algorithm is run-length encoding (RLE).
Basically, this method looks for redundancy and replaces any redundant data with
a much shorter code instead. Suppose you had the following 17-character string:

WWWBBWWWWBBBBWWWW

RLE looks for redundant data and condenses it into a 10-character string, like this:

3W2B4W4B4W

The number in front of each letter identifies how many characters the code
replaced, so in this example, the first two characters, 3W represents WWW, 2B
represents BB, 4W represents WWWW, and so on.

RLE is used by fax machines because most images consist of mainly white space
with occasional black areas that represent letters or drawings.

The Burrows–Wheeler transform algorithm
One problem with RLE is that it works best when repetitive characters appear
grouped together. With a string, like WBWBWB#, RLE can’t compress anything
because no groups of W and B characters are bunched together. (However, a smart
version of the RLE algorithm notices the two-character repetitive string WB and

D
ata Com

pression
A

lgorithm
s

CHAPTER 4 Data Compression Algorithms 443

encodes the string as 3(WB)#, which would tell the computer to repeat the two-
character pattern of WB three times.)

When redundant characters appear scattered, RLE can be made more efficient by
first transforming the data to group identical characters together and then use
RLE to compress the data. That’s the idea behind the Burrows–Wheeler transform
(BWT) algorithm, developed by Michael Burrows and David Wheeler.

The BWT algorithm must use a character that marks the end of the data, such as
the # symbol. Then the BWT algorithm works in three steps:

1. It rotates text through all possible combinations, as shown in the Rotate
column of Table 4-1.

In Table 4-1, the last character repetitively moves to the front of the string.

2. It sorts each line alphabetically, as shown in the Sort column of Table 4-1.

3. It outputs the final column of the sorted list, which takes the last character and
copies it into the Output column of Table 4-1.

In this example, the BWT algorithm transforms the string ABACAB# into #CBAAAB.

At this point, the BWT algorithm hasn’t compressed any data but merely rear-
ranged the data to group identical characters together; the BWT algorithm has
rearranged the data to make the RLE algorithm more efficient. RLE can now con-
vert the #CBAAAB string into #CB3AB, thus compressing the overall data (the
three As).

TABLE 4-1	 Rotating and Sorting Data
Rotate Sort Output

ABACAB# ABACAB# #

#ABACAB AB#ABAC C

B#ABACA ACAB#AB B

AB#ABAC BACAB#A A

CAB#ABA B#ABACA A

ACAB#AB CAB#ABA A

BACAB#A #ABACAB B

444 BOOK 4 Algorithms

After compressing data, you’ll eventually need to uncompress that same data.
Uncompressing this data (#CB3AB) creates the original BWT output of #CBAAAB,
which contains all the characters of the original, uncompressed data but not in
the right order. To retrieve the original order of the uncompressed data, the BWT
algorithm repetitively goes through two steps, as shown in Figure 4-1.

FIGURE 4-1:
Reconstructing

the original data
from the BWT

transformation.

D
ata Com

pression
A

lgorithm
s

CHAPTER 4 Data Compression Algorithms 445

The BWT algorithm works in reverse by adding the original BWT output (#CBAAAB)
and then sorting the lines repetitively a number of times equal to the length of
the string. So, retrieving the original data from a 7-character string takes seven
adding and sorting steps.

The algorithm starts with the initial output string (#CBAAAB) and sorts it in
alphabetical order. Each successive add operation simply places the same output
string (#CBAAAB) at the front of the sorted list.

After the final add-and-sort step, the BWT algorithm looks for the only line that
has the end-of-data character (#) as the last character, which identifies the origi-
nal, uncompressed data. The BWT algorithm is simple to understand and imple-
ment, which makes it easy to use for speeding up ordinary RLE.

Dictionary encoding
RLE is a simple algorithm that works well with redundant characters grouped
together but doesn’t work as well with redundant data scattered throughout. An
alternative to RLE is dictionary coding. The basic idea behind dictionary coding is
to replace large data chunks with much smaller data chunks. Suppose you had the
following text:

See Dick. See Jane.

You could replace the redundant text See with a simple code, such as 1, and create
a new string:

1 Dick. 1 Jane.

Now you could replace Dick with one code and Jane with another code, such as
2 and 3 respectively, to create a compressed version, like this:

1 2. 1 3.

Uncompressing this data means replacing the codes with the actual data, using
a dictionary. Each code refers to the actual data, so looking up 1 retrieves the See
string, 2 retrieves Dick, and 3 retrieves Jane, as shown in Figure 4-2.

If you know the data you want to compress ahead of time, such as condensing the
entire contents of an encyclopedia on a DVD, you can optimize the dictionary to
create the smallest codes, which represent the most common data chunks, such as
the word the. In most cases, you don’t know the data to compress ahead of time,
so you need an algorithm that can analyze data, create a dictionary on the fly,
and then compress data using that dictionary. Three popular dictionary encoding
algorithms include LZ77, LZ78, and LZW.

446 BOOK 4 Algorithms

The LZ77 algorithm
The LZ77 algorithm was created by two computer scientists — Abraham Lempel
and Jakob Ziv — who first published their algorithm in 1977 (hence, the name
LZ77). The LZ77 algorithm works by looking for repetitive data. Instead of storing
this repetitive data in a separate dictionary, the LZ77 remembers the location of
this data in the original file.

When the algorithm finds this same data stored somewhere else, it removes the
data (compressing the overall information) and substitutes a pointer to the previ-
ously recognized data, as shown in Figure 4-3.

Because pointers take up less space than the actual data, the LZ77 algorithm
compresses information. The more redundant the data, the more efficient the
compression.

The LZ78 algorithm
The LZ77 algorithm stores redundant data directly in the compressed data itself.
To improve compression, the same computer scientists developed a variation of
the LZ77 algorithm — the LZ78 algorithm.

The LZ78 algorithm removes all redundant data and stores it in a separate
dictionary. Then the algorithm substitutes the redundant data with much smaller
codes stored in the dictionary. By removing this data, the LZ78 algorithm can
compress data even further than the LZ77 algorithm.

To uncompress this data, the computer follows each code to the dictionary to
retrieve the appropriate data chunk.

FIGURE 4-2:
Uncompressing

data requires
using a dictionary

to replace codes
with actual data.

FIGURE 4-3:
The LZ77

algorithm
replaces

redundant data
with pointers.

D
ata Com

pression
A

lgorithm
s

CHAPTER 4 Data Compression Algorithms 447

The LZW algorithm
The LZW algorithm gets its name from Terry Welch, who created his own
variation of the LZ78 algorithm, dubbed the LZW algorithm. The LZW algorithm
works by creating a dictionary, just like the LZ78 algorithm. But whereas the LZ78
algorithm creates a dictionary of codes that consist of the same size, the LZW
algorithm creates a dictionary of codes of different sizes.

When compressing text, the LZW algorithm starts out by creating a dictionary
of individual letters. Assuming all uppercase letters, A would be represented by
1, B by 2, and so on. However, substituting a number for a single character isn’t
likely to save much space, so the LZW algorithm continues examining the text for
repetitive multiple-character strings to store as a number, such as AB, ABC, ABCD,
and so on.

Like most compression algorithms, the LZW algorithm works best on data that
contains redundant information, like this:

IAMSAMSAMIAM#

First, the LZW algorithm creates a dictionary of single characters represented by
numbers. I gets stored as 9, A as 1, M as 13, and S as 19.

When the LZW algorithm finds the second letter A, it doesn’t encode the letter A all
over again because it has done that once already. Instead, the algorithm encodes
the next two characters, which happen to be AM, and assigns this two-character
combination to the next available number, which is 27. (Numbers 1 through 26 are
assigned to the individual letters of the alphabet.)

When the algorithm sees the letter S again, it encodes the next two-character
string, SA, as the number 28. Then it finds the letter M again, so it encodes the
next two-character string, MI, as the number 29. Finally, it sees the letter A again,
so it checks the next two-character string, which is AM. Because the algorithms
already encoded AM before (as the number 27), the algorithm expands to encode
the three-character string, AM#, as the number 30, as shown in Figure 4-4.

At the beginning of data, the LZW algorithm isn’t very efficient because it’s
slowly creating its dictionary. When the algorithm’s dictionary grows with larger
amounts of redundant data, it can replace these large chunks of redundant data
with small number codes.

448 BOOK 4 Algorithms

The LZW algorithm is used to compress graphic images stored in the Graphics
Interchange Format (GIF). Originally, this algorithm was patented in 1985 and
the patent holder, Unisys, demanded royalties from software companies that
sold programs that could create GIF files. This patent problem caused computer
scientists to create and promote an alternate graphics format — Portable Network
Graphics (PNG). Although the PNG format has largely replaced the GIF file format,
the GIF format is still used mostly for storing animation. Use of the GIF format is
now legal because the LZW patent expired on June 20, 2003.

FIGURE 4-4:
The LZW

algorithm stores
increasingly

larger strings as
numbers.

D
ata Com

pression
A

lgorithm
s

CHAPTER 4 Data Compression Algorithms 449

Lossy Data Compression
Lossy data compression shrinks data through a combination of packing data more
efficiently (like lossless compression) and throwing out chunks of data that aren’t
considered crucial. As a result, lossy compression is used less often for text (where
losing data is unacceptable because a single missing word or number can alter the
entire meaning of the text) and more often for audio, graphics, and video.

Basically, lossy data compression reduces the size of data much more than loss-
less compression because lossy data compression can pack data more efficiently,
like lossless compression, while also saving additional space by throwing out
small chunks of data that aren’t missed anyway.

Most lossy compression methods use lossless compression algorithms in addition
to throwing out unnecessary data.

For example, the human eye and ear can only distinguish a fixed range of colors
and sounds. So, lossy compression simply removes colors and audio that most
people don’t notice. When done selectively, compressed audio, graphic, or video
can be indistinguishable from the original, but at a certain point, lossy com-
pression eventually degrades the original to an unacceptable level, as shown in
Figure 4-5.

A specific method for compressing audio or video files is a codec, short
for compressor/decompressor. Some popular audio codecs include MP3, AAC
(Advanced Audio Coding), and WMA (Windows Media Audio). Some popular video
codecs include AV1, WMV (Windows Media Video), and MPEG-4.

FIGURE 4-5:
Comparison of

compressed
graphic images.

450 BOOK 4 Algorithms

The trick behind lossy compression is knowing which data can be removed with-
out degrading quality too far. In an audio file, such as an MP3 file, lossy com-
pression throws out the audio portion that’s beyond the human hearing range. In
graphics, an image may consist of three shades of blue that are so close as to be
nearly indistinguishable. That’s when the algorithm strips out the two least-used
shades of blue and replaces them with the most frequently used shade of blue.
This saves space because repetition of identical data makes it easier for compres-
sion algorithms to reduce the space needed to store this information in a file.

Video basically saves successive still images, so lossy compression can save space
by looking for identical backgrounds between video frames. Instead of storing
the same background multiple times, lossy compression stores the background
only once and uses that identical image multiple times. Because the same back-
ground may appear in several video frames, this technique can shrink the size of
a video considerably.

Another way to compress data is to alter the bit depth. Bit depth defines how many
bits are used to store data, such as 96-bit or 160-bit. The more bits used, the
greater the quality but the larger the file size. The fewer bits used, the less storage
space required and the less data saved, reducing the file size. That’s why a 96-bit
MP3 file is smaller than the same file saved as a 160-bit MP3 file. The 96-bit file
can’t store as much data as the 160-bit file, which means lower audio quality than
the 160-bit file.

When compressing a file, lossy compression may use constant bit rate (CBR) or
variable bit rate (VBR) compression. CBR reduces the bit rate uniformly through-
out the entire file and makes compression faster. Unfortunately, this also means
that quieter portions of an audio file get compressed at the same rate as noisier
parts of the audio file, resulting in less-than-optimum compression.

VBR alters the bit rate, depending on the complexity of the data. This improves
quality but at the cost of a slower compression time. For even higher quality, some
compression algorithms offer two-pass VBR, which means the program analyzes
the file twice to get the maximum quality and the smallest file size possible, but
at the expense of much slower compression speed.

All types of compression are always a trade-off. With lossless compression, the
trade-off is between size and speed. The smaller you want to compress the file,
the longer it takes. With lossy compression, the trade-off is mostly between size
and quality. The smaller the file size, the lower the overall quality. Both lossless
and lossy compression algorithms are necessary, depending on which type better
suits your needs.

CHAPTER 5 Encryption Algorithms 451

Encryption Algorithms

Encryption involves scrambling information, or plaintext, and converting it
into another format — ciphertext — essentially, turning ordered data into
seemingly random gibberish. By encrypting information, you can keep data

information out of the hands of other people, which can be useful for send-
ing coded messages for military use, sending credit card information over the
Internet to online shopping websites, or just hiding your personal documents
from the prying eyes of family members, coworkers, or strangers.

How Encryption Works
The simplest form of encryption is a substitution cipher, which basically replaces
each letter with a specific symbol, such as another letter. A simple algorithm,
called the Caesar cipher, is a substitution cipher that replaces one letter with
another letter from the alphabet a fixed distance away, such as replacing the
letter A with the letter Z, the letter B with the letter A, the letter C with the letter
B, and so on.

In the 1950s and 1960s, Sicilian Mafia boss Bernardo Provenzano wrote notes to
his henchmen using a modified form of the Caesar Cipher. The Caesar Cipher was
easily cracked by the police, so they were able to read his messages and arrest
many of his collaborators.

Chapter 5

IN THIS CHAPTER

 » Seeing how encryption works

 » Understanding encryption basics

 » Looking at symmetric and
asymmetric encryption

 » Cracking encryption with attacks

452 BOOK 4 Algorithms

In this case, each letter gets replaced by the previous letter in the alphabet,
like this:

I AM HOT

Replacing the letter I with the letter H, the letter A with the letter Z, and so on
creates the following ciphertext:

H ZL GNS

This information may be scrambled, but after someone discovers that each letter
in the ciphertext actually represents the next letter in the alphabet, this sim-
ple substitution cipher can be cracked easily. When an encryption method can
be broken easily, it’s weak encryption. If an encryption method can’t be broken
easily, it’s strong encryption.

The key to deciphering the substitution cipher is recognizing both the method it’s
using (replacing one letter with another) and the specific way it implements that
method (replacing each letter with the previous letter in the alphabet). A slightly
more-complicated substitution cipher might replace each letter with the third
letter from the current letter. So, the letter A would be replaced by the letter D,
the letter B by the letter E, and so on. In this case, the method is the same, but
the implementation is slightly different while being only marginally harder to
decipher.

Although substitution ciphers are easy to implement, they’re also easy to break.
After you know to replace a letter in the ciphertext by another letter that’s shifted
by a specific distance in the alphabet (such as the third letter), you can easily
break the code. One way to avoid this problem is to use a one-time pad, which
consists of a series of random numbers that tell how far to shift the next letter in
a message. So, a one-time pad might contain three random numbers, like this:

2 7 3

The first number, 2, tells the algorithm to shift the first letter of the text by two
letters. So, if the first three letters of the message are SAM, the first letter, S,
would get replaced by the second letter from S in the alphabet, which is U.

The second number, 7, tells the algorithm to shift the second letter by seven
letters. So, the letter A gets replaced by the seventh letter down, which is H.
Finally, the third number, 3, tells the algorithm to shift the third letter by the
third letter down, so the letter M gets replaced by the letter P. Now the entire
message, SAM, gets encrypted as the ciphertext UHP.

Encryption A
lgorithm

s

CHAPTER 5 Encryption Algorithms 453

The one-time pad gets its name because the random series of numbers are used
only once. Now it’s virtually impossible for anyone to discover how the letters are
substituted because the replacement letters don’t follow a recognizable pattern.
The only way to decipher this ciphertext is to get a copy of the one-time pad.

Of course, the one-time pad has its drawbacks. To work, both parties need a
copy of the same one-time pad. If you could transfer a copy of the one-time pad
securely, you might as well transfer the message you’re delivering instead. Also,
one-time pads can be used only once. If they’re used more than once, someone
can eventually guess the random pattern of letters.

Even worse is that a one-time pad must specify how far to shift each letter in a
message. If you’re encrypting a message consisting of 1,000 letters, you need a
one-time pad to specify how to shift all 1,000 letters. If you’re encrypting a mes-
sage consisting of 10,000 letters, you need a one-time pad that specifies how to
shift all 10,000 letters.

Given these problems, one-time pads are generally impractical for normal use.
A slight variation of the one-time pad is the use of a password. A password acts
like a one-time pad; instead of defining how to alter each individual character in
a message, the password determines how to scramble data. Even if you know how
data is being scrambled, you won’t know how to read the scrambled data without
knowing the right password. Passwords are simply smaller and more convenient
versions of one-time pads.

The Basics of Encryption
Encryption involves three parts:

 » The encryption algorithm

 » The implementation of the encryption algorithm

 » The length of the encryption key

The encryption algorithm defines the specific method for scrambling data. Some
people try to invent their own, obscure encryption algorithms under the theory
that if no one knows how the algorithm works, they won’t know how to break the
encryption. This theory is security through obscurity, and it usually fails because a
single flaw can leave the encryption vulnerable, much like how locking a bank is
useless if a single door is left unlocked. Because it’s nearly impossible for a single
person to spot all possible flaws in an encryption algorithm, most encryption
algorithms are published for anyone to see.

454 BOOK 4 Algorithms

The idea behind publishing an encryption algorithm is to let as many people as
possible examine an encryption algorithm for flaws. The more people examining
an encryption algorithm, the more likely any flaws will be discovered and patched
before people start using the algorithm to encrypt critical information.

Two common ways to encrypt data involve substitution and permutation.
Substitution involves replacing data with another chunk of data. The group of
algorithms that substitutes data is typically called a substitution box or S-box.
Permutation involves rearranging bits of data, usually represented as a binary
number. The group of algorithms that performs this permutation is typically
called a permutation box or P-box. Most encryption algorithms use a combination
of S-boxes and P-boxes to scramble data.

After an encryption algorithm is deemed mathematically sound and secure, the
second step is correctly implementing that algorithm in a particular program-
ming language. Because there are virtually millions of different ways to accom-
plish the same task in any programming language, the encryption algorithm
may be secure, but the implementation of the encryption algorithm may not be
secure.

After you have a valid encryption algorithm that’s been implemented properly in
a particular programming language, the final step to creating a secure encryption
algorithm is the key length used to scramble the data.

In a simple substitution cipher, the key length could be considered the value 1
because it offers only one way of replacing letters with another letter, such as
shifting each letter by a fixed position in the alphabet. To encrypt a 1,000- character
message, a one-time pad would need 1,000 different random numbers for shifting
each letter in the message, so the key length could be considered 1,000.

The key length is crucial because the details of an encryption algorithm are often
published for anyone to examine. As a result, the security of most encryption
algorithms rests solely on the key length used for the password. You don’t need
to create a long password of 1,000 or more characters; the encryption algorithm
needs to use more bits of data to store any password whether the password con-
sists of 1 character or 100.

The length of the password simply makes it harder for other people to guess.
A one-letter password means someone needs only 26 guesses. A 100-letter pass-
word forces someone to try all possible combinations of letters, making guessing
much more difficult. The key length simply defines the amount of space used to
store the password but doesn’t specify the physical length of the password. That
means someone can still use a weak one-letter password no matter how big the
algorithm specifies the key length could be.

Encryption A
lgorithm

s

CHAPTER 5 Encryption Algorithms 455

As a simple analogy, think of encryption key lengths like the physical key to your
front door. A physical key pushes up rods that drop down to prevent a doorknob
from turning. The more rods used, the harder it is to pick the lock. The fewer rods
used, the easier it is to pick the lock.

In the same way, encryption keys are used to hold passwords. The shorter the key
length (measured in bits), the fewer possibilities exist and the weaker the encryp-
tion, making it more vulnerable to being broken. The longer the encryption key
length, the less likely the encryption will break.

No encryption is considered unbreakable, but the goal of every encryption algo-
rithm is to make unscrambling data so difficult that the time needed to read
the encrypted message takes too long. Typically an encrypted message might take
the world’s fastest computer a million years to break, which effectively makes the
encryption “unbreakable.”

At one time, a 56-bit key was considered unbreakable, but with today’s comput-
ers, the smallest secure key length is 128 bits, although many people prefer using
256-bit or 512-bit keys for added security.

Encryption algorithms generally fall into two categories — stream and block
ciphers. A stream cipher encrypts data one item at a time, such as individual char-
acters in a message. A block cipher encrypts data in fixed chunks or blocks. So,
instead of encrypting individual characters, a block cipher might encrypt text in
ten-character blocks.

THE 56-BIT KEY OF THE DES ALGORITHM
In the late 1960s, IBM created an encryption algorithm dubbed LUCIFER, which used
a 128-bit key. When IBM decided to release LUCIFER as a commercial product, the
National Security Agency (NSA) asked IBM to reduce the key length from 128 bits to
56 bits. Then the U.S. government declared IBM’s LUCIFER encryption algorithm as
the new government standard encryption algorithm, dubbed the Data Encryption
Standard (DES).

Mathematicians suspect that the NSA reduced the key length to make DES encryption
easier to crack. To prove the security of DES encryption, a company called RSA Security
offered a contest challenging anyone to crack DES encryption. In 1997, a group of com-
puters, connected over the Internet, finally managed to crack a DES encrypted message,
proving once and for all that DES encryption was no longer secure.

456 BOOK 4 Algorithms

Generally, stream ciphers are used when encrypting data of unknown length, such
as voice messages, whereas block ciphers are used to encrypt data of fixed lengths,
such as a file.

Stream ciphers
A stream cipher borrows the features of the one-time pad. Whereas a one-time
pad must be as long as the message being encrypted, a stream cipher uses smaller
keys of fixed lengths, such as 128 bits. Another major difference is that a one-
time pad consists of truly random numbers, whereas a stream cipher generates
a list of random numbers based on a key (password). Computers can’t generate
truly random numbers, so computer-generated random numbers are often called
pseudorandom numbers.

A computer uses an algorithm to generate random numbers, but these aren’t true
random numbers because the algorithm generates the same list of random num-
bers over and over again. To alter the way computers generate random numbers,
computers use a starting value, or seed. The computer uses this seed to generate
a list of numbers; so by giving the computer different values for its seed, a com-
puter can generate a different list of random numbers. Because this list always
changes based on the seed value, any computer-generated random numbers are
pseudorandom numbers.

HACKING A SLOT MACHINE
The fact that computers can’t generate truly random numbers allowed computer hack-
ers to hack the newest computerized slot machines used in many casinos. The slot
machine would seed its random number generator with a value and then use this list of
pseudorandom numbers to determine payoffs.

Hackers soon discovered that certain slot machines used the same seed value every
time, so the generated list of pseudorandom numbers could be predicted. Then they
used a handheld computer that generated that same list of pseudorandom numbers
as the slot machine. By knowing which pseudorandom number the slot machine would
use next, the hackers could determine when the slot machine would hit a jackpot.

So, all the hackers did was watch a certain slot machine and wait for someone else to
churn through all the losing pseudorandom numbers and leave. When the slot machine
was close to a winning pseudorandom number, the hackers would only have to put a
few coins into the slot machine before they’d hit a jackpot. Then they’d leave and wait
for someone else to churn through the next batch of losing pseudorandom numbers
before playing that same slot machine and hitting another jackpot.

Encryption A
lgorithm

s

CHAPTER 5 Encryption Algorithms 457

A stream cipher uses a key to generate a list of pseudorandom numbers. Then it
uses this generated list of pseudorandom numbers to encrypt each character by
replacing it with a different character based on this pseudorandom number, as
shown in Figure 5-1.

Stream ciphers use two different methods to generate a list of pseudorandom
numbers:

 » A synchronous stream cipher generates pseudorandom numbers indepen-
dent of the plaintext data.

 » A self-synchronizing stream cipher generates pseudorandom numbers
based on part of the plaintext.

Stream ciphers are often fast and simple to implement. Stream ciphers
encrypt data in a continuous stream instead of waiting to receive a block of
data. That’s why stream ciphers can be convenient for real-time communica-
tion such as encryption for wireless communication.

The most popular stream cipher is RC4, named after its creator, Ron Rivest. RC4 is
used in the two wireless encryption standards — Wired Equivalent Privacy (WEP)
and Wi-Fi Protected Access (WPA), both of which are commonly used to protect
wireless Internet connections.

Block ciphers
Block ciphers encrypt data in chunks, although you can think of a stream cipher
as a block cipher with each character representing a single data chunk. A typical
block size is 64 or 128 bits. Because most data doesn’t fit into neat 64- or 128-bit
blocks, a block cipher must pad the last chunk of data with information, such as
zeroes.

FIGURE 5-1:
How a stream
cipher works.

458 BOOK 4 Algorithms

Electronic codebook (ECB)
After a block cipher divides plaintext into blocks, it has several different ways
to encrypt that data. The simplest way to encrypt data is to encrypt each block
of data separately with the same key, which is the electronic codebook method, as
shown in Figure 5-2.

Encrypting with the electronic codebook method is simple and fast, but because it
uses the same key to encrypt data, it tends to encrypt redundant data in identical
chunks. So, the message I am Sam. Sam I am might create two blocks of encrypted
data that would look nearly identical, such as X*4d*34d^ and 34d*X*4d^. A cur-
sory examination of these two encrypted blocks can reveal that X represents the
letter I, * represents a space, 4d represents am, 3 represents S, and ^ represents
a period. The same input generates the same output, which makes cracking the
encryption much easier.

Cipher-block chaining (CBC)
The ideal encryption algorithm takes identical data and scrambles it in two differ-
ent ways to avoid revealing any redundant data. The idea behind the cipher-block
chaining (CBC) method is to use the encrypted output from one block as input
to encrypt a second block. Because the output from one encrypted block directly
affects the encryption of another block, identical plaintext data gets converted
into completely different ciphertext, as shown in Figure 5-3.

FIGURE 5-2:
The electronic

codebook
encrypts blocks

of data separately
with the

same key.

Encryption A
lgorithm

s

CHAPTER 5 Encryption Algorithms 459

Symmetric/Asymmetric
Encryption Algorithms

The most common type of encryption algorithm is a symmetric algorithm, which
uses the same password to encrypt and decrypt data. Basically, this means that
the password that scrambles the data can also reverse the process and unscramble
the data, as shown in Figure 5-4.

FIGURE 5-3:
Cipher-block

chaining uses the
output from one

block as the input
for encrypting a

second block.

HASH FUNCTIONS
One type of algorithm commonly associated with encryption is a hash function. A hash
function takes data as input and, based on the size and content of that data, calculates a
unique mathematical value. This value isn’t used as part of the encryption but as a way
to authenticate that certain data hasn’t been altered.

Hash functions are often used when downloading files. A website might offer a file for
download and display its hash value. Now if you download that file and run that file
through the hash function, you should get the same hash value. If you get a different
value, the file you downloaded has been modified and is missing some information or
has new information added. In encryption, hash functions can verify that an encrypted
message hasn’t been altered. If a file has been altered, it could mean the file simply got
corrupted, or that someone tried to insert or remove data from the encrypted message,
which means you shouldn’t trust the validity of that message.

460 BOOK 4 Algorithms

The biggest problem with symmetric encryption is that both parties need the
same password to encrypt and decrypt data, so if you can’t securely transfer the
password to someone else, that person can never read the message.

A second problem with symmetric encryption is that the weakest link is the pass-
word itself. The encryption algorithm could be the strongest in the world, but
if someone steals the password, that’s like giving them the key to unlock the
10-foot-thick steel doors guarding all the gold in the vault of Fort Knox.

Some popular symmetric encryption algorithms include the Data Encryption
Standard (DES) and the Advanced Encryption Standard (AES). DES was the origi-
nal government encryption standard approved in 1976. After computers became
fast enough, they could crack DES encryption, so after a five-year contest between
cryptographers, the government selected a new encryption standard, AES.

Symmetric encryption is often called private-key encryption because both the
sender and the receiver need an identical copy of the key to encrypt and decrypt
a message. Another type of encryption algorithm is the asymmetric or public-key
encryption. Unlike symmetric encryption, asymmetric encryption requires one key
for the sender and another key for the receiver.

These two keys are the public key and the private key. You can make a million copies
of your public key and give them out, but you want only one copy of your private
key. If someone wants to send you a message, they need to encrypt a message with

FIGURE 5-4:
A single password

can encrypt
and decrypt
a message.

Encryption A
lgorithm

s

CHAPTER 5 Encryption Algorithms 461

your public key. After someone encrypts a message with your public key, the only
way to decrypt that message is to use your private key, as shown in Figure 5-5.

In addition to encrypting with a public key and then decrypting with a private
key, you can encrypt with a private key and decrypt with a public key. When you
encrypt a message with your private key, that message can be decrypted only
with your public key. Because you’re the only person with a copy of your private
key, the only possible way a message can be decrypted with your public key is if it
was originally encrypted with your private key. (Unless, of course, someone steals
your private key. In that case, they can mimic you online.)

Public-key and private-key encryption are commonly used together in programs,
such as Pretty Good Privacy (PGP), that are designed for sending encrypted mes-
sages. You exchange a password using private-key encryption and send a message
encrypted using this password. The receiver unlocks this password using their
private key and then unlocks the actual message using the password, as shown in
Figure 5-6.

The reason for using both private-key (symmetric) and public-key (asymmetric)
encryption is that public-key encryption tends to run much slower than private-
key encryption. That’s because with public-key encryption, you need to encrypt
data using the combination of the sender’s private key with the receiver’s public-
key. With private-key encryption, you need only one key to encrypt data.

FIGURE 5-5:
Public keys

encrypt data,
and private keys

decrypt data.

462 BOOK 4 Algorithms

Public-key encryption is used in Secure Sockets Layer (SSL) and its more secure
replacement, Transport Layer Security (TLS), which is how you can connect to a
secure shopping website and safely transfer your credit card numbers over the
Internet. The shopping website basically gives your computer its public key to
exchange a unique key known only by the website and your computer.

Using this unique key, you can encrypt any sensitive information (such as your
credit card number) and send it securely over the Internet. Now the only one
who can decrypt your credit card number is the shopping website holding the
unique key.

FIGURE 5-6:
Public-key and

private-key
encryption can
work together.

Encryption A
lgorithm

s

CHAPTER 5 Encryption Algorithms 463

Cracking Encryption
Encryption works by scrambling data, but anything scrambled can always be
unscrambled. What makes the difference between strong and weak encryption is
how many possible ways exist to unscramble the encrypted data.

If only ten possible ways exist to scramble data, that’s much easier to crack than
a message that offers ten million different ways to scramble data. To unscram-
ble data that offers ten possible ways of scrambling a message, you can just use a
brute-force attack.

Brute-force attacks
Basically, a brute-force attack tries every possible combination of ways a message
can be scrambled. Think of a combination lock that opens only if you align the
right number. If the combination lock offers 36 numbers, you can use a brute-
force attack and exhaustively try all 36 numbers until you find the one that opens
the lock.

HIDING IN PLAIN SIGHT WITH
STEGANOGRAPHY
One unusual form of encryption involves hiding data within another chunk of data, such
as hiding a text message inside an audio or graphic image. Hiding data within another
form of data is steganography. The idea is that no one can read your messages if they
can’t find them in the first place.

Steganography works on the principle that data in audio, video, and graphic files can
be removed without noticeably affecting the quality of the original file. After removing
chunks of information from such a file, which leaves gaps in the original file, the next
step is to insert the plaintext or ciphertext into these open gaps.

If you insert plaintext into an audio, video, or graphic file, anyone can read your
message if they know how to find it. If you encrypt your message and then insert the
ciphertext into a file, someone would need to know where to find your message and
then know the password to decrypt that message. Steganography isn’t necessarily a
form of encryption so much as it’s a way to keep anyone from knowing you’re sending
secret messages at all.

464 BOOK 4 Algorithms

Now consider a more complicated combination lock that not only displays
36 numbers but forces you to choose three different numbers in the correct order.
You can still exhaustively try every possible number combination, but the time
needed to do this is likely more than most people are willing to take, which effec-
tively makes the lock secure.

That’s the same idea behind encryption. Every form of encryption can eventually
be cracked with a brute-force attack, but the time needed to exhaustively try every
possibility is too long. It’s possible to crack even the toughest encryption algo-
rithm with a brute-force attack, but you might need a room full of million-dollar
supercomputers running 24 hours a day for the next million years to eventually
crack the encryption. By making the costs in resources and time too high, encryp-
tion algorithms are essentially unbreakable through a brute-force attack alone.

A variation of the brute-force attack is the Chinese lottery. The idea is that if you
gave each person in China (with its population of more than a billion people) a
computer and assigned each computer a different range of brute-force attacks on
the same encrypted data, eventually one of them would crack the encryption and,
hence, “win” the lottery.

Instead of performing a brute-force attack sequentially, the Chinese lottery attack
performs the same brute-force attack in parallel, drastically cutting down the
time needed to crack the encryption.

A second improvement of the Chinese lottery attack involves reducing the cost of
resources necessary to conduct the brute-force attack. A typical brute-force attack
requires a fast computer to exhaustively search all possible combinations. The
Chinese lottery attack requires a vast network of much slower and less expensive
computers because each computer needs only to exhaustively brute-force attack a
much smaller range of possibilities.

Although the Chinese lottery attack is mostly theoretical, it’s possible for some-
one to write a computer worm that can spread and infect computers all over the
world and conduct a brute-force attack on a problem. The worm that finally cracks
the problem can then send its winning ticket (the cracked message) to the original
programmer of the worm.

Dictionary attacks
A brute-force attack is the simplest encryption cracking method, but it’s never
the fastest. Because the strength of any encryption algorithm relies solely on the
password used, it’s often much simpler just to guess the password instead.

Encryption A
lgorithm

s

CHAPTER 5 Encryption Algorithms 465

Most people use simple passwords that they can remember, such as password,
sex, love, 123, or names (such as the names of their pets or favorite movie stars).
Because passwords can vary in length, a simple brute-force attack is impractical
because not only do you need to exhaustively check all five-character passwords,
but also all six-, seven-, eight-, nine-, and ten-character passwords.

A dictionary attack is a type of brute-force attack, but rather than try all possible
character combinations, it tries the most common passwords. Besides trying the
previously mentioned common passwords, like love and 123, a dictionary attack
tries common words from Star Trek, Shakespeare, sports, and popular culture.

Because many people use a common password along with an additional character,
such as password5, a dictionary attack combines its dictionary with a brute-force
attack by picking a common word and trying different variations of that word,
such as adding a different character at the beginning or end of the password or
spelling the password backward.

THE CHINESE LOTTERY AND BLOCKCHAINS
Cryptocurrencies, such as Bitcoin, rely on a blockchain, which consists of a series of
records linked together in blocks. Each block uses a hash function to validate the con-
tents of that block and link to the previous block. If someone tries to modify a block, it
will create a different hash value, alerting others that the block has been altered. The
link to the previous block prevents someone from inserting a new block of data into
the blockchain. At any given time, there can be multiple copies of a blockchain but hash
functions ensure that every copy contains the exact same information.

Maintaining the blockchain and creating new blocks takes time and effort, so Bitcoin
dangles an incentive to people by offering them Bitcoins. To earn new Bitcoins, comput-
ers (called miners) must calculate a mathematical puzzle. The first computer that solves
this mathematical puzzle gets rewarded with Bitcoins and that process extends the
blockchain to hold more data.

Because earning (or mining) Bitcoins can be so lucrative, many people set up dedicated
computers to solve the next mathematical puzzle. With millions of computers trying to
solve the same mathematical puzzle, it’s only a matter of time before one computer will
solve it and get its Bitcoin reward.

To increase the chances of mining Bitcoins, many people join a pool of computers. Now
if one computer in that pool solves the mathematical puzzle and earns Bitcoins, every
computer in that same pool gets an equal share. By working together in computer
pools, Bitcoin miners are using a variation of the Chinese lottery.

466 BOOK 4 Algorithms

Think of a dictionary attack as a smarter and faster version of a brute-force attack.
The odds of someone choosing a password, like s&$k#, is much less than some-
one choosing a password of sonja, which is why dictionary attacks are so often
successful.

Plaintext and ciphertext attacks
The easiest way to defeat any form of encryption is to steal the original plain-
text message. Although this lets you read a single message, it doesn’t help you
read any additional messages encrypted with the same password. However, after
you have the plaintext version of a message along with the encrypted version of
that same message, you may be able to deduce the password used to encrypt that
message.

Comparing the plaintext version of a message with its encrypted version is a
plaintext attack. Because it’s rarely possible to retrieve the plaintext of an entire
message, a more common code-breaking technique is to examine the ciphertext
for patterns with frequency analysis.

The idea behind frequency analysis is that certain letters (such as e) or words
(such as and) are more likely to appear in a message. A poor encryption algorithm
encrypts the letter e and the word and with identical characters in different parts
of the encrypted message. From this simple clue, it’s possible to gradually deduce
the encrypted symbols that represent the second-most-frequently used letters
and words.

Although no form of encryption is unbreakable, the goal of every encryption algo-
rithm is to resist all known forms of attack so as to make cracking the encryption
unfeasible due to the lack of time or resources. As computers get faster and more
powerful, today’s encryption algorithms will only get weaker and easier to crack.
By the time that occurs, mathematicians and computer scientists will have created
newer and better encryption algorithms until those age and become easily broken
all over again.

One serious threat to encryption is quantum computing, which can solve inte-
ger factorization much faster than traditional computers. Because factorization
of prime numbers forms the basis of many encryption algorithms, finding a fast
way to solve factorization means quantum computers could theoretically crack
encryption faster and easier than ever before.

Encryption A
lgorithm

s

CHAPTER 5 Encryption Algorithms 467

CODE CRACKING IN THE BATTLE
OF MIDWAY
Cracking a code is pointless if you can’t understand the message inside. During World
War II, American code breakers broke the Japanese encryption, so they could read every
message the Japanese military sent. Based on these cracked messages, the United
States knew that the Japanese were planning a large-scale attack sometime around June
1942, but the big question was where?

According to the Japanese messages, the next target was AF. Some military analysts
thought that AF represented Hawaii, while others feared that AF actually meant the
Japanese were going to attack and invade the West Coast itself. However, military ana-
lysts soon suspected that AF really referred to a tiny island in the Pacific called Midway.

To verify their suspicions, the American commanders ordered the military base on
Midway to send a plain, unencrypted message claiming that their water station had
broken down. Soon afterward, the American code breakers intercepted a Japanese
encrypted message stating that “AF was out of water.” The Japanese never knew their
encryption had been broken, and the Americans managed to trick them into revealing
their intentions. Based on the knowledge that AF meant Midway, the American Navy
was able to surprise and ambush the Japanese task force, effectively turning the tide in
the Pacific.

5Web
Programming

Contents at a Glance
CHAPTER 1: HyperText Markup Language . 471

CHAPTER 2: CSS . 487

CHAPTER 3: JavaScript . 495

CHAPTER 4: PHP . 509

CHAPTER 5: Ruby . 523

CHAPTER 1 HyperText Markup Language 471

HyperText Markup
Language

The language used to create every web page in the world is HyperText Markup
Language (HTML). Although you can create web pages with specialized web
page editing programs, such as Adobe Dreamweaver, it’s still nice to know

how HTML works so you can modify web pages manually or create unique effects
that may be difficult or impossible to accomplish with a web page editing program.

Similar to the way a traditional programming language relies on keywords, HTML
relies on tags (keywords) that follow a rigidly defined syntax. Instead of creating
a working program like a traditional programming language, HTML creates web
pages that browsers can view.

In a traditional programming language, an error or bug can keep the entire
program from running or make it calculate incorrectly. In HTML, an error can
keep a web page from appearing or just make the web page display incorrectly.
If you’re interested in understanding the heart of web page design, you need to
understand the basics of using HTML.

Chapter 1

IN THIS CHAPTER

 » Defining a web page

 » Putting in graphics

 » Defining your background

 » Creating hyperlinks with anchor
points

 » Setting your tables

472 BOOK 5 Web Programming

The Structure of an HTML Document
The basic HTML tag defines the entire HTML document like this:

<html>

</html>

Anything between the <html> and </html> tags will appear on the web page.

The last tag uses a forward slash (/) to identify the end of the tag.

Generally, HTML tags work in pairs — the first tag defines something, and the
second tag (the one beginning with a forward slash) marks the end of that defi-
nition. If you omit one of the <html> or </html> tags, your HTML web page won’t
appear.

HTML tags aren’t case-sensitive, so you can define the tags as <HTML> and
</HTML> if you prefer.

Creating a title
Most web pages have a title, which appears in the title bar of a window. To display
text in a window’s title bar, type text in between the <title> and </title> tags
inside the <head> and </head> tags like this:

<html>
 <head>
 <title>This text appears in the title bar.</title>
 </head>
</html>

Creating the body text
The bulk of a web page falls within the <body> and </body> tags. To display text,
you need to use the paragraph tags, <p> and </p>, like this:

<html>
 <head>
 <title>This text appears in the title bar.</title>
 </head>

CHAPTER 1 HyperText Markup Language 473

H
yperText M

arkup
Language

 <body>
 <p>This text appears on the web page.</p>
 </body>
</html>

The trailing </p> is optional but can be helpful to make it clear where a specific
paragraph ends.

If you want to make sure a line of text breaks at a certain point, you can use the

 tag, such as

<html>
 <head>
 <title>This text appears in the title bar.</title>
 </head>

 <body>
 <p>This text appears on the web page.
This appears on
 a separate line.</p>
 </body>
</html>

The preceding HTML code displays two lines of text like this:

This text appears on the web page.
This appears on a separate line.

With lots of text appearing on a web page, you may want to separate text with
headings. HTML offers six types of headings that use tags, such as <h1> and
</h1>. The following code produces the results shown in Figure 1-1:

<html>
 <head>
 <title>This text appears in the title bar.</title>
 </head>

 <body>
 <h1>Heading 1</h1>
 <h2>Heading 2</h2>
 <h3>Heading 3</h3>
 <h4>Heading 4</h4>
 <h5>Heading 5</h5>
 <h6>Heading 6</h6>

474 BOOK 5 Web Programming

 <p>This text appears on the web page.</p>
 </body>
</html>

Aligning text
Text normally appears left-aligned, but you can right-align or center-align text
as well. To align text, you need to insert the following inside the first part of
the paragraph or heading tag. The following code produces the results shown in
Figure 1-2:

<html>
 <head>
 <title>This text appears in the title bar.</title>
 </head>

 <body>
 <h1 align = "center">Heading 1</h1>
 <p align = "right">This text appears on the web page.</p>
 </body>
</html>

FIGURE 1-1:
HTML can create

six different
headings.

CHAPTER 1 HyperText Markup Language 475

H
yperText M

arkup
Language

Emphasizing text
To make text stand out, you can emphasize it as bold, italicized, or underlined by
using the following tags:

 » and to display text in bold

 » <i> and </i> to display text in italics

 » <u> and </u> to display text as underlined

Just place these tags around the text you want to emphasize, like this:

<html>
 <head>
 <title>This text appears in the title bar.</title>
 </head>

 <body>
 <p>This text appears bold.</p>
 <p>This text appears <i>italicized</i>.</p>
 <p>This text appears <u>underlined</u>.</p>
 </body>
</html>

FIGURE 1-2:
You can specify

text to appear
center- or

right-aligned.

476 BOOK 5 Web Programming

Another way to emphasize text is to use the and tags.
Depending on the browser, the tag often displays text in bold:

Often displays text in bold

Adding color
Color can further emphasize the appearance of text. To color text, surround it with
the and tags where #xxyyzz represents a color
code, as shown in Table 1-1.

TABLE 1-1	 HTML Color Codes
Color Color Code

Red #FF0000

Turquoise #00FFFF

Light blue #0000FF

Dark blue #0000A0

Light purple #FF0080

Dark purple #800080

Yellow #FFFF00

Pastel green #00FF00

Pink #FF00FF

White #FFFFFF

Light gray #FFFFCC

Black #000000

Orange #FF8040

Brown #804000

Burgundy #800000

Forest green #808000

Grass green #408080

CHAPTER 1 HyperText Markup Language 477

H
yperText M

arkup
Language

Colors are defined in shades of red, blue, and green, represented as hexadecimal
values. The xx portion defines the amount of red, the yy defines the amount of
blue, and the zz defines the amount of green. The absence of a color is 00 whereas
the maximum amount of a color is FF. By varying the shades of red, blue, and
green as hexadecimal values, you can define your own colors. If you prefer, you
can choose from a list of standard colors such as "red", "gold", or "lavender"
(see www.w3schools.com/tags/ref_colornames.asp).

The following HTML code displays text in red (#FF0000):

<html>
 <head>
 <title>This text appears in the title bar.</title>
 </head>

 <body>
 <p>This text appears in red
 on the web page.</p>
 </body>
</html>

Changing the font size
You can also make text appear larger or smaller by defining a size from 1 (small-
est) to 7 (largest). The following HTML code makes the text appear large:

<html>
 <head>
 <title>This text appears in the title bar.</title>
 </head>

 <body>
 <p>This text appears large on the
 web page.</p>
 </body>
</html>

https://www.w3schools.com/tags/ref_colornames.asp

478 BOOK 5 Web Programming

Instead of specifying a value from 1 to 7, you can increase or decrease the font size
relative to the current font size by adding a number (+3) or subtracting a number
(–2) like this:

<html>
 <head>
 <title>This text appears in the title bar.</title>
 </head>

 <body>
 <p>This text appears large on
 the web page.</p>
 </body>
</html>

Adding comments
Because pages filled with HTML code can often be confusing to understand, you
can sprinkle comments anywhere on your web page. Comments always begin with
<!-- and end with -->, so anything you place within those two comment tags are
ignored by the computer, like this:

<html>
 <head>
 <title>This text appears in the title bar.</title>
 </head>

 <!-- This is a comment in a web page. -->

 <body>
 <p>This text appears large on
 the web page.</p>
 </body>
</html>

Adding Graphics
Three common types of graphic files you can add on a web page are JPEG (Joint
Photographic Experts Group), GIF (Graphics Interchange Format), and PNG (Port-
able Network Graphics) files.

CHAPTER 1 HyperText Markup Language 479

H
yperText M

arkup
Language

To add graphics on a web page, you need to specify the graphic filename that you
want to appear. So, if you had a graphic image named duck.jpg stored in the same
location as the HTML file, you could add it to a web page like this:

<html>
 <head>
 <title>This text appears in the title bar.</title>
 </head>

 <body>

 </body>
</html>

Defining the Background
By default, web pages can look pretty boring with a plain white background. To
spice up the appearance of a web page, you can modify the background to display
a color or a graphic image. To define a background color, you have to define either
a color name (such as "black") or a RGB hexadecimal value like this:

<body bgcolor = #xxyyzz>

To define a background graphic, you need to specify the graphic filename like this:

<body background = "filename.ext">

You can define both a background color and a background image by combining
both HTML commands on a single line like this:

<body bgcolor = #xxyyzz background = "filename.ext">

If you’re displaying both a background color and a background image, make sure
the background image contains transparent parts so the background color can
appear.

480 BOOK 5 Web Programming

Creating Hyperlinks
Web pages typically contain text and graphics, but the heart of web pages are
hyperlinks that connect a web page to another web page or a different part of the
currently displayed web page. The HTML code to create a hyperlink looks like this:

hyperlink text

The "address" can be a website URL (short for Uniform Resource Locator), such as
www.whitehouse.gov or www.dummies.com, or a filename that links to a web page,
an image, a PDF file, or any other resource, such as index.html. The hyperlink text
is the word or phrase that appears as a link. So, if you wanted to turn the term
White House into a link, you could use the following HTML code:

White House

When you click a link to a web page, the link takes you to the top of that web page.
If you want a link to jump to a specific part of a web page, such as a paragraph in
the middle of the web page, you have to go through two steps:

1. Define an anchor that represents the specific part of the web page that
you want people to see when they click a link.

2. Define a link to take users to that specific part of the web page.

Defining an anchor point
When you define an anchor point, you need to create a name for your anchor point
and then define the actual text that will act as the anchor point, like this:

The anchor point can be any descriptive name. After you place an anchor point
within a web page, the next step is to create a link to the anchor point. This link
can be on the same web page as the anchor point or on a different web page.

Linking to an anchor point
After you’ve created an anchor point, you must create a hyperlink that points to
that anchor point. If the hyperlink appears on the same web page as the anchor
point, you can just specify the anchor point name, like this:

Jump to anchor point

CHAPTER 1 HyperText Markup Language 481

H
yperText M

arkup
Language

The # symbol identifies the anchor point. The text after the anchor name link
(Jump to anchor point, in this example) appears as a hyperlink that the user can
select. The tag marks the end of the hyperlink.

If the anchor point appears on another web page, you must specify the web page
filename followed by the anchor point name, such as

Jump to anchor point

Making Tables
Tables help align text and graphics in rows and columns. For greater flexibility,
you can choose to make the table borders appear visible or invisible or give the
table a background color or image. When table borders appear invisible, any items
stored in the table appear aligned but without the distraction of borders.

When creating a table, you need to define the table appearance, the table head-
ings, and the actual data that appears inside the table.

Defining a table
When you create a table, you have the option to define one or more of the following:

 » Alignment: Defines the alignment of the table

 » Border: Defines the thickness of the lines that define the table

 » Cell padding: Defines the spacing between data and the cell borders

 » Cell spacing: Defines the spacing between adjacent cells

 » Width: Defines the size of the table in pixels or as a percentage of the
window’s width

To define the alignment of the table, you can choose between center, left, or right,
like this:

<table align = "center"> </table>

To define the border of a table, specify a border value like this:

<table border = "2"> </table>

482 BOOK 5 Web Programming

If you set the table border to "0", you can make the border invisible.

To define the cell padding and cell spacing, specify a value like this:

<table cellpadding = "2" cellspacing = "3"> </table>

To define the width of the table, define a percentage like this:

<table width = "75"> </table>

If you want to define multiple options, it’s probably easier to store them on sep-
arate lines like this:

<table
 align = "center"
 border = "2"
 cellpadding = "2"
 cellspacing = "3"
 width = "75%">
</table>

When defining the width of a table, you can choose either a percentage ("75%") of
the window width or a specific pixel size ("75px").

Defining a table heading
You may want to define headings for a table with the <th> and </th> tags. The
following code produces the results shown in Figure 1-3:

<html>
 <head>
 <title>This text appears in the title bar.</title>
 </head>

 <table border = "1">
 <th>Column 1</th>
 <th>Column 2</th>
 </table>
</html>

Each time you use the <th> and </th> tags, you create another column in your
table.

CHAPTER 1 HyperText Markup Language 483

H
yperText M

arkup
Language

Creating table rows and data
To fill a table with data, you need to use the <tr> and </tr> tags to define a row
and then fill in that row with the <td> and </td> tags, which define the data. The
following code produces the results shown in Figure 1-4:

<html>
 <head>
 <title>This text appears in the title bar.</title>
 </head>

 <table border = "1">
 <th>Column 1</th>
 <th>Column 2</th>
 <tr>
 <td>Stuff here</td>
 <td>Useful data</td>
 </tr>
 <tr>
 <td>Second row</td>
 <td>More data</td>
 </tr>
 </table>
</html>

FIGURE 1-3:
The <th> and

</th> tags define
the headings for

the table.

484 BOOK 5 Web Programming

You can define the width and alignment of each cell individually like this:

<td align = "center"; width = "100px">Stuff here</td>

Displaying a table caption, header,
and footer
If you want to create a caption to appear above your table, you can use the
<caption> and </caption> tags. Captions can be useful to name or describe the
data stored inside the table.

Tables can also store a header and footer. The header typically appears as the first
row of the table, whereas the footer typically appears as the last row of the table.
To define a table header and footer, you need to use the <thead> and <tfoot> tags,
respectively. The following code produces the results shown in Figure 1-5:

<html>
 <head>
 <title>This text appears in the title bar.</title>
 </head>

 <table border = "1">
 <caption>This is a table caption.</caption>
 <thead>
 <tr>

FIGURE 1-4:
The <tr> and

<td> tags define
new rows and

data for a table,
respectively.

CHAPTER 1 HyperText Markup Language 485

H
yperText M

arkup
Language

 <td>This is a table header</td>
 </tr>
 </thead>
 <th>Column 1</th>
 <th>Column 2</th>
 <tr>
 <td>Stuff here</td>
 <td>Useful data</td>
 </tr>
 <tr>
 <td>Second row</td>
 <td>More data</td>
 </tr>
 <tfoot>
 <tr>
 <td>This is a table footer</td>
 </tr>
 </tfoot>
 </table>
</html>

Notice that the header and footer in Figure 1-5 appears in a single cell, but it may
look better if it can span across multiple cells. To do that, you can use colspan or
rowspan tags to define how many columns or rows to span.

FIGURE 1-5:
The <caption>

and </caption>
tags define text
to appear over

a table.

486 BOOK 5 Web Programming

In this example, I just want the header and footer text to span across two columns,
so I can adjust the header like this:

<td colspan = "2">This is a table header</td>

Then I can do the same for the footer, like this:

<td colspan = "2">This is a table footer</td>

This would allow both the header and the footer text to span across two columns,
as shown in Figure 1-6.

FIGURE 1-6:
The colspan

attribute lets text
expand across

multiple columns.

CHAPTER 2 CSS 487

CSS

Designing web pages with HyperText Markup Language (HTML) lets you
create and display text that can be read through a browser on a variety of
devices such as personal computers, mobile phones, and game consoles.

However, changing the content on a web page often means changing the HTML
code as well. Ideally, you want to leave the HTML code untouched and just change
the content, much like pouring different liquids (such as coffee, juice, or milk)
into a bottle so each type of liquid always appears in the shape of that bottle.

That’s the idea behind cascading stylesheets (CSS). First, you store different styles
in a separate file or in a separate area in the same file, which contain instructions
for formatting text. Second, you apply that stylesheet to a text file or text in that
same file. The combination of the stylesheet file and the text creates the display of
the web page inside a browser.

Cascading stylesheets get their name because you can apply multiple stylesheets to
the same text file. The end result is a combination of styles defined by two or more
stylesheets. If one stylesheet defines a certain font but a second stylesheet defines
a different font, the text appears with the font defined by the last stylesheet.

By using stylesheets, you can make formatting text on your web pages easy, fast,
and simple.

Chapter 2

IN THIS CHAPTER

 » Understanding the structure of a
stylesheet

 » Using style classes

 » Separating stylesheets in files

 » Working with cascading stylesheets

488 BOOK 5 Web Programming

The Structure of a Stylesheet
Like ordinary HTML, stylesheets use tags to define how to format text. To define
a style, you use the <style> and </style> tags and then define the type of text
you want to format such as heading 1 text (defined by the <h1> and </h1> tags),
like this:

<style>
<!--
 textstylename {
 attribute: value;
 }
-->
</style>

In this example, the style appears inside the comment characters: <!-- and -->.
So, if you wanted to display the color red for all heading 1 text, your style would
look like this:

<html>
 <head>
 <title>This text appears in the title bar.</title>
 </head>

 <style>
 <!--
 h1 {
 color : #FF0000;
 }
 -->
 </style>

 </head>
 <body>
 <h1>This heading is defined by the style.</h1>
 </body>
</html>

You can define multiple styles that define additional attributes, including

 » border

 » font-family

 » text-align

CSS

CHAPTER 2 CSS 489

The following stylesheet defines text in both the <h1> heading and the <p> para-
graph text:

<html>
 <head>
 <title>This text appears in the title bar.</title>
 </head>

 <style>
 <!--
 h1 {
 color : #FF0000;
 }
 p {
 color : #00FF00;
 background-color: #FF0000;
 text-align : center;
 }
 -->
 </style>

 </head>
 <body>
 <h1>This heading is defined by the h1 heading style.</h1>
 <p>This text is modified by the paragraph style.</p>
 </body>
</html>

Instead of defining colors using cryptic codes, you can also use more descriptive
names, such as red or pink.

Creating Style Classes
Styles can define the formatting for a particular type of text, such as text displayed
as a <h2> heading or <p> paragraph. Every time you display text in those <h2> or
<p> tags, your style formats that text the same way.

If you want the flexibility to choose different styles to use for text stored within
identical tags, you can define style classes. A style class lets you define format-
ting; then you can apply this style class to any type of text stored within different

490 BOOK 5 Web Programming

types of tags. For example, the following style defines formatting for the <p>
paragraph text:

<html>
 <head>
 <title>This text appears in the title bar.</title>
 </head>

 <style>
 <!--
 h1 {
 color : #FF0000;
 }
 p {
 color : #00FF00;
 background-color: #FF0000;
 text-align : center;
 }
 -->
 </style>

 </head>
 <body>
 <h1>This heading is defined by the h1 heading style.</h1>
 <p>This text is modified by the paragraph style.</p>
 <p>This text also is modified by the paragraph style.</p>
 </body>
</html>

In this example, a single style formats text stored in both <p> tags. To create a
style class, define a class name and its formatting attributes like this:

<style>
<!--
 .classname {
 attribute: value;
 }
-->
</style>

To use a style class, include the class name within a tag, like this:

<tag class = "classname">Text to be formatted</tag>

CSS

CHAPTER 2 CSS 491

Style classes let you apply different styles to text stored within identical tags,
like this:

<html>
 <head>
 <title>This text appears in the title bar.</title>
 </head>

 <style>
 <!--
 .firstclass {
 color : #FF0000;
 }
 .secondclass {
 color : #00FF00;
 text-align : center;
 }
 -->
 </style>

 </head>
 <body>
 <h1 class = "firstclass">This heading is defined by the
 firstclass style.</h1>
 <p class = "firstclass">This text is modified by the
 firstclass style.</p>
 <p class = "secondclass">This text is modified by the
 secondclass style.</p>
 </body>
</html>

Separating Styles in Files
You can embed styles directly into an HTML page. However, if you want to reuse
those styles in another HTML page, you have to copy the styles and store them
a second time. To separate styles completely from the HTML web page they’re
modifying, store stylesheets in separate files.

492 BOOK 5 Web Programming

When stored as a separate file, the stylesheet simply contains the tag or class
names along with the attributes you want to modify, like this:

h1 {
 color : #FF0000;
 }

.myclass {
 color : #00FF00;
 text-align : center;
 }

After you store one or more styles in a separate file saved with the .css file exten-
sion, you need to include that stylesheet file in your HTML web page by adding
the <link> tag:

<link rel = "stylesheet" jref = "stylesheet.css" type = "text/
css" media = "screen">

The media portion of the <link> tag defines how the web page will be viewed.
Besides "screen", some other media types include

 » "braille": For tactile braille readers

 » "aural": For speech synthesis software

 » "handheld": For handheld devices such as mobile phones

For example, suppose you stored the following styles in a styleme.css file:

.firstclass {
 color : #FF0000;
 }
 .secondclass {
 color : #00FF00;
 text-align : center;
 }

Now you can include this stylesheet in any HTML web page by using the <link>
tag like this:

<html>
 <link rel = "stylesheet" href = "./styleme.css" type =
 "text/css" media = "screen">
 <head>

CSS

CHAPTER 2 CSS 493

 <title>This text appears in the title bar.</title>
 </head>

 <body>
 <h1 class = "firstclass">This heading is defined by the
 firstclass style.</h1>
 <p class = "firstclass">This text is modified by the
 firstclass style.</p>
 <p class = "secondclass">This text is modified by the
 secondclass style.</p>
 </body>
</html>

The ./ characters tell the computer to look within the current directory.

Storing stylesheets in separate files makes it easy to modify formatting without
having to modify any of your actual HTML web pages.

Cascading Stylesheets
You can store stylesheets as external files or embedded as part of the HTML code
that defines a web page. If one stylesheet defines how to format text stored inside
the <h1> and </h1> tags and a second stylesheet defines how to format text stored
inside the <p> and </p> tags, both stylesheets cascade (act as one) to define the
text on a single web page. By applying the formatting of different stylesheets, you
get more flexibility in formatting your web pages.

If two stylesheets try to format text stored within the same tags, the internal
stylesheet (the one embedded in the HTML code of the web page) takes precedence
over the external stylesheet (the one stored in a separate file).

In this way, you can use external stylesheets to provide the bulk of the formatting
for a web page and then use smaller internal stylesheets within your HTML code
to define a particular tag, such as text within the <h3> and </h3> tags.

If you have two external stylesheets that format the same text, define the order to
apply the external stylesheets by using multiple <link> tags like this:

<html>
 <link rel = "stylesheet" href = "./file1.css" type =

"text/css"
 media = "screen">

494 BOOK 5 Web Programming

 <link rel = "stylesheet" href = "./file2.css" type =
"text/css"

 media = "screen">
 <body>
 </body>
</html>

In the preceding example, the styles stored in the file2.css stylesheet take prec-
edence over the styles stored in the file1.css. Any styles stored in the HTML
code of your web page takes precedence over any styles stored in either the file2.
css or file1.css external files.

The general rule is that text will be formatted according to the stylesheet closest
to the text. So, an internal stylesheet is closer to text than an external stylesheet,
which is why styles stored in an internal stylesheet take precedence over an exter-
nal stylesheet.

If you want to create a web page with a unified appearance, you might define the
formatting for every tag inside a single external stylesheet. Then modify one or
two styles (stored in additional external stylesheets or embedded in the HTML
code of a specific web page) in case you want to format some text differently.

CHAPTER 3 JavaScript 495

JavaScript

The problem with most web pages is that they’re static, much like staring
at a page from a book except displayed on a computer screen. Although
nothing’s wrong with static web pages for displaying information, you

may want to create interactive web pages that can respond to the user’s actions.
To create interactive or dynamic web pages, computer scientists developed var-
ious programming languages dubbed scripting languages. Although you can choose
several languages for creating dynamic web pages, the most popular scripting
language is JavaScript.

JavaScript programs are stored either as part of a web page file or in a separate
file altogether. When you visit a website, the computer storing the web pages (the
server) sends its web pages and JavaScript files to your computer (the client). Your
computer now runs an interpreter to run the JavaScript programs.

Instead of creating stand-alone applications like a system programming language
(such as C++ or Swift) can do, JavaScript programs are often much shorter and
designed to create simpler programs. For example, a JavaScript program may

Chapter 3

IN THIS CHAPTER

 » Understanding the JavaScript
structure

 » Creating comments and declaring
variables

 » Using operators

 » Working with branching and looping
statements

 » Creating functions

 » Working with arrays

 » Making your user interface look good

496 BOOK 5 Web Programming

display a text box for you to type a password. Whatever you type, the JavaScript
program can verify whether the password is valid and then decide whether to let
you into the website.

Because JavaScript works with most browsers and computers, JavaScript is a
simple way to create dynamic web pages without relying on browser plug-ins that
users may not have or want. However, one major disadvantage is that JavaScript
programs may run slowly. Even worse, some people turn off JavaScript support
to speed up their browser. So, if your web pages rely on JavaScript, anyone who
turned off JavaScript won’t see your fancy web pages.

Despite its name, JavaScript is a completely different programming language from
Java, although both languages borrow heavily from the C++ syntax that includes
the use of curly brackets and semicolons ending each statement.

The Structure of a JavaScript Program
At the simplest level, a JavaScript program can consist of one or more commands,
like this:

<html>
 <script language="javascript">
 document.writeln("This is a simple JavaScript program.");
 </script>
 <body>
 </body>
</html>

The <script> and </script> tags define the beginning and ending of a JavaScript
program. The first <script> tag identifies the scripting language used, which in
this case is always JavaScript. Sandwiched in between the two <script> tags are
the actual JavaScript commands.

However, it’s more common to divide a JavaScript program into functions
with each function acting like a separate building block. For example, a simple
JavaScript program might look like this:

<html>
 <script language="javascript">
 function hello() {
 alert("This is also a simple JavaScript program.");

CHAPTER 3 JavaScript 497

D
esigning Processes to

M
eet G

oals
JavaScript

 }
 </script>
 <body onLoad = "hello()">
 </body>
</html>

The onLoad command tells your computer when to run a particular function.

As an alternative to storing JavaScript code directly in the HTML code of a web
page, you can store JavaScript programs in a separate file with the .js file exten-
sion. This .js JavaScript file then contains all the code within the <script> and
</script> tags, but not the <script> or </script> tags themselves. Then you
need to define the name of that JavaScript file to load and run it within your web
page, like this:

<html>
 <script language=javascript src="filename.js"></script>
 <body onLoad = "hello()">
 </body>
</html>

Creating Comments
To write a comment in JavaScript, use double forward slashes so anything that
appears to the right is a comment, like this:

<html>

 <script language=javascript src="filename.js">

 // The JavaScript code is stored in a file that has the .js file extension.

 </script>

 <body>

 </body>

</html>

Double forward slashes are handy for adding a comment to a single line. If you
want to write a comment over multiple lines, you can use the /* and */ characters,
like this:

<html>
 <script language=javascript src="filename.js">
 /* The JavaScript code is stored in a file that

498 BOOK 5 Web Programming

 has the .js file extension. */
 </script>
 <body>
 </body>
</html>

Declaring Variables
JavaScript variables can hold any type of data, such as numeric (integers and deci-
mals), strings ("like this"), Boolean values (true or false), or nothing at all
(defined as null). JavaScript variables act like temporary containers that can hold
any data. One moment it might hold an integer, the next a decimal value, and then
a string.

To declare a variable in JavaScript, you must use the var keyword followed by the
variable name, like this:

var variableName;

The name variableName can be any descriptive name. Because JavaScript is a
case-sensitive language, it treats My2008Tax as a completely different variable
than my2008tax. Some programmers use uppercase letters to make variable names
easier to find whereas others use all lowercase. To declare multiple variables, just
cram them all on a single line, separated by a comma, like this:

var variableName1, variableName2, variableName3;

Using Operators
The three types of operators used are mathematical, relational, and logical. Math-
ematical operators calculate numeric results such as adding, multiplying, or
dividing numbers, as shown in Table 3-1.

CHAPTER 3 JavaScript 499

D
esigning Processes to

M
eet G

oals
JavaScript

The + operator can also concatenate two strings together, such as "Hi there,"
+ "good looking". This would create one string that contains "Hi there, good
looking".

Relational operators compare two values and return a true or false value. The six
comparison operators available are shown in Table 3-2.

The relational operator in JavaScript is two equal signs (==), whereas the rela-
tional operator in some other programming languages is just a single equal sign
(=). If you use only a single equal sign to compare two values in JavaScript, your
program will work but not the way it’s supposed to.

Logical operators compare two Boolean values (true or false) and return a single
true or false value, as shown in Table 3-3.

TABLE 3-1	 Mathematical Operators
Mathematical Operator Purpose Example

+ Addition 5 + 3.4

– Subtraction 203.9 – 9.12

* Multiplication 39 * 146.7

/ Division 45 / 8.41

% Modulo (returns the remainder) 35 % 9 = 8

TABLE 3-2	 Relational Operators
Relational Operator Purpose

== Equal

!= Not equal

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

500 BOOK 5 Web Programming

Increment and decrement operators
Like C/C++, JavaScript has special increment (++) and decrement (--) operators,
which simply add or subtract 1 to a variable. Typically, adding 1 to a variable looks
like this:

j = 5;
i = j + 1;

The increment operator replaces the + 1 portion with ++, like this:

j = 5;
i = ++j;

In this example, the value of i is j + 1 or 6, and the value of j is also 6.

If you place the increment operator after the variable, like this:

j = 5;
i = j++;

Now the value of i is 5, but the value of j is 6.

TABLE 3-3	 Logical Operators
Logical Operator Truth Table

&& (And) true && true = true

true && false = false

false && true = false

false && false = false

|| (Or) true || true = true

true || false = true

false || true = true

false || false = false

! (Not) !true = false

!false = true

CHAPTER 3 JavaScript 501

D
esigning Processes to

M
eet G

oals
JavaScript

The decrement operator works the same way except that it subtracts 1 from a
variable, like this:

j = 5;
i = --j;

In this example, the value of i is j - 1 or 4, and the value of j is also 4.

If you place the decrement operator after the variable, like this:

j = 5;
i = j--;

Now the value of i is 5, but the value of j is 4.

Assignment operators
Most programming languages use the equal sign to assign values to variables,
like this:

i = 59;

However, JavaScript also includes combination assignment and mathematical
operators, as shown in Table 3-4.

TABLE 3-4	 Assignment Operators
Assignment Operator Purpose Example

+= Addition assignment i += 7 (equivalent to
i = i + 7)

-= Subtraction assignment i -= 4 (equivalent to
i = i - 4)

*= Multiplication assignment i *= y (equivalent to
i = i * y)

/= Division assignment i /= 3.5 (equivalent to i
= i / 3.5)

%= Modulo assignment i %= 2.8 (equivalent to i
= i % 2.8)

502 BOOK 5 Web Programming

Branching Statements
The simplest branching statement is an if statement that only runs one or more
commands if a Boolean condition is true, like this:

if (condition) {
 Command;
}

To make the computer choose between two mutually exclusive sets of commands,
you can use an if-else statement, like this:

if (condition) {
 Command1;
} else {
 Command2;
}

As an alternative to the if-else statement, you can also use the switch statement
to offer two or more choices, like this:

switch (expression) {
 case value1:
 Command1;
 break;
 case value2:
 Command2;
 break;
 default:
 Command3;
}

The switch statement often includes the break command to tell the computer
when to exit out of the switch statement.

The above switch statement is equivalent to the following if-else statement:

if (expression == value1) {
 Command1;
} else if (expression == value2) {
 Command2;
} else {
 Command3;
}

CHAPTER 3 JavaScript 503

D
esigning Processes to

M
eet G

oals
JavaScript

To check if a variable matches multiple values, you can stack multiple case state-
ments, like this:

switch (expression) {
 case value1:
 case value2:
 Command1;
 break;
 case value3:
 case value4:
 Command2;
 break;
 default:
 Command;
}

This switch statement is equivalent to the following if-else statement:

if ((expression = value1) || (expression = value2)) {
 Command;
} else if ((expression == value3) || (expression == value4)) {
 Command;
} else {
 Command;
}

Looping Statements
A looping statement repeats one or more commands a fixed number of times or
until a certain Boolean condition becomes false. To create a loop that repeats a
fixed number of times, use the for loop, which looks like this:

for (startvalue; endvalue; increment) {
 Command;
 }

If you wanted the for loop to run four times, you could set the start value to 1 and
the end value to 4, like this:

for (i = 1; i <= 4; i++) {
 Command;
 }

504 BOOK 5 Web Programming

If you don’t know how many times you need to repeat commands, use a while
loop, which looks like this:

while (condition) {
 Command;
}

If the condition is true, the loop runs at least once. If this condition is false, the
loop doesn’t run.

A variation of the while loop is the do-while loop, which looks like this:

do {
 Command;
} while (condition);

The main difference between the two loops is that the while loop may run zero or
more times, but the do-while loop will always run at least once.

Somewhere inside a while and do-while loop, you must have a command that can
change the condition from true to false; otherwise, the loop will never end, and
your program will appear to hang or freeze.

Creating Functions
In JavaScript, every subprogram is a function that can return a value. (A function
that returns a null value simply acts like a procedure in other programming lan-
guages.) The format of a typical function looks like this:

function functionname (Parameter list) {
 Commands;
 return value;
}

Here are the two parts of a JavaScript function:

 » Parameter list: Defines any data and their data types that the function
needs to work. If the function doesn’t need to accept any values, the parame-
ter list can be empty.

 » return: Defines a value to return.

CHAPTER 3 JavaScript 505

D
esigning Processes to

M
eet G

oals
JavaScript

If a function doesn’t return a value or accept any parameters, it might look like
this:

function myfunction (){
 Command;
}

Using Arrays
JavaScript offers two ways to create an array. First, you can define an array and the
elements inside that array by using square brackets, like this:

var myArray = [data1, data2, data3];

JavaScript arrays can store any type of data, such as integers, decimal values,
strings, or Boolean values like this:

var myArray = [93.42, "Hi there", 3];

Another way to create a JavaScript array is to define the array size and then store
data in that array like this:

var myArray = new Array(x);

Here, x is the size of the array, such as 4 or 9. After defining an array, you can store
items in that array like this:

myArray[2] = "This works";

JavaScript arrays are zero-based, which means if you define an array like this:

var myArray = new Array(2);

The array elements are numbered myarray[0], myarray[1], and myarray[2].

Designing User Interfaces
JavaScript can retrieve data from the user by creating different types of user inter-
face (UI) elements, such as dialog boxes and windows. Such UI items can display
information to the user, creating an interactive web page.

506 BOOK 5 Web Programming

Creating dialog boxes
The three types of dialog boxes JavaScript can create are

 » Alert: Displays a message on the screen and gives the user the option of
closing the dialog box

 » Confirmation: Displays a message and offers the user two or more choices

 » Prompt: Gives users a chance to type in data

Alert dialog boxes
To create an alert dialog box, you need to define the text you want displayed, like
this:

alert("Message here");

An alert dialog box displays an OK button. As soon as the user clicks the OK button,
the alert dialog box goes away.

Confirmation dialog boxes
A confirmation dialog box gives users a choice of OK and Cancel buttons. To create
a confirmation dialog box, you must display text and include commands that do
something when the user clicks either OK or Cancel:

if (confirm("Text message")) {
 command;
} else {
 command;
}

The following JavaScript code creates a confirmation dialog box:

<html>

 <script language="javascript">

 if (confirm("Do you want to retaliate with nuclear weapons?")) {

 document.write("Now starting World War III.");

 } else {

 document.write ("Let's give peace a chance.");

}

 </script>

 <body>

 </body>

</html>

CHAPTER 3 JavaScript 507

D
esigning Processes to

M
eet G

oals
JavaScript

Prompt dialog boxes
To create a prompt dialog box, you need to display text to appear in the dialog box
and then optional text to appear as a default value, like this:

var result = prompt("Text to display", optionalvalue);

If you wanted to display the text "How many politicians are disappointing?"
and display a default value of "All of them", you’d use this JavaScript code:

<html>

 <script language=javascript>

 var result = prompt ("How many politicians are disappointing?", "All of

 them");

 </script>

 <body>

 </body>

</html>

Creating windows
JavaScript can open windows, which can display additional web pages inside.
(Many browsers may include a feature to block pop-up windows. This feature
blocks JavaScript from opening a window because many pop-up ads rely on
JavaScript to display annoying ads on your screen.)

To create a window, you need to use the following:

variablename = open ("address");

So, if you wanted to open the Dummies website, you could use the following code:

myWindow = open ("http://www.dummies.com");

http://www.dummies.com

CHAPTER 4 PHP 509

PHP

In the old days, web pages were used to display information, such as text and
graphics. Nowadays, web pages are dynamic, so they not only need to respond
to the user but often need to retrieve information off a web page and store it in

a database, such as when you type your credit card number to buy something off
a website.

HTML can create simple user interfaces, but when you need to transfer data from
a web page to another program, such as a database, you need to use a program-
ming language. Although programmers have used C, Perl, and Java to link web
pages to other programs like databases, one of the most popular programming
languages for this task is PHP, which is a recursive name that stands for PHP
Hypertext Processor (www.php.net).

Although languages such as C and Perl can be used to create stand-alone applica-
tions, PHP programs are unique in that they can run only on web pages. Not only
is PHP designed for creating programs within web pages, but PHP is also free
and capable of running under many different operating systems. If you’re already

Chapter 4

IN THIS CHAPTER

 » Understanding the structure of a PHP
program

 » Creating comments and declaring
variables

 » Using operators

 » Working with branching and looping
statements

 » Using functions

 » Working with arrays

 » Using objects

https://www.php.net/

510 BOOK 5 Web Programming

familiar with C and Perl, you’ll find that PHP mimics much of the syntax from
both languages. Although you can create dynamic websites with other program-
ming languages, you may find PHP easier and simpler to use.

Examining the Structure of a PHP Program
At the simplest level, a PHP program can consist of one or more commands
embedded in a web page’s HTML code, like this:

<html>
 <body>
 <?php
 echo "<h1>Greetings from PHP.</h1>";
 ?>
 </body>
</html>

The <?php and ?> tags define the beginning and ending of a PHP program. PHP
scripts (programs) are usually stored in a file that ends with the .php filename
extension.

If the PHP code in this book doesn’t work quite right, chances are, it’s because
your server hasn’t been configured to run PHP embedded within HTML files.

Creating Comments
To write a comment in PHP, you have three choices: //, #, or /* and */. Both the
double forward slash (//) and the number sign (#) are used to create comments
on a single line, like this:

<html>
 <body>

 // This is the beginning of the PHP program.

 <?php

CHAPTER 4 PHP 511

PH
P echo "<h1>PHP is a unique web-specific language</h1>";

 ?>

 # This is the end of the PHP program.

 </body>
</html>

If you want to write a comment over multiple lines, use the /* and the */ char-
acters, like this:

<html>
 <body>

 /* This is the beginning of the PHP program.
 If a comment extends over multiple lines,
 It's easier to use these types of comment
 symbols instead. */

 <?php
 echo "<h1>PHP can be fun and profitable</h1>";
 ?>
 </body>
</html>

Declaring Variables
PHP variables can hold any type of data, so a variable might hold a string one
moment and a number the next. To declare a variable in PHP, you must begin
every variable name with the dollar symbol ($), like this:

$variableName = value;

You can choose variableName to be any descriptive name, but PHP is a case-
sensitive language, so $myAge is considered a completely different variable from
$myage. Some programmers use uppercase letters to make variable names easier
to find, and others use all lowercase letters.

512 BOOK 5 Web Programming

One unique feature of PHP is its ability to reference the same value. For example,
consider the following code:

$myAge = 35;
$yourAge = $myAge;
$myAge = 109;

In this example, the $myAge variable is initially set to 35 and the $yourAge variable
is set to the $myAge variable, which means the $yourAge variable also contains the
value of 35. The third line stores the value 109 into the $myAge variable, but the
$yourAge variable still holds the value of 35.

By referencing variables with the ampersand symbol (&), PHP allows a variable to
contain identical data without specifically assigning those values. For example:

$myAge = 35;
$yourAge = &$myAge;
$myAge = 109;

The second line in the preceding PHP code tells the computer that the $yourAge
variable references the $myAge variable, so whatever value the $myAge variable
contains from now on will automatically be stored in the $yourAge variable.

After the third line, the $myAge variable now contains the value of 109, so the
$yourAge variable contains 109, too.

Using Operators
The three types of operators used in PHP are mathematical, relational, and logical
operators.

Mathematical operators calculate numeric results, such as adding, multiplying, or
dividing numbers, as shown in Table 4-1.

Relational operators compare two values and return a true or false value. The
seven comparison operators available are shown in Table 4-2.

CHAPTER 4 PHP 513

PH
P

PHP uses three equal signs (===) to compare two values and determine whether
they’re of the same data type. For example, PHP treats 14.0 and 14 as equal
because both are numbers, but 14.0 and "14.0" wouldn’t be considered identical
because one is a number and the other is a different data type (a string).

Logical operators compare two Boolean values (true or false) and return a single
true or false value, as shown in Table 4-3.

Increment and decrement operators
PHP has a special increment (++) and a decrement (--) operator, which simply
adds or subtracts 1 to a variable. Typically, adding 1 to a variable looks like this:

j = 5;
i = j + 1;

TABLE 4-1	 Mathematical Operators
Mathematical Operator Purpose Example

+ Addition 5 + 3.4

– Subtraction 203.9 – 9.12

* Multiplication 39 * 146.7

/ Division 45 / 8.41

% Modulo (returns the remainder) 35 % 9 = 8

TABLE 4-2	 Relational Operators
Relational Operator Purpose

== Equal

=== Identical

!= or <> Not equal

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

514 BOOK 5 Web Programming

The increment operator replaces the + 1 portion with ++, like this:

j = 5;
i = ++j;

In the preceding example, the value of i is j + 1 or 6, and the value of j is also 6.

If you place the increment operator after the variable, like this:

j = 5;
I = j++;

Now the value of i is 5, but the value of j is 6.

The decrement operator works the same way, except it subtracts 1 from a vari-
able, like this:

j = 5;
i = --j;

In the preceding example, the value of i is j - 1 or 4, and the value of j is also 4.

TABLE 4-3	 Logical operators
Logical Operator Truth Table

&& (AND) true && true = true

true && false = false

false && true = false

false && false = false

|| (OR) true || true = true

true || false = true

false || true = true

false || false = false

XOR (Exclusive OR) true XOR true = false

true XOR false = true

false XOR true = true

false XOR false = false

! (NOT) !true = false

!false = true

CHAPTER 4 PHP 515

PH
PIf you place the decrement operator after the variable, like this:

j = 5;
i = j--;

Now the value of i is 5, but the value of j is 4.

Assignment operators
Most programming languages use the equal sign (=) to assign values to variables,
like this:

i = 59;

However, PHP also includes combination assignment and mathematical opera-
tors, as shown in Table 4-4.

Branching Statements
The simplest branching statement is an if statement that runs only one or more
commands if a Boolean condition is true, like this:

if (condition) {
 Command;
}

TABLE 4-4	 Assignment Operators
Assignment Operator Purpose Example

+= Addition assignment i += 7 (equivalent to
i = i + 7)

-= Subtraction assignment i -= 4 (equivalent to
i = i - 4)

*= Multiplication assignment i *= y (equivalent to
i = i * y)

/= Division assignment i /= 3.5 (equivalent to
i = i / 3.5)

%= Modulo assignment i %= 2.8 (equivalent to
i = i % 2.8)

516 BOOK 5 Web Programming

To make the computer choose between two mutually exclusive sets of commands,
you can use an if-else statement, like this:

if (condition) {
 Command1;
} else {
 Command2;
}

Although the if-else statement can only give the computer a choice of two
groups of commands to run, the if-elseif statement can offer the computer
multiple groups of commands to run, like this:

if (condition1) {
 Command;
} elseif (condition2) {
 Command;
} elseif (condition3) {
 Command;
}

As an alternative to the if-elseif statement, you can also use the switch state-
ment to offer two or more choices, like this:

switch (expression) {
 case value1:
 Command1;
 break;
 case value2:
 Command2;
 break;
 default:
 Command3;
}

The switch statement often includes the break command to tell the computer
when to exit out of the switch statement.

The preceding switch statement is equivalent to the following if-else statement:

if (expression == value1) {
 Command;
} elseif (expression == value2) {

CHAPTER 4 PHP 517

PH
P Command;

} else {
 Command;
}

To check whether a variable matches multiple values, you can stack multiple case
statements, like this:

switch (expression) {
 case value1:
 case value2:
 Command1;
 break;
 case value3:
 case value4;
 Command2;
 break;
 default:
 Command3;
}

The preceding switch statement is equivalent to the following if-else statement:

if ((expression == value1) || (expression == value2)) {
 Command1;
} else if ((expression == value3) || (expression == value4)) {
 Command2;
} else {
 Command3;
}

Looping Statements
A looping statement repeats one or more commands a fixed number of times or
until a certain Boolean condition becomes false. To create a loop that repeats a
fixed number of times, use the for loop, which looks like this:

for (startvalue; endvalue; increment) {
 Command;
 }

518 BOOK 5 Web Programming

If you wanted the for loop to run four times, you could set the start value to 1 and
the end value to 4, like this:

for ($i = 1; $i <= 4; $i++) {
 Command;
 }

If you don’t know how many times you need to repeat commands, use a while
loop, like this:

while (condition) {
 Command;
}

If the condition is true, the loop runs at least once. If this condition is false, the
loop doesn’t run.

Somewhere inside a while loop, you must have a command that can change the
condition from true to false; otherwise, the loop will never end, and your pro-
gram will appear to hang or freeze.

Creating Functions
To break up programming problems, you can create subprograms that solve a
specific task. Such subprograms are called functions. The format of a typical func-
tion looks like this:

function functionname (Parameter list) {
 Commands;
 return $value;
}

The two parts of a PHP function are

 » Parameter list: Defines any data that the function needs to work. If the
function doesn’t need to accept any values, the parameter list can be empty.

 » return: Defines a value to return.

CHAPTER 4 PHP 519

PH
PIf a function doesn’t return a value or accept any parameters, it might look like

this:

function myfunction () {
 Command;
}

Using Arrays
PHP creates arrays that can hold any type of data and grow as large as you need
them without having to define a size ahead of time. To create an array, define an
array name, the data you want to store, and the index number where you want to
store that item in the array like this:

$arrayname[index] = data;

So, if you wanted to store the string "Hello" and the number 4.23 in the first and
second elements of an array, you could do the following:

$myarray[0] = "Hello";
$myarray[1] = 4.23;

For greater flexibility in retrieving data, PHP lets you create associative arrays,
which let you identify data by a unique string (called a key) rather than an arbi-
trary index number. Instead of assigning data to a specific index number, you
assign data to a unique string, like this:

$arrayname["key"] = data;

If you wanted to assign the number 3.14 to the "pi" key, you’d do this:

$myarray["pi"] = 3.14;

To retrieve data from an associative array, use the key value, like this:

$variable = $arrayname["key"];

So, if you wanted to retrieve data stored under the key "pi", you could do the
following:

$myarray["pi"] = 3.14;
$number2use = $myarray["pi"];

520 BOOK 5 Web Programming

The first line stores the value 3.14 into the array and assigns it to the key "pi".
The second line yanks out the data, associated with the key "pi", and stores that
data into the $number2use variable.

PHP includes a library of built-in array functions for manipulating arrays such as
array_pop (which removes the last element from an array), array_push (which
adds an element to the end of an array, and sort (which sorts arrays in ascending
order).

Creating Objects
PHP supports object-oriented programming. To create an object, you must define
a class, which specifies the properties and methods, like this:

class classname {
 public $propertyname;

 public function methodname() {
 commands;
 }
}

To create an object, you must use the following syntax:

$objectname = new classname();

To assign a value to an object’s property, specify the object name and the property
you want to use, like this:

$objectname->propertyname = value;

When assigning a value to an object’s property, notice that the dollar sign ($) isn’t
used to designate the property name.

To tell an object to run a method, specify the object name followed by the method
name, like this:

$objectname->methodname();

PHP allows single inheritance (where an object can inherit from one class), in con-
trast to multiple inheritance (which allows an object to inherit from two or more

CHAPTER 4 PHP 521

PH
Pclasses). To inherit from a class, use the extends keyword followed by the class

name you want to inherit from, like this:

class classname1 {
 public $propertyname;

 public function methodname() {
 commands;
 }
}

class classname2 extends classname1 {
 public $propertyname;

 public function methodname() {
 commands;
 }
}

CHAPTER 5 Ruby 523

Ruby

The Ruby programming language was created by Yukihiro “Matz” Matsumoto,
a Japanese programmer who named the language after a gemstone in refer-
ence to the Perl (pearl) programming language. Although most languages

focus on wringing out extra performance from computer hardware, Ruby focuses
on a clean language syntax that’s easy for programmers to understand and use.
Instead of trying to increase machine efficiency, Ruby tries to increase program-
mer efficiency. The overriding principle of Ruby is to create a language of least
surprise, meaning that after you’re familiar with Ruby, you aren’t suddenly sur-
prised that its features can be used in an entirely different way, which often occurs
with languages such as C++.

Ruby is an interpreted, object-oriented language for creating interactive web
pages. Although Ruby is similar to Perl and Python, Ruby abandons the C syntax
of Perl and more closely resembles the syntax of programming languages like
Smalltalk or Ada. Instead of enclosing blocks of commands in curly brackets
like C or Perl, Ruby encloses blocks of commands with keywords like Ada or more
modern versions of BASIC.

Chapter 5

IN THIS CHAPTER

 » Understanding the structure of a
Ruby program

 » Creating comments and declaring
variables

 » Using operators

 » Working with branching statements
and looping statements

 » Creating functions

 » Working with data structures

 » Making objects

524 BOOK 5 Web Programming

A programming framework, dubbed Ruby on Rails, makes it easy to manipulate
databases through web pages and has attracted the attention of many former Java
programmers. Like Ruby itself, Ruby on Rails is free, which has further fueled its
growth. Although still a relatively young language (created in 1995), Ruby has
attracted a worldwide following and will likely play a major role in future applica-
tions developed for the web.

To get a copy of the free Ruby interpreter for different operating systems, visit the
official Ruby website (www.ruby-lang.org).

The Structure of a Ruby Program
A Ruby program can consist of one or more commands:

print('What is your name? ')
my_name = gets()
puts("Welcome to Ruby, #{my_name}")

Unlike other programming languages, Ruby programs don’t need to define a main
program, don’t enclose blocks of commands with curly brackets, and don’t end
statements with a semicolon. Type a command, and Ruby obeys without its syntax
interfering with your thinking.

The preceding Ruby program simply asks the user to type a name. Whatever name
the user types gets stored in the my_name variable. Then the last line prints the
string "Welcome to Ruby", followed by the contents of the my_name variable.

Creating Comments
To write a comment in Ruby, use the # symbol. Anything that appears to the right
of the # symbol is considered a comment, which the computer ignores:

This is a comment
print('What is your name? ')
my_name = gets() # This is also a comment
puts("Welcome to Ruby, #{my_name}")

If you want to write a comment over multiple lines, define the start and end of a
comment block with =begin and =end, like this:

https://www.ruby-lang.org/

CHAPTER 5 Ruby 525

Ruby

=begin This is a block of comments
 that make it easy to comment
 out multiple lines. However,
 Ruby's block commenting is kind
 of ugly so it's rarely used.
=end
print('What is your name? ')
my_name = gets()
puts("Welcome to Ruby, #{my_name}")

Defining comments with the =begin and =end lines is often cumbersome, so it’s
more common for programmers to use multiple # symbols in front of each line
instead, like this:

This program was written by John Doe
on January 24, 2009. It took him a
long time to write so maybe he deserves
a big fat raise or at least some extra
sick days so he can look for a better job.
print('What is your name? ')
my_name = gets()
puts("Welcome to Ruby, #{my_name}")

Declaring Variables
Ruby uses symbols to identify different types of variables:

 » Local: Begins with a lowercase letter, such as myage

 » Instance: Begins with an at sign (@), such as @house

 » Class: Begins with two at signs (@@), such as @@mathclass

 » Global: Begins with a dollar sign ($), such as $mymoney

In Ruby, constants are identified with an initial uppercase letter like Pi or Taxrate.
To avoid confusing constants with local variables, it’s best to use all uppercase
letters to name constants like PI or TAX_RATE.

Both class and instance variables are used inside classes that define objects.

526 BOOK 5 Web Programming

To store data into a variable, define the variable name and set it equal to a value:

Variable_name = value

The name of your variable can be anything, but Ruby is a case-sensitive language
so my_Age is considered a completely different variable than my_age.

Using Operators
The three types of operators used in Ruby are mathematical, relational, and logi-
cal operators. Mathematical operators calculate numeric results such as adding,
multiplying, or dividing numbers, as shown in Table 5-1.

If you divide two integers with the / operator, the answer will be rounded to the
nearest integer. If you want to return a decimal value, at least one of the numbers
must be written as a decimal value, such as 2.0 / 3 or 2 / 3.0. If you just type
2 / 3, the answer will be 0.

Relational operators compare two values and return a true or a false value. The
seven comparison operators available are shown in Table 5-2.

Ruby uses three equal signs (===) to compare two values and determine whether
they’re the same data. For example, Ruby treats 1.0 and 1 as identical because
both are numbers, but 1.0 and "1.0" wouldn’t be considered equal because one is
a number and the other is a different data type (a string).

TABLE 5-1	 Mathematical Operators
Mathematical Operator Purpose Example

+ Addition 5 + 3.4

- Subtraction 203.9 – 9.12

* Multiplication 39 * 146.7

/ Division 45 / 8.41

% Modulo (returns the remainder) 35 % 9 = 8

** Exponentiation 2 ** 3 = 8

CHAPTER 5 Ruby 527

Ruby

Logical operators compare two Boolean values (true or false) and return a single
true or false value, as shown in Table 5-3.

TABLE 5-2	 Relational Operators
Relational Operator Purpose

== Equal to

=== Identical to (such as 1 === 1.0)

!= Not equal to

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

TABLE 5-3	 Logical Operators
Logical Operator Truth Table

&& (AND) true && true = true

true && false = false

false && true = false

false && false = false

|| (OR) true || true = true

true || false = true

false || true = true

false || false = false

^ (XOR) true ^ true = false

true ^ false = true

false ^ true = true

false ^ false = false

! (NOT) !true = false !false = true

528 BOOK 5 Web Programming

Most programming languages use the equal sign (=) to assign values to variables,
like this:

i = 59

However, Ruby also includes combination assignment and mathematical opera-
tors, as shown in Table 5-4.

Because Ruby lacks an increment and decrement operator like C++, you must
increment variables with the assignment operator. So, although C++ lets you use
an increment operator like this:

++i;

The equivalent increment operator in Ruby might look like this:

i += 1

Branching Statements
The simplest branching statement is an if statement that runs only one or more
commands if a Boolean condition is true, like this:

TABLE 5-4	 Assignment Operators
Assignment Operator Purpose Example

+= Addition assignment i += 7 (equivalent to
i = i + 7)

-= Subtraction assignment i -= 4 (equivalent to
i = i - 4)

*= Multiplication assignment i *= y (equivalent to
i = i * y)

/= Division assignment i /= 3.5 (equivalent to
i = i / 3.5)

%= Modulo assignment i %= 2.8 (equivalent to
i = i % 2.8)

CHAPTER 5 Ruby 529

Ruby

if condition
 Command
end

If you write the entire if statement on a single line, you must make sure you
include the then keyword:

if condition then Command end

Ruby also includes a negated form of the if statement called the unless
statement, which looks like this:

unless condition
 Command
end

The unless statement runs only if the condition is false.

a = 5
unless a < 1
 puts "This will print out."
end

Because the condition a < 1 is false, the preceding unless statement runs the
command sandwiched between the unless keyword and the end keyword.

Both the if and unless statements can make the computer choose between two
mutually exclusive sets of commands by including an else keyword, like this:

if condition
 Command1
else
 Command2
end

Although the if-else statement can only give the computer a choice of two
groups of commands to run, the if-elsif statement can offer the computer mul-
tiple groups of commands to run:

if condition1
 Command
elsif condition2
 Command
elsif condition3

530 BOOK 5 Web Programming

 Command
end

As an alternative to the if-elsif statement, you can also use the case statement
to offer two or more choices, like this:

case variable
 when value1
 Command1
 when value2
 Command2
 else
 Command3;
end

Instead of checking whether a variable equals a specific value, the case statement
can also check whether a variable falls within a range of values by using the ..
characters, like this:

case variable
 when value1..value4
 Command1
 when value5
 Command2
 else
 Command3
end

Looping Statements
A looping statement repeats one or more commands a fixed number of times or
until a certain Boolean condition becomes true. To create a loop that repeats a
fixed number of times, use the for loop, which looks like this:

for variable in startvalue..endvalue
 Command
end

CHAPTER 5 Ruby 531

Ruby

If you wanted the for loop to run four times, you could set the start value to 1 and
the end value to 4, like this:

for i = 1..4
 Command
end

If you don’t know how many times you need to repeat commands, use a while
loop, which looks like this:

while condition
 Command
end

If the condition is true, the loop runs at least once. If this condition is false, then
the loop doesn’t run.

Ruby also offers a negated form of the while loop called an until loop, which
looks like this:

until condition
 Command
end

The until loop keeps running until a condition becomes true.

Somewhere inside a while or an until loop, you must have a command that can
change the condition from true to false; otherwise, the loop will never end and
your program will appear to hang or freeze.

Creating Functions
To break up programming problems, you can create subprograms that solve a
specific task. Such subprograms are functions or methods. The format of a typical
function looks like this:

def functionname (Parameter list)
 Commands
 return value
end

532 BOOK 5 Web Programming

The two parts of a Ruby function are

 » Parameter list: Defines any data that the function needs to work. If the
function doesn’t need to accept any values, omit the parentheses altogether.

 » return: Defines a value to return.

If a function doesn’t return a value or accept any parameters, it might look
like this:

def myfunction
 Command
end

Using Data Structures
Ruby offers two built-in data structures: arrays and hashes (also known as
associative arrays):

 » An array can hold any number of items of different data types, such as strings
and numbers. Each item is identified by an index number, starting with 0.

 » A hash stores a unique key value with every item. To retrieve a value from a
hash, you need to know its key.

To create an empty array, use the new class method like this:

Array_name = Array.new

To create an array and list the items to store in that array, use the Array keyword
followed by the data to store in the array inside square brackets like this:

array_name = Array[data1, data2, data3]

So, if you wanted to store the string "Ruby is cool" and the number 84.3 in the
first and second elements of an array, you could do the following:

my_stuff = Array["Ruby is cool", 84.3]

CHAPTER 5 Ruby 533

Ruby

To retrieve data from an array, specify the array name and index number. So, if
you wanted to retrieve the first item in an array, you could do this:

puts (my_stuff[0])

One problem with arrays is that to retrieve specific data, you need to know its
exact location in the array. For greater flexibility, Ruby offers hashes so you can
assign a unique value (a key) to each item. To create a hash and store data along
with a key, do this:

hashname = {key => value, key => value}

Ruby defines a collection with square brackets but defines a hash with curly
brackets.

If you wanted to assign the number 3.14 to the "pi" key, you could do this:

myhash = {"pi" => 3.14}

If you need to store multiple keys and values in a hash, you might prefer this
alternate way of storing keys and data in a hash:

hashname = Hash.new
hashname[key] = value
hashname[key] = value

When defining a hash with multiple lines, use square brackets.

To retrieve data from a hash, identify the hash name and a key value, like this:

puts (hashname["key"])

So, if you wanted to retrieve data stored under the key "pi", you could do the
following:

hashname = Hash.new
hashname["pi"] = 3.14
puts (hashname["pi"])

The first line creates a hash data structure. The second line stores the value 3.14
into the hash using the key "pi". The third line prints out the value identified by
the "pi" key in the hash data structure.

534 BOOK 5 Web Programming

Creating Objects
Ruby supports object-oriented programming. To create an object, you must define
a class with a name like this:

class Box

end

The next step is to create an initializer, which defines properties such as width
and height, like this:

class Box
 def initialize(w,h)
 @width, @height = w, h
 end
end

This initializer lets you create an object from the class and define two values — a
width (w) and a height (h) — which get stored in the @width and @height proper-
ties, respectively.

Next, you can create a method to manipulate properties stored in the class
like this:

class Box
 # constructor method
 def initialize(w,h)
 @width, @height = w, h
 end
 # instance method
 def calculateArea
 @width * @height
 end
end

To create an object from a class, you must use the following syntax:

objectname = Classname.new

So, to create an object from the Box class defined earlier, you need to define the
class (Box), use the new keyword, and pass in two values for the width and height,
respectively, like this:

room = Box.new(15, 17)

CHAPTER 5 Ruby 535

Ruby

To call a method inside of a class, you need to specify the object name (such as
room) along with the method name to run, like this:

area = room.calculateArea()
puts ("Area of the box is : #{area}")

This creates a variable called area, which stores the value calculated by the calcu-
lateArea method. Then it prints this value: Area of the box is : 255.

To assign a value to an object’s property, you need to specify the object name and
the property you want to use, like this:

objectname.propertyname = value

To tell an object to run a method, you need to specify the object name followed by
the method name, like this:

objectname.methodname(parameters)

Ruby allows single inheritance, where an object can inherit from one class (in con-
trast to multiple inheritance, which allows an object to inherit from two or more
classes). To inherit from a class, use the < symbol followed by the class name you
want to inherit from, like this:

class Classname1
 def propertyname
 @propertyname
 end
 def propertyname=(propertyname)
 @propertyname = propertyname
 end

 def methodname(parameter list)
 commands
 end
end

class Classname2 < Classname1
 # property and method definitions go here
end

6Programming
Language Syntax

Contents at a Glance
CHAPTER 1: C and C++ . 539

CHAPTER 2: Java and C# . 557

CHAPTER 3: Perl and Python . 577

CHAPTER 4: Kotlin . 595

CHAPTER 5: Swift and SwiftUI . 613

CHAPTER 6: Flutter and Dart . 637

CHAPTER 1 C and C++ 539

C and C++

The C language focuses on simplicity (for the computer, not for human pro-
grammers). Whereas other programming languages include a large number
of keywords, the C language consists of a much smaller number of key-

words. As a result, creating C compilers is relatively easy compared to creating
compilers for other programming languages, which means that C compilers are
easy to write for every operating system. This makes it easier to port (transfer) C
programs from one computer to another.

Because the C language consists of relatively few keywords, it lacks features com-
monly found in other programming languages, such as offering a string data type.
To compensate for its relative sparseness of features, most C compilers include
a variety of library files that contain prewritten C code that adds these useful
features to the C language. The main problem with C compilers is that every
C compiler tends to offer different library files, so a C program designed to run on
Windows may not run correctly with a different C compiler on Linux.

Chapter 1

IN THIS CHAPTER

 » Understanding the structure of a
C/C++ program

 » Using comments

 » Declaring variables

 » Using mathematical operators

 » Working with branching and looping
statements

 » Creating functions and data
structures

 » Working with objects

540 BOOK 6 Programming Language Syntax

The C++ language builds on the C language by adding object-oriented features
while retaining the C language’s hardware access, speed, and portability. Most
large and complicated programs, such as operating systems, are written in C++.

Because C/C++ gives complete access to all parts of the computer, a mistake in a
C/C++ program can wipe data off a hard disk or crash the entire operating system
of the computer. Writing C/C++ programs may be straightforward, but under-
standing and fixing C/C++ programs can be difficult.

Despite these problems, C/C++ is heavily used throughout the computer industry.
To understand programming, you must become familiar with the C/C++ program-
ming language.

Looking at the Structure
of a C/C++ Program

A C program is divided into multiple functions where each function acts like a
separate building block. To identify the starting point of a C program, one func-
tion is always designated as the main function. A simple C program looks like this:

int main()
{
 printf("This is a simple C program.\n");
 return 0;
}

Large C programs consist of multiple functions where each additional function
appears defined separate from the main function. In the following example, the
separate function is printme:

void printme()
{
 printf("This is a simple C program.\n");
}

int main()
{
 printme();
 return 0;
}

CHAPTER 1 C and C++ 541

C and C++

In many programming languages, you can define a function inside another
function. However in C/C++, you can’t do this.

Often, a C program needs to use a feature defined in a separate library, so you may
see programs that define a library to add, like this:

#include <stdio.h>
int main()
{
 printf("This is a simple C program.\n");
 return 0;
}

The structure of a typical C++ program looks similar. The following C++ example
includes a C++ library called iostream and uses elements defined in a standard C++
library called std:

#include <iostream>
using namespace std;

int main ()
{
 cout << "This is a simple C++ program.";
 return 0;
}

Despite minor differences, C and C++ programs basically consist of a single main
function and zero or more additional functions.

Creating Comments
To write a comment in C/C++, you have two choices. First, you can use double
forward slashes so anything that appears to the right is a comment, like this:

#include <iostream>
using namespace std;

// This is a comment at the beginning of the program
int main ()
{
 cout << "This is a simple C++ program.";
 return 0;
}

542 BOOK 6 Programming Language Syntax

The double forward slashes are handy for adding a comment to a single line. If you
want to write a comment over multiple lines, you can use the /* and */ characters:

/* This C program was written as a simple example
 to show people how easy C can be to learn. */

#include <stdio.h>
int main()
{
 printf("This is a simple C program.\n");
 return 0;
}

Declaring Variables
When declaring variables in C/C++, first you declare the data type and then you
declare the variable name:

datatype variable_name;

You can make variable_name any descriptive name. Because C/C++ is a case-
sensitive language, it treats SalesTax as a completely different variable than
salestax. Some programmers use uppercase letters to make variable names easier
to find; other programmers use all lowercase. To declare multiple variables of the
same data type, cram them all on a single line, separated by a comma, like this:

datatype VariableName1, VariableName2, VariableName3;

Declaring string data types
Unlike other programming languages, C/C++ doesn’t support a string data type.
Instead, C/C++ offers two alternatives: a character data type and a library.

First, C/C++ offers a character data type, which can hold a single character. Instead
of using a string data type, you can use an array of character data types, which
is clumsier, but workable. To declare a character data type, use the char keyword
followed by your variable name:

char variable_name;

CHAPTER 1 C and C++ 543

C and C++

To mimic a string data type, declare an array of characters:

char arrayname[arraylength];

So, if you wanted to create an array that can hold 20 characters, you could do this:

char firstname[20];

An alternative is to include a library (string) that implements a string data type
in C++, like this:

#include <string>
using namespace std;
string stringvariable;

Declaring integer data types
Whole numbers represent integers, such as –59, 692, or 7. A whole number can
be positive or negative. The most common type of integer data type is int and is
used as follows:

int variablename;

If you need to restrict a variable to a smaller range of values, you can declare a
short int or a short variable as follows:

short int smallvariable;
short smallvariable;

The long integer data type in some implementations can be identical to the regu-
lar int data type.

All integer types (int, short, and long) can also be signed or unsigned. Signed
data types can represent positive or negative numbers whereas unsigned data
types can represent only positive numbers.

To define positive values for an integer variable, you could do this:

unsigned int variablename;

The signed declaration isn’t necessary because

signed long variablename;

544 BOOK 6 Programming Language Syntax

is identical to

long variablename;

Table 1-1 shows the range of values that common integer data types in C/C++
can hold.

The exact number of bytes and range of all integer data types depends on the
compiler used and the operating system, such as whether you’re using a 32-bit or
a 64-bit operating system. With many compilers, the range of values is identical
between int and long data types.

Declaring floating-point data types
Floating-point values represent decimal values, such as 3.158 or –9.4106. Just as
you can limit the range of integer values a variable can hold, so you can limit the
range of floating-point values a variable can hold.

The three types of floating data types are float, double, and long double, as
shown in Table 1-2.

Real numbers (float, double, and long double) are always signed data types
(positive or negative). With many compilers, the range of values is identical
between double and long double data types.

TABLE 1-1	 Typical Storage and Range Limitations
of C/C++ Integer Data Types

Data Type Number of Bytes Range

short 2 Signed: –32,768 to 32,767

Unsigned: 0 to 65,535

int 4 Signed: –2,147,483,648 to 2,147,483,647

Unsigned: 0 to 4,294,967,295

long 4 or 8 Signed: –2,147,483,648 to 2,147,483,647

Unsigned: 0 to 4,294,967,295

CHAPTER 1 C and C++ 545

C and C++

Declaring Boolean values
In the C language, there are no Boolean data types. Any nonzero value is consid-
ered to represent True, and zero represents False. To mimic a Boolean data type,
many C programmers define numeric values for TRUE and FALSE, like this:

#define FALSE 0
#define TRUE 1
int flag = FALSE;

Although this is workable, such an approach forces you to create an integer vari-
able to represent a Boolean value. To avoid this problem, C++ offers a special bool
data type (a Boolean value like most programming languages):

bool variablename;

A C++ bool data type can hold a value of 0 (False) or 1 (True).

Using Operators
The three types of operators used are mathematical, relational, and logical.
Mathematical operators calculate numeric results such as adding, multiplying, or
dividing numbers, as shown in Table 1-3.

Relational operators compare two values and return a 1 (true) or 0 (false) value.
The six comparison operators available are shown in Table 1-4.

The relational operator in C/C++ is two equal signs (==), whereas the relational
operator in non-curly-bracket programming languages is often a single equal
sign (=). If you use only a single equal sign to compare two values in C/C++, your
program will work but not the way it’s supposed to.

TABLE 1-2	 Typical Floating-Point Data Types
Data Type Number of Bytes Range

float 4 –1.4023 E–45 to 3.4028 E38

double 8 –4.9406 E–324 to 1.7977 E308

long double 8 or 16 –4.9406 E–324 to 1.7977 E308

546 BOOK 6 Programming Language Syntax

Logical operators compare two Boolean values (1/true or 0/false) and return a
single true or false value, as shown in Table 1-5.

Increment and decrement operators
Both C/C++ have a special increment operator (++) and a decrement operator (--),
which simply adds 1 to a variable or subtracts 1 from a variable, respectively.
Typically, adding 1 to a variable looks like this:

j = 5;
i = j + 1;

The increment operator replaces the + 1 portion with ++:

j = 5;
i = ++j;

TABLE 1-3	 Mathematical Operators
Mathematical Operator Purpose Example

+ Addition 5 + 3.4

- Subtraction 203.9 – 9.12

* Multiplication 39 * 146.7

/ Division 45 / 8.41

% Modulo (returns the remainder) 35 % 9 = 8

TABLE 1-4	 Relational Operators
Relational Operator Purpose

== Equal to

!= Not equal to

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

D:\\Applications\\REALbasic 2007 Release 1\\REALbasic 2007 Release 1.app\\Contents\\Resources\\Language Reference\\Topics\\1098.html
D:\\Applications\\REALbasic 2007 Release 1\\REALbasic 2007 Release 1.app\\Contents\\Resources\\Language Reference\\Topics\\1098.html

CHAPTER 1 C and C++ 547

C and C++

In the preceding example, the value of i is j + 1 or 6, and the value of j is also 6.

If you place the increment operator after the variable, like this:

j = 5;
i = j++;

Now the value of i is 5, but the value of j is 6.

The decrement operator works the same way except that it subtracts 1 from a
variable, like this:

j = 5;
i = --j;

In the preceding example, the value of i is j - 1 or 4, and the value of j is also 4.

If you place the decrement operator after the variable, like this:

j = 5;
i = j--;

Now the value of i is 5, but the value of j is 4.

TABLE 1-5	 Logical Operators
Logical Operator Truth Table

&& True && True = True

True && False = False

False && True = False

False && False = False

|| True || True = True

True || False = True

False || True = True

False || False = False

! !True = False

!False = True

548 BOOK 6 Programming Language Syntax

Assignment operators
Most programming languages use the equal sign (=) to assign values to variables:

i = 59;

However, C/C++ also includes combination assignment and mathematical opera-
tors, as shown in Table 1-6.

Branching Statements
The simplest branching statement is an if statement that only runs one or more
commands if a Boolean condition is true, such as

if (condition) {
 Command;
}

To make the computer choose between two mutually exclusive sets of commands,
you can use an if-else statement:

if (condition) {
 Command;
} else {
 Command;
}

TABLE 1-6	 Assignment Operators
Assignment Operator Purpose Example

+= Addition assignment i += 7 (equivalent to
i = i + 7)

–= Subtraction assignment i –= 4 (equivalent to
i = i – 4)

*= Multiplication assignment i *= y (equivalent to
i = i * y)

/= Division assignment i /= 3.5 (equivalent to
i = i / 3.5)

%= Modulo assignment i %= 2 (equivalent to
i = i % 2)

CHAPTER 1 C and C++ 549

C and C++

To allow more than two possible sets of commands to run, you can also use the
if-elseif statement. This uses two or more Boolean conditions to choose which
of two or more groups of commands to run:

if (condition1) {
 Command;
} else if (condition2) {
 Command;
}

Although the if-else statement can only give the computer a choice of two
groups of commands to run, the if-elseif statement can offer the computer
multiple groups of commands to run:

if (condition1) {
 Command;
} else if (condition2) {
 Command;
} else if (condition3) {
 Command;
}

As an alternative to the if-elseif statement, you can also use the switch state-
ment, like this:

switch (expression) {
 case value1:
 Command1;
 break;
 case value2:
 Command2;
 break;
 default:
 Command3;
}

The switch statement often includes the break command to tell the computer
when to exit the switch statement.

The preceding switch statement is equivalent to the following if-elseif
statement:

if (expression == value1) {
 Command1;

550 BOOK 6 Programming Language Syntax

} else if (expression == value2) {
 Command2;
} else {
 Command3;
}

To check whether a variable matches multiple values, you can stack multiple case
statements:

switch (expression) {
 case value1:
 case value2:
 Command1;
 break;
 case value3:
 case value4;
 Command2;
 break;
 default:
 Command3;
}

The preceding switch statement is equivalent to the following if-elseif state-
ment in C++:

if ((expression == value1) || (expression == value2)) {
 Command1;
} else if ((expression == value3) || (expression == value4)) {
 Command2;
} else {
 Command3;
}

Looping Statements
A looping statement repeats one or more commands a fixed number of times or
until a certain Boolean condition becomes false. To create a loop that repeats a
fixed number of times, use the for loop, which looks like this:

for (startvalue; endvalue; increment) {
 Command;
}

CHAPTER 1 C and C++ 551

C and C++

If you wanted the for loop to run five times, you could set the start value to 1 and
the end value to 5, like this:

for (int i = 1; i <= 5; i++) {
 Command;
}

If you don’t know how many times you need to repeat commands, you’ll have to
use a while loop, which looks like this:

while (condition) {
 Command;
}

If the condition is true, the loop runs at least once. If this condition is false, the
loop does not run.

A variation of the while loop is the do-while loop, which looks like this:

do {
 Command;
} while (condition);

The main difference between the two loops is that the while loop may run zero or
more times, but the do-while loop always runs at least once.

Somewhere inside a while and a do-while loop, you must have a command that
can change the condition from true to false; otherwise, the loop will never end,
and your program will appear to hang or freeze.

Creating Functions
In C/C++, every subprogram is a function that can return a value. The format of a
typical function looks like this:

Datatype functionname (Parameter list){
 Commands;
 return value;
}

552 BOOK 6 Programming Language Syntax

The three parts of a C/C++ function are

 » Datatype: Defines the type of value the function returns, such as an integer
(int) or a floating-point number (float). If you don’t want a function to return
a value, declare its data type as void.

 » Parameter list: Defines any data and their data types that the function
needs to work.

 » return: Defines a value to return. This value must be the same data type
specified right before the function name.

If a function doesn’t return a value or require any data, it might look like this:

void myfunction (){
 Command;
}

If the function needs to return an integer value, it might look like this:

int myfunction()
 {
 Command;
 return value;
 }

In the preceding example, value represents any integer value.

To accept data, a function needs a parameter list, which simply lists a variable to
hold data along with their specific data type, such as an integer or character. To
create a function that accepts an integer and a character, you could do something
like this:

int myfunction (int mynumber, char myletter){
 Command;
 return value;
}

The preceding function accepts two parameters by value, so the function can
change the values of variables in its parameter list, but those changed values
won’t appear outside that function.

CHAPTER 1 C and C++ 553

C and C++

If you want a function to change the values of its parameters, you need to define a
parameter list by identifying which variables accept values by reference. To iden-
tify values passed by reference, use the ampersand symbol (&), like this:

int myfunction (int& mynumber, char myletter) {
 Command;
 return value;
}

Data Structures
Many C/C++ compilers include libraries that offer data structures, such as stacks
or collections. However, three built-in data structures of C/C++ are structures,
enumerations, and arrays.

Creating a structure
A structure is a variable that typically holds two or more variables. To create a
structure, use the struct keyword as follows:

struct name {
 datatype variable;
};

The name of a structure can be any descriptive name, such as BaseballTeam or
MyGrades. Inside a structure, you must declare one or more variables. A typical
structure might look like this:

struct MyGrades {
 char grade;
 int class_number;
};

After defining a structure, you can declare a variable to represent that structure,
like this:

struct MyGrades chemistry;

554 BOOK 6 Programming Language Syntax

As a shortcut, you can define a structure and declare a variable to represent that
structure, as follows:

struct MyGrades {
 char grade;
 int class_number;
} chemistry;

Creating enumerations
Enumerations act like a list that lets you name a group of items, such as the days of
the week, names of people in a group, and so on. A typical enumeration list might
look like this:

enum name {item1, item2, item3};

So, if you wanted to define the names of the days in a workweek, you could do the
following:

enum weekend {saturday, sunday};

Now you can declare a variable as a weekend data type, such as:

enum weekend timeoff;

As an alternative, you can define an enumeration and declare a variable of that
type at the same time, such as

enum {saturday, sunday} timeoff;

Creating an array
Arrays in C/C++ are zero-based arrays, which means that the first element of the
array is located at index number 0, the second element of the array is located at
index number 1, and so on.

To create an array, declare its data type and size:

datatype arrayname[size];

CHAPTER 1 C and C++ 555

C and C++

The array name can be any descriptive name. The array size defines how many
items the array can hold. To create an array that can hold ten integers, you could
define an array like this:

int mynumbers[10];

You can create an array and store values in it at the same time by doing the
following:

int mynumbers[4] = {23, 8, 94, 102};

This is equivalent to:

int mynumbers[4];
mynumbers[0] = 23;
mynumbers[1] = 8;
mynumbers[2] = 94;
mynumbers[3] = 102;

Using Objects
Before C++, object-oriented programming was more of an academic exercise that
required special programming languages. After C++ appeared, ordinary program-
mers could use their knowledge of C to use object-oriented programming for
practical purposes.

To create an object, you must create a separate class that looks like this:

class ClassName{
 public:
 datatype propertyname;

 void methodname();
};

The class lists one or more properties and the type of data that property can
hold, such as an integer or floating-point number. A class also lists one or more
method names, which contains code for manipulating an object in some way. The

556 BOOK 6 Programming Language Syntax

class defines the method name and its parameter list, but the actual code for that
method appears outside the class definition, like this:

 class ClassName{
 public:
 datatype propertyname;

 void methodname();
};

void className::methodname(){
 Commands;
}

You can also define the method inside the class instead of defining it outside
the class.

After you define a class, you can create an object from that class by declaring a
variable as a new class type:

className objectname;

So, if you created an animal class, you could create an object (things_at_the_
zoo) from that class as follows:

animal things_at_the_zoo;

The C++ language allows both single and multiple inheritance. With single inheri-
tance, you can declare a class name and state the class to inherit from with a
colon, like this:

class className : public classtoinheritfrom{
 // Code goes here
};

To inherit from multiple classes, name each class as follows:

class className : public class1, public class2{
 // Code goes here
};

Understanding inheritance can be confusing enough, but trying to understand
multiple inheritance can be even more complicated. As a result, many C++ pro-
grammers never use multiple inheritance, so don’t feel like you’re missing out on
anything if you ignore multiple inheritance.

CHAPTER 2 Java and C# 557

Java and C#

The Java language was meant to build upon the success of C++, but with added
safety features and true cross-platform capabilities. Unlike C++, which
gives programmers access to every part of the computer (along with the

equal capability of screwing up every part of the computer), Java restricts access to
the computer hardware. Although this limits Java’s flexibility, it provides greater
stability and reliability of Java programs.

The most appealing feature of Java is its cross-platform capabilities. Although
porting a C++ program to run on other operating systems is possible, it’s rarely
easy or painless. Theoretically, Java lets you write a program once and then run
it on multiple operating systems, a feature often described as write once, run
everywhere (or more whimsically, write once, test everywhere).

Sun Microsystems developed Java; in response to Java’s popularity, Microsoft
developed C#, a similar language with equivalent goals. Like Java, C# is meant to
build upon the C++ language while providing safety features to make it harder to
write programs that could crash an entire computer.

Chapter 2

IN THIS CHAPTER

 » Understanding the C#/Java program
structure

 » Declaring variables and using
operators

 » Knowing how to use comments

 » Using variables and operators

 » Working with branching and looping
statements

 » Creating functions and data
structures

 » Working with objects

558 BOOK 6 Programming Language Syntax

To make programming easier, C# relies on the .NET framework. The idea
behind .NET is to shield the programmer from the complexities of the operating
system. That way any programs created using the .NET framework can be ported
to other operating systems, so C# can run on any operating system that can run
the .NET framework.

Although C/C++ remains popular, both Java and C# represent the programming
languages of the future. Java is popular because it’s platform independent, so Mac
and Linux users can take advantage of Java. C# is most popular among Windows
programmers because Microsoft has positioned C# as the future programming
language for Windows.

Looking at the Structure of a
Java/C# Program

Java forces object-oriented programming on you whether you like it or not. Every
Java program consists of a class:

public class programname
{
 public static void main(String args[])
 {
 System.out.println("This is a simple Java program.");
 }
}

Because Java relies on object-oriented programming, a Java program looks more
complicated than it should. Basically, the main program is considered a class that
has a single main function. To print something, the preceding program uses a
println command, which is accessed through the System class.

The equivalent Java program might look like the following C# program:

using System;
class MyClass
{
 static void Main()
 {
 Console.WriteLine("This is a simple C# program.");
 }
}

CHAPTER 2 Java and C# 559

Java and C#

Creating Comments
To write a comment in Java/C#, you have two choices. First, you can use double
forward slashes so that anything that appears to the right of the slashes is a
comment:

using System;
class MyClass // This is a C# comment
{
 static void Main()
 {
 Console.WriteLine("This is a simple C# program.");
 }
}

Double forward slashes are handy for adding a comment to a single line. If you
want to write a comment over multiple lines, you can use the /* and */ charac-
ters, like this:

/* This is a multiline comment to show people how
 easy Java can be to learn. */

public class programname
{
 public static void main(String args[])
 {
 System.out.println("This is a simple Java program.");
 }
}

Declaring Variables
Because Java and C# are closely derived from C/C++, they both declare variable
data types the same way: by first listing the data type and then listing the variable
name, like this:

datatype variableName;

The variableName can be any descriptive name. Both Java and C# are case-
sensitive, so the variable TeamMembers is a completely different variable than
Teammembers. Some programmers use uppercase letters to make variable names

560 BOOK 6 Programming Language Syntax

easier to find; other programmers use all lowercase. To declare multiple variables
of the same data type, cram them all on a single line, separated by a comma,
like this:

datatype variableName1, variableName2, variableName3;

Declaring string data types
Both Java and C# offer a string data type (which isn’t found in C/C++), which you
can declare as this:

String variablename; // Java's String data type has a capital S

string variablename; // C#'s String data type has a lowercase s

Like most programming languages, both Java and C# allow you to declare and ini-
tialize a variable at the same time, like this:

String variablename = "text"; // Java's String data type has a capital S

string variablename = "text"; // C#'s String data type has a lowercase s

Java defines a String data type with an uppercase S while C# defines a string data
type with a lowercase s.

Declaring integer data types
Whole numbers represent integers, such as –9, 62, or 10. A whole number can be
positive or negative. The most common integer data type is int, and it’s used as
follows:

int variablename;

Besides integer values, Java also offers a variety of other integer data types that
can hold a different range of values, as shown in Table 2-1.

C# also offers a variety of different integer data types, which can be signed
(positive and negative values) or unsigned (only positive values), as shown in
Table 2-2. To declare an unsigned variable, add the letter u in front of the data
type, like this:

int profit;
uint pets_owned;

CHAPTER 2 Java and C# 561

Java and C#

short taxes;
ushort age;

Declaring floating-point data types
Floating-point values represent decimal values, such as 78.52 or –5.629. Just as
you can limit the range of integer values a variable can hold, so can you limit the
range of floating-point values a variable can hold.

The three types of floating data types are float, double, and decimal (C# only),
as shown in Table 2-3.

TABLE 2-1	 Typical Storage and Range Limitations of Java Integer
Data Types

Data Type Number of Bytes Range

byte 1 –128 to 127

short 2 –32,768 to 32,767

int 4 –2,147,483,648 to 2,147,483,647

long 8 –9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

TABLE 2-2	 Typical Storage and Range Limitations of C# Integer
Data Types

Data Type Number of Bytes Range

byte 1 Signed: –128 to 127

Unsigned: 0 to 255

short 2 Signed: –32,768 to 32,767

Unsigned: 0 to 65,535

int 4 Signed: –2,147,483,648 to 2,147,483,647

Unsigned: 0 to 4,294,967,295

long 8 Signed: –9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

Unsigned: 0 to 18,446,744,073,709,551,615

562 BOOK 6 Programming Language Syntax

The ranges of the different data types listed in Table 2-3 are approximate values.

Declaring Boolean variables
To remedy the deficiency of C/C++, both Java and C# offer a Boolean data type. In
Java, you can declare a Boolean variable like this:

boolean variablename;

In C#, you can declare a Boolean variable like this:

bool variablename;

Using Operators
The three types of operators used are mathematical, comparison, and logical.
Mathematical operators calculate numeric results, such as adding, multiplying, or
dividing numbers, as shown in Table 2-4.

TABLE 2-3	 Typical Floating Point-Data Types
Data Type Number of Bytes Range

float 4 –1.4023 E–45 to 3.4028 E38

double 8 –4.9406 E–324 to 1.7977 E308

decimal (C# only) 16 –1.0 E–28 to 1.0 E28

TABLE 2-4	 Mathematical Operators
Mathematical Operator Purpose Example

+ Addition 5 + 3.4

- Subtraction 203.9 – 9.12

* Multiplication 39 * 146.7

/ Division 45 / 8.41

% Modulo (returns the remainder) 35 % 9 = 8

D:\\Applications\\REALbasic 2007 Release 1\\REALbasic 2007 Release 1.app\\Contents\\Resources\\Language Reference\\Topics\\1098.html

CHAPTER 2 Java and C# 563

Java and C#

Relational operators compare two values and return a true or false value. The six
relational operators available are shown in Table 2-5.

The equality operator in Java/C# is two equal signs (==). If you only use a single
equal sign to compare two values in Java/C#, your program will work but not the
way it’s supposed to.

Logical operators compare two Boolean values (true or false) and return a single
true or false value, as shown in Table 2-6.

TABLE 2-5	 Relational Operators
Relational Operator Purpose

== Equal to

!= Not equal to

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

TABLE 2-6	 Logical Operators
Logical Operator Truth Table

&& true && true = true

true && false = false

false && true = false

false && false = false

|| true || true = true

true || false = true

false || true = true

false || false = false

! !true = false

!false = true

D:\\Applications\\REALbasic 2007 Release 1\\REALbasic 2007 Release 1.app\\Contents\\Resources\\Language Reference\\Topics\\1098.html

564 BOOK 6 Programming Language Syntax

Increment and decrement operators
Both Java and C# have a special increment (++) and a decrement (--) operator,
which simply adds or subtracts 1 to a variable. Typically, adding 1 to a variable
looks like this:

j = 5;
i = j + 1;

The increment operator replaces the + 1 portion with ++, like this:

j = 5;
i = ++j;

In the preceding example, the value of i is j + 1 or 6, and the value of j is also 6.

If you place the increment operator after the variable, like this:

j = 5;
i = j++;

Now the value of i is 5, but the value of j is 6.

The decrement operator works the same way except that it subtracts 1 from a
variable:

j = 5;
i = --j;

In the preceding example, the value of i is j - 1 or 4, and the value of j is also 4.

If you place the decrement operator after the variable, like this:

j = 5;
I = j--;

Now the value of i is 5, but the value of j is 4.

Assignment operators
Most programming languages use the equal sign (=) to assign values to variables:

i = 59;

CHAPTER 2 Java and C# 565

Java and C#

However, Java/C# also includes combination assignment and mathematical oper-
ators, as shown in Table 2-7.

Branching Statements
The simplest branching statement is an if statement that only runs one or more
commands if a Boolean condition is true:

if (condition) {
 Command;
}

To make the computer choose between two mutually exclusive sets of commands,
you can use an if-else statement, like this:

if (condition) {
 Command1;
} else {
 Command2;
}

Java and C# also offer an if-elseif statement, which uses two or more Boolean
conditions to choose which of two or more groups of commands to run:

if (condition1) {
 Command1;

TABLE 2-7	 Assignment Operators
Assignment Operator Purpose Example

+= Addition assignment i += 7 (equivalent to
i = i + 7)

-= Subtraction assignment i -= 4 (equivalent to
i = i - 4)

*= Multiplication assignment i *= y (equivalent to
i = i * y)

/= Division assignment i /= 3.5 (equivalent to
i = i / 3.5)

%= Modulo assignment i %= 2.8 (equivalent to
i = i % 2.8)

566 BOOK 6 Programming Language Syntax

} else if (condition2) {
 Command2;
}

Although the if-else statement can only give the computer a choice of two
groups of commands to run, the if-elseif statement can offer the computer
multiple groups of commands to run:

if (condition1) {
 Command1;
} else if (condition2) {
 Command2;
} else if (condition3) {
 Command3;
}

As an alternative to the if-elseif statement, you can also use the switch
statement:

switch (expression) {
 case value1:
 Command1;
 break;
 case value2:
 Command2;
 break;
 default:
 Command3;
 break;
}

The switch statement often includes the break command to tell the computer
when to exit the switch statement.

The preceding switch statement is equivalent to the following if-elseif
statement:

if (expression == value1) {
 Command;
} else if (expression == value2) {
 Command;
} else {
 Command;
}

CHAPTER 2 Java and C# 567

Java and C#

To check whether a variable matches multiple values, you can stack multiple
case statements, like this:

switch (expression) {
 case value1:
 case value2:
 Command1;
 break;
 case value3:
 case value4:
 Command2;
 break;
 default:
 Command3;
 break;
}

The preceding switch statement is equivalent to the following if-elseif
statement in C++:

if ((expression == value1) || (expression == value2)) {
 Command1;
} else if ((expression == value3) || (expression == value4)) {
 Command2;
} else {
 Command3;
}

One main difference between C# and Java is the way each language handles
fall-through, where multiple case statements can run if a break command isn’t
inserted into each one. Consider the following switch statement in Java, which
allows fall-through:

switch (age) {
 case 17:
 case 18:
 case 19:
 case 20:
 System.out.println("You're too young to drink.");
 case 21:
 System.out.println("You're old enough to drink.");
}

568 BOOK 6 Programming Language Syntax

In this example, the switch statement will print the following if the value of age
is 17, 18, 19, or 20:

You're too young to drink.
You're old enough to drink.

Because no break command is right above the case 21: statement, the Java
program falls through to the next case statement. In C#, you must explicitly
define the fall-through (if this is what you want), like this:

switch (age) {
 case 17:
 case 18:
 case 19:
 case 20:
 Console.WriteLine("You're too young to drink.");
 goto case 21;
 case 21:
 Console.WriteLine("You're old enough to drink.");
 break;
}

This C# switch statement explicitly tells the computer to fall through to the
case 21: statement. If you omit the goto case 21 statement, the preceding C#
switch statement won’t work. By forcing you to explicitly define the fall-through
in a switch statement, C# helps prevent mistakes in writing a switch statement
incorrectly.

Looping Statements
A looping statement repeats one or more commands for a fixed number of times
or until a certain Boolean condition becomes true. To create a loop that repeats a
fixed number of times, use the for loop, which looks like this:

for (startvalue; endvalue; increment) {
 Command;
}

CHAPTER 2 Java and C# 569

Java and C#

If you wanted the for loop to run five times, you could set the start value to 1 and
the end value to 5, like this:

for (i = 1; i <= 5; i++) {
 Command;
}

If you don’t know how many times you need to repeat commands, use a while
loop, which looks like this:

while (condition) {
 Command;
}

If the condition is true, the loop runs at least once. If this condition is false, the
loop doesn’t run.

A variation of the while loop is the do-while loop, which looks like this:

do {
 Command;
} while (condition);

The main difference between the two loops is that the while loop may run zero or
more times, but the do-while loop will always run at least once.

Somewhere inside a while and do-while loop, you must have a command that can
change the condition from true to false; otherwise, the loop will never end, and
your program will appear to hang or freeze.

Creating Functions
In Java/C#, every subprogram is a function that can return a value. The format of
a typical Java function looks like this:

AccessSpecifier Modifier Datatype functionname (Parameter list)

 {

 Commands;

 return value;

 }

570 BOOK 6 Programming Language Syntax

The four parts of a Java function are

 » AccessSpecifier (optional): Defines the scope of the function such as
Public, which means the function can be called from anywhere. Protected
means the function can only be called within the class and its subclasses.
Private means the function can only be called within the class.

 » Modifier: Defines whether a function is static. A static function is indepen-
dent of any instances created for a class.

 » Datatype: Defines the type of value the function returns, such as an integer
(int) or floating-point number (float). If you define the data type as void,
then the function doesn’t return a value.

 » Parameter list: Defines any data and their data types that the function
needs to work.

 » return: Defines a value to return. This value must be the same data type
specified right before the function name.

If a function doesn’t return a value or require any data, it might look like this:

public static void myfunction()
{
 Command;
}

If the function needs to return an integer value, it might look like this:

private static int myfunction()
{
 Command;
 return value;
}

In the preceding example, value represents any integer value.

To accept data, a function needs a parameter list, which simply lists a variable to
hold data along with its specific data type, such as an integer or character. To
create a function that accepts an integer and a character, you could do something
like this:

private static int myfunction(int mynumber, char myletter)
{
 Command;
 return value;
}

CHAPTER 2 Java and C# 571

Java and C#

The preceding function accepts two parameters by value, so the function can
change the values of its parameter, but those changed values won’t appear out-
side that function.

If you want a function to change the values of its parameters, define a parameter
list by identifying which variables accept values by reference. To identify values
passed by reference in C#, use the ref keyword, such as

int myfunction (ref int mynumber, char myletter)
{
 Command;
 return value;
}

Java doesn’t let functions change the values of parameters (called pass by reference).
Java only lets you pass a copy of data as a parameter (called pass by value).

Data Structures
Through built-in libraries, Java and C# offer a variety of data structures beyond
most programming languages. In Java, the most common data structures are
arrays and linked lists. In C#, the .NET framework provides a variety of data struc-
tures including structures, arrays, collections, dictionaries, queues, and stacks.

Creating a C# structure
Unlike Java, C# offers a structure, which can hold two or more variables. To create
a structure, use the struct keyword as follows:

struct name {
 public datatype variable;
};

The name of a structure can be any descriptive name, such as people2get or
my_relatives. Inside a structure, you must declare one or more variables.
A typical structure might look like this:

struct MyGrades {
 public char grade;
 public int class_number;
};

572 BOOK 6 Programming Language Syntax

After defining a structure, you can declare a variable to represent that structure:

MyGrades geology = new MyGrades();

After declaring a variable as a structure, you can store data in the individual fields
of a structure like this:

MyGrades geology = new MyGrades();
geology.grade = 'A';
geology.class_number = 302;

Creating an array
Arrays in Java/C# identify the first element of the array at index number 0, the
second element of the array at index number 1, and so on.

To create an array in Java, declare its data type and size, like this:

datatype[] arrayname = new datatype[arraysize];

The array name can be any descriptive name. The array size defines how many
items the array can hold. To create an array that can hold ten integers, you could
define an array like this:

int[] mynumbers = new int[10];

In C# (but not Java), you can create an array and store values in it at the same time
by doing the following:

int[] mynumbers = {25, 81, 4, 712};

This is equivalent to declaring an array and then adding items to the array sepa-
rately, like this:

int[] mynumbers = new int[4];
mynumbers[0] = 25;
mynumbers[1] = 81;
mynumbers[2] = 4;
mynumbers[3] = 712;

CHAPTER 2 Java and C# 573

Java and C#

Creating a Java linked list
Java offers a linked list class, which simplifies managing a linked list. By using
a linked list, you can create other data structures, such as stacks and queues. To
create a linked list, import the following Java library:

import java.util.*;

Then define a variable:

LinkedList listname = new LinkedList();

To add an item to a linked list, use the add, addFirst, or addLast method with the
name of the linked list:

LinkedList shopping_list = new LinkedList();
shopping_list.add("Eggs");
shopping_list.addFirst("Milk");
shopping_list.addLast("Bacon");

The first item stored in the linked list would be "Milk", followed by "Eggs", and
"Bacon".

To retrieve data from a linked list, you can use the getFirst, remove,
removeFirst, or removeLast method. The getFirst method only retrieves data
from the linked list, whereas the remove, removeFirst, and removeLast meth-
ods physically yank that data out of that linked list:

LinkedList shopping_list = new LinkedList();

shopping_list.add("Eggs");

shopping_list.addFirst("Milk");

System.out.println("First = " + shopping_list.removeFirst());
System.out.println("First = " + shopping_list.getFirst());

The preceding Java code would print the following:

First = Milk
First = Eggs

574 BOOK 6 Programming Language Syntax

Creating C# data structures
C# includes queues, stacks, and dictionaries, which you can create by using the
same syntax, like this:

Queue<int> queuename = new Queue<int>();

Stack<string> stackname = new Stack<string>();

Dictionary<string, int> tablename = new Dictionary(<string, int>);

Each type of data structure uses different methods for adding and removing data.
A queue uses the Enqueue and Dequeue methods to add and remove data. A stack
uses the Push and Pop methods to add and remove data. A dictionary uses the Add
and Remove methods to add and remove data.

Using Objects
Both Java and C# emphasize object-oriented programming where you can create
and use objects. To create an object, you must define a class where a typical class
definition looks like this:

class ClassName
 {
 datatype propertyname;

 void methodname()
 {
 Commands;
 }
 }

A class can define zero or more properties and the type of data those properties
can hold, such as an integer or a floating-point number. A class can also define
methods, which contain code for manipulating an object in some way.

After you define a class, you can create an object from that class by declaring a
variable as a new class type:

ClassName objectname = new ClassName();

CHAPTER 2 Java and C# 575

Java and C#

So, if you created a Furniture class, you could create a table object from that
class, as follows:

Furniture table = new Furniture();

To use inheritance in Java, use the extends keyword, like this:

class ClassName extends ClassToinheritFrom
{
 // Code goes here
}

To use inheritance in C#, use the colon to identify the class to inherit from:

class ClassName : ClassToinheritFrom
{
 // Code goes here
 }

CHAPTER 3 Perl and Python 577

Perl and Python

Perl and Python are scripting languages meant to help programmers create
something easily. The main difference between Perl and Python over tradi-
tional programming languages is their intended use.

Systems languages (such as C/C++) are meant to create stand-alone applications,
such as operating systems or word processors, which is why systems languages
are almost always compiled.

Scripting languages are meant more for linking different programs together, such
as transferring data that someone types into a web page and storing it in a data-
base. As a result, scripting languages are almost always interpreted, which makes
them more portable across different operating systems.

Systems languages are often known as type-safe because they force you to declare
a specific data type (such as integer or string) for each variable. In contrast,
scripting languages often allow a variable to hold anything it wants. One moment
it may hold a string, the next an integer, and after that a decimal number. Such

Chapter 3

IN THIS CHAPTER

 » Understanding the structure of Perl
and Python programs

 » Commenting to your heart’s content

 » Declaring variables

 » Using mathematical operators

 » Working with branching and looping
statements

 » Making functions

 » Creating data structures and objects

578 BOOK 6 Programming Language Syntax

typeless scripting languages give you greater flexibility at the possible expense of
causing errors by variables containing unexpected data.

Perl’s philosophy is that there’s always more than one way to do it, so Perl often
offers multiple commands that accomplish the exact same thing. The goal is to let
you choose the way you like best.

Python takes the opposite approach and emphasizes a small and simple language
that relies less on symbols (like C/C++) and more on readable commands to make
programs easier to understand. Although Perl retains much of the syntax famil-
iar to C/C++ programmers, Python abandons curly brackets and semicolons for a
cleaner language that’s simpler to read and write.

Both Perl and Python are used in web applications, as well as for more special-
ized uses, such as text manipulation. Perl is particularly popular in the field of
bioinformatics and finance, whereas Python has been adapted as a scripting lan-
guage for many graphics and animation programs and artificial intelligence (AI)
research.

Although system programming languages like C/C++ were designed to maxi-
mize the efficiency of computer equipment, languages like Perl and Python are
designed to maximize the efficiency of programmers, who are now more expen-
sive than computer equipment. When programmers need to write something in a
hurry that doesn’t involve manipulating the hardware of a computer, they often
turn to Perl and Python.

Python is often associated with the British comedy troupe Monty Python’s Flying
Circus. It’s considered good form among Python programmers to slip Monty Python
references into their programs whenever possible. (“It’s just a flesh wound. . . .”)

Reviewing the Structure of a Perl
or Python Program

Because Perl and Python are interpreted languages, you can often type commands
one line at a time or type and save commands in a file. A simple Perl program
might look like this:

print "This is a simple Perl program.\n";

A Python program is even simpler:

print ('This is a simple Python program.')

CHAPTER 3 Perl and Python 579

Perl and Python

When using strings in Python, you can use either single or double quotation
marks. Whatever style you choose, be consistent.

Perl adapts the syntax of the C language, including the use of semicolons at the
end of each statement and the use of curly brackets to identify a block of com-
mands. Python omits semicolons; also, instead of using curly brackets to identify
a block of commands, Python uses indentation. To identify a block of commands
in Perl, use curly brackets like this:

if ($x > 5)
{
 command1;
 command2;
}

In Python, the same program might look like this:

if x > 5:
 command1
 command2

You can write both Perl and Python programs from a command-line prompt
(meaning you type commands one at a time) or saved as a file and then loaded
into the interpreter. For testing short programs, typing them in one line at a time
is probably faster, but for creating large programs, saving commands in a text file
is easier.

Creating Comments
To write a comment in Perl, use the hash symbol (#). Anything that appears to the
right of the # is treated as a comment:

This is a comment.
print "This is a simple Perl program.\n";
exit; # This is another comment.

In Python, you can also use the # symbol to create comments on a single line. If
you want to create a comment covering multiple lines, use triple quotes to define
the start and end of a comment, like this:

""" This is a multiple-line comment.
 The triple quotes highlight the beginning

580 BOOK 6 Programming Language Syntax

 and the end of the multiple lines. """
print ('This is a simple Python program.')

Defining Variables
Both Perl and Python allow variables to hold any data types. In Perl, variable names
begin with a dollar sign ($), such as $myVar. Perl and Python are case-sensitive
languages, so the Perl variable $myVar is completely different from $MYVar, while
the Python variable DueDate is completely different from the variable duedate.

If you misspell a variable in Perl or Python, both languages will treat the mis-
spelled variable as a completely new and valid variable.

Using Operators
The three types of operators used are mathematical, relational, and logical.
Mathematical operators calculate numeric results such as adding, multiplying, or
dividing numbers, as shown in Table 3-1.

TABLE 3-1	 Mathematical Operators
Mathematical Operator Purpose Example

+ Addition 5 + 3.4

– Subtraction 203.9 – 9.12

* Multiplication 39 * 146.7

/ Division 45 / 8.41

% Modulo (returns the
remainder)

35 % 9 = 8

** Exponentiation 5 ** 2 = 25

divmod(x,y) (Python only) Returns both x / y
and x % y

divmod(12,8)
= (1,4)

D:\\Applications\\REALbasic 2007 Release 1\\REALbasic 2007 Release 1.app\\Contents\\Resources\\Language Reference\\Topics\\1098.html

CHAPTER 3 Perl and Python 581

Perl and Python

When Python uses the division operator (/) to divide two integers, the result will
be a floating-point value, like this:

9 / 4 = 2.25

If at least one number is a floating-point value, the result will also be a
floating-point value:

9.0 / 4 = 2.25

Or

9 / 4.0 = 2.25

Relational operators compare two values and return a True or False value. The six
relational operators available are shown in Table 3-2.

The equality operator in Perl and Python is two equal signs (==). A single equal
sign (=) usually assigns a value to a variable.

Perl offers a unique comparison with signed result operator (<=>), which compares
two values and returns 0 (if the two values are equal), 1 (if the first value is greater
than the second), or –1 (if the first value is less than the second), as shown in
Table 3-3.

Logical operators compare two Boolean values (True [1] or False [0]) and return a
single True or False value, as shown in Table 3-4.

TABLE 3-2	 Relational Operators
Relational Operator Purpose

== Equal to

!= Not equal to

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

< = > (Perl only) Comparison with signed result

D:\\Applications\\REALbasic 2007 Release 1\\REALbasic 2007 Release 1.app\\Contents\\Resources\\Language Reference\\Topics\\1098.html

582 BOOK 6 Programming Language Syntax

In Python, Boolean values are True or False, but in Perl, Boolean values are typi-
cally represented as true by 1 or false by 0.

Increment and decrement operators
Perl (but not Python) has an increment operator (++), which adds 1 to a variable,
and a decrement operator (--), which subtracts 1 from a variable. Typically, add-
ing 1 to a variable looks like this:

j = 5;
i = j + 1;

TABLE 3-3	 Using Perl’s Comparison with Signed
Result Operator

Example Result

5 <=> 5 0

7 <=> 5 1

2 <=> 5 –1

TABLE 3-4	 Logical Operators
Logical Operator Truth Table

&& (Perl)

and (Python)

1 and 1 = 1

1 and 0 = 0

0 and 1 = 0

0 and 0 = 0

|| (Perl)

or (Python)

1 or 1 = 1

1 or 0 = 1

0 or 1 = 1

0 or 0 = 0

! (Perl)

not (Python)

!1 = False (0)

!0 = True (1)

CHAPTER 3 Perl and Python 583

Perl and Python

The increment operator replaces the + 1 portion with ++:

j = 5;
i = ++j;

In the preceding example, the value of i is j + 1 or 6, and the value of j is also 6.

If you place the increment operator after the variable, like this:

j = 5;
i = j++;

Now the value of i is 5, but the value of j is 6.

The decrement operator works the same way except that it subtracts 1 from a
variable:

j = 5;
i = --j;

In the preceding example, the value of i is j - 1 or 4, and the value of j is also 4.

If you place the decrement operator after the variable, like this:

j = 5;
i = j--;

Now the value of i is 5, but the value of j is 4.

Assignment operators
Most programming languages use the equal sign (=) to assign values to variables:

i = 59;

However, Perl and Python also include combination assignment and mathemati-
cal operators, as shown in Table 3-5.

584 BOOK 6 Programming Language Syntax

Branching Statements
The simplest branching statement is an if statement that only runs one or more
commands if a Boolean condition is true. In Perl, the IF statement uses curly
brackets to enclose one or more commands:

if (condition) {
 Command1;
 Command2;
}

In Python, the if statement uses indentation to enclose one or more commands:

if (condition):
 Command1
 Command2

To make the computer choose between two mutually exclusive sets of commands,
you can use an if-else statement in Perl, like this:

if (condition) {
 Command;
 Command;
}
else {
 Command;
 Command;
}

TABLE 3-5	 Assignment Operators
Assignment Operator Purpose Example

+= Addition assignment i += 7 (equivalent to
i = i + 7)

-= Subtraction assignment i -= 4 (equivalent to
i = i - 4)

*= Multiplication assignment i *= y (equivalent to
i = i * y)

/= Division assignment i /= 3.5 (equivalent
to i = i / 3.5)

%= Modulo assignment i %= 2.8 (equivalent
to i = i % 2.8)

CHAPTER 3 Perl and Python 585

Perl and Python

In Python, the if-else statement looks like this:

if (condition):
 Command
 Command
else:
 Command
 Command

The if-else statement offers only two choices. If you want to offer multiple
choices, you can use the if-elseif statement, which uses two or more Boolean
conditions to choose which of two or more groups of commands to run. In Perl,
use the elsif keyword:

if (condition1) {
 Command;
 Command;
}
elsif (condition2) {
 Command;
 Command;
}
elsif (condition3) {
 Command;
 Command;
}

In Python, use the elif keyword:

if (condition1):
 Command
 Command
elif (condition2):
 Command
 Command
elif (condition3):
 Command
 Command

Unlike other programming languages, neither Perl nor Python provides a switch
statement. In Perl, you can use a switch statement by installing and including a
Switch module, like this:

use Switch;

586 BOOK 6 Programming Language Syntax

Looping Statements
A looping statement repeats one or more commands a fixed number of times or
until a certain Boolean condition becomes false. To create a loop that repeats a
fixed number of times, use the for loop, which looks like this:

for (startvalue; endvalue; increment) {
 Command;
}

If you wanted the for loop to run five times, you could set the startvalue to 1 and
the endvalue to 5, like this:

for ($i = 1; $i <= 5; $i++) {
 Command;
}

In Python, the for loop looks dramatically different:

for variable in (list):
 Command
 Command

To make a Python for loop repeat five times, you could do this:

for x in (1,2,3,4,5):
 print (x)

The preceding Python for loop would print the following:

1
2
3
4
5

If you want a for loop to repeat many times (such as 100 times), it can be tedious
to list 100 separate numbers. So, Python offers a range() function that eliminates
listing multiple numbers. To use the range() function to loop five times, you
could do this:

for x in range(5):
 print (x)

CHAPTER 3 Perl and Python 587

Perl and Python

Because the range() function starts with 0, the preceding Python for loop would
print the following:

0
1
2
3
4

Another way to use the range() function is to define a lower and upper range,
like this:

for x in range(25, 30):
 print (x)

This for loop would print the numbers 25, 26, 27, 28, and 29. Rather than incre-
ment by one, you can also use the range() function to define your own increment,
which can be positive or negative:

for x in range(25, 30, 2):
 print (x)

This for loop would print 25, 27, and 29.

If you don’t know how many times you need to repeat commands, use a while
loop, which looks like this:

while (condition) {
 Command;
 Command;
}

If the condition is true, the loop runs at least once. If this condition is false, the
loop doesn’t run. In Python, the while loop looks like this:

while condition:
 Command
 Command

Somewhere inside a while loop, you must have a command that can change the
condition from true to false; otherwise, the loop will never end, and your program
will appear to hang or freeze.

588 BOOK 6 Programming Language Syntax

Creating Functions
In Perl and Python, every subprogram is a function that can return a value. The
format of a typical Perl function looks like this:

sub functionname {
 Commands;
 return $value;
}

When you pass parameters to a Perl function, that function can access them with
the foreach keyword and the @_ array, like this:

sub functionname {
 foreach $variablename (@_) {
 Commands;
 }
 return $value;
}

The foreach command plucks each item from the @_ array and temporarily stores
it in $variablename.

A typical Python function looks like this:

def functionname (parameter_list):
 Commands
 return value

If you don’t want a function to return a value, omit the return line.

Making Data Structures
Storing data in single variables can work, but when you need to store groups of
related data together, it’s too cumbersome to create multiple variables, especially
if you don’t know how many you’re going to need ahead of time.

Instead of creating multiple, separate variables, use a data structure. Data
structures group related data together so you can easily store and retrieve that
data later.

CHAPTER 3 Perl and Python 589

Perl and Python

Perl data structures
Two common types of data structures available in Perl include

 » Arrays: An array stores multiple items, identified by an index number.

 » Hashes: A hash stores multiple items, identified by a key, which can be a
number or a string.

Creating a Perl array
Like C/C++, Perl arrays are zero-based, so the first element of an array is consid-
ered 0, the second is 1, and so on. When you create a Perl array, you must name
that array with the at sign (@). You can also define the elements of an array at the
time you create the array, like this:

@arrayname = (element1, element2, element3);

If you want to create an array that contains a range of numbers, you can list each
number individually like this:

@numberarray = (1, 2, 3, 4, 5);

You can also use the range operator (..) to define the lower and upper bounds of
a range:

@numberarray = (1..5);

To access the individual elements stored in an array, use the dollar sign ($)in front
of the array name:

@numberarray = (1..10);
$thisone = $numberarray[0];

The value stored in the $thisone variable is the first element of the @numberarray,
which is 1.

One unique feature of Perl arrays is that you can use arrays to mimic a stack data
structure with Perl’s push and pop commands. To push a new item onto an array,
you can use the push command:

push(@arrayname, $item2add);

590 BOOK 6 Programming Language Syntax

To pop an item off the array, use the pop command, like this:

$variablename = pop(@arrayname);

Creating a Perl hash
A hash stores an item along with a key. Perl offers two ways to store values and
keys. The first is like this:

%hasharray = (
 key1 => value1,
 key2 => value2,
 key3 => value3,
);

Notice that hash arrays are identified by the percent sign (%).

A second way to define a hash array is like this:

%hasharray = ("key1", value1, "key2", value2, "key3", value3);

To retrieve data from a hash array, you need to know the key associated with that
value and identify the hash array name by using the dollar sign ($), like this:

$variable = $hasharray {"key1"};

The preceding command would store the value associated with "key1" into the
$variable.

Python data structures
Python offers tuples, lists, and dictionary data structures. Both tuples and lists
contain a series of items, such as numbers and strings. The main difference is
that items in a tuple can’t be changed, whereas items in a list can be. A diction-
ary stores values with keys, allowing you to retrieve a value using its distinct key.

Creating a Python tuple
A tuple can contain different data, such as numbers and strings. To create a tuple,
list all the items in parentheses like this:

tuplename = (item1, item2, item3)

CHAPTER 3 Perl and Python 591

Perl and Python

To retrieve a value from a tuple, you must identify it by its index number, where
the first item in the tuple is assigned a 0 index number, the second item is assigned
a 1 index number, and so on. To retrieve the second item (index number 1) in a
tuple, you could use this:

variablename = tuplename[1]

Creating a Python list
Unlike a tuple, a Python list lets you change, add, or delete items. To create a list,
identify all items in the list by using square brackets, like this:

listname = [item1, item2, item3]

To retrieve a value from a list, you must identify it by its index number, where
the first item in the list is assigned a 0 index number, the second item is assigned
a 1 index number, and so on. To retrieve the first item (index number 0) in a list,
you could use this:

variablename = listname[0]

To add new items to a list, use the append command:

listname.append(newitem)

The append command always adds a new item at the end of a list. If you want to
insert an item in a specific location in the list using its index number, use the
insert command, like this:

listname.insert(index, newitem)

To remove the first instance of an item in a list, use the remove command:

listname.remove(existingitem)

If a list contains identical items (such as 23), the remove command deletes the
item with the lowest index number.

Creating a Python dictionary
A dictionary contains values and keys assigned to each value. To create a diction-
ary, use curly brackets, like this:

Dictionary_name = {key1:value1, key2:value2, key3:value3}

592 BOOK 6 Programming Language Syntax

To retrieve a value using its key, use the get command like this:

Variable = dictionary_name.get(key)

Using Objects
Both Perl and Python are object-oriented programming languages where you can
create and use objects in your programs. To create an object, you must define a
class. In Perl, a typical class definition looks like this:

package classname;
sub new {
 my $objectname = {
 Data;
 Data;
 };
 bless $objectname, $classname;
 return $objectname;
}
sub methodname{
 Commands;
 Commands;
};

In Python, a class looks like this:

class ClassName:
 Data
 Data
 def methodname (self):
 Commands
 Commands
 Commands

A class lists properties (data) along with one or more methods, which contain code
for manipulating an object in some way.

After you define a class, you can create an object from that class by declar-
ing a variable as a new class type. In Perl, you create an object by creating a
constructor method, commonly called new:

my $variablename = classname->new();

CHAPTER 3 Perl and Python 593

Perl and Python

In Python, create an object like this:

objectname = new classname()

To use inheritance in Perl, use the @ISA variable inside a new class:

package newobject;
use class2inheritfrom;
@ISA = qw(class2inheritfrom);

To use inheritance in Python, identify the class to inherit from when you create
a new class:

class ClassName(class2inheritfrom):
 Data
 Data
 def methodname(self):
 Commands
 Commands
 Commands

To inherit from multiple classes in Python, define additional classes, separated
by a comma:

class ClassName(class2inheritfrom, anotherclass):
 Data
 Data
 def methodname(self):
 Commands
 Commands
 Commands

CHAPTER 4 Kotlin 595

Kotlin

When the world of mobile computing (smartphones and tablets) swept
over the world, programmers wanted to create apps for these new
devices. When the iPhone redefined the smartphone market, Google

quickly released a similar operating system called Android.

Initially, Google endorsed Java as the favored language for creating Android
apps. However, after various lawsuits involving Oracle (the owner of Java),
Google looked for other ways to create Android apps. That’s when a company
called JetBrains developed Kotlin (https://kotlinlang.org), a language similar
to Java. Now Google has officially endorsed Kotlin as the preferred language for
creating Android apps.

Although Kotlin is mostly used to create Android apps, you can use the language to
create iPhone apps as well. If you want to create mobile apps, you need to under-
stand Kotlin for the still-growing mobile computing market on both Android
and iOS.

Chapter 4

IN THIS CHAPTER

 » Understanding the structure of Kotlin
programs

 » Making comments

 » Declaring variables and constants

 » Using mathematical operators

 » Working with branching and looping
statements

 » Creating functions, data structures,
and objects

https://kotlinlang.org/

596 BOOK 6 Programming Language Syntax

Looking at the Structure of a
Kotlin Program

Although Kotlin is a completely new programming language, it’s meant to work
with Java. Kotlin’s libraries depend on the Java Class library and Kotlin programs
compile to the Java virtual machine (JVM). Programmers can either use Kotlin
together with Java or as a completely independent language. Think of Kotlin as an
improved, cleaner version of Java.

The typical structure of a Kotlin program begins with a main function like this:

fun main() {
 println("This is a typical Kotlin program")
}

Unlike Java and other curly-bracket languages like C++, Kotlin commands don’t
end with a semicolon.

The fun keyword declares a function as a block of code while main() is the main
function that every Kotlin program needs.

Like Java and C++, Kotlin encloses blocks of commands within curly brackets. The
println command simply prints data.

Creating Comments
Because Kotlin is based on curly-bracket languages (C/C++), it uses the same sym-
bols for creating comments. To define a single-line comment, just use the double
forward slash (//), where anything to the right of the // is ignored by the com-
piler, like this:

// This is a single-line comment in Kotlin.

To create multiline comments, use the /* and */ symbols to enclose multiple
lines, like this:

/* This is a multiline comment.
 Notice that anything trapped between these
 two symbols will get completely ignored
 by the compiler.
*/

CHAPTER 4 Kotlin 597

Kotlin

Declaring Variables
In most programming languages, you declare a variable and the data type it can
hold. With Kotlin, you can simply assign a value to a variable and Kotlin can infer
the data type of that value. For example, if you wanted a variable to store an inte-
ger, you could just store an integer into that variable, like this:

var myNumber = 84

Because 84 is an integer, Kotlin assumes that the variable can hold integer (Int)
data types. Just to make it clear, you can add the data type of a variable like this:

var myNumber: Int = 84

You can also just declare a variable and its data type without assigning it a value
initially. Then assign a value to that variable later, like this:

var myNumber: Int
myNumber = 84

Declaring string data types
Kotlin can store a single character ('A') in the Char data type, or several words
("This is a string of text") in the String data type. To declare a string vari-
able, use the String keyword:

var variableName1: String

In Kotlin, strings are enclosed in double quotation marks. After you declare a vari-
able to hold a string, you can assign a string to that variable, like this:

variableName1 = "This string gets stored in the variable."

If you only want to store a single character, you can use the Char keyword:

var variableName2: Char

Then you can assign a single character to this variable, like this:

variableName2 = 'B'

598 BOOK 6 Programming Language Syntax

When assigning text to a String data type, enclose the text in double quotation
marks. When assigning a single character to a Char data type, enclose the single
character in single quotation marks.

Kotlin treats strings as arrays of characters. That means you can access individual
characters in a string by specifying the string variable plus an index value where
an index value of 0 represents the first letter of the string, an index value of 1
represents the second letter of the string, and so on. The following two println
statements would print the first letter of the string (index value 0) and the sixth
letter of the string (index value 5):

var message = "The cat is on the shelf."
println(message[0]) // Returns 'T'
println(message[5]) // Returns 'a'

Declaring integer data types
Whole numbers represent integers such as 349, –152, or 41. A whole number can
be positive or negative. The most common type of integer data type is Int and is
used as follows:

var intValue: Int

To accept different ranges of integer values, Kotlin offers several integer data
types. For example, if a variable needs only to hold a small range of values from
–128 to 127, you can declare it as a Byte data type, like this:

var byteValue: Byte

Different integer data types limit the range of integer values. The greater the
range of values you need to store, the more memory needed. The smaller the
range of values, the less memory required. Table 4-1 shows different integer data
types and the range of values they can hold.

TABLE 4-1	 Kotlin Integer Data Types
Data Type Range

Byte –128 to 127

Short –32,768 to 32,767

Int –2,147,483,648 to 2,147,483,647

Long –9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

CHAPTER 4 Kotlin 599

Kotlin

When assigning an integer to a Long data type, you can add an L to the end of the
number to make it clear the number is a Long data type, like this

var Variablename1: Long
Variablename1 = 678L

Declaring floating-point data types
Floating-point values are numbers such as 1.88 or –91.4. Just as you can limit the
range of integer values a variable can hold, so you can limit the range of decimal
values a variable can hold. In Kotlin, the two floating-point data types are Float
and Double, as shown in Table 4-2.

If you assign a floating-point number to a variable, Kotlin assumes the data type
is Double unless you specifically declare the variable as a Float data type.

When assigning decimal numbers as a Float data type, you can add an F at the
end of the floating-point number to make it clear it’s a Float data type, like this

var Variablename1: Float
Variablename1 = 67.257F

Declaring Boolean values
Besides storing text and numbers, variables can also hold a Boolean value — true
or false. To declare a variable to hold a Boolean value, use the Boolean keyword,
as follows:

var Variablename1: Boolean
Variablename1 = true

TABLE 4-2	 Kotlin Floating-Point Data Types
Data Type Range

Float 3.4 E–38 to 3.4 E38

Double 1.7 E–308 to 1.7 E308

600 BOOK 6 Programming Language Syntax

Declaring Constants
Constants always represent a fixed value. In Kotlin, you can declare a constant and
its specific value as follows:

const val CONSTANT_NAME = value

So, if you wanted to assign 3.14 to a PI constant, you could do this:

const val PI = 3.1415

You can only assign a value to a constant once. When a constant holds a value, you
can never change that value later in your program.

Declaring a constant in Kotlin requires the const val keywords, but declaring a
variable uses the var keyword. Because these two keywords look so similar, it’s
easy to declare a constant by mistake and then wonder why you can’t change its
value like a variable (or vice versa).

Using Operators
The three types of operators used are mathematical, relational, and logical.
Mathematical operators calculate numeric results such as adding, multiplying, or
dividing numbers. Table 4-3 lists the mathematical operators used in Kotlin.

Relational operators compare two values and return a true or false value. The six
relational operators available in Kotlin are shown in Table 4-4.

TABLE 4-3	 Mathematical Operators
Mathematical Operator Purpose Example

+ Addition 5 + 3.4

– Subtraction 203.9 - 9.12

* Multiplication 39 * 146.7

/ Division 45 / 8.41

% Modulo (returns the remainder) 35 % 9 = 8

CHAPTER 4 Kotlin 601

Kotlin

Logical operators, as shown in Table 4-5, compare two Boolean values (true or
false) and return a single true or false value.

Branching Statements
The simplest branching statement is an if-then statement that only runs one or
more commands if a Boolean condition is true, such as

if (condition) {
 // Commands
}

TABLE 4-4	 Relational Operators
Relational Operator Purpose

== Equal to

!= Not equal to

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

TABLE 4-5	 Logical Operators
Logical Operator Truth Table

&& true && true = true

true && false = false

false && true = false

false && false = false

|| true || true = true

true || false = true

false || true = true

false || false = false

! !true = false

!false = true

602 BOOK 6 Programming Language Syntax

To make the computer choose between two mutually exclusive sets of commands,
you can use an if-else statement:

if (condition) {
 // Commands
} else {
 // Other commands
}

If a Boolean condition is true, the if-else statement runs the first group of com-
mands; if the Boolean condition is false, the if-else statement runs the second
group of commands. No matter what, an if-else statement will always run one
set of commands or the other.

Kotlin offers a variation of the if-else statement that lets you assign values to a
variable, like this:

val age = 21

var message = if (age < 21) "You are still a minor" else "You are legally an

adult"

println(message)

The preceding code works by checking the (age < 21) condition. Because the
value of age is 21, 21 < 21 evaluates to false. That means the else portion assigns
"You are legally an adult" into the message variable. If the value of age were
12, then the (age < 21) condition would be true and the code would assign "You
are still a minor" into the message variable.

One problem with the if-else statement is that it only gives you two possible
choices. One way to offer multiple choices is through the if-else if statement,
like this:

if (condition1) {
 // Commands
} else if (condition2) {
 // Other commands
}

If condition1 is true, then the first set of commands runs. However, if
condition1 is false, then it checks whether condition2 is true. If so, then it
runs the second set of commands.

CHAPTER 4 Kotlin 603

Kotlin

If both condition1 and condition2 are false, then no commands will run at all.
That’s why if-else if statements often include an else portion at the end,
like this:

if (condition1) {
 // Commands
} else if (condition2) {
 // Other commands
} else {
 // Default commands to run
}

Now if both condition1 and condition2 are false, then the commands stored
under the else portion will run by default. The else portion ensures that one set
of commands will always run.

The problem with the if-else if statement is that when you start checking for
multiple conditions, the entire if-else if statement can look cluttered and hard
to read:

if (condition1) {
 // Commands
} else if (condition1) {
 // Other commands
} else if (condition2) {
 // Other commands
} else if (condition3) {
 // Other commands
} else if (condition4) {
 // Other commands
} else {
 // Default commands to run
}

To provide multiple options in a much cleaner form, Kotlin offers a when
statement that looks like this:

var day = 3
var result = when (day) {
 0 -> "Sunday"
 1 -> "Monday"
 2 -> "Tuesday"
 3 -> "Wednesday"
 4 -> "Thursday"

604 BOOK 6 Programming Language Syntax

 5 -> "Friday"
 6 -> "Saturday"
 else -> "No such day."
}
println(result)

The preceding when statement is equivalent to the following if-else if statement:

var day = 3
if (day == 0) {
 result = "Sunday"
} else if (day == 1) {
 result = "Monday"
} else if (day == 2) {
 result = "Tuesday"
} else if (day == 3) {
 result = "Wednesday"
} else if (day == 4) {
 result = "Thursday"
} else if (day == 5) {
 result = "Friday"
} else if (day == 6) {
 result = "Saturday"
} else {
 result = "No such day"
}
println(result)

To check whether a variable matches multiple values, you can separate multiple
values with commas or you can match a range of values, like this:

var number = 6
var result = when (number) {
 1, 2, 3 -> "1, 2, or 3"
 in 4..6 -> "4, 5, or 6"
 else -> "Not within the range of 1 - 6"
}
println(result)

The preceding when statement is equivalent to the following if-else if statement:

var number = 6
var result: String

CHAPTER 4 Kotlin 605

Kotlin

if (number == 1 || number == 2 || number == 3) {
 result = "1, 2, or 3"
} else if (number >= 4 && number <= 6) {
 result = "4, 5, or 6"
} else {
 result = "Not within the range of 1 - 6"
}
println(result)

Looping Statements
A looping statement repeats one or more commands a fixed number of times or
until a certain Boolean condition becomes true. To create a loop that repeats a
fixed number of times, use the for loop, which looks like this:

for (variable in start..end) {
 // Commands
}

If you want the for loop to run five times, set the start value to 1 and the end value
to 5, like this:

for (x in 1..5) {
 println(x)
}

Normally, the for loop counts up, but you can use the downTo keyword to make
the for loop count backward, as shown in this example:

for (x in 5 downTo 1) {
 println(x)
}

If you don’t know how many times you need to repeat commands, use a while or
a do-while loop.

The while loop repeats while a condition remains true and looks like this:

while (condition) {
 // Commands
}

606 BOOK 6 Programming Language Syntax

If the condition is false right from the start, this loop won’t even run once. Here’s
an example of a while loop:

var x = 0
while (x < 5) {
 println(x)
 x += 1
}

When using a while or a do-while loop, make sure the loop eventually changes
the condition so it becomes false. If you fail to do this, you risk creating an end-
less loop that will freeze your program.

If you want a loop that runs at least once, use the do-while loop, which looks like
this:

do {
 // Commands
} while (condition)

This loop runs at least once before checking a condition. If the condition is false,
the loop stops. An example of a do-while loop looks like this:

var x = 0
do {
 println(x)
 x += 1
} while (x < 5)

Creating Functions
Functions let you define mini-programs that can contain code that might be use-
ful multiple times throughout your program. Instead of writing the same code in
multiple locations, it’s better to write the code once, store it in a function, and
then call (run) that function whenever another part of your program needs to run
that code.

To create a function, use the fun keyword:

fun myFunction() {
 // Commands
}

CHAPTER 4 Kotlin 607

Kotlin

To run or call that function, just use the function name. Functions without any
parameters will do the same thing over and over again, so most functions need
to accept one or more parameters that define a variable name and its data type:

fun myFunction(firstName: String) {
 println("Hello, " + firstName + ". Glad you're here!")
}

This function accepts a string and then prints out "Hello, " followed by the string
that was passed into the function, and concluding with ". Glad you're here!"
Here’s how to call the preceding function:

fun main() {
 myFunction("Betty")
 myFunction("Joe")
 myFunction("Florence")
}

fun myFunction(firstName: String) {
 println("Hello, " + firstName + ". Glad you're here!")
}

Here’s another alternative to concatenating strings together:

fun myFunction(firstName: String) {
 println("Hello, $firstName. Glad you're here!")
}

When defining a parameter in a function, you must define the parame-
ter name (such as firstName) and its data type (such as String). When you
call the function, you just need to pass it the type of data it expects, such as
myFunction("Florence").

Sometimes you may want a function to return a value. To do that, you must spec-
ify the data type that the function name represents:

fun multiplyMe(x: Int, y: Int): Int {
 return x * y
}

This function accepts two integers (x: Int, y: Int) and returns an integer value
(: Int). Then it multiplies x by y and returns the result.

608 BOOK 6 Programming Language Syntax

When calling this function, treat the function name like a value and assign it to a
variable, like this:

fun main() {
 var answer: Int

 answer = multiplyMe(4, 8)
 println(answer)
}

This main function declares an answer variable to hold integer (Int) data types.
Then it calls the multiplyMe function by passing it two numbers (4, 8). The
multiplyMe function multiplies x by y and returns the value (32).

This value (32) then gets stored in the answer variable, which finally gets printed.

Creating functions that return a value involves a three-step process:

1. Define the data type that the function needs to return (such as Int or
String).

2. Make sure the function uses the return keyword followed by the proper
data type (such as Int or String).

3. Call the function and treat the function name as a single value.

Creating Data Structures
Data structures are ways to organize related variables together. Three common
data structures used in Kotlin are

 » Lists: Store multiple variables inside a single variable

 » Arrays: Store multiple items that consist of the same data type

 » Sets: Store an arbitrary collection of items

CHAPTER 4 Kotlin 609

Kotlin

Creating a list
A list lets you store one or more variables in a single variable. Lists can contain
multiple variables of the same data type or completely different data types. If you
want to create a read-only list, you can do this:

var pets = listOf("Oscar", 7, true)

Lists are ordered, which means you can retrieve them by referencing the list name
followed by an index value where the first item in a list has an index value of 0,
the second item has an index value of 1, and so on. The following retrieves the
second item in a list:

var pets = listOf("Oscar", 7, true)
println(pets[1])

When you create a list, you need to store all the data in it that you want. Other-
wise, you can’t add or remove items later. However, if you want to add and remove
items from a list, you’ll need to create a mutable list:

var pets = mutableListOf("Oscar", 7, true)

With a mutable list, you can use the add and remove commands to modify a list
such as:

var pets = mutableListOf("Oscar", 7, true)
pets.add("fish")
pets.remove("Oscar")
println(pets)

This code creates a mutable list and fills it with a string ("Oscar"), an integer (7),
and a Boolean (true). Then it adds another string ("fish") to the end of the list.
Finally, it removes an item ("Oscar") and prints it out.

Kotlin is a case-sensitive language, which means if you try to remove "oscar"
instead of "Oscar", Kotlin won’t find "oscar" in the list so the remove command
won’t do anything.

You can also add or remove data from a specific location by identifying the index
value. So, if you want to remove the second item in a list, you can do this:

var pets = mutableListOf("Oscar", 7, true)
pets.removeAt(1)

610 BOOK 6 Programming Language Syntax

This would remove the item at index position 1, which is the second item (7). To
add data at a specific index position in a list, you could do this:

var pets = mutableListOf("Oscar", 7, true)
pets.add(2, 9.37)

The preceding add command puts the number 9.37 in index position 2, which
makes the number 9.37 appear in the third position in the list.

Creating an array
To create an array in Kotlin, you must use the arrayOf command, like this:

var pets = arrayOf("Oscar", 7, true)

If you want to retrieve a single item from the array, you need to specify the array
name plus the index value of the data you want to retrieve, like this:

println(pets[1])

This command would print the second item (at index position 1) from the pets
array, which would be 7.

To replace an item in an array with a new value, just specify the array name and
the index position where you want to put the data, like this:

var pets = arrayOf("Oscar", 7, true)
pets[1] = "Frank"

This code replaces 7 with "Frank".

Creating a set
Kotlin includes a data structure known as a set. A set lets you define a group of
unique items with no duplicate data. You can create a set that you can’t modify
later using the setOf command, like this:

var fixedSet = setOf("cat", "fish", 12, 8.3)
print(fixedSet)

CHAPTER 4 Kotlin 611

Kotlin

If you want to add and delete items from a set, you can create a mutable set
using the mutableSetOf command, like this:

var mutableSet = mutableSetOf("cat", "fish", 12, 8.3)
print(mutableSet)

After you define a mutable set, you can use the add or remove commands to add
items to a set or remove specific items from a set, like this:

var mutableSet = mutableSetOf("cat", "fish", 12, 8.3)
println(mutableSet)
mutableSet.add("treehouse")
println(mutableSet)
mutableSet.remove("fish")
println(mutableSet)

This code first creates a mutable set filled with two strings ("cat" and "fish"),
one integer (12), and one floating-point number (8.3).

Then it adds a string ("treehouse") to the set. Finally, it removes "fish" from
the set. If "fish" is not found in the set, the remove command won’t do anything
at all.

Creating Objects
Kotlin lets you create class files that define the properties (variables) and methods
(functions) that work together. Then you can create one or more objects from a
single class file. To define a class, create one or more properties and assign them
initial values, like this:

class Animal {
 var name = ""
 var age = 0
 var weight = 0.0
}

After defining a class, you can create an object from that class:

var cat = Animal()

612 BOOK 6 Programming Language Syntax

In this example, the object cat is defined by the Animal class. After you’ve
created an object, you can assign data to the object’s various properties like this:

cat.name = "Fluffy"
cat.age = 3
cat.weight = 12.48
println(cat.name)
println(cat.age)
println(cat.weight)

In this example, I created a class file with multiple properties that have an initial
value. It’s possible to define a class with properties that are undefined like this:

class Animal(var name: String, var age: Int, var weight: Double)

When you create an object from this class, you need to specify data for each prop-
erty like this:

var cat = Animal("Fluffy", 3, 12.48)

Now you can access the object’s properties:

println(cat.name)
println(cat.age)
println(cat.weight)

Finally, a class can also contain methods that can accept parameters and calculate
results:

class Animal(var name: String, var age: Int, var weight: Double) {

 fun greeting(animalNoise: String) {

 println("$name makes this sound: " + animalNoise)
 }

}

Now you can call this method by creating an object and specifying the object name
and the method name to run, like this:

fun main() {
 var cat = Animal("Fluffy", 3, 12.48)
 cat.greeting("meow")
}

This would print out "Fluffy makes this sound: meow".

CHAPTER 5 Swift and SwiftUI 613

Swift and SwiftUI

When the iPhone first came out, you couldn’t create apps for it.
Developers pressured Apple into letting them create apps, and Apple
finally relented and adopted Objective-C as the official language for

creating iPhone apps.

Unfortunately, Objective-C can be just as difficult to learn as C++. That’s why in
2014, Apple introduced a much simpler, yet still powerful language called Swift.
The main idea behind Swift is to offer a language that’s faster, safer, and easier
than Objective-C. Because Swift is Apple’s official programming language, you
should learn Swift if you plan to write apps for any of Apple’s various products
(Mac, iPhone, iPad, Apple Watch, or Apple TV).

Although Swift is open source and has been partially ported to Linux and Windows,
it’s still largely an Apple-only programming language.

Chapter 5

IN THIS CHAPTER

 » Understanding the structure of Swift
programs

 » Making comments

 » Declaring variables and constants

 » Using mathematical operators

 » Working with branching and looping
statements

 » Creating functions, data structures,
and objects

614 BOOK 6 Programming Language Syntax

Considering the Structure
of a Swift Program

Because Swift is a relatively new language, it embraces the best features of
languages like C++, Java, and Python, while focusing on clarity and safety. Clarity
means the code is easy to read and understand because most programs are rewrit-
ten and modified over time. Safety means that Swift avoids the worst features of
C++ and makes it difficult to write code that can cause problems such as memory
leaks, which is when a program gobbles up memory until there’s no more left for
any other program.

The most common way to use Swift is through Xcode, which is Apple’s free com-
piler. When using Xcode, you have a choice of creating apps that use two types of
user interfaces (UIs):

 » Storyboards

 » SwiftUI

Storyboards get their name from filmmaking where artists sketch out scenes so
the director can decide the best way to film it. Storyboards in Xcode work in a sim-
ilar visual manner by letting you drag and drop UI items on the screen, as shown
in Figure 5-1.

The problem with storyboards is that you have to place UI items in precise loca-
tions on the screen, which works until your app needs to run on a different-size
screen found in many of the different iPhone and iPad models.

Because getting storyboards to adapt to different screen sizes and orienta-
tions can be so troublesome, Apple created a second way to design UIs called
SwiftUI. Where storyboards let you define exact values for size, distance, and
location for UI items, SwiftUI lets you design UIs by placing items on the UI in
the center of the screen. Then SwiftUI takes care of adapting the UI automatically
between different screen sizes and orientations.

You can combine storyboards and SwiftUI in the same project. That way, you can
use the best features of each UI design method.

Understanding SwiftUI
SwiftUI is a unique framework for creating UIs similar to Google’s Flutter (see
Book 6, Chapter 6). Where Flutter was designed to let you write one program

Sw
ift and Sw

iftU
I

CHAPTER 5 Swift and SwiftUI 615

that could run on both Android and iOS, SwiftUI was designed by Apple to let you
write one program that could run on all of Apple’s operating systems for the Mac,
iPhone, iPad, Apple TV, and Apple Watch.

A program written in SwiftUI for the Mac can adapt to the UI of an Apple Watch
with minor changes. By using SwiftUI, you can write programs for all of Apple’s
operating systems.

Every SwiftUI program consists of several parts, as shown in Figure 5-2:

 » An import line to use the SwiftUI framework

 » One or more structures to define the UI

 » A preview structure to display the UI in a Canvas pane

 » A Canvas pane to let you see your UI

To create a user interface in SwiftUI, you add Views such as a Text view to display
text on the screen or an Image view to display a graphic image on the screen. To
align Views together, you place them in stacks, which organize Views horizon-
tally, vertically, or overlapping. Stacks act like containers to hold UI Views.

FIGURE 5-1:
A storyboard

lets you visually
design a user

interface.

616 BOOK 6 Programming Language Syntax

Creating a SwiftUI user interface
The basic element of a SwiftUI program is a View. Some Views display UI items on
the screen, such as a TextField or a Button. Other Views simply define how other
Views appear on the screen and aren’t visible at all.

To create a UI, you simply add a View to your UI and then add modifiers. These
modifiers can affect the View’s appearance (such as color or size) or its position
on the screen (such as its x and y position). A View can contain zero or more modi-
fiers, as shown in Figure 5-3.

Understanding SwiftUI state variables
To make a SwiftUI user interface respond to the user, you need to create special
variables called State variables. The main idea is that some Views can change a
State variable, while other Views might just display that State variable.

FIGURE 5-2:
The parts of a

SwiftUI program.

Sw
ift and Sw

iftU
I

CHAPTER 5 Swift and SwiftUI 617

For example, a Text view just displays text, but a TextField view lets the user enter
data, which gets stored in the State variable. Each time the user types something
in a TextField view, that changes the State variable.

As soon as a State variable changes, it automatically sends the changed data to any
view that uses that State variable, as shown in Figure 5-4.

FIGURE 5-3:
Modifiers affect a
View displayed in
the Canvas pane.

FIGURE 5-4:
State variables

let changed
data appear in

multiple locations
automatically.

618 BOOK 6 Programming Language Syntax

Here are the basic steps to the way State variables work in a project:

1. The user manipulates a View (such as a TextField) that changes a State variable.

In SwiftUI, views that can change a State variable display the dollar sign [$] in
front of the State variable name.

2. The State variable, defined with @State in front of the var keyword, contains
the new or modified data.

3. The State variable sends any new data or changes to any View that uses that
State variable.

With storyboards, you have to write code to send changed data to other parts of
the UI. With State variables, this process happens automatically, which helps sim-
plify creating programs using Swift and SwiftUI.

Creating Comments
Because Swift is based on curly-bracket languages (C/C++), it uses the same sym-
bols for creating comments. To define a single-line comment, just use the double
forward slashes (//)where anything to the right of the // is ignored by the com-
piler, like this:

// This is a single-line comment in Swift.

To create multiline comments, use the /* and */ symbols to enclose multiple
lines, like this:

/* This is a multiline comment.
 Anything trapped between these
 two symbols will be completely
 ignored by the compiler.
*/

Declaring Variables
In most programming languages, you declare a variable and the data type it can
hold. With Swift, you simply assign a value to a variable, and Swift infers the data
type of that value. For example, if you want a variable to store an integer, you can
just store an integer into that variable, like this:

Sw
ift and Sw

iftU
I

CHAPTER 5 Swift and SwiftUI 619

var myNumber = 102

Because 102 is an integer, Swift assumes that the variable can hold integer (Int)
data types. Just to make it clear, you can add the data type of a variable, like this:

var myNumber: Int = 102

You can also just declare a variable and its data type without assigning it a value
initially. Then assign a value to that variable later, like this:

var myNumber: Int
myNumber = 102

Swift has the unique ability to use foreign-language characters and emojis
(Unicode characters) as part or all of a variable name, as shown in Figure 5-5.

Declaring string data types
To declare a string variable, use the String keyword:

var variableName1: String

In Swift, strings are enclosed in double quotation marks. After you declare a vari-
able to hold a string, you can assign a string to that variable, like this:

variableName1 = "This string gets stored in the variable."

As a shortcut, it’s far more common in Swift to declare variables and assign them
an initial value:

var variableName1 = "This string gets stored in the variable."

Because you’re storing a string in the variable, Swift infers that the data type must
be String.

FIGURE 5-5:
Swift allows

Unicode
characters

to be used in
variable names.

620 BOOK 6 Programming Language Syntax

Declaring integer data types
Whole numbers represent integers such as 349, –152, or 41. A whole number can
be positive or negative. The most common type of integer data type is Int, and
it’s used as follows:

var intValue: Int

Because Swift programmers commonly assign data immediately after declaring a
variable, you can do this:

var intValue: Int = 38

Or to make it shorter, omit the data type declaration altogether, like this:

var intValue = 38

Swift offers different integer data types that hold different ranges of integer val-
ues. The greater the range of values you need to store, the more memory needed.
The smaller the range of values, the less memory required. Table 5-1 shows some
of the different integer data types and the range of values they can hold.

On 32-bit platforms, Int is the same as Int32. On 64-bit platforms, Int is the
same as Int64.

Declaring decimal data types
Decimal values are numbers such as 1.88 or –91.4. Just as you can limit the range
of integer values a variable can hold, so you can limit the range of decimal values

TABLE 5-1	 Swift Integer Data Types
Data Type Range

Int8 – 127 to 127

UInt8 0 to 255

Int32 –2,147,483,648 to 2,147,483,647

UInt32 0 to 4,294,967,295

Int64 –9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

UInt64 0 to 18,446,744,073,709,551,615

Sw
ift and Sw

iftU
I

CHAPTER 5 Swift and SwiftUI 621

a variable can hold. In Swift, the two types of decimal data types are Float and
Double, as shown in Table 5-2.

If you assign a decimal number to a variable, Swift assumes the data type is
Double unless you specifically declare the variable as a Float data type. For
clarity, it’s usually best to specify the data type for decimal number variables,
like this:

var weight: Double = 145.37
var distance: Float = 102.3904

When working with graphics, Swift uses a third data type for holding decimal
numbers called CGFloat (CG stands for Core Graphics).

You can use the underscore character to make large numbers easier to read:

var bigNumber = 784_135_000.84 // 784135000.84

Declaring Boolean values
Besides storing text and numbers, variables can also hold a Boolean value — true
or false. To declare a variable to hold a Boolean value, use the Bool keyword,
as follows:

var boolValue: Bool
boolValue = true

Declaring Constants
Constants always represent a fixed value. In Swift, you can declare a constant and
its specific value as follows:

let constantName1 = value

TABLE 5-2	 Swift Decimal Data Types
Data Type Range

Float 1.2 E–38 to 3.4 E38

Double 12.3 E–308 to 1.7 E308

622 BOOK 6 Programming Language Syntax

So, if you want to assign 3.14 to a pi constant, you could do this:

let pi = 3.1415

You can only assign a value to a constant once. When a constant holds a value, you
can never change that value later in your program.

Using Operators
The three types of operators used are mathematical, relational, and logical.
Mathematical operators calculate numeric results such as adding, multiplying, or
dividing numbers. Table 5-3 lists the mathematical operators used in Swift.

Relational operators compare two values and return a true or false value. The
six relational operators available in Swift are shown in Table 5-4.

TABLE 5-3	 Mathematical Operators
Mathematical Operator Purpose Example

+ Addition 5 + 3.4

- Subtraction 203.9 - 9.12

* Multiplication 39 * 146.7

/ Division 45 / 8.41

% Modulo (returns the remainder) 35 % 9 = 8

TABLE 5-4	 Relational Operators
Relational Operator Purpose

== Equal to

!= Not equal to

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

D:\\Applications\\REALbasic 2007 Release 1\\REALbasic 2007 Release 1.app\\Contents\\Resources\\Language Reference\\Topics\\1098.html
D:\\Applications\\REALbasic 2007 Release 1\\REALbasic 2007 Release 1.app\\Contents\\Resources\\Language Reference\\Topics\\1098.html

Sw
ift and Sw

iftU
I

CHAPTER 5 Swift and SwiftUI 623

Logical operators, as shown in Table 5-5, compare two Boolean values (true or
false) and return a single true or false value.

Branching Statements
The simplest branching statement is an if-then statement that only runs one or
more commands if a Boolean condition is true, like this:

if condition {
 // Commands
}

To make the computer choose between two mutually exclusive sets of commands,
you can use an if-else statement, like this:

if condition {
 // Commands
} else {
 // Other commands
}

If a Boolean condition is true, the if-else statement runs the first group of com-
mands; if the Boolean condition is false, the if-else statement runs the second

TABLE 5-5	 Logical Operators
Logical Operator Truth Table

&& true && true = true

true && false = false

false && true = false

false && false = false

|| true || true = true

true || false = true

false || true = true

false || false = false

! !true = false

!false = true

624 BOOK 6 Programming Language Syntax

group of commands. No matter what, an if-else statement will always run one
set of commands or the other.

Swift offers a shortcut of the if-else statement that looks like this:

var age = 21
var message: String

message = age >= 21 ? "You are an adult" : "You are a minor"
print(message)

The preceding code works by checking the (age = 21) condition. Because
the value of age is 21, 21 >= 21 evaluates to true. That means "You are an
adult" gets stored in the message variable. If the value of age were 12, then the
(age >= 21) condition would be false and the code would assign "You are a
minor" to the message variable.

One problem with the if-else statement is that it only gives you two possible
choices. One way to offer multiple choices is through the if-else if statement:

if condition1 {
 // Commands
} else if condition2 {
 // Other commands
}

If condition1 is true, then the first set of commands runs. However, if
condition1 is false, then it checks whether condition2 is true. If condition2
is true, then it runs the second set of commands.

If both condition1 and condition2 are false, then no commands will run at all.
That’s why if-else if statements often include an else portion at the end,
like this:

if condition1 {
 // Commands
} else if condition2 {
 // Other commands
} else {
 // Default commands to run
}

Sw
ift and Sw

iftU
I

CHAPTER 5 Swift and SwiftUI 625

If both condition1 and condition2 are false, the commands stored under the
else portion will run by default. The else portion ensures that one set of com-
mands will always run.

The problem with the if-else if statement is that when you start checking for
multiple conditions, the entire if-else if statement can look cluttered and hard
to read, like this:

if condition1 {
 // Commands
} else if condition2 {
 // Other commands
} else if condition2 {
 // Other commands
} else if condition3 {
 // Other commands
} else if condition4 {
 // Other commands
} else {
 // Default commands to run
}

To provide multiple options in a much cleaner form, Swift offers a switch
statement that looks like this:

var day = 3
var result: String
switch day {
 case 0: result = "Sunday"
 case 1: result = "Monday"
 case 2: result = "Tuesday"
 case 3: result = "Wednesday"
 case 4: result = "Thursday"
 case 5: result = "Friday"
 case 6: result = "Saturday"
 default: result = "No such day"
}
print(result)

The preceding switch statement is equivalent to the following if-else if
statement:

var day = 3
var result: String

626 BOOK 6 Programming Language Syntax

if (day == 0) {
 result = "Sunday"
} else if (day == 1) {
 result = "Monday"
} else if (day == 2) {
 result = "Tuesday"
} else if (day == 3) {
 result = "Wednesday"
} else if (day == 4) {
 result = "Thursday"
} else if (day == 5) {
 result = "Friday"
} else if (day == 6) {
 result = "Saturday"
} else {
 result = "No such day"
}
print(result)

To check whether a variable matches multiple values, you can separate multiple
values with commas or you can match a range of values, like this:

var number = 4
var result: String
switch number {
 case 1, 2, 3: result = "1, 2, or 3"
 case 4...6: result = "4, 5, or 6"
 default: result = "Not within the range of 1 - 6"
}
print(result)

When checking a range of values, Swift offers two options. Using three dots is
called a closed range because Swift counts from the lower number up to and includ-
ing the upper number. In the preceding example, 4...6 tells Swift to include 4, 5,
and 6. Instead of using three dots, you can use two dots and a less-than symbol
(<), which is called a half-open range and looks like this: 4..<7. This tells Swift to
include 4, 5, and 6, but not 7.

The preceding switch statement is equivalent to the following if-else if
statement:

if (number == 1 || number == 2 || number == 3) {
 result = "1, 2, or 3"
} else if (number >= 4 && number <= 6) {

Sw
ift and Sw

iftU
I

CHAPTER 5 Swift and SwiftUI 627

 result = "4, 5, or 6"
} else {
 result = "Not within the range of 1 - 6"
}
print(result)

Looping Statements
A looping statement repeats one or more commands a fixed number of times or
until a certain Boolean condition becomes true. To create a loop that repeats a
fixed number of times, use the for loop, which looks like this:

for (variable in Start...End) {
 // Commands
}

If you want the for loop to run five times, set the start value to 1 and the end value
to 5, like this:

for x in 1...5 {
 print(x)
}

Normally the for loop counts up, but you can use the stride keyword to define
three parameters — the starting value, the ending value, and the increment value,
which is –1 in this example:

for x in stride(from: 5, through: 1, by: -1) {
 print(x)
}

If you don’t know how many times you need to repeat commands, use a while or
a do-while loop.

The while loop repeats while a condition remains true; it looks like this:

while condition {
 // Commands
}

628 BOOK 6 Programming Language Syntax

If the condition is false right from the start, this loop won’t even run at least
once. Here’s an example of a while loop:

var x = 0
while (x < 5) {
 print(x)
 x += 1
}

If you want a loop that runs at least once, use the repeat-while loop, which looks
like this:

repeat {
 // Commands
} while (condition)

When using a while or a repeat-while loop, make sure the loop eventually
changes the condition so it becomes false. If you fail to do this, you risk creating
an endless loop that will freeze your program.

This loop runs at least once before checking a condition. If the condition is false,
the loop stops. An example of a repeat-while loop looks like this:

var x = 0
repeat {
 print(x)
 x += 1
} while (x < 5)

Creating Functions
Functions let you define mini-programs that can contain code that may be use-
ful multiple times throughout your program. Instead of writing the same code in
multiple locations, it’s better to write the code once, store it in a function, and
then call (run) that function whenever another part of your program needs to run
that code.

To create a function, use the func keyword:

func myFunction() {
 // Commands
}

Sw
ift and Sw

iftU
I

CHAPTER 5 Swift and SwiftUI 629

To run or call that function, just use the function name. Functions without any
parameters will do the same thing over and over again, so most functions need
to accept one or more parameters that define a variable name and its data type,
like this:

func myFunction(firstName: String) {
 print("Hello, " + firstName + ". Glad you're here!")
}

This function accepts a string and then prints out "Hello, " followed by the
string that was passed into the function, and concluding with ". Glad you're
here!" The following shows how to call the preceding function:

myFunction(firstName: "Betty")
myFunction(firstName: "Joe")
myFunction(firstName: "Florence")

func myFunction(firstName: String) {
 print("Hello, " + firstName + ". Glad you're here!")
}

When defining a parameter in a function, you must define the parameter name
(such as firstName) and its data type (such as String). When you call the func-
tion, you must pass it the type of data it expects and use the parameter name, such
as myFunction(firstName: "Florence").

Sometimes you may want a function to return a value. To do that, you must spec-
ify the data type that the function name represents, like this:

func multiplyMe(x: Int, y: Int) -> Int {
 return (x * y)
}

This function accepts two integers (x: Int, y: Int) and returns an integer value
(-> Int). Then it multiplies x by y and returns the result.

When calling this function, treat it like a value and assign it to a variable, like this:

var answer: Int

answer = multiplyMe(x: 4, y: 8)
print(answer)

630 BOOK 6 Programming Language Syntax

This main function declares an answer variable to hold integer (Int)
data types. Then it calls the multiplyMe function by passing it two numbers
(x: 4, y: 8). The multiplyMe function multiplies x by y and returns the value
(32) in the multiplyMe function name.

This value (32) then gets stored in the answer variable, which finally gets printed.

Creating functions that return a value involves a three-step process:

1. Define the data type that the function needs to return (such as -> Int or
-> String).

2. Make sure the last line in the function uses the return keyword followed
by the proper data type (such as Int or String) that the function should
return (as defined in Step 1).

3. Call the function and treat the function name as a single value.

Data Structures
Data structures are ways to organize related variables together. Three common
data structures used in Swift are

 » Arrays: Store a list of items that consist of the same data type

 » Dictionaries: Store a list of items using a key paired with data

 » Sets: Store an arbitrary list of items

Creating an array
Arrays in Swift usually contain the same data type, such as Int or String. The
simplest way to create an array is to simply define a list in square brackets to a
variable name, like this:

var pets = ["cat", "dog", "fish", "bird"]

If you want to specify the data type, you can do this:

var pets: [String] = ["cat", "dog", "fish", "bird"]

Sw
ift and Sw

iftU
I

CHAPTER 5 Swift and SwiftUI 631

If you just want to create an empty array, specify the data type followed by empty
parentheses, like this:

var pets = [String]()

If you want to retrieve a single item from the array, you need to specify the array
name plus the index value of the data you want to retrieve, like this:

print(pets[1])

The preceding command would print the second item (at index position 1) from
the pets array, which would be "dog".

To replace an item in an array with a new value, just specify the array name and
the index position where you want to put the data, like this:

var pets = ["cat", "dog", "fish", "bird"]
pets[1] = "lizard"

The preceding code replaces "dog" with "lizard".

To add data to the end of the array, use the append command, like this:

var pets: [String] = ["cat", "dog", "fish", "bird"]
pets.append("lizard")

If you want to insert data in a specific location, use the insert command to spec-
ify the data to insert into the array followed by the index position to place it:

var pets: [String] = ["cat", "dog", "fish", "bird"]
pets.insert("lizard", at: 1)

This places "lizard" as the second item in the array and pushes the rest of the
items to the right, like this:

["cat", "lizard", "dog", "fish", "bird"]

You can also remove items from an array by specifying the index position of the
item you want to remove. So, if you wanted to remove the third item from an
array, you could use the remove command, like this:

var pets: [String] = ["cat", "dog", "fish", "bird"]
pets.remove(at: 3)

632 BOOK 6 Programming Language Syntax

This would remove "bird" so the entire array would look like ["cat",
"dog", "fish"].

Creating a dictionary
The biggest problem with an array is that you have to find items using the index
position. You can always add or remove items, which can change the index posi-
tion of an item, so keeping track of index positions can be troublesome. That’s
why Swift offers another data structure called a dictionary.

The idea behind a dictionary is to store data with a key linked to data. This key-
data pair then gets stored in the dictionary. To retrieve data, you just need to know
the key linked to the data you want to retrieve.

Both the key and the data can be of any data type, but every key in a dictionary
must be of the same data type, such as Int or String, and all stored data must be
of the same data type, such as Double or String. To create a dictionary, specify
the data type of the key and data pair, and then store data in that dictionary, like
this:

var myDictionary: [Int: String] = [
 10: "cat",
 20: "dog",
 30: "fish",
 40: "bird"
]

If you want to retrieve a single item from the dictionary, you need to specify the
dictionary name plus the key linked to the data you want to retrieve, like this:

print (myDictionary[20]!)

The preceding command would print the data linked to the 20 key, which would
be "dog".

The exclamation point (!) at the end of myDictionary[20] exists because there’s
a chance there is no key number 20. If you omit the exclamation point, Swift
would print Optional("dog"), so the exclamation point exists to eliminate the
Optional part of the returned data. If you try to retrieve data and there is no key
20, the code will crash.

Sw
ift and Sw

iftU
I

CHAPTER 5 Swift and SwiftUI 633

To add data to a dictionary, just specify a new key and assign it data, like this:

var myDictionary: [Int: String] = [
 10: "cat",
 20: "dog",
 30: "fish",
 40: "bird"
]
myDictionary[20] = "tarantula"
print (myDictionary)

The preceding code replaces "dog" with "tarantula" for key 20. If key 20 didn’t
previously exist, then the preceding code would add a new key (20) and data
("tarantula") to the dictionary.

Unlike arrays, dictionaries don’t order their data. That means the order in
which you store data in a dictionary is not the order that the dictionary actually
arranges the data.

Creating a set
An array and a dictionary can potentially contain duplicate data. That’s why
Swift offers a set, which can never hold duplicate data. To define a set, list items
within square brackets and specify a variable as a set, like this:

var mySet: Set = ["cat", "dog", "fish", "bird"]

If you want to add items to a set, use the insert command and specify the data
to add, like this:

mySet.insert("lizard")

To remove an item from a set, use the remove command and identify the data
to remove, like this:

mySet.remove("dog")

This command removes "dog" from the set. If "dog" doesn’t exist in the set,
then the remove command does nothing.

634 BOOK 6 Programming Language Syntax

Creating Objects
Swift lets you create class files that define properties (variables) and methods
(functions) that work together. Then you can create one or more objects from a
single class file. To define a class, create one or more properties and assign them
initial values, like this:

class Animal {
 var name = ""
 var age = 0
 var weight = 0.0
}

After defining a class, you can create an object from that class, like this:

var cat = Animal()

In this example, the object cat is defined by the Animal class. After you’ve cre-
ated an object, you can assign data to the object’s various properties, like this:

cat.name = "Fluffy"
cat.age = 3
cat.weight = 12.48
print (cat.name)
print (cat.age)
print (cat.weight)

In this example, I created a class file with multiple properties that have an initial
value. You can define a class with properties that are undefined, but if you create
properties that are undefined, you must create an initializer, like this:

class Animal {
 var name: String
 var age: Int
 var weight: Double
 init(name: String, age: Int, weight: Double) {
 self.name = name
 self.age = age
 self.weight = weight
 }
}

Sw
ift and Sw

iftU
I

CHAPTER 5 Swift and SwiftUI 635

When you create an object from this class, you need to specify data for each
property when you create the object, like this:

var cat = Animal(name: "Fluffy", age: 3, weight: 12.48)

Now you can access the object’s properties, like this:

print (cat.name)
print (cat.age)
print (cat.weight)

Finally, a class can also contain methods that can accept parameters and calcu-
late results, like this:

class Animal {
 var name: String
 var age: Int
 var weight: Double
 init(name: String, age: Int, weight: Double) {
 self.name = name
 self.age = age
 self.weight = weight
 }
 func greeting(animalNoise: String) {
 print ("This animal makes this sound: " + animalNoise)
 }
}

Now you can call this method by creating an object and specifying the object name
and the method name to run, like this:

var cat = Animal(name: "Fluffy", age: 3, weight: 12.48)

cat.greeting(animalNoise: "meow")

This would print out "This animal makes this sound: meow".

CHAPTER 6 Flutter and Dart 637

Flutter and Dart

When the mobile computing market arrived, developers rushed to create
apps for iPhone and Android devices. Initially, Google endorsed Java as
the official programming language for Android, but it shifted its sup-

port to Kotlin instead.

Unfortunately, writing apps in Java or Kotlin meant you had to rewrite the entire
app all over again in Objective-C or Swift to create an iPhone app. Forcing pro-
grammers to learn and write apps in two completely different languages wasn’t
practical. That’s why Google released Flutter in 2017.

The idea behind Flutter is to create a universal user interface (UI) framework that
would allow developers to design an app that would run on Android and iOS with
little or no modifications.

After you create a UI using Flutter, the next step is to make it actually work by
using a programming language called Dart. Where Flutter focuses on the UI, the
Dart programming language focuses on the actual code (algorithms) that you
write to calculate results and create useful information of some kind.

Initially, Flutter was designed to let you write one program that could run on both
Android and iOS. Now Flutter has expanded its list of target platforms to include
Linux, macOS, and Windows.

Chapter 6

IN THIS CHAPTER

 » Working with Flutter

 » Using the Dart language

638 BOOK 6 Programming Language Syntax

Working with Flutter
The main idea behind Flutter is to create a program out of smaller components
called widgets, where each widget represents a UI element such as a button or text.
By arranging widgets on the screen, you can create your app’s UI.

Depending on the operating system a Flutter app runs on, it will automatically
adapt to the native appearance and behavior of that particular operating system.
In this way, Flutter apps look and behave like apps specifically designed for that
operating system.

One unique feature of Flutter is called hot reload. This allows developers to change
the source code and see the results of that change instantly on the UI. Hot reload
lets you experiment faster with different designs until you find the one you
like best.

Understanding the structure
of a Flutter program
Flutter programs tend to resemble C code because the Dart programming language
(covered later in this chapter) is inspired by curly-bracket languages like C:

import 'package:flutter/material.dart';

void main() {
 runApp(
 const Center(
 child: Text(
 'Flutter here!',
 textDirection: TextDirection.ltr,
),
),
);
}

Indentation is optional in Dart, but it can make your code easier to understand.

In this Flutter program, the Center widget aligns the Text widget in the center of
the screen. Then the Text widget displays text on the screen and also defines the
direction in which text should appear (ltr stands for left to right):

const Center(
 child: Text(

Flutter and D
art

CHAPTER 6 Flutter and Dart 639

 'Flutter here!',
 textDirection: TextDirection.ltr,
),
),

Working with widgets in Flutter
To design a UI in Flutter, you use various widgets that work together. Widgets often
contain other widgets. Some widgets deal with input and output and are visible (for
example Text, Button, and TextField widgets). Other widgets are invisible because
they’re designed to contain other widgets and organize them on the screen.

Every Flutter program starts running a main() program so you can define the first
widget you want to load initially, like this:

void main() {
 runApp(
 // Insert Dart code here
);
}

Although you could type different widgets directly into the main() function, it’s
better to organize code in separate widgets. That means you need to create a
widget, which means defining whether the widget is stateful or stateless:

 » Stateful: A stateful widget is one that can change its appearance based on the
state of a value, such as a Boolean variable. If the state of a Boolean variable is
true, the widget may appear in one color if it’s false and in a different color if
it’s true.

 » Stateless: A stateless widget is one that’s static and doesn’t need to change,
such as displaying a new text or a new image on the screen. To create a
stateless widget, you need to define a class with an arbitrary name, such as
MyWidget, like this:

class MyWidget extends StatelessWidget {

 const MyWidget({Key? key}) : super(key: key);
 @override
 Widget build(BuildContext context) {
 return const MaterialApp();
 }
}

640 BOOK 6 Programming Language Syntax

The MyWidget class returns a MaterialApp widget that provides additional UI
widgets. Within this MaterialApp widget, you can define a home widget, which
will be the first widget that will appear on the screen. You can define this widget
using the Scaffold widget, which can display additional UI widgets:

class MyWidget extends StatelessWidget {
 const MyWidget({Key? key}) : super(key: key);
 @override
 Widget build(BuildContext context) {
 return const MaterialApp(
 home: Scaffold(

),
);
 }
}

Within the Scaffold widget, you can define the body of the widget. I want to
center text inside the Scaffold widget, so I can define a Center widget like this:

class MyWidget extends StatelessWidget {
 const MyWidget({Key? key}) : super(key: key);
 @override
 Widget build(BuildContext context) {
 return const MaterialApp(
 home: Scaffold(
 body: Center(

),
),
);
 }
}

Finally, within the Center widget, you can display text through the Text widget,
like this:

class MyWidget extends StatelessWidget {
 const MyWidget({Key? key}) : super(key: key);
 @override
 Widget build(BuildContext context) {
 return const MaterialApp(
 home: Scaffold(
 body: Center(

Flutter and D
art

CHAPTER 6 Flutter and Dart 641

 child: Text("Flutter here!"),
),
),
);
 }
}

The Text widget displays text on the screen, but you may want to change its
appearance in different ways, such as changing the font style, font size, font
weight, font color, or background color. You can change these properties like this:

Text("Flutter here!",
 style: TextStyle(fontWeight: FontWeight.bold,
 fontStyle: FontStyle.italic,
 color: Colors.red,
 backgroundColor: Colors.yellow,
 fontSize: 24),
)

A complete program using the Text widget with multiple properties might look
like this:

import 'package:flutter/material.dart';

void main() {
 runApp(const MyWidget());
}

class MyWidget extends StatelessWidget {
 const MyWidget({Key? key}) : super(key: key);
 @override
 Widget build(BuildContext context) {
 return const MaterialApp(
 home: Scaffold(
 body: Center(
 child: Text(
 "Flutter here!",
 style: TextStyle(fontWeight: FontWeight.bold,
 fontStyle: FontStyle.italic,
 color: Colors.red,
 backgroundColor: Colors.yellow,
 fontSize: 24),
),
),

642 BOOK 6 Programming Language Syntax

),
);
 }
}

Figure 6-1 shows how properties can modify the appearance of text that appears
on the screen through the Text widget.

Aligning widgets in rows and columns
The key to designing UIs in Flutter lies in organizing widgets inside of other
widgets. From there, you can choose different properties to modify a widget’s
appearance in the UI. Two commonly used widgets to align widgets on the screen
are Row and Column.

The Row widget organizes widgets horizontally. The Column widget organizes
widgets vertically. Both the Row and Column widgets let you define one or more
children widgets, defined within square brackets, like this:

Row(
 children: [

],

FIGURE 6-1:
Adding properties

can change the
appearance of

the Text widget.

Flutter and D
art

CHAPTER 6 Flutter and Dart 643

One useful widget to use within rows or column is the Expanded widget, which
spaces items apart within a row or a column so they don’t appear smashed against
each other:

Row(
 children: [
 Expanded(
 child: Text(
 "Cross-platform"
),
),
 Expanded(
 child: Text(
 "Flutter here"
),
)
]

The following code displays two Text widgets horizontally, as shown in
Figure 6-2:

FIGURE 6-2:
The Expanded
widget inside

the Row widget
can space

items apart.

644 BOOK 6 Programming Language Syntax

import 'package:flutter/material.dart';

void main() {

 runApp(const MyWidget());

}

class MyWidget extends StatelessWidget {

 const MyWidget({Key? key}) : super(key: key);

 @override

 Widget build(BuildContext context) {

 return const MaterialApp(

 home: Scaffold(

 body: Center(

 child: Row(

 children: [

 Expanded(

 child: Text(

 "First",

 style: TextStyle(fontWeight: FontWeight.bold,

 fontStyle: FontStyle.italic,

 color: Colors.red,

 backgroundColor: Colors.yellow,

 fontSize: 24),

),

),

 Expanded(

 child: Text(

 "Second",

 style: TextStyle(fontWeight: FontWeight.bold,

 fontStyle: FontStyle.italic,

 color: Colors.red,

 backgroundColor: Colors.yellow,

 fontSize: 24),

),

),

],

)),

),

);

 }

}

If you change the Row widget to the Column widget, the two Text widgets will
appear stacked vertically, as shown in Figure 6-3.

Flutter and D
art

CHAPTER 6 Flutter and Dart 645

Understanding the Dart Language
Flutter relies on a programming language called Dart. When you create a Flutter
project, you need to design the UI using widgets and then use the Dart program-
ming language to make that UI respond to the user.

Like C++ and Java, Dart requires every line to end with a semicolon.

Creating comments
To write a comment in Dart, use double forward slashes (//). Anything that
appears to the right of the // is ignored by the compiler, like this:

// This is a comment.

If you want to create a comment covering multiple lines, use the /* and
*/ symbols to define the start and end of a comment, like this:

/* This is a multiple-line comment.
 You just need to define the beginning
 and the end of the multiple lines. */

FIGURE 6-3:
The Column

widget arranges
widgets vertically.

646 BOOK 6 Programming Language Syntax

Declaring variables
Four common data types defined by Dart include

 » int: Integer or whole numbers (such as 8, –23, or 910)

 » double: Decimal numbers (such as 3.1415, –0.892, or 194.5)

 » String: Text strings (such as "Hello", "Goodbye", or "Flutter is fun")

 » bool: Boolean values (such as true or false)

You can explicitly define a data type when declaring variables like this:

int x = 10;
double weight = 12.74;

Another option is to use the var keyword to declare a variable and let Dart infer
the data type, like this:

var x = 10; // int data type
var weight = 12.74; // double data type

When using the var keyword to declare a variable, you must assign an initial value
to that variable.

To create a constant that can accept a value once and never change after, use the
const keyword, like this:

const flag = 34;

Using operators
The three types of operators used are mathematical, relational, and logical.
Mathematical operators calculate numeric results such as adding, multiplying, or
dividing numbers, as shown in Table 6-1.

Relational operators compare two values and return a true or false value. The six
relational operators available are shown in Table 6-2.

Flutter and D
art

CHAPTER 6 Flutter and Dart 647

The relational operator in Dart is two equal signs (==), whereas the relational
operator in other programming languages is just a single equal sign (=). If you
only use a single equal sign to compare two values in Dart, your program will work
but not the way it’s supposed to.

Logical operators compare two Boolean values (true or false) and return a single
true or false value, as shown in Table 6-3.

Increment and decrement operators
Dart has an increment operator (++), which adds 1 to a variable, and a decrement
operator (--), which subtracts 1 from a variable. You can place an increment or
decrement operator before (prefix) or after (postfix) a variable.

TABLE 6-1 Mathematical Operators
Mathematical Operator Purpose Example

+ Addition 5 + 3.4

- Subtraction 203.9 – 9.12

* Multiplication 39 * 146.7

/ Division 45 / 8.41

~/ Division (returns integer) 45 / 7 = 6

% Modulo (returns the
remainder)

35 % 9 = 8

TABLE 6-2 Relational Operators
Relational Operator Purpose

== Equal to

!= Not equal to

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

C:/Applications/REALbasic%202007%20Release%201/REALbasic%202007%20Release%201.app/Contents/Resources/Language%20Reference/Topics/1098.html
C:/Applications/REALbasic%202007%20Release%201/REALbasic%202007%20Release%201.app/Contents/Resources/Language%20Reference/Topics/1098.html
C:/Applications/REALbasic%202007%20Release%201/REALbasic%202007%20Release%201.app/Contents/Resources/Language%20Reference/Topics/1098.html

648 BOOK 6 Programming Language Syntax

Prefix means the increment or decrement operator changes the value of a variable
first. Postfix means the increment or decrement operator changes the value of a
variable last. The following code demonstrates the difference between prefix and
postfix:

var x = 7;
print(x++); // prints 7

var y = 7;
print(++y); // prints 8

var a = 7;
print(a--); // prints 7

var b = 7;
print(--b); // prints 6

Assignment operators
Dart uses the equal sign (=) to assign values to variables, but it also includes com-
bination assignment and mathematical operators, as shown in Table 6-4.

TABLE 6-3 Logical Operators
Logical Operator Truth Table

&& true && true = true

true && false = false

false && true = false

false && false = false

|| true || true = true

true || false = true

false || true = true

false || false = false

! !true = false

!false = true

Flutter and D
art

CHAPTER 6 Flutter and Dart 649

Using branching statements
The simplest branching statement is an if statement that only runs one or more
commands if a Boolean condition is true. In Dart, the if statement uses curly
brackets to enclose one or more commands:

if (condition) {
 Command1;
 Command2;
}

To make the computer choose between two mutually exclusive sets of commands,
you can use an if-else statement in Dart, like this:

if (condition) {
 Command;
 Command;
}
else {
 Command;
 Command;
}

The if-else statement offers only two choices. If you want to offer more than two
choices, you can use the if-elseif statement, which uses two or more Boolean
conditions to choose which of two or more groups of commands to run, like this:

if (condition1) {
 Command;
 Command;

TABLE 6-4 Assignment Operators
Assignment Operator Purpose Example

+= Addition assignment i += 7 (equivalent to
i = i + 7)

-= Subtraction assignment i -= 4 (equivalent to
i = i - 4)

*= Multiplication assignment i *= y (equivalent to
i = i * y)

/= Division assignment i /= 3.5 (equivalent
to i = i / 3.5)

650 BOOK 6 Programming Language Syntax

}
else if (condition2) {
 Command;
 Command;
}
else if (condition3) {
 Command;
 Command;
}

Instead of using multiple if-else if statements, you can use a switch state-
ment, like this:

var x = 4;

switch (x) {
 case 2: {
 print("2");
 break;
 }
 case 3: {
 print("3");
 break;
 }
 case 4: {
 print("4");
 break;
 }
 default: {
 print("Unknown");
 }
}

At the end of each case, include a break statement to ensure that when a case
statement finds a match, it doesn’t “fall through” to the next case statement
below.

Using looping statements
A looping statement repeats one or more commands a fixed number of times or
until a certain Boolean condition becomes true. To create a loop that repeats a
fixed number of times, use the for loop, which looks like this:

Flutter and D
art

CHAPTER 6 Flutter and Dart 651

for (startvalue; endcondition; increment) {
 Command;
}

If you wanted the for loop to run five times, you can declare a start value as an
integer and set its initial value to 1 (such as int i = 1). Then define the end con-
dition (such as i <= 5), like this:

for (int i = 1; i <= 5; i++) {
 print(i);
}

This for loop would print the following:

1
2
3
4
5

If you don’t know how many times you need to repeat commands, use a while
loop, which looks like this:

while (condition) {
 Command;
 Command;
}

If the condition is true, the loop runs at least once. If the condition is false, the
loop doesn’t run. The following while loop runs five times:

int i = 1;
while (i <= 5)
{
 print(i);
 ++i;
}

Somewhere inside a WHILE loop, you must have a command that can change the
condition from true to false; otherwise, the loop will never end, and your pro-
gram will appear to hang or freeze.

652 BOOK 6 Programming Language Syntax

An alternative to the while loop is the do-while loop, which always runs the loop
once before checking whether a condition is true or false. The following do-
while loop runs five times:

int i = 1;
do {
 print(i);
 ++i;
}
while (i <= 5);

Creating functions
A function lets you write a mini program that performs a specific task. Dart lets
you create a function in two ways. First, you can define the function by using the
void keyword, an arbitrary name, and a parameter list, like this:

void functionname() {
 Commands;
}

Optionally, you can omit the void keyword altogether and just specify the func-
tion name and its parameter list, like this:

functionname() {
 Commands;
}

To call this function, just use the function name like a command:

void greeting() {
 print ("Hello!");
}

greeting();

For a function to receive data, just declare the data type to receive followed by a
variable name that will be used within the function, like this:

void greeting(String name) {
 print ("Hello, " + name);
}

Flutter and D
art

CHAPTER 6 Flutter and Dart 653

To call this function, you must use the function name followed by any data to pass
into the parameter list. The data must be of the right data type, like this:

greeting("Frank");

This function sends the string "Frank" to the function called greeting, which
accepts "Frank" and prints "Hello, Frank".

Sometimes a function can represent a value. To declare a function that returns a
value, you must identify the data type the function returns right before the func-
tion name, like this:

String greeting(String name) {

}

Make sure that any function that returns a value includes the return keyword fol-
lowed by the data that matches the data type, like this:

String greeting(String name) {
 return ("Hello, " + name);
}

When you call this function and pass it data, you can treat the function call as a
single value, like this:

print(greeting("Frank"));

This function call passes "Frank" to the greeting function, which returns "Hello,
Frank" back to the print statement.

Creating data structures
Dart offers lists, queues, and map data structures. A list is like an array in other
languages that can hold one or more items. A queue creates a data structure where
you can remove items from the beginning or end of the queue. A map stores values
with keys, allowing you to retrieve values using its distinct key.

A list in Dart acts like an array in other languages. Likewise, a map in Dart is like
a dictionary in other languages.

654 BOOK 6 Programming Language Syntax

Creating a list
A Dart list lets you change, add, or delete items. To create a list, identify a variable
name as a list and use the new keyword to create that list, like this:

List pets = new List();

To add items to this list, use the add command followed by the data to store in the
list, like this:

pets.add("cat");

You can use the length property to retrieve the total number of items in the list.
To retrieve a specific item from the list, identify the list name followed by an index
number, where 0 represents the first item in the list, 1 represents the second item,
and so on.

The following code creates a list; adds "cat", "dog", "fish", and "bird" to the
list; and prints out the length (4) and the item stored in index position 1 (the
second item, which is "dog"). Then it removes "fish" from the list and retrieves
the length again (3):

List pets = new List();
pets.add("cat");
pets.add("dog");
pets.add("fish");
pets.add("bird");

print (pets.length);
print(pets[1]);

pets.remove("fish");
print (pets.length);

Creating a queue
A queue stores multiple items but gives you the option of adding or removing
items from the front or back of the queue. To create a queue, you must define its
data type to hold, like this:

import "dart:collection";

You must import the dart:collection library to use queues like this.

Flutter and D
art

CHAPTER 6 Flutter and Dart 655

The following program creates a queue and adds four items in this order: "cat",
"dog", "fish", and "bird". Then it removes the first item ("cat") and the last
item ("bird"):

import "dart:collection";
void main(){

 Queue<String> pets = new Queue<String>();
 pets.add("cat");
 pets.add("dog");
 pets.add("fish");
 pets.add("bird");

 print(pets);

 print(pets.length);

 pets.removeFirst();
 pets.removeLast();
 print(pets);
}

Creating a map
A map contains values and keys assigned to each value. To create a map, declare a
map variable name and then store key-value pairs inside curly brackets, like this:

var mapname = {key1:value1, key2:value2, key3:value3}

The following code creates a map with three key-value pairs and then prints out
the value associated with the 15 key:

var pets = {10:"cat", 15:"dog", 20:"fish"};
print(pets[15]);

The keys and values in a map can be any data type. If the key is an integer, all keys
must be integers. If the value is a string, all values must be strings.

Another way to create a map is to create a new Map() and then assign values to
the keys like this:

var pets = new Map();
pets[10] = "cat";
pets[15] = "dog";

656 BOOK 6 Programming Language Syntax

pets[20] = "fish";
print(pets[15]);

Using objects
To create an object in Dart, you must define a class, which looks like this:

class className {
 // properties

 dataType methodname() {
 Commands;
 Commands;
 }
}

A class lists properties (data) along with one or more methods, which contain code
for manipulating an object in some way.

The following class defines a single property and a method:

class Car {
 // field
 String engine = "6-cylinder";

 // function
 void disp() {
 print(engine);
 }
}

After declaring the class, you can then create an object, print a property, and run
a method:

void main(){

 var vroom = new Car();
 print (vroom.engine);
 vroom.disp();
}

The preceding code prints vroom.engine, which is "6-cylinder". Then it runs
the disp method, which also prints the engine property ("6-cylinder").

7Applications

Contents at a Glance
CHAPTER 1: Database Management . 659

CHAPTER 2: Bioinformatics . 675

CHAPTER 3: Computer Security . 685

CHAPTER 4:	 Artificial	Intelligence . 699

CHAPTER 5: Mobile and Wearable Computing 711

CHAPTER 6: Game Engines . 721

CHAPTER 7: The Future of Computer Programming 731

CHAPTER 1 Database Management 659

Database Management

Database management is all about storing organized information and
knowing how to retrieve it again. Although the idea of storing and retriev-
ing data is simple in theory, managing databases can get complicated in a

hurry. Not only can data be critical, such as bank records, but data retrieval may be
time-sensitive as well. After all, retrieving a person’s medical history in a hospital
emergency room is useless if that information doesn’t arrive fast enough to tell
doctors that the patient has an allergic reaction to a specific antibiotic.

Because storing and retrieving information is so important, one of the most com-
mon and lucrative fields of computer programming is database management.
Database management involves designing and programming ways to store and
retrieve data. Because nearly every type of business — from agriculture to bank-
ing to engineering — requires storing and retrieving information, database man-
agement is used throughout the world.

Understanding the Basics of Databases
A database acts like a big bucket where you can dump information. The two most
important parts of any database are storing information and yanking it back out
again. Ideally, storing information should be just as easy as retrieving it, no mat-
ter how much data you may need to store or retrieve.

Chapter 1

IN THIS CHAPTER

 » Discovering the basics of databases

 » Figuring out how to manipulate data

 » Understanding database
programming

660 BOOK 7 Applications

To store and retrieve data, computer scientists have created several types of data-
base designs:

 » Free-form

 » Flat-file

 » Relational

Free-form databases
Free-form databases are designed to make it easy to store and retrieve informa-
tion. A free-form database acts like a scratch pad of paper where you can scribble
any type of data, such as names and addresses, recipes, directions to your favorite
restaurant, pictures, or a list of items that you want to do the next day. A free-
form database gets its name because it gives you the freedom to store dissimilar
information in one place, as shown in Figure 1-1.

FIGURE 1-1:
A free-form

database can
store randomly

structured
information.

D
atabase M

anagem
ent

CHAPTER 1 Database Management 661

Being able to store anything in a database can be convenient, but that convenience
is like the freedom to throw anything you want in a closet, such as pants, books,
written reports, and photographs. With such a wide variety of stuff dumped in one
place, finding what you need can be much more difficult.

To retrieve data from a free-form database, you need to know at least part of the
data you want to find. So, if you stored a name and phone number in a free-form
database, you could find it again by typing part of the name you want to find (such
as typing Rob to find the name Robert). If you stored a recipe in a free-form data-
base, you could find it by typing one of the ingredients of that recipe, such as milk,
shrimp, or carrots.

Free-form databases have two big disadvantages:

 » They’re clumsy for retrieving information. For example, suppose you
stored the name Robert Jones and his phone number 555-9378. The only way
to retrieve this information is by typing part of this data, such as Rob, 555, or
nes. If you type Bob, the free-form database doesn’t find Robert. So, it’s
possible to store information in a free-form database and never be able to
find it again, much like storing a cherished photo in an attic and forgetting
exactly where it might be.

 » They can’t sort or filter information. If you want to see the phone numbers
of every person stored in a free-form database, you can’t. If you want to see
only information in the free-form database that you stored in the past week,
you can’t do that either.

Because free-form databases are so limited in retrieving information, they’re best
used for simple tasks, such as jotting down notes or ideas, but not for storing
massive amounts of critical information. To store data with the ability to sort,
search, and filter data to view only specific types of information, you need a flat-
file database.

Flat-file databases
The biggest difference between a free-form database and a flat-file database is
that a flat-file database imposes structure. Whereas a free-form database lets you
type random information in any order, flat-file databases force you to add infor-
mation by first defining the structure of your data and then adding the data itself.

Before you can store data, you must design the structure of the database. This
means defining what type of data to store and how much room to allocate for
storing it. So, you might decide to store someone’s first name and last name and
allocate up to 20 characters for each name.

662 BOOK 7 Applications

Each chunk of data that you want to record, such as a first name, is a field. A group
of related fields is a record. If you want to store names and addresses, each name
and address is a field, and each name and its accompanying address make up a
single record, as shown in Figure 1-2.

Flat-file databases impose a structure on the type of information you can store to
make retrieving information much easier later. However, you need to design the
structure of your database carefully. If you define the database to store only first
and last names, you can’t store any information other than first and last names.

Designing the size and types of fields can be crucial in using the database later.
If you create a Name field but allocate only ten characters to hold that data, the
name Bob Jones will fit, but another name, such as Daniel Jonathan Perkins, will be
cut off.

FIGURE 1-2:
A flat-file

database stores
data in fields
and records.

D
atabase M

anagem
ent

CHAPTER 1 Database Management 663

Another problem is how you define your fields. You could store names in one big
field or separate them into three separate fields for holding first, middle, and
last names. Using a single field to store a name might initially look simpler, but
separating names into different fields is actually more useful because it allows the
database to search and sort by first, middle, or last name.

Although such a rigid structure might seem to make flat-file databases harder to
use, it makes them easier to search and sort information. Unlike free-form data-
bases that may contain anything, every record in a flat-file database contains the
exact same type of information, such as a name, address, and phone number. This
makes it possible to search and sort data.

If you want to find Robert Jones’s telephone number, you could tell the flat-file
database to show you all the records that contain a first name beginning with the
letter R. If you want to sort your entire database alphabetically by last name, you
can do that, too.

A flat-file database gets its name because it can work only with one file at a time.
This makes a flat-file database easy to manage but also limits its usefulness. If
you have one flat-file database containing names and addresses and a second flat-
file database containing names and telephone numbers, you might have identi-
cal names stored in the two separate files. If you change the name in one flat-file
database, you need to change that same name in the second flat-file database.

Relational databases
For storing simple, structured information, such as names, addresses, and phone
numbers, flat-file databases are adequate. However, if you need to store large
amounts of data, you’re better off using a relational database, which is what the
majority of database programs offer.

Like a flat-file database, you can’t store anything in a relational database until
you define the number and size of your fields to specify exactly what type of infor-
mation (such as names, phone numbers, and email addresses) you want to save.

Unlike flat-file databases, relational databases can further organize data into
tables (groups). Whereas a free-form database stores everything in a file and a
flat-file database stores everything in a file but organizes it into fields, a rela-
tional database stores everything in a file that’s divided into tables, which are
further divided into fields, as shown in Figure 1-3.

Think of database tables as miniature flat-file databases that can connect with
each other.

664 BOOK 7 Applications

Just as storing a name in separate First Name and Last Name fields gives you more
flexibility in manipulating your data, grouping data in separate tables gives you
more flexibility in manipulating and sharing information.

Suppose you have a list of employees that includes names, addresses, and tele-
phone numbers. Now you may want to organize employees according to the
department where they work. With a flat-file database, you’d have to create a
separate file and store duplicate names in these separate databases, as shown in
Figure 1-4.

Every time you added a new employee, you’d have to update both the employee
database and the specific department database that defines where they work. If
an employee left, you’d have to delete their name from two separate databases as
well. With identical information scattered between two or more databases, keep-
ing information updated and accurate is difficult.

Relational databases solve this problem by dividing data into tables with a table
grouping the minimum amount of data possible. So, one table might contain
employee names and ID numbers, whereas a second table might contain only
employee names and department names, as shown in Figure 1-5.

A column in a table represents a single field, often called an attribute. A row in a
table represents a single record, often called a tuple.

What makes tables useful is that you can link them together. So, whereas one table
may contain names and addresses, while a second table may contain names and
departments, the two tables are actually sharing information. Instead of having
to type a name twice in both tables, you need to type the name only once, and the

FIGURE 1-3:
A relational
database is
divided into

tables.

D
atabase M

anagem
ent

CHAPTER 1 Database Management 665

link between the separate tables automatically keeps that information updated
and accurate in all other linked tables.

FIGURE 1-4:
Flat-file databases

must store
duplicate data in

separate files.

FIGURE 1-5:
Tables separate

data into pieces.

666 BOOK 7 Applications

By linking or relating tables together, you can combine data in different ways.
If you have a list of customers stored in one table and a list of sales in another
table, you can relate these two tables to show which customers are buying
which products, or which products are most popular in specific sales regions.
Basically, relating tables together allows you to create virtual databases by shar-
ing and combining data from separate database tables. By combining data from
separate tables, you can uncover hidden information behind your data, as shown
in Figure 1-6.

Uncovering hidden relationships between data is called data mining. Data mining
can be especially useful for statistics and machine learning.

Tables divide data into groups, but taken on a larger scale, it’s possible to divide
an entire database into multiple databases that are physically separate. Such data-
bases are called distributed databases.

FIGURE 1-6:
Relational

databases let you
combine data
from different

tables.

D
atabase M

anagem
ent

CHAPTER 1 Database Management 667

A company might use a distributed database to keep track of all its employees.
A branch office in Asia might have a database of employees in Singapore, another
branch in Europe might have a database of employees in England, and a third
branch in the United States might have a database of employees in California.
Combining these separate databases would create a single database of all the com-
pany’s employees.

Manipulating Data
After you define the structure of a database by organizing information in tables
and fields, the next step is to write commands for modifying and manipulat-
ing that information. This can be as simple as adding data to a specific table or
as complicated as retrieving data from three different tables, reorganizing this
information alphabetically by last name, and displaying this list on the screen
with mathematical calculations showing sales results for each person and a total
amount for an entire department and company.

The three basic commands for using data are Select, Project, and Join. The Select
command retrieves a single row or tuple from a table. So, if you want to retrieve
someone’s name to find their email address, you could use the Select command,
as shown in Figure 1-7.

FIGURE 1-7:
The Select
command

retrieves a single
record or tuple.

668 BOOK 7 Applications

Besides retrieving a single record or tuple, the Select command can retrieve mul-
tiple tuples, such as a list of all employees who work in a certain department.

The Project command retrieves one or more entire columns or attributes from a
database table. This can be useful when you just want to view certain information,
such as the names of employees along with the department where they work, as
shown in Figure 1-8.

The Project command acts like a filter, hiding data that you don’t want to see and
displaying only data that you do want to see. Combining the Select and Project
commands can find just the names and email addresses of all employees who
work in a certain department.

The Join command combines separate tables together to create a virtual table that
can show new information. For example, a Join command might combine a table

FIGURE 1-8:
The Project

command
retrieves selected

columns or
attributes.

D
atabase M

anagem
ent

CHAPTER 1 Database Management 669

of products, and a table of customers with a table of salespeople to show which
salesperson is best at selling certain products and which products are most popu-
lar with customers, as shown in Figure 1-9.

The Select, Project, and Join commands are generic terms. Every database uses its
own terms for performing these exact same actions, so be aware of these termi-
nology differences.

Writing database commands
Many relational database programs include a proprietary programming lan-
guage for creating custom applications. Microsoft Access uses a programming
language called VBA (short for Visual Basic for Applications), whereas FileMaker
uses a language called FileMaker Script. Most databases actually consist of

FIGURE 1-9:
The Join

command
matches two

or more tables
together.

670 BOOK 7 Applications

separate files, with one file containing the actual data and a second file contain-
ing programs for manipulating that data.

The main difference between a general-purpose language, like C++, and a data-
base language is that the database language only needs to define what data to use
and how to manipulate it, but the database program (or the database engine) takes
care of the actual details.

The SQL language
Although every relational database engine comes with its own language, the most
popular language for manipulating large amounts of data is SQL (short for Struc-
tured Query Language). SQL is used by many different database programs, such as
those sold by IBM, Microsoft, and Oracle. If you’re going to work with databases
as a programmer, you have to understand SQL.

SQL commands, like all database programming languages, essentially hide the
details of programming so you can focus on the task of manipulating data. To
retrieve names from a database table named Employees, you could use this SQL
command:

SELECT FirstName, LastName FROM Employees

To selectively search for certain names, you could use this variation:

SELECT FirstName, LastName FROM Employees
WHERE FirstName = 'Richard'

To add new information to a table, you could use the following command:

INSERT INTO Employees
VALUES ('John', 'Smith', '555-1948')

To delete information from a table, you could use the following command:

DELETE FROM Employees
WHERE LastName = 'Johnson'

To modify a phone number, you could use the following command:

UPDATE Employees
SET PhoneNumber = '555-1897'
WHERE LastName = 'Smith'

D
atabase M

anagem
ent

CHAPTER 1 Database Management 671

An ordinary user can type simple database commands to retrieve information
from a database, but because most users don’t want to type a series of commands,
it’s usually easier for someone else to write commonly used database commands
and then store these commands as miniature programs. Then instead of being
forced to type commands, the user can just choose an option, and the database
will run its program associated with that option, such as sorting or searching for
information.

Data integrity
With small databases, only one person may use the database at a time. However
with large databases, it’s possible for multiple people to access the database at
the same time. The biggest problem with multiuser databases is maintaining data
integrity.

Data integrity ensures that data is accurate and updated. You may run into a
problem with data integrity when multiple users are modifying the same data. An
airline reservation system might let multiple travel agents book seats on the same
airplane, but the database must make sure that two travel agents don’t book the
same seat at the same time.

To prevent two users from modifying the same data, most database programs
protect data by letting only the first user modify the data and locking others out.
While the first user is modifying the data, no one else can modify that same data.

Locking can prevent two users from changing data at the same time, but some-
times, changing data may require multiple steps. To change seats in an airline
reservation system, you may need to give up one seat (such as seat 14F) and take
another one (such as seat 23C). But in the process of giving up one seat, it’s pos-
sible that another user could take the second seat (23C) before the first user can,
which would leave the first user with no seats at all.

To prevent this problem, database programs can lock all data that a user plans
to modify, such as preventing anyone from accessing seats 14F and 23C. Another
solution to this problem is a rollback. If a second user takes seat 23C before the first
user can get to it, the database program can roll back its changes and give the first
user the original seat, 14F.

Multiuser databases have algorithms for dealing with such problems, but if you’re
creating a database from scratch, these are some of the many problems you need
to solve, which explains why most people find it easier just to use an existing
database program instead of writing their own database programs.

672 BOOK 7 Applications

Data mining
Data mining simply looks at separate databases to find information that’s not
obvious in either database. For example, one database might contain tax informa-
tion, such as names, addresses, and Social Security numbers. A second database
might contain airline passenger information, such as names, addresses, and flight
numbers. A third database might contain telephone calling records that contain
names, addresses, and phone numbers called.

By themselves, these separate databases may seem to have no connection, but link
the tax database with an airline passenger database, and you can tell which pas-
sengers traveled to certain countries and reported an income less than $25,000.
Just by combining these two databases, you can flag any suspicious travel arrange-
ments. If someone reports income under $25,000, but has made ten different trips
to Saudi Arabia, Venezuela, and the Philippines, that could be a signal that some-
thing isn’t quite right.

Now toss in the telephone calling database and you can find everyone who reported
less than $25,000 in income, made ten or more overseas trips to other countries,
and made long-distance phone calls to those same countries. Retrieving this type
of information from multiple databases is what data mining is all about.

Data mining finds hidden information stored in seemingly innocuous databases.
As a result, data mining can be used to track criminals (or anti-government
activists) and identify people most likely to have a genetic disposition to cer-
tain diseases (which can be used for preventive treatment or to deny them health
insurance). With so many different uses, data mining can be used for both helpful
and harmful purposes.

Database Programming
At the simplest level, a database lets you store data and retrieve it again. For
storing a list of people you need to contact regularly, a flat-file database can
be created and used with no programming. However, if you want to store large
amounts of data and manipulate that information in different ways, you may need
to write a program.

The three parts of a database program include the user interface (UI), the database
management system (DBMS; which contains commands for manipulating data),
and the actual information stored in a database, as shown in Figure 1-10.

D
atabase M

anagem
ent

CHAPTER 1 Database Management 673

The UI lets people use the data without having to know how the data is stored or
how to write commands to manipulate the data. The database stores the actual
information, such as dividing data into tables and fields. The commands for
manipulating that data may include printing, searching, or sorting through that
data, such as searching for the names of all customers who recently ordered more
than $10,000 worth of products in the past month.

There are three ways to write a database program:

 » Use an ordinary programming language, such as C++ or Java. The problem
with using a programming language like C++ is that you have to create all
three parts of a database from scratch. Although this gives you complete
control over the design of the database, it also takes time.

As a simpler alternative, many programmers buy a database toolkit, written in
their favorite programming language, such as C++. This toolkit takes care of
storing and manipulating data, so all you need to do is design the database
structure (tables and fields) and create the UI.

 » Start with an existing relational database program and use its built-in
programming language to create a UI and the commands for
manipulating the data. The advantage of this approach is that you don’t
have to create an entire database management system from scratch, but the
disadvantage is that you have to learn the proprietary language of that
particular database, such as Microsoft Access or FileMaker.

 » Use a combination of existing database programs and general-purpose
programming languages, like C++. First, use a database program to design
the structure of the data. Then you use the database’s programming language
to write commands for manipulating that data. Finally, use your favorite
programming language, such as C++ or Java, to create a UI for that database.

This approach takes advantage of the database program’s strengths
(designing database structures and manipulating data) while avoiding its
weakness in designing UIs. General-purpose languages, like C++ or Java, are
much better for designing UIs, which can make your database program much
easier to use.

FIGURE 1-10:
The three parts

of a database
program.

674 BOOK 7 Applications

If you have a lot of time on your hands, you could create an entire database from
scratch with C++ or Java. But if you don’t want the hassle of creating an entire
DBMS yourself, buy a commercial database program and customize it using the
database program’s own programming language. This second approach is the
most common solution for creating database programs.

If you find a database programming language too clumsy or too restrictive for
designing UIs, write your own UI in your favorite programming language and slap
it on an existing database program. This may involve the hassle of integrating
your UI (written in C++) with the database file and data manipulating commands
created by a database program (such as MySQL).

Ultimately, database programming involves making data easy to access and
retrieve, no matter which method you choose. Because storing information is so
crucial in any industry, database programming will always be in demand. If you
understand how to design and program databases, you’ll always have plenty of
work for as long as you want it.

CHAPTER 2 Bioinformatics 675

Bioinformatics

Bioinformatics, also known as computational biology, combines computer
science with molecular biology to solve biological problems on a molecular
level. This basically means using computers to study proteins and genes to

predict protein structures, drug interactions, and gene splicing.

Because bioinformatics embraces both computer science and molecular biology,
there are two common paths to working in bioinformatics. The first involves
studying computers and then learning about molecular biology so you’ll know
what your programs are supposed to do. The second involves studying molecular
biology and then learning computer programming so you can write programs to
aid in your research.

Each way depends on your main interest. Not all computer scientists want to know
or study molecular biology and not all molecular biologists want to go through the
hassle of learning computer programming. As a result, bioinformatics is a rare
combination of diverse skills that will be in high demand in the near future. If
the idea of using a computer to study cloning, genetic engineering, and cures for
diseases appeals to you, bioinformatics may be the perfect outlet for your talent.

The terms bioinformatics and computational biology are often used interchange-
ably. Technically, bioinformatics focuses more on creating algorithms and writing
programs, whereas computational biology focuses more on using computers as
tools for biological research.

Chapter 2

IN THIS CHAPTER

 » Discovering the basics of
bioinformatics

 » Figuring out how to search databases

 » Understanding bioinformatics
programming

676 BOOK 7 Applications

The Basics of Bioinformatics
To understand bioinformatics, you must first understand its purpose. Before
computers, biologists had two ways to study any problem:

 » They could perform an experiment in a laboratory under controlled condi-
tions, which is known as in vitro (in glass).

 » They could perform an experiment on a living organism, such as a guinea pig
or a human volunteer. Because this type of experiment occurs on a living
creature, it’s called in vivo (in life).

Both in vitro and in vivo experiments are expensive and time-consuming. Per-
forming in vitro experiments requires laboratory equipment, whereas performing
in vivo experiments requires both laboratory equipment and live subjects.

Bioinformatics offers biologists a third way to conduct experiments: in silico (in
silicon). Instead of using expensive laboratory equipment and living creatures,
bioinformatics lets biologists conduct simulated experiments with a computer.

What makes in silico experiments just as valid as in vitro or in vivo experiments
is that they all work with molecules. An in vitro experiment studies molecules in a
test tube, an in vivo experiment studies molecules in a live animal, and an in silico
experiment studies molecules as nothing more than data inside the computer.
Specifically, in silico experiments (bioinformatics) represent molecules as strings
that the computer manipulates.

By using knowledge of how different molecules interact, bioinformatics can
simulate molecular interactions, such as how a certain drug might interact with
cancer cells. This makes experiments not only faster, but easier and less expensive
to conduct as well. After a bioinformatics experiment confirms a certain result,
biologists can go to the next step — testing actual drugs and living cells in test
tubes (in vitro) or on living creatures (in vivo).

Representing molecules
Bioinformatics manipulates molecules. Of course, biologists don’t care about
every molecule in existence — just the ones involved in life, such as proteins. Four
important molecules that biologists study are the ones that make up the structure
of deoxyribonucleic acid (DNA). These four molecules are identified by a single
letter: A (for adenine), C (for cytosine), G (for guanine), or T (for thymine).

Bioinform
atics

CHAPTER 2 Bioinformatics 677

When these molecules form a DNA strand, they link together in a sequence,
like this:

ACTGTTG

In a computer, such sequences of molecules can be represented as a string,
like this:

$DNA = 'ACTGTTG';

Of course, these aren’t the only four molecules that biologists study, but the idea
is to use computers to represent molecules and structures as just another type
of data.

Unfortunately, most molecular structures consist of long strings of redundant
one-letter codes. Trying to read these long molecular structures, let alone manip-
ulate them by hand, is nearly impossible. That’s where computers and bioinfor-
matics come in.

Computers simplify and automate the tedious process of examining and manipu-
lating molecular structures. Biologists simply have to type the molecular structure
correctly and then tell the computer how to manipulate that structure as a series
of strings.

Manipulating molecules in a computer
The type of programming language used to manipulate strings of molecules is
irrelevant. What’s more important is how to manipulate molecular structures. The
simplest form of string manipulation is concatenation, which joins multiple strings
into one.

In the world of biology, concatenation is similar to gene splicing — biologists can
experiment with tearing a molecular structure apart and putting it back together
again to see what they can create. In Perl, concatenation can be as simple as the
following example:

$DNA1 = 'ACTGTTG';
$DNA2 = 'TGTACCT';
$DNA3 = "$DNA1$DNA2";
print $DNA3;

678 BOOK 7 Applications

This simple Perl program would print the following:

ACTGTTGTGTACCT

Another way to manipulate strings (molecular structures) is by replacing
individual molecules with other ones, which can simulate mutation. A mutation
simulation program could pick a molecule at random and replace it with another
molecule. So, the initial structure might look like this:

CCCCCCCCCCC

Then each mutation could progressively scramble the structure by a single
molecule, like this:

CCCCCCCCCCC
CCCCCCCTCCC
CCCCACCTCCC
CCCCACCTCCG
CACCACCTCCG

Mutation and concatenation are just two ways to manipulate molecular structures
within a computer. If you created half a DNA sequence, you still need to determine
the other half. Because DNA consists of two strands bound together in a double-
helix form, it’s easy to determine the second sequence of DNA after you know
the first one. That’s because each adenine (A) links up with thymine (T) and each
cytosine (C) links up with guanine (G).

The two strands of DNA are complementary sequences. To calculate a complemen-
tary sequence by knowing only one of the sequences, you can use a simple pro-
gram that replaces every A with a T, every C with a G, every T with an A, and every
G with a C. A Perl program to do this might look like this:

$DNA = 'ACTGTTG';
$compDNA = $DNA;
$compDNA =~ tr/ACGT/TGCA/;

The tr command simply tells Perl to translate or swap one character for another.
So, the preceding tr/ACGT/TGCA/; command tells Perl to translate every A into a
T, every C into a G, every G into a C, and every T into an A all at once.

The second step in determining a complementary sequence is to reverse the
order of that sequence. That’s because sequences are always written a specific
way, starting with the end of the sequence known as 5′ phosphoryl (also known
as 5 prime or 5′) and ending with 3′ hydroxyl (known as 3 prime or 3′). So, to

Bioinform
atics

CHAPTER 2 Bioinformatics 679

display the complementary sequence correctly, you have to reverse it using this
Perl command:

$DNA = 'ACTGTTG';
$compDNA = $DNA;
$compDNA =~ tr/ACGT/TGCA/;
$revDNA = reverse $compDNA;

It’s important to know both sequences that make up a DNA strand so you can
use both DNA sequences to search for information. When faced with an unknown
structure, there’s a good chance someone else has already discovered this identi-
cal molecular structure. So, all you have to do is match your molecular structure
with a database of known structures to determine what you have.

Database Searches
After biologists discover a specific molecular structure, they store informa-
tion about that sequence in a database. That way other biologists can study that
sequence so everyone benefits from this slowly growing body of knowledge.

Unfortunately, there isn’t just one database, but several databases that specialize
in storing different types of information:

 » GenBank stores nucleotide sequences.

 » Swiss-Prot stores protein sequences.

 » Online Mendelian Inheritance in Man (OMIM) stores human genes and
genetic disorders data.

After you find a particular sequence, you can look up articles about particular
sequences in PubMed (https://pubmed.ncbi.nlm.nih.gov), a database of arti-
cles published in biomedical and life-science journals.

Although it’s possible to search these databases manually, it’s usually much faster
and easier to write a program that can send a list of sequences to a database,
search that database for known sequences that match the ones sent, and then
retrieve a list of those known sequences for further study.

Because searching databases is such a common task, biologists have created a
variety of tools to standardize and simplify this procedure. One of the more popu-
lar tools is Basic Local Alignment and Search Tool (BLAST). BLAST can look for

https://pubmed.ncbi.nlm.nih.gov/

680 BOOK 7 Applications

exact matches or just sequences that are similar to yours within specified limits,
such as a sequence that’s no more than 10 percent different. This process of
matching up sequences is called sequence alignment or just alignment.

By finding an exact match of your sequence in a database, you can identify what
you have. By comparing your sequence with similar ones, you can better under-
stand the possible characteristics of your sequence. For example, a cat is more
similar to a dog than a rattlesnake, so a cat would likely behave more like a dog
than a rattlesnake.

The BLAST algorithm and computer program was written by the U.S. National
Center for Biotechnology Information (NCBI) at Pennsylvania State University
(https://blast.ncbi.nlm.nih.gov/Blast.cgi).

The basic idea behind BLAST is to compare one sequence (called a query sequence)
with a database to find exact matches of a certain number of characters, such as
four. For example, suppose you had a sequence like this:

ATCACCACCTCCG

With BLAST, you could specify that you only want to find matches of four charac-
ters or more, such as:

ATCACCTGGTATC

Although you could type molecular sequences by hand, it’s far easier to let the
computer do it for you, especially if you want to compare a large number of
sequences with BLAST. After BLAST gets through comparing your sequences, it
returns a list of matching sequences.

Using BLAST to compare sequences to a database of known sequences is an
example of data mining. (See Chapter 1 of this minibook for more information
about data mining.)

You could scan through this list of matching yourself, but again, that’s likely to
be tedious, slow, and error-prone. Writing a program that can parse reports gen-
erated by BLAST to look for certain characteristics is much simpler. Essentially,
you can use the computer to automate sending data to BLAST and then have the
computer filter through the results so you see only the sequences that you care
about, as shown in Figure 2-1.

Now you could write another program to skim or parse the database results to
filter out only the results you’re looking for. Because every database stores infor-
mation in slightly different formats, you may need to write another program that
converts file formats from one database into another one.

https://blast.ncbi.nlm.nih.gov/Blast.cgi

Bioinform
atics

CHAPTER 2 Bioinformatics 681

Because every biologist is using different information to look for different results,
there’s no single bioinformatics program standard. As a result, bioinformatics
involves writing a lot of little custom programs to work with an ever-growing
library of standard programs that biologists need and use every day.

Some biologists can learn programming and do much of this work themselves, but
it’s far more common for biologists to give their data to an army of bioinformatics
technicians who take care of the programming details. That way the biologists can
focus on what they do best (studying biology) while the programmers can focus
on what they do best (writing custom programs). The only way these two groups
can communicate is if biologists understand how programming can help them and
the programmers understand what type of data and results the biologists need.

Bioinformatics Programming
Because biologists use a wide variety of computers (Linux, Mac, Unix, and
Windows), they need a programming language that’s portable across all plat-
forms. In addition, biologists need to work with existing programs, such as online
databases. Finally, because most biologists aren’t trained as programmers, they
need a simple language that gets the job done quickly.

FIGURE 2-1:
A bioinformatics

program can
help you search

through large
amounts of

raw data.

682 BOOK 7 Applications

Although a language like C/C++ runs on multiple platforms, porting a program
from Windows to Linux often requires rewriting to optimize the program for each
particular operating system. Figuring out C/C++ isn’t necessarily hard, but it’s not
easy either.

A more appropriate programming language is a scripting language. Scripting
languages, such as Perl, run on almost every operating system, are easy to learn
and use, and include built-in commands for manipulating strings. Best of all,
scripting languages are specifically designed to work with existing programs by
feeding data to another program and retrieving the results back again.

Although Perl has become the unofficial standard programming language for
bioinformatics, biologists also rely on other programming languages because
many people feel that Perl is too confusing. Perl’s motto is “There’s more than
one way to do it” — you can perform the exact same action in Perl with entirely
different commands.

For example, to concatenate two strings, Perl offers two different methods. The
first is to smash two strings together, like this:

$DNA3 = "$DNA1$DNA2";

The second way to concatenate the same two strings uses the dot operator, like
this:

$DNA3 = $DNA1 . $DNA2;

The second most popular language used in bioinformatics is Python. Python offers
features similar to those offered by Perl, but many people feel that Python is a
simpler language to understand and use because its motto is, “There should be
one — and preferably only one — obvious way to do it.” To concatenate strings in
Python, you can use this command:

dna3 = dna1 + dna2

Another popular bioinformatics programming language is Java. Not only are more
programmers familiar with Java, but Java’s cross-platform capability allows it to
create compiled programs for each operating system. In comparison, both Perl
and Python are interpreted languages — you must load the source code of a Perl
or Python program and run it through an interpreter first. Java gives you the
convenience of copying and running a compiled program without the nuisance of
running source code through an interpreter.

Bioinform
atics

CHAPTER 2 Bioinformatics 683

If you’re going to work in bioinformatics, make sure you learn Java, Perl, or
Python. The more languages you know, the easier it will be to work with other
people’s programs and data.

Biologists have written subprograms in various programming languages to make
writing bioinformatics programs easier:

 » C++: BioC++ (http://biocpp.sourceforge.net)

 » Java: BioJava (https://biojava.org)

 » JavaScript: BioJavaScript (http://biojs.net)

 » Perl: BioPerl (https://bioperl.org)

 » PHP: BioPHP (http://biophp.org)

 » Python: BioPython (https://biopython.org)

 » Ruby: BioRuby (http://bioruby.org)

Because bioinformatics involves performing the same type of tasks, these libraries
of bioinformatics subprograms offer code for

 » Accessing databases

 » Transforming database information from one file format to another

 » Manipulating sequences

 » Searching and comparing sequences

 » Displaying results as graphs or 3D structures

The field of bioinformatics is still growing and changing — the tools and tech-
niques used today may become obsolete tomorrow. (If you’ve spent any time in
the computer industry, you probably already know that applies to every aspect of
computers by now.)

In most other fields of computer science, programmers spend more time main-
taining and updating existing programs than writing new ones. In bioinformat-
ics, every biologist has different needs, so you could actually spend more time
writing custom programs and less time getting stuck patching up someone else’s
program.

With its curious mix of computer science and biology, bioinformatics is a unique
field that’s wide open for anyone interested in life science and computer science.
If the idea of working in the growing field of biotechnology appeals to you, bioin-
formatics might be for you.

http://biocpp.sourceforge.net/
https://biojava.org/
http://biojs.net/
https://bioperl.org/
http://biophp.org/
https://biopython.org/
http://bioruby.org/

CHAPTER 3 Computer Security 685

Computer Security

Computer security is the equivalent of playing cops and robbers with a
computer. On one side are the bad guys, trying to destroy, modify, or steal
data. On the other side are the good guys, trying to protect that data. (Then

again, sometimes the good guys are trying to destroy, modify, or steal data from
the bad guys.)

In the early days of computers, the biggest threat to data was losing it through
an accident. Then malicious computer hackers emerged. Unlike the original band
of computer hackers, responsible for creating operating systems and language
compilers, malicious hackers use their programming skills to break into comput-
ers and hurt others.

Initially, these computer break-ins were more of a nuisance than a danger.
Computer hackers might have tied up resources, but they rarely wrecked anything
except by sheer accident. In fact, many computer administrators grudgingly
allowed hackers to stay on their computers as long as they didn’t disturb anything,
and many hackers returned the favor by warning computer system administrators
of flaws in their programs that could allow less honorable hackers to sneak in and
destroy files.

As more people picked up hacking skills, inevitably a small percentage of these
hackers began using their skills for destructive purposes. At first, there was only
the joy of crashing a computer or wrecking data for bragging rights to other

Chapter 3

IN THIS CHAPTER

 » Stopping malware and hackers

 » Understanding secure computing

686 BOOK 7 Applications

hackers, but hackers soon had a new motive for breaking into computers. As
more people began shopping online and more computers began storing credit
card numbers and other personal information, such as Social Security numbers,
hackers were now motivated by money.

Malicious hackers are bad enough, but what makes them an even greater threat
is when they have the financial support and legal protection of corporations and
nation-states. Corporations have borrowed hacker tricks for financial purposes
ranging from spying and stealing corporate secrets to flooding computers with
unwanted advertising.

Nation-states regularly spy on friends and foes alike to gain an advantage for
their own self-interest or for their national corporations. Sometimes nation-
states hack into the computer systems to steal military secrets, but far more
often, nation-states are more interested in exploiting computer systems in other
countries for political and financial gain.

Although nation-state hackers may target major corporations or governments,
other hackers target individuals. This can involve stealing identities by collecting
as much personal information about a person to mimic them online, or by getting
money directly from victims, often through ransomware, which are programs that
encrypt files on a computer and hold them for ransom. The only way the victim
can get access to their data is by paying off the hacker to get the decryption key.

That means the bad guys are no longer stereotypical computer nerds staying up
late at night. Today’s threats are well-financed organizations intent on breaking
into computers for their financial goals.

With so much at stake, it’s no surprise that one of the hottest fields of com-
puter science is computer security. Computer security is more than just lock-
ing doors and guarding computer rooms. Today, computer security is stopping
threats, repairing damage, and hunting the criminals by using nothing more than
programming skills.

Stopping Malware
One of the earliest and most prominent threats to computers is malicious soft-
ware, often called malware. Malware is any program designed specifically to
damage another computer, such as by erasing all its files. What makes malware
particularly dangerous is that it’s so common and capable of spreading without
the intervention of the original programmer. Some common types of malware
threats include

Com
puter Security

CHAPTER 3 Computer Security 687

 » Viruses

 » Worms

 » Trojan horses

 » Spyware

 » Distributed denial-of-service (DDOS) attacks

Viruses
Computer viruses are nothing more than programs that attach themselves to
another file, such as a program or a word-processing document. The virus spreads
when you run an infected file on another computer.

Besides spreading, most viruses also carry a payload. This payload can range from
the harmless (such as displaying a humorous message onscreen) to the malicious
(such as erasing every file stored on a hard disk). The most effective way to stop
viruses is to capture one and dissect it to see how it works.

To dissect a virus (or any program), you need to use a disassembler, which essen-
tially converts, or reverse-engineers, a program into assembly language source
code. By studying the assembly language code of a virus, you can understand how
it works and, more important, how to identify the virus, essentially capturing that
virus’s digital fingerprint.

Capturing the digital fingerprint of a virus is crucial because that’s how most
antivirus programs work. Antivirus programs scan files for known signs of spe-
cific viruses. Because new variations of viruses appear every day, the database of
an antivirus program must be updated constantly.

Worms
Similar to viruses are worms. Unlike a virus, a worm doesn’t need to infect a file
to propagate itself. Instead, a worm can duplicate and spread to other comput-
ers all by itself. In the early days of computers, when computers were isolated
from one another, the only way files could spread from one computer to another
was by physically copying a file to a floppy disk and inserting that floppy disk
into another computer. That’s why viruses were so popular in the early days of
computers.

Nowadays, most computers are connected to the Internet, so there’s no need to
infect any files to spread. Instead, worms can spread on their own by looking for

688 BOOK 7 Applications

connections to another computer and then copying themselves over that connec-
tion, such as through a group of networked computers.

There are two ways to protect a computer against a worm:

 » Capture a worm and dissect it like a virus to see how the worm works.
After they capture a worm’s digital fingerprint, they can store this information
in an antivirus program’s database so it knows how to recognize and remove
that particular worm.

 » Block the worm’s access to other computers over a network. The way
computers connect to one another is through ports (virtual openings). Worms
simply look for unsecured open ports on an infected computer so they can
travel out and infect another computer.

The simplest way to block ports on a computer is to use a special program called
a firewall. Firewalls can defeat worms in two ways:

 » A firewall can block or restrict a computer’s ports to keep a worm from
infecting the computer in the first place.

 » If the worm has already infected the computer, a firewall can also block the
computer’s ports that could allow the worm to sneak out and infect another
computer.

Although you could write your own firewall in your favorite programming lan-
guage, it’s much easier just to use an existing firewall program and configure it
properly. Configuring a firewall means defining exactly what the firewall allows
and what the firewall blocks.

On the simplest level, you can tell a firewall to allow certain programs to connect
over the Internet, as shown in Figure 3-1. On a more complicated level, you can
configure a firewall to allow only certain types of data to pass in and out. Allowing
certain data to pass through a firewall, instead of just allowing certain programs,
can defeat both Trojan horses and spyware.

Trojan horses
Trojan horses are programs that masquerade as something else to entice you to
copy and run them. The moment you run it, the Trojan horse unleashes its pay-
load, which can range from attacking your hard disk to installing another pro-
gram, such as a virus, on your computer. The main reason to sneak a virus or
worm onto a computer through a Trojan horse is to get the virus or worm past the
computer’s defenses.

Com
puter Security

CHAPTER 3 Computer Security 689

If a firewall allows a browser to access the Internet, that browser can be used to
download a Trojan horse, which the firewall will allow. However, if you configure
the firewall to allow only certain data (such as web pages) but block any other data
(such as an executable file that might contain a Trojan horse), the firewall can
protect a computer from Trojan horses.

One common version of a Trojan horse is a remote access Trojan (RAT). A RAT sneaks
onto a computer and then allows a hacker to control that computer remotely over
a network connection. RATs are often used to steal passwords, read emails, and
even delete files.

Common defenses against a Trojan horse are a firewall and an antivirus program.
A firewall can block a Trojan horse from getting into a computer and also keep it
from communicating with another computer. An antivirus program can search for
the digital fingerprints of a Trojan horse and remove it.

Spyware
Spyware is a special program that installs itself on a computer and connects to an
outside computer over the Internet. Instead of allowing a hacker to remotely con-
trol an infected computer, spyware may send advertisements on to the infected
computer or steal passwords or credit card numbers.

FIGURE 3-1:
Firewalls can

block ports or
certain programs

from accessing
a network.

690 BOOK 7 Applications

The process of removing spyware is similar to removing other forms of malware:
First, you have to get a copy of the spyware to dissect it and figure out how it
works. Then you have to write a program to detect and remove that spyware.

Like viruses that can infect multiple files, spyware often copies and hides itself
in multiple locations on a hard disk. The moment you wipe out one copy of
the spyware program, the other copies immediately re-infect the computer.
Because spyware is motivated by financial gain, spyware is often written by
teams of professional programmers, which can make spyware particularly dif-
ficult to remove.

Distributed denial-of-service attacks
At its simplest level, a denial-of-service (DOS) attack bombards a website with
meaningless data, forcing it to respond and blocking legitimate users from access-
ing that website or service. DOS attacks are often used to attack specific computers
for political reasons.

If just a single computer kept bombarding a website with useless data, that
website could just refuse to accept data from that one computer. That’s why most
DOS attacks come from multiple computers.

ATTACKING NUCLEAR REACTORS IN IRAN
WITH STUXNET
If you wanted to wreck a nuclear reactor without anyone knowing you did it, how would
you do it? That’s the question Israel faced as it watched Iran get closer to developing a
nuclear weapon. The solution was a special worm dubbed Stuxnet.

Stuxnet’s programmers designed Stuxnet to spread easily among computers in the
Middle East. By letting Stuxnet loose, its creators wanted the worm to find its way into
the Iranian computers that controlled centrifuges monitored by Windows PCs and
Siemens SIMATIC S7 software that were part of Iran’s nuclear research program.

Stuxnet spun the centrifuges too fast while reporting to the technicians that everything
was actually okay. This resulted in Stuxnet tearing apart one-fifth of Iran’s gas centri-
fuges, significantly delaying its nuclear ambitions. Although security officials suspect
Stuxnet was a joint project between Israel and the United States, nobody can definitively
prove this, which made Stuxnet one of the first known cyberweapons designed by one
nation-state specifically to harm another nation-state.

Com
puter Security

CHAPTER 3 Computer Security 691

That way there are so many different computers attacking that the target com-
puter can’t block them all. Because it’s impractical for an individual to manually
send data to a single computer over and over again, hackers create automatic
programs to do this for them, called bots.

Hackers simply infect thousands or millions of computers and install a bot on
those computers. This collection of infected computers is known as a botnet, and a
single hacker can control this entire botnet to blast out data on command.

Hackers often establish botnets and then rent them out for sending out spam from
multiple computers. Now if an email server blocks one bot-infected computer, the
hacker can simply direct a different bot-infected computer to send spam to that
same email server.

The challenge with botnets is taking down the entire botnet rather than exhaus-
tively taking down individual bot-infected computers. Because a botnet can con-
trol computers all over the world and the hacker running the botnet can be located
anywhere in the world, finding and destroying botnets is a difficult and ongoing
problem.

Stopping Hackers
Malware is a constant threat to computers that can strike at any time. Besides
worrying about malware infection, computer security professionals have to also
worry about the source of malware: The hackers who create malware in the
first place.

Unlike malware, which can behave predictably, every hacker is different and can
attack a computer network from inside or outside that network. As a result, stop-
ping computer hackers involves programming skills and detective work at the
same time.

Users represent the first line of defense against hackers, but they’re also the weak-
est link as well. The more users on a network, the more likely some of those users
will choose weak passwords or practice sloppy computer practices such as down-
loading files from suspicious email messages or websites. Because users can’t be
expected to be vigilant against hackers all the time, the next line of defense rests
on technical solutions.

The basic defense against a hacker is a firewall. Hackers can sneak in only through
an open port on a computer, so a firewall shuts the hacker out as effectively as
locking the front door. Unfortunately, although firewalls can stop worms from

692 BOOK 7 Applications

sneaking in, firewalls aren’t as effective against hackers. That’s because a hacker
can always find another way into a computer network that can circumvent any
firewalls.

The simplest way to circumvent a firewall is to use a computer that’s already
located beyond the protective firewall. This is the way insiders can break into a
computer network because, as employees of a company, they’re already autho-
rized to use that computer network anyway. To detect intruders on a computer
network, computer security professionals have to rely on special programs known
as intrusion detection systems (IDSs).

Intrusion detection systems
An IDS acts like a burglar alarm. The moment the program detects suspicious
activity, such as someone on the network at 2 a.m., the IDS sounds the alarm to
alert a human system administrator. At this point, the system administrator’s job
is to study the activity on the computer network to determine whether the threat
is valid.

STOPPING CHEATERS IN VIDEO GAMES
The video-game industry dwarfs the movie and music industries combined. With
so many people playing video games and so many people buying and selling virtual
goods within video games, it’s no surprise that the video-game industry has been hit by
hackers as well.

Some hackers simply cheat at the game to give themselves more power or invincibility
so they can beat other players and destroy other players’ sense of fun. This can drive
players away from a particular video game if too many cheaters flood the game and
make it unappealing for non-cheaters to play. For the video-game publisher, this means
the potential of losing millions of dollars from paying customers.

Another way hackers cheat in video games is by stealing virtual goods from other
players within a video game. This allows the cheaters to profit while upsetting players
following the rules. The end result is the same in that non-cheating players risk leaving
the game, costing the video-game publisher millions of dollars in lost revenue.

Because millions of dollars are at stake, video-game companies hire people specifically
to stop and find cheaters who could ruin their games. If you like the idea of playing
video games and hacking, working as a security professional in the video-game industry
might be a dream job for you.

Com
puter Security

CHAPTER 3 Computer Security 693

The problem is that seemingly false threats could actually turn out to be real.
Seeing an authorized user on a computer network at 2 a.m. may look suspi-
cious, but if that authorized user regularly accesses the computer at that time of
night, a system administrator may simply ignore that alert. However, a hacker
could have hijacked an authorized user’s ID and password to masquerade as an
authorized user.

At this point, a system administrator might study the authorized user’s actions
to determine whether anything looks out of place, such as deleting files or
accessing files in other parts of the computer that the authorized user should
have no business peeking at (such as an engineer poking around the accounting
department’s files).

To help identify potential hackers, many system administrators rely on a special
program called a honeypot, which acts like a trap to snare hackers. A honeypot cre-
ates an entirely phony part of a computer network and loads it with tempting, but
fake data, such as blueprints for a new weapon, a list of Social Security numbers,
or usernames and passwords of nonexistent employees.

No authorized users would ever need to browse through the fake files of a honey-
pot because authorized users won’t know the honeypot even exists. The moment
anyone accesses the phony honeypot files, the IDS can positively identify that user
as an intruder.

A honeypot isolates an intruder into a fictional part of the computer network
where they can’t cause any damage. However, after a hacker has accessed a com-
puter network, system administrators have two problems:

 » They have to find a way to keep the intruder out.

 » They need to make sure the intruder can never get back in.

Rootkit detectors
After breaking into a computer network, the hacker’s first goal is to plant a root-
kit. A rootkit provides tools for covering the hacker’s tracks to avoid detection
along with providing tools for punching holes in the computer defenses from the
inside. By installing a rootkit on a computer, hackers ensure that if one way into
the computer gets discovered, they still have half a dozen other ways to get right
back into that same computer all over again.

Even if a honeypot distracts a hacker from accessing sensitive areas of a network,
the mere presence of a hacker means that some part of the network’s defenses

694 BOOK 7 Applications

has been breached. To ensure that hackers can’t get back into a computer, system
administrators need to rely on rootkit removal programs.

Rootkit removal programs simply automate the process a computer expert would
follow to look for and remove a rootkit from a network. Unfortunately, hackers
develop new rootkits all the time, and one rootkit might hide in a different way
than another rootkit. Instead of creating a single rootkit removal program, system
administrators often have to create custom rootkit removal programs.

An IDS can find a hacker, and a rootkit removal program can detect and wipe out
a rootkit from a network. For many companies, those two tasks alone are enough
to keep an army of programmers busy. But if a company wants to take legal action
against a hacker, it needs to provide evidence of the hacker’s activities, and that
evidence falls under the category of forensics.

Forensics
If you’ve ever accidentally deleted a file and then recovered it again, you’ve
practiced a simple form of forensics. Basically, forensics is about finding what
happened to deleted data. When hackers break into a computer network, the
network often keeps track of all activity on the computer in a special file, called a
log. To cover their tracks, hackers often modify this log to erase all traces of the
hacker’s activities on the computer network.

Of course, anything deleted on a computer can usually be recovered again,
so computer forensics captures and restores this information. Such forensics
computer evidence can pinpoint exactly what day and time a hacker entered
a computer network, what the hacker did while on the network, and which
computer the hacker used to access the network. This pile of evidence can pin-
point the hacker’s physical location, which the police can use to find and arrest
the hacker.

Computer forensics has another use in supporting criminal cases unrelated to
computer hacking. Many Internet predators store emails and photographs of their
contact with their victims, but if they suspect the police might be watching them,
they’ll erase this incriminating evidence off their hard disk. To recover this evi-
dence, the police can turn to computer forensics to retrieve these missing emails
and photographs.

Finally, computer forensics can come in handy if a hacker or malware wipes out
an entire hard disk loaded with valuable files. Forensics may be able to recover
these files as if they were never wiped out at all.

Com
puter Security

CHAPTER 3 Computer Security 695

The art of computer forensics involves low-level access to computer hardware,
which means forensic practitioners are often skilled in assembly language and C
programming. If the idea of combining detective work with mysteries and com-
puter programming sounds appealing, computer forensics and computer security
might be a field for you.

Secure Computing
Most computer security revolves around preventing intrusions and fixing any
problems that occur because of the intrusion. Such an approach is fine, but for
a proactive approach that stops malware and hackers from attacking at all, pro-
grammers are learning a new field: secure computing.

The idea behind secure computing is to design computer programs with security
in mind right from the start. This might seem logical until you realize that nearly
all software has been developed without thinking of security at all. If anything,
security has always been considered a distant afterthought.

That’s one of the reasons why Microsoft Windows XP (and earlier incarnations
of Windows) has proven so vulnerable to malware and hackers. Windows was
designed under the assumption that only one person would use the computer and
no programs (or people) would deliberately try to wreck the computer.

Then along came the first wave of computer viruses, followed by a second wave of
computer worms, Trojan horses, and spyware that has cluttered and clogged most
Windows computers as effectively as throwing sand and metal shavings inside a
Formula One race car engine.

Now the assumption is that malware will try to take down computers and hackers
will try to break into them. That’s why secure computing tries to build security
into a program as part of the design process. So, not only must programmers learn
the basics of object-oriented programming and algorithm analysis, but they must
also learn the practices of secure computing as well.

Patching as an afterthought
Because so many programs were originally designed without security in mind,
it’s no surprise that much computer security work involves analyzing the security
flaws of an existing program and then writing a patch that fixes those problems.

696 BOOK 7 Applications

Every program has flaws, so every program needs patching. Armies of program-
mers love probing programs — especially the major ones, like Android, iOS,
Linux, macOS, and Windows — so they can be the first one to report a possible
flaw in a program. Programmers devote their time to uncovering the flaws in
other programs to enhance their own reputation (which can translate into better
job opportunities), but also for the sheer challenge of looking for weaknesses in
other people’s programs.

After someone discovers a flaw in a program, other programmers typically verify
that the flaw does exist, examine how the flaw could be exploited as a security
risk, and then write a software patch that fixes that problem (and hopefully
doesn’t introduce any new problems).

Security in coding
Instead of waiting for flaws to appear and then wasting time patching these flaws
that shouldn’t have been in the program in the first place, another form of com-
puter security involves making programs secure from the start. The idea is that
if programmers focus on security when designing a program, they won’t have to
waste time patching up their programs later.

The first type of security involves examining the code of a program to remove
any flaws. The most common type of flaw involves code that works but can be
manipulated to cause an unexpected result. A common example of this type of
problem is a buffer overflow.

A buffer overflow occurs when a program expects data that fits a certain size, such
as accepting up to ten characters for a password. If you feed the computer data
that’s larger than expected, such as a 12-character password, the program should
just ignore these extra 2 characters. However, a computer might accidentally store
these extra two characters in its memory.

Normally such excess data would be harmless, but sometimes this excess data
gets stored in a part of memory that contains other data that the computer uses,
such as a list of tasks the computer will follow next. By flooding the computer
with excess data, a hacker can literally change the computer’s behavior.

One way to exploit this flaw is to shove excessive data to flood the computer’s
memory and then tack on an extra set of commands for the computer to follow.
This tacked-on command then gets buried in the computer’s memory, which
causes the computer to follow those instructions. Oftentimes, those instructions
tell the computer to weaken its defenses, such as opening a hole in the firewall to
let the hacker into the computer.

Com
puter Security

CHAPTER 3 Computer Security 697

To prevent problems, such as buffer overflows, programmers need to sift through
their code and make sure that their code handles unexpected data correctly
instead of just dumping it anywhere in memory. Examining code can be tedi-
ous, so programmers often use special testing tools that can spot such problems
automatically.

Buffer overflow problems are especially common in programs written in C and
C++. That’s why more programmers are flocking to newer languages, like C# and
Java, because these languages (mostly) prevent buffer overflows, which can result
in more secure and reliable software.

Security by design
Most security patches close common flaws in programs, but just removing these
flaws is like locking a screen door to keep out intruders. A more proactive solution
is to design security into a program from the beginning, which is like getting rid
of a screen door and replacing it with a solid metal door instead.

The idea behind designing security into a program from the start is to anticipate
possible flaws and then design the program so those types of flaws can never even
appear. This is like designing banks with only one entrance to limit the number
of escape routes, and designing the lobby so anyone in the bank can be seen at
all times.

Because operating systems are the most common target for an attack, many
operating systems include a variety of defensive mechanisms. The most common
defense is to divide access to a computer into separate accounts. This is like limit-
ing bank tellers to just handling a certain amount of money while only the bank
president and a few other trusted people have actual access to the bank’s vaults.

Such access control limits what people can do from within their specific accounts
on the computer. This reduces the chance of a catastrophic accident wiping out
data used by other people while also reducing the threat from hackers at the same
time. If a hacker breaks into an ordinary user account, the hacker can’t cause too
much damage, which is like a burglar breaking into a garage but not being able to
access the rest of the house.

Another common defense mechanism is data execution protection (DEP), which
protects against buffer overflow attacks. Trying to wipe out all possible buffer
overflow exploits may be impossible, so DEP simply tells the computer never
to run any commands found in its memory buffer. Now hackers can flood the
computer with all the malicious commands they want, but the computer simply
refuses to run any of those commands.

698 BOOK 7 Applications

One way that hackers exploit programs is that they know programs behave pre-
dictably by storing data in the same areas. So, another defense mechanism is
address space layout randomization (ASLR). The idea behind ASLR is to keep chang-
ing the address of its memory. If hackers or malware can’t reliably predict where
a program is storing specific data, they can’t insert their own commands or pro-
grams into the computer to trick the computer into running those commands
instead.

Computer security is actually less about protecting the physical parts of a com-
puter and more about protecting the data stored on those computers. As individual
hackers have given way to organized criminals, untrustworthy government agen-
cies, and self-serving corporations, the field of computer security is constantly
growing and changing. If there’s one certainty in society, it’s that crime will never
go away, which means guaranteed opportunities for anyone interested in protect-
ing computers from the prying eyes of others.

CHAPTER 4 Artificial Intelligence 699

Artificial Intelligence

Computers have always been so quick at calculating mathematical problems
that people inevitably looked at computers as nothing more than electronic
brains. As computers grew in power, a lot of people naturally assumed it’d

only be a matter of time before computers could become just as smart as human
beings. To study how to make computers smart, computer scientists have created
a special field: artificial intelligence (AI).

One mathematician, Alan Turing, even proposed a test for measuring when a com-
puter’s calculating ability could be considered a form of intelligence. This test,
known as the Turing test, consisted of hiding a computer and a human being in a
locked room. A second human being, acting as the interrogator, could type ques-
tions to both the computer and the human without knowing which was which. If
the computer could consistently respond in a way that the human interrogator
couldn’t tell whether they were chatting with a computer or a human, the Turing
test claimed the computer could be considered intelligent. (No one suggested the
Turing test might really prove that the human interrogator could just be a moron.)

The main goal of AI is to give computers greater reasoning and calculating abil-
ities because most interesting problems don’t have a single, correct solution.
Calculating mathematical formulas is an easy problem for computers because
there’s only one right answer. Calculating the best way to translate one foreign
language into another language is a hard problem because there are multiple
solutions that depend on the context, which is difficult to teach computers to
understand.

Chapter 4

IN THIS CHAPTER

 » Solving problems

 » Understanding machine learning

 » Using artificial intelligence

700 BOOK 7 Applications

Basically, AI boils down to two topics:

 » Problem solving: When faced with a situation with missing information, the
computer can calculate an answer anyway.

 » Machine learning: The computer can gradually learn from its mistakes so it
won’t repeat them again (which is something even humans have a hard
time mastering).

Problem Solving
Computers are great at solving simple problems that have a clearly defined path
to a solution. That’s why a computer can calculate the optimum trajectory for
launching a rocket to the moon because this problem involves nothing more than
solving a lot of math problems one at a time.

Although the idea of calculating the trajectory of a moon rocket may seem daunt-
ing, it’s a problem that a human programmer can define how to solve ahead of

STRONG VERSUS WEAK ARTIFICIAL
INTELLIGENCE
The idea that computers can think has divided computer scientists into two camps —
strong AI and weak AI. The strong AI camp claims that not only can computers eventu-
ally learn to think, but they can become conscious of their thinking as well. The weak
AI camp claims that computers can never think in the same sense as humans because
their thinking process is nothing more than clever algorithms written by a human pro-
grammer in the first place.

Strong AI proponents claim that the human brain is nothing more than a set of algo-
rithms, known as instinct, that’s already embedded in our brains, so putting algorithms
in a computer is no different. Weak AI proponents claim that consciousness is some-
thing that only living creatures can have, so it’s impossible for a computer to ever
become aware of itself as a sentient being.

Neither side will likely persuade the other, but this endless debate does prove that just
because someone has earned a PhD in computer science from a prestigious university
doesn’t mean that they can’t waste time arguing about a question that no one can ever
answer anyway.

A
rtifi

cial Intelligence

CHAPTER 4 Artificial Intelligence 701

time. Computers don’t need to be smart to solve this type of problem. Computers
just need to be fast at following directions.

Unfortunately, human programmers can’t write algorithms for solving all types
of problems, so in many cases, the computer is left with trying to solve a problem
without any distinct instructions for what to do next. To teach computers how
to solve these types of problems, computer scientists have to create algorithms
that teach computers how to gather information and solve indistinct problems by
themselves.

Game-playing
Because teaching a computer how to solve a variety of problems is hard, computer
scientists decided to limit the scope of the problems a computer might face. By
limiting the types of problems a computer might need to solve, computer scien-
tists hoped to figure out the best ways to teach computers how to learn.

Solving any problem involves reaching for a goal, so the first test of AI revolved
around teaching computers how to play games. Some games, such as tic-tac-toe,
have a small set of possible solutions that can be identified in advance. Because
there’s only a small number of possible solutions to the problem of playing tic-
tac-toe, it’s easy to write algorithms that specifically tell the computer what to do
in any given situation.

The game of chess is an example of a hard problem because the possible num-
ber of valid moves is far greater than any human programmer can write into a
program. Instead, human programmers have to give the computer guidelines for
solving a problem. These guidelines are heuristics.

A heuristic is nothing more than a general set of rules to follow when faced with
similar problems. Telling a child to look both ways before crossing the street is an
example of a heuristic. Telling a child to look left and then look right before cross-
ing the corner of Fifth Street and Broadway is an example of a specific direction,
which is absolutely useless for solving any problem except that one.

To teach a computer to play chess, programmers typically use a tree data struc-
ture (see Book 3, Chapter 5) that the computer creates before making a move.
The tree represents all possible moves, so the human programmer simply writes
algorithms for telling the computer how to solve each problem by gathering
information about that problem. Because games have distinct rules, teaching a
computer to play a game also taught computer scientists the best way to teach a
computer to solve any type of problem.

702 BOOK 7 Applications

Of course, the problem with this theory is that teaching a computer to play chess
created a great computer that can only play chess. Game playing taught computer
scientists how to make computers play better games but not be able to solve prob-
lems outside a fixed set of rules.

Not surprisingly, the one area that has benefited from game-playing research has
been using AI techniques to create better computer opponents in video games. The
next time you play your favorite video game and the computer seems particularly
clever, you can thank all the research in AI for making smarter video games.

The ultimate goal of chess-playing computers is to beat a human chess
grandmaster. In 2005, a computer specially built for playing chess, dubbed Hydra,
defeated grandmaster Michael Adams. In 2006, another dedicated chess-playing
computer called Deep Fritz defeated Vladimir Kramnik. Computers have now
proven they’re capable of defeating chess grandmasters, so this goal of AI has
finally been achieved, although the lessons learned by beating chess grandmasters
aren’t easily transferred to solving other types of problems.

Natural language processing
In science-fiction movies, artificially intelligent computers are always able to
understand human language, which is known as natural language processing (NLP).
The goal of NLP is to make computers even easier to use. By accepting spoken
or written commands to the computer, NLP frees users from having to learn the
arcane and cryptic syntax of ordinary computer commands.

The first problem with understanding any human language is to understand the
meaning of each specific word. This problem is rather trivial because it involves
nothing more than identifying a word and then looking up its meaning in a dic-
tionary data structure that links the word to its definition.

If human language were logical, this would be all that NLP would have to do.
Unfortunately, the meaning of words often depends on their context, which is
difficult to program into a computer. For example, the phrases fat chance and slim
chance actually mean the same thing even though the adjectives fat and slim are
antonyms.

Humans can understand this difference by virtue of their exposure to different
uses of words and phrases, but computers need this information programmed
into them. With so many words and alternate meanings, programming the con-
text of every possible word is nearly impossible, so computer scientists have to
rely more on rules for deducing the meaning of words rather than providing actual
definitions for every word.

A
rtifi

cial Intelligence

CHAPTER 4 Artificial Intelligence 703

More confusing than understanding the context of words is understanding mis-
spellings of words. When faced with a misspelled word, a computer must guess at
its meaning, based on the meaning of surrounding words.

If you’ve ever used Google Translate or any other translation program, you’ve
used an NLP program. Although the translations from one language to another
may be accurate with individual words or short phrases, these translation pro-
grams often stumble when faced with complete sentences or idioms, but they can
still get the main idea across.

One of the most successful NLP programs was written by Joseph Weizenbaum,
PhD, and dubbed ELIZA after Eliza Doolittle, a working-class character who is
taught to speak properly in George Bernard Shaw’s play Pygmalion.

You can experiment with an online version of ELIZA by visiting https://web.
njit.edu/~ronkowit/eliza.html.

The ELIZA program mimicked a Rogerian therapist by asking questions and par-
roting back replies based on the user’s answers. A typical conversation with ELIZA
might look like this:

ELIZA: How are you?

PATIENT: I’m feeling sad.

ELIZA: Why are you feeling sad?

PATIENT: My sister is mad at me.

ELIZA: Do you have problems with your family?

PATIENT: They say I spend too much time with my computer.

ELIZA: Do computers frighten you?

ELIZA doesn’t actually understand the meaning of words. Instead, ELIZA just
knows how to arrange words in their proper position to mimic an intelligent con-
versation. When ELIZA spots a word, such as sister, brother, or father, it immedi-
ately searches its database for a list of canned replies related to asking the user
questions about their family.

By combining both canned phrases and parroted replies, ELIZA succeeded in
mimicking an ordinary conversation. Although Joseph Weizenbaum originally
created ELIZA to research NLP, he was astounded at how readily people accepted
ELIZA and treated it as an intelligent computer even though they knew how it
was programmed. When Weizenbaum found his secretary typing her problems
into ELIZA and requested that he leave so she could have privacy, he became an
advocate against AI.

https://web.njit.edu/~ronkowit/eliza.html
https://web.njit.edu/~ronkowit/eliza.html

704 BOOK 7 Applications

One common application of NLP can be seen in the help system of many pro-
grams. If you type How do I print a document, the help system for your word
processor might display a list of topics for printing files. The computer didn’t
actually understand the sentence. Instead, the computer, like ELIZA, just scanned
the sentence, looking for keywords that it could recognize and then responded
based on the keywords that it found.

To poke fun at ELIZA, Kenneth Colby, a psychiatrist at Stanford University,
wrote a similar program dubbed PARRY. Whereas ELIZA mimicked a therapist,
PARRY mimicked a paranoid schizophrenic patient. Computer scientists often
connect ELIZA with PARRY to see what amusing conversation these two pro-
grams could create with each other. You can experiment with PARRY by visiting
www.botlibre.com/browse?id=857177.

Speech recognition
Similar to NLP is speech recognition. Like NLP, speech recognition must identify
a word and deduce its meaning. But unlike NLP, speech recognition has the added
burden of trying to do all this in real time. The moment someone says a word,
the speech recognition computer must quickly understand that word because the
speaker won’t likely pause for long before saying the next word.

The simplest form of speech recognition involves choosing from a limited selec-
tion of distinctly different-sounding words. Many voicemail systems offer this
feature by asking a question such as, “Do you want to leave a message?” At this
point, the speech recognition computer listens for any sound that resembles either
Yes or No. Because the speech recognition computer has such a limited selection
to choose from, its accuracy rate can be almost perfect.

Apple’s Siri first introduced the world to an intelligent voice assistant in 2011.
Since then, Amazon Alexa and Google Assistant have appeared, both of which can
also recognize spoken commands and respond to them. Even more amazing is
that each voice assistant can recognize spoken commands in accents along with
multiple languages, such as Arabic, Italian, Japanese, and Thai.

While companies improve the already impressive accuracy of speech recognition
software, the next step is to understand the context of spoken commands better
than before. The ultimate goal of speech recognition software is to respond intel-
ligently like the computers you see in science-fiction movies. When computer sci-
entists get computers to respond intelligently to any type of questions, they may
be considered smarter and more capable than many human politicians.

https://www.botlibre.com/browse?id=857177

A
rtifi

cial Intelligence

CHAPTER 4 Artificial Intelligence 705

Image recognition
Another form of pattern recognition involves recognizing images, such as faces
in a picture or handwritten letters on a piece of paper. Recognizing written char-
acters is known as optical character recognition (OCR) and is commonly used in
computer scanners.

OCR software studies an image of a character, and based on its knowledge of
letters, the OCR program tries to match the written character with its database
of known characters. After OCR finds a match, it can decipher the contents of a
written phrase letter by letter.

OCR programs have trouble identifying nearly identical characters, such as the
lowercase letter l and the number 1, or the letter O and the number 0. That’s
why OCR scanning programs often insert incorrect characters in the middle of
scanned text.

Image recognition is a much harder problem but one that’s commonly used in
security systems, such as in casinos. Every casino contains a photographic data-
base of known cheaters. If a casino suspects one of these known cheaters has
entered its premises, security guards can zoom in on the suspect and use image
recognition software to determine whether that person is actually a known cheater
in the database.

Such image recognition software examines the shape of a person’s face along
with the physical position of the nose in relation to the eyebrows, lips, and chin.
No matter how many disguises cheaters may wear, they can’t hide or change the
physical dimensions of their faces, which is how such image recognition pro-
grams can spot them.

Image recognition software can only work as well as the data it’s trained on.
That’s why many image recognition programs have trouble recognizing people
of different ethnic backgrounds — the software was trained using faces of people
from a narrow range of ethnicities.

In the field of robotics, image processing is crucial because it gives robots the
ability to sense their environment and avoid or move toward certain objects.
Teaching a robot to avoid objects in its path might seem easy until the robot looks
through a plate-glass window and mistakes the window for an opening that it can
roll through to get to the other side.

Although image recognition might help a robot identify the edges of walls or the
end of a road, image recognition must also teach a computer to recognize shadows

706 BOOK 7 Applications

or reflections that can distort images. Primitive image recognition might simply
distinguish between patches of light and dark, but more sophisticated image rec-
ognition could not only recognize an object in its path but also identify what that
object might be, which involves a related category of AI known as image processing.

In a limited domain of objects, seeing and understanding images can be deter-
mined in advance, but in the real world, the number of images a computer might
see and need to recognize is nearly infinite. To solve the problem of not only rec-
ognizing an image but also understanding what that image might be, computers
need to be independent of their human programmers.

Machine Learning
The preceding examples of problem-solving AI programs only mimic intelligence,
but the computer’s intelligence must be programmed by humans ahead of time.
When faced with different situations, these problem-solving programs behave the
same way no matter what the circumstances might be.

That’s why the second and more important focus of AI involves teaching comput-
ers to learn, otherwise known as machine learning. Machine learning can involve
training by humans, but it’s more commonly associated with self-learning in an
unsupervised environment.

One way to mimic machine learning is to insert problem-solving knowledge into a
program and then allow the program to modify its database of knowledge. That’s
the idea behind two popular programming languages — LISP and Prolog — which
are specially designed for AI.

With LISP, every command is also considered data that can be manipulated. So, a
LISP program can literally rewrite its own commands and data while it runs. Pro-
log works in a similar way; basically, a Prolog program consists of rules and data,
so Prolog programs can modify both the rules that they follow and their data.

Both languages make self-modifying programs possible for mimicking machine
learning, but using an AI language alone doesn’t make your program any smarter.
Instead, programmers also need specific methods for mimicking intelligence in a
computer.

A
rtifi

cial Intelligence

CHAPTER 4 Artificial Intelligence 707

Bayesian probability
One simple example of machine learning is based on Bayes’ theorem, after Thomas
Bayes. This theorem deals with probabilities. Put into practical application, many
spam filters use Bayesian filtering, which basically examines junk email and com-
pares it to valid email.

Based on this comparison, a spam filter based on Bayes’ theorem can gradually
assign probabilities that new messages are either junk or valid messages. The
more junk and valid email the Bayesian filter can examine, the “smarter” it gets
in recognizing and sorting email into their proper categories. Essentially an anti-
spam filter’s “intelligence” is stored in its growing database of characteristics
that identify spam.

Neural networks
One problem with machine learning is organizing information so that the com-
puter can modify its own data. Although languages — like LISP and Prolog —
allow self-modifying programs, computer scientists have created a way to model
the human brain using ordinary data structures, such as graphs with each node
mimicking a neuron in a brain. This entire connection of interlocking nodes, or
mimicking neurons, is a neural network, as shown in Figure 4-1.

THE DANGER OF MACHINE LEARNING
Computer scientists use the acronym GIGO, which stands for garbage in, garbage out.
That means if you give a computer meaningless data, it can only spit back more mean-
ingless data. One problem of machine learning is that it’s only as smart as the data it’s
given to learn from.

Back in 2016, Microsoft created Tay, a machine learning bot that people could chat with
just like a human. The idea was that Tay would learn from the text that people typed so
it would gradually become more fluent in responding to any human.

The problem was that people thought it would be funny to bombard Tay with racist,
sexist, violent questions and comments. Not knowing any better, Tay’s machine learning
algorithms assumed that a steady stream of racist, sexist, and violent comments was
normal speech, so it gradually learned to respond to any comment with equally racist,
sexist, and violent language. In less than 24 hours, people on the Internet had trained
Tay to become a racist, sexist, violent bot, and Microsoft had to pull the plug on Tay
for good.

708 BOOK 7 Applications

A neural network models itself on the human brain, which is divided into a net-
work of interlocking neurons. Each neuron acts like a primitive computer that can
receive input and produce output, which gets fed into another neuron as input.

Although a single neuron may not be capable of doing much, a network of inter-
connected neurons acts like a group of tiny computers that can tackle different
parts of a problem simultaneously, which is known in computer science as parallel
processing. Ordinary computers represent a single, fast machine that can tackle
a problem in sequential steps. The strength of a computer is that it can perform
these multiple steps much faster than a human can, which is what makes com-
puters so powerful.

Human brains can’t calculate as fast as a computer, but they can process multiple
data simultaneously. That makes human brains better at solving seemingly sim-
ple problems, like recognizing a face from a crowd. On the other hand, computers
have trouble recognizing faces because computers try to follow a sequential series
of steps. As a result, computers are slow at recognizing faces while a human’s
ability to recognize faces is nearly instantaneous.

In a neural network, each neuron can accept data. The data is weighted by a spe-
cific value. This total value is then compared to the neuron’s threshold. If this
value is less than the threshold, the neuron produces an output of 0. If this value
is greater than the threshold, the neuron produces an output of 1, as shown in
Figure 4-2.

FIGURE 4-1:
A neural network.

FIGURE 4-2:
How a neuron
processes and

outputs a value.

A
rtifi

cial Intelligence

CHAPTER 4 Artificial Intelligence 709

The neuron in Figure 4-2 receives an input of 1 and 0. The 1 value is weighted by
0.7 while the 0 value is weighted by 0.6, like this:

(1)(0.7) + (0)(0.6) = 0.7

Because this value is less than the threshold value of 1.25, the neuron outputs a
value of 0.

A single neuron accepts data and produces a response, much like an ordinary
if-then statement used in a regular program. To train a neural network, you can
feed it specific data with known results and examine the output of the neural net-
work. Then you can adjust the weights of different neurons to more closely modify
the output to a specific result.

ROBOTICS AND ARTIFICIAL INTELLIGENCE
Throughout the years, AI has always aimed at a moving target. Initially, opponents
boasted that computers could never beat a chess grandmaster, but when a computer
finally did it, AI critics claimed that chess computers were nothing more than fast search
algorithms that had little to do with actual reasoning. Although NLP programs, like
ELIZA, can already claim to have passed the Turing test, AI critics claim that parroting
back phrases to trick a human still doesn’t qualify as true intelligence.

Robotics may be the final test of AI because the stereotypical robot combines multiple
aspects of AI: speech recognition, image recognition, and machine learning. AI critics will
have a hard time dismissing an intelligent robot that can talk, understand spoken com-
mands, and learn while it walks up and down a flight of stairs.

Before robotics can ever achieve this ultimate dream of creating a robot that mimics a
human being, robotic engineers must literally first learn to crawl before they can walk.
Like early AI research, most robots are designed to excel within an extremely narrow
domain. Assembly-line robots know how to weld car frames together but can’t answer
a simple question. Military-drone robots may know how to recognize targets on the
ground but can’t understand spoken commands about French literature.

Despite these limitations, robotics has a growing future. Essentially, robots are nothing
more than computers capable of moving or manipulating their environment. Maybe
one day we’ll finally have true AI at the same time we finally have a true robot that
meets the criteria set by science-fiction authors so long ago. Until then, however, robot-
ics is likely to remain a fledging offshoot of computer science and AI. Don’t expect a
robot servant capable of understanding spoken commands and able to reason and
learn any time soon, but don’t be surprised when someone finally invents one either.

710 BOOK 7 Applications

Such training can be time-consuming, so another approach is to let the neural
network train itself. Based on its output, a neural network can use its own output
as input to change the overall neural network’s result. Such self-training neural
networks effectively mimic the learning process.

Applications of Artificial Intelligence
Initially, AI had grand plans that bordered on science fiction. Computer scien-
tists had visions of intelligent computers that could carry on spoken conversa-
tions while being fully conscious of their own thoughts. The reality proved much
less dramatic. Instead of intelligent computers, we just have faster ones that are
no closer to consciousness.

Although AI never lived up to its initial dreams, its applications have seeped into
ordinary use. Spam filters are one simple way that machine learning has been
put to use along with game-playing techniques for making smarter computer-
generated opponents in video games.

Intrusion detection systems use a primitive form of AI to determine whether a
computer hacker has penetrated a computer network, whereas many financial
traders on Wall Street use neural networks to track the movement of stocks and
commodities to predict future stock prices. Perhaps the ultimate goal of AI is to
create thinking robots that can not only move on their own but also reason for
themselves.

Whether computer scientists can ever create an actual thinking machine is beside
the point. The real use for AI isn’t in re-creating human brains in electronic form,
but in finding ways to make computers help us solve numerous tasks on their
own. The more problems computers can solve without human supervision, the
more time people can spend working on more difficult problems that computers
can’t solve — at least not yet.

CHAPTER 5 Mobile and Wearable Computing 711

Mobile and Wearable
Computing

Computers have shrunk in size from mainframes that took up entire rooms
to personal computers that anyone could put on their desk. Laptop comput-
ers made computing even easier on the go, but carrying around a computer

can still be cumbersome.

That’s why mobile and wearable computers have become popular. Rather than
replace traditional computers that rely on keyboards and a mouse or trackpad,
mobile and wearable computers offer unique features that traditional computers
can’t.

Desktop computers could look up maps and travel directions, but only a mobile
computer can give you real-time directions that change as you travel. Desktop
computers may be able to store your health data, but only a wearable computer
can conveniently monitor your health for you to review at your convenience.

Essentially, mobile and wearable computers aren’t meant to replace desktop com-
puters; instead, they provide features that desktop computers can’t do well or
can’t do at all.

Chapter 5

IN THIS CHAPTER

 » Looking at where computing started

 » Giving data to and getting data from
the user

 » Keeping track of motion, location,
and real-time health data

 » Seeing what lies ahead for
augmented reality and wearables

712 BOOK 7 Applications

Understanding the Different Generations
of Computing

Study each generation of computers, and you’ll see how they change the way peo-
ple interact with them. In the early days, mainframe and minicomputers forced
people to spend long periods of time writing a program and then submitting it to
the computer to run. Hours, sometimes even days later, the computer would print
out the results.

Waiting hours or days to get a result was clearly clumsy, which is why personal
computers proved so popular — they gave people immediate results. The world’s
first spreadsheet, VisiCalc, let accountants, engineers, and scientists create math-
ematical models and see the results instantly. If they wanted to test out differ-
ent values to see how that might affect the results, spreadsheets could respond
right away.

That meant people tended to spend hours using a personal computer (desktop
or laptop) using a spreadsheet, a database manager, or a word processor. Even
though laptops were portable, you had to find a place to sit down if you wanted
to use them.

Then the world of mobile computing arrived with the introduction of the
iPhone. Unlike personal computers, which you needed a flat surface to use,
smartphones could be used anywhere, any time. It’s common for people to use a
smartphone while walking, riding a bus, or waiting in line at a restaurant.

Because smartphones gave people mobile computing, their interaction time with
the computer shrank dramatically. Where someone might spend hours sitting in
front of a personal computer, they might only spend a few minutes at a time using
a smartphone throughout the day.

Even more dramatic was the way people interacted with these two different types
of computers. Not only did personal computers allow people to use them for hours
at a time, but they also forced people to interact with personal computers through
keyboards and a mouse or trackpad.

On the other hand, smartphones lack physical keyboards, a large screen, and a
mouse or trackpad. Instead, smartphones rely entirely on touch-screen interfaces
with limited voice control. Personal computers are often used for creating large
amounts of data, such as writing a novel. Smartphones are more often used for
creating short bits of information, such writing text messages.

M
obile and W

earable
Com

puting

CHAPTER 5 Mobile and Wearable Computing 713

Smartphones and their related cousins, tablets, helped define the world of mobile
computing that allows people to use a computer almost anywhere. Just as people
started to get used to communicating through smartphones and tablets, the next
generation of computing has arrived in the form of wearable computers.

Wearable computers, such as smart watches and smart glasses, offer even more
limited user interfaces (UIs) than personal computers or mobile computers. Wear-
able computers lack a large screen, so they can only be used for brief seconds at a
time. With their limited size, wearable computers rely more on haptics (touch) and
voice to communicate with the user.

You can see the trend: As computers get smaller, people interact with them more
often, but for smaller periods of time. That means the world of programming is
no longer confined to personal computers but extends to mobile and wearable
computing as well.

By understanding these differences in computers, you can better understand the
types of apps needed for each type of device. Table 5-1 shows the major differ-
ences between each generation of computers.

TABLE 5-1	 Understanding the Different Generations of Computing

Computer Type User Interface

Typical
Time Per
Interaction Typical Uses

Mainframe and
minicomputers

Punch-card
readers, teletype
printers, terminals

Days Calculating
mathematical results

Personal computers
(desktop and laptop)

Keyboard,
mouse, monitor

Hours Word processing,
spreadsheets,
databases, video
games, web
browsing, email

Mobile computers
(smartphones
and tablets)

Touch screen,
microphone,
and speaker

Minutes Phone calls, text
messages, web
browsing, email,
video games

Wearable computers
(smart watches and
smart glasses)

Touch screen,
microphone,
speaker, haptics

Seconds Phone calls, text
messages, receiving
notifications
and alerts

714 BOOK 7 Applications

Giving Data to the User
Personal computers could always rely on showing data to the user through a com-
puter screen. That meant programmers just needed to create UIs that filled an
entire screen or gave the user options to resize windows on the screen to let them
view data from one or more programs at the same time. No matter how big or how
small the user’s monitor might be, programs for personal computers would treat
all monitors as if they were the same size by shrinking or expanding accordingly.

When smartphones and tablets appeared, smartphones displayed smaller screens,
while tablets displayed much larger screens. Even more confusing, users could
rotate the orientation of smartphone and tablet screens from landscape mode to
portrait mode.

Because users can change the orientation of smartphones and tablets at any time,
apps must adapt to different screen sizes and orientations, which is something
personal computer programs never had to worry about.

When creating smartphone or tablet apps, you must not only write a program that
solves a useful problem, but also create an adaptive UI. One early and clumsy solu-
tion to creating adaptive UIs involved defining constraints on UI items, such as
buttons, text fields, and images. These constraints defined the distance between
each UI item and/or the distance between the sides of the screen, as shown in
Figure 5-1.

Because every screen size is different, constraints must adapt to both smaller and
larger screens. Instead of defining a constraint to represent a fixed distance, you
must define a constraint to represent a range of possible values, such as never
shrinking below 25 points or never growing larger than 80 points. Because a sin-
gle UI item needs multiple constraints, getting all constraints to work on a single
UI requires testing on different screen sizes.

Instead of forcing programmers to define constraints on every item on the UI, the
latest trend is to create UI items that always appear centered in the middle of the
screen. You no longer define fixed values to represent distances between UI items;
now you simply add spacers that act like springs that automatically push UI items
apart to remain usable on any size screen.

This adaptable method for defining the relative distances between UI items is the
basis for SwiftUI, Apple’s newest way to design UIs using the Swift language.

Smartphones and tablets typically have a much smaller screen to display infor-
mation than personal computers. However, smart watches have an even smaller
screen than the smallest smartphone screen. That makes smart-watch screens
suitable for displaying a limited amount of information at any given time.

M
obile and W

earable
Com

puting

CHAPTER 5 Mobile and Wearable Computing 715

Where UIs for personal computers, smartphones, and tablets can display differ-
ent information on the screen, smart watches must focus on displaying only the
most important information the user needs at that moment, whether it’s to see
the time, the weather, a text message, or the amount of calories expended during
the day.

When someone uses a smart watch, they want to see important information at a
glance. When someone uses smart glasses, they may want to see certain informa-
tion, such as traveling directions, but they don’t want that information to block
their view of their surroundings. So, both smart watches and smart glasses can
only show small chunks of information at a time.

To get around the problem of a tiny screen, smart watches offer another way to
give information to the user through haptics. To alert users which way to turn
when following travel directions, smart watches can vibrate in distinct ways to let
the user know when to turn left or right without needing to glance at the screen
at all.

When creating apps for smart watches or smart glasses, programmers need
to rethink their ideas for a UI. Slapping a UI from a personal computer program
on to a smartphone or tablet app won’t work, and neither will porting a smart-
phone or tablet app UI to a smart watch or smart glasses app. Each type of com-
puter needs a UI designed for the particular way users interact with that device.

FIGURE 5-1:
Constraints

define the
placement of

UI items on
a screen.

716 BOOK 7 Applications

Getting Data from the User
The smaller screen size of mobile devices and wearable computers challenges
programmers to display information. An even tougher task is designing a UI that
lets users input data.

For personal computer programs, users typically type on a keyboard or click on
a mouse or trackpad. But you can’t expect a smartphone or tablet user to have a
keyboard or a mouse/trackpad. That means mobile computers need their own way
for users to input data.

For smartphones and tablets, the answer is to display a virtual keyboard on the
touch-screen display. Now users can type on the screen, and the virtual keyboard
can change depending on whether the user needs to type letters or numbers, as
shown in Figure 5-2.

Virtual keyboards are fine for inputting text such as letters, punctuation, and
numbers, but another way to accept input from the user is through touch ges-
tures. The touch screen can recognize common gestures such as swipes, pinches,
and rotation along with simple taps. By letting users manipulate objects onscreen
directly (such as selecting, resizing, and rotating a picture), touch screens provide
a more intuitive way to accept input.

FIGURE 5-2:
Virtual keyboards

can adapt to the
user’s needs.

M
obile and W

earable
Com

puting

CHAPTER 5 Mobile and Wearable Computing 717

Because smart watches and smart glasses have much smaller screens, users are
forced to rely on simple swipe and tap gestures. However, because smart-watch
and smart-glasses users often don’t want to interact with a tiny touch screen,
voice control is another option.

Such hands-free control lets users give voice commands to their smart watch or
smart glasses. Then the smart watch or smart glasses can give aural feedback to
the user. Although voice control is possible for personal computers, smartphones,
and tablets, it can be crucial for smart-watch and smart-glasses users.

Tracking Motion and Location
Desktop computers aren’t meant to be moved, whereas laptops are meant to be
moved frequently but not used away from a flat surface or a place where you can
sit down. Because mobile and wearable computers are meant to be used while
moving, they often track the user’s movements and location.

The ability to track the user’s movements and location opens up a whole new
world of apps that were never possible with personal computers. Ride-sharing
services rely on riders using a smartphone that identifies their location. While
waiting for their ride to show up, users can track the location of their driver so
they know approximately when the car will arrive.

While you’re driving, smartphone apps can detect the movement of other drivers
so you can view the most recently updated map that can highlight traffic jams
so you can avoid them. By collecting movement and location data from multiple
smartphone users at once, mapping apps can create accurate traffic maps within
seconds.

Tracking the user’s movement is especially useful for wearable computers because
they can constantly monitor a user’s movements throughout the day. Smart
watches can determine whether the user is moving enough times during the day
and, if not, the smart watch can provide prompts to keep the user exercising.

Smart glasses can display traveling directions and identify landmarks to over-
lay additional information about stores or transit schedules without requiring the
user to look at a computer screen.

Just as personal computers provided individuals with the power to manipulate
words, calculate numbers in a spreadsheet, or search a database that they couldn’t
do with mainframe or minicomputers, so do mobile and wearable computers offer
new ways to track information that you couldn’t previously get using a personal
computer.

718 BOOK 7 Applications

Tracking Real-Time Health Data
Perhaps the greatest advantage of wearable computers is the ability to provide
real-time health monitoring that personal computers and smartphones could
never do. One of the simplest, yet most effective sensors on smart watches is the
ability to detect the user’s arm movement.

During ordinary circumstances, a person’s arm will move in predictable ways.
However if the user suddenly falls and remains still, the smart watch can deduce
that the user may have fallen and alert authorities to the user’s location and
condition.

The ability to provide constant, real-time health monitoring has allowed smart
watches to save countless lives. With heart-rate sensors, smart watches have
alerted users to potential heart problems so they can see a doctor before suffering
a catastrophic event.

With noninvasive glucose monitoring, smart watches can help diabetics monitor
their blood sugar levels. Now if their blood sugar level spikes or drops, they can
take immediate action and avoid more serious health problems later.

Personal computers may be useful to create data and mobile computers may
be useful to consume data, but wearable computers are vital to keeping people
healthy and alive. If you plan to develop apps for smart watches or smart glasses,
think of how your UI must rely on body sensors and voice control to provide infor-
mation and accept data from the user.

Today’s wearable computers require you to put them on and take them off.
Tomorrow’s wearable computers will let you keep them on constantly. Besides
smart watches that wrap around your wrist and smart glasses that appear on
your face, ear buds may also gain smart capabilities to provide audio feedback
directly into a user’s ears while measuring body conditions through the ear canal.
Wearable computers are here to stay, and they’ll continue providing crucial uses
that personal computers and mobile computers could never do.

Looking to the Future of Augmented
Reality and Wearable Computers

One of the most popular mobile games in 2016 was Pokémon Go, which let people
look for and capture cartoon monsters through the camera of their smartphone
or tablet. Using augmented reality (AR), Pokémon Go let people see the real world
through their camera but find cartoon monsters in specific coordinates.

M
obile and W

earable
Com

puting

CHAPTER 5 Mobile and Wearable Computing 719

Holding up a smartphone or tablet is a simple way to use AR, but constantly view-
ing AR through a mobile device can get tiring. That’s why AR is much better suited
for smart glasses instead.

One common use for smart glasses is to recognize certain landmarks and display
accompanying text or graphics, such as the name of a business or directions to
help you reach a specific destination.

Ordinary eyeglasses already represent a simple form of AR by improving a per-
son’s eyesight. However computational AR will likely prove even more useful by
giving travelers turn-by-turn directions in unfamiliar areas or helping locate lost
items in a house by showing you a cartoon image of the missing item through a
solid wall.

Each generation of computers finds its own unique applications. Fast calcula-
tions made mainframe computers and minicomputers useful, while spreadsheets,
databases, and word processors made personal computers indispensable.

Mobile devices like smartphones took advantage of location tracking to spur the
development of ride-sharing services, and wearable computers like smart glasses
will take full advantage of AR.

If you want to get involved in the next generation of computer programming, look
for applications that new computers can offer that previous computer types could
not, and that’s where you’ll likely find a lucrative future.

CHAPTER 6 Game Engines 721

Game Engines

In the early days, lone programmers created entire video games. Back then,
video games were still fairly simple, but as they got more sophisticated, they
became harder to make. Because games tended to offer similar features, game

programmers realized they didn’t need to create an entire game from scratch
every time. Instead, they could reuse common parts of a game and customize it
for their particular needs.

These common game development components, dubbed game engines, made
it easy to create new games. Although many companies have created their own
proprietary game engines, other companies have developed game engines that
anyone can use. These game-engine companies then make money by taking a
percentage of the profits from any game made using their game engines.

Although game engines are mostly used for creating video games, they’ve also
been used to create virtual worlds for other industries outside the video-game
industry, such as architecture, product design, advertising, and filmmaking. If
you like video games and programming, you can combine both skills to pursue a
career in game-engine programming.

Chapter 6

IN THIS CHAPTER

 » Getting acquainted with game
engines

 » Choosing the right game engine

 » Getting a game engine to do what
you want it to do

 » Predicting the future of game engines

722 BOOK 7 Applications

Understanding Game Engines
Game engines are designed to make creating games easy by providing common
game components, such as:

 » Input

 » Graphics

 » Physics

 » Sound

 » Networking

 » Graphical user interfaces (GUIs)

Every game needs to receive input from the player through a variety of devices
such as a keyboard, mouse/trackpad, touch screen, joystick, steering wheel, or
motion detector. Writing a program to detect mouse movements or touch-screen
gestures can be tedious and cumbersome, so a game engine does this task for you.
That way, you can focus on making your game instead of writing code to detect
different types of user input.

Graphics form the heart of any game, so game engines make it easy to place,
move, and manipulate graphics items without worrying about the details in dis-
playing a 2D or 3D image on the screen. When combined with the input compo-
nent, the graphics component makes it easy for programmers to control objects
on the screen, such as a knight on horseback, a jet fighter, or a dragon flying
through the air.

Instead of bogging you down in the mathematics and nuances of moving objects
in two or three dimensions, a game engine lets you focus simply on telling where
the object should go. The game engine calculates the mathematical equations to
make that movement happen.

When the player or game moves objects on the screen, the potential for collisions
always exists. Just as game engines make movement easy, so do they also make
dealing with collisions between objects simple by calculating the physics of colli-
sions. Instead of writing complex mathematical equations to deal with gravity and
collisions between a cartoon car and a cartoon goat, the game engine takes care of
the details so you just have to specify how you want the car and the goat to react
when they collide in the game.

Games are almost never silent but include sound to provide feedback to the user,
sound effects to create greater realism, and background music to set the mood of

G
am

e Engines

CHAPTER 6 Game Engines 723

the game. So, the sound component of a game engine lets you specify what you
want to play and how you want that audio to sound instead of wrestling with the
details of playing sound.

In a single-player game, dealing with sound might be easy, but in a massive mul-
tiplayer game where multiple players may be playing at once, trying to play sound
for each player at the appropriate time would be extremely troublesome if you
tried to program it yourself. That’s why the sound component of a game engine
relieves you of this burden.

Getting a game to work on a single computer may be fairly easy compared to get-
ting a game to work simultaneously on multiple computers over a network. The
code alone to coordinate multiple players would be extremely difficult to write,
but a game engine’s networking component takes care of those details.

Finally, games rarely use the same user interfaces (UIs) as common programs like
word processors or spreadsheets. That’s why game engines provide common GUIs
that you can customize for your particular game.

The main goal of a game engine is to abstract the details of making a game so you
can focus on the fun part: making a unique game that relies on common game
components that the game engine provides.

Picking a Game Engine
There are three types of game engines:

 » Proprietary: Proprietary game engines are created by game companies solely
for their own programmers to create additional games. Companies create
their own game engines so they can customize them to do exactly what they
need, create unique features unavailable in other game engines (and, hence,
unavailable to their rivals), and avoid paying royalties to potential rival game
companies that also sell game engines.

 » Open source: Open-source game engines are developed by volunteers. Not
only are they free for anyone to use, but they include the source code so you
can examine how the game engine works and possibly even modify it
yourself. Some popular open-source game engines include Armory
(https://armory3d.org), Defold (https://defold.com), Godot
(https://godotengine.org), and Open 3D Engine (www.o3de.org). Even
though open-source game engines are run by volunteers, support, features,
and documentation can rival commercial game engines.

https://armory3d.org/
https://defold.com/
https://godotengine.org/
https://www.o3de.org/

724 BOOK 7 Applications

 » Commercial: Commercial game engines are proprietary, but anyone can use
them for a price. The two most popular commercial game engines are Unity
(https://unity.com) and Unreal (www.unrealengine.com), along with a
relative newcomer called the Flax Engine (https://flaxengine.com). Flax,
Unity, and Unreal are free to use, but when your sales pass a certain thresh-
old, you’re obligated to pay a fee or royalties based on your sales. Because
Flax, Unity, Unreal have financial incentives for their publishers, they tend to
offer the latest features needed to develop 2D and 3D games while making
advanced game development as easy as possible. The drawback is that you
must pay these game-engine companies a portion of your profits, which is
why many game companies prefer creating and using their own proprietary
game engines or open-source game engines instead.

Some proprietary game engines, such as GameMaker Studio (www.yoyogames.
com), offer a free version so you can experiment with making games. If you want
to use more advanced features, you’ll have to pay additional fees. Still other game
engines, such as AppGameKit (www.appgamekit.com), charge an upfront free. The
advantage of paying for a game engine upfront is that any profits you make using
that game engine are royalty-free, which means you don’t need to share any prof-
its with the game-engine maker.

Every game engine offers different features. One game engine might be better for
creating mobile apps on smartphones and tablets, another game engine might
be easier to learn and use, and yet another game engine might offer superior 3D
graphics for game consoles. The best game engine depends entirely on the type of
game you want to create and the platform you want to publish the game on (game
console, PC, smartphones, websites, and so on).

Programming a Game Engine
Most game engines are designed to work on multiple operating systems (Linux,
macOS, or Windows), so they tend to be written in C/C++. That means you can use
a game engine to create a game on a Mac and publish the game to run on Windows
(or vice versa).

To create a game using a game engine, you must use a programming language.
The three most common game-engine programming options are

 » Popular programming languages: To encourage as many programmers as
possible to use their game engines, most game-engine makers let you use a
popular programming language such as C# (Unity) or C++ (Unreal).

https://unity.com/
https://www.unrealengine.com/
https://flaxengine.com/
https://www.yoyogames.com/
https://www.yoyogames.com/
https://www.appgamekit.com/

G
am

e Engines

CHAPTER 6 Game Engines 725

Because C++ and C# can still intimidate nonprogrammers, many game
engines are adopting the much simpler Lua scripting language (www.lua.
org). By learning Lua, you’ll be able to program different game engines.

 » Proprietary scripting languages: Some game engines use their own
proprietary scripting language similar to JavaScript or Python. These scripting
languages are often much easier to learn and use, which makes them perfect
for programmers and nonprogrammers alike.

 » Visual scripting languages: Because many game developers may not know
any programming language at all, many game-engine makers also offer visual
scripting. Instead of requiring you to type code to control a game engine,
visual scripting lets you drag-and-drop nodes and connect them with lines
that show how data flows from one node to another, as shown in Figure 6-1.

Visual scripting can be used by programmers and nonprogrammers alike. For
nonprogrammers, visual scripting gives them a way to create a game without
learning a programming language. For programmers, visual scripting can be a
fast way to prototype ideas and allow nonprogrammers to collaborate.

Each node lets you control a single part of the game such as an individual
character, a barrier in the game, or an abstract item like a timer. To control
the different parts of a game, you create a graph with that object’s node, and
then connect it with other nodes to visually design the behavior of an object in
a game.

Some game engines offer all three programming options, while others may offer
only one option.

FIGURE 6-1:
Visual scripting
lets you create

a program by
connecting nodes

in a graph.

https://www.lua.org/
https://www.lua.org/

726 BOOK 7 Applications

You can create a game using all three methods. The bulk of your game might be
programmed using C++, another part of that same game could be programmed
using the game engine’s scripting language, and a third part of that game could
be programmed using the game engine’s visual scripting language.

Because the video-game industry is so huge and lucrative, game studios always
need programmers to help them develop their next video games. Game-engine
programming is fast becoming a new programming specialty.

The more knowledgeable you are about using a particular programming language
to control a specific game engine, the greater the chances you could get a job
working in the video-game industry.

Exploring the Future Uses of Game Engines
Game engines were originally designed to create video games. However, video
games are designed to depict realistic images that can move and interact with
other objects in the scene. That means video games are now being used outside
the video-game industry. Some common uses for game engines outside of video-
game development include

 » Filmmaking

 » Architecture and engineering

 » Marketing

Filmmaking
Making movies is expensive, and one of the biggest expenses is sending a film
crew and actors out to a location. If that location doesn’t exist (such as a futuristic
space ship exterior or the exterior of the Eiffel Tower after it’s fallen apart after
decades of neglect), filmmakers must design or modify a set, which takes time
and money.

Filming on the streets of Paris might be cumbersome, but filming on the streets
of Paris back in the 1920s will require building a set of 1920s-era buildings and
streets. Filming the streets of Paris a hundred years in the future after a nuclear
war where the Eiffel Tower is barely standing will require an even more expen-
sive set.

G
am

e Engines

CHAPTER 6 Game Engines 727

Instead of wasting money building expensive sets of exotic locations, filmmak-
ers are using game engines to create any setting they want. Just as video-game
designers can set a game in any historical, imaginary, or contemporary setting
just by creating the right graphical images, so can filmmakers use game engines
to create virtual sets at far less cost and time than they would spend building a set.

Instead of paying traveling costs for an entire film crew and actors, studios can
film entire scenes inside a single building that displays a screen large enough
to display the virtual setting created by a game engine. Best of all, changing the
appearance of virtual settings can be done quickly and easily, just by modifying
the graphical images or the game engine.

Unlike green-screen technology that forces actors to respond to a blank screen
that filmmakers use to superimpose real images on later, game engines can dis-
play the actual images on the screen around the actors. That way actors can see the
scene location that they’re performing in and react to real images.

The TV shows The Mandalorian and Westworld were filmed using the Unreal game
engine to create many of the shows’ settings.

Instead of using a game engine to help make a movie, some filmmakers are using
game engines to create entire animated films. After all, a game engine can already
create realistic or cartoonish worlds. By using a game engine, filmmakers can let
the game engine animate characters within a unique setting and eliminate the
need for expensive computer animation software.

Architecture and engineering simulations
When architects design a building, they often make models that let them see
what a building might look like so they can determine whether they need to
change anything. Likewise, when engineers design new products such as cars or
airplanes, they also make clay, wooden, or plastic models so they can see their
designs before they actually build anything.

Needless to say, creating physical models takes time. If you need to change the
design of a building or car, then you need to change your model, or create an
entirely new model, both of which take more time.

But if you design a building or machine using a game engine, you can make
changes quickly and easily. Then you can go one step further and apply different
materials to the surface, such as changing a building from brick to steel or a car
from red to green. By letting you experiment endlessly at no cost beyond a little

728 BOOK 7 Applications

time, game engines help architects and engineers visualize their creations faster
than before.

By using a game engine as part of virtual reality, users can walk through imagi-
nary buildings. This can give people a better sense of what a building might look
like before spending any money creating a physical model.

One unique use for game-engine simulations involves creating military exercises.
By creating different environments and weapons within the virtual world of a
game engine, military commanders can experiment with various scenarios with-
out the physical expense of moving soldiers and equipment around.

Soldiers can conduct training within the safety of a virtual world with no danger
of accidents. When they feel comfortable in certain situations, they can advance to
live training in the field with actual weapons and equipment.

Marketing and advertising
When companies need to sell and promote their products, they often make com-
mercials, websites, and promotional videos. That’s essentially filmmaking, so
many advertising agencies are using game engines to create images and videos
virtually. That saves time and money and allows the advertising agency to experi-
ment with changing a product’s color or size through the game engine.

In the past, advertising agencies might film a commercial that fits within their
budget, but by creating an entire commercial in a game engine, they have more
freedom to create multiple versions of a commercial.

Game engines lower costs, save time, and allow for fast and easy experimenta-
tion. With more variations to choose from, advertising agencies can now test the
different varieties with test markets, which would be impossible to do producing
only a single commercial the traditional way.

One candy company filmed a commercial using live actors, promoting a spe-
cific candy bar. When it wanted to promote a different candy bar, it could’ve
filmed the commercial again, but that would’ve taken time and cost more money.
Instead, it used a game engine to substitute a different candy bar in the existing
commercial. By doing this multiple times, the company could promote several
different candy bars using the same commercial with minimal additional cost,
thanks to the game engine.

G
am

e Engines

CHAPTER 6 Game Engines 729

With so many different ways to use game engines outside the video-game indus-
try, knowing how to program a game engine can be a crucial skill that can sepa-
rate you from the hordes of programmers who just know how to write programs.
Ultimately, the more skills you have that are valuable to an employer, the more
opportunities you’ll have in the future.

By learning both programming in general and game-engine programming in par-
ticular, you can take advantage of more opportunities in practically any industry
you want to pursue.

CHAPTER 7 The Future of Computer Programming 731

The Future of Computer
Programming

The computer industry is changing all the time, which means that the pro-
gramming tools and techniques of today will likely become obsolete by
tomorrow. Just trying to keep up with the computer industry is a full-

time occupation, and even computer experts can never agree on what the future
may bring.

Although it’s impossible to predict the future, it is possible to identify trends in
the computer industry and, based on these trends, predict what might occur in
the future. In the world of computer programming, the most important lesson is
to learn the logic of programming without getting bogged down by the specific
syntax of any particular programming language. That’s because programming
languages rise and fall out of favor. If you learn to program in only one particular
language, your programming ability will be restricted by the limitations of that
particular language.

Programming is nothing more than problem solving, and problem solving is
invaluable no matter which programming language, computer, or operating sys-
tem may be popular at any given time. If you can solve problems, you’ll always
have a job.

Chapter 7

IN THIS CHAPTER

 » Choosing the right programming
language

 » Deciding on an operating system

 » Understanding cross-platform
programming

 » Exploring the programming language
of the future

732 BOOK 7 Applications

Picking a Programming Language
Computer scientists eternally debate the merits of one programming language
over another, but no matter which programming language may be popular today,
the real issue boils down to efficiency and complexity.

Throughout history, the most popular language has always been the one that
offers the greatest amount of efficiency for solving the most complicated prob-
lems. Initially, programmers used machine language to write entire programs
because that was all that was available. However, as soon as assembly language
appeared, few people wrote entirely in machine language. Instead, they switched
to assembly language because it allows programmers to write more complicated
programs. (Turn to Book 1, Chapter 1 for more on machine language and assembly
language.)

In the early days of personal computers, nearly every programmer used assembly
language. One of the first popular word processors, WordStar, even ran on two
different processors — the Zilog Z80 and the Intel 8088. To run on these two dif-
ferent processors, the company had to write WordStar in two completely different
assembly languages.

When programs were fairly simple, that could be possible, but as programs grew
in complexity, writing programs entirely in assembly language proved too cum-
bersome. That’s when programmers switched to C.

Most operating systems today are written entirely in C for maximum efficiency,
but as programs have grown in complexity, C has quickly fallen out of favor, just
as assembly language and machine language have done before. To maintain max-
imum efficiency to deal with growing complexity, programmers have moved from
C to C++ and other object-oriented programming languages.

Although C++ adds object-oriented features to C, it still retains all the drawbacks
of C. That’s why computer scientists have been developing safer, more specialized
languages based on C and C++, such as C#, Dart, Go, Java, Python, Rust, Scala, and
Swift. If you learn a curly-bracket language (based on C), you’ll be able to adapt
to any language inspired by C.

Besides learning a curly-bracket language based on C, consider learning a special-
ized programming language that can make certain tasks easier. For manipulat-
ing data, learn SQL. For data mining, consider F or R. The more familiar you are
with different programming languages, the easier it will be to work on nearly any
project.

The Future of Com
puter

Program
m

ing

CHAPTER 7 The Future of Computer Programming 733

Just as being fluent in multiple human languages can open up more opportuni-
ties for you, so can knowledge of different programming languages increase your
future opportunities whatever you choose to do with your programming skills.

The popularity of programming languages changes all the time, so the only sure
bet is to keep learning. Master the languages you already know but don’t be afraid
to learn something different. Programming is a combination of problem-solving
skills and knowing the syntax and nuances of a particular language. Keep improv-
ing both your problem-solving skills and your knowledge of different languages,
and you’ll always be able to keep up with the latest trends, no matter what type of
computer and operating system become popular next.

Picking an Operating System
In the early days of computers, every computer had its own operating system,
which made writing programs difficult. Not only did you have to learn a specific
programming language, but you also had to learn how to write programs for a
specific operating system.

To avoid this problem, computer companies standardized around the most
popular operating systems. An early popular operating system was CP/M-80,
which later gave way to MS-DOS and finally to Microsoft Windows. Later, Linux
grew in popularity, while macOS attracted people who wanted an easier user
interface (UI).

By focusing on a single operating system, you can optimize your program for that
one operating system. Knowing which operating system to support can define the
success (or failure) of an entire software company.

Back in the early days of personal computers, two companies developed a program
that everyone called a killer application (or killer app for short). Both of these pro-
grams were greatly improved spreadsheet programs used by businesses, but each
company took a different approach. One company wrote its spreadsheet program
entirely in assembly language and optimized it to run quickly on a single operat-
ing system (MS-DOS). The second company developed its spreadsheet to run on
multiple operating systems, but to achieve this feat, the company wrote its pro-
gram in the UCSD Pascal programming language, which ran slowly on multiple
operating systems.

Although both programs offered similar features, there was no comparison from
the user’s point of view. The program written in assembly language and opti-
mized for the MS-DOS operating system became Lotus 1-2-3, one of the most

734 BOOK 7 Applications

popular programs ever. The second program, Context MBA, ran so slowly on every
operating system that nobody had the patience to use it. Context MBA went out of
business, and Lotus 1-2-3 dominated the spreadsheet market — until the stan-
dard operating system changed from underneath it.

Lotus 1-2-3 had originally been written in assembly language, but as the program
grew in complexity, major portions of the program were rewritten in C. When
personal computers switched from MS-DOS to Microsoft Windows, Lotus 1-2-3
wasn’t ready. That’s when Microsoft Excel, written in C, took over, and it has
dominated the spreadsheet market ever since.

As Microsoft Excel grows in complexity, major portions of the program are now
being rewritten in C++. Eventually, it’s likely that maintaining Microsoft Excel in
C++ will become too difficult, and a new spreadsheet program will emerge, written
in an entirely different programming language.

That’s because the days of a single operating system standard seem to be fad-
ing. Instead of Microsoft Windows being the dominant operating system, rivals —
such as Linux and macOS — have grown in popularity to challenge the popularity
of Microsoft Windows on desktop computers.

With the introduction of mobile computing, iOS became the dominant operating
system for Apple’s iPhone and iPad, while Android dominated the mobile comput-
ing market for any device not made by Apple.

Unlike the early days, when you could write a program for the dominant operating
system and capture 90 percent of the market, today if you write a program for a
single operating system, you’ll capture an ever-shrinking chunk of the market.

No matter what operating system you prefer, become familiar with another one.
That way, if your favorite operating system falls out of favor, you’ll be able to
switch to a different one and still be able to use your favorite programming lan-
guages. By becoming familiar with Linux, macOS, and Windows, you’ll be able to
write programs for nearly any computer.

You might use one operating system for your programming computer but develop
programs for a completely different operating system. For example, many game
developers write programs using Windows but develop programs for the Sony
PlayStation or Android.

The Future of Com
puter

Program
m

ing

CHAPTER 7 The Future of Computer Programming 735

Doing Cross-Platform Programming
In the old days, writing programs to run on multiple operating systems was a
waste of time because most people used the same operating system. WordPer-
fect, a once-popular word processor, wasted millions of dollars and several years
devoting its resources to creating a version of WordPerfect that ran on Atari ST,
Commodore Amiga, Macintosh, and MS-DOS computers. Although WordPerfect
focused on making its word processor run on multiple operating systems (known
as cross-platform capabilities), Microsoft focused on making its Microsoft Word
program run efficiently on a single operating system (Microsoft Windows) and
nearly wiped WordPerfect off the face of the Earth.

The problem wasn’t that WordPerfect spent time writing a cross-platform version
of its word processor. The problem was that it wasted time supporting operating
systems that hardly anybody used. The number of people who used Atari ST and
Commodore Amiga computers was miniscule compared to the number of people
who used Macintosh computers, and the number of people who used Macintosh
computers was just as tiny compared to the number of people who used MS-DOS
and Microsoft Windows.

Cross-platform capabilities make sense only when supporting operating systems
of nearly equal popularity, such as Android and iOS. The most straightforward
way to write a cross-platform program is to write identical programs with two
completely different languages. That approach is possible for simple programs,
but for more complicated programs, it takes too much time.

The portability of C
One reason why the C language has proven so popular is because of its portabil-
ity. The C language is relatively simple, which makes it easy to create C compilers
for different operating systems. That also makes compiling C programs to run on
different operating systems with minimal changes easy.

Writing programs in C is how companies like Adobe and Microsoft can develop
and sell programs that run on both macOS and Windows, such as Adobe Pho-
toshop and Microsoft Word. The bulk of their programs run identically on both
operating systems, so all they need to do is write a small portion of the program
to customize it to run on each particular operating system.

Unfortunately, as programs grow more complicated, writing programs in C is get-
ting more difficult. Although most programmers have now switched to C++, even
C++ is becoming too hard to use. That’s why Sun Microsystems developed Java
(now owned by Oracle), Microsoft developed C#, and Apple developed Swift. All

736 BOOK 7 Applications

these languages are meant to improve on C++ while being easier to learn and safer
to use.

Cross-platform languages
As operating systems grow more complicated, programmers are finding they’re
spending more time customizing their C/C++ programs for each specific operating
system and less time actually updating their programs. So, another way to write
cross-platform programs is to use a cross-platform compiler. The idea behind a
cross-platform compiler is that you can write a program in a specific program-
ming language, and the compiler takes care of creating identically working pro-
grams for different operating systems.

One popular cross-platform development tool is React Native, which was cre-
ated by Facebook to let programmers write one program that can run on multiple
operating systems, such as Android, iOS, macOS, and Windows. Google created its
own cross-platform tool called Flutter, which lets programmers write software
for Android, iOS, Linux, macOS, Windows, and Google’s new operating system,
Fuchsia.

Because many Windows programmers know and use C#, Microsoft acquired
Xamarian, a development tool that lets you write programs in C# that you can
compile to Android and iOS. That way, you can write apps for Android and iOS
using the C# language rather than learn Java or Kotlin (for Android) or Objective-C
or Swift (for iOS).

One problem with cross-platform compilers is that they’re never perfect. Ideally,
you want to write a single program, compile it for multiple operating systems,
and have all versions of your program run identically under each different operat-
ing system. In reality, every operating system has its quirks, so you often have to
write specific code for each operating system. The amount of operating-system-
specific code is much less than is required when rewriting your entire program
from scratch for a different operating system, but this process isn’t trivial.

Create a program that can run on three different operating systems, and now
you have to worry about maintaining and fixing problems with your program on
three different operating systems. It’s possible for your program to work perfectly
under Linux, but crash under macOS and Windows. The more operating systems
your program supports, the greater the complexity in getting your program to
work right under all these different operating systems.

The Future of Com
puter

Program
m

ing

CHAPTER 7 The Future of Computer Programming 737

Virtual machines
The main advantage of cross-platform compilers is that they compile programs
directly into machine language for each specific operating system, which makes
your programs run as fast as possible. With today’s faster computers, speed is
rarely as important as in the old days when slow programs could literally take
hours to perform a single task.

Because speed isn’t as crucial as in the past, computer scientists have created
another way to create cross-platform programs known as virtual machines (VMs).
Rather than compile a program for a specific processor, VM programming lan-
guages compile programs to a generic format (called bytecode, pseudocode, or
p-code) that can run on a VM. This VM, running on different operating systems,
essentially tricks the program into thinking it’s running on a single computer, as
shown in Figure 7-1.

The biggest problem with VM programming languages, can be their lack of
speed. Because VM languages aren’t compiled, they run slower than true com-
piled programs. That’s why many languages, such as Java, use just-in-time (JIT)
compilers that produce machine code as needed. This helps speed up programs
while still letting them maintain portability across multiple platforms.

Even worse, VM languages can run only on operating systems that have VMs
written for them. To maintain this ability to run on multiple operating systems,
Oracle (the owner of Java) must constantly update each VM for different operat-
ing systems. This added complexity earned Java its initial reputation as a “write
once, debug everywhere” language — you had to fix your program on multiple
operating systems.

FIGURE 7-1:
A virtual machine

lets a program
run on multiple

operating
systems.

738 BOOK 7 Applications

Software as a service
The latest trend is toward selling software as a service (SaaS). The idea is that
instead of having a copy of a program stored on your computer, you use the Inter-
net to access a program stored on a server. SaaS offers several advantages:

 » It’s consistent. With programs written in C, cross-platform compilers, or VM
languages (like Java), the end result is always a program stored on each
person’s computer. So, one person could be using version 1.0 of a program,
another could be using version 1.4, and a third person could be using version
1.57, which makes supporting all these different versions difficult. With SaaS,
all users can access the same version of the software through the Internet. If
you’ve ever used Google Docs to write and share a document, you know that
Google’s word processor is always available to you over the Internet but never
gets stored anywhere on your computer.

 » It’s based on Internet web-browsing standards. If a computer can access
the Internet, it can use any SaaS program. This gives you a cross-platform
program without the hassle of making sure your program runs on each
particular operating system.

 » It frees up space on your hard disk. Instead of cluttering your computer
with dozens of separate programs, you only need to store your actual files on
your computer because the SaaS programs are stored on a server.

Unfortunately, the SaaS model has two drawbacks:

 » If you aren’t connected to the Internet, you can’t use any SaaS program.
So, if you use a word processor over the Internet but take your laptop
computer on an airplane with no Internet connection, you can’t use that word
processor.

 » Using the SaaS program may constantly cost money. Most SaaS programs
charge a monthly fee, which gives you the right to use the program for that
month. Although this monthly fee is nominal (such as $5 a month), the cost
can add up. Buying a simple word-processing program might cost you $50.
Using a SaaS word-processing programming might cost you $5 a month, so
after ten months, you could’ve just bought the program instead.

For each succeeding month, the cost continues, so you’ll wind up paying
several hundred dollars just to use a single program. For large corporations,
the SaaS model may make sense. For individuals, the SaaS model can
sometimes be too expensive.

To eliminate monthly fees, SaaS companies are offering their programs for
free but earning profits by selling advertising. Seeing advertisements may be a

The Future of Com
puter

Program
m

ing

CHAPTER 7 The Future of Computer Programming 739

minor annoyance, but it makes SaaS available to everyone (although there’s
still the problem of not being able to use a program without a constant and
reliable Internet connection).

Data science
With computers, mobile phones, and the Internet gathering information on people
every second of the day, there’s a tremendous need to analyze all this informa-
tion. This combination of computer science, statistics, machine learning, and data
mining falls under the category of data science. It’s nearly impossible for humans
to sift through massive amounts of data, but it’s relatively easy for computers to
sort and sift through data to find patterns.

Every time you visit an e-commerce site to shop online, that site can analyze what
you look at, what you buy, and what other products people bought in addition to
that particular product. When you visit a social media network, that network’s
algorithms analyze what type of information you liked in the past and tries to
guess what you might like to see right now.

Java and Python have been popular for data science, but they’re also general lan-
guages. To make analyzing data easier, computer scientists have created special-
ized languages like MATLAB (www.mathworks.com) and R (www.r-project.org).

One field related to data science is algorithmic trading. That’s where people write
programs to track financial markets (stocks, commodities, cryptocurrencies, and
so on) and automatically buy and sell assets far faster than human traders could
ever do. By defining specific trading strategies using programming languages like
Java, Perl, and Python, traders can automate their trading process and let their
computer find trading opportunities that they might have otherwise overlooked.

Algorithmic trading, also known as black box trading, is heavily used by special
programmers called quantitative analysts (quants for short). Quants typically work
for hedge funds and investment bankers in a field known as financial engineering.
By combining statistics, finance, and computer programming, quants use their
programming knowledge to make money in every major financial market around
the world.

The world generates tons of new data every second of the day, and this never-
ending flow of new data won’t stop any time soon. If anything, it’s just going to
increase from a variety of sources. That means there’s always going to be plenty
of work for anyone fascinated by statistics and digging through massive amounts
of data looking to uncover hidden nuggets of useful information.

https://www.mathworks.com/
https://www.r-project.org/

740 BOOK 7 Applications

Website programming
In the early days of the Internet, programmers wrote HTML code to create web-
sites. As people demanded faster changes and more interactivity from web pages,
programmers started creating websites using content management systems
(CMSs) like Drupal, Joomla, and WordPress.

In addition to programming and designing websites, another lucrative program-
ming field involves the back-end servers controlling the websites. After all, when
somebody orders a product online, the server needs to process that data, and that
requires the services of even more programmers using scripting languages like
JavaScript, PHP, or Ruby.

There’s even an entire field of people who do nothing but analyze and optimize
websites for maximum efficiency. Search engine optimization (SEO) involves
designing websites to maximize the chances that search engines will find it. The
field of analytics analyzes how people react to web pages and how to modify web
pages to keep people looking at them longer and taking action, such as ordering
a product.

Programing websites and back-end servers is a field that won’t go away any time
soon. The technology may change, but the purpose will remain the same, which
means plenty of opportunities for the future.

Macro programming
Many people think programming is about creating new programs or modify-
ing existing ones. But far too many people overlook macro programming. Macros
essentially let you write mini programs that run within an existing program.

Perhaps the most popular macro programming language is Visual Basic for Appli-
cations (VBA), which lets you write macros to control the Microsoft Office suite of
products, including Access, Excel, PowerPoint, and Word. By writing macros, you
can create useful programs that can take advantage of existing features.

Instead of writing a mathematical or financial calculating program from scratch
using C++ or Java, it’s far simpler to use the mathematical and financial calculat-
ing features of Excel and just write a macro that guides users into entering data.
Then the macro can use Excel’s built-in functions to calculate a useful result. By
writing macros within an existing program, you can create custom applications
for others.

The Future of Com
puter

Program
m

ing

CHAPTER 7 The Future of Computer Programming 741

Macros let you write mini programs that can automate complicated tasks.
Operating systems typically offer scripting or macro languages for automating
a computer. Windows offers PowerShell, while Apple’s macOS offers AppleScript
and Shortcuts, which provides a drag-and-drop interface to reduce the need for
writing any code at all.

There are even separate macro-recording programs that you can run to auto-
mate multiple programs that may not have been designed to work together. Every
program in the Microsoft Office suite can share data, but you may need to create
a macro to link Excel to a hospital management program or link a web page to a
specialized stock-trading program.

Macros let you automate tasks within a single program or between different pro-
grams. By learning to write macros to automate or simplify complex tasks, you
can help individuals and organizations save time and money.

Robotics programming
If programming a computer sounds like fun, programming a walking, flying, or
rolling robot may be even more exciting! Programming a robot is essentially like
programming a computer that can move and manipulate its environment.

Programming a robot from scratch can be tedious, so much of robotics pro-
gramming revolves around developing and using special robotics-programming
frameworks. The framework provides basic commands for controlling the robot,
such as making it move. Such a robotics framework isolates programmers from
the tedium of how to make a robot work and just tells the robot what to do. A typ-
ical robotic program might look like this:

Move arm 34 degrees
Close gripper
Move arm 180 degrees
Open gripper

Just as high-level languages like BASIC or Fortran isolate you from manipulat-
ing the details of a computer, robotics-programming frameworks can isolate you
from manipulating the specific details of a robot’s parts.

Robotics programmers have used programming languages like C++, Java, and even
Python to control a robot, so if you master a popular computer programming
language, there’s a good chance you’ll be able to transfer your skills to program
a robot as well.

742 BOOK 7 Applications

For a playful introduction to robotics, buy a LEGO Mindstorms NXT robotics kit,
which lets you create a robot out of LEGO building blocks and use the LEGO visual
programming language to make your robot move.

Robotics combines mechanical engineering with computer science and artificial
intelligence (AI). You can program a robot to learn, recognize spoken commands,
navigate around obstacles, and make decisions on its own, given incomplete
information. Although AI often remains an academic exercise, robotics lets you
put AI in a moving robot so you can see how well your programs actually work.
(A well-designed robot program might know enough to avoid trying to roll down
a staircase. A poorly designed robot program might make the robot cheerfully roll
off the top of a staircase and crash at the bottom of the steps below.)

Robotics is a growing field with no clear-cut robotics language standard yet to
emerge. Who knows? With a little bit of creativity, you might be responsible for
creating the next standard in robotics programming.

Blockchain programming
The world of cryptocurrency changed with the introduction of Bitcoin in 2008.
Although the idea of money stored as encrypted data challenges the traditional
idea of money backed by tangible assets like gold, the real excitement around
cryptocurrency centers around its underlying blockchain technology.

Programmers need to create the underlying blockchains themselves that involves
cryptography, security, optimization, and resource management, which usu-
ally involves a variety of languages like C++, Dart, Go, Java, JavaScript, Python,
or Rust.

Then there’s programming on top of a blockchain to create programs such as
smart contracts that are a major feature of the Ethereum cryptocurrency. Smart
contracts not only store data to verify their existence and initial date, but can
also respond to outside data (such as the date and amount of payments sent or
received). Because smart contracts are part of a blockchain that can be examined
but never modified, they offer a transparent way to record important data (such
as real-estate property ownership or the date a screenwriter first submitted a
story idea).

Whether you want to use your programming skills to create a new blockchain,
maintain an existing one, or write programs on top of a blockchain to create smart
contracts, there will be plenty of opportunities for all types of programming in the
growing world of blockchains and cryptocurrencies.

The Future of Com
puter

Program
m

ing

CHAPTER 7 The Future of Computer Programming 743

Defining Your Future in Programming
Although there will always be dominant programming languages, there will never
be a single perfect programming language because everyone’s needs and prefer-
ences are different. Some people prefer C for its raw power and control, whereas
others prefer Java and other high-level languages for making programming easier
by hiding the technical details of manipulating the computer. If you’re planning
to learn programming, the only certainty is that the language you learn today will
likely not be the language you’ll be using tomorrow.

Teaching yourself other languages
With so many programming languages available, most schools focus on
teaching the most popular languages, such as C++ or Java. However, learning a
popular programming language is just a start. If you never learn any program-
ming language beyond the popular ones taught in schools, you’ll have far few
opportunities than someone who learns more specialized programming lan-
guages not normally taught in most schools.

You may not always have time to take formal classes, so it’s important to get in
the habit of keeping up with trends and learning new programming languages on
your own. New programming languages appear all the time, and many companies
use a variety of programming languages for different purposes. Your ability to
learn and master new programming languages is crucial for long-term success.

That means getting comfortable using different operating systems, different
programming languages, and different programming tools like editors and com-
pilers. The more adaptable you can be programming different computers, from
supercomputers to embedded systems (computers hidden inside larger items, such
as refrigerators, cars, or water pumps), the more opportunities you can choose.

The computing industry changes rapidly. One day, the world is clamoring for
people who can write programs for Blackberry smartphones and Palm Pilots, and
the next day those markets disappear. Google once encouraged everyone to write
Android apps in Java; then it encouraged programmers to write Android apps
using Kotlin instead. Apple used to encourage programmers to write apps using
Objective-C; then it started encouraging programmers to write apps using Swift.

To learn new programming languages, start by playing around with an online
compiler, which you can find by searching the web for “Kotlin online” or “Java
online compiler.” By practicing with an online compiler that you can access
through a web browser, you can learn the basics of a new programming language
without downloading and installing any additional software.

744 BOOK 7 Applications

The only certainty is that computers and programming languages will change,
so if you can get comfortable learning something new all the time, you’ll be in a
far better position than someone who never bothers learning anything new at all.

Combining other interests
besides programming
The common idea is that if you want to learn programming, you need to learn
math. Math can help, but it’s not necessary to become a programmer. Many
people from diverse backgrounds can become programmers — programming is
nothing more than a skill that anyone can learn.

Many music majors become programmers because programming and music both
involve logic, self-expression, and collaborating with others. Many philosophy
majors also excel at programming because philosophy teaches you to think care-
fully, analyze situations, and build a complete understanding of a problem before
drawing any conclusions. Math is just a minor part of programming, but if you
don’t know how to think clearly, all the math in the world won’t help you.

Just knowing a programming language will never be enough. Make sure you
develop skills in other fields as well. For example, programmers with account-
ing experience would be far more likely to work on an accounting program than
someone who knows nothing about accounting at all. Music majors would likely
excel at writing software for audio engineers, while someone experienced in run-
ning a restaurant would be more knowledgeable about creating restaurant man-
agement software.

Combine your knowledge of programming with medicine, and you could create
programs specifically for controlling medical equipment or targeting hospitals,
which programmers lacking medical knowledge and experience would have a
much harder time trying to do. The more you know beyond programming, the
better your chances of finding unique and interesting opportunities in your field
of interest.

Getting experience and knowledge
Many people believe that you need a college degree to become a programmer,
but that’s not true at all. Given a choice between someone with lots of program-
ming experience and knowledge and someone who just has a college degree, guess
which person most companies will value more?

The Future of Com
puter

Program
m

ing

CHAPTER 7 The Future of Computer Programming 745

Whether you have a college degree or not, you need experience writing programs
professionally. Students can often rely on a college degree to justify that they have
basic competency in programming, but they may not have any experience pro-
gramming in the real world. So, if you have no experience in programming and
companies won’t hire you until you do have experience, what can you do?

The best way to get experience in any field is to do it for free. Volunteer on an
open-source project to gain experience and network with more experienced pro-
grammers. By working on an open-source project, you can demonstrate your
knowledge of a specific programming language or on a particular type of pro-
gram, such as an operating system. Whether you write code, write documentation,
search for bugs, design part of the UI, or help keep the whole project on track, you
can demonstrate skills that will make you far more valuable than someone who
just has a college degree.

If you can’t find an open-source project that you like, just volunteer your
programming skills to help your local library, animal shelter, church, food bank,
school, or any other organization that would be open to accepting free help.
Although many charitable organizations may not be able to pay you, they can let
you gain valuable experience solving real problems. If you do a great job, others
might hear about you. That can open up more opportunities for you in the future
that you might never have known about if you had never volunteered to work for
free in the first place.

Another option is to write programs and publish them on the many app stores
available for different types of computers. By demonstrating that you created an
entire app yourself, got it approved on an app store, and maintained your code
while dealing with customers, you can demonstrate far more skills than just your
programming ability. Having a working program that others can see, use, and
evaluate will demonstrate your abilities far more than any grade in a program-
ming class can ever do.

Finally, if there’s a particular industry or specific company you want to work for,
do your homework and find out what they need and what software and computers
they use. For example, if you want to work for a specific video-game company,
find out what game engine they use, what programming language they prefer, and
what programming tools (editor and compiler) they use. By familiarizing yourself
with the tools a specific company already uses, you’ll be in a better position to fit
in if they have an opening.

With every industry using computers, there’s no shortage of opportunities wait-
ing for you and your programming skills. Instead of taking the first opportunity

746 BOOK 7 Applications

given to you, take time to plan where you want to go and what you want to do.
That way, you can steer all your efforts toward creating the career of your dreams.

The programming language you use is less important than your ability to solve
problems and create useful programs. What you do with your programming skills
will always transcend the specific knowledge of a particular programming lan-
guage. Ultimately, the most important part of programming is you!

Index 747

Index

Symbols
#include command, subprograms, 203
* (multiple-character wildcard), 150–151
. (single-character wildcard), 149–150
.. (two-character wildcard), 149
+ (plus wildcard), 150–151

A
abstract data structure, 368, 373
Ada language, 11, 107
Adams, Michael, 702
addition operator, 143
address space layout randomization (ASLR), 698
Adobe Dreamweaver, 471
Advanced Encryption Standard (AES), 460
Advanced Micro Devices (AMD) processors, 14
Advanced RISC Machine (ARM) processors, 14
adversarial search algorithms

alpha-beta pruning, 426–427
horizon effect, 426
library of good moves, 427–428
overview, 424–425

AES (Advanced Encryption Standard), 460
agile documentation, 275
AI (artificial intelligence)

applications of, 710
declarative languages, 67–71,

706–707
machine learning, 706–710
problem solving, 700–706
robotics, 709, 742
strong vs. weak, 700

alert dialog boxes, JavaScript, 506
algorithmic trading (black box trading), 739

algorithms. See also encryption algorithms;
searching algorithms; sorting algorithms;
string searching

data compression algorithms, 441–450
defined, 399

Alice language, 57–58
alpha testing, 306
alpha-beta pruning, 426–427
alternate patterns, searching for, 438
Amazon Alexa, 704
AMD (Advanced Micro Devices) processors, 14
American Standard Code for Information

Interchange (ASCII) code, 429
Analytical Engine, 10–11
anchor points

defining, 480
linking hyperlinks to, 480–481

And operator, 157–158
Android

defined, 21
Kotlin language, 54, 595

antivirus programs, 687, 689
Apache NetBeans IDE, 91
append command, Python, 591
AppGameKit, 724
Apple

Swift language, 54
Swift Playgrounds compiler, 84
Xcode compiler, 84

Apple Siri, 704
AppleScript, 741
AR (augmented reality), 718–719
ARM (Advanced RISC Machine) processors, 14
Armory, 723
array_pop function, PHP arrays, 520
array_push function, PHP arrays, 520

748 Beginning Programming All-in-One For Dummies

arrays
adding data to, 329
associative, 351, 358–360, 519, 532–533
bounds, 317–319
C and C++, 554–555
C#, 572
counting over with FOR loops, 188–189
data types and, 328
defining size of, 317–319
defining structure used with, 325–327
deleting, 329–330
identifying data location, 330–331
initializing, 319–320
Java, 572
JavaScript, 505
Kotlin, 610
multidimensional, 323–325
one-based, 317–318
overview, 316–317
Perl, 589
PHP, 519–520
resizable, 321–323
retrieving data, 321
Ruby, 532–533
searching, 328
sorting, 328–329
storing data, 320–321
Swift language, 630–632
zero-based, 317–318

artificial intelligence. See AI
ASCII (American Standard Code for Information

Interchange) code, 429
ASLR (address space layout randomization), 698
assemblers

converting source code with, 23
defined, 17

assembly language, 732–734
advantages of using, 17–18
C language vs., 15–16
disassemblers, 78, 99–100, 687
high-level language vs., 15
improving programmer efficiency and, 30
using as shortcut to machine language, 12–14

assignment operators
C language, 548
C#, 564–565
C++, 547
Dart, 648–649
Java, 564–565
JavaScript, 501
Perl, 583–584
PHP, 515
Python, 583–584
Ruby, 528
storing data with, 142

associative arrays
dictionaries, 351, 358–360
PHP, 519
Ruby, 532–533

asymmetric (public-key) encryption algorithms,
460–462

Atom IDE, 91
attributes, relational databases, 664
augmented reality (AR), 718–719
automation, documentation, 275

B
Babbage, Charles, 10–11
background, HTML, 479
backward or forward searching algorithm,

417–418
Bailey, Dona, 7–8
BASIC language, 15

calculating factorials, 213
defining functions, 210–211
IF-THEN statement, 165
multidimensional arrays, 324
passing parameters, 208–209
perceived as toy language, 55
resizable arrays, 322

Basic Local Alignment and Search Tool (BLAST),
679–681

Battle of Midway, 467
battling robots programming games, 58–59
Bayesian probability, 707

Index 749

Beginner’s All-purpose Symbolic Instruction Code.
See BASIC language

behavioral design patterns, 50
Bernoulli numbers, 10
beta testing, 307
binary arithmetic, 12
binary searching algorithms, 419–420
binary trees, 388–389
BioC++, 683
bioinformatics

database searches, 679–681
defined, 430, 675
manipulating molecules, 677
programming, 681–683
purpose of, 676
representing molecules, 676–677
in silico experiments, 676
in vitro and in vivo experiments, 676

BioJava, 683
BioJavaScript, 683
BioPerl, 683
BioPHP, 683
BioPython, 683
BioRuby, 683
bit depth, 450
Bitcoin, 465, 742
black box trading (algorithmic trading), 739
BLAST (Basic Local Alignment and Search Tool),

679–681
block (jump) searching algorithms, 418–419
block ciphers

cipher-block chaining, 458–459
electronic codebook, 458
overview, 457

block comments, 266–268, 270–271
block of commands (block), 164–166
blockchain programming, 742
blockchains, 465
BlockWrite command, untyped files, 254
Boole, George, 153
Boolean operators

branching statements and, 171–173
Not operator, 156–157

And operator, 157–158
Or operator, 158
Xor operator, 159–160

Boolean values
C and C++, 545
defined, 156
Java and C#, 562
Swift language, 621

bots and botnets, 691
bottom-up integration tests, 309
bounds, array

default, 317–318
definable, 318–319
lower bound, 317
upper bound, 317

boxes, UI, 290
Boyer, Bob, 431
Boyer–Moore algorithm, 431
branches, defined, 34–35
branching statements

BASIC, 165
block of commands, 164–166
Boolean operators and, 171–173
C and C++, 165, 548–550
comparison operators, 164
Dart, 649–650
Java and C#, 565–568
JavaScript, 502–503
Kotlin, 602–604
overview, 163–164
Pascal, 166
Perl, 584–585
PHP, 515–517
Python, 166, 584–585
Ruby, 528–530
Swift, 623–627

breakpoints, 93, 302–304
Bricklin, Dan, 7
brute-force attacks, 463–464
brute-force search algorithms

defined, 415
sequential search, 416–422
sequential text search, 430–436

750 Beginning Programming All-in-One For Dummies

B-trees, 389
bubble sort algorithm, 400–402
buffer overflow, 696
bugs. See also debugging

defined, 91, 300
security, 306
showstopper, 306

built-in math functions, 146–147
built-in string functions, 148
Burrows, Michael, 443
Burrows–Wheeler transform (BWT) algorithm,

442–445
bytecode, 25, 87
bytes, 128

C
C language

bioinformatics, 682–683
blockchain programming, 742
branching statements, 548–550
buffer overflow, 697
comments, 541–542
cross-platform programming, 735–736
data structures, 553–555
declaring variables, 126, 542–545
defining functions, 210
efficiency of, 61–62
functions, 551–553
game engine programming, 724–726
IF-THEN statement, 165
integer data types, 543–544
keywords, 107
library definition, 541
looping statements, 550–551
Microsoft Excel, 734
objects, 555–556
operators, 545–548
overview, 15–16, 54–55
passing parameters, 208
portability of, 62
power of, 60–61
program structure, 540–541

pros and cons of, 539–540
robotics, 741
sparseness of features, 539
switch statement, 175–177
syntax, 539–556

C# language, 732
branching statements, 565–568
buffer overflow, 697
comments, 559
cross-platform capabilities, 557
cross-platform programming, 736
data structures, 571–574
declaring variables, 559–562
functions, 569–571
game engine programming, 724–725
integer data types, 560–561
looping statements, 568–569
.NET compatibility, 65–66
object-oriented, 64
objects, 574–575
operators, 562–565
program structure, 558
resizable arrays, 323
type-safe, 64–65

C++ language
bioinformatics, 682–683
blockchain programming, 742
branching statements, 548–550
buffer overflow, 697
comments, 541–542
cross-platform programming, 735–736
data structures, 553–555
database programs, 673–674
declaring variables, 542–545
functions, 210, 551–553
game engine programming, 724–726
IF-THEN statement, 165
integer data types, 543–544
library definition, 541
looping statements, 550–551
Microsoft Excel, 734
multidimensional arrays, 324

Index 751

objects, 555–556
operators, 545–548
overview, 62–63
program structure, 540–541
pros and cons of, 539–540
robotics, 741
sparseness of features, 539
syntax, 539–556

Caesar cipher, 451–452
calling subprograms, 201–203
camel-case naming, 123
captions, HTML tables, 484
cascading stylesheets. See CSS
case statements

Java and C#, 567
PHP, 517

CBC (cipher-block chaining), 458–459
CBR (constant bit rate) compression, 450
C/C++, 732
Center widget, Flutter, 640
Centipede game, 7–8
chaining, 363–364
check boxes, UI, 286
Chinese lottery attack, 464, 465
CIL (Common Intermediate Language), 65
cipher-block chaining (CBC), 458–459
ciphertext attacks, 466
circular linked lists, 346
Claris FileMaker (FileMaker), 75
class variables, Ruby, 525
classes

Dart, 656
Python, 592

CloseFile command, untyped files, 254
clustered indexes, 423–424
COBOL language, 15, 54
code cracking

Battle of Midway, 467
brute-force attacks, 463–464
ciphertext attacks, 466
dictionary attacks, 464–466
plaintext attacks, 466
quantum computing, 466

code generation, compilers, 81
code optimization, compilers, 81–82
codecs, 449
CodeWarrior compiler, 78
Colby, Kenneth, 704
collections

adding data to, 352–354
defined, 351
deleting data from, 354–355
identifying data, 355
index numbers, 353, 356–357
keys, 355–356, 357, 360–362
retrieving data from, 356–358
searching, 355

collisions, hash function, 362–365
color codes, HTML, 476–477
Column widget, Flutter, 642–645
combo (drop-down) boxes, UI, 287
comma-delimited (comma separated value [CSV])

text files, 244
command-line interface, 278
commands. See also keywords

creating variables in, 122–123
displaying to UI, 281–284
organizing, 108–109

comments
adding to source code, 264–272
C and C++, 541–542
CSS, 488
Dart, 645
debugging with, 300–302
defined, 264
HTML, 478
Java and C#, 559
JavaScript, 497–498
Kotlin, 596
Perl, 579–580
PHP, 510–511
Python, 579–580
Swift language, 618

commercial game engines, 724
Common Intermediate Language (CIL), 65
compare string function, 148

752 Beginning Programming All-in-One For Dummies

comparison operators, 153–155
comparison with signed result operator (<=>), 581
compilers

code generation and optimization, 81–82
CodeWarrior, 78
converting source code with, 23
cost, 84
cross-compilers, 83
defined, 17, 77
defining need for, 79–80
interpreters vs., 86
just-in-time, 87
open source, 79
overview, 78–79
supported language standards, 81
target platforms, 82–83
Visual Studio, 84
Xcode, 78, 80

complementary sequences, 678
computational biology

database searches, 679–681
defined, 430, 675
manipulating molecules, 677
programming, 681–683
purpose of, 676
representing molecules, 676–677
in silico experiments, 676
in vitro and in vivo experiments, 676

computer, choosing, 19–20
computer security. See security
concatenation operator, 147
conditional breakpoints, 303–304
conditional expressions, 153
confirmation dialog boxes, JavaScript, 506
connections (edges), graph, 383
constant bit rate (CBR) compression, 450
constants

Kotlin, 600
overview, 133–135

Contains command
queues, 376
stacks, 372

Context MBA, 734

Cook, Scott, 7
CP/M-80 operating system, 733
CR code, text files, 246
creational design patterns, 50
cross-compilers, 83
cross-platform programming, 735
cryptocurrencies, 465, 742
CSS (cascading stylesheets)

comments, 488
external stylesheets, 493–494
internal stylesheets, 493–494
overview, 487
separating styles in files, 491–493
structure of, 488–489
style classes, 489–491
tags, 488

curly-bracket languages, 18, 60. See also C
language; C# language; C++ language; Java

block of commands, 267
break command, 195
choosing, 66–67
comparison operators, 153
DO loop, 193
FOR-NEXT loop, 184–185
functions, 200–202
.NET framework, 65–66
switch statement, 175–177
WHILE loop, 190

cyberweapons, 690

D
Dahl, Ole-Johan, 216
Daitch–Mokotoff Soundex algorithm, 439
dangling pointers, linked lists, 347
Dart language, 732

blockchain programming, 742
branching statements, 649–650
comments, 645
data structures, 653–656
Flutter and, 54
functions, 652–653
looping statements, 650–652
objects, 656

Index 753

operators, 646–649
variables, 646

data compression algorithms
lossless, 442–448
lossy, 449–450
overview, 441–442

Data Encryption Standard (DES) algorithm,
455, 460

data execution protection (DEP), 697
data integrity, 671
data manipulation

assignment operator, 142
Boolean Operators, 156–160
comparison operators, 153–155
converting data types, 160–161
mathematical operators, 143–147
overview, 141–142
regular expressions, 148–152
string operators, 147–148

data mining, 672
data science, 739
data structures. See also arrays

abstract, 368
C language, 553–555
C#, 571–572, 574
C++, 553–555
choosing, 381–382
collections, 351–358
Dart, 653–656
deques, 376–379
dictionaries, 351, 358–360
fields, 314
graphs, 383–386
hash functions, 360–365
hash tables, 360–365
Java, 571–574
Kotlin, 608–611
linked lists, 342–349
overview, 313–314
Perl, 588–590
Python, 590–592
queues, 372–376
retrieving data, 315

Ruby, 532–533
sets, 334–342
stacks, 368–372
storing data, 315
Swift language, 630–633
trees, 386–395

data types
arrays and, 328
bytes, 128
declaring, 124–125
overview, 126–130
storage requirements for, 129
type inference, 129–130
type-checking, 128
variant, 328

database management
database programs, 672–674
manipulating data, 667

database management systems (DBMSs), 672–673
databases

connecting to, 259–261
dBASE file format, 257
defined, 659
flat-file, 661–663
free-form, 660–661
non-relational, 259
relational, 258–259, 663–667
SQL, 257, 670–671, 732
structure of, 257–258

dBASE file format, 257
DBMSs (database management systems),

672–673
debuggers

breakpoints, 93
defined, 30, 77
IDEs, 90
machine language, 92
overview, 91
source level, 92
step out command, 94–95
step over command, 94
stepping, 92–93
watching variables, 95–96

754 Beginning Programming All-in-One For Dummies

debugging
breakpoints, 302–304
with comments, 300–302
documentation and, 271–272
logic errors, 299
rubber-duck debugging, 300
stepping through code, 304
syntax errors, 297–298
using print statements, 302
watching variables, 305

decimal data types, 620–621
decision statements. See branching statements
declarative languages

facts, 67
LISP language, 69–71, 706–707
overview, 67–68
Prolog language, 68–69, 71, 706–707
rules, 67

declaring arrays, 320
declaring data types, 124–125
declaring variables

C language, 126, 542–545
C#, 559–562
C++, 542–545
creating in commands, 122–124
Dart language, 646
data types, 124–125
Java, 559–562
JavaScript, 498
Kotlin, 597–599
naming conventions, 121–122
overview, 120–121
Perl, 580
PHP, 511–512
Python, 580
Ruby, 525–526
Swift language, 121, 126, 618–621
Visual Basic language, 126

decrement operator
C and C++, 546–547
Dart, 647–648
Java and C#, 564
JavaScript, 500–501

Perl, 583
PHP, 513–515
Python, 583

Deep Fritz, 702
default bounds, arrays, 317–318
definable bounds, arrays, 318–319
Defold, 723
denial-of-service (DOS) attacks, 690
DEP (data execution protection), 697
deques, 376–379
DES (Data Encryption Standard) algorithm,

455, 460
design patterns, 50

flyweight pattern, 228–229
interface pattern, 228–229
memento pattern, 230

design specifications, documentation, 273
dialog boxes

JavaScript, 506–507
user interface, 289–290

dictionaries
adding data to, 358–359
defined, 351
key-value pair, 358
Python, 591–592
retrieving data from, 359–360
searching, 359–360
Swift language, 632–633

dictionary attacks, 464–466
dictionary coding

LZ77 algorithm, 446
LZ78 algorithm, 446
LZW algorithm, 447–448
overview, 445–446

difference command, 340–342
directed, weighted graphs, 385
directed graphs, 384
disassemblers

defined, 78
dissecting programs with, 99–100
viruses and, 687

distributed databases, 666–667
distributed denial-of-service attacks, 690–691

Index 755

division operator, 143
DLLs (dynamic link libraries), 111
DNA, 676–679, 680
DO loop, 192–193, 196
documentation

adding comments to source code, 264–272
agile documentation, 275
automation, 275
design specifications, 273
Help files, 275
overview, 263
technical design, 273
user manuals, 274
video tutorials, 274

DOS (denial-of-service) attacks, 690
double hashing, 364–365
double linked lists, 345–346
do-while loop

C and C++, 551
Dart, 652
Java and C#, 569
JavaScript, 504
Kotlin, 606

drop-down (combo) boxes, UI, 287
Drupal, 740
dynamic arrays, 321–323

BASIC language, 322
C# language, 323
overview, 321–322
Swift language, 323

dynamic link libraries (DLLs), 111

E
ECB (electronic codebook), 458
Eclipse IDE, 91
edges (connections), graph, 383
Edit menu, 280
editors

common features of, 89
defined, 21, 77
GNU Emacs, 22
IDEs, 90–91
Playgrounds, 22

stand-alone, 88
Visual Studio, 22
Xcode, 22

Einstein, Albert, 7–8
electronic codebook (ECB), 458
Electronic Numerical Integrator and Computer

(ENIAC) computer, 11
ELIZA program, 703–704
embedded systems, 743
encapsulation

grouping methods inside objects, 221–222
overview, 219–220
protecting code, 222
shielding data inside objects, 221

encryption algorithms
AES algorithm, 460
asymmetric, 460–462
block ciphers, 457–459
Caesar cipher, 451–452
code cracking, 463–467
DES algorithm, 455, 460
LUCIFER algorithm, 455
one-time pad, 452–453
overview, 453–455
passwords, 453
security through obscurity theory, 453
steganography, 463
stream ciphers, 456–457
substitution ciphers, 451–454
symmetric, 459–462

endless loops, 184, 196
ENIAC (Electronic Numerical Integrator and

Computer) computer, 11
Enqueue command, queues, 374
enumerations, in C and C++, 554
error messages, user interface,

293–294
errors, programming

logic errors, 299
syntax errors, 297–298

Ethereum, 742
event handlers

defined, 40
writing, 42–44

756 Beginning Programming All-in-One For Dummies

event-driven programming
designing user interface, 41–42
event handlers, 42–44
overview, 38–41
writing program, 44

EXE (executable) file, 23–24
EXIT command, looping, 195, 196
Expanded widget, Flutter, 643
exponentiation operator, 143, 144
extends keyword, in Java, 575
Extensible Markup Language (XML) format,

244–245
external stylesheets, CSS, 493–494

F
F language, 732
Facebook, 736
factorials, 212–213
fall-through, 567
Fanning, Shawn, 7
FBI (Federal Bureau of Investigation), 9
Fibonacci searching, 421–422
fields, flat-file databases, 662–663
FIFO (first in, first out) data structure, 372. See also

queues
file management, IDEs, 90
File menu, 280
FileMaker, 75, 669
FileMaker Script, 669
financial engineering, 739
finite automaton algorithm, 435–436
firewalls, 688–689
first in, first out (FIFO) data structure, 372. See also

queues
flat-file databases, 661–663

defined, 661
fields, 662–663
records, 662

Flax Engine, 724
floating-point data types, declaring

C and C++, 544–545
Java and C#, 561–562
Kotlin, 599

Flutter, 736
Dart language and, 54
hot reload, 638
interpreters, 85
overview, 637–638
widgets, 638–645

flyweight design pattern, 228–229
footers, HTML tables, 484–486
for loops

in C and C++, 550–551
Dart, 650–651
in Java and C#, 568–569
Kotlin, 605
Python, 586–587
Ruby, 530–531
Swift language, 627

foreach command, Perl and Python, 588
forensics, 694–695
FOR-NEXT loops, 195

counting backward, 187–188
counting by different increments, 186–187
counting by different number ranges, 185–186
counting over arrays, 188–189
FOR-NEXT loop variable, 183–185
overview, 182–183

Fortran language, 15, 71, 141–142
free-form databases

defined, 660
disadvantages of, 661
retrieving data, 661

frequency analysis, code-breaking, 466
front end, database files, 261
frozen programs, 184
functions, 109. See also subprograms

BASIC language, 210–211
C language, 210, 551–553
C#, 569–571
C++, 210, 551–553
Dart, 652–653
defined, 142, 210
Java, 569–571
JavaScript, 504–505
Kotlin, 606–608

Index 757

Perl, 588
PHP, 518–519
Python, 211–212, 588
Ruby, 531–532
Swift, 210–211, 628–630

G
game engines

commercial, 724
defined, 721
future uses for, 726–729
open-source, 723
overview, 722–723
programming, 724–726
proprietary, 723

GameMaker Studio, 724
game-playing, 701–702
garbage in, garbage out (GIGO), 707
GCC (GNU Compiler Collection) compiler, 79–80
GenBank, 679
generations of computing, 712–713
GIF (Graphics Interchange Format), 448, 478
GIGO (garbage in, garbage out), 707
global variables

overview, 136–137
Ruby, 525

GNU Compiler Collection (GCC) compiler, 79–80
GNU Emacs editor, 22
Go, 732, 742
Godot game engine, 723
Google. See Android; Flutter; Kotlin
Google Assistant, 704
Google Translate, 703
GOTO command, spaghetti programming, 33
grafting trees, 394–395
graphic files, HTML, 478–479
graphical user interface (GUI), 39, 280
Graphics Interchange Format (GIF), 448, 478
graphs. See also trees

connections, 383
directed, 384
directed, weighted, 385

graph theory, 383
nodes, 383
Seven Bridges of Königsberg, 385
topological graph theory, 386
Traveling Salesman problem, 386
undirected, 384
weighted, 384

GUI (graphical user interface), 39, 280

H
hackers

firewalls, 691–692
forensics, 694–695
intrusion detection systems, 692–693
overview, 685–686
rootkit detectors, 693–694

hanging programs, 184
hash functions

collisions, 362–365
converting keys with, 360–362
encryption and, 459

hash tables, 360–365
hashes

Perl, 590
Ruby, 532–533

headers, HTML tables, 484–486
headings, HTML tables, 482–483
health data tracking, 718
heap sort algorithm, 406–409
help file creators, 77, 99
Help files, 275
heuristic search algorithms. See informed search

algorithms
heuristics, 701
hexadecimals, 12
high coupling, subprograms, 113
high-level languages, 15
honeypots, 693
horizon effect, 426
hot reload, Flutter, 638
HTML (HyperText Markup Language)

background, 479
color codes, 476–477

758 Beginning Programming All-in-One For Dummies

HTML (HyperText Markup Language) (continued)
comments, 478
graphic files, 478–479
hyperlinks, 480–481
overview, 471
tables, 481–486
tags, 472
text, 472–478
title, 472

hybrid OPP languages, 231
Hydra, 702
hyperlinks. See also HTML

defining anchor points, 480
linking to anchor points, 480–481

HyperText Markup Language. See HTML

I
IBM, 455
icons, UI, 282–283
IDEs (integrated development environments)

Apache NetBeans, 91
Atom, 91
debuggers, 90
defined, 21, 78
Eclipse, 91
file management, 90
GUI designer, 90
profilers, 90

IDSs (intrusion detection systems), 692–693
if statements

C#, 565
Dart, 649
Java, 565
JavaScript, 502
Perl, 584
Perl and Python, 584
PHP, 515–516
Python, 584
Ruby, 528–529

if-else statements
in C and C++, 548–549
Dart, 649

in Java and C#, 565–566
Java and C#, 565–566
JavaScript, 502–503
Kotlin, 602
Perl, 584–585
PHP, 516
Python, 584–585
Ruby, 529
Swift, 623–624

if-elseif statements
in C and C++, 549
Dart, 649–650
Java and C#, 565–566
in Java and C#, 566
Kotlin, 602–604
Perl, 585
PHP, 516–517
Python, 585
Ruby, 529–530
Swift, 624–625

IF-THEN statements
BASIC language, 165
block of commands, 164–166
C/C++ languages, 165
Pascal language, 166
Python language, 166

if-then statements
Kotlin, 601–602
Swift, 623

IF-THEN-ELSE statements, 166–168
IF-THEN-ELSEIF statements

C and C++, 549–550
checking conditions for each set of commands,

168–169
giving computer additional choices, 170–171

image recognition, 705–706
increment operator

C and C++, 546–547
Dart, 647
Java and C#, 564
JavaScript, 500
overview, 185
Perl, 582–583

Index 759

PHP, 513–515
Python, 582–583

index string function, 148
indexes

clustered, 423–424
creating, 422–423
disadvantages of, 424
unclustered, 423–424

informed search algorithms
adversarial search, 424–428
defined, 416
indexes, 422–424

inheritance
multiple inheritance, 226
OOP, 48
PHP objects, 520–521
Ruby objects, 535
sharing code with, 223–225
single inheritance, 226

initializer, Ruby objects, 534
initializing arrays

declarations, 320
initial values, 319
loops, 320

in-order traversal, trees, 391
in-place sorting algorithms, 400
insertion sort algorithm, 403–404
installer programs, 77, 99
instance variables, Ruby, 525
instrumentation mode, profilers, 97
integer data types

C language, 543–544
C#, 560–561
C++, 543–544
Java, 560–561
Swift, 620

integer division operator, 143
integrated development environments. See IDEs
integration tests, 308–309
Intel processors, 14
interface design pattern, 228–229
internal stylesheets, CSS, 493–494
interpolation searching algorithms, 420–422

interpreted languages, bioinformatics, 682
interpreters

combining compiler with, 25–26
compilers vs., 86
Flutter, 85
JDoodle, 84
translating source code with, 25

intersect command, 339–340
intrusion detection systems (IDSs), 692–693
iOS, 21, 734
iPadOS, 21
iPhones, 712

J
Java, 732, 735

applets, 63
bioinformatics, 682–683
blockchain programming, 742
branching statements, 565–568
buffer overflow, 697
comments, 559
cross-platform capabilities, 557
data science, 739
data structures, 571–574
database programs, 673–674
declaring variables, 559–562
functions, 569–571
increment and decrement operators, 564
integer data types, 560–561
looping statements, 568–569
objects, 574–575
operators, 562–565
p-code, 26
portability, 63–64
program structure, 558
robotics, 741
virtual machine, 63, 87–88, 737

JavaScript
arrays, 505
assignment operators, 501
bioinformatics, 683
blockchain programming, 742

760 Beginning Programming All-in-One For Dummies

JavaScript (continued)
branching statements, 502–503
comments, 497–498
declaring variables, 498
decrement operators, 500–501
functions, 504–505
game engine programming, 725
increment operators, 500
logical operators, 500
looping statements, 503–504
mathematical operators, 499
operators, 498–501
overview, 495–496
relational operators, 499
structure of, 496–497
user interface, 505–507

JetBrains, 595
JIT (just-in-time) compilers, 87
Join command, database management, 668–669
Joomla, 740
jump (block) searching algorithms, 418–419
just-in-time (JIT) compilers, 87

K
Karp, Richard M., 431
key length, encryption, 454–455
keys, collection

converting with hash function, 360–362
identifying data with, 355–356
retrieving data with, 357

key-value pair, dictionaries, 358
keywords

C language, 61
C#, 571
CSS, 488
Dart, 646
HTML, 472
Java, 571, 575
overview, 105–107

killer applications (killer apps), 733
Kotlin

branching statements, 601–605
case-sensitive, 609

comments, 596
constants, 600
data structures, 608–611
functions, 606–608
looping statements, 605–606
objects, 611–612
operators, 600–601
overview, 595
structure of, 596
variables, 597–599

Kramnik, Vladimir, 702

L
languages, programming. See also names of

specific languages
Alice language, 57–58
assembly language, 12–14
BASIC language, 55
choosing, 16–18
COBOL, 54
combining other interests with, 744
comparing, 76
curly-bracket languages, 60–67
database programming languages, 75
declarative languages, 67–71,

706–707
gaining experience, 744–746
high-level language, 15
Kotlin language, 54
LEGO Mindstorms, 57, 58
machine language, 11–12
overview, 53–54
picking the right one, 732–733
programming vs., 27–28
Scratch language, 56
scripting languages, 25, 71–75, 495–507,

577–593, 682
strongly typed language, 160
teaching yourself, 743–744
type-safe, 64–65
weakly typed language, 160

last in, first out (LIFO) data structure, 368. See also
stacks

Index 761

leaf nodes
B-trees, 389–390
trees, 386–387

LEGO Mindstorms, 57, 58
LEGO Mindstorms NXT, 742
Lempel, Abraham, 446
length string function, 148
level-order traversal, trees, 391
LF code, text files, 246
libraries, in C and C++, 541
library of good moves, 427–428
LIFO (last in, first out) data structure, 368. See also

stacks
line comments, 265–266
linked lists

accessing data, 347
circular, 346
creating, 343–344
disadvantages of, 346–347
double, 345–346
Java, 573
modifying, 344–345
nodes, 342
overview, 342–343
pointers, 343, 347, 348–349

Linux, 20, 84, 733
LISP language, 69–71, 706–707
list boxes, UI, 286–287
lists

Dart, 654
Kotlin, 609–610
Python, 591

local variables, Ruby, 525
location tracking, 718
locking databases, 671
logic errors, 299
logical operators

C language, 546–547
C#, 563
C++, 546–547
Dart, 648
Java, 563
JavaScript, 500

Kotlin, 601
Perl, 582
PHP, 514
Python, 582
Ruby, 527
Swift, 623

looping. See also names of specific loops
defined, 35
endless loops, 184, 196
initializing arrays with loops, 320
nested loops, 193–194
overview, 181–182

looping statements
in C and C++, 550–551
Dart, 650–652
in Java and C#, 568–569
JavaScript, 503–504
Kotlin, 605–606
Perl, 586–587
PHP, 517–518
Python, 586–587
Ruby, 530–531
Swift, 627–628

loose coupling, subprograms, 113, 197
lossless compression algorithms

Burrows–Wheeler transform algorithm, 442–445
dictionary coding, 445–448
run-length encoding, 442

lossy compression algorithms
bit depth, 450
CBR compression, 450
codecs, 449
VBR compression, 450

Lotus 1-2-3, 733–734
Lovelace, Ada, 10–11
low coupling, subprograms, 113
lower bounds, arrays, 317
Lua scripting language, 725
LUCIFER encryption algorithm, 455
LZ77 algorithm, 446
LZ78 algorithm, 446
LZW algorithm, 447–448

762 Beginning Programming All-in-One For Dummies

M
machine language

debuggers, 92
defined, 11
overview, 11–12

machine learning
Bayesian probability, 707
danger of, 707
defined, 700
neural networks, 707–710

macOS, 20, 733
macro languages. See scripting languages
macro programming, 740–741
malware

defined, 686
distributed denial-of-service attacks, 690–691
spyware, 689–690
Trojan horses, 688–689
viruses, 687
worms, 687–688

manipulating data. See data manipulation
maps, Dart, 655–656
mathematical operators

built-in math functions, 146–147
C language, 545–546
C#, 562
C++, 545–546
Dart, 647
Java, 562
JavaScript, 499
Kotlin, 600
operator precedence, 144–145
overview, 143–144
Perl, 580–581
PHP, 513
Python, 580–581
Ruby, 526
Swift, 622

MATLAB, 739
Matsumoto, Yukihiro “Matz,” 523
memento design pattern, 230

memory leaks, 18
memory requirements, sorting algorithms, 400
menus

Edit menu, 280
File menu, 280
overview, 278–279
pull-down menus, 279–280

merge sort algorithm, 410–411
method overloading, 239–242
methods, 109, 218–219. See also subprograms
Microsoft, 54–55, 84. See also C# language; Visual

Basic
Microsoft Access, 75, 669
Microsoft Excel, 734, 740–741
Microsoft Visual Studio compiler, 84
Microsoft Windows, 20, 733–734
Microsoft Word, 735
Mindstorms language (LEGO), 57, 58
minimax strategy, trees, 395
mnemonic commands, assembly language, 12
mobile and wearable computing

augmented reality, 718–719
constraints, 714–715
future of, 718–719
generations of computing, 712–713
getting data from users, 716–717
giving data to users, 714–715
overview, 711
tracking motion and location, 717
tracking real-time health data, 718

modeling, OOP, 45
module variables, 137–138
modulo operator, 143–144
Moore, J. Strother, 431
motion tracking, 717
MS-DOS, 733–734
multidimensional arrays

creating, 324
overview, 323–324
retrieving data, 325
storing data, 325

Index 763

multiple character patterns, searching for,
437–438

multiple inheritance
PHP objects, 520–521
Ruby objects, 535
single inheritance vs., 226

multiple-character wildcard (*), 150–151
multiplication operator, 143

N
naming conventions, variables, 121–122
Napster, 7
National Security Agency (NSA), 455
natural language processing (NLP), 702–704
NCBI (U.S. National Center for Biotechnology

Information), 680
nested loops, 193–194
.NET components, 111
.NET framework, 65–66, 558
neural networks, 707–710
nil value, optional variables, 132
NLP (natural language processing), 702–704
nodes

graphs, 383, 386
leaf nodes, 386–387, 389–390
linked lists, 342

non-relational databases, 259
Not operator, 156–157
NSA (National Security Agency), 455
Nygaard, Kristen, 216

O
obfuscators, 100
object-oriented programming. See OOP
objects, 113–115. See also OOP

C language, 555–556
C#, 574–575
C++, 555–556
creating with classes, 236
Dart, 656
defining with classes, 233–235
design patterns, 228–230

encapsulation, 219–222
grouping methods inside, 221–222
inheritance, 223–226, 238–239, 556, 575
isolate data from other programmers, 222
Java, 574–575
Kotlin, 611–612
Perl, 592–593
PHP, 520–521
polymorphism, 226–227
Python, 592–593
Ruby, 534–535
running methods stored in, 236–237
shielding data inside, 221
Swift, 634–635

OCR (optical character recognition), 705
O’Dell, Margaret, 438
offline sorting algorithms, 400
OMIM (Online Mendelian Inheritance in Man), 679
one-based arrays, 317–318
one-time pad, 452–453
Online Mendelian Inheritance in Man (OMIM), 679
online resources

bioinformatics, 679–680, 683
Cheat Sheet, 3
data science, 739
game engines, 723–724
Lua scripting language, 725

online sorting algorithms, 400
OOP (object-oriented programming)

C# language, 64
copying subprograms, 47–48
creating objects from classes, 236
defining objects with classes, 233–235
disadvantages of, 232–234
hybrid languages, 231
inheritance, 48
inheriting objects, 238–239
isolating data, 46–47
Java, 558
method overloading, 239–242
modeling, 45
overview, 216–219

764 Beginning Programming All-in-One For Dummies

OOP (object-oriented programming) (continued)
pure languages, 231–232
reusability, 44
running methods stored in objects, 236–237

Open 3D Engine, 723
open source compilers, 79–80
OpenDocument file format, 245
open-source game engines, 723
operating systems

Android, 21
defined, 20
iOS, 21
iPadOS, 21
Linux, 20
macOS, 20
picking the right one, 733–734
watchOS, 21
Wear OS, 21
Windows, 20

operator precedence, 144–145
operators

C language, 545–548
C#, 562–565
C++, 545–548
Dart, 646–649
defined, 142
Java, 562–565
JavaScript, 498–501
Kotlin, 600–601
Perl, 580–584
PHP, 512–515
Python, 580–584
Ruby, 526–528
Swift, 622–623

optical character recognition (OCR), 705
optimizing (refactoring) programs, 306
option buttons, UI, 285–286
optional variables, 132
Or operator, 158
Oracle, 87
ordered trees, 387–388

P
parameter passing

defined, 139
functions, 210–212
overview, 203–206
parameter list, 204, 206
passing by value, 207
by reference, 206–210

PARRY program, 704
Pascal language, 15, 733

block comments, 267
creating linked lists, 348–349
IF-THEN statement, 166
structured programming and, 38

passwords, 453
patching, 695–696
pattern matching

with multiple-character and plus wildcards,
150–151

with ranges, 151–152
with single-character wildcard, 149–150

payloads, 687
P-box (permutation box), 454
p-code (pseudocode), 25–26, 87
PDF (Portable Document Format) files, 249
Peek command

queues, 375
stacks, 370–371

Perl
bioinformatics, 677–678, 682–683
branching statements, 584–585
comments, 579–580
comparison with signed result operator, 581
data structures, 588–590
functions, 588
looping statements, 586–587
objects, 592–593
operators, 580–584
overview, 577–578
reviewing structure of, 578–579
variables, 580

Index 765

Perl language
concatenation operator, 147
string functions, 148

permutation box (P-box), 454
PGP (Pretty Good Privacy) program, 461
phonetic algorithms, 438–440
PHP

arrays, 519–520
bioinformatics, 683
branching statements, 515–517
comments, 510–511
declaring variables, 511–512
functions, 518–519
looping statements, 517–518
objects, 520–521
operators, 512–515
overview, 509–510
structure of, 510

PHP Hypertext Processor. See PHP
pivots, quick sort algorithm, 411
plaintext attacks, 466
Playgrounds editor, 22
plus wildcard (+), 150–151
PNG (Portable Network Graphics) format, 448, 478
pointers, linked list, 343, 347–349
Pokémon Go, 718
polymorphism, 226–227
Pop command, stacks, 370
Portable Document Format (PDF) files, 249
Portable Network Graphics (PNG) format, 448, 478
postorder traversal, trees, 391
PowerShell, 741
preorder traversal, trees, 391
Pretty Good Privacy (PGP) program, 461
print statements, debugging with, 302
private methods, objects, 218–219
private properties, object, 218–219
private-key (symmetric) encryption algorithms,

459–462
problem solving

game-playing, 701–702
image recognition, 705–706

natural language processing, 702–704
speech recognition, 704

procedures, 109. See also subprograms
processors, 11–13
profilers

defined, 77
IDEs, 90
instrumentation mode, 97
optimizing program with, 97
sampling, 97

program structure
C and C++, 540–541
Java and C#, 558

programming. See also web programming
choosing computer, 19–20
combining methodologies, 50–51
design patterns, 50
desire vs. technical training, 19
editors, 21–23
event-driven programming, 38–44
history of, 10–18
interpreters, 25–26
keywords, 105–107
maintenance, 117–118
objects, 113–115
OOP, 44–49
operating systems, 20–21
organizing commands, 108–109
overview, 29–31, 103–104
as problem solving, 8–10
programming language vs., 27–28
protocol-oriented programming, 49
source code, 23–25
spaghetti programming, 31–33
structured programming, 34–38
subprograms, 109–112
taking time to understand, 26–27
trolley problem, 105
user interface, 115–117

Programming in Logic. See Prolog language
programming languages. See languages,

programming

766 Beginning Programming All-in-One For Dummies

Project command, database management, 668
Prolog language, 68–69, 71, 706–707
prompt dialog boxes, JavaScript, 507
properties, object, 218–219
proprietary game engines, 723
protocol-oriented programming, 49
Provenzano, Bernardo, 451
pruning trees, 394
pseudocode (p-code), 25–26, 87
pseudorandom numbers, 456–457
public methods, object, 218–219
public properties, object, 218–219
PubMed, 679
pull-down menus, 279–280
pure OPP languages, 231–232
Python, 732

bioinformatics, 682–683
blockchain programming, 742
branching statements, 584–585
comments, 579–580
comparison with signed result operator, 581
creating text file, 246–247
data science, 739
data structures, 590–592
defining functions, 211–212
functions, 588
game engine programming, 725
IF-THEN statement, 166
looping statements, 586–587
objects, 592–593
operators, 580–584
overview, 577–578
reviewing structure of, 578–579
robotics, 741
variables, 580

Q
quantitative analysts (quants), 739
quantum computing, 466
query sequences, 680
queues

adding data to, 373–374
counting, 375–376

Dart, 654–655
overview, 372–373
removing data from, 374–375

quick sort algorithm, 411–412
Quicken program, 7

R
R language, 732, 739
Rabin, Michael O., 431
Rabin–Karp algorithm, 431–433
RAD (rapid application development) tool,

116–117, 281
radio (option) buttons, UI, 285–286
random-access files

overview, 250–251
reading, 252–253
writing, 251–252

ranges, 151–152
rapid application development (RAD) tool,

116–117, 281
RATs (remote access Trojans), 689
RC4 stream cipher, 457
React Native, 736
reading files

random-access files, 252–253
text files, 247–249
untyped files, 255–257

records. See also data structures
defined, 314
flat-file databases, 662
random-access files, 250–251

recursion, 212–214
ReDim command, BASIC language, 322
refactoring, 118
refactoring (optimizing) programs, 306
reference, passing parameters by, 206–210
RegEx. See regular expressions
registers, 13–14, 120
regular expressions (RegEx)

defined, 148
multiple-character wildcard, 150–151
pattern matching with, 152
plus wildcard, 150–151

Index 767

ranges, 151–152
single-character wildcard, 149–150
string searching with, 436–438

relational databases, 258–259, 663–667
attributes, 664
defined, 663
distributed databases, 666–667
tables, 663–664
tuples, 664
virtual databases, 666

relational operators
C language, 545–546
C#, 563
C++, 545–546
Dart, 646–647
Java, 563
JavaScript, 499
Kotlin, 601
Perl, 581–582
PHP, 513
Python, 581–582
Ruby, 527
Swift, 622

remote access Trojans (RATs), 689
repeat-while loop, 628
replace string function, 148
reserved words. See keywords
Reset command, untyped files, 255
resizable arrays. See dynamic arrays
retrieving data

arrays, 321
collections, 356–358
dictionaries, 359–360
free-form databases, 661
multidimensional arrays, 325
in structures, 315

reusability
OOP, 44
subprograms, 216

ReWrite command, untyped files, 254
Ribbon, 283
Rich Text Format (RTF), 245

RLE (run-length encoding), 442
robotics, 709, 741–742
rollbacks, 671
root nodes, trees, 386–387
rootkit detectors, 693–694
rootkits, 693–694
Row widget, Flutter, 642–644
rows, HTML tables, 483–484
RTF (Rich Text Format), 245
rubber-duck debugging, 300
Ruby, 683

branching statements, 528–530
comments, 524–525
data structures, 532–533
declaring variables, 525–526
functions, 531–532
looping statements, 530–531
objects, 534–535
operators, 526–528
overview, 523–524
Ruby on Rails framework, 524
structure of, 524

run-length encoding (RLE), 442
Russell, Robert C., 438
Rust, 732, 742

S
SaaS (software as a service), 738–739
sampling, profilers, 97
saving files

database files, 257–261
random-access files, 250–253
text files, 243–249
untyped files, 253–257

Scala, 732
scope, variables

defined, 135
global variables, 136–137
module variables, 137–138
subprograms, 138–140

Scratch language, 56

768 Beginning Programming All-in-One For Dummies

scripting languages
automating program with, 72–73
bioinformatics, 682
customizing program with, 73
glue, 74
interpreters and, 25
JavaScript, 495–507
overview, 71–72
Perl, 577–593
Python, 577–593
ScriptMaker, 75
stand-alone programs, 74
traditional programming languages vs., 72
transferring data between programs with, 74
VBA language, 73, 75

ScriptMaker language, 75
search engine optimization (SEO), 740
searching

arrays, 328
collections, 355
dictionaries, 359–360

searching algorithms
adversarial search, 424–428
indexes, 422–424
informed, 416
search space, 415
sequential search, 416–422
uninformed, 415

secure computing
patching, 695–696
security by design, 697–698
security in coding, 696–697

Secure Sockets Layer (SSL), 462
security, 685–698. See also encryption algorithms

firewalls, 688–689
hackers, 685–695
malware, 686–691
secure computing, 695–698
security bugs, 306
security through obscurity theory, 453

SELECT CASE statement
checking for range of values, 178–179
comparing values, 178–180

matching multiple values in, 177–178
overview, 174–175
switch statement vs., 175–177

Select command, database management, 667–668
selection sort algorithm, 402–403
self-documenting code, 264
self-synchronizing stream ciphers, 457
SEO (search engine optimization), 740
sequences

complementary, 678
defined, 34
query, 680

sequential files, 248. See also text files
sequential search algorithms

backward or forward searching, 417–418
binary searching, 419–420
block searching, 418–419
interpolation searching, 420–422
overview, 416–417

sequential text search
Boyer–Moore algorithm, 431
finite automaton algorithm, 435–436
overview, 430–431
Rabin–Karp algorithm, 431–433
Shift Or algorithm, 433–435

sets
adding and deleting data in, 335–336
avoiding duplicate data, 337
disadvantages of, 346
Kotlin, 610–611
manipulating multiple sets, 337–342
overview, 334–335
Swift language, 633
verifying data, 336–337

Seven Bridges of Königsberg, 385
Shawn, 7
shell sort algorithm, 405–406
Shift Or algorithm, 433–435
Shortcuts, 741
showstopper bugs, 306
SIMULA language, 216
single character patterns, searching for,

436–437

Index 769

single inheritance
multiple inheritance and, 226
PHP objects, 520
Ruby objects, 535

single-character wildcard (.), 149–150
sliders, 287–288
smart glasses, 713. See also mobile and wearable

computing
smart watches, 713. See also mobile and wearable

computing
smartphones, 712–713. See also mobile and

wearable computing
SNOBOL language, 141–142
software as a service (SaaS), 738–739
sort function, PHP arrays, 520
sorting algorithms

average-case scenario, 412–414
best-case scenario, 412–414
bubble sort, 400–402
comparing, 412–414
heap sort, 406–409
in-place, 400
insertion sort, 403–404
measuring speed and efficiency, 412–414
memory requirements, 400
merge sort, 410–411
offline, 400
online, 400
overview, 399–400
quick sort, 411–412
selection sort, 402–403
shell sort, 405–406
speed, 400
worst-case scenario, 412–414

sorting arrays, 328–329
Soundex algorithm, 438–440
source (version control) management, 97–98
source code

adding comments to, 264–272
converting, 23–24
defined, 23
translating, 25

source level debuggers, 92

spaghetti programming, 31–33
speech recognition, 704
speed, sorting algorithms, 400
spyware, 689–690
SQL (Structured Query Language) databases, 257,

670–671, 732
SSL (Secure Sockets Layer), 462
stacks, 368–372
stand-alone editors, 88
state variables, SwiftUI, 616–618
stateful widgets, Flutter, 639
stateless widgets, Flutter, 639–640
steganography, 463
step out command, 94–95
step over command, 94
stepping (tracing), 92–93
stepping through code, 304
storing data

arrays, 320–321
with assignment operator, 142
in heaps, 406
multidimensional arrays, 325
in structures, 315

stream ciphers
pseudorandom numbers and, 456–457
RC4, 457
self-synchronizing, 457
synchronous, 457

string data types
in C and C++, 542–543
in Java and C#, 560
Swift language, 619

string interpolation, 302
string searching

overview, 429–430
phonetic algorithms, 438–440
with regular expressions, 436–438
sequential text search, 430–436

strings (text strings), 141
strong AI, 700
strong coupling, subprograms, 113
strongly-typed languages, 72, 160

770 Beginning Programming All-in-One For Dummies

struct keyword
C language, 553
C#, 571
C++, 553
Java, 571

structural design patterns, 50
structured programming, 34–38

branches, 34–35
loops, 35
Pascal language, 38
sequences, 34
top-down programming, 36–37

Structured Query Language (SQL) databases, 257,
670–671, 732

structures. See data structures
Stuxnet, 690
style classes, CSS, 489–491
subprograms
#include command, 203
calling, 201–203
copying, 47–48
creating, 200–201
defined, 36
dividing program into, 109–112
encapsulation, 219–222
high coupling, 113
inheritance, 223–226
interconnectedness, 215
isolating variables in, 138–139
loosely coupled, 197
low coupling, 113
naming, 200
overview, 197–199
passing data among, 139–140
passing parameters, 203–212
reasons for isolating commands in, 200
recursion, 212–214
reusability, 216
reusing, 198–199
storing, 37, 202
task orientation, 215–216

subroutines, 109. See also subprograms

substitution ciphers (substitution box [S box]),
451–454

subtraction operator, 143
sub-trees, 394–395
Sun Microsystems, 63–64, 87–88, 557
Swift language, 732, 735

branching statements, 623–627
comments, 618
constants, 621–622
creating objects from classes, 236
data structures, 630–633
declaring variables, 121, 126
defining functions, 210–211
defining objects with classes, 233–235
functions, 628–630
inheriting objects, 238–239
integer data types, 620
looping statements, 627–628
method overloading, 239–242
objects, 634–635
operators, 622–623
overview, 613–614
resizable arrays, 323
running methods stored objects, 236–237
string interpolation, 302
SwiftUI, 614–618
type inference, 129–130
variables, 618–621

Swift Playgrounds compiler, 84
SwiftUI, 714

overview, 614–616
state variables, 616–618

Swiss-Prot, 679
switch statements

C language, 549–550
C#, 566–568
C++, 549–550
Java, 566–568
JavaScript, 502–503
Perl, 585
PHP, 516–517
SELECT CASE statement vs., 175–177
Swift language, 625

Index 771

symmetric (private-key) encryption algorithms,
459–462

synchronous stream ciphers, 457
syntax, programming language, 297–298. See also

names of specific languages
system languages, 64–65, 71–72, 126, 577

T
tab-delimited text files, 244
tables

HTML, 481–484
relational databases, 663–664

tablets, 713. See also mobile and wearable
computing

tabs, UI, 290–291
tags (keywords)

CSS, 488
HTML, 472

target platforms, 82–83
target string, 433
Tay, 707
technical design, documentation, 273
testing code

alpha testing, 306
beta testing, 307
integration tests, 308–309
UI testing, 309
unit tests, 307–308

text, HTML
aligning, 474–475
body text, 472–474
emphasizing, 475–476
font size, 477–478

text boxes, UI, 284–285
text files

creating, 246–247
CSV files, 244
defined, 243
OpenDocument file format, 245
PDFs, 249
reading, 247–249
RTFs, 245

tab-delimited text files, 244
XML format, 244–245

text strings (strings), 141
Text widget, Flutter, 638–642
third-party components, 96
tight coupling, subprograms, 113
title, HTML, 472
TLS (Transport Layer Security), 462
toolbox, UI, 283–284
tools

compilers
choosing, 78–84
defined, 77
just-in-time, 87

debuggers
breakpoints, 93
defined, 30, 77
IDEs, 90
machine language, 92
overview, 91
source level, 92
step out command, 94–95
step over command, 94
stepping, 92–93
variables, 95–96

disassemblers
defined, 78
dissecting programs with, 99–100
viruses and, 687

editors, 88–91
common features of, 89
defined, 77
stand-alone, 88

help file creators, 77, 99
IDEs, 78, 90–91
installer programs, 77, 99
interpreters, 84–86
obfuscators, 100
profilers

defined, 77
optimizing program with, 97

third-party components, 96

772 Beginning Programming All-in-One For Dummies

tools (continued)
version control management, 97–98
virtual machines, 25–26, 63, 86–88, 737

top-down integration tests, 309
top-down programming, 36–37
topological graph theory, 386
toy language, 55
tracing (stepping), 92–93
transparency, UI, 280
Transport Layer Security (TLS), 462
Traveling Salesman problem, 386
traversing trees

in-order traversal, 391
level-order traversal, 391
overview, 390–391
postorder traversal, 391
preorder traversal, 391

trees
adding new data to, 392–393
alpha-beta pruning, 426–427
binary, 388–389
B-trees, 389
deleting data from, 393
grafting, 394–395
leaf nodes, 386–387
minimax strategy, 395
nodes, 386–387
ordered, 387–388
overview, 386–387
plys (levels), 425
pruning, 394
root nodes, 386–387
sub-trees, 394–395
traversing, 390–392
unordered, 387

trim string function, 148
Trojan horses, 688–689
trolley problem, 105
tuples

Python, 590–591
relational databases, 664

Turing, Alan, 699

Turing test, 699
two-character wildcard (..), 149
type inference, 129–130
type-checking, 128
typeless languages, 72
type-safe languages, 64–65, 71–72, 126, 577

U
UI (user interface)

boxes, 290
check boxes, 286
combo (drop-down) boxes, 287
creating, 115–117
database programs, 672–673
defined, 40
designing, 291–296
dialog boxes, 289–290
displaying commands to, 281–284
evolution of, 278–280
giving data to, 284–288
icons, 282–283
JavaScript, 506–507
list boxes, 286–287
organizing, 290–291
overview, 277–278
RAD tool, 281
radio buttons, 285–286
Ribbon, 283
showing information to user, 288–290
sliders, 287–288
tabs, 290–291
testing, 309
text boxes, 284–285
toolbox, 283–284
transparency, 280
writing from scratch, 281

unclustered indexes, 423–424
undirected graphs, 384
undo feature, UI, 293
Unicode, 429
Uniform Resource Locator (URL), 480

Index 773

uninformed search algorithms. See brute-force
search algorithms

union command, 338–339
Unisys, 448
unit tests, 307–308
Unity, 724
universal binary, 24
unless statement, Ruby, 529
unordered trees, 386–387
Unreal, 724, 727
until loop, Ruby, 531
untyped files
BlockWrite command, 254
CloseFile command, 254
overview, 253
reading, 255–257
Reset command, 255
ReWrite command, 254
writing, 254

upper bounds, arrays, 317
URL (Uniform Resource Locator), 480
U.S. National Center for Biotechnology

Information (NCBI), 680
user interface. See UI
user manuals, 274
user-defined data type, 314. See also data

structures

V
var keyword, Dart variables, 646
variable bit rate (VBR) compression, 450
variables. See also arrays

Boolean values, 562, 599, 621
C language, 126, 542–545
C#, 559–562
C++, 542–545
creating in commands, 122–124
Dart, 646
Dart language, 646
data types, 124–125
decimal data types, 620–621
defining scope of, 135–140
integer data types, 560–561, 598–599, 620

Java, 559–562
JavaScript, 498
Kotlin, 597–599
naming conventions, 121–122, 123
optional, 132
overview, 120–121, 618–619
Perl, 580
PHP, 511–512
Python, 580
retrieving data from, 132–133
Ruby, 525–526
storing data in, 130–131
string data types, 560, 597–598, 619
Swift language, 121, 126, 618–621
Visual Basic language, 126
watching, 95–96, 305

variant data type, 328
VBA (Visual Basic for Applications) scripting

language, 73, 75, 669, 740
VBR (variable bit rate) compression, 450
version control (source) management, 97–98
vertices. See nodes
video game cheating, 692
video tutorials, 274
Virtual Case File program, 9
virtual databases, 666
virtual machines (VMs), 25–26, 63, 86–88, 737
VirtualBox software, 20
viruses, 687
VisiCalc, 712
Visual Basic, 40, 55

adding data to collections, 352–353
adding data to queues, 374
Contains command, 372, 376
declaring variables, 126
Dequeue command, 374–375
Enqueue command, 374
queues, counting and searching, 375–376
removing data from queues, 374–375
stacks, counting and searching, 371–372
string functions, 148

Visual Basic for Applications (VBA) scripting
language, 73, 75, 669, 740

774 Beginning Programming All-in-One For Dummies

visual programming, Scratch language, 56
Visual Studio compiler, 84
Visual Studio editor, 22
VMs (virtual machines), 25–26, 63, 86–88, 737

W
watchOS, 21
weak AI, 700
weak coupling, subprograms, 113
weakly typed language, 160
Wear OS, 21
web programming

CSS, 487–494
HTML, 471–486
JavaScript, 495–507
PHP, 509–521
Ruby, 523–535

web servers, 85
website programming, 740
weighted graphs, 384
Weizenbaum, Joseph, 703
Welch, Terry, 447
WEP (Wired Equivalent Privacy), 457
Wheeler, David, 443
when statement, Kotlin, 603–605
WHILE loop, 189–192, 195–196
while loops

C language, 551
C#, 569
C++, 551
Dart, 651–652
Java, 569
JavaScript, 504
Kotlin, 605–606
PHP, 517
Python, 587
reading untyped files, 255
Ruby, 531
Swift, 627

widgets, Flutter
aligning in rows and columns, 642–645
Center widget, 638, 640

Column widget, 642–645
Expanded widget, 643
Row widget, 642–644
stateful, 639
stateless, 639–640
Text widget, 638–642

Wi-Fi Protected Access (WPA), 457
Windows (Microsoft), 733–734

defined, 20
Microsoft Access, 75
Microsoft Visual Studio compiler, 84

windows, JavaScript, 507
Wired Equivalent Privacy (WEP), 457
WordPerfect, 735
WordPress, 740
worms, 687–688, 690
WPA (Wi-Fi Protected Access), 457
writing documentation

agile documentation, 275
automation, 275
design specifications, 273
Help files, 275
overview, 272–273
technical design, 273
user manuals, 274
video tutorials, 274

writing files
random-access files, 251–252
untyped files, 254

X
Xamarian, 736
Xcode compiler, 78, 80, 84
Xcode editor, 22
XML (Extensible Markup Language) format,

244–245
XML parser, 245
Xor operator, 159–160

Z
zero-based arrays, 317–318, 505
Ziv, Jakob, 446

About the Author
Wallace Wang started off as a writer and wound up becoming a computer pro-
grammer. Then he wound up circling around again to become a writer about
computers. He has spent most of his life writing about and programming a vari-
ety of personal computers, ranging from an ancient PC running MS-DOS 1.25 to
Windows to the latest Macintosh computer running macOS to write apps for the
iPhone and iPad. His only preference for any computer is that it works.

Wallace first learned about programming from his high school’s ancient teletype
terminal that connected to a mainframe computer through a 300 baud acoustic
modem that often disconnected in the middle of his BASIC programming sessions.
At the time, he didn’t know much about programming. He taught himself BASIC
from a book and illegally gained access to the teletype terminal by using some-
body else’s password. Later in the year, he actually signed up for a computer class
and finally gained legitimate access to the teletype terminal to do everything he
had been doing illegally long before.

The first time Wallace wrote a BASIC program on his own, it was a game that sim-
ulated flying a nuclear-armed bomber through a variety of anti-aircraft defenses
including surface-to-air missiles and jet fighters trying to shoot you down. When
this program worked for the first time, he felt like Dr. Frankenstein watching his
creation twitch and come to life. To this day, he still experiences that same feeling
of exhilaration in creating something from an idea and turning it into an actual
working program. Only other programmers can understand the strange sense of
power and elation that comes from a working program, and it’s this same sense of
wonder and exploration that Wallace hopes you’ll experience as you use this book
to explore the world of programming on your own computer.

Wallace may be considered a computer veteran after all these years, but that does-
n’t mean that he can’t still experience that same feeling of satisfaction in typing
that final command and watching an entire program work exactly as he wanted.
Although he has written plenty of other books both on computers (Microsoft Office
For Dummies) and far away from computers altogether (Breaking Into Acting For
Dummies), programming still fascinates him to this day.

As an author, Wallace hopes to help you discover your own path to learning pro-
gramming, and as a programmer, he hopes to provide an overview of computer
programming in general. You may not become an expert programmer after read-
ing this book, but if you come away with a greater appreciation for programming,
he will have fulfilled his duty as both an author and a programmer.

Dedication
This book is dedicated to anyone who wants to learn how to program a com-
puter. Computer programming can be one of the most creative ways to express
your ideas, so if you have your heart set on writing programs for fun or profit,
you’ve just joined a select group of fellow renegades, entrepreneurs, and hobby-
ists who find programming an enjoyable intellectual exercise. When lost in the
world of programming, you can often elevate your spirit to lofty heights of plea-
sure and wind up crashing right back down to Earth again when a single syntax
error causes your program to crash an entire computer. Welcome to the wonderful
world of programming. You deserve to achieve whatever your mind can envision
and your programming skills can create.

Author’s Acknowledgments
This is the part of the book that most people skip over because it usually lists a
bunch of names that most people have never heard before, so before you skip over
this page, I’d like to thank you for buying (or at least reading) this book. If you’re
interested in learning to program a computer, you’ve already separated yourself
from the masses who are ecstatic when they can just get their computers to work
in the first place. As a programmer, you have the power to control how people may
use computers in the future. This power can give you the chance to help others or
to make someone completely helpless in their agony when trying to use a com-
puter, so use your programming skills wisely.

On another note, this book owes part of its existence to Bill Gladstone and Margot
Hutchison at Waterside Productions and another part of its existence to Elizabeth
Kuball for turning this project into reality. Some other people who helped shape
this project include Kelsey Baird at Wiley and Rod Stephens.

I also want to acknowledge all the stand-up comedians I’ve worked with over the
years, including Darrell Joyce, Leo “the Man, the Myth, the Legend” Fontaine,
Chris Clobber, and Dobie “The Uranus King” Maxwell. Another round of thanks
goes to Steve Schirripa (who appeared in HBO’s hit show The Sopranos) for giving
me my break in performing at the Riviera Hotel and Casino in Las Vegas, until they
blew up that casino to make way for yet another luxury hotel and casino targeting
rich people who want to lose their money faster.

Additional acknowledgements also go to my fellow video game and e-sports
enthusiasts who have discovered the joy of playing video games along with the
excitement of using video games as an educational tool to get students interested in
programming, math, science, history, psychology, marketing, and practically any
other field you can think of. Thanks go to my fellow e-sports instructors at both

San Diego State University and IFERS (http://ifers.org): Dane Henderson,
Dr. Newton Lee, Sam Diamond, Christopher Davis, Katherine Amoukhteh, and
six-time Grammy Award–winning recording engineer Bonzai Caruso (www.
bonzaicaruso.com).

To all the people I’ve met through various screenwriting groups, thank you. I keep
collecting my thoughts and sharing ideas about screenwriting on my screenwrit-
ing blog called The 15-Minute Movie Method (http://15minutemoviemethod.
com). More thanks go to the cat lovers around the Internet who enjoy my Cat Daily
News site (http://catdailynews.com), where I share the latest stories about cats
taking over the world.

I’d also like to acknowledge Cassandra (my wife) and Jordan (my son) for putting
up with my long hours and my cluttered office containing a graveyard of old PCs,
Macs, iPhones, and iPads. Final thanks go to Oscar and Mayer, my Norwegian
Forest cats, who like to walk all over the keyboard, stand in front of the monitors,
and constantly shed wherever they can.

Publisher’s Acknowledgments

Associate Acquisitions Editor: Kelsey Baird

Project Editor: Elizabeth Kuball

Copy Editor: Elizabeth Kuball

Technical Editor: Rod Stephens

Production Editor: Tamilmani Varadharaj

Cover Image: © SuperOhMo/Shutterstock

https://ifers.org/
https://www.bonzaicaruso.com/
https://www.bonzaicaruso.com/
http://15minutemoviemethod.com
http://15minutemoviemethod.com
http://catdailynews.com/

Take dummies with you
everywhere you go!
Whether you are excited about e-books, want more

from the web, must have your mobile apps, or are swept
up in social media, dummies makes everything easier.

dummies.com

Find us online!

https://dummies.com

9781119187790
USA $26.00
CAN $31.99
UK £19.99

9781119179030
USA $21.99
CAN $25.99
UK £16.99

9781119293354
USA $24.99
CAN $29.99
UK £17.99

9781119293347
USA $22.99
CAN $27.99
UK £16.99

9781119310068
USA $22.99
CAN $27.99
UK £16.99

9781119235606
USA $24.99
CAN $29.99
UK £17.99

9781119251163
USA $24.99
CAN $29.99
UK £17.99

9781119235491
USA $26.99
CAN $31.99
UK £19.99

9781119279952
USA $24.99
CAN $29.99
UK £17.99

9781119283133
USA $24.99
CAN $29.99
UK £17.99

9781119287117
USA $24.99
CAN $29.99
UK £16.99

9781119130246
USA $22.99
CAN $27.99
UK £16.99

PERSONAL ENRICHMENT

9781119311041
USA $24.99
CAN $29.99
UK £17.99

9781119255796
USA $39.99
CAN $47.99
UK £27.99

9781119293439
USA $26.99
CAN $31.99
UK £19.99

9781119281467
USA $26.99
CAN $31.99
UK £19.99

9781119280651
USA $29.99
CAN $35.99
UK £21.99

9781119251132
USA $24.99
CAN $29.99
UK £17.99

9781119310563
USA $34.00
CAN $41.99
UK £24.99

9781119181705
USA $29.99
CAN $35.99
UK £21.99

9781119263593
USA $26.99
CAN $31.99
UK £19.99

9781119257769
USA $29.99
CAN $35.99
UK £21.99

9781119293477
USA $26.99
CAN $31.99
UK £19.99

9781119265313
USA $24.99
CAN $29.99
UK £17.99

9781119239314
USA $29.99
CAN $35.99
UK £21.99

9781119293323
USA $29.99
CAN $35.99
UK £21.99

PROFESSIONAL DEVELOPMENT

dummies.com

https://dummies.com

WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Title Page
	Copyright Page
	Table of Contents
	Introduction
	About This Book
	Foolish Assumptions
	Icons Used in This Book
	Beyond the Book
	Where to Go from Here

	Book 1 Getting Started with Programming
	Chapter 1 Getting Started Programming a Computer
	How Computer Programming Works
	Identifying the problem
	Defining the steps

	The History of Computer Programming
	Talking to a processor in machine language
	Using assembly language as a shortcut to machine language
	Hiding the details of a computer with a high-level language
	Combining the best of both worlds with the C programming language
	Weighing the pros and cons of programming languages

	Figuring Out Programming
	Desire beats technical training every time
	Picking a computer and an operating system
	Writing programs with an editor
	Converting source code with an assembler or compiler
	Translating source code with an interpreter
	Combining a compiler with an interpreter to create p-code
	Taking the time to understand

	Chapter 2 Different Methods for Writing Programs
	Spaghetti Programming
	Structured Programming
	The three parts of structured programming
	Top-down programming

	Event-Driven Programming
	Designing a user interface
	Writing event handlers
	Writing your program

	Object-Oriented Programming
	Isolating data
	Simplifying modifications

	Using Protocol-Oriented Programming
	Design Patterns

	Chapter 3 Types of Programming Languages
	Your First Language
	BASICally disrespected
	Visual programming with Scratch
	Programming robots with LEGO Mindstorms
	Learning object-oriented programming with Alice
	Programming a killer robot

	Curly-Bracket Languages
	Learning programming with C
	Adding object-oriented programming with C++
	Gaining true portability with Java
	Programming more safely with C#
	Choosing a curly-bracket language

	Artificial Intelligence Languages
	Scripting Languages
	Automating a program
	Customizing a program
	Transferring data among multiple programs
	Creating stand-alone programs

	Database Programming Languages
	Comparing Programming Languages

	Chapter 4 Programming Tools
	Choosing a Compiler
	Defining your needs for a compiler
	Evaluating the technical features of a compiler

	Finding an Interpreter
	Compiling to a Virtual Machine
	Writing a Program with an Editor
	Stand-alone editors
	Integrated development environments

	Fixing a Program with a Debugger
	Stepping line-by-line
	Watching variables

	Saving Time with Third-Party Components
	Optimizing a Program with a Profiler
	Managing Source Code
	Creating a Help File
	Installing a Program
	Dissecting Programs with a Disassembler

	Book 2 Programming Basics
	Chapter 1 How Programs Work
	Using Keywords as Building Blocks
	Organizing a Program
	Dividing a Program into Subprograms
	Dividing a Program into Objects
	Creating a User Interface

	Chapter 2 Variables, Data Types, and Constants
	Declaring Variables
	Variable naming conventions
	Creating variables in a command
	Declaring the data type of a variable

	Using Different Data Types
	Storing Data in a Variable
	Retrieving Data from a Variable
	Using Constant Values
	Defining the Scope of a Variable
	Handling global variables with care
	Restricting scope to a module
	Isolating variables in a subprogram
	Passing data among subprograms

	Chapter 3 Manipulating Data
	Storing Data with the Assignment Operator
	Using Math to Manipulate Numbers
	Organizing equations with operator precedence
	Using built-in math functions

	Manipulating Strings
	Finding Strings with Regular Expressions
	Pattern-matching with the single character (.) wildcard
	Pattern-matching for specific characters
	Pattern-matching with the multiple-character (*) and plus (+) wildcards
	Pattern-matching with ranges

	Using Comparison Operators
	Using Boolean Operators
	Using the Not operator
	Using the And operator
	Using the Or operator
	Using the Xor operator

	Converting Data Types

	Chapter 4 Making Decisions by Branching
	Picking One Choice with the IF-THEN Statement
	Picking Two Choices with the IF-THEN-ELSE Statement
	Picking Three or More Choices with the IF-THEN-ELSEIF Statement
	Checking a condition for each set of commands
	Offering three or more choices

	Playing with Multiple Boolean Operators
	Making Multiple Choices with the SELECT CASE Statement
	Matching multiple values in a SELECT CASE statement
	Checking a range of values
	Comparing values

	Chapter 5 Repeating Commands by Looping
	Looping a Fixed Number of Times with the FOR-NEXT Loop
	Using a FOR-NEXT loop variable
	Counting by a different range
	Counting by different increments
	Counting backward
	Counting over arrays and other items

	Looping Zero or More Times with the WHILE Loop
	Looping at Least Once with the DO Loop
	Playing with Nested Loops
	Prematurely Exiting from a Loop
	Checking Your Loops

	Chapter 6 Breaking a Large Program into Subprograms
	Creating and Using Subprograms
	Creating a subprogram
	“Calling” a subprogram

	Passing Parameters
	Passing parameters by reference
	Storing values in a subprogram name

	Repeating a Subprogram with Recursion

	Chapter 7 Breaking a Large Program into Objects
	How Object-Oriented Programming Works
	Encapsulation Isolates Data and Subprograms
	Shielding data inside an object
	Grouping methods inside of an object
	Protecting code from other programmers

	Sharing Code with Inheritance
	Polymorphism: Modifying Code without Changing Its Name
	Design Patterns
	Object-Oriented Languages
	Hybrid languages
	Pure languages
	Disadvantages of object-oriented programming

	Real-Life Programming Examples
	Defining an object with a class
	Creating an object from a class
	Running methods stored in an object
	Inheriting an object
	Using method overloading to rewrite an inherited subprogram

	Chapter 8 Reading and Saving Files
	Storing Data in Text Files
	Creating a text file
	Reading a text file

	Storing Fixed-Size Data in Random-Access Files
	Writing data
	Reading data

	Storing Varying-Size Data in Untyped Files
	Writing data
	Reading data

	Using Database Files
	Looking at the structure of a database
	Connecting to a database

	Chapter 9 Documenting Your Program
	Adding Comments to Source Code
	Identifying the two types of comments
	Describing code and algorithms
	Documentation
	Debugging

	Writing Software Documentation
	Documentation types
	Documentation tools
	Help files

	Chapter 10 Principles of User Interface Design
	The Evolution of User Interfaces
	Command-line interface
	Menus
	Graphical user interface

	Elements of a User Interface
	Displaying commands to a user interface
	Giving data to the user interface
	Showing information back to the user
	Organizing a user interface

	Designing a User Interface
	Know the user
	Hide/disable unusable options
	Tolerate mistakes
	Be consistent
	Give the user freedom to customize the user interface
	Make navigation easy

	Chapter 11 Debugging and Testing
	Common Types of Programming Errors
	Debugging with Comments and Print Statements
	Breakpoints, Stepping, and Watching
	Stepping through code
	Watching variables

	Testing Code
	Unit tests
	Integration tests
	User interface testing

	Book 3 Data Structures
	Chapter 1 Structures and Arrays
	Using Structures
	Storing data
	Retrieving data

	Using an Array
	Defining the size
	Storing data
	Retrieving data

	Working with Resizable Arrays
	BASIC
	C#
	Swift

	Working with Multidimensional Arrays
	Creating a multidimensional array
	Storing and retrieving data

	Using Structures with Arrays
	Drawbacks of Arrays
	Data types
	Searching and sorting
	Adding and deleting
	Identifying the location of data in an array

	Chapter 2 Sets and Linked Lists
	Using Sets
	Adding and deleting data in a set
	Checking for membership
	Avoiding duplicate data
	Manipulating two sets

	Using Linked Lists
	Creating a linked list
	Modifying a linked list
	Creating a double linked list

	Drawbacks of Sets and Linked Lists
	Problems with pointers
	Problems with accessing data

	Chapter 3 Collections and Dictionaries
	Using a Collection
	Adding data to a collection
	Deleting data from a collection
	Identifying data with keys
	Searching and retrieving data

	Using Dictionaries
	Adding data to a dictionary
	Searching and retrieving data from a dictionary

	Understanding Hash Tables
	Converting keys with a hash function
	Hash function collisions

	Chapter 4 Stacks, Queues, and Deques
	Using Stacks
	Adding data to a stack
	Removing data from a stack
	Counting and searching a stack

	Using Queues
	Adding data to a queue
	Removing data from a queue
	Counting and searching a queue

	Using Deques

	Chapter 5 Graphs and Trees
	Understanding Graphs
	Types of graphs
	Uses for graphs

	Creating Trees
	Ordered trees
	Binary trees
	B-trees

	Taking Action on Trees
	Traversing a tree to search for data
	Adding new data
	Deleting data
	Pruning and grafting sub-trees

	Book 4 Algorithms
	Chapter 1 Sorting Algorithms
	Using Bubble Sort
	Using Selection Sort
	Using Insertion Sort
	Using Shell Sort
	Using Heap Sort
	Using Merge Sort
	Using Quick Sort
	Comparing Sorting Algorithms

	Chapter 2 Searching Algorithms
	Sequential Search
	Backward or forward searching
	Block searching
	Binary searching
	Interpolation searching

	Using Indexes
	Creating an index
	Clustered and unclustered indexes
	Problems with indexes

	Adversarial Search
	Depth versus time
	Alpha-beta pruning
	Looking up a library of good moves

	Chapter 3 String Searching
	Sequential Text Search
	The Boyer-Moore algorithm
	The Rabin–Karp algorithm
	The Shift Or algorithm
	The finite automaton algorithm

	Searching with Regular Expressions
	Searching for single character patterns
	Searching for multiple character patterns
	Searching for alternate patterns

	Searching Phonetically

	Chapter 4 Data Compression Algorithms
	Lossless Data Compression Algorithms
	Run-length encoding
	The Burrows–Wheeler transform algorithm
	Dictionary encoding

	Lossy Data Compression

	Chapter 5 Encryption Algorithms
	How Encryption Works
	The Basics of Encryption
	Stream ciphers
	Block ciphers

	Symmetric/Asymmetric Encryption Algorithms
	Cracking Encryption
	Brute-force attacks
	Dictionary attacks
	Plaintext and ciphertext attacks

	Book 5 Web Programming
	Chapter 1 HyperText Markup Language
	The Structure of an HTML Document
	Creating a title
	Creating the body text
	Aligning text
	Emphasizing text
	Adding color
	Changing the font size
	Adding comments

	Adding Graphics
	Defining the Background
	Creating Hyperlinks
	Defining an anchor point
	Linking to an anchor point

	Making Tables
	Defining a table
	Defining a table heading
	Creating table rows and data
	Displaying a table caption, header, and footer

	Chapter 2 CSS
	The Structure of a Stylesheet
	Creating Style Classes
	Separating Styles in Files
	Cascading Stylesheets

	Chapter 3 JavaScript
	The Structure of a JavaScript Program
	Creating Comments
	Declaring Variables
	Using Operators
	Increment and decrement operators
	Assignment operators

	Branching Statements
	Looping Statements
	Creating Functions
	Using Arrays
	Designing User Interfaces
	Creating dialog boxes
	Creating windows

	Chapter 4 PHP
	Examining the Structure of a PHP Program
	Creating Comments
	Declaring Variables
	Using Operators
	Increment and decrement operators
	Assignment operators

	Branching Statements
	Looping Statements
	Creating Functions
	Using Arrays
	Creating Objects

	Chapter 5 Ruby
	The Structure of a Ruby Program
	Creating Comments
	Declaring Variables
	Using Operators
	Branching Statements
	Looping Statements
	Creating Functions
	Using Data Structures
	Creating Objects

	Book 6 Programming Language Syntax
	Chapter 1 C and C++
	Looking at the Structure of a C/C++ Program
	Creating Comments
	Declaring Variables
	Declaring string data types
	Declaring integer data types
	Declaring floating-point data types
	Declaring Boolean values

	Using Operators
	Increment and decrement operators
	Assignment operators

	Branching Statements
	Looping Statements
	Creating Functions
	Data Structures
	Creating a structure
	Creating enumerations
	Creating an array

	Using Objects

	Chapter 2 Java and C#
	Looking at the Structure of a Java/C# Program
	Creating Comments
	Declaring Variables
	Declaring string data types
	Declaring integer data types
	Declaring floating-point data types
	Declaring Boolean variables

	Using Operators
	Increment and decrement operators
	Assignment operators

	Branching Statements
	Looping Statements
	Creating Functions
	Data Structures
	Creating a C# structure
	Creating an array
	Creating a Java linked list
	Creating C# data structures

	Using Objects

	Chapter 3 Perl and Python
	Reviewing the Structure of a Perl or Python Program
	Creating Comments
	Defining Variables
	Using Operators
	Increment and decrement operators
	Assignment operators

	Branching Statements
	Looping Statements
	Creating Functions
	Making Data Structures
	Perl data structures
	Python data structures

	Using Objects

	Chapter 4 Kotlin
	Looking at the Structure of a Kotlin Program
	Creating Comments
	Declaring Variables
	Declaring string data types
	Declaring integer data types
	Declaring floating-point data types
	Declaring Boolean values

	Declaring Constants
	Using Operators
	Branching Statements
	Looping Statements
	Creating Functions
	Creating Data Structures
	Creating a list
	Creating an array
	Creating a set

	Creating Objects

	Chapter 5 Swift and SwiftUI
	Considering the Structure of a Swift Program
	Understanding SwiftUI
	Creating a SwiftUI user interface
	Understanding SwiftUI state variables

	Creating Comments
	Declaring Variables
	Declaring string data types
	Declaring integer data types
	Declaring decimal data types
	Declaring Boolean values

	Declaring Constants
	Using Operators
	Branching Statements
	Looping Statements
	Creating Functions
	Data Structures
	Creating an array
	Creating a dictionary
	Creating a set

	Creating Objects

	Chapter 6 Flutter and Dart
	Working with Flutter
	Understanding the structure of a Flutter program
	Working with widgets in Flutter
	Aligning widgets in rows and columns

	Understanding the Dart Language
	Creating comments
	Declaring variables
	Using operators
	Using branching statements
	Using looping statements
	Creating functions
	Creating data structures
	Using objects

	Book 7 Applications
	Chapter 1 Database Management
	Understanding the Basics of Databases
	Free-form databases
	Flat-file databases
	Relational databases

	Manipulating Data
	Writing database commands
	The SQL language
	Data integrity
	Data mining

	Database Programming

	Chapter 2 Bioinformatics
	The Basics of Bioinformatics
	Representing molecules
	Manipulating molecules in a computer

	Database Searches
	Bioinformatics Programming

	Chapter 3 Computer Security
	Stopping Malware
	Viruses
	Worms
	Trojan horses
	Spyware
	Distributed denial-of-service attacks

	Stopping Hackers
	Intrusion detection systems
	Rootkit detectors
	Forensics

	Secure Computing
	Patching as an afterthought
	Security in coding
	Security by design

	Chapter 4 Artificial Intelligence
	Problem Solving
	Game-playing
	Natural language processing
	Speech recognition
	Image recognition

	Machine Learning
	Bayesian probability
	Neural networks

	Applications of Artificial Intelligence

	Chapter 5 Mobile and Wearable Computing
	Understanding the Different Generations of Computing
	Giving Data to the User
	Getting Data from the User
	Tracking Motion and Location
	Tracking Real-Time Health Data
	Looking to the Future of Augmented Reality and Wearable Computers

	Chapter 6 Game Engines
	Understanding Game Engines
	Picking a Game Engine
	Programming a Game Engine
	Exploring the Future Uses of Game Engines
	Filmmaking
	Architecture and engineering simulations
	Marketing and advertising

	Chapter 7 The Future of Computer Programming
	Picking a Programming Language
	Picking an Operating System
	Doing Cross-Platform Programming
	The portability of C
	Cross-platform languages
	Virtual machines
	Software as a service
	Data science
	Website programming
	Macro programming
	Robotics programming
	Blockchain programming

	Defining Your Future in Programming
	Teaching yourself other languages
	Combining other interests besides programming
	Getting experience and knowledge

	Index
	EULA

seghing
Pwmmmlﬂt

