
www.it-ebooks.info

http://www.it-ebooks.info/

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

www.it-ebooks.info

http://www.it-ebooks.info/

v

Contents at a Glance

About the Authors ��� xv

About the Technical Reviewer��� xvii

Acknowledgments�� xix

Introduction�� xxi

Chapter 1: Your First Bite of Raspberry Pi■■ ��1

Chapter 2: Surveying the Landscape■■ ��31

Chapter 3: Getting Comfortable■■ ��53

Chapter 4: The File-Paths to Success■■ ���69

Chapter 5: Essential Commands■■ ���89

Chapter 6: Editing Files on the Command Line■■ ���109

Chapter 7: Managing Your Pi■■ ��129

Chapter 8: A LAMP of Your Own■■ ���149

Chapter 9: WiPi: Wireless Computing■■ ���181

Chapter 10: The Raspberry sPi■■ ���199

Chapter 11: Pi Media Center■■ ���223

Index��243

www.it-ebooks.info

http://www.it-ebooks.info/

xxi

Introduction

Despite sounding like something Grandma would bake on Sunday afternoons or a noise that would make people
glare and tut, the Raspberry Pi is in fact a computer. That much you probably knew (although, let’s be honest, the
name and logo don’t really give much away) but the Raspberry Pi promises more than that. An awful lot more.

The venerable Commodore 64 was released in 1982, and with sales reaching upwards of 17 million, it is often
considered the best-selling computer of all time. More importantly (at least from my perspective), it was also my first
computer. For Christmas, just before my ninth birthday (when the C64 was nearly a decade old) I received the new
model (C64C), which was identical to the classic machine in all but cosmetics. It arrived all set up and attached to a
nice new 14-inch television (it even had a remote control!). I suspect my dad had hatched what he believed to be a
most cunning plan; if he could sneak in and set everything up while I was asleep, come Christmas morning, I would
be so busy playing with the computer that my parents might get an extra few minutes of sleep.

Sadly, things did not go quite according to plan. Although everything was set up, and even though the television
was tuned to the computer’s signal, one simple but key thing had been forgotten: it hadn’t occurred to anyone to tell
me how to actually load a game. Needless to say, a lie in was not forthcoming . . .

Games came on cassette tape. This was before CDs, and at least on the C64 had to be played in a special tape
recorder called a datasette. (What do you mean what’s a CD?) Sadly, the datasette spent more time in the shop than
being attached to my computer and as it was the only way to load anything into it, I had no choice but to occupy
myself with the manual. This I used to great effect and taught myself how to program good old BASIC (Beginners All
Purpose Symbolic Instruction Code—can you believe I actually remembered that?).

While I’m sure this story is very gripping, you could be forgiven for wondering why I am boring you with it. Those
events happened more than two decades ago, so what possible relevance could they have today? Well tinkering with
that machine and then the Amiga that followed it (still my favorite machine of all time) gave me a real appreciation
for what a computer could do. The Amiga was severely underpowered compared with PCs of the same era, yet it
consistently beat them with better graphics, better reliability, and better sound. It was able to do all of this because
the hardware was exquisitely designed. Amiga enthusiasts were some of the most resourceful people I’ve ever seen.
Who’d have thought you could turn a real–time clock port into a connector for high-speed storage?

All of this was only possible because people really understood how all the parts fit together. They knew how to
get the best out of the machine because they really knew how the machine worked. These days, I spend my working
day trying to make fast things go faster. To have any hope of success, I too need to know how everything works.
Companies need people like me to push things forward, but they’re coming across a bit of a problem. People who
really know computers inside out are getting much harder to find—we are a dying breed, and this is the situation that
the Raspberry Pi Foundation is desperately trying to reverse.

So what happened? Well, things changed. Computers went from being the curiosity in the corner to being a basic
part of everyone’s lives. They evolved to the point where they just work and everyone knows how to use them. This
is similar to the family car. Everyone has a rough idea how a car works, but few people are very interested. The car
takes them from place to place, and that capability is what is interesting, not how the car achieves it. Computers are
generally seen in the same light. People have a rough idea about turning them on, installing software and so forth,
but how they actually work at a low level isn’t really seen as relevant or interesting. This in turn means that not only
are fewer people getting excited by computing itself but even fewer people think that there’s more to it than double-
clicking an icon.

www.it-ebooks.info

http://www.it-ebooks.info/

■ Introduction

xxii

This problem has drifted up through schools and into universities. Teaching programming is a relatively
challenging task. It requires a certain way of thinking that for many people is tough to get a handle on. Traditionally,
universities would start a computer science course by teaching about logic gates, how memory works, and how to
program a CPU. Only once you understood what the bare metal was doing would you try to learn C because although
C is a higher language, it reflects the hardware it runs on. Understanding the hardware makes understanding C that
much easier.

But with larger class sizes, more limited teaching time, and students arriving with less and less knowledge of
computing fundamentals, universities have had to adapt. Rather than teaching all that low-level stuff, now they teach
Java and other scripting languages. Because these languages handle all of the “fiddly bits” for you, you can effectively
pretend that they don’t exist (although this can cause some issues; see “The Infinite Memory Myth”).

This is simply fantastic from a productivity point of view, but when you do want to take it to the next level (maybe
you’re processing data and your script is just too slow), you have no idea where to turn. Worse, when someone tells
you the technique for improving that performance, you have no idea what they’re talking about.

Of course not all universities have taken this route. I’m studying at the Hong Kong Polytechnic University, and its
course on Computer Architecture is very detailed and covers a lot of ground. If you want to get the top grade, you will
need to implement a CPU cache for the CPU simulator program. Needless to say, there is a lot to learn for everyone on
this course. That said, we need more than this. It’s too late to capture people’s interest when they’re starting graduate
studies. I taught seven-year-olds how to program BBC BASIC when I was in my last year of primary school (they even
got presented certificates by the school) and they loved it. Computing lets you create a virtual world with your mind
(the children liked to create little text–based adventure games) and ultimate power rested in their hands. They got
creative; they added spells, new roads, secret entrances, and much more. Okay, they needed a helping hand (they
were only seven) but they had the desire to create and to build cool new things.

INFINITE MEMORY MYTH

Over the years, I’ve done a lot of consultancy work with large enterprise customers and that has inevitably meant
I’ve come across Java on many occasions. One of the interesting things I have come across is what I’ve termed
the Infinite Memory Myth. This seems to crop up more in Java applications than in other languages, but that’s
probably because Java tends to be more widely used in those settings.

The short version of the myth is that developers seem to constantly create new objects, often to the point where
the application consumes huge amounts of memory or crashes altogether. They tend to have no idea how much
memory each object takes or, more worryingly, why they should care. As far as they are concerned, they request a
new object and one is provided. When an object is no longer used (i.e., nothing points to it any more), Java will at
some point get around to cleaning it up (called garbage collection). All of this is automatic; the developer doesn’t
need to do anything.

The problem is that this leads people to forget (or in many cases were never taught at all) that memory is finite,
and at some point it simply runs out. You can’t assume that you can read in every row in a table and that it will
always work. You can’t assume that just because your test file is 50MB in size that the application will never be
given a 5,000MB file to work on.

This lack of understanding stems from not being able to appreciate all the hard work Java is doing on the
programmer’s behalf. It is running about and managing memory allocation and garbage collection, and the
programmer remains blissfully unaware. A good understanding of computing fundamentals would give a
developer keen insight into what Java is doing (both the how and the why) and thus appreciate that just because
creating new objects is easy, memory itself is not free.

www.it-ebooks.info

http://www.it-ebooks.info/

■ Introduction

xxiii

So this is what Eben Upton and the Raspberry Pi Foundation are trying to bring back to the world. They want to
rekindle that lost art and make computers cool and interesting again. To do that, it has created a computer that even
by today’s standards is no slouch. Is it as powerful as your laptop? Well no, probably not, but can you buy your laptop
for $35, slip it into your pocket (possibly not a great idea), generate relatively little heat, and drink very little in the way
of power? If you answered yes to those questions, I really really want to hear from you—that sounds like a laptop I
need to buy!

However you choose to look at it, the main selling point (no pun intended) is the price. Anyone can pick up a
Raspberry Pi without having to think too much about it. With a modest laptop clocking in at around $500 + and a
MacBook pro nearly four times that, it’s not the sort of thing you can just splurge on without thinking, especially if
it’s going to be for experimentation and playing about. However at $35, the Pi is cheaper than some monthly movie
subscriptions, you could almost buy a new Pi every month!

Why Eat Raspberry Pi?
Whichever way you look at it, you will come back to the price. Whatever else the Raspberry Pi is and whatever other
promises it has in store for us, all of them are interesting because of the price. There are two types of people who will
be rushing out to get a Pi. The first group is already clued up on Linux and computing, and for them the Pi represents
a server in a pocket and a cheap one at that. No longer do they need a full-size PC monster guzzling electricity and
generating enough heat to rival a bar heater. Oh sure, you can get low-powered systems in nice shiny boxes, but
they’re still not all that cheap to buy, even if they’re cheaper to run. However, a device like the Pi is cheap to run and
cheap to buy, and it has just what you need to build a pretty respectful server.

If you’re not one of those people, don’t worry because this book is for you. You like the idea of a cool little
computer for $35 and you think you can do some pretty awesome stuff with it; you’re just not really sure how.
For us, the big benefit is that the Pi is at the sort of price where we can afford to buy it just for fun and use it for
experimentation. It’s not going to replace the family PC and you’re not going to need to take out a mortgage to buy
one. You can play around with a Pi completely guilt-free and try all manner of weird and interesting things without
having to worry about cost or destroying your main computer (and thus incurring the wrath of everyone you live with).

Because the Pi is close enough to a normal PC (even though the architecture is a bit different) you can do PC-type
things with it. In fact, that’s the first thing we show you in this book. Thus you don’t have to start from scratch; all that
you know already you can apply to a Pi (it rhymes if you say that really fast) and so you can hit the ground running.
No doubt you will want to do all the things that the first group of people wanted to do as well. Fear not, we have you
covered—by the time you’ve finished this book you’ll be able to do all that and more!

There are lots of reasons why everyone should rush out right now and get some Pi. Actually at the time of writing,
there is still a three-week lead time for delivery, and when the Pi was initially released, one of the resellers took
100,000 preorders in just one day. That’s a lot of Pi! Although the lead time will naturally keep changing, the short
version is that the sooner you order, the sooner you will get your Pi!

So why all this interest? What is so special about the Raspberry Pi that it has achieved an almost cult-like
following and has remained in heavy back order for months?

It Only Costs $25
Okay, hands up all of you who are only interested in the Pi because it costs significantly less than a night on the town?
If you put up your hand, you’re not alone. The goals of the Raspberry Pi Foundation are laudable but they all center on
getting this powerful machine into our mitts at a price point that won’t break the bank.

What really has everyone drooling is not the fact that as far as computer hardware goes, the Pi is effectively free,
but more that it is a full computer that can run Linux. That means servers, home automation, video streaming, and
pretty much anything else you can imagine.

www.it-ebooks.info

http://www.it-ebooks.info/

■ Introduction

xxiv

WAIT, IS IT $25 OR $35?

Throughout the book we do bring up the price of the Pi a fair bit; after all, it is one of its most distinctive features.
However, we also mention two prices, $25 and $35, so which is it? Well there are two versions of the Pi, the
Model A and the Model B (as uninspiring as those names sound, they’re taken from the BBC computers, and
from a geeky point of view, the names are quite inspired). There isn’t a great deal of difference between the two
models, with Model B having 10/100 Ethernet built in and an additional USB port. Model B also draws a bit more
power. The Ethernet adapter is actually connected internally via USB, so there is no different between the build in
Ethernet and a USB device that you could plug into the USB port itself.

So which should you buy? Well if you think networking will be useful, the built-in Ethernet port is pretty much
required. I love having built-in Ethernet connectivity because it just makes life so much easier. However if you
aren’t planning on using it much, there really is no need to get Model B. That said, for $10, it might be worth
spending more just in case you decide you want to play with networking later on…

MORE PI!
If one Pi is good, two must be better. Right? Well, $50 would get you two Pis and while this doubles the cost, it also
more than doubles the fun. Now you can experiment with networking and getting the Pis to talk to each other. After
all, it’s good to talk!

Experiment in Safety
When my computer is out of commission for even a short period of time, it is pretty inconvenient. I certainly don’t
want to fiddle about with something and accidentally erase my hard disk (been there, done that). You’d also be well
advised not to try over-clocking your CPU on the brand-new computer that you were just given as it’s not much fun to
think you’ve totaled the machine within an hour of turning it on!

To kill hardware takes a fair bit of effort (such as taping over a pin on the CPU and removing the CPU speed
multiplier lock), but it’s fairly easy to remove your family photo album and the latest draft of the book you’ve been
working on for the past six months (there is a reason why we dedicated a whole chapter and personal plea in the book
to backups). If you have a Pi and you nuke it, the worst case is $25 down the drain, which is a lot better than what
would happen if you toasted your main machine.

Independence
I’m sure some people will point out (quite correctly) that most of the horrors I just described can be avoided if you
play in a VM rather than on your main machine. Apart from it not being as much fun (real hardware just smells
better), it doesn’t give you all the benefits of a separate piece of kit. For a start, a virtual machine is only on when your
main machine is running. If you happen to have a laptop that follows you everywhere, a virtual machine won’t be a
great option for a home web server. Also, if you ever reboot your main machine, your virtual machine will go down
with it. If you were using it to stream movies to your TV, you could end up with some very displeased family members.
By having a real piece of hardware, you can keep your experimentation completely separate from anything else that
you might be doing.

www.it-ebooks.info

http://www.it-ebooks.info/

■ Introduction

xxv

Low Power
The Pi has a very modest power footprint. In fact, the Model A Pi only draws 300ma, which means you can power the
whole thing from your USB port. According to Apple, my iMac draws 94 watts at idle and up to 241 watts when the
CPU is maxed out. The Model A Pi draws at most 1.4 watts, and the Model B draws at most 3.5. That’s an awful lot of
power saved. Understandably, these figures only take into account the power requirements of the Pi itself, with a bit
extra put aside to power modest USB devices. If you add lots of power-hungry devices to your Pi, these figures would
increase accordingly.

APPLES TO ORANGES

I just know someone is going to cry foul about my power comparison—and for good reason. It is true that
compared to an iMac, the Pi draws basically no power at all. However, it is also true that an iMac does a lot more.
First, it has a big screen, hard disk, and CPU that would blow the ARM on the Pi into the middle of next week.
So if I know that I’m comparing two totally different systems and I’m admitting that they’re very different(who
compares a golf cart to a Formula One car?) why am I wasting ink and paper with this description?

Well, although we are comparing two very different machines, we are comparing the same sort of tasks. If you
want to have a little web server or stream video to your TV set, a Pi is more than powerful enough to do that
for you. Bear in mind that the Pi is clocked in at 700Mhz; not too long ago, that was what you’d find on a very
powerful desktop. It’s not that long ago that you’d find this sort of performance on an enterprise grade server. Ten
years ago, it was just a fantasy. In short, the Pi has more than enough juice to do most of the things you’d want
from a server and it won’t require a small nuclear power station to do it.

The Ingredients for a Raspberry Pi
After seeing all its benefits, you might be wondering why a $35 computer stacks up so well to ones that cost many
times that. If you’re thinking that, it won’t be long before you wonder why there is such a big difference in price. Surely
if you could get something this cheap that does most of the things your main machine can do, something must be up
with the price of the other machines. After all, if a powerful laptop could be made significantly cheaper, it would easily
make more money in increased sales than it would lose in reduced profit margin.

Well that’s true to a point, but the Pi, powerful as it is, will probably never be a direct replacement for your main
computer. It’s not any particular one thing that limits the Pi, but a combination of design decisions to balance features
with cost that will ultimately prevent it from taking the crown. That said, it is still a fantastic platform, and we’ll look at
some of those highlights right now.

ARM CPU
The major and most obvious difference between the Pi and your desktop is that your desktop will almost certainly have
a processor from either Intel or AMD at its core, whereas the Pi has an ARM-based CPU. The Central Processing Unit
(CPU) is the part that actually runs the programs you provide. Before a CPU can run a program, it must be translated
into a language that the CPU can understand. So all CPUs execute programs, but the program has to be in a language
they can understand. An ARM CPU cannot understand instructions written for an Intel or AMD CPU, which effectively
means that most off-the-shelf software (such as Microsoft Windows and games) cannot run on a Raspberry Pi.

Okay so you’re not going to be running Windows XP on the Pi, but does the ARM offer any advantages? The
first advantage is that ARM CPUs draw much less power. This isn’t overly surprising as ARM really came from the
embedded hardware industry where power usage and heat generation are a really big deal. In fact, you’ll find some

www.it-ebooks.info

http://www.it-ebooks.info/

■ Introduction

xxvi

form of ARM in almost every modern cellphone including the iPhone 4s and Samsung Galaxy S3. In fact they are
one of the most widely used processors in the world and can be found in all manner of devices such as DVD players,
appliances, and even cars.

ARM CPUs also generate very little in the way of heat. If you look at the Pi itself, you will notice the CPU doesn’t
have a heat sink. If you look at any Intel or AMD CPU, you can’t fail to miss the huge cooling fan that it requires in
order to prevent it burning out. Some people even user water cooling systems to keep their PC processors running
at a reasonable temperature.

The last benefit is really a cost-to-performance ratio. For the vast majority of things, the real bottleneck is not
CPU power but how fast data can be fed to it. CPUs have long been much faster than hard disks, and even the bus that
links all the computer components together can’t keep up with even a modest CPU. So what do you get out of this?
A low-cost processor that almost certainly will do everything you need without the cost penalty.

WINDOWS 8 ON ARM

Early last year, Microsoft announced that Windows 8 would support ARM processors. This is not overly surprising
as ARM is present in practically every modern mobile device; and with the performance of the high end chips
gaining significant ground on Intel and AMD offerings, it probably won’t be long before we start to see more
powerful desktops being powered by these beasts.

Microsoft has long dominated the PC market and regardless of your thoughts on who should be leading the way,
everyone agrees that Microsoft is far from done. Of course, where Microsoft leads, others will follow. If Microsoft
starts supporting the ARM platform directly, it won’t be long before hardware manufacturers will start providing
the necessary drivers and support for their devices. Game developers will also need to pay attention to ARM-
based platforms and that could create some very interesting challenges and compromises.

What does it mean for your Pi? Well, you probably won’t be able to run Windows 8 on it; it just wasn’t built with
that in mind, but it does mean that the technology underpinning your Pi is not based on some old bits and pieces
found at the back of someone’s bottom desk drawer. Rather it is quite possibly based on the platform of the
future!

512MB of RAM
The Model B Pi comes with 512MB of RAM (originally 256MB, but they changed to 512MB in October 2012), which
is shared between the system and the Graphics Processing Unit (GPU). Now considering that the laptop I’m using to
write this has 8GB of RAM, my desktop at home has 16GB (that is 32 and 64 times, respectively), and that up to half of
this is shared with the GPU, it sounds a little weak. What can you really do in 512MB of RAM? Or even 256MB if you
have a Model A or an older Model B?

Well the answer to that is a lot more than you might think. Remember, Windows 95 was able to operate with a
couple of running programs in just 8MB of RAM (which conveniently enough is 32 times less than the Pi), and the
good old Commodore 64 came with only 64KB (the Pi has something like 4,000 times that) and it was able to run
thousands of games to entertain the masses.

So why do we have so much memory in new machines? Memory is cheap these days, and although we could
do lots of great stuff in very little memory, it’s a skill that has gone out of fashion. Why spend so much effort on
optimization memory usage when it will most likely never matter? If 8GB of RAM costs $50, is it worth hours if not
days of a programmer’s time to save a few megabytes here and there? Probably not.

Remember, the Pi is meant as an experimentation platform, not as a general PC replacement, and Linux
(especially without a GUI) will run with plenty of memory to spare for all your programs. By keeping the memory
to a reasonable minimum, the Pi is able to hit its price point without greatly hindering what you can do with it.

www.it-ebooks.info

http://www.it-ebooks.info/

■ Introduction

xxvii

GPU
The GPU is really a specialized form of a CPU. A CPU is generic in what it can do, and it tries to be good at everything
it does, the classic jack-of-all-trades. A GPU, on the other hand, does one thing and one thing well. It is specifically
designed to handle the intense mathematical calculations needed to render complex displays. This started off
predominantly in 3D graphics rendering, but has more recently gained traction in day-to-day computing in which
rather than computing graphics for display, a GPU can be harnessed to execute similar types of instruction for the user.
For example, when an application such as Photoshop enhances a photograph, it applies an algorithm to the image and
historically the CPU would do this. Today, Photoshop can offload that processing work on to the GPU, which because of
its very specialized design can do the work much faster—all without needing any assistance from the CPU itself.

The main reason why a GPU is important in a device like the Pi is that even with a modest processor, it can still
handle high-quality displays and decode high-quality video streams. This makes the Pi useful as a media device as
well as allowing for a full graphical display that still feels snappy even with a slower processor.

For the most part, the GPU is not something you will directly care about, but by knowing that the heavy duty
graphics work can be offloaded somewhat from the main CPU, you can be more confident that the ARM that powers
the Pi will be able to deliver enough brute force for your needs.

Ethernet Port (Model B only)
You might think that there’s not really much to say about an Ethernet port. After all, it’s pretty straightforward: you
plug it in and you can access the network. If you don’t have one, then you can’t. Simple enough?

For me, the ability to connect to a wired network is essential. WiFi can often have issues and sometimes isn’t even
available (especially if you decide to turn your Pi into a WiFi access point). Although this feature costs an additional $10,
in my experience not having the network card when you really need it will cost you much more than $10 in time,
effort, and general hassle. It is true you can add a USB network card to the Model A (and technically the card attached
to the Model B is actually connected via USB), but that would cost at least $10 and then you’d have a USB device
flapping in the wind. You might say to yourself “If it’s USB, I can use it with my other devices, too!” but in reality, you
probably never will and you’re far more likely to lose the damned thing altogether (right when you most need it) than
it is to come to your rescue in a time of need.

However, one reason why you might decide on a Model A is that because it doesn’t have these extra components,
it consumes significantly less power. This probably won’t be a major concern for most users, but if you’re planning on
using the Pi in a battery-powered product, you would be very keen to lower the power requirements as much as possible.

Overall, my recommendation is to get the Model B because you get the network card. If you’re absolutely 100%
positive that you’ll never ever need Ethernet (or you want the smallest possible power footprint), there’s probably little
point paying the extra cash for this version.

USB
This isn’t so much a feature these days as a true requirement. Almost all peripherals connect this way and the Pi is no
exception. It will work with all standard USB keyboards and mice, and assuming Linux has a driver for it, other USB
devices as well (such as the Ethernet card in the Model B).

Both models come with USB 2.0 support, although Model A only has a single port, whereas Model B has two.
If you want to be able to plug multiple USB devices into your Pi, you might want to consider Model B, but if you’re
setting it up as a basic desktop, you could use an external USB hub to get a similar effect.

GPIO Ports
General Purpose Input/Output (GPIO) ports are a very interesting and key addition to the Pi. They provide an easy
way to connect hardware to your Pi that you can then control through software. If, for example, you wanted to add a
thermometer or light sensor, you could build a device that connects to your Pi via the GPIO ports.

www.it-ebooks.info

http://www.it-ebooks.info/

■ Introduction

xxviii

If hardware projects don’t really interest you, then you can probably forget about the GPIO ports. But if you’re
looking to integrate your Pi with various bits of hardware or make your Pi the brain of some wacky invention, GPIO
ports will give you an easy way to do that.

Baked to Perfection
By now, you’ll have picked up a pretty good appreciation for what the Pi is and what makes it special. It was designed
to be low cost so that everyone who wanted one could get their hands on one, but the designers have gone to great
lengths to make sure that even though the Pi can’t deliver everything a desktop can, it delivers more than enough to
make it a fully functional computer laboratory not to mention a very nice server platform.

Whistle-Stop Tour
So, what do we have in store for you in the rest of the book? The book is broken down into three core parts. In the first
part I’ll show you how to get up and running with the GUI. If you’ve never heard of a GUI, this is definitely where you
want to start. The Pi comes with everything you need, but out of the box it needs a bit of tweaking. Don’t worry; we’ll
get you up and running quickly, and you’ll soon be off exploring.

Part 2 takes you back to the command line and teaches you how to move around. Many people (myself included)
spend the vast majority of time at the command line. It’s fast, powerful, and always available (even when a GUI is not,
such as when you want to make changes via the network), but it is a little bit different from the GUI than most people
are used to. Fear not; we all have to start somewhere and in this section we’ll make sure you’re comfortable and at
home on the command line.

In Part 3, we actually start to do more interesting things. By this stage you’re happy on the command line (which
puts you ahead of most of the crowd) and now you want to delve a bit deeper and actually make the Pi work for you.
We spend this section covering some of the great things you can do. I’ll give you the solid foundation you’ll need to do
all of the hardware and software projects in Brendan Horan’s “Practical Pi Projects.”

Your First Bite of Raspberry Pi
In Chapter 1 we look at what Linux is and why it’s on your shiny new Raspberry Pi. We take a brief look at different
“distros” and explain why not all “Linuxes” are the same. We take a closer look at the Raspberry Pi and what makes
it just that little bit different, and then we get your graphical interface up and running. We round off Chapter 1 with a
quick tutorial on how to move around the desktop.

Surveying the Landscape
Following on is a tour of the desktop and all the fun things that you can find. We start with the essentials and show
you how to get online, check your e-mail, and get set up with instant messaging. We’ll then expand on that a little
and shoot for some music and video. By the end of this chapter, you should be able to do your day-to-day computing
without having to think twice about using a Raspberry Pi.

Remodeling the Landscape
Once you’re happily browsing the web and sending e-mail, we will look at how to go about customizing your new
home and making it your own. We’ll start with the obligatory “how to change your desktop background” and then
move on to various other little tweaks and enhancements that you can do to make your time on the Pi as pleasant
as possible

www.it-ebooks.info

http://www.it-ebooks.info/

■ IntroduCtIon

xxix

Getting Comfortable on the Command Line
Now for something just a little bit different. You can use your Pi just like your other computer, but now we’re going
to take it up a notch. In order to get the full benefit from Linux and to get your hands dirty with some very interesting
projects (automatic cat detection and prosecution, anyone?) you’ll need to lift off the crust and start getting closer to
the metal.

The first place to start is the command line where you’ll be interacting with Linux on a very precise and powerful
level. We’ll be starting off slowly and easing you into what is likely to be a very alien environment. We’ll discuss the
shell, where it came from, and why it’s important. We’ll also look at a bit of the history involved because knowing
where it came from (while fascinating in and of itself) will help you get the full benefit from the experience.

Storing Stuff and then (Hopefully) Finding It Again
Once you’re up to speed on what the command line is, it’s time for the most important subject. Most books start by
telling you about all the shiny commands you can run, and that’s all well and good, but first you need some context.

I’ll start you off by looking at the Linux file system and explaining the “everything is a file” philosophy that sits
at the core of every UNIX–based operating system. This sounds a bit scary and we won’t go into too much depth, but
with this under your belt you’ll be able to easily pick up new commands and make full use of them.

Getting Down to Business
Now you know about the command line and how Linux lays out all your files, we’ll actually showing you how to make
Linux do things. I’ll show you how to become root (does anyone remember the “power up” scene from He-Man? No?)
and how to install new applications and tools. We will also briefly look at some useful command-line tricks that will
make you a keyboard demon. You will soon find that you can do things far more quickly on the command line than by
clicking your mouse . . .

Editing Files
Next on our tour de force is editing files. I will show you my two editors of choice. One (nano) is simple, easy, and
great for general use. I use it a lot for making small changes to config files. For more serious heavy lifting, I prefer vim.
It has all sorts of magic codes and key presses (it’s like playing Dungeons and Dragons—not that I ever have), and if
you can hold all the key-combos and commands in your head, well, you will never want to leave! For the rest of us,
well, there’s always nano…

From Beginner to Admin
Now we’re starting to take a look at system services and what makes Linux tick. You’ll learn that as smart as Linux is,
it’s not that different from all the tools and things you’ve been running so far. You’ll be able to apply your newfound
knowledge and be able to start and stop services to your heart’s content.

Network services are the bread and butter of any server. Most people have used them from a user’s perspective
but now it’s time to experience them from the pointy end. We’ll look at the usual suspects, such as OpenSSH and the
Apache web server. We’ll explain the very real dangers of running your own servers on the Internet. There are people
out there who would quite like to gain entry to your nice little server, and they do not much care who you are. Don’t
worry; we’ll provide a simple list of do’s and don’ts that will put you ahead of the game.

www.it-ebooks.info

http://www.it-ebooks.info/

■ Introduction

xxx

Magic Spells for the Command Line (aka Scripting)
A script is simply a collection of shell commands in a text file that Bash (or a shell of your choice) will execute. Even in
this simple form, they are very powerful, but you can do so much more. In short, you can automate a lot of tasks with
relatively little effort, and you can build some pretty impressive tools, too. This chapter won’t make you an expert, but
it will certainly give you a taste for the power at your fingertips. You might laugh at me calling them magic, but wait
until you turn a tedious 3-hour task into a single command that completes in 4 seconds!

Pi Web Server
We start the project section with a classic: getting a full LAMP (that is Linux, Apache, MySQL and PHP) stack up and
running on your Pi. We will show you why your Pi is an ideal little web server and how it not only provides the perfect
environment for development dynamic websites but also makes a great little portable website demonstration tool!

WiPi: Making Your Pi Wireless
What’s more fun than a tiny little network server? A tiny little network server that has no wires! We’ll show you how
to hook up a USB wireless network adapter so your Pi can talk to the world without any wires. If that isn’t enough, we
take it one step further and look at ways of cutting the cords altogether and getting your Pi to run off a battery.

The Raspberry sPi: Security Cam and Messaging Service
Want to know who is sneaking into your room and stealing all your pens? Your sPi has you (or your office) totally
covered! In this chapter, we will show you how to hook up a webcam to your Pi and have it take snapshots of any
movement in the room. Not only that; it will promptly e-mail you a copy of the intruder in real time! Even James Bond
doesn’t have one of these.

MC-Pi: A Pi for All Your Media Needs
Last, but by no means least, we show you how to turn your Pi into your personal media center. We show you how to
stream video to your TV and how to act as an airport device for sharing music around the house. With high–resolution
streaming video, we really start to push the Pi and show what it is truly capable of!

Onward
We’ve covered a huge amount already. We’ve looked at how computing has changed over the years and how this has
not only had an impact on how we see and use computers in our daily lives but also it has affected the way computers
are perceived in education and the level and depth of knowledge that students are taught. We briefly touched on the
Raspberry Pi Foundation and how it hopes that the Pi will start to reverse this trend.

Next we looked at some of the more compelling reasons why you might want to get a Pi and why the Pi makes an
ideal platform for development and experimentation.

We then looked at what the Raspberry Pi is at the hardware level and discussed the differences between your
main computer and the Pi. We examined the trade-offs and looked at why some of the decisions were made and what
impact they will have on you as a user.

Last but my no means least, we rounded off the introduction with a whirlwind tour of all the things that we’re
going to cover in the rest of this book.

So let’s head to the kitchen and make some Pi!

www.it-ebooks.info

http://www.it-ebooks.info/

1

Chapter 1

Your First Bite of Raspberry Pi

This chapter is where we finally get our hands dirty. If you decided to skip the introduction in your eagerness to get
up and running, that’s fine; you won’t have missed anything critical for this chapter. However, make a note to pay
the introduction a visit in the not too distant future as it gives you a lot of background on the Pi and what makes
it so special.

Now, back to dirty hands! We are going to start off by unpacking the Pi and going through the list of things that
you need to actually get it up and running. Once we’ve hooked everything up, we’ll then need to sort out something
for it to run—in this case, Raspbian Linux (more on this a little later). Once we get Raspbian running, we still need to
configure it and some of the options are a little technical and Linux-specific; but don’t fret, we have you covered there,
too. To round off the chapter, we will bask in the glow of the Raspbian desktop before heading off to Chapter 2 to see
what we can actually do with it.

Your Freshly Baked Pi Arrives
Okay, so the postman has just dropped off your long-anticipated package, and after eagerly ripping away the padded
envelope you’re left with a little box, (little being the operative word). You simply can’t help but look into the depths
of the envelope to see if there is perhaps something lingering at the bottom. Failing to find anything with a visual
inspection, you’ll no doubt proceed to the old faithful approach of turning the envelope upside down and giving
it a bit of a shake. Although you might shake loose the packing sheet (somehow they always seem to super glue
themselves to the inside), you won’t find anything else.

When you order a Raspberry Pi, this, dear reader, is all that you’re going to get (see Figure 1-1).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Your First Bite of Raspberry Pi

2

WHY A PICTURE OF JUST A BOX?

Figure 1-1.  What falls out of the envelope

The honest reason is because when this is all that turned up, our first thought was that something must have
gone missing. Yes, the site tells you when you order that this is all you are going to get, and it really makes
perfect sense.

We want to emphasize that this is all you get, and it’s not enough to get your Pi hooked up and in business. You
will need other bits and pieces (some or all which you might already have), and it’s important to highlight it right
at the beginning. In the next section, we will cover the kit you actually need to get started.

You might spot the big label at the bottom that (in big bold letters) says GETTING STARTED. It also provides the
address of the Raspberry Pi website with a direct link to what you need to get started. Not too challenging, you might
think, assuming that you actually looked at this side of the box rather than simply ripping it open to get at your new
toy. We would love to say that the first thing we did was visit that website, but we were somewhat overexcited about
seeing a Raspberry Pi with our own eyes. Admittedly, the complete lack of any writing on the other side of the box
was probably a dead giveaway that we were missing something important, but we were somewhat preoccupied with
showing everyone in the office just how small a Raspberry Pi actually is. Believe it or not, we have company in the fail
corner; another technically savvy new Pi owner converted his box into a Pi stand and missed the label altogether
(and his packing sheet was MIA for nearly three weeks).

Unsurprisingly, going to http://raspberrypi.org/downloads/ is actually a very good place to begin your
journey, and we will be heading there shortly. If you have yet to order a Pi (or are waiting for it to turn up in the mail),
Figure 1-2 shows one sitting next to a mouse.

www.it-ebooks.info

http://raspberrypi.org/downloads/
http://www.it-ebooks.info/

Chapter 1 ■ Your First Bite of Raspberry Pi

3

Even though the size of the Pi is well known and it comes in such a small box, it isn’t until you actually hold it
in your hands that you realize how small it truly is! After “aw-ing” to ourselves (and anyone else who sadly for them
happened to be within earshot), we figured it was time to get the show on the road.

And that’s where things came to a somewhat abrupt halt. We had the Pi, but it had only just dawned on us that we
didn’t have the faintest idea what we actually needed to make it go. Even though we’re not exactly new to all this, we
let ourselves get caught up in the moment and for whatever reason hadn’t considered that the Pi would need anything
special (or at least something that your average geeky type person wouldn’t have hanging around the house).

If you’re not equipped with a cupboard of odds and ends straight out of Dexter’s lab, you might need to pick up a
few things. Fortunately, they are all easy to find, and you should be able to pick up everything you need at your local
computer shop. If you don’t fancy going on a treasure hunt, many companies are offering starter kits that come with
everything you need. Because these kits are rapidly changing, the best way to find what’s available is to go online and
search for “raspberrypi starter kit”.

Note■■  A lthough we only cover HDMI in this book (so it’s the only display in the list), it is possible to use different types
of display such as DVI, composite, or SCART with appropriate cables or adapters.

List of Ingredients
To bake your Pi to perfection, you’re going to need the following ingredients:

Raspberry Pi•	

Micro USB lead (for power)•	

USB power adapter (also for power)•	

HDMI lead: Type A to Type A (to connect to your monitor or TV)•	

Figure 1-2.  A Raspberry Pi next to an average-sized mouse

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Your First Bite of Raspberry Pi

4

HDMI display•	

SD card: 2 GB to 64 GB (for storage); 8 GB minimum recommended•	

SD card reader•	

USB keyboard and mouse•	

Micro USB lead
If you happen to have an Android phone or a Kindle sitting about, chances are good that you’ve got a lead that you
can reuse to power the Pi. This lead isn’t actually used for transferring data, and although you can draw power from
a USB port (you can plug it into your main PC or laptop), you can’t use the USB connection for anything else. The
different types of USB connectors are hard to describe if you haven’t already seen one. Take a look at Figure 1-3 for
some examples.

Figure 1-3.  Different types of USB connectors

The connector you’re interested in is the first one on the left, known as a micro USB. Be careful because on quick
inspection, a micro USB plug can easily be mistaken for a mini USB plug (second on the left). The last thing you want
to do is make a special trip to the store and then come back only to find out that you picked up the wrong one!

USB Power Adapter
You might actually be able to get away with this one. A normal USB port can power a Model A Pi (the one without
built-in Ethernet), and for testing you can probably get away with doing the same with a Model B. That’s all well
and good as long as you want to have your Pi sitting next to your PC, but chances are you want it to be somewhat
independent. Even if you do plan on using it in the same location, powering it from your laptop can prove to be

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Your First Bite of Raspberry Pi

5

problematic when you want to take your laptop somewhere, but your Pi is busy doing something and you really don’t
want to unplug it.

Fortunately, the sheer number of devices that adopted USB as a means of charging means that you can get main
adapters really cheaply and easily. As far as which adapter to get, that really comes down to personal choice. However,
as the Model B requires 700 ma and you always want to have a bit of room for expansion, you probably should aim
to get an adapter that can provide at least 1000 ma (or 1 amp). From our highly scientific tests (wandering around
numerous shops and squinting at packaging labels), it seems that 1000 ma is actually the most common rating. We did
come across some rated at 500 ma and although that’s enough for most USB devices (and even the Model A Pi), it isn’t
really enough for your needs.

HDMI Lead
Over the past few years, HDMI has become the de facto standard in connecting a myriad of devices to both monitors
and TVs. This is really handy because it means that if a device supports HDMI, it can be easily connected to any display
that supports it. This might not sound all that impressive, but it wasn’t too long ago that TVs and monitors were very
separate things and usually there was no direct way to connect, say, a computer to a TV or a VCR to a monitor (although
interestingly if you go back 20 years, all home computers connected directly to the TV (for example, the Commodore
64 or Spectrum). Of course, you could get special hardware, and some higher-end devices did offer a range of different
connectors, but as a rule, the two worlds didn’t really mix.

Fortunately, the Pi uses HDMI, so we can ignore the irritations of the past. To connect your Pi to a display, you
will need a “Type A to Type A” lead. Type A is the size you will find in the back of your TV or monitor; all you have to
do is find a lead for connecting some device via HDMI to a TV and where both ends are the same size. Most consumer
electronics use Type A, so if you have an Xbox 360 or your laptop has HDMI, chances are you already have a lead of
the correct type.

HDMI Capable Display
You probably saw this one coming, but you’re going to need some sort of display that supports HDMI. As it has been
widely adopted over recent years, practically every new TV comes with one or more HDMI ports. These days, it’s fairly
common to see three or four ports on a TV because you’ll need that many to hook up all your new digital devices.

It’s pretty easy to determine whether your TV or monitor supports HDMI. All you have to do is look for a physical
HDMI port. You are much more likely to find it on your TV rather than your monitor, but many of even the more basic
monitors these days seem to support it.

In our case, it turned out that the aging monitor didn’t support HDMI, although the TV in the living room did. Of
course, it being the main TV meant that people wanted to watch TV on it and admittedly we were not looking forward
to sitting cross-legged on the floor in front of a big TV, trying to convince a Pi to boot. In the end, we decided to get a
new monitor that supported it. Although we could have bought a DVI converter, we decided we couldn’t pass up on
the opportunity to get a new shiny toy.

If you can’t reuse your TV or computer monitor, you should be able to get your hands on a basic TV or monitor
that supports HDMI quite easily. As mentioned earlier, the Pi does have composite output as well as HDMI, so you
could certainly use that if you prefer.

SD Card
Most computers use a hard drive of some sort as their primary form of storage. Even laptop-sized disks are larger than
the Pi, and although the newer solid state disk (SSD) models draw very little in the way of power, they would certainly
drastically increase the amount of power your Pi would need. Fortunately, we have an alternative. Rather than using
something heavy duty like a hard disk, we can instead borrow technology that cameras have been using for many
years: flash memory. Although the cards can’t match a hard disk for space or for performance, they are exceptionally

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Your First Bite of Raspberry Pi

6

good for power usage and despite being smaller than their erstwhile cousins; 64 GB (the maximum for your Pi) is still
a reasonably impressive amount and probably more than you will need for your Pi.

SD cards are standardized so there isn’t too much more to say about them. You do want to get a high-performance
card if you can (often referred to as Class 10) but they ultimately all do the same job. That said, we have heard of some
SD cards that haven’t worked with the Pi, but if you stick to a well-known brand you should be fine.

As there are lots of different types of memory cards floating about these days, Figure 1-4 shows what an SD card
actually looks like.

Figure 1-4.  SD card with micro SD and adapter

The card on the far left is your typical SD card; on the far right is a micro SD card. They have become pretty
popular for use in smartphones (particularly Android-based phones), and because most phones come with small
cards (in terms of storage space), it’s not unusual to either buy a larger card or have one thrown in as part of your
phone package.

If you happen to have one of these floating about, you can use it with your Pi by using a micro SD adapter (shown
in the middle of Figure 1-4). They tend to come with micro SD cards because often one would use the micro SD in a
phone but the laptop would only have the full-sized SD card. We haven’t seen the adapters for sale individually as they
are basically just a physical adapter, but they do tend to end up in the strangest of places so you never know!

SD Card Reader
Now that you have your SD card, you need some way to actually use it. The Pi has you covered and has an SD card slot
built right in. However it doesn’t actually have any other storage on the device, so it’s effectively a blank slate until you
insert an SD card with something useful (like Linux) installed on it. The thing is, to put Linux on the card, you need a
device that’s already up and running that can also read and write to the card. This is a classic Catch-22 situation. Even
if you could borrow someone else’s card with Linux already installed, you couldn’t simply swap out the cards because
as soon as you do that, you won’t have Linux anymore!

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Your First Bite of Raspberry Pi

7

Again, thanks to the proliferation of digital cameras, many computers come with card readers built in. Many
(often dubbed as media PCs) come with a whole range of slots for various different card types. So chances are you
already have a way to read the card. If you don’t have a reader already, you can pick up any cheap multicard reader
from your local computer store. They’re generally inexpensive and will support lots of different types of cards. Just
make sure that it has an SD card before you hand over your hard-earned cash! For reference, the adapter we are using
looks like the one in Figure 1-5.

Figure 1-5.  Multicard reader

USB Keyboard and Mouse
Last but not least is the good old keyboard and mouse. Advanced as the Pi is, it doesn’t yet have telepathy so you’re
going to need some way to control it. This is common sense, but with modern computers often coming with a wireless
keyboard and mouse and a fair few of those using Bluetooth with no USB adapter (even some with an adapter have
been known to cause problems), you might find that your current keyboard and mouse just won’t work with your
new toy (no Bluetooth on the Pi, I’m afraid). There’s really no need to go into any detail here as any keyboard and
mouse will do, and this is mostly a reminder to check what you actually have before you go out to buy your Pi-making
ingredients to avoid untold frustration when you get home and find you’re completely stuck.

Whew, We’re Done!
Finally we have everything we need! Hooking all this stuff up to your Pi is very easy, especially as each item has a
unique shape so it will fit into only one slot (see Figure 1-6 for the finished Pi).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Your First Bite of Raspberry Pi

8

If you put everything together, plug in the power, and turn on your TV you should see… a completely
black screen.

Don’t Panic!
When your PC or laptop boots, there is a piece of software called the BIOS that kicks everything off for you. It tests
the memory, sets up a basic display, and allows all your devices to initialize. On some machines (notably those from
Apple) the machine will have an EFI instead of a BIOS. For all intents and purposes (at least from our point of view),
they’re basically equivalent. Regardless of the technology used, it is this system that finally hands control over to your
bootloader, the piece of software responsible for starting your operating system.

BIOSs are by nature very noisy, and if you get something wrong it will either bleep a lot (with some magic number
code that you can only find in the BIOS manual that you threw in the bin 3 years ago) or display some helpful yet
cryptic message on the screen. In short, it may not do what you want, but at least you know that your computer is still
alive. Although it has a little red LED “on light”, the Pi won’t do a thing unless it has a bootable operating system on its
SD card. If you were expecting some sort of splash screen or other sign of life (hands up; we know we were), you’re out
of luck (and probably thinking you have a dead Pi).

Now that you know what you need to restore the Pi to life (a bootable operating system) it’s time to move on to
Phase 2 of our master plan and get us some Linux!

Linux
As this is a book for beginners, we’re going to take the time to talk a little about Linux, where it came from, what’s
special about it and some of the little gotchas that trip people up from time to time. If you already know this stuff
(or simply don’t care), feel free to skip to the next section “Downloading Raspbian.” For those who want a quick
refresher, just keep on reading.

Figure 1-6.  A fully loaded Pi

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Your First Bite oF raspBerrY pi

9

What Is Linux?
Ah, this simple question opens a big can of worms that many people go out of their way to avoid. The reason is that in
technical terms, Linux means one thing but in general speech, it tends to mean something else. When talking about
operating systems in general, we see Microsoft Windows and Apple OSX to be discrete, whole things. If you say “I run
Windows,” everyone knows what you’re talking about. With Linux, it’s a bit different.

Linux is just an operating system kernel, which means that it handles all the low-level bits and pieces such as
handling device drivers, and providing easy access to networks and hard disks. What actually makes Linux usable is
all the software that is wrapped around it. Not much trouble there, but it starts to get complicated when you realize
that people have differing opinions about what software should be wrapped around it. There are no simple or minor
opinions when it comes to computing!

As this software is open source, and anyone can put it together in pretty much any way they like, people have
been able to build their own Linux distributions. This is an operating system with Linux at its core, but with the
surrounding ecosystem set up to match the goals of the people who built it. For example, Red Hat Enterprise Linux
(RHEL) is built to be robust, supportable, and stable over long periods of time. Fedora, on the other hand, is released
every 6 months or so and has the latest and greatest of everything in each build. Gentoo requires that you build your
software from source (so it can be completely optimized for your machine), and Debian goes to great lengths to
remain stable and secure at the cost of introducing new features.

E

in the olden days, when computers cost millions of dollars, it was the machine itself that sold, not the applications
that ran on it. it was common practice for a company to write software for you, in order to get you to buy their
machine. it wasn’t until computers became commodity items that suddenly the value was in the software, and
companies moved to start protecting the software they’d written. one way to do this is to provide the software
ready to use without the source code (which is effectively the blueprint on how to make the software). this meant
that you couldn’t change the software or make improvements to suit your changing needs.

Many people believe that software should always come with the source code so that people can make changes.
open source revolves around the idea of people being able to freely exchange, modify, and improve software
collectively. this can only be done when the source code is provided freely and permission is given (through an
open source license) to make those changes.

entire books can and have been written on this topic, but you can find a presentation on this topic that peter gave
at his university last year: http://www.youtube.com/watch?v=c-1LQIGh6cI

So which one is best? Well, that depends on your needs! There’s no perfect distribution; just the best fit for a
particular job. For the Pi, the official and supported platform is Raspbian, which is based on the Debian distribution.
Because it is supported and because it’s the easiest to use (and quite likely the fastest to get updated and fixed when
things go wrong), we’re going to stick to using Raspbian in this book. If you do fancy something a little different,
Brendan Horan’s upcoming book (also from Apress), Practical Raspberry Pi will show you in great depth how to install
Fedora and (if you’re feeling particularly brave) how to make a custom build of Gentoo!

When the Linux kernel first debuted in the early 1990s, no one really appreciated the huge impact it would have
on the world of computing. Open-source software had already been around for a long time before this, and countless
tools for the UNIX platform had already been released (such as the awesome GCC compiler). However, they were just
tools and software packages. They still needed a proprietary operating system to run (the only kind available at the
time). To be fully compatible with the open-source ethos, what was needed was an open-source kernel to power these
systems. and this is what Linux delivered. While many will talk about how this brought freedom and hope to the world
of computing, we will save you from that particular lecture (although admittedly there is quite a bit of truth to it) and
simply say that it was the Linux kernel that really brought open source to the eyes of the general public.

www.it-ebooks.info

http://www.youtube.com/watch?v=c-1LQIGh6cI
http://www.it-ebooks.info/

Chapter 1 ■ Your First Bite of Raspberry Pi

10

Now that the world has Linux, what exactly can we do with it? Almost anything we like—such as installing it for
free on our Pi.

Downloading Raspbian
At last we’re off to http://raspberrypi.org/downloads/ to get our hands on Raspbian. Not only does the page
contain links for the download we’re looking for but it also has links for various useful tools as well as links for other
prebaked Linux distributions for the Raspberry Pi. We touched on this lightly in the previous section, but if you’re
thinking about getting one of the more exotic distributions, take a look at the “Why Raspbian?” sidebar.

WHY RASPBIAN?

As you can see from the download page, there are numerous distributions to choose from, and especially if
you’ve used Linux elsewhere you might be tempted to pick something other than Raspbian. However, before you
download that exotic distribution, you should know that the majority of people using a Pi run Raspbian—and as
such most of the support, blog posts, and tutorials (not to mention this book) are all based on it. This means if you
pick something else, you might find it much harder to get help if something doesn’t go quite according to plan.

The other more subtle issue is that the Raspberry Pi is an ARM-based device. It doesn’t quite work the same way
as your PC does. For example, the Pi doesn’t have a PCI bus, so any tools that expect there to be one (and there
are more than a few) just won’t work. There are also quite a few gotchas for these other distributions, and they
might not be as well maintained as Raspbian. In short, you will be taking on much more work if you don’t pick
Raspbian to start out.

Traditionally, a Linux distribution will come on a set of CDs or DVDs. When you download your distribution of
choice, you would download a set of images. These images are basically a clone of the real thing. The idea is that you
take the image and once you write it to a CD, that CD will be identical to the one the image was originally cloned from.
Raspbian (and the Pi in general) is a bit different. It doesn’t have a built-in CDROM or even a floppy drive. Instead of
downloading an image of a CD or DVD, we’re going to download an image of an SD card that contains Raspbian all set
up and ready to go.

You can download Raspbian either directly from the site (there are numerous mirrors) or via BitTorrent. BitTorrent
can sometimes be faster, and it helps take some of the load off Source Forge. However, there are some places where
you probably shouldn’t be firing up a BitTorrent client (i.e., at work), and some connections perform very badly due to
the way BitTorrent works (such as mobile 3G). If in any doubt, just select the direct download. We want the mainline
version of Raspbian (Raspbian Wheezy), which is the first one in the list of available distributions for download.

Getting Raspbian onto Your SD Card
Getting Raspbian onto your SD card isn’t as easy as simply copying across the file. Remember we downloaded an
image that is a direct representation of what should be on the card. If you just copy the image onto the card, it will still
just be a card with a copy of the Raspbian image on it. What we need to do is write the image directly to the card, and
for that we’re going to need some of those handy tools we briefly mentioned earlier.

www.it-ebooks.info

http://raspberrypi.org/downloads/
http://www.it-ebooks.info/

Chapter 1 ■ Your First Bite of Raspberry Pi

11

Note■■  T he image file you downloaded is a compressed ZIP file. On Windows 7, double-clicking this file will open a
Compressed Folder. You will need to copy the image file itself to another location such as My Documents. On the Mac,
simply double-clicking the file will extract the image and place it in the Downloads folder.

Using Image Writer on Windows
The tool recommended for writing images on Windows is the somewhat predictably named Image Writer. You can
find the link on the Raspberry Pi downloads page; you want the binary version highlighted in Figure 1-7.

Figure 1-7.  Download the binary version of Image Writer

Depending on what software you have installed on your PC, you will either be able to open the download as a
folder or open it in your ZIP program of choice. Either way, you need to extract all the contents before you can run the
application. If you are just using the standard Windows tools, when you double-click the program (Win32DiskImager),
you will be prompted to extract the contents to another location.

1.	 Select Extract All and make sure that Show Extracted Files When Complete is checked on
the next window.

2.	 After you press Extract, you should see the same folder layout as in the ZIP file.

3.	 Double-click the program in this new folder and you should be able to open the tool.
Because the program isn’t digitally signed, you will get a warning like Figure 1-8.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Your First Bite of Raspberry Pi

12

4.	 Because the tool needs low-level access to perform its main function (i.e., writing directly
to disk-based devices), Windows will warn you that the program wants to make changes to
your computer. Click Yes to continue.

5.	 We’re not sure if you will see the message shown in Figure 1-9, but it happened on both
the machines we tested it on. In both cases, it didn’t seem to affect the program, but just in
case you do see it, we thought you’d like to know you’re not the only one!

Figure 1-8.  Windows will warn you when you run Disk Imager

Figure 1-9.  Error occurred when opening Image Writer

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Your First Bite of Raspberry Pi

13

Note■■  I mage Writer will look only for cards to write to when it starts up. That means you’ll need to have your SD card
in the slot before you start the application; otherwise, you will get an empty list, even if you later insert the card.

6.	 In our case, the device we want to write to is drive G:\, but you should choose the right
one for your system. If the Device drop-down menu is empty, try closing Image Writer and
reopening it as sometimes it seems to miss things on the first try. It goes without saying
that you should make sure that you’ve actually picked the right drive—the last thing you
want to do is accidentally erase the card from your camera and all those special family
moments that you’ve captured over the years!

7.	 Once you’ve selected the right device (take a quick look in My Computer if you’re not
convinced) and you’ve picked the Raspbian image by browsing to it, click the Write button
and sit back and relax. It does take a fair bit of time to write the image (it depends on how fast
your card is, among other things). However, it gets faster as it goes along (it’s mostly writing
zeroes at this point), so it will probably be done within a few minutes. Figure 1-10 is an action
shot of Image Writer during our tests. From the screenshot, you can see that the image we’re
writing to the SD card is the current (at least at the time of writing) Raspbian release.

Figure 1-10.  Action shot of Image Writer writing the image

8.	 Once complete, take the card out of its slot and feed it to your Pi.

You’re ready to rock and roll! To get started, flip through to the section, “First Boot,” to get the show on the road!

Note■■  I f you look closely at the filename in Figure 1-10, you can see that it has an extension of .img. One of the
more common mistakes when writing an image is to accidentally write the ZIP file rather than the decompressed image
file (after all, they have almost identical names). When you come to boot up your Pi, if nothing happens, come back and
double-check that you picked the right file.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Your First Bite of Raspberry Pi

14

Using dd on the Mac
If you are using a Mac, we want to show you how simple it is to write an image to your SD card. Alas, we can’t do that
because there isn’t a simple, easy way to do it. Disk Utility, which excels at so many other things, simply does not
know how to handle our standard image files. We tried converting it to a .dmg file (the native image format for a Mac),
which didn’t work, either. We also looked at online tools that you might have been able to download to help with the
problem, but we didn’t find anything that made the task significantly easier than doing it by hand in the first place.

So we’re going to get our hands dirty on the command line a little bit earlier than planned. We’re not going to go
into too much depth about what it is we’re actually doing because most of these commands you’ll see a little later in
their Linux incarnations. For now, you’ll just have to trust us.

Finding the Terminal
First, we need to open the terminal. You can find it in the Utilities directory under Applications. To put the
following into context, we end this section with a complete transcript of all the commands that we used. The process
is reasonably straightforward; it just has a fair number of moving parts.

We opened the terminal and now we need to use sudo to become the root user, the equivalent of Administrator
on a Windows machine.

Now, tinkering with low-level devices is dangerous for security reasons (you don’t want a virus being able to write
directly to a hard disk, for example), so a normal user is not allowed to issue commands at that level. Because we need
to write our Raspbian image directly onto an SD card, we simply have no choice: we need direct access to the card.
Fortunately, root has effectively unrestricted access to the machine, so as root we can write the image to the card. The
command we need to use is this:

sudo –i

This command opens an interactive prompt as the root user and gives “super user” privileges. You can use sudo
to execute commands directly, but because we are going to be executing a few of them, it’s more convenient to do it
this way. sudo will then prompt you for your password (the one you normally use for your user account). Once sudo
can confirm that it really is you sitting at the keyboard, you will end up at a root prompt.

Caution■■   We now have permission to do anything we like on the system. And although that means we can now make
our image, it also means that we could really mess things up if we aren’t careful. Under UNIX, it is assumed that root
knows what it is doing and there is very little in the way of safeguards. Be very careful when running any command as
root, double-check it (and then do it again), and only when you’re completely sure should you hit the Enter key. As soon
as you’re done, you should also close the terminal window, just in case.

Using the Terminal to Write the Image
Okay, so what now? One of the challenges with writing to the SD card is to know which device on the system that card
actually is. You don’t want to accidentally mistake your main hard disk for it because that would have some rather
unpleasant consequences. There are generally some assumptions you can make (for example, we know that /dev/disk0
is usually the system disk, so you never ever want to write to this), but in order to limit the risk, we’re going to do this one
by the numbers.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Your First Bite of Raspberry Pi

15

First, make sure your SD card is not attached to your Mac and then run the mount command like so:

mbp:~ root# mount
/dev/disk0s2 on / (hfs, local, journaled)
devfs on /dev (devfs, local, nobrowse)
map -hosts on /net (autofs, nosuid, automounted, nobrowse)
map auto_home on /home (autofs, automounted, nobrowse)
mbp:~ root#

Now, you will probably see something similar to this, but it might be a little different. We can ignore devfs and
the map lines as they’re really just parts of the operating system. What we’re interested in here is the first line that
identifies /dev/disk0s2 on /. This is the system disk, and we want to make sure we don’t touch this one. You might
have additional entries in your list if you have any network drives mapped or disk images attached. That’s okay because
we’re not really looking for anything in particular at this stage; we just want to establish a base line for your system.

Okay, now it’s time to slot in your SD card. SD cards come preformatted for use in cameras (although these days
many cameras will reformat them, anyway) and so you should see it show up in Finder under Devices. Our card
looked like Figure 1-11.

Figure 1-11.  What you’ll see in Finder after inserting your SD card

As the card has been automatically mounted, we can now go back and rerun our mount command to see how
things have changed. Here’s what we got when we reran it:

mbp:~ root# mount
/dev/disk0s2 on / (hfs, local, journaled)
devfs on /dev (devfs, local, nobrowse)
map -hosts on /net (autofs, nosuid, automounted, nobrowse)
map auto_home on /home (autofs, automounted, nobrowse)
/dev/disk2s2 on /Volumes/UNTITLED (msdos, local, nodev, nosuid, noowners)
mbp:~ root#

What we care about here is the addition of a new disk, in this case disk2. We can see from where it is mounted
(/Volumes/UNTITLED) that this is the disk we are interested in. So now we know where we want to write our image.

Info■■   BSD systems split disks out in slices. In our example, the mounted file system was on disk2s2. This translates
to disk2, slice 2. This allows you to reference a slice directly, but for our purposes we want to write to the device. So in
our case we will be writing to /dev/disk2.

There is one little wrinkle, though. We can’t write to the SD card directly while we have it mounted and usable.
If we eject it from within Finder, it will not only unmount the filesystem but it will also eject the device as well. That
doesn’t help us because we still need the device to be present in order to write to it. To solve this issue, we will
unmount the filesystem manually using a Mac-specific command called diskutil. The Mac does have the general

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Your First Bite of Raspberry Pi

16

UNIX umount command (which we’ll cover in later chapters), but if anything on your Mac happens to be looking at
the SD card, umount will fail and claim that the device is busy. diskutil is aware of this and can usually unmount the
device without any problems. We ran the following command:

mbp:~ root# diskutil unmount /dev/disk2s2
Volume UNTITLED on disk2s2 unmounted
mbp:~ root#

So we gained super-user privileges, we isolated the device that we want to write to, and we unmounted the
filesystem so that we can write directly to the card itself. All we have to do now is actually go ahead and do the writing!

The tool of choice for this task is called dd. This tool is a bit old school in that it only cares about reading from a
device and writing to a device. It has no interest in filesystems nor is it aware of any of the subtle differences between a
hard disk and an SD card. It just reads and writes without caring where it reads from or writes to. This is a fundamental
UNIX principle that we will be revisiting in later chapters. For now, we’re going to take advantage of this to make an
exact copy of our image file on the SD card.

dd only needs to know two things: where to read from (the if= argument) and where to write to (the of= argument).
We figured out the writing bit (it’s going to be /dev/disk2), but what about the source? If you followed the earlier
instructions, you should have the image file sitting in the Downloads directory in your home area. The easiest way to get
the information we need into terminal is to type this in:

dd if=

Then go to your Downloads directory in Finder (or wherever you extracted the image file to), click and hold on
the image file, and then drag it on to your terminal window. This should then paste in the full path for you without you
needing to type anything in. This should mean you end up with something pretty similar to this:

dd if=/Users/myuser/Downloads/2012-08-16-wheezy-raspbian.img

Now we have our input file specified, all we need to do is specify where exactly we want dd to write it. Thanks to
our earlier experimentation we know that this will be /dev/disk2. We’re also going to add bs=512 which lets dd write
the image in bigger chunks (meaning you won’t have to wait four hours for it to complete). So the full command we
need for dd looks like this:

dd if=/Users/miggyx/Downloads/2012-08-16-wheezy-raspbian.img of=/dev/disk2 bs=512

Running this command might take some time (hours, not seconds). The image is about 2 GB in size, and your
average smart card reader is not particularly fast. With our USB adapter, our recent MacBook Pro took a good two
hours to actually write the image. After coming back later, you should find that dd has completed its task and you’re
back at the command prompt.

Okay, admittedly this wasn’t quite as simple or straightforward as writing the image on Windows, but if you look
at everything we had to do, using the command line allowed us to express what we wanted in a very compact and
precise way. This is something we come back to in Chapter 3, in which we look at the various benefits of learning to
use the command line.

Here is the full transcript of the commands we entered in order to write the image to the disk. If something in
our explanation didn’t quite click, or you’re not entirely sure what the end result should look like, you can use the
following transcript as a reference to compare your version with ours:

Last login: Wed Sep 19 13:48:40 on ttys000
mbp:~ pmembrey$ sudo -i
Password:
mbp:~ root# mount
/dev/disk0s2 on / (hfs, local, journaled)
devfs on /dev (devfs, local, nobrowse)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Your First Bite of Raspberry Pi

17

map -hosts on /net (autofs, nosuid, automounted, nobrowse)
map auto_home on /home (autofs, automounted, nobrowse)
 
<<SD Card inserted>>
mbp:~ root# mount
/dev/disk0s2 on / (hfs, local, journaled)
devfs on /dev (devfs, local, nobrowse)
map -hosts on /net (autofs, nosuid, automounted, nobrowse)
map auto_home on /home (autofs, automounted, nobrowse)
/dev/disk2s1 on /Volumes/UNTITLED (msdos, local, nodev, nosuid, noowners)
mbp:~ root# diskutil unmount /dev/disk2s1
Volume UNTITLED on disk2s1 unmounted
mbp:~ root# dd if=/Users/pmembrey/Downloads/2012-08-16-wheezy-raspbian.img of=/dev/disk2 bs=512
mbp:~ root#

With our (painstakingly) prepared SD card, we can finally move on to the next step.

First Boot
Okay, that was a bit of a marathon, but hopefully it’s something you will only need to do once. Once you get the hang
of it, it’s not so bad; it’s just that there are quite a few moving parts.

Armed with our freshly imaged SD card, we can at long last boot up the Pi. Plug in your keyboard, mouse, and
monitor, and slot your SD card into your Pi. All you have to do now is attach the power lead and you’re good to go! All
being well, you should see a screen like Figure 1-12.

Figure 1-12.  The Pi’s first boot—it lives!

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Your First Bite of Raspberry Pi

18

If you can see something similar, congratulations, your Pi is up and running! If not, there are a few common
things that might have gone wrong.

The first thing to check is whether your Pi has a nice red glowing power LED. Now we know this sounds obvious,
and we know that it’s probably the first thing you checked, but not checking it is also the most common mistake to
make. If your desk looks anything like ours, you will have a fair collection of cables draped about. It’s not too much of
a stretch to see how you might have plugged in the wrong cable or that the cable you’re using isn’t actually plugged in
to a live power source (some laptops, for example, turn off USB power when they go to sleep). Either way, this is what
you should check first because if you did make a mistake, only you will know about it. This is much better than having
an extended discussion on the forums trying to get help only to then realize that whoops! you forgot to plug it in.

The second thing to check is whether you have selected the right input on your TV or monitor. Most TVs have
multiple inputs these days, and monitors often as not don’t default to HDMI (ours doesn’t), even if that is the only
input signal they are receiving. Obviously, we can’t tell you exactly how to fix or check this one as it all depends on
the equipment you’re using. However, it should be fairly easy to flick through the different inputs to see whether or
not your Pi turns up. In one interesting case, even though on the TV the port clearly said HDMI2, the Pi was actually
visible on HDMI3. We have no idea why, but had we thought to flick through the inputs before fiddling with the Pi, we
could have saved ourselves a fair bit of grief.

The third thing to check is that the SD card is fully inserted into its slot. The Pi will quite literally do nothing
unless it can find the card and boot from it, so if all you’re getting is a black screen, this could well be the reason. If
you are sure the card is inserted properly, but you’re still not having any luck, it might be that something went wrong
when you wrote the image to the card. In that case, flip back to the last section and have another go at writing the
image to the card. If you still aren’t getting anywhere and you’ve checked that everything is all plugged in nicely, you
have the right input on your monitor, and you have a happily glowing power LED, then it’s probably something more
onerous. Unfortunately, without being there with you to look at your poorly Pi, we can’t really give any more specific
advice. Fortunately, you’re not alone; there are lots of people on the Raspberry Pi discussion forums who are ready
to help out. To visit the forum, go to www.raspberrypi.org and click the Forum link (just below and to the left of the
Raspberry Pi logo). This will get you to the main forum page; the particular board you’re looking for is Basic Usage and
Setup under Using the Raspberry Pi.

Configuring Your Pi
After the torrent of incomprehensible text (though we’re sure it means something to someone) you should end up at
the configuration shown in Figure 1-13. This is where we’ll configure your Pi for general use so that next time you turn
it on, you will be greeted with a nice desktop rather than some chunky text.

www.it-ebooks.info

http://www.raspberrypi.org
http://www.it-ebooks.info/

Chapter 1 ■ Your First Bite oF raspBerrY pi

19

We are only going to cover the basic configuration options here (and you can always go back and change them
once you’ve got your Pi up and running) as we want to get you in front of a working computer as soon as possible.
To start with, ensure that your Pi is configured to boot to the desktop (select the boot_behavior option to make sure
that the desktop will appear next time you boot your Pi).

Expanding the Filesystem
The first option of interest is expand_rootfs, which, as the description suggests, will expand the filesystem to fill the
entire card. The image we downloaded was around 2 GB after we decompressed it and this is what we wrote to our SD
card. So although you might have an 8GB card or larger, you will be able to see only the first 2 GB of it. By expanding
the filesystem, we can take advantage of all the space that you have available. This approach works pretty well because
it means we don’t need a different image file for each disk size; we can all use the same small image and simply
expand it to fit our needs. Using the arrow keys, move the bar down to highlight expand_rootfs and press Enter. You
should see a window that tells you that the partition has been resized, and the filesystem will be resized after you next
reboot. Press the Enter key to get back to the main menu.

Configuring the Keyboard
The next option of interest is configure_keyboard. By default, Raspbian assumes a UK keymap, but chances are
you will want something else. Be warned, though, that Raspbian knows a huge number of keyboards, and the sheer
quantity can be confusing. For instance, do you know if you have a generic 104 key keyboard or is it actually a 105 key
version? We weren’t sure either, so we stuck with the default: the Generic 105 key (Intl) PC shown in Figure 1-14.

Figure 1-13. First boot: time to configure your Pi!

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Your First Bite of Raspberry Pi

20

If you can find your exact model, by all means feel free to select it. If you aren’t sure, you’re probably best off
following our lead and sticking to the default. Once you have settled on your keyboard of choice, press Enter to move
through to the next screen.

Now we get to choose which keymap we want to use. By default, it lists various UK keymaps (as shown in
Figure 1-15), but if you aren’t lucky enough to own a British keyboard, move the bar down to Other, press Enter, and
then scroll through the list to find something more suitable for your needs. Once you’ve found the right keyboard,
again just press Enter to move on to the next screen.

Figure 1-14.  Choose your keyboard

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Your First Bite of Raspberry Pi

21

If you’re not sure what to select from the menu (shown in Figure 1-16), you’re not alone. For most people, the
keyboard defaults will be fine because they will include any special key combinations that your particular keymap
already offers. This is one of those times when if you need to make a change, you probably already know why and
what to choose. If you are in any doubt, just leave the default selected and press Enter. Now you will see another menu
that looks suspiciously like its predecessor (shown in Figure 1-17), at least in terms of knowing what to pick. Again you
probably already know if you need to change anything here; if you’re not sure, you should just select the default by
pressing Enter.

Figure 1-15.  Choose your keyboard layout

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Your First Bite of Raspberry Pi

22

Figure 1-17.  Customize your keyboard some more

Figure 1-16.  Customize your keyboard configuration

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Your First Bite of Raspberry Pi

23

The next menu (shown in Figure 1-18) only really means anything to old-school Linux users. Back in the day,
if your GUI decided to crap out on you, you could effectively “reboot” the session by holding down Ctrl + Alt +
backspace. As the GUI has become more stable, and Linux has become more mainstream, this feature is more often
than not disabled. We haven’t had to make use of it for years, although we do happen to think it is quite useful. The
default is No, and this is probably what you want. You can always go back and change this later if you find yourself
craving this particular feature. To pick the default (and finally return to the main menu), just press Enter.

Figure 1-18.  Do you want to enable the X server kill switch?

Changing the Password
Next we’re going to change the password for the pi user account. This is the account you’ll be using throughout the
book, and for most people this will be the only account you’ll ever need on your Pi. At the moment, although the
password is set to raspberry and it is the default, it means that anyone can log in to your Pi. While securing your Pi
against unauthorized intruders is probably not top of your list of priorities, it is still good practice to change this just
in case. Later on, you might make your Pi available via the Internet and in your excitement you might forget that you
didn’t actually get around to changing the password. Bad things will happen. So let’s take the opportunity to make the
switch now. Highlight change_pass and press Enter, and you’ll see something like Figure 1-19.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Your First Bite of Raspberry Pi

24

The configuration tool has executed the standard passwd command, which is why you’re looking at a text prompt
rather than a prettier menu. Just enter your new password (remember that it is case-sensitive: HeLLo is not the same as
hello or Hello) and press Enter. For security reasons, the password won’t be shown on the display and it won’t show
any stars to let you know you’ve actually typed something. You will then get prompted to enter your password again;
after you press Enter, you will be back at the configuration menu. (Getting a sense of deja vu yet?).

Configuring the Locale
Next is configuring your locale. By telling Linux where you are in the world, it can determine useful things such as
the separator between numbers and which currency symbol to use. For example, in the United States we might write
1,000.00, but in many places in Europe it would be written as 1.000,00. Either way for maximum comfort and to ensure
that everything just looks right, we need to set the locale. Highlight the change_locale option and press Enter.

You’ll now be presented with an extensive list of different locales to choose from (see Figure 1-20). The first two
letters in the name specify the language while the second pair of letters specifies a regional difference. For example,
en_US would be English customized for US users but en_GB would have settings specific to English speakers in
the UK. You should select the language and country pairs that most closely match your needs and choose them by
pressing the spacebar. You probably want both the ISO-8859 and the UTF-8 versions. If you decide to hedge your bets
and select all locales, be warned that you will be in for quite a wait as the Pi generates all the locale settings for you. In
fact, we tried this option and after waiting ages for just two locales to be generated, we got fed up and pulled the plug.
After you select the locales you want, press the Tab key once to highlight the OK button and then press Enter to move
to the next screen. Here you’ll need to pick the locale you want to use by default (see Figure 1-21). Once you have
made your choice, highlight it and press Enter. Once again, we’re back at the main configuration page.

Figure 1-19.  Time to set your password

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Your First Bite of Raspberry Pi

25

Figure 1-20.  Select which locales you want to use

Figure 1-21.  Now pick which locale you want to use by default

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Your First Bite of Raspberry Pi

26

Changing the Time Zone
The change_timezone option does pretty much what it says. After selecting this option, you’ll be shown a list of
regions (shown in Figure 1-22). In this case, we were configuring Pete’s Pi, so we selected Asia. The next screen will
give you a chance to fine-tune your selection and pick your country or city (see Figure 1-23). Once you’ve found the
closest match to you, select the option and press Enter.

Figure 1-22.  Select your region

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Your First Bite of Raspberry Pi

27

Allocating Memory
The memory_split option needs a bit of explanation. Your Pi has two main processors: the CPU (or central processing
unit) and the GPU (or graphics processing unit). The CPU is responsible for the general running of your machine,
and the GPU is responsible for handling the display and provides features such as 2D and 3D acceleration as well
as hardware support for decoding high-quality video streams. A GPU is dedicated to handling graphics (for the
most part) and cannot perform the role of a CPU. However, it does mean that if the CPU can offload all the complex
graphics work to the GPU, the CPU doesn’t have to be quite so powerful. By having both, the Pi keeps the costs and
power requirements nice and low but without sacrificing much in the way of performance.

So far so good; but what does that have to do with splitting memory? The Pi comes with 256 MB of RAM in
total and it needs to supply both the CPU and GPU. As the GPU is effectively an independent unit, it needs its own
allocation of memory. Rather than having dedicated memory for both, it is possible to split the 256 MB between the
two processors. By default, the Pi allocates 192 MB for the CPU and only 64 MB for the GPU. This is ideal if you want to
use the Pi as a server or you never plan to attach a display to your Pi. If you’re not using graphics, allocating additional
memory to the GPU is somewhat pointless.

On the other hand, if you plan to use your Pi as a mini desktop computer or to display high-quality movies, you’re
going to want as much memory allocated to the GPU as you can get away with (which in the case of the Pi means
splitting it down the middle and having 128 MB for each). It would be difficult to anticipate how everyone will want
to use their Pi, and apart from adding more memory to the Pi itself (and raising the cost) there is no easy solution.
Fortunately, we have the ability to choose how we want to allocate the memory ourselves.

For general usage and “getting started”—type tasks, we recommend you split the memory 192 MB/64 MB. To set
this up, select the memory_split option from the menu, press Enter, and you’ll have something similar to Figure 1-24.
Type in the memory split that you want and then press Tab to highlight the OK button and then press Enter.

Figure 1-23.  Select your country or city

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Your First Bite of Raspberry Pi

28

At Last! It’s Configured!
Wow, we finally made it to the end! After all that effort, you can now reboot the Pi and (finally) start using it! Press the
Tab key twice to highlight the Finish button and press Enter. Your Pi should shut down and then reboot. If you decided
to expand the root filesystem earlier, you’ll see this (as promised) during the boot process, as shown in Figure 1-25.

Figure 1-24.  Choose your memory split

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Your First Bite oF raspBerrY pi

29

This process can take a while depending on how big your SD card actually is. As it is being resized online, it won’t
actually interfere much with the startup process, but because it’s happening in the background, and it’s doing fairly
intensive work on your SD card, you might notice that things feel a bit sluggish. That’s completely normal, and it will
speed up considerably once this process has finished.

After all that effort (and a bit more waiting while the Pi boots up), you should finally be at a pretty graphical
display that should look something like Figure 1-26.

Figure 1-25. Resizing the filesystem on first reboot

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Your First Bite of Raspberry Pi

30

Congratulations! You now have a fully functional Raspberry Pi! If you don’t end up with a pretty desktop,
you might need to tweak your configuration a little. At the login prompt, you can log in with the username pi
and the password you set during the install. If you then run the following you will be able to change the settings
(boot_behavior is the option you want to change):

$ sudo raspi-config

You can also try starting the graphical interface manually with this:

$ startx

Summary
This chapter has taken you from getting your hands on your Pi all the way through getting it up and running.
We deliberately took it slow and covered all the basics as it’s always the so-called simple things that trip people up
(us included!). We looked at what comes in the box (and more importantly what doesn’t) and provided a shopping list
of all the things you’ll need to bake your Pi.

We then touched briefly on Linux—what makes a distribution and why we decided to stick with Raspbian for this
book. We then covered how to download Raspbian and get it on your SD card (which turned out to be much more
involved than we first thought).

Armed with a fully loaded card, we fired up the Pi and walked through the initial setup and configuration
process that ultimately ended with us looking at the very pretty Raspberry Pi logo in the middle of an equally
impressive desktop.

In the next chapter, we’ll start to explore your new desktop. We give you a quick tour of what comes with Raspbian
out of the box, and we finish up by showing you how you can tweak and customize it to suit your needs.

Figure 1-26.  At long last, we have a desktop!

www.it-ebooks.info

http://www.it-ebooks.info/

31

Chapter 2

Surveying the Landscape

Although the majority of this book focuses on getting you comfortable on the command line and really getting your
hands dirty with Linux, we would be completely remiss if we didn’t first show you how to use the graphical interface
that comes with your Pi. It’s not quite as flashy as what you might find on a Windows PC, a Mac, or even some Linux
distributions, but it’s fast, easy to use, and will let you do all the things you’re used to doing. And, of course, it’s all on a
device that fits in your pocket and draws less power than the monitor or TV it’s connected to.

We start off this chapter by looking around the desktop and seeing what interesting things we have to play with.
Some are obviously useful applications in their own right and some are probably less useful at this stage (for example
the Python development environment won’t be of much interest to you unless you’re programming in Python). We’ll
then trundle through the various menus and have a look at what we find.

Welcome to LXDE
Unlike Windows, Linux isn’t integrated with a particular GUI; it uses a separate application (a client and a server, in
this case) to provide one. This application is known as the X-server and it used to be by far the most complicated thing
in the Linux universe to set up. Although it has gotten a lot better, not too long ago, great time and effort needed to be
spent if you wanted to use the scroll wheel in that newfangled mouse of yours. Needless to say, the fun of that wears
out pretty quickly. These days, the X-server is almost a black box and very rarely do you need to actually touch it. For
that reason, we won’t go into any more depth on that subject in this book, but if you are a bit curious to find out more,
check out http://en.wikipedia.org/wiki/X_Window_System.

The X-server provides the framework for using a GUI, but it doesn’t actually provide the pretty desktops that
we’re used to seeing. They are provided by desktop environments. Again, we won’t cover how these all work, but
suffice it to say, like everything else in the Linux world, you have a choice about which one you prefer. For most
people, it comes down to which one comes with their Linux distribution of choice, although most distributions offer
a selection. The more advanced ones have all sorts of features and special effects, and understandably consume a
fair amount of resources while they’re at it. On the latest and greatest desktop or laptop, this is hardly a problem, and
most people jump at the chance to make their expensive machine actually do some work. However, it does become
something of a problem when you’re running a less-than-high-spec machine such as the Pi.

It’s not just the Pi that can struggle—computers of just a few years ago could easily run Linux, but struggled
with the new highly graphical interfaces. When you consider even older machines that would often get thrown out,
a suitable display manager could easily manifest as a perfectly useful PC. There’s still more to it, though; modern
netbooks are low-powered by design, with the aim of high efficiency for battery consumption as well as cost. They also
benefit from a minimalist design when it comes to the desktop.

When you need to stretch your processing budget, the best place to cut corners is in the feature set of the
graphical interface. Do you really need all those fancy features? Are transparent windows essential to what you’re
doing? Do you really need that 3D-rendered clock? If not, and you want to cut some fat, a desktop environment such
as LXDE will be right up your street.

www.it-ebooks.info

http://en.wikipedia.org/wiki/X_Window_System
http://www.it-ebooks.info/

Chapter 2 ■ Surveying the Landscape

32

LXDE (short for Lightweight X11 Desktop Environment) was designed for machines in which energy efficiency
and the need to run on hardware at the lower end of the performance spectrum was of critical importance. It aims to
be efficient in terms of CPU cycles and memory usage, and although some window managers eschew all unnecessary
features, LXDE tries to remain full of features at the same time.

Although we now know that the GUI is made up of a lot of moving parts, LXDE is mostly transparent when used.
Really there is no harm in thinking of LXDE as the main environment for your Pi and if you plan to spend most of your
time using the GUI, we feel there’s no harm in considering it a core part of the operating system. You can simply just
use it and accept it as being available. With that in mind, let’s move on to exploring what we actually have when we are
using LXDE.

What Do We Have Here?
Once you’ve installed and set up your Pi, and you’ve powered it up for the first time, you should be left with a screen
that looks like Figure 2-1.

Figure 2-1.  First boot of your Pi

How the icons are laid out really depends on the screen you connected to your Pi. It should look pretty similar;
the only real difference is how the desktop icons are laid out. And because Raspbian is constantly being improved by
the developers, it’s possible that you will see new icons or perhaps some replacements.

There are some key areas here that are hard to see in one large screenshot, so we’re going to break each part
down individually. For simplicity (not to mention the fact that they have become common idioms) we’ll refer to
various GUI elements by the name most people are familiar with. Thus we will discuss the start menu and taskbar.
Let’s start with the bottom left of the screen.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Surveying the Landscape

33

The Start Menu and Bottom Left of the Task Bar
The first button on the bottom left (the one that looks like an alien spider—see Figure 2-2) is actually the LXDE logo
and acts as the start button. The second button (which is indistinct even on a high-quality monitor) will start up
PCManFM, the LXDE file manager. This is the tool you reach for when you need to move some files around or do
some general tidying up. The next button (a globe) starts the default web browser that happens to be Midori in this
case. Like the other apps, you’ll find that most of these applications are designed to be lightweight and efficient.

Figure 2-2.  Start button and friends

So far, so good. None of these applications is really that different from what you’re probably used to doing on your
main computer. The next two, however, are a bit different: they control the environment rather than start individual
programs. The first button (the two overlapping windows) acts like a “minimize all” button when clicked: all the
windows currently being displayed will be immediately minimized. Clicking the button again doesn’t restore the
windows, though, so if you do have a lot of windows open, don’t expect to be able to click this button again to get them
back. This button has a second feature: if you click with the middle button (most scroll wheels can also be used as a
button), all the windows will be “shaded.” When you shade a window, it rolls up inside its title. We don’t really use this
feature (in all honesty, we never saw the point, but to each his own), but if it’s something you like, feel free to use it.

Next up are the desktop buttons. Microsoft Windows by default has a single desktop, and most people are
unaware that it can actually have more than one. This feature was added in recent versions of Windows, but Linux has
had it from day one, mostly because other UNIX-based operating systems have had it for considerably longer.

The feature is quite powerful in that it lets you have multiple desktops, each with its own applications. This allows
you to keep all your work applications on one desktop while keeping your chat and browser windows in another. By
default, LXDE provides two desktops, but you can have more if you want.

The rest of this part of the bar is taken up with the various applications that you’ve opened. Like Windows, all
running applications (at least those that provide a graphical interface) will show up here and you can use the bar to
select which application you want to interact with.

And on the Right Side…
After the taskbar, there are more icons, as seen in Figure 2-3. The first one appears to be just a black box, but it actually
acts as a CPU monitor. The more work you give your Pi, the greener this box will become. It acts like a chart, showing
you how your CPU is being used over time. You can actually amuse yourself (at least for a few minutes) by rapidly
moving your mouse pointer. The faster you move it, the more CPU is used, and the box becomes greener. Fun and
games aside, though, this monitor is quite useful because if your Pi starts acting a bit sluggishly, a quick look at the
monitor can tell you whether you are maxing out your CPU.

Figure 2-3.  The right side of the task bar

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Surveying the Landscape

34

Next to the CPU monitor is the clock, which doesn’t really need much in the way of explanation. The monitor
with the padlock in the middle is used to lock your screen (although we have heard that this doesn’t work for
everyone). This is very useful if you’re stepping away from your computer and you have some friends around who
think it might be funny if you made some “amusing” posts on Facebook. By locking your screen, their efforts will be
thwarted–assuming you remember to change your password to something other than the default, of course!

Last up is the power button that gives you numerous options for shutting down or rebooting your machine, as
shown in Figure 2-4 (although if you started manually with startx, then you will only see logout and cancel).

Figure 2-4.  Clicking the shut down button

Clicking Shutdown will do pretty much what you expect, as will Reboot and Logout. There is one thing that is
worth remembering, though: the Pi runs Linux, which is a multiuser operating system. That means that things might
be happening in the background that you’re not aware of. For example, someone might be streaming a video from
your Pi. If you shut down or reboot, you will disconnect anyone else who is connected to the Pi. This might not be an
issue for you right now, but it is something that you probably should be aware of.

And that’s pretty much it for what you have on your screen. We’ll cover the apps on your desktop after the next
section, in which we look at the mysteries of the start menu.

The Start Menu
The start menu concept has become almost ubiquitous across most operating systems (notably not the Mac) since
its introduction with Windows 95. Although various people might scoff at that and point to places where it might
have been seen before or insist that the start menus in Linux are nothing like those found in Windows, we try to move
beyond that. The fact is, the start menu concept works very well regardless who thought of it, and there is a reason
why it’s been adopted so far and wide.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Surveying the Landscape

35

Enough of the soap box; let’s see what our start menu has to offer (see Figure 2-5).

Figure 2-5.  The start menu

As before, there’s nothing really groundbreaking here. The first section lists all the applications that are available,
all neatly grouped together: in this case, Accessories, Education, Internet, Programming, and System Tools. Apart
from System Tools (and Accessories doesn’t look that inspiring), it’s hard to decide which of these options we should
delve into first. Before we can begin, though, we need to wrap up the rest of the items.

Preferences and Logout are fairly straightforward. We’ll look at some of the settings in Preferences that you
can tweak later on; if you press the Logout button, you will, well, log out. No surprises there. The final item is the
Run command, which lets us execute specific commands without the need to pick them from a menu, click an
icon, or open a terminal. Just as with Windows, this option can be a useful convenience. It also has autocomplete
functionality, as shown in Figure 2-6.

Figure 2-6.  The run command and autocomplete

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Surveying the Landscape

36

Here you can see we typed in gno, and it autocompleted to the app that matches the pattern. This can save you
a lot of time as you will get to know how many characters you need to type before the autocomplete kicks in with the
right answer. Quite often, command names (especially for GUI apps) can be pretty long and this can be real time saver!

Accessories
Now let’s take a look at what we have under Accessories. Like all the other menus, the items here can change as you
install more software, and on newer versions of Raspbian it might look a little different. On our Pi, the Accessories
menu looks like Figure 2-7.

Figure 2-7.  The Accessories menu

Debian Reference
First up is Debian Reference. As its name suggests, it’s a guide to all things Debian and because Raspbian is based on
Debian, it gets taken along for the ride. The manual is nicely structured and well written, and has had the additional
benefit of evolving over an extended period of time. The manual is a set of HTML pages, and when you click the link it
will open in the Midori browser. Simply click the first link as shown in Figure 2-8.

Figure 2-8.  You want the HTML version on the left

The second link contains the same content in plain text, but it is stored as a compressed archive and so it’s not
something you’d use for online viewing. As the manual is taken from the Web, this is a holdover from the days when
you might have wanted to download a copy for browsing offline. All being well, you should end up with the page
shown in Figure 2-9.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Surveying the Landscape

37

You can navigate the manual just like a web page. Although having a local copy is very useful, it’s not as easy to
search as asking Google, which will usually take you straight to what you want. That said, if you’re trying to figure out
why you can’t get online, you’ll be happy for a local copy.

File Manager
As touched on earlier, LXDE ships with the PCManFM file manager. Of course you can also access it from the task bar,
as shown earlier. Taking its lead from the minimalist design movement, this file manager is lightweight, simple, and
easy to use, but still has all the features you’re going to need. It works in a very similar way to Microsoft’s Windows
Explorer, so if you’re coming from a Windows background you’ll feel right at home with PCManFM (see Figure 2-10).
If not, you’ll be able to pick it up easily with just a few moments of clicking about.

Figure 2-9.  The Debian reference manual in all its glory

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Surveying the Landscape

38

When it initially opens, PCManFM will drop you into your home area. It will show you how much space you have
available on the bottom right (always useful in devices with relatively limited storage such as the Pi) and lists the most
common places on the top left. For browsing, you can simply click your way through the folders and you can use the
navigation icons on the toolbar to help you move quickly through your files. If you’re looking to get a bit more hands
on, we cover how to manipulate files in Chapter 4.

Image Viewer
Image Viewer is one of those applications that you’ll probably never open directly; you’ll almost always open it by
double-clicking an image file that by default will then open Image Viewer for you. Simple though it may be, Image
Viewer is not lacking in features and has all the basic tools you’ve come to expect, as shown in Figure 2-11.

Figure 2-10.  The PCManFM file manager

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Surveying the LandSCape

39

The first two buttons let you move back and forth through a collection of images. This is actually surprisingly
useful because people are now accessing albums rather than specific photos. To help with exactly that, there is also a
slideshow feature that you can access by pressing on the play button.

The next section has controls for how you want to actually view the image.

The first two are the traditional zoom controls•	

The third icon is for “fit to screen”•	

The fourth is show at full size (which, if it is a photo from a digital camera, means you’ll have •	
to scroll)

Last, the full-screen option to really take advantage of that 60-inch flat screen you just got your •	
hands on

In the third section are the controls for altering the image. The first two are rotate controls (rotate left and right,
respectively), and the second pair of controls allows you to flip the image horizontally and vertically. This is especially
handy when you took the photo at an odd angle and don’t fancy tilting your head 90 degrees in order to see your
picture the right way up.

The next set contains file controls. They let you open, save, save as, and delete the file, respectively. The last two
icons provide access to the preferences panel (nothing too interesting in there) and allow you to exit the program.

Figure 2-11. Image Viewer’s main interface

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Surveying the Landscape

40

Leafpad
In keeping with the minimalist theme, the Leafpad text editor does the basics and that’s about all. It’s very similar to
later versions of Microsoft’s Notepad and it is similarly easy to use (see Figure 2-12). It’s not much good for writing
letters to Aunt Maude or to the council to complain about the next door neighbor’s dog, but it’s perfect for when you
need to do some light text editing.

Figure 2-12.  Leafpad has a similar look and feel to Microsoft’s Notepad

Despite its simplicity, Leafpad still provides some of the most useful tools, namely being able to do a find-and-replace,
and enable and disable word wrap. Armed with those tools, you can accomplish pretty much anything.

Note■■  I f you feel that Leafpad is a little underpowered for your tastes, you might want to flip ahead to Chapter 6, in
which we show you some of the more powerful native text editors that you can get your hands on.

For the most part, Leafpad does exactly what it says on the box: it edits text, and if that’s all you need to do,
Leafpad is an excellent choice.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Surveying the Landscape

41

LXTerminal
LXTerminal is a terminal emulator for Linux that gives you access to a virtual console. We won’t go into any depth
on how to actually use this particular application because we’ll discuss the details in the next chapter. Suffice it to
say, this tool is used to give you direct command-line access to the operating system. For many people, this is a place
where angels fear to tread, yet for seasoned administrators, it is somewhere they call home. To find out whether the
command line is for you, though, you’ll have to wait until Chapter 3.

LXTerminal is a simple emulator (see Figure 2-13), but it gets the job done. It doesn’t have all the bells and
whistles that some emulators provide, but it is perfectly fine for the majority of people.

Figure 2-13.  LXTerminal up and running

One thing we will mention here is the prompt. When the font color is green, and the end of the prompt is a
dollar symbol, you know you’re running as a normal user and you don’t have root privileges (you can’t execute any
commands that can really hurt the system). Again, we’ll cover this topic in more depth in the next chapter;
we mention this distinction here so that the next program makes sense.

Root Terminal
This is all but identical to LXTerminal, except that instead of running as the normal pi user, it runs as the root (system
administrator) user. When you first run this application, you’ll get a popup message, as shown in Figure 2-14.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Surveying the Landscape

42

Although it looks like an error message, it just lets you know that the system is configured to let you run
an administrative-level command (in this case, running LXTerminal with root privileges) without having to
provide authentication. For the Pi, this is almost certainly what you want, but on a machine that’s connected
to sensitive resources and in which other people could feasibly access the machine, you might want to have it
password-protected.

A root terminal is very similar to a standard LXTerminal, but (as you can see in Figure 2-15) the prompt looks a
little different.

Figure 2-14.  Not a warning; you’re running admin-level commands without needing a password

Figure 2-15.  LXTerminal running as root

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Surveying the Landscape

43

Here you can see that that prompt is now in gray text, and the end of the prompt is the pound or hash symbol.
This means you are operating with elevated privileges and you could indeed run commands to effectively destroy the
operating system. Linux doesn’t try to second-guess you; if you tell it you want to erase everything on the disk, it will obey
that command and do so precisely. There is no safety net when running as root, which is why most people recommend
that you stay in your own user account as much as possible. We’ll come back to this theme many times in this book.

XArchiver
XArchiver is less likely to be called directly than Image Viewer, but nonetheless is probably an application that will
get a fair bit of use on the average system. This tool allows you to create and decompress archives of various formats,
which is essential when you’re downloading content from the Internet. XArchiver looks like Figure 2-16.

Figure 2-16.  XArchiver when it’s opened by hand

Here we downloaded the documentation to the Erlang platform (it was the first thing that popped into our
heads when we needed something to demonstrate XArchiver). After double-clicking the file, XArchiver was opened
automatically. The only button we have used so far is the extract all button, which is the second one from the right.
Clicking this will extract all the contents of the archive, which is usually what you actually want to do.

Education
The Education menu has only two items, but as they comprise some of the more interesting applications on the Pi, it’s
worth checking them out. The menu on our Pi looks like Figure 2-17.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Surveying the Landscape

44

Scratch
Scratch was developed at the MIT media labs by the Lifelong Kindergarten group led by Mitchel Resnik. The goal was
to create a way to teach people how to program without having to teach all the fiddly bits first. This made the tactile
approach in Scratch (in which you can drag and drop blocks of logic) much easier to pick up.

We can’t claim to be experts in Scratch (in fact, we first came across it when we were playing with the Pi) but we
are convinced that these sorts of applications will have a huge impact as the Pi spreads out across the waters. Getting
people hands-on with technology and providing them with a powerful system that lets them get started without
having to master all the underpinnings first is definitely a winner in our book.

If you’re not convinced, check out Figure 2-18; it certainly made us take a second look.

Figure 2-17.  Education menu

Figure 2-18.  Scratch programming environment

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Surveying the Landscape

45

Squeak
Squeak is a programming language that is preinstalled on your Pi. For licensing reasons, however, the install is not
quite complete, so you won’t actually be able to use it out of the box. We are not sure if this is a temporary issue and
one that might be resolved in future versions of Raspbian. At the moment, if you open Squeak you’ll see a window that
looks something like Figure 2-19.

Figure 2-19.  Starting up Squeak for the first time

After doing a bit of digging, we discovered the reason and also a post on the Raspberry Pi forums by jstout that
provided a handy shell script that would install the missing components for you. Thanks to jstout, we can help you get
Squeak up and running. You’ll need to open up LXTerminal and enter these commands (you could also come back to
this section once you’ve read Chapter 3 and are comfortable on the command line):

$ wget -r -O SqueakV41.sources.gz http://ftp.squeak.org/4.1/SqueakV41.sources.gz
$ gunzip -f SqueakV41.sources.gz
$ wget -r -O Squeak-4.3-All-in-One.zip http://ftp.squeak.org/4.3/Squeak-4.3-All-in-One.zip
$ unzip -j -o Squeak-4.3-All-in-One.zip "Squeak-4.3-All-in-One.app/Contents/Resources/Squeak4.3.*"
$ sudo mv SqueakV41.sources /usr/share/squeak
$ sudo mv Squeak4.3.image /usr/share/squeak
$ sudo mv Squeak4.3.changes /usr/share/squeak

This isn’t the time or place to discuss what those commands actually do, but the short version is this: they
download the missing components and place them in the right location for Squeak to find them. Once you’ve entered
these commands, you’ll be able to run Squeak without seeing that popup box. Instead you should see Figure 2-20.

www.it-ebooks.info

http://ftp.squeak.org/4.1/SqueakV41.sources.gz
http://ftp.squeak.org/4.3/Squeak-4.3-All-in-One.zip
http://www.it-ebooks.info/

Chapter 2 ■ Surveying the Landscape

46

Squeak is a dialect of Smalltalk, which is an object-oriented, reflective language. This makes it a very powerful
and expressive language (you can do more with less code) that has earned it quite a following over the years. It has
inspired various new programming languages (including Ruby) and was also used to implement Scratch, which we
discussed just a few pages ago.

We’re not Smalltalk experts either, but we do know that it is a very interesting and powerful language, and it might
make an interesting place for you to start your exploration of programming languages if you feel so inclined.

Internet
The Internet menu unsurprisingly contains applications that are specific for accessing the Internet. On our Pi, the
Internet menu looks like Figure 2-21.

Figure 2-20.  Squeak is fully operational

Figure 2-21.  The Internet menu

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Surveying the Landscape

47

Raspbian ships with three different browsers out of the box. They are all designed to be minimalistic and your
choice will come down to personal preference. For us at least, the preferred browser has to be Midori, which is the one
we’ll cover in this section. At the end of the day, if you know how to browse the Web on any computer, nothing in these
browsers will be new to you, and we’re covering it here more for completeness than out of real necessity.

So rather than going through all the browsers, we’re just going to touch on Midori because it offers both a
standard browsing experience and a private option. Most browsers on other platforms look very distinct when they’re
in private mode (usually a different color scheme or icon set), which ensures that you don’t accidentally type the
wrong thing into the wrong window. Midori, on the other hand, simply changes the name of the title bar that isn’t
really all that distinctive. Take a look at Figure 2-22.

Figure 2-22.  Midori in standard and private mode

As you can see, there’s not a lot of difference here. The private browser doesn’t allow you to add bookmarks, and
the ability to open previously closed tabs is not available. Other than that, they look pretty much identical. If you do
decide to take advantage of this feature, you should always double-check before you hit the Enter key.

Programming
The Programming menu consists of four items (see Figure 2-23), two of which we covered when we came across them
under the Education menu.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Surveying the Landscape

48

Because we’ve already covered Scratch and Squeak, all we have left is IDLE and IDLE 3. Actually, these two
are pretty similar in that they are both integrated development environments (IDEs) for the Python programming
language. IDEs provide a rich development environment in which all the tools you need are close at hand. They
usually include tools to run and test code as well as nicely formatting your source code so it’s easier to read. The
reason why there are two different versions is because there are two current versions of Python that for various
reasons aren’t mutually compatible. In many ways, scripts that you might write for version 2.x of Python will work
just fine in 3.x, but there are quite a few gotchas and changes in the language that make guaranteeing compatibility
impossible. This is why you’ll often see two versions of Python installed on any given machine.

Note■■  A t the time of writing, Python 2.x is still where most people are at, and many projects are still actively
developed using it. In fact, when we write new Python scripts we also use 2.x because it has the most libraries, a history
of documentation and blog and forum posts, and generally a large community. On the other hand, Python 3.x has had a
lot of tweaks and language improvements that will never make it to Python 2.x, and all the new ideas and development
are focused on the new series. Ultimately, Python 3.x is the way to go, and if you’re just starting out in your programming
career, we recommend you start out on Python 3.x. It certainly can’t hurt, and you can always look at Python 2.x if for
some reason you need to use it, and in reality going from one to the other is really not a big problem.

Because the two versions of IDLE are effectively identical in terms of how they’re used, we’re going to show you
IDLE from the 2.x branch (rather than IDLE 3), as shown in Figure 2-24.

Figure 2-23.  The Programming menu

Figure 2-24.  Firing up IDLE

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Surveying the LandSCape

49

When you first start up IDLE, you’ll be dropped into a Python shell. There’s nothing special about this prompt; in
fact, you can get the same prompt by running Python at the command line. IDLE really shines because it provides an
editor that supports syntax highlighting. If you’re new to programming, syntax highlighting is where the text that you
enter (the source code) is color-coded to make it easier to read the program. Keywords and structures are highlighted,
so it’s much easier to scan through a program (and check that you haven’t made any obvious typos) than if you simply
had black text on a white background. If you’re not convinced, try it sometime; you might be surprised.

Figure 2-25 shows a very simple program that prints “Hello world!” 20 times and exits.

Figure 2-25. Using the IDE component of IDLE

As you can see, the structure is a lot easier to read when you add a splash of color (or if you’re reading this in
the black-and-white printed version, you might have to use your imagination). You can open an editing window by
clicking File and selecting New Window.

Python is a very powerful language and is used in a huge range of places for all sorts of things. If you’re interested
in learning Python, check out www.python.org for more information on how to get started.

System Tools
This section won’t even need a subheading as there’s only one tool in this menu group, as shown in Figure 2-26.

Figure 2-26. The somewhat lonely System Tools menu

The Task Manager lists all the processes currently running on your machine along with how much of your system
resources are being used. Figure 2-27 is a snapshot of what Task Manager reported on our Pi (of course, yours will
likely be quite different).

www.it-ebooks.info

http://www.python.org
http://www.it-ebooks.info/

Chapter 2 ■ Surveying the Landscape

50

As you can see, the CPU is practically idle at the moment. Considering that it is running a full operating system
(and an advanced one at that), it might be surprising to see that the CPU isn’t doing any heavy lifting. Although when
compared with high-end Intel processors, the ARM chip in the Pi is far from impressive, this truly demonstrates that
you can get a perfectly good desktop machine running with surprisingly few resources if you are careful.

Our RAM usage tells a similar story. Admittedly, we don’t have much open at the moment (although you can see
from the process list that we have a VNC remote desktop session running), but we are still well under 50% usage and
with the new Model B’s packing 512 MB of RAM, this will allow even more applications to run at the same time.

The process list gives you a good indication of what’s running on the machine and how many resources are being
consumed on an individual basis. This is mostly useful when your Pi is acting a little bit funky, and you need to see
whether an application has suddenly decided to eat all your RAM or set your CPU on fire. If you do find an application
that is getting a bit too greedy, you can right-click its name and then select Kill, which will forcibly shut it down and
thus hopefully restore our Pi to full health.

Preferences
Now it’s time for a whistle-stop tour of some of the things you can tweak to make your desktop a little more
personalized. Because the tools in Raspbian are pretty much self-describing (not to mention fairly obvious), we’re
going to cover just the two main topics and let you explore the rest of the preferences for yourself. Because you really
can’t do much in the way of damage, feel free to explore to your heart’s content.

Desktop Preferences
To get to the desktop preferences, right-click your desktop and click Desktop Preferences. You should see a window
like Figure 2-28.

Figure 2-27.  I spy on my little Pi: Task Manager shows what your Pi is up to

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Surveying the Landscape

51

Figure 2-28.  Desktop Preferences

We’re not going to cover the Advanced tab (it only has one option, and it isn’t one that most people will be
interested in) and so we won’t show a screenshot of it. Everything on the Appearance tab is fairly straightforward, and
there are no unusual options or special tweaks that you need to do to get anything to work.

Customizing the Look and Feel
If you want to customize the look and feel of your entire desktop experience, you can tweak themes, icons, fonts, and
more from the Customize Look and Feel tool. You can access it from the Preferences menu, as shown in Figure 2-29.

Figure 2-29.  Finding Customize Look and Feel

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Surveying the Landscape

52

Because the tool is fairly straightforward, we’ll cover only the first screen, which allows you to change the color
scheme for the entire environment in a single mouse click. The default scheme is Mist, which we actually prefer, but
there are a number of other predefined schemes that you can choose from. The sample window will immediately
reflect your new choice, and so gives you a preview as to what your environment will look like once you hit the
Apply button.

Summary
And that’s pretty much it for the whirlwind tour of the desktop! We’ve really only scratched the surface, and the aim
is just to get you comfortable enough with what’s available to start exploring by yourself. Remember that Pi exists to
allow people to experiment and learn more about computing, so getting your hands dirty (even if you break your Pi
now and then) is really nothing to worry about.

This chapter covered the applications installed by default and accessible via the start menu, and we skimmed
over some of the interface features that are somewhat unique to the Linux world. We then finished off by looking at
the two most common configuration changes that people want to make.

In the next chapter we start to get really serious (sort of) and take you back in time to the command line, where we
introduce you to an interface that once you’ve gotten used to, you’ll wonder how you ever managed to live without it.

This will open the Customize Look and Feel app, as shown in Figure 2-30.

Figure 2-30.  The Customize Look and Feel tool

www.it-ebooks.info

http://www.it-ebooks.info/

53

Chapter 3

Getting Comfortable

Normally we don’t start a chapter with a figure (and technically speaking we haven’t in this one, either), but we’re
going for some good old-fashioned shock and awe. Take a look at Figure 3-1 (courtesy of Wikipedia).

You might be wondering why we thought it necessary to show you some technology from the early ‘80s (late
1982 in this particular case). In the olden days, computers lacked all the niceties that we have today, such as colorful
displays and mice. Back then, it was just text, often green on a black background. Mice were decades away, and the
only way to communicate with a computer was either through text-based menus or the command line. Because the
command line gave a great deal more flexibility than a set menu, the command line was by far the most common
interface and the one you’d be using if you accidentally stepped 40 years into the past. You’d sit at one of these screens
called terminals and tapping away endlessly into the night.

Figure 3-1.  TeleVideo 925 computer terminal

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Getting Comfortable

54

As such, the majority of the second section of this book is all about the command line and getting you
comfortable using it. Although things have improved somewhat in the intervening decades, the technology is basically
the same.

In this chapter, we take a really quick look at the history of computer interfaces and why the terminal has survived
as well as it has. We’ll then look at the various terminals available to you and how you go about getting to them. We’ll
then quickly explain the command prompt and let you in on a little-known secret about the different shells that are
available.

Ye Olde Computer
Although you can now quite literally buy a computer for $25, in the ‘70s you could expect to pay at least 100,000 times
that amount for a computer with any serious amount of processing power. Such machines would take up entire rooms
(if not entire floors), require incredible amounts of power, and generally look very impressive to passersby. A key
problem that owners of these things had to deal with was one of scale.

When your computer is worth more than the building it is sitting in, you want to make sure that you get the most
out of it. One approach to solving the challenge was to use time-sharing. The idea was that compared with a human
interacting with the computer, the computer was incredibly fast. In fact, even though these computers were puny by
today’s standards, they could still run rings around the people who were actually trying to use them. So this begs the
question: if the computer is spending most of its time waiting for the operator to enter commands and data, couldn’t it
be doing other things while it waits?

It wasn’t long before someone figured out that if the computer sits waiting for input, it can be better utilized with
more than one person entering data. That way, multiple people can enter data at the same time, and we’re no longer
limited by the speed of a single person.

Great idea, but how to carry it out? To make it work, we’d really want to put a screen in front of everyone who
needs to talk to the computer and with the available computer technology, even a very basic computer would
be impractical. Then again, we didn’t really need a computer on their desks; we just needed a way for them to
communicate with the big computer downstairs. In effect, we just want a keyboard and a screen with very long cables.

Say Hello to the Dumb Terminal
This is where the dumb terminal came in. It was called a dumb terminal because it was quite literally just a screen and
keyboard. Using instructions relayed from the computer itself, it would draw the text onto the screen. Whenever a key
was pressed, it would be sent to the server that would then reply with more updates for the screen. The dumb terminal
didn’t have any real processing capability; it just worked as an interface and that made it relatively cheap and easy to
install and maintain.

The technology did improve over the years, and the dumb terminal became “less dumb.” Support for different
colors and brightness was added, as were fancier features for redrawing and managing the screen. However basic the
concept, that of the dumb terminal just being an interface to a remote machine never really changed all that much.
In fact, although dumb terminals started to be replaced when more modern networks became available (not to
mention computing power became much cheaper), the approach continued to be used in the newer systems. This
wasn’t just because there was a lot of legacy systems that people had to keep using (ever see the old green-on-black
screens in some big department stores?), but it actually had some very useful properties that continue to be useful
even today—properties that we’ll go into once we’ve seen what a modern terminal looks like.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Getting Comfortable

55

You’ll often hear people referring to GUIs (pronounced “gooeys”) and TUIs (pronounced “tooeys”), and we’ll be
referring to them throughout the book as well. Fortunately, they are pretty straightforward, and you’ll be using
them in no time (assuming you actually want to, of course).

GUI, which is short for graphical user interface, is used by all modern computer systems in some shape or
another. It used to be really easy to spot a GUI because it was pretty much any device that used a mouse. The
lines have blurred somewhat in recent years, thanks to devices such as the iPad and Android smart phones, you
can have a GUI that just uses your fingers. It’s now much easier to know what a TUI is as generally anything that
isn’t a TUI is considered a GUI.

TUI, which is short for text-based user interface, is often used interchangeably with the command-line interface
(CLI). A TUI can present basic menu systems, but those systems are navigated via keyboard control rather than a
mouse.

In short, if you drive it from the keyboard, and there’s no mouse pointer, it’s a TUI. If you can click, point at it with a
finger, or see pretty pictures, it’s a GUI.

Modern Terminals
There’s quite a bit of evolutionary history between the dumb terminals we just talked about and what we use on
modern Linux systems today. Often you will find that you have a computer (for example, your Pi) and you’ll want
to connect to it over the network. When you do this, you are running a client on your desktop machine and you are
connecting to a server that’s running on the machine you want to connect to; in this case, it is your Pi (which is acting
as a server). Once connected, you are effectively “remote controlling” the Pi, so this type of connection is known as a
remote terminal (a software version of the dumb terminals of the past). Remember that as far as Linux is concerned,
whatever you type on your local client machine is as if you were typing on the Pi directly. This is just like a TV, on
which changing the channel, either on the TV itself or via the remote control, causes the same result.

In the interests of preserving your sanity (not to mention crossing the boredom threshold), we’ll leap ahead to the
modern day and show you what a remote terminal looks like on your Pi (see Figure 3-2).

GUIs AND TUIs

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Getting Comfortable

56

As you can see, it is still a text-based interface: the programs that run will all happen on the remote server. There
are some nicer features (color, for a start) and we can make the terminal as big as our screen can hold (traditional
terminals tended to be fixed size). In this particular case, we are connected to the Pi via Secure Shell (SSH) (more on
this later) over TCP/IP.

Why Do We Still Care About These Things?
Good question! In the modern era of iPads, iPhones, and Androids, why would we ever want to use a text-based
interface? For most people, especially if they have never used one before, a text-based interface really sounds like
something of a backward step, not a skill that they’d be especially interested in acquiring. Needless to say, we are most
fond of the venerable command line and here are some of the reasons why we think you should invest your time and
effort in getting to grips with it.

Simple
One of the key reasons is simplicity. A text-based interface is pretty hard to beat when it comes to being simple.
Literally all it does is send and receive text. You won’t be using a terminal to look at your holiday snaps, but it does give
you a clean crisp interface to issue commands to your Pi.

Figure 3-2.  SSH connection to a Raspberry Pi

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Getting Comfortable

57

Fast
You probably won’t believe us right now when we say this, but using the command-line interface will allow you to
complete many of your tasks much faster because you can be very precise and express a lot of work in a single line of
text—the sort of thing that would require multiple clicks or a strange convoluted process to express using a mouse.

Lightweight
Anyone who has had the misfortune of trying to remote control a desktop PC over a slow Internet connection will
appreciate exactly what we mean here. Sending screen updates across the Internet (especially for high-resolution
screens with lots of colors) by its nature simply takes up a lot bandwidth. It can also take a while for the data to arrive
at its destination, which is what gives remote sessions that unresponsive and blocky feel to them.

Text-based sessions don’t suffer from this problem because they only send text. They were designed for systems
in which the maximum speeds were a mere fraction of what is available to us today. So even on a very slow dial-up
link, a remote terminal session tends to perform extremely well.

It also puts less strain on the server. Maintaining a graphical interface means that the computer has to do quite
a bit of work. Having a mouse pointer means that the computer has to track that pointer and make sure that it reacts
properly when it touches an applications window or when the user clicks a button. A surprising amount of work goes
on behind the scenes, and this is why Linux servers rarely have a graphical interface installed, much less running.

Powerful
The command line gives you an awful lot of power. You can express complex thoughts and issue commands in a way
that just wouldn’t be possible via a graphical interface. For example, you can string commands together to make more
complex chains. You can take the output of one command and use that as input for another. This technique uses
something called pipes (we cover it more thoroughly in Chapter 5).

Always Available
Although things have gotten better in recent years, one of the most fickle pieces of software on a Linux box tends to be
the graphical interface. It always seems to be the first thing to go, and when your server stops booting and you need a
rescue environment, it’s unlikely that a graphical interface will be available to you.

A terminal, however, is the native way to talk to Linux (and most other UNIX-like operating systems) and as such,
it’s the one tool that will always be available to you in some form or another. Knowing how to use the terminal will let
you get out of scrapes and deal with situations that would completely stump you if you weren’t comfortable with the
command line.

Convinced Yet?
Hopefully, these highlights have at least convinced you that there might be something to the command line after all.
If you’re not totally convinced, that’s okay; it is hard to really get a feel for the benefits until you’ve actually spent some
time experiencing them for yourself. In the next section, we’ll cover how to actually get yourself to a command line,
explain what the stuff you’re looking at means, and cover some basic commands to get you started on your journey.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Getting Comfortable

58

For the most part, you won’t have to worry about the differences between the two. You will almost always use
a virtual terminal that is either a terminal window inside the Linux GUI or connecting via SSH. The only real
difference between a terminal and a virtual terminal is that a terminal is a single physical device such as a serial
port or sitting at the screen directly connected to the computer (without a GUI). A virtual terminal has a device
assigned to it, but there is no corresponding physical device. In fact, under Linux a new device is created and
assigned to each new virtual terminal.

We brought up the distinction here because some documentation (generally speaking, old documentation) might
refer specifically to one or the other. These days, though, most of your time will be spent on a virtual terminal, and
you won’t need to worry about the difference.

Three Terminals
There are three main ways to get to the command line. The first is to sit physically in front of the machine and use
what is often referred to as the console, the second is to open a virtual terminal inside the GUI, and the third is to
connect over the network using SSH.

Console
Although the console is simply just another terminal, it is a term that has gained a somewhat mythical status over the
years. When you’re working on the console, you are directly working on the machine because it is literally a keyboard
and monitor plugged directly into it.

It used to be very common for administrators to restrict certain users (such as the root user, more on that later) to
be able to log in only when sitting directly in front of the machine. Because the computer was likely in a locked server
room, this provided an additional level of security.

Most distributions do not come with this sort of security enabled, and now that remote access over the network
is the norm (and sometimes an administrator doesn’t even have physical access or the machine is on the other side of
the planet), this feature is far less useful.

Still, if you are sitting in front of your Pi, you can access the console by holding down the Ctrl and Alt keys and
then pressing F1 through to F6. F7 by default is where the GUI lives, so once you have finished with the console, you
can flip back to your GUI.

When would you need to do this? Well, if you can’t connect to your Pi via the network and you’re having trouble
with the GUI, the console will be your new best friend. Generally speaking, you won’t use the console very often
because there are usually more convenient ways to get the same effect (we cover them next). However, when setting
up the system or if you’ve decided not to use the graphical interface, the console will be your only real choice for
accessing the machine locally.

Getting a command line through the other two methods is easier and more flexible because as often at least one
of those options will be available to you.

TERMINAL OR VIRTUAL TERMINAL?

4
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ GettinG Comfortable

59

Opening a Virtual Terminal in the GUI
Raspbian uses the Lightweight Desktop Environment (LXDE). As its name suggests, it focuses on being lightweight,
which is just what you want when your computer sits squarely in the featherweight category!

The native terminal for LXDE is called LXTerminal, and fortunately for us it not only comes preinstalled but also
features on the Raspbian desktop, as shown in Figure 3-3.

Figure 3-3. Finding LXTermianl

We took the liberty of double-clicking the icon, and you can see that we have what can only be described as a
working terminal. Of course, there’s really not too much to show in this case because a terminal is by definition pretty
simple. You will probably find yourself using the terminal a fair bit if you’re planning to sit in front of the Pi and use
it as a more traditional computer. If you’re thinking more about working remotely, then you need to read the next
section, which is quite honestly a lot more interesting.

Connecting via SSH
SSH is a great way to connect securely to your Pi over the network (see the sidebar “What’s So Special About SSH?”).
It gives you all the benefits of a virtual terminal, but you can access it from any machine on the network. Potentially
this means that you could connect to your Pi at home from your work PC and fiddle about with it in complete security.
We find that SSH is by far the most common way we interact with servers in general, and because many people will
use the Pi as a headless device (i.e., no keyboard or mouse attached to it—maybe not even a monitor), we think SSH
will be the primary candidate for you as well.

There are two parts to the SSH equation. You need an SSH server and you will need an SSH client. Fortunately,
both are freely available and easy to set up.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Getting Comfortable

60

SSH is the de facto standard for accessing any UNIX-like machine remotely. It is even supported by many
network-enabled devices such as printers and high-end switches. The reason why it is so popular is because it
encrypts all the data between your computer and your server. If someone is listening to your connection, all they
will get is garbage. It also allows you to authenticate that the server is the server you think it is.

Before we had SSH, everyone used telnet, which is a very simple protocol and doesn’t have any sort of
encryption. This meant that if anyone could see your traffic (think public machines or WiFi access points), it
would be possible to simply read your password off the network in clear text. Telnet also had no way to confirm
the identity of the machine you were connecting to, which meant you could never be sure that you weren’t
accidentally providing your username and password to somebody else.

It is still possible to install a telnet server on Linux, but this is highly discouraged. There really is no good reason
to prefer telnet over SSH, so you should always use SSH when working on your server remotely.

Setting Up an SSH Server on the Pi
This one is actually very straightforward because unless you specifically disabled it when you installed Raspbian, the
SSH server will already be running (Raspbian enables it by default). In fact, all you actually need at this stage is the IP
address of your Pi.

One of the nice things about covering the Pi’s virtual terminal first is that we can now use that to figure out what
our IP address is. The Pi takes advantage of Dynamic Host Configuration Protocol (DHCP), which means that on the
vast majority of networks it will be able to sort out an IP address for itself. This not only saves us time but also means
you don’t need to figure out how to choose an appropriate address and then configure it. The marvels of modern
technology!

To find out the address, we’re use the sudo ifconfig command. This command (short for interface configuration)
will show you the configuration of your network interfaces. Figure 3-4 shows what it looks like on our Pi.

Figure 3-4.  Running ifconfig on the Pi

WHAT’S SO SPECIAL ABOUT SSH?

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Getting Comfortable

61

Here you can see that we have two network interfaces. The local loopback device (or lo to its friends) is a virtual
interface that network applications can use to talk to each other on the same machine. Because no hardware is
involved, it’s more efficient to use the lo interface as well as it being always available and configured in the same way.
Under Linux, most system services (such as printing and even the GUI) operate as client/server applications and
make extensive use of this interface.

Right now, though, we’re not all that interested in the lo device; we’re far more interested in the network
interface that connects the Pi to our physical network. eth0 (short for Ethernet device number 0; computers tend
to start counting at zero) represents our link to the real world. At this stage, we won’t bore you with what all the
information means, and it’s not really something you would look at on a regular basis. The most common reason for
running ifconfig is to find out the IP address and that is, of course, why we are here. In Figure 3-4 you can see the
following line:

inet addr: 10.2.42.132 Bcast: 10.2.42.255 Mask: 255.255.255.0

We’re really only interested in the IP or inet address, which in this case is 10.2.42.132. Armed with this piece of
information, we should be able to connect to the Pi from anywhere on your network.

Sorting Out an SSH Client
We are making the assumption that you’re either connecting from a Windows PC or from a Mac. If you are using a
different operating system, don’t panic: there is probably a suitable client for you to download. You can still follow
along with the other two tutorials regardless of which client you use (or on which platform)—the general process is
the same.

Putty for Windows

Putty is pretty much the standard that all other SSH clients are compared against and for good reason.
Not only is it full of features but it also happens to be free. You can download Putty from this address:
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html.

Because it is a little long for typing, you can get a similar result by searching Google for “Download Putty. ” Once
you get to the download page (see Figure 3-5), choose the first link on the page: putty.exe.

www.it-ebooks.info

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
http://www.it-ebooks.info/

Chapter 3 ■ Getting Comfortable

62

Putty is a stand-alone tool, so you can run it as soon as you’ve downloaded it; you don’t have to install anything
on your machine. This is generally pretty useful because it means you can stick it on a USB stick and carry it around
with you, and you can run it on other machines without needing Administrator privileges. If you keep losing track of
Putty (it’s amazing how easy it is to do), you might want to download the “Installer” version, which will install it on
your machine and set up the Start menu and Desktop shortcut icons for you.

Now that we have Putty, it’s time to fire it up. Double-click the icon, and you will probably see something that
looks a lot like Figure 3-6.

Figure 3-6.  Windows getting excited

Figure 3-5.  Downloading Putty

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Getting Comfortable

63

Windows is just warning you that the program hasn’t been digitally signed. You’ve probably come across this one
before, but when you’re installing some security-enhancing software, the last thing you want to do is install something
unpleasant instead. In this case, the official version of Putty isn’t signed, and you can ignore this error. If you plan to
use Putty a lot, you should probably uncheck “Always ask before opening this file”. Trust us, if you don’t do it now, you
will after the tenth or eleventh time you run it.

After you’ve convinced Windows to stand down, you’ll see a connection box that looks like Figure 3-7.

Figure 3-7.  Starting up Putty

The default settings are fine for connecting to your Pi; you just need to supply the IP address you discovered
earlier. Punch this into the Host Name (or IP address) box and then click Open. Because it will be the first time this
particular machine has connected to your Pi, you will see a warning similar to the one in Figure 3-8.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Getting Comfortable

64

Don’t worry; this is part of the SSH security system. It is letting you know that it hasn’t seen this particular server
before (well, it wouldn’t have, would it?) and is showing you the key for confirmation. We don’t know anyone who has
memorized the SSH fingerprint (although remembering the first four and last four digits goes a long way to making
sure you have the right one); and in any case, we were expecting to see this warning. Once Putty has remembered the
key, it will check it against the IP address and hostname each time you connect in future. If the remote server ever
sends back a different fingerprint, Putty will warn you that there could be a problem. More often than not, this occurs
when you rebuild or buy a new server, so you know why the key has changed. If you see a warning and you can’t think
of a good reason for it, think very carefully before logging in to that machine. In this particular case, you know the key
will be new, so you can simply select Yes.

Now you will be back to a somewhat familiar black screen with some text. So far it will only be this:

login as:

Because we haven’t gotten around to setting up different user accounts you’re going to log in as the ‘pi’ user
so just enter pi and press Enter. So far, so good. Now we just need to provide it with the password you set when you
did the initial install. We know that you changed the password as we suggested (you did, right?), but just in case you
didn’t, the default password is raspberry. Punch the password in, press Enter, and at long last you should see the
command prompt:

pi@raspberrypi ~ $

If you don’t have a Mac (or aren’t particularly interested in using SSH from one), jump ahead to the next section:
the command prompt.

Figure 3-8.  The initial warning from Putty

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Getting Comfortable

65

This note falls under the “obvious-until-proven-otherwise” category. When you’re working with remote terminals,
it is disturbingly easy to get disoriented and start running commands on the wrong machine. If you are trying to
reboot the Pi on your desk, you don’t want to accidentally reboot something else such as a corporate server (you
never know where your new Linux skills will take you!).

SSH on the Mac

If you’re using a Mac rather than a PC, you won’t be able to use Putty. That’s not a problem because thanks to its UNIX
roots, the Mac comes with a good SSH client built in. All you need to do is open a terminal window and run the SSH
command.

First, get Terminal up and running. You can find it in the Utilities directory inside Applications. You can also find
it by using Spotlight (the magnifying glass at the top right of the menu bar and typing in Terminal.

You’ll find that it isn’t too different from the Terminal you were using on the Pi, and there’s a good reason for
that. As mentioned earlier, the Mac is actually based on UNIX, just as Linux (and hence Raspbian) is. Although the
Mac does a good job of keeping its UNIX side well hidden (you can use a Mac for years and never come across it), you
might want to dig into it a bit more if you find Linux and the command line to your liking.

Now that Terminal is open, connect it to your Pi. You’ll use the ssh command; because there is no GUI, you
have to specify the relevant options on the command line. Based on the previous example, your terminal should look
something like Figure 3-9.

Figure 3-9.  Connecting to the Pi from a Mac

LOOK BEFORE YOU LEAP

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Getting Comfortable

66

To save space, Figure 3-9 shows the whole process rather than just an empty terminal window. The bit we’re
interested in right now is at the very top:

$ ssh pi@10.2.42.132

The command is ssh, but we have provided some additional information: the user and IP address that we want
to connect to. You can read the options as “user pi on server 10.2.32.132.” A bit like an e-mail address, it is a nice
succinct way to show who we want to connect as and where we want to connect to. You should, of course, replace the
IP address with the one of your Pi.

The first block of text is something you’ll see whenever you connect to a new machine:

The authenticity of host '10.2.42.132 (10.2.42.132)' can't be established.
RSA key fingerprint is 31:a4:39:be:64:a6:99:45:bc:5b:d1:c1:2f:71:94:b5.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '10.2.42.132' (RSA) to the list of known hosts.
pi@10.2.42.132's password

This is just the ssh way of warning you that it can’t determine whether you’re connecting to the server you
think you’re connecting to and shows you the key that the server used to identify itself. In this case, you can ignore
the warning and say Yes. If you want to know a bit more about what it all means, we covered it briefly in the “Putty
for Windows” section. After you enter your password (raspberry is the default) you should end up at the following
prompt:

pi@raspberrypi ~ $

Now that you have your command prompt, you’ll look at what it actually means.

Welcome to the Command Line
Whichever route you take to get to a terminal, the end result will ultimately always be the same: you’ll end up sitting at
a command prompt (or simply a prompt) that will look something like this:

pi@raspberrypi ~ $

There is actually quite a bit of information here, but what does it all mean? You can probably figure most of it out
from what we’ve been doing so far in the book, but for completeness, here is how it breaks down.

The first part (pi in the example) is the username. This isn’t especially useful (or awe inspiring) when you have
only a single Pi and a single user. It is, however, quite useful when you end up having to manage many users or when
you have a variety of accounts of different machines. This is where the second part comes in (raspberrypi in the
example) because it tells you the hostname of the machine you’re connected to. Together, this lets us know who we
are and where we are. Again, not terribly useful with one Pi, but this information will come in handy some day.

Caution■■   We’ve highlighted this elsewhere, but it’s so important that we’re going to say it again. When you have more
than one terminal open, it is all too easy to run a command on the wrong server. Sometimes you end up running more
than one command before you realize your mistake. Often no harm is done, but if you accidentally rebooted a critical
server at work when you actually meant to reboot your Pi, you’re going right to the top of your IT department’s revenge
pending list.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Getting Comfortable

67

The next item on the prompt (the ~ or tilde) actually tells us which directory we’re currently in. The tilde is a
special case because it refers to the home area of the current user. You can think of it as shorthand because really
that’s all it is. Any time you refer to your home directory (which in this case is /home/pi), we can simply replace it with
the tilde. Time for a quick example:

pi@raspberrypi ~ $ pwd
/home/pi
pi@raspberrypi ~ $ cd ~
pi@raspberrypi ~ $ pwd
/home/pi
pi@raspberrypi ~ $

Here we used the pwd (short for print working directory) command, which prints out the full path of the directory
we’re currently in. In our example, it printed out /home/pi because that’s the pi user’s home directory. We then used
the cd (short for change directory) command to go to the ~ directory. We used pwd again and were able to verify that
after changing the directory we were back where we started. We’ll be explaining these commands more thoroughly in
the next chapter, but isn’t this command-line stuff at least a little bit interesting?

When referring to the ~ in general speech, you refer to it as home directory. So if you sat at the prompt in our
example and someone asked you what directory you were in, you would say you were in your home directory or if you
wanted to be explicit you would say that you were in the pi user’s home directory. If you wanted to get really specific
you could even mention the hostname as well. You wouldn’t say that you are in the tilde or “wiggly line” directory.

However, when you are giving someone a path to enter, you would say tilde. For example, if you wanted the user
to go to ~/test/, you would say “type cd space tilde slash test slash and then press Enter.” This is because tilde in this
case refers to something specific that you are using as a convenience to get to a location rather than actually telling
someone what that location is. It also helps prevent confusion with relative paths, but again, that’s something for the
next chapter.

Note■■   We’ve heard tilde pronounced as both tilled and as till-duh, so you should expect to hear both of them in the
wild. Interestingly, though, you might find that whichever one you use, people might have trouble understanding you, and
this applies even to experienced administrators. It’s not because you’re pronouncing it wrong; it’s just they don’t know
that the “wiggly line to the left of the 1 key” is actually called tilde. If you find yourself in that situation, referring to it as
“the wiggly line one” seems to be a fairly safe bet.

The last part of the command prompt shows you what your access level is. Linux systems are pretty basic when
it comes to system privileges. It can generally be summed up this: you are either the root user or you’re not. Now,
there are exceptions to this rule and being a member of certain groups can allow you to do certain things that would
normally require root access. That said, this is really the exception rather than the rule. If you are root, then you can do
pretty much anything you please without hindrance. If you are any other users, expect to find your abilities drastically
curtailed. This isn’t as true today as it once was because there are tools such as sudo that allow an administrator to
grant the ability to run certain commands with root privileges without that user having access to the root account. Of
course, ultimately sudo runs as root and it just decides whether it will run the command that you asked it to, so it still
obeys the all or nothing rule.

From the prompt’s perspective, if you are a normal user, you get a dollar sign as a prompt. We’re logged in as
the pi user (which obviously isn’t the root user), so we too have the $. If we were logged in as root, we would be a
privileged user, so we would get the hash symbol (or the pound sign if you’re not from the UK). A root prompt looks
like this:

root@raspberrypi ~ #

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Getting Comfortable

68

The hash symbol is a sign (and a warning) that you are running with elevated privileges and that you should
therefore be very careful about what you type. The prompt also shows the username as root, which provides an
added indication. However, these subtle hints are easy to miss (people don’t tend to study the prompt before each
command), so always check who and where you are before you press the Enter key.

That’s really all there is to the prompt. Most shells allow you to customize it to show different information, and
occasionally some administrators do change this. In our experience, most people don’t bother, and we rarely feel the
need to change it ourselves. The reason why we’re bringing it up here is because if you ever do log in to another Linux
machine, and the prompt is wildly different, it’s not a cause for concern. The terminal works in exactly the same way
except the prompt has been customized.

Different Shells
Okay, maybe we oversimplified things when we said that all terminals work alike. In truth, there are some minor
differences, especially in what features they support, but more often than not you won’t notice. In fact, what will likely
catch you out is when the remote machine is using a different shell. A shell is a program like any other but rather than
being a tool for browsing the web or reading e-mail, it provides a command line for you to interact with the operating
system. It operates like a wrapper around the kernel and that’s how it got its name: by being the shell around the
kernel just like a peanut.

So far, we’ve been making use of the BASH or Bourne Again Shell. It is by far the most popular shell in use today
and it’s available on every Linux distribution. It’s also usually the default, which is why you’ll never have to worry too
much about which shell your system is running.

The reason we’re bringing this up here is because, like everything else in the open source world, opinions vary
on what makes the best shell. Some take a bare-bones approach and only support the most basic features while
shells like BASH come with batteries included and have more features than you can shake a stick at. Despite BASH’s
popularity, it is conceivable that at some point in your illustrious Linux career, you might come across something else,
and forewarned is forearmed.

We’re not going to spend any more time looking at the different shells because quite honestly you’ll probably
never need to worry about it. Even if a machine is using a different shell, you can probably start BASH to replace it
(most systems have BASH installed, even if you get a different shell when you log in). Because system commands are
the same regardless of which shell you use, even if you can’t get to BASH you’ll probably find you can do everything
you would normally do. In fact, most shells are interchangeable for the most part, and chances are even if you were
using another shell, you probably won’t even know it!

Summary
This chapter introduced you to the terminal and its rich (if not exactly fascinating) history. We then discussed how the
terminal is still used today and how it has been adapted to suit our modern needs. We then looked at the three main
ways that you can get to a terminal on your Pi: the console, a virtual terminal, and over the network via SSH. Next we
gave a quick description of the command prompt and touched on some interesting commands to highlight a point
(which we absolutely promise will be explained when you turn the page), and we wrapped up the chapter by giving
you a heads up about the different shells out there and how they may (but probably won’t) trip you up.

Coming up in the next chapter is all you need to know to happily navigate around your Pi, create files, modify
files, delete files, and much more. This is where we start to get really serious about the command line and where you’ll
start picking up some real hands-on skills.

www.it-ebooks.info

http://www.it-ebooks.info/

69

Chapter 4

The File-Paths to Success

This chapter takes a look at what a filesystem is and how different operating systems try to make sense of them. We
explain the difference between separate root filesystems and unified root filesystems, and why knowing this up front
might save you a lot of headache.

We then move on to looking at the filesystem presented to you on your Pi. We explore the standard layout and
explain what goes where and what it actually does. We will also show off some simple commands that highlight some
benefits of the UNIX “everything-is-a-file” approach to system design.

Next we will show you how to move around your system, and you’ll learn about fully qualified and relative paths.
We’ll show you how to create directories and files (and then copy, move, and delete them), and we’ll explore Linux
file permissions and show you how Linux decides who can do what to your files. We’ll also touch on users and groups,
and show you how to set ownership and file permissions on your own files.

We’ll then round off the chapter by showing you how to create the Linux equivalent of shortcuts.

What Is a Filing System?
We actually planned to start this section with a dictionary definition of what a filing system is, followed by our
interpretation. Unfortunately, most of the definitions we could find basically said “a filing system is a system for filing,”
we’ll skip that part and go straight to our own definition. It does suggest, however, that although a filing system is easy
to talk about, it is a lot harder to define. We think a filing system is this:

A way of sorting and categorizing data that makes finding something easier

This definition covers everything from having a simple in-tray (at least you know where the document is, even
if you can’t put your hand on it right away); to the way you view your contacts on your phone (that’s an alphabetical
system right there); all the way to some of the more exotic systems such as the Dewey Decimal System, used to
categorize nonfiction content at your local library.

Actually, libraries are an interesting use-case for filing systems because most of them have at least two going
on at the same time. Generally libraries tend to arrange fictional work by the surname (and then forename) of the
author, whereas the nonfiction section is sorted based on Dewey Decimal numbers. By using two systems at once,
they solve a fundamental problem. Storing books by the author’s name is great if you have a favorite author and want
to find more books. When it comes to nonfiction, though, you probably want to browse a selection of books on a
given topic, without a particular author in mind. If those books were sorted by author name, you’d probably never
be able to find anything.

Some libraries take this a step further by sorting fictional books first by genre (say Sci-Fi or Fantasy) and then
within that category they sort by author name. This has some pretty neat benefits. You can still go straight to your
favorite author because you’ll know the genre, but you can also browse for similar books with the same genre. If you
are looking for the next best thing in the fantasy genre, you can simply stand in that section and flick through.

So far, so good. Filing systems make finding things easier, and we can see that it’s important to use the correct
filing system for the task; otherwise, you’d probably be better off with no filing system at all.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ The File-Paths to Success

70

But what does this have to do with computers? Well, one of the major tasks for any computer is to process
information, which means that it has to be able to store and retrieve information easily. Older computer systems did
use the alphabetical system and it worked very well, but as soon as there was a buildup of a number of files, it started
to get very messy; and finding information became a challenge.

This issue was addressed by having the ability to create a directory (often called a folder these days), in which
you could put related files. This helped a lot, but the same old problem started to creep up on people. Yes, you could
have a directory for accounts and another for tax returns, but what if you were an accounting firm and you had lots of
accounts and lots of tax returns? Soon you were back to where you started because you either had a small number of
directories with large amounts of files or a large number of directories with only one or two files in them.

Around the same time, the term filing system (used predominantly for paper-based systems) became shortened
to filesystem, which is almost exclusively used to refer to the way a computer stores data on a disk. Because this is the
term you will come across most often, we’ll switch to using the filesystem term as well from now on.

The last change to filesystem structure that remains familiar to this day was to allow directories to contain other
directories. This would allow you to have a great deal of flexibility to store content in the most appropriate ways. As
always, there’s more than one way to arrange a given set of files, but by and large the system has served us well and
with modern search technology, finding what we’re looking for is easier than ever.

More than One Filesystem
Here is where we hit a bit of a snag with this approach. A filesystem sits on top of some form of storage. That can be a
hard disk, a USB stick, a DVD, or any number of storage media. Each device is effectively independent from any other.
This makes sense because you can take a USB stick from your laptop and then use it on your desktop machine. Clearly
there is no link between the filesystem on the USB stick and your laptop because otherwise your desktop wouldn’t
have all the information it would need to find the files.

Each filesystem has a root directory, which is the main directory on a device and holds all the other files and
directories. Like the root of a tree, all the files and directories branch off from this central location. This does pose a bit
of a problem, though. If each device has its own filesystem and root directory, how do you easily present this structure
to the end user? It turns out that there are two approaches to solving this problem. The first is separate roots; the
second is a unified filesystem.

Separate Roots
This approach was adopted by Microsoft all the way back in the days of MS-DOS and it’s still with us today. The
approach is very simple. Each device has its own root entry and the user can then use this entry to locate the device of
interest and then can simply navigate the filesystem as normal to find the file. Under Windows, each root is assigned
its own letter. For historical reasons, the system disk on Windows is referred to as C:, which you’ll often hear people
refer to as the C drive. Floppy drives are assigned A: and B: (PCs with hard disks tended to have two floppy drives) and
because few people had more than one hard disk, the CD-ROM drive tended to be assigned to D:.

This system is really easy to use, and there is never any confusion about where a particular file is because you can
tell simply by looking at the drive letter. However, there are a couple of issues with this design:

First, because root devices are assigned to letters, and there are only 26 letters in the alphabet, •	
you are limited to 26 devices. Hardly an issue to home users even today, but back when
businesses were using large mainframes, they could have hundreds of such devices.

The second issue is that the user has to be aware of the physical location of the file, which can •	
actually add complexity because it ties the location of the file to the physical device that the
file is on. If a bigger disk is added to the system, and the files were moved to that new location,
their root device would change. Any person (or software) that depends on a file’s location
would need to be updated, and that’s never fun.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ The File-Paths to Success

71

In short, although the system employed by Windows is simple and effective, it can become an administrative
headache on very large and distributed systems. These days there are lots of ways around that, and new techniques
have emerged to hide this structure beneath the surface, such as the Microsoft Distributed File System (DFS) for
network shares and libraries for grouping content in one place on your desktop such as documents and music. So it
really isn’t a huge issue for Windows systems today. However, back when UNIX reigned supreme, these technologies
weren’t available, and they went with the other approach: a unified filesystem.

Unified Filesystem
Linux, being based on UNIX, has a unified filesystem. That means that unlike Windows, which has multiple root
devices, a Linux system has only one and it is always mounted on /, which is UNIX-speak for the root directory.
If there is only one root directory, then how does Linux handle additional devices, all of which we know contain their
own filesystems?

The solution is to take the root directory of the new device and then attach it on an existing directory in the tree.
This is known as mounting a filesystem, which allows Linux to have an almost unlimited number of devices because it
can attach them anywhere in the existing tree. This means that you could mount one device and then mount another
device on a directory inside the first device. From the user’s point of view, they can move through all these different
directories as if they were all on one big device. The physical structure (that is all the disks and the raw data on them)
is completely hidden from the end users. They have no way to tell they’ve crossed from one device to another.

This solves the issues highlighted with the separate root approach in that the unified filesystem is consistent
regardless of what the underlying mechanism is. In fact, you can mount network file shares and even virtual
filesystems into the tree. Of course, the benefits of the separate root approach have now become the downside for the
unified approach. It’s no longer easy to see where things are going, and this again can make things more confusing.
Like Windows, Linux systems have evolved over time so that these problems aren’t quite as pronounced as they would
otherwise be. However, these benefits are mostly seen in the GUI and tend to be far less pronounced when using the
command line.

The Mac has to be Different
As an interesting comparison, OS X on the Mac makes use of both approaches. Under the covers, OS X is a UNIX-based
system and so it does have a unified filesystem. However, unless you go to the command line (and most Mac users
don’t), you will never see evidence of this. When you attach a USB stick to the Mac, it will mount it in a similar way as
Linux, but it will show it to the user as if it were its own root device in a similar approach to Windows. However the Mac
doesn’t assign a drive letter, it just sets up a unique name.

Bring it All Together
Admittedly that’s a fair bit of theory and you’re probably wondering where all the fun commands are that we promised
to show you. You might also be wondering why we just bored you with all that, and when (if ever) such information
might be useful. The reason we’ve put emphasis on this theory up front is because when we started out with Linux, a lot
of the things that caught us out were preconceptions from using other operating systems. When one of us first installed
Linux some 15 years ago, it took several hours of swearing before he figured out what “you need a root / device” meant.
This isn’t just a Linux thing, a dabbling with the BSD family of operating systems and its alternative way of handling
disks caused us to wipe the wrong disk because we were thinking Linux and not BSD.

So hopefully this last section will save you from some of the pain that we went through when we first started out.
You don’t need to memorize all the theory, but if you come away from this section with an appreciation that despite
many similarities, Linux is not Windows or a Mac, then you will be ahead of the game.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ The File-Paths to Success

72

Everything as a File
Now normally when we discuss this topic, we start by talking about hard disk partitions because most people are
familiar with them, and there’s a nice easy mapping between the way Linux presents them and the physical device.
Because the Pi doesn’t technically have a hard disk (it pulls some strings to make the SD card look and feel like one),
this easy example isn’t actually available on the Pi. The thing is, it’s too good an example to pass up, so we’re going to
stick with the classic. So without further ado, here are the files that describe the disk set up on one of our servers:

/dev/sda
/dev/sda1
/dev/sda2
/dev/sdb
/dev/sdb1

As you can see, these files all live in the /dev directory, which is where Linux keeps all the device files. There’s
quite a bit more to say on this, but we’ll come back to it a little later because, trust us, it will make much more sense
if we cover it last. So for now, let’s ignore the directory and focus on our collection of files. You’ll notice that in this
example, all the files start with the sd prefix because they are all “SCSI disks” and share the same driver. For machines
that have IDE-based disks, the prefix is hd for hard disk.

So now we know that we have some SCSI-based disks (SATA disks also show up as SCSI), but what else can we tell
from those files? Well, you’ll notice that we have sda and we have sdb. The first SCSI disk on the system is assigned to
sda, and the second is assigned to sdb. No surprise that the third disk will end up being assigned to sdc. Because we
don’t see an sdc in our example, we can assume that there are only two disks on this system.

Now we’re really getting somewhere. There are two SCSI disks on our system, and we just have one more thing
to discuss: the numbers stuck on the end of the names. In this case, the number refers to the partition number on the
drive. The first partition is 1, and the second partition is 2. Nice and simple with no real surprises, we’re sure. With this
additional information, we not only specify which disk but also which partition on that disk.

This does, of course, beg the question of why you should care. Surely there must be an easier way to find out
which disks are attached to the system? Well you’d be right, but we’re not looking at this to discover what’s connected
to the system. Instead, we’re looking at how we can specify a particular device that we want to access. This is because
everything in Linux is a file, so even physical devices are represented in that way. When we want to access a hard disk
or we want to access a particular partition, we do so by accessing the relevant file. Not only physical devices follow
this rule; directories are files as well. In day-to-day use, you don’t have to think about this, but it’s a very powerful
feature. By treating everything as a file, Linux provides a standard way for all programs to talk to all things. This greatly
simplifies development and allows us to do some impressive things, such as redirecting input and output or using the
output of one program as the input for another. We cover this in more depth in Chapter 5.

Some real-world examples are useful here. When you want to make changes to the partition table on a hard disk,
you use the fdisk tool. The fdisk tool will need to know which disk you want to work. Assuming that you want to
partition your second disk, the command would look like this:

$ fdisk /dev/sdb

Because we’re partitioning the drive, we want to refer to the whole device, and /dev/sdb lets us do that. But let’s
say we have done our partitioning, and we have one big partition that we want to format for Linux to use. The command
for that is mkfs.ext4 (on modern Linux distributions), and as before, you’re going to need to tell the command what
you want to format. In this case, we want the first partition on our second disk so the command would look like this:

$ mkfs.ext4 /dev/sdb1

Again, this makes sense because we’re referring to a specific partition on a specific device. No big leaps of faith
here, but we can now share a little secret with you. The mkfs.ext4 command doesn’t really care what filename

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ The File-Paths to Success

73

you give it. If you forgot to put the 1 on the end, it would have happily formatted the entire device. This is a case of
“everything as a file” at work because everything is a file, and files are all accessed in the same way. Our tools simply
read and write to files; they neither know nor care what it is they’re writing to!

This concept takes a bit more effort to really understand. Under the covers, Linux manages all these different
devices for us, each with its own specific requirements and drivers. To keep things simple for application developers
(not to mention the users), Linux hides all this complexity and instead presents each device as a specific file. This
brings us nicely back to the /dev directory (we told you it would come up). The files in that directory are special in that
they don’t really exist, at least not as physical files that are stored anywhere. Linux creates a virtual filesystem that it
then populates with files for the devices that are available on a given computer. Because our Pi doesn’t have any SATA
or SCSI disks, you won’t find any /dev/sd files on your Pi.

Filesystem Layout
Let’s look at how the filesystem is laid out on your Pi. You’ll find that the structure is very similar to what you’d find
on any Linux system, so not only will this section help you master your Pi but you’ll also be able to navigate servers
as well.

/ (Root Directory)
This is the root directory (not to be confused with the root user’s home directory) that represents the top of the
file hierarchy. Everything goes somewhere in or under this directory, no exceptions. As we discussed earlier in the
chapter, Linux has a unified hierarchy, and this is where it all starts.

/root
This is the home directory for the root user and spends a large amount of its time being confused with the root
directory (/). It can get more confusing because if you are in the root directory and someone asks you to “go into the
root directory,” which one do they actually mean? Often you can easily tell from the context, but if not, don’t be afraid
to ask for clarification; you’d be surprised how often this one comes up.

/etc
/etc is arguably one of the most important directories on your system. It contains most of the configuration files for
not only your system but also the applications that you might have installed (such as the Apache web server). Many
users new to Linux take care to back up their applications, but often forget about the configurations stored in /etc.
At the end of the day, the application can usually be replaced quite easily, but getting that config right from scratch
can be a real headache. This is a directory you want to take great care of.

/proc
/proc is a virtual filesystem that the kernel uses to provide easy access from userland tools (that is, software that is run
outside of the kernel). Everything you ever needed to know about the system state or running processes can be found
in /proc. Two common examples are the CPU configuration (stored in /proc/cpuinfo) and memory usage (stored in
/proc/meminfo). Most of this information is read-only, which makes sense because it is just a virtual representation.
However, some files do allow communication to go both ways and you can potentially use it to tweak kernel and
system settings while the machine is running.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ The File-Paths to Success

74

/var
/var is generally where you’ll find files created by your applications and the system itself. For example, most
applications will store their logs in /var/log/, and many will store the lock files in /var/run/. Lock files don’t have
any meaningful content; an application just uses them to work out whether it is already running so that you can’t
accidentally have two copies running at once. On Raspbian, the Apache web server uses /var/www/ for storing a
website’s files. In other distributions, this is not the case—such files tended to be located in the /srv/ directory.
That said, more mature applications may still be in /var, even on modern distributions.

/boot
Traditionally, the /boot directory actually lived on its own small partition on the first hard disk. At the time, the
majority of computers were unable to boot from a single big partition, so it was very common to see these split out.
On modern machines (although the Pi still requires it), this is no longer a problem, so this directory is often included
in the root directory directly. As its name suggests, it holds the key files needed to boot a system, including the
bootloader and the Linux kernel.

/bin and /sbin
These locations store user and administrative programs, respectively. When you try to run a program from the
command line, there are specific places that the system will look for the application. This list of locations is known
as the path. Usually a normal user only has /bin in their path, so they effectively can’t see applications in /sbin.
There are some applications that the user can access even though they’re generally used only by administrators, but
the user needs to know where they are. This usually doesn’t pose a problem, and you won’t ever need to go looking
for anything.

/dev
We already touched on this directory in the “Everything as a File” section. It contains a file for each device or
subdevice on the current system and provides a way for system tools (and, of course, users) to easily access the
hardware on a particular machine. Besides the disk devices discussed earlier, there are also devices for graphics cards,
sound cards, virtual terminals, and more.

Note■■   You won’t find network cards in the /dev directory because they’re considered a special case. To find
information on network interfaces, you need to use the sudo ifconfig -a command. This will list all the network
devices that Linux knows about. For more information, check out Chapters 3 and 9.

/home
Traditionally, all user home directories would be stored under /home and this was often its own partition, disk,
or network share. The idea was to keep user data separate from system data and applications. Most UNIX-based
systems still follow this rule, but there are occasions when you will find some home directories living elsewhere
(i.e., the root user’s home directory). The Mac, for example, stores home directories in /Users, and some businesses
will put different users in different locations based upon their needs. Although /home generally contains only home
directories, there’s no requirement that home directories actually reside here.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ The File-Paths to Success

75

/lib
This directory contains library files that are needed by various applications. Libraries allow functionality to
be packaged up and then shared by other applications. A good example might be a database driver that allows
applications to access a database. So that these applications can find those libraries, they need to be installed in a
known location and with a known file name. It’s rare that you’d need to poke around in this directory, but if you do,
you should be careful because breaking things in here could affect the stability of your system.

/lost+found
We mention this one for completeness, but it’s not really part of the filesystem structure per se. Rather it’s where files
get placed when the filesystem loses track of them. For example, if a disk were to be damaged, you would need to run
a disk repair. Some files may be recovered, but for various reasons, it may be impossible to determine where that file
came from. If that happens, Linux will place those lost souls in this directory. We’ve never had cause to look into this
directory, and most likely you’ll never need to look in there either.

/mnt
Short for mount, the /mnt directory was traditionally where you would mount additional filesystems. If you wanted
to attach a network share or an external hard disk, you would create a directory in /mnt and mount in there. Floppy
disks and CDROMS also need to be mounted before use and were also generally mounted here as /mnt/floppy and
/mnt/cdrom, respectively. However, in recent years, this directory has mostly fallen by the wayside because more
people have removable media rather than always attached storage (see the next section on /media).

/media
This directory is relatively new to Linux and was added to make a clear distinction between mounted external devices
(such as those in /mnt) and removable media such as USB sticks, cameras, and media players. These are usually
handled automatically under Linux, and so usually you won’t manually add or remove anything in this directory.

/usr
This is where most of the software on the machine ends up and so it is often the largest directory on a server (at least
if you don’t count user home areas). Although it’s useful to know where the software lives on your machine, because
everything is handled automatically for you, everything in here should “just work”.

/opt
This directory is a jack of all trades. On some systems, it is packed full of applications; on others, it remains
completely empty. It’s usually used for third-party software and applications. For example the Oracle database
server installs in /opt/ by default. You probably won’t find much cause to use this directory, but be careful if you do
because it is easy to forget things that are sitting in /opt/ when it comes to taking backups and so forth.

/srv
Another relative newcomer, the /srv/ directory is the designated location for storing data for services that serve files.
Although this directory seems to be present, some applications still don’t make use of it either out of custom or simply

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ The File-Paths to Success

76

because everyone is used to the contents being somewhere else. If you’re looking for things that used to be in /var/,
this is probably a good place to look next.

/sys
This directory contains system information, and unlike /proc/ (which is only in memory), the contents of this
directory are written and stored on disk. It doesn’t seem to get an awful lot of use, and we have never even had to look
inside this directory. However, it needs to be useful only once for you to be glad it was there.

/tmp
This directory is the computer’s scratch pad, and all sorts of applications create files in this directory. It is used
whenever temporary file storage is used (such as during processing). This directory is emptied by default on a reboot,
but it can still potentially get quite large. In theory, all applications are supposed to treat /tmp/ as transitory; that is,
they should never expect a file to be there after a restart.

Wrapping it Up
That pretty much sums up the key areas on the Linux filesystem. No doubt there are other little nooks and crannies that
you might come across as you look around your system, but they will probably be a subset of these. Remember
that although this structure is followed by most systems, most doesn’t necessarily mean all—and you might come
across some differences or where directories are used in other ways.

Putting it to Work
We’ve covered a huge amount of information so far in this chapter. We’ve looked at how filesystems work and
how UNIX systems (and Linux in particular) have adopted a unified approach. We looked at “everything as a file”
and we showed how these special files and filesystems fit into the grand scheme of things. We wrapped all that
up with an overview of what goes where on the filesystem and what they do. What we haven’t done yet is actually
used the filesystem.

So far, we have been pretty much “hands-free,” but that’s all going to change in this section. We’ll start by showing
you how to create directories and move about on the filesystem. Once we’ve given you the power to create, we’ll then
give you the power to destroy, and you’ll be able to remove files and directories at will (not always a good idea). We’ll
wrap this section up with a quick overview on Linux file permissions and how to read and set them. Let us begin!

Where Are We? Using pwd
The first thing we need to show you is how to figure out where you are on the system. The easiest way to get your
bearings is to look at the command prompt. We talked about this in the last chapter—as a quick refresher, here is what
the command prompt looks like while we’re sitting in our home directory:

pi@raspberrypi: ~$

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ The File-Paths to Success

77

The tilde (the squiggly line) is shorthand for the current user’s home directory. We highlighted this feature
already when we first introduced it, so we won’t go through it again, but what if we want to know which directory we
are actually in? What we need is the pwd command. We touched on this useful tool in the last chapter as well, but in
case you missed it, here it is again:

pi@raspberrypi: ~$ pwd
/home/pi
pi@raspberrypi ~$

This tool is very useful for telling us where we are, but it doesn’t tell us anything about what’s in the same location
with us. It’s like being blindfolded and told you’re standing in the kitchen; it’s a great start, but you’re still effectively
blind. You’d certainly like to know who and what is in the room with you; for that, you need the ls command. This
command does have a large number of options, though, and so we will only cover the most common ones, those that
we use every day. Actually you can just remember them as recipes because you’ll often just pass the same options
time after time (or at least we do).

What’s in Here with Us? Using ls
Now let’s see what’s in here with us:

pi@raspberrypi: ~$ ls
Desktop python_games
pi@raspberrypi: ~$

Although we can’t easily show it in the book, Desktop and python_games are both colored deep blue. This tells
us they are directories. At present, we don’t have any files in this directory, or do we? Actually we do, but by then they
are considered hidden files. Under Linux, any file that begins with a period (full stop) is considered hidden. There’s
nothing special about the files; they are various config or temporary files that various applications have created. We
generally don’t want these files cluttering up our display, so ls and friends don’t show them. We can, however, force
ls to show us those files with the -a flag like so (although you will most likely see slightly different results on your Pi):

pi@raspberrypi: ~$ ls -a
. .cache
.. .config
.bash_history .dbus
.bash_logout Desktop
.bashrc python_games
.dbus .ssh
 
pi@raspberrypi: ~$

Creating Files to Play with: Using Touch
For now, we’ll leave the -a flag alone and create our own files to play with. Because we haven’t covered how to create
and edit text files yet (we will show you how to do that in Chapter 6), we’ll introduce you to another little tool called
touch. Under Linux, files have two timestamps:

The creation timestamp•	

The last modified timestamp•	

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ The File-Paths to Success

78

These timestamps allow you to see when a file was created and when it was last updated. This is useful from
an administration point of view because you can see which files are actively being used, but various tools (such as
backup scripts) use this timestamp to figure out whether a file has changed since they last looked at them. Sometimes
it is useful to be able to update that timestamp without changing the contents of the file, and this is where touch
comes in. It touches the file that updates the timestamp, but if the file doesn’t currently exist, touch will create it for
you. In other words, it’s a great tool for creating empty files. So, let’s start by creating a couple of originally named files:

pi@raspberrypi: ~$ touch raspberry
pi@raspberrypi: ~$ touch pi
pi@raspberrypi: ~$ ls
Desktop pi python_games raspberry
pi@raspberrypi: ~$

And that’s all there is to it. As you can see from the ls that followed it, we now have two additional files. This time
they are gray in color, which tells us that they’re normal files. By coloring the entries for us, ls makes it much easier
to see what we’re doing. For example, any file that is executable will be colored green, but we’ll come back to file
permissions later in this chapter.

So far we only have two files, but if we had 10 or 20, it would start to get a bit crowded in here. The way to handle
that is, of course, to create directories to store our files (and potentially other directories) in, and that’s what we’ll
look at next.

Note■■   Directories and folders are basically the same thing. Originally called directories, Microsoft started referring to
them as folders, which they felt was a better description. Although Linux used to use the term directories because it has
become more of a desktop operating system with people moving over from Windows, the folder terminology has become
increasingly common.

Somewhere to Store our Files: Using mkdir
To create a directory, we use the mkdir (or make directory) command. Unsurprisingly, it will create a new directory.
However, if there is a file with the same name, or if the directory already exists, you will get an error message. Let’s
create a directory called pifun to store our files:

pi@raspberrypi: ~$ mkdir pifun
pi@raspberrypi: ~$ mkdir pifun
mkdir: cannot create directory 'pifun': File exists
pi@raspberrypi: ~$

As you can see, trying to create the directory twice will cause an error. Don’t be distracted by File exists;
this could actually refer to either a directory or a file. Another quick ls, and we’ll see that things are moving along
quite nicely:

pi@raspberrypi: ~$ ls
Desktop pi pifun python_games raspberry
pi@raspberrypi: ~$

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ the File-paths to suCCess

79

Making Use of a New Directory: Using the mv Command
So now that we have our directory, let’s tidy up the mess we’ve been making. Because we want to move the files into
our new directory (rather than just create a copy of them), we’ll need to use the mv (move) command. This command
is a bit more complicated than the ones we’ve covered before because it takes two arguments (that is, the things you
want the command to act on) rather than one. This makes sense, though, because not only do we need to tell mv what
we want to move but we also need to tell it where we want it to move the file to. As with most file commands under
Linux, the first argument is the source, and the second argument is the destination. Let’s move those files now:

pi@raspberrypi: ~$ mv pi pifun
pi@raspberrypi: ~$ mv raspberry pifun
pi@raspberrypi: ~$ ls
Desktop pifun python_games
pi@raspberrypi: ~$

So far, so good. Now we want to make sure that our files arrived in one piece. There are two ways to do that.
We could go into the pifun directory with cd and then run the ls command or alternatively, we could simply give
ls the path to the directory that we want to look into. We’ve already used the first approach, so let’s try give the
second approach a try:

pi@raspberrypi: ~$ ls pifun
pi raspberry
pi@raspberrypi: ~$

Time for Some Cloning: How to Use the cp Command
Admittedly this isn’t very exciting, but as a newly minted administrator, you’ll be spending a lot of time moving files
about and checking where things are. So far, you’ve learned how to move a file, but what if you just want to copy
a file instead? When making a backup or getting a selection of files ready to send to a friend, you want to actually
keep the originals. For this, we use the cp command (short for copy). Let’s move into our new directory and copy
one of our files:

pi@raspberrypi: ~$ cd pifun
[pi@raspberrypi pifun]$ cp pi pi2
[pi@raspberrypi pifun]$ ls
pi pi2 raspberry
[pi@raspberrypi pifun]$

That worked well, we now have pi and pi2, just as expected. Let’s try the same thing again, only this time we’ll
copy a directory:

[pi@raspberrypi pifun]$ mkdir moarpi
[pi@raspberrypi pifun]$ cp moarpi moarpi2
cp: ommiting directory 'moarpi'
[pi@raspberrypi pifun]$

This time it didn’t quite go according to plan. The reason our copy attempt failed was because by default cp will
only copy individual files. It won’t copy entire directories. Even though directories are technically treated as files, the
way we use them via various commands mimics a real-world folder. The reasoning behind this is that when you copy
a directory, you copy everything within it, including all its files and directories. This could be a lot of data and could

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ The File-Paths to Success

80

take up a lot of space as well as a lot of time to complete. Forcing us to be explicit about our intentions (which soon
becomes second nature) means that when we mean to copy a single file but accidentally pick a directory, we will get
stopped before any copying takes place.

That’s all well and good, but what if you really did want to copy that directory? When we first looked at the cp
command, we mentioned tasks such as taking backups, and (let’s be honest) you’re much more likely to want to back
up a directory than a list of specific files. We can get the behavior we’re looking for by telling the cp that we want to
copy recursively. This will then copy the directory and anything within that directory to the destination. We specify this
by using the -r flag like so:

[pi@raspberrypi pifun]$ cp -r moarpi moarpi2
[pi@raspberrypi pifun]$ ls
moarpi moarpi2 pi pi2 raspberry
[pi@raspberrypi pifun]$

Unlike the copy command, when you move a directory, there is no need to specify that you want to do so
recursively because moving a directory without its contents wouldn’t make an awful lot of sense.

The Power to Destroy: Using the rm Command
So far, we’ve shown you how to create files and directories, and how to copy and move them about. Now we’re going
to show you how to destroy those files with the remove or rm command. It goes without saying that the rm command
is one of the most dangerous in your arsenal. It can quite easily destroy an entire server if you’re not careful, and we
know people who have accidentally done just that.

For a change of pace, let’s look at how we can delete an empty directory. Before we look at how to do it with rm,
we can use the rmdir command for this (which is short for remove directory). Now the catch with this command is
that it will delete only directories that are completely empty. If there is even a single file inside, this command will fail.
This makes it very safe to use, but not all that practical because generally when you delete a directory, you also want to
remove all its contents. Let’s kill two birds with one stone:

[pi@raspberrypi pifun]$ rmdir moarpi2
[pi@raspberrypi pifun]$ rm moarpi
rm: cannot remove 'moarpi': Is a directory
[pi@raspberrypi pifun]$

We could delete moarpi2 with rmdir because the directory was empty, but when we tried using the rm command,
it refused to cooperate. This is because the rm command was written with similar reasoning to the cp command.
Because removing a directory is far more dangerous than simply copying it, this is probably a good thing. We can use
the same -r flag to tell rm to delete recursively:

[pi@raspberrypi pifun]$ rm -r moarpi
[pi@raspberrypi pifun]$

Success! Now sometimes when you try this, especially on a large directory with lots of files and subdirectories,
you can end up with lots of issues that cause rm to give up. For example, some files might be write-protected. You can
suppress these errors by using the -f flag, which means force and is akin to saying, “Damn the torpedoes! Full speed
ahead!” That sounds like a great idea until you stop to think what would happen if you ran this command (which you
should never do):

[pi@raspberrypi pifun]$ rm -rf /

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ The File-Paths to Success

81

If you accidentally run that command, rm will proceed to delete absolutely everything on your system. If you
happen to have a USB hard disk attached or you’ve mounted some network shares, you’re in real trouble because
rm won’t confine itself to your internal disks; it will crawl through the entire tree deleting everything in its wake.
This is one of the reasons why you should use a normal user account for day-to-day tasks. Your own user will not
have sufficient privileges to delete anything critical to the system, but even then, chances are high that you can still
damage all your attached media. You need to be very, very careful whenever you use the rm command and you’d
better double- and triple-check it because Linux will assume that you know what you’re doing and won’t ask for
confirmation!

The rm command can also remove files simply by providing the path to the file. You don’t need to use the -r flag
for this operation, so you can simply do this:

[pi@raspberrypi pifun]$ rm pi2
[pi@raspberrypi pifun]$ ls
pi raspberry
[pi@raspberrypi pifun]$

And that in a nutshell is how you move about and manipulate the filesystem.

Fully Qualified and Relative Paths
In Linux, there are two ways to specify a path to a file or directory:

You can give a fully qualified path that starts with a forward slash•	

You can give a relative path that starts with a filename, directory name, a dot, or two dots•	

Strange though these might sound, they are both just ways of providing a specific location to your programs.
A path is considered fully qualified when it starts from a fixed reference point (i.e., the root directory). Regardless

of where you are on a system, a fully qualified path will always point to the same location. It’s like the old bell tower in
the middle of town; if you give anyone directions using that as your reference point, you have a common anchor that
both you and your friend know how to reach.

On the other hand, a relative path depends on your current location to make sense. You can specify paths
using ./ to mean the current directory or ../ to mean the parent directory (the next one up from the current location).
If you had a path that looks like ../../test.txt, this would only work from a few specific locations (where the file is
two levels above your current directory). However, it’s nice and short as well as being easy to type. Of course, the
same file (if it were created in your home directory) would be accessible with /home/pi/test.txt, which unlike
the relative path, can be used from anywhere on the filesystem pretty easily. Relative paths can be tricky when
you’re several levels deep and you’re not sure where you are, but you do know the full path of the file you want. If you
are in /home/pi/Documents/Work/Projects_2012/Spreadsheets/ and you want to access test.txt, you could
either use the full path or alternatively use ../../../../text.txt. As you can see, in this case, the relative path is
more confusing than the fully qualified path.

So when should you use one or the other? You should use whichever option is the most convenient or makes the
most sense for the task. Sometimes it’s faster or easier to use a fully qualified path. Other times, you are buried deep
down in the tree, and writing fully qualified paths would be tedious at best and totally confusing at worst.

Users and Groups
We’re only going to touch on the basics of users and groups here so that you know enough to understand the file
permissions section that is coming up next. Users and groups are key to the way Linux secures your files, and you’ll
need to know about them before we move on to the next section.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ The File-Paths to Success

82

In the UNIX way of thinking, all people have their own usernames. A username identifies a particular person or
entity (for example, a web server might have its own username) on a particular system. So far, we’ve spent most of our
time as the pi user, but we’ve also seen that we can become the root user. Your username is the key that Linux uses to
identify you as you.

Groups are similarly straightforward. Each user belongs to one primary group, but may actually be a member of
any number of groups on the system. On a university system, a student’s username might have its own private group
(standard practice on Red Hat and Debian systems these days) but they might also belong to a student group and a
research group. They might also belong to a group specific to their department. Groups are useful to administrators
because we can group a selection of users together and treat them as a single entity. This makes things such as file
permissions much easier to manage.

When you create a new user on your Pi, you will automatically create a group with the same name. On some
systems, users would by default join a user’s group, but as you’ll see in the next section, this could lead to accidentally
giving people access to files that they shouldn’t have. Because a private group is by definition private, no one else will
be a member, and no one can gain access to your files just because they happen to be in the same group as you. This is
why on modern systems you’ll usually see that the owner and group of a file happen to be the same.

File Permissions
File permissions allow you to determine who you want to be able to access your files and what exactly they’re
allowed to do with them. There are three different permissions that you can set. The first is whether or not someone
can read your file. The second is whether they can write to your file. And third is whether they can execute it (i.e., run
it like an application).

Of course, just being able to set these permissions on a file isn’t particularly flexible. You might want to give
access to only a certain group of people and restrict everyone else. This is where users and groups come into play.
On Linux, there are three roles that a given user might fall into:

•	 User: Refers to the owner of the file

•	 Group: Refers to the group that owns the file

•	 World: Also often referred to as other

Each role gets its own combination of permissions; that is, you can define whether any of those three roles can
read, write, or execute your files. We’re going to show you how to do just that but before we do that, we need to show
you how to see what permissions are actually in effect and so now is a good time to show you how to use the -lh
option for the ls command. Let’s try running it now:

[pi@raspberrypi pifun]$ ls -lh
-rw-r--r-- 1 pi pi 0 Oct 7 16:29 pi
-rw-r--r-- 1 pi pi 0 Oct 7 16:58 pi2
-rw-r--r-- 1 pi pi 0 Oct 7 16:29 raspberry
[pi@raspberrypi pifun]$

The -lh argument specifies that we want ls to show us a list of files (−l) and that we want file sizes to be in
human readable format (−h). Without the human readable flag, ls will show us all sizes in bytes, which when
you’re dealing with large files is not very easy to read. It doesn’t really matter in this example because our files are
empty, anyway.

There are two things that we’re really interested in as far as file permissions go. The first describes the
permissions currently in force, and the second shows us which user and group owns the file. Let’s break it down for
the Raspberry file:

-rw-r--r-- 1 pi pi 0 Oct 7 16:29 raspberry

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ The File-Paths to Success

83

The file permissions part is:

-rw-r--r--

There are ten possible slots in that list. If a particular permission is missing, ls will show a hyphen. However, a
normal file always has a hyphen in the first slot. If it were referencing a directory, the first slot would be a d to highlight
that it’s not a file. This slot can also be an l if the file is a link (or shortcut) and we’ll show you how to use these in the
next section. For now though we can ignore the first slot and focus on the final nine slots.

The remaining nine slots are grouped in threes to give us three groups. These correspond to user, group, and
world roles, respectively. Each of three slots in each group represents a specific permission: read, write, and execute.
Where the permission is set, you will see a letter, but when the permission is not set, you will get the hyphen. If our
Raspberry file had all permissions set, it would look like this:

-rwxrwxrwx

Let’s split that out a bit so it’s a little easier to read:

- rwx rwx rwx

So if we look at the first three permissions, we can see that the owner has read, write, and execute permissions.
We can also see that group and world also have full permissions. To interpret what these permissions mean, though,
we really need to know who actually owns the file. Let’s take a look at the part of the line that shows who owns the file:

pi pi

Well, that wasn’t too painful. Remember that on modern Linux machines, users have their own private groups
that are named after the user. That’s what we’re seeing here. The first pi refers to the owner, which is, of course, the pi
user. By default, when a file is created, the group ownership is set to the user’s default group. In this case, that would
be our private group which is also called pi (the second pi). So look at our original file entry:

-rw-r--r-- 1 pi pi 0 Oct 7 16:29 raspberry

We can read this as “The pi user has read and write privileges. The group has read privileges and world also has
read privileges.” Linux applies these permissions in a specific order based on who you are.

1.	 If your username matches the owner of the file, the user permissions will apply when you
try to access it.

2.	 If you’re not the owner, but you are in the same group as the file, Linux will apply the group
permissions to you.

3.	 If you’re neither the owner or in the same group, Linux will apply the permissions from the
world role.

In our example, though, the permissions for world and group are identical, so if you’re not the owner, you will get
the same level of access. However only the owner can actually save changes to the file. There is one exception to this
rule, however: the root user. The root user is effectively immune to file permissions and can change permissions and
file ownership for any file on the system, regardless of who the owner actually is.

The execute permission allows you to execute a file as a program. This is a security feature so you can effectively
stop people executing commands that you don’t want them to. However, you have to be careful because if users can
read your file, there is nothing stopping them from copying it to their own file and making that file executable.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ The File-Paths to Success

84

The execute bit has another purpose when it comes to directories. Obviously, you can’t execute a directory so
instead this flag means that the user (or group or world) is allowed to browse the directory—they can do an ls on it.
They might not be able to access anything in the directory, but they can still have a peek and see what’s hiding in
there. If you give users permission to read a directory but not to execute, they will be able to read a file inside, but they
wouldn’t be able to browse for it. They would have to know the filename in advance. This also applies to access files in
GUI applications, but it can be annoying typing in a specific path because most applications expect you to browse to
the file you want.

That’s really all there is to it. There is a feature called “extended file attributes,” but we’re not going to cover those
in this book. They provide a great deal more flexibility than the standard model, but are similarly more complicated.
If you’re used to the way Windows handles permissions, you’ll find that extended file attributes are a bit more in line
with what you’re used to.

Setting File Permissions
First we’re going to look at how we can set file permissions (see Table 4-1).

Table 4-1.  Available arguments for the chmod command

Part of Permission Setting Possible Arguments

Role u - user
g - group
o - other /world
a - all

How to apply + − add
- - remove
= − explicitly set

What to apply r - read
w - write
x - execute

We will be using the chmod command, which changes file permissions. You can specify permissions as a
combination of the preceding values. These can be combined in three different ways.

Add permissions•	

Take permissions away•	

Explicitly set permissions•	

The difference is that the first two will leave all the other permissions intact after they’ve done their thing. If you
explicitly set permissions, any unspecified permissions will be revoked.

Let’s start out by removing all permissions from everyone for our pi file:

[pi@raspberrypi pifun]$ chmod a= pi
[pi@raspberrypi pifun]$ ls -lh
---------- 1 pi pi 0 Oct 8 03:52 pi
[pi@raspberrypi pifun]$

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ The File-Paths to Success

85

All file permissions have been removed from the file, but how does the command actually work? Permissions are
specified with three parts (corresponding to the three rows in Table 4-1):

Who you want the change to apply to•	

How you want the change applied•	

What you want the change to be•	

In this case we applied the changes to a, which is basically shorthand for ugo (it applies the changes to everyone).
We used the equals sign, which means we want to explicitly set the permissions and then we didn’t actually supply
any permissions. If a permission is absent, it is assumed not to be set, so in our example by not supplying any
permissions, we effectively revoked them all, regardless of what they were previously.

Seeing as it is our file, we want to give ourselves full permissions. Admittedly, the execute bit is not much use
in this case (you’ll find it invaluable when you start scripting—see Chapter 7), but we’re going to give it to ourselves
anyway. We can do that with this command:

[pi@raspberrypi pifun]$ chmod u+rwx pi
[pi@raspberrypi pifun]$ ls -lh
-rwx------ 1 pi pi 0 Oct 8 03:52 pi
[pi@raspberrypi pifun]$

Let’s pick this command apart. We specified that we wanted to change only the user’s permissions, that we
wanted to add them (not that it mattered in this case because we’d removed all permissions beforehand so an equals
sign would have done the same job) and that we wanted read, write, and execute privileges. To wrap up this example,
let’s restore read access to the group and world roles:

[pi@raspberrypi pifun]$ chmod go+r pi
[pi@raspberrypi pifun]$ ls -lh
-rwxr--r-- 1 pi pi 0 Oct 8 03:52 pi
[pi@raspberrypi pifun]$

Just for completeness, let’s step through this last example. We want to apply the permissions to the group and
other roles, we want to add the permissions to what is already there, and we want to grant read privileges. And that is
pretty much it for setting file permissions. There is, however, an alternative style that uses numbers rather than letters
to specify what permissions you want to set. To get the same effect as what we have already (i.e., it doesn’t have any
effect), we would use this:

[pi@raspberrypi pifun]$ chmod 744 pi
[pi@raspberrypi pifun]$ ls -lh
-rwxr--r-- 1 pi pi 0 Oct 8 03:52 pi
[pi@raspberrypi pifun]$

In this system, each permission has its own value:

Read is 4•	

Write is 2•	

Execute is 1•	

To set the permissions, you add up the numbers to get the total for each set of permissions (user, group, world).
For example, to set all permissions you’d add 4 and 2 and 1 to get 7. For read, you would simply do 4 plus 0 plus 0,
which of course gives you 4. Put them all together for the user, the group and world we get 744. This syntax is the
original syntax used on most UNIX systems. Using the letters is a relatively new idea, but at the end of the day they

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ The File-Paths to Success

86

both achieve the same results. The main benefit of the new syntax is that it’s a lot clearer and easier to pick up.
Personally, we tend to use the number style, but that’s only because we’ve been doing it for so long and it’s become
second nature to us. You should feel free to use whatever system you feel the most comfortable with.

So now you can manipulate permissions like a guru, but we are still missing the second part of the puzzle; we
haven’t shown you how to change ownership of the file. This is actually a lot less common than you might think; far
less common than tweaking the occasional file permission, that’s for sure. There’s also another little wrinkle. A normal
user (anyone other than root) cannot actually change which user owns the file because if you accidentally assign the
file to another user by accident, you have no way to actually get that file back again. Of course, being all-knowing and
all-seeing, the root user can change the ownership for any file on the system.

We can simulate “rootness” by using sudo. As discussed earlier, this little command acts as a filter of sorts. It
always runs as root, regardless of who executes it, and executes commands as root on their behalf. To prevent any
shenanigans, sudo will check the user and the command they are trying to run against an approved list. If you’re on
that list (and the pi user is), you can execute all sorts of magic without every technically becoming root yourself.

To use sudo, all we have to do is prefix the command we want to run with the sudo command. That’s pretty
much it. When you first run sudo, it will ask you for a password. This is the password for your particular user, not the
password for the root user. The aim is that you can prove that you are the pi user, and then sudo will check to see what
the pi user is allowed to do. This means that if you have lots of users on your computer, and you want to let them do
some more powerful commands but don’t want to give them root access, you can set up sudo to allow them to execute
a specific command without having to hand over the keys to the mansion.

Let’s start off by trying to give the file to the root user using the chown (or change ownership) command:

[pi@raspberrypi pifun]$ chown root pi
chown: changing ownership of 'pi': Operation not permitted
[pi@raspberrypi pifun]$

The operation not permitted is Linux’s way of telling us to get stuffed. As mentioned earlier, only the root user is
allowed to change the owner of a file. To pull this off, we’ll need root privileges, so let’s put sudo to work for us and run
the command again:

[pi@raspberrypi pifun]$ sudo chown root pi
[pi@raspberrypi pifun]$ ls -lh
-rwxr--r-- 1 root pi 0 Oct 8 03:52 pi
[pi@raspberrypi pifun]$

Success! We were able to change the owner to the root user. This will work with any valid user and any file or
directory that you wish to change. There is another command called chgrp which you won’t be surprised to know
allows you to change which group owns a particular file. Now there is a bit of an issue with this command as well.
Although normal users are allowed to change the group, they are only allowed to change it to a group of which they’re
a member. If your user is only a member of its private group, then you won’t be able to do an awful lot with this
command either.

Once again, it’s root and sudo to the rescue. Because root can do whatever it pleases, it can change the group
accordingly. As it happens, it looks an awful lot like our last command:

[pi@raspberrypi pifun]$ sudo chgrp root pi
[pi@raspberrypi pifun]$ ls -lh
-rwxr--r-- 1 root root 0 Oct 8 03:52 pi
[pi@raspberrypi pifun]$

And there we go—the file now belongs to the root group and the root user. When you do have to change file
ownership, it’s much more common to need to change both the user and the group that owns the file. It’s relatively
rare to change just the group (we can’t remember when we last used the chgrp command). The chown command

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ The File-Paths to Success

87

provides a shortcut that allows us to set both a new owner and a new group at the same time. Let’s use this shortcut
now to return the ownership of the file to our pi user. We’ll still need to use sudo, of course:

[pi@raspberrypi pifun]$ sudo chown pi:pi pi
[pi@raspberrypi pifun]$ ls -lh
-rwxr--r-- 1 pi pi 0 Oct 8 03:52 pi
[pi@raspberrypi pifun]$

With the shortcut, you just specify the user and the group separated by a colon. One last thing we need to
cover with these commands is that they only operate specifically on the file you provide. If you provide a directory
rather than a file, it will set the permissions on the directory, but those changes won’t filter down through to all
the files. Sometimes that’s what you want, but more often you want the changes to propagate. Unlike the cp and rm
commands that use -r, these two commands use -R (they use the capital letter rather than the lowercase letter).
Be careful when you use this because often file permissions are precisely set, and if you waltz through obliterating
them with your new version, there’s no way to undo the damage. As always, double-check what you’ve typed before
you press the enter key.

Shortcuts and Links
Linux allows you to create links (or shortcuts) by using the ln command (short for link). There are two types of links:

A •	 soft link is like what you might see on a Windows system after using the Create Shortcut
feature. It creates a file that is just a pointer to the real location of the file elsewhere on disk.
You create a soft link by specifying –s when using the ln command.

The •	 hard link is more interesting. When you use a hard link you have effectively created two
names for the same file. That might sound like semantics, and with most modern applications
being able to follow a soft link, there’s rarely a need to use a hard link. Hard links are also
restricted to a single filesystem that has to support them (most Linux filesystems do). The
main benefit of a hard link is that the hard link is completely indistinguishable from the
original file; they are simply two names pointing to the same location. You don’t need to
specify anything to create a hard link as ln will do so by default.

Note■■  T o avoid confusion and to allow links to work across filesystems, you should use a soft link.

Let’s do a quick example to show this in action:

[pi@raspberrypi pifun]$ ln pi pi1
[pi@raspberrypi pifun]$ ln -s pi pi2
[pi@raspberrypi pifun]$ ls -lh
-rw-rw-r-- 2 miggyx miggyx 0 Oct 8 08:14 pi
-rw-rw-r-- 2 miggyx miggyx 0 Oct 8 08:14 pi1
lrwxrwxrwx 1 miggyx miggyx 3 Oct 8 08:33 pi2 -> pi
[pi@raspberrypi pifun]$

Let’s have a look at what we’ve got here. pi and pi1 are identical in every way, but that’s not really a surprise
because apart from the name, they are the same file. Notice that the number after the file permissions block now
shows 2 for pi and pi1. This tells us that there are currently two filenames pointing at this particular file. Also not
much of a surprise because we’re the ones that created the second entry.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ The File-Paths to Success

88

Much more interesting is pi2, which we created with a soft link. First we can see that the file permissions
have all been set. This isn’t a problem because when Linux follows the soft link to the real file, it’s the real file’s
permissions that will be used to define who can access the file. The soft link really just points out the location. We
can also see that the filename itself is a bit different. It shows the filename that we originally give the soft link, but it
also shows the file that the soft link points to. In this case, the file happens to be in the same directory, but it could
just as easily have been anywhere on the system.

That’s really all there is to it for creating links. They can be useful when you want to make one directory or file
appear to be in a new location. For example, a program might write to a data directory, and you want to move that
directory on to a bigger disk. No problem; you can move it to the bigger disk and then create a soft link to it with the
same name. The application probably won’t even notice. This can really save you a lot of headache, especially when
time is something of a premium. (And let’s be honest: when is it not?)

Summary
This chapter has given you the inside scoop on all things filesystem. We’ve looked at the history and shown why
our filesystems look the way they do. We then touched on how they hang together and how the Linux filesystem is
structured. We put that to good use and brought you up to speed on all the basics for creating, copying, moving, and
deleting your files.

We discussed file permissions and how they are enforced, and how we can set them to match our needs. We also
looked at the more traditional way of setting file permissions (in case it is ever needed). We then showed you how
Linux applies these permissions and how you can change which user and group owns a specific file. We rounded
everything off by discussing how you can create links and the differences between both soft and hard varieties.

In the next chapter, we’re going to expose you to all the most common commands that you’ll find on your Pi.
These are the commands that will become part of your toolbox that you’ll regularly dip into. In fact, we use all these
commands in our daily work. So, onward to Chapter 5!

www.it-ebooks.info

http://www.it-ebooks.info/

89

Chapter 5

Essential Commands

You now have this marvelous new Raspberry Pi that you have installed and configured to accept and run a version of
Raspbian Linux. You have logged in and can comfortably move around within the system. You can do the basics on
your Pi, but now feel that you are ready to take on more.

Well that’s what this chapter is dedicated to: teaching you a whole host of commands so that you can empower
yourself as a Linux user. These commands will cover a whole host of functionality ranging from becoming the
root super user, examining disk space, terminating processes, and configuring your user space and monitoring
environment variables. All these tasks are common ones for the systems administrator and can have a big impact on
how your system functions. So without further ado, let’s get started.

Become the Boss
Root is a word that describes the base of a tree, something from which all the rest grows. In Linux and UNIX, the term
is used to denote the start point of a filesystem (as we saw in Chapter 4) and to denote the master administrative
user on the system (covered briefly in Chapter 3). To perform any system or administrative function, you need to be
identified as root in order to have permission to change core functionality. Because of this, being root is very much
a two-edged sword: unlimited power to change your system and unlimited power to break system functionality.
Probably one of the truest things I can say about working in a Linux environment is that eventually you will issue a
command as root that will break something (if not everything) and this will cause you no end of hassle or may even
require you to reinstall your operating system. For this reason (and related security reasons) its advised that a user
never actually login to the shell as the root user.

To solve this problem, we use sudo, which we’ve seen a little of in Chapters 3 and 4. As you know, this tool is a
wrapper for any shell command you can think of. This means that if you prefix a command with sudo (e.g., sudo ls),
you will no longer be executing this command as your own user but rather as the root super user. This does make
working as the super user slightly more complex, but also far less risky. In fact, many distributions of Linux no longer
set a root password, but rather assign a new user the power of sudo on creation. This means that all administration
must be done via an empowered user with the sudo command to issue all the requisite admin functions.

So that you can execute as root, sudo requests your user password in order to validate that you are who you say
you are, not just someone with access who left their keyboard unattended. In addition to asking all users for their
passwords, sudo also has a steering file that governs which users and groups have access to the sudo command and
even the capability to limit which programs they can execute via sudo. There is a special command, visudo, to edit
this steering file (called the sudoers file) that must be run as root (so prefix with sudo):

$ sudo visudo

This code fires up a special instance of one of the system’s text editors (normally vi or nano) with the sudoers file
already loaded to be edited. For a quick runthrough of how to use vi and nano, please check out Chapter 6.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Essential Commands

90

Inside the sudoers file are a number of things that control how the sudo environment works, including a PATH
variable (which we will cover later). The important thing, however, is the line down in the userauth section that looks
like this:

root ALL=(ALL:ALL) ALL

This line states that the root user on all hosts can access all commands on all other hosts (a host is a server on the
network). This is a bit confusing, but it basically grants full access to any user that can identify itself as root. There is
also another line:

%sudo ALL=(ALL:ALL) ALL

This line says that members of the sudo group can also do the same things as the root user: accessing from all
hosts on the network all commands that can be executed on all hosts on the network. You will notice the leading % that
is used to signify that this is a group name. The basic format of one of these lines is this:

<user>	 <From which hosts>=(<On which hosts>:<which commands>) < command options and commands >

This syntax is a bit confusing at first so let’s have a look at creating a particular set of permissions for your pi user
as an example. First we will need to create a new basic set of user permissions that will look just like the root users,
but will instead refer to our pi user. This line will look like:

pi ALL=ALL	 ALL

I have removed the <on which hosts: which commands> section and replaced it with one generic ALL to make
things a bit easier to understand. Now let’s say that we want the pi user not to be asked for a password. To do this,
we add a NOPASSWD: before the final ALL that represents commands. This gives us a new line:

pi ALL=ALL	 NOPASSWD: ALL

If you add this now, you can run all commands as the pi user without needing to even provide a password. This is
a very dangerous command, so let’s modify it slightly to make it only the visudo command that can be executed.
To do this, we replace the final ALL for commands with the command we wish to use, which in this case is visudo. But
we can’t just write visudo, we need to provide the whole path to the application, which is /usr/sbin/visudo. So we
get the following:

pi ALL=ALL	 NOPASSWD: /usr/sbin/visudo

Now you should be getting the idea of what you can do within the sudoers file to control how the sudo command
is accessed. You can have multiple entries that govern how these commands can be run, by whom and under which
conditions. There is also a large amount of functionality for adding aliases, which can be large combinations of
commands, hosts, or users. Much of the syntax for these commands is available from the manual for sudoers.

Finally, one last command for you to be aware of is the su command, which is short for switch user. This
command does exactly what it implies and switches which user you are, and if you aren’t root it will prompt you to
enter the password of the user you wish to switch to. One of the niftiest cheats for gaining root access is to combine

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Essential Commands

91

sudo and su to switch into the root user, with only the current user’s password instead of the root user’s.
This command is the way that many people get round the “no known root password” limitation placed by many
Linux distributions:

$ sudo su –

The minus sign denotes that you wish to gain a login to the environment, and because no other arguments are
provided, it will attempt to log in as the super user. You can also use this to switch users by adding the username for a
given user prior to the minus. You can also use the sudo command with the –i option to gain an interactive shell that
will achieve the same thing:

$ sudo –i

RTFM
One of my favorite refrains from the tech world is RTFM, which is short for Read The Flaming Manual. While I have
found that asking people for assistance is good, it’s always comforting to know that there is a manual you can read,
and Linux is no exception. Most applications come with a manual document that can be accessed by using the man
command! This command takes whatever you wish to get the manual page for as its first argument. So, if you wanted
to look at the manual page for the sudoers command in order to get a better idea of how to write your sudoers file,
you would type this:

$ man sudoers

And then the manual page would appear. Navigating a man page is done in the same way one would navigate a
document opened with less (which is a command we will cover further on in this chapter), so navigation is done with
the arrows and with page up and page down keys. You can also search for a string by pressing / and then typing what
you wish to search for. The n key will help you navigate your way through the file. So, if you ever find yourself in need
of some more information on a command, remember to Read The Flaming Man Page!

System Resource Monitoring
One of the key things that a systems administrator will need to do is monitor the usage of resources on his system.
While some of these commands may be of less use to your average Pi user, there are some times when being able to
see what your system is doing will come in handy.

The first system command to be aware of is top, which is a command for displaying the current usage of
resources within your system and displaying which processes are consuming what level of resources. The
top command is incredibly powerful and displays a whole host of information about your systems resource usage.
The output of top normally looks like Figure 5-1.

o
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Essential Commands

92

The output from the top command is huge and if you watch, all the values there are updated regularly. Let’s go
over the top output line by line so you can understand what you are looking at.

Uptime and Load Average
The first line gives information about the current time and then uptime of the system. It then shows the number of
users on the system and finally the load average. Load average is one of the most complex things to understand; it is a
“meta” variable because it refers to what is going on within your system relative to your system’s capability to perform.

Figure 5-1.  Top in action!

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Essential Commands

93

It contains 3 values that give the average of the current minute, the last 5 minutes and the last 15 minutes. Load
average represents the average of actual computation usage and demand for your system’s computation resources.

Probably the best way to think of load average I have heard is as a freeway. Normally the percentage value of CPU
usage represents how much of the current available computation resources are being used. This is akin to measuring
how much traffic is currently on the freeway. The load average compares both how much computation is being
used and how much demand there is for CPU usage. This is like examining both the freeway and its onramps. The
difference between the two comes when looking at it from the perspective of a “busy lunchtime,” meaning that there
are lots of cars on the freeway, but just because “it’s a busy lunchtime,” everyone can get onto the freeway and use it,
nobody is stuck waiting on the ramp, and traffic is flowing nicely.

This is why load average is such a powerful metric; it allows you to see demand for your system’s computing
power in real time so that you can see when your demand begins to spike and can thus take action to lower demand.

Wow, that’s a lot on just one line!

Tasks
The second line of the top output lists the tasks that the system is currently performing:

The total number of processes•	

The number of actively running processes•	

The number of processes that are sleeping in the background•	

The number of stopped processes•	

The number of zombie processes•	

Most of these processes are general purpose for being aware of what is going on within your system. But zombie
processes can be a real problem. These processes are processes that have finished executing, but are still resident in
system memory—often because they need to send a return value to the process that spawned them, but are yet to do
so and thus must wait there as the living dead before they can send their final message and depart to the afterlife.

Having a long running zombie process can indicate a problem with the application that is used to spawn it, which
is called its parent. If you see zombie processes on your system have a look to see which process spawned them and
check over its running state and log files (log files are output from applications that are written to disk, so you as the
systems administrator can see what they are doing), as this may be indicative of a larger issue.

CPU Utilization Percentage
The third line of the top command is the CPU utilization percentage value. This shows in terms of percentage how
much of your current computation resource is allocated to which domain of your system. The values are the following:

•	 us (for user applications)

•	 sy (for system applications)

•	 ni (for processes that have been “niced” in order to give them more or less CPU priority)

•	 id (representing idle)

•	 wa (for processes that are waiting for I/O completion)

•	 hi (for processes waiting for hardware interrupts)

•	 si (for processes waiting for software interrupts)

•	 st (which indicates time stolen by a hypervisor—a hypervisor is software that runs a
virtualization platform like Xen or VMWare ESX)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Essential Commands

94

Of these values, the one that will normally have the most computation resource allocated to it is id, which
represents free available computation that can be used elsewhere. Seeing high values of wa, hi, si, or st are never
good signs as they suggest that your system is waiting on a particular piece of hardware or another function to finish
processing. If these numbers stay high, you should look at investigating which processes cause them and see if you
have any hardware issues.

Memory Usage
Lines 4 and 5 represent the memory usage of your system. Line 4 is for the actual memory usage, and line 5 is for the
swap space usage. Both of these lines will show the total, used, and free memory in their given space. This final value
represents the buffers and cached value. These two are interrelated and are the cause of much concern for users new
to Linux. This hass to do with the way that RAM is allocated. Linux can sometimes take up all available RAM and place
it into a buffers, which means that it is taken by the buffers but can still be used later for your applications. Linux will
treat this RAM as being used, but it is just sitting there in the buffers waiting. The buffers value can be a little hard to
understand; this leads to another command showing how these resources are used (I will cover it next).

Process Table
After the fifth line there is a large section that contains a process table, which lists all running processes and, in
near–real-time updates, which processes are consuming how much of which resource. The following shows a number
of different columns and the pieces of information they represent:

•	 PID: The processes’ ID number

•	 USER: The user who owns the process

•	 PR: The priority of the process

•	 NI: The nice value for the process

•	 VIRT: The amount of virtual memory consumed by the process

•	 RES: The size of actual resident virtual memory

•	 SHR: The amount of shared memory the process is using

•	 S: The process status (e.g., sleeping, running, zombie)

•	 %CPU: The percentage of CPU consumed

•	 %MEM: The percentage of RAM consumed

•	 TIME+: The total CPU time the task has used since it started

•	 COMMAND: The actual name of the command

top also has a host of keypress actions that can manipulate the order in which these processes are displayed;
you can check them out in the man page for top.

So top is a fantastic command for showing all the ins and outs of your system’s resource usage and one of the best
tools for diving into the exact nature of what your system is doing within itself.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Essential Commands

95

Using free to View Memory Allocation
As mentioned earlier, there is an easier way than using top to see what your memory allocation is like. The command
to do this is the free command, which you can invoke with the unit you wish to have it display in (−k for kilobytes,
-m for megabytes, -g for gigabytes, and so on). For our purposes. megabytes is best, so invoke it as follows:

$ free –m

Your output should look like Figure 5-2.

Figure 5-2.  Free as in free

Figure 5-3.  Disk free, ouch!

From this, you can see the +/− buffers and cache line that change the used and free values. This is a great
way to question any time your system shows spikes of memory up to 100%, as it just may be lots of buffers and cache
in action. From these two utilities you should be able to gain great insight into exactly what is going on within your
system and how its resources are being used.

Disk Usage
Now that we have looked at CPU and RAM usage, which are fairly dynamic, it’s time to have a look at something of
a more static nature, disk utilization. In most operating systems you can quickly and readily view how much of the
available storage space is in use, and Linux is no exception. The command to show the current usage of the whole
system’s disks is df, which is short for disk free and can be used on the command line with no arguments to show
everything you need. If you do, your output will resemble Figure 5-3.

Figure 5-3 shows disk free in action and shows that the main rootfs mounted on / is basically 100% full—ouch.
You can see the number of 1 k blocks being used by the system, but the values don’t stand out very easily. You will also
note that there is a permission denied error at the top.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Essential Commands

96

Fortunately, there are solutions for both these issues. First is to run this command with sudo so that it has root
access to the whole system. The second is to add the –h argument. This argument is fairly universal in being one of
two things: either –h for help or –h for human, which is to say human readable units. So we run this command:

$ sudo df -h

The output should be much more understandable to the average human being (see Figure 5-4).

Figure 5-4.  df for humans

As you can see, the human readable flag has changed those Size and Used values over to a human readable
number with a nice little flag on the end denoting unit. Experimenting with display flags is a great way to help you
make sense of some of the complex data coming out of Linux commands. Normally you will find a huge section
detailing (in way too much depth) all the flags for a command in its man page.

So, we have seen the full disk utilization of the system, but let’s say we want to find the detailed utilization of all
the files in a folder. There is another command we can use to do just this: du, which is short for disk usage and is used
to summarize the disk usage of each file, recursively for directories. If you run du, it will tell you what the estimated
usage of each file within this folder is and that of each subfolder and each item within it and its subfolders, and so on.
du will also take advantage of the –h for human flag that was in df. So if we run it, we get an output like this:

$ du –h
4.0K ./.cache/dconf
12K ./.cache/menus
576K ./.cache/midori/web
4.0K ./.cache/midori/thumbnails
24K ./.cache/midori/icons
608K ./.cache/midori
4.0K ./.cache/openbox/sessions
12K ./.cache/openbox
640K ./.cache
12K ./.dbus/session-bus
16K ./.dbus
5.0M ./.tor
12K ./.ssh
1.8M ./python_games
8.0K ./.dillo
20K ./.vnc
4.0K ./.gvfs
124K ./.gnupg

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Essential Commands

97

8.0K ./.fltk/fltk.org
12K ./.fltk
48K ./Desktop
8.0K ./.config/lxpanel/LXDE/panels
16K ./.config/lxpanel/LXDE
20K ./.config/lxpanel
8.0K ./.config/pcmanfm/LXDE
12K ./.config/pcmanfm
8.0K ./.config/lxterminal
28K ./.config/midori
4.0K ./.config/enchant
28K ./.config/openbox
104K ./.config
76K ./.fontconfig
16K ./.netsurf
40K ./.local/share/gvfs-metadata
36K ./.local/share/webkit/icondatabase
40K ./.local/share/webkit
88K ./.local/share
92K ./.local
9.0M .

Wow, that’s a big output for such a simple command. It shows the utilization of every folder within the current
folder, and right down the bottom it shows the total usage. This is where we can take advantage of another flag in
order to shorten the output: the –s flag that stands for summary. Doing this will only print the total allocation for this
directory and all within it, rather than everything as we have just seen. So go ahead and execute the command; your
output should look much neater:

$ du -sh
9.0M .

That’s much better. You will notice that the output is using the . value to denote the current directory because du
will work on the current working directory if not told where else to look. You can specify a directory to use by simply
adding one to the end. The next example will look at /var/log, which is where all system logs are kept, so we will need
to run this command as root using sudo as some of these logfiles are protected:

$ sudo du -sh /var/log
9.8M /var/log

And there you have it! With these two utilities, you can find out the current disk usage of your system and even
work out which parts of your system are consuming the most space.

Managing Processes
Probably one of the most important tasks when working within a Linux environment is knowing how to manage
running processes. After all, a computer is just a processing system, and if you can’t manage what it is processing, how
can you make truly good use of your machine? The first command you should become aware of is the ps command.
The ps command is short for processes snapshot and can be used to list all the current processes being run by your
user; when invoked, you should get an output like the one shown in Figure 5-5.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Essential Commands

98

Yes, it’s a little lackluster right now as I am only running two processes: the bash application that is running my
user shell and the copy of ps. Since this is a snapshot, the application will always capture itself. This is useful if I want
to control those processes run by my current user, but if I am to do more, I will need to add some arguments to my ps
command. The argument to show every process on the system in the standard syntax is –ef, so go ahead and run that
and see how your output changes (see Figure 5-6).

Wow, that’s a lot of output, so much that it went off the top of the screen! There are always a large number of
processes running on your system when you run ps –ef as this lists all the systems background processes along with
all user processes. If you want to see them in a list, you can simply add a | less to the end of your command, which
will let you go up and down and manipulate the list (I will explain what the less command actually does a little later
in this chapter):

$ ps -ef | less

Figure 5-5.  Current processes

Figure 5-6.  ps –ef

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ essential Commands

99

ps is a lot like top, but does require fewer resources and has a few other advantages that we will cover later in this
chapter. For now, you should just be aware of what each of the columns in ps means:

•	 UID: Represents the user who owns this process

•	 PID: Represents the process’s PID number

•	 PPID: Represents the PID number of the process that created this one

•	 C: Represents CPU utilization of this process

•	 STIME: Represents the start time of this process

•	 TTY: Represents the terminal controlling this process

•	 TIME: The cumulative CPU time consumed by this process

•	 CMD: The command-line argument of this process

So you might be saying, “Well fine. You have shown all the processes in the system, but what can I do with them
now?” This is where the magic of ps comes in; it makes it very easy for us to pick out the PID of a particular process.
The PID number is very important as it is a unique number for each process and is the way that the system references
processes. This will come of use in our next command: kill.

Killing a Process
kill is used to do exactly what its name implies: kill processes. But it also provides a number of other useful functions
via the mechanism through which it kills processes. In Linux and UNIX, a signal is a low–level system message that is
passed into an application from the operating system. Signals have no actual function beyond being a signal, and it is
up to the application to respond to it in the correct manner. This is not true for all signals, as some cannot be handled
within the application, but it is true for most. The function of the kill command is to send signals to applications.
There are 64 signals that the version of kill on Raspbian can send to an application. To list them all, issue this
command:

$ kill –l

I won’t list all the functions of the signals now, but you will need to be aware of these, the most common signals:

•	 Signal 1 (SIGHUP): Short for hang-up. Tells the application to hang up its current connection.
Normally used to make an application reinitialize itself.

•	 Signal 3 (SIGQUIT): Signals that this application should gracefully close itself down and quit.

•	 Signal 6 (SIGABRT): Signals that the program is aborting; it is to close immediately.

•	 Signal 9 (SIGKILL): Signals to forcibly “pull the plug” on an application.

These signals are the most common as they are used to perform application shutdowns, with nine being the most
prevalent. The format of the kill command is this:

kill –<signal> <PID>

So to kill a process with the highest force, execute this:

$ kill −9 <PID>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Essential Commands

100

This is the point where those PIDs out of the ps command come into play. Those PID numbers are the ones that
you will feed into kill in order to direct the signals from kill.

Reading Information in /proc
Since we are playing with PIDs, it’s probably good to revisit the /proc filesystem, first discussed in Chapter 4. This is
part of the OS in which all the process information lives. If you use ls /proc, you will see a number of files and a set
of numbered directories. These directories correspond to each of the process PIDs. If you look within one of these
directories, you should see a whole host of files that relate to a given process. While you should never edit any of these
willy-nilly, there are some files within these directories that are very useful.

Probably the most commonly used is a system-wide file that contains information on all the system’s processors.
This is the /proc/cpuinfo file. You can output the contents of a file to the screen using the cat command, which
is short for concatenate and is normally used to get the contents of a file into a buffer (in our case, it is the console
screen). Go ahead and issue this:

$ cat /proc/cpuinfo

Your output should look like this:

Processor : ARMv6-compatible processor rev 7 (v6l)
BogoMIPS : 697.95
Features : swp half thumb fastmult vfp edsp java tls
CPU implementer : 0x41
CPU architecture: 7
CPU variant : 0x0
CPU part : 0xb76
CPU revision : 7
 
Hardware : BCM2708
Revision : 0003
Serial : 000000007a8a46ba

This is the Linux internal information on the Raspberry Pi’s processor. If you are ever in doubt on some of the
particulars of your processor, this is the place to look.

In addition to cpuinfo, there is another file within /proc that you can take advantage of when diagnosing system
configuration information. It is the /proc/<pid>/cmdline file. This file lists the full command-line argument used to
invoke a process. If you need to get your hands on the commands used here, executing cat against this file is the best
way to do it.

File Commands
As mentioned earlier, you can use the cat command to output the contents of a file. There are a number of other
tools you can use to work with the contents of files within your system. The first is one that was mentioned earlier: the
less command. It is a command to display the contents of a file to the screen in a way that can be moved around and
searched as if it were a text editor. This is a great command for working with logfiles or the output of long commands
such as ps. less allows you to move up and down the file with the arrow keys or with the page up and page down keys.
You can also search using simple word searches by typing / and then entering your search string. less will then highlight
the found instances of your expressions, and you can tab between them with the n key to go down and the N key to go up.

In addition to being able to search within a file for things, less has the ability to watch the file and constantly
display any new content on the last line. This is great for watching growing logfiles as you can pick up new lines

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Essential Commands

101

without needing to reopen the file, to get less to perform this function, simply press the F key. Along with this, you
can also automatically navigate to the end of a file by pressing the G key. This process will also grab any new lines that
have been added to the file and display them. You can also use the lowercase g to navigate to a specific line number, so
if you wish to go to the first line, would press 1g. Finally, less is able to respond to all of its command-line arguments
within itself. This is useful for enabling line numbers as you can simply give less the command –N<enter> and it will
display numbers next to each line.

After less, one of the commands that provide a startling amount of flexibility is the find command, which is used
to find files. It does this by examining every file within the given directory and all of its subdirectories. find is useful
on its own, but extraordinary when paired with other commands as you will see later. It also has a healthy cache of
options that are interchangeable and can also be combined. I will cover a few that I have found incredibly useful here:

The first is •	 –L, which says to follow symlinks, which find does not do by default.

Second is •	 –maxdepth <number>, which represents how many directories deep this command
will search through. Just the one? Just this and all its subdirectories?

Third is •	 –newer <file>, which shows anything that was changed more recently than
a given file.

Fourth is •	 –empty and it, as its name implies, finds empty files.

Fifth is •	 –atime <number>, where the number represents the number of days that have passed
since a file was accessed.

Sixth is •	 –name <filename>, which searches for files named exactly like the name passed in.

Last is •	 exec <command>, which tells find to execute a given command on each of the files and
is where the real power of find comes out. You can use this command to find specified files
and then execute commands on them. In this way, using find is a fantastic way of executing
a cleanup of older unwanted files for instance. I’d also advise that when using find in this
manner you should test first and test thoroughly because one incorrect key stroke could spell
doom for your system or your data.

Combining these commands, you can achieve something that looks like this:

$ find /mnt/Volume1 –empty –name fooBar –exec rm

This command will find all empty files within /mnt/Volume1 that are empty and named fooBar and then remove
them! There is so much power in the find command that you can harness when administering your Pi.

Another command that has a significant if limited use is the file command. The file command is used to go
through the contents of a given file and determine what “kind” of file it is. Kind is a bit of a loose term here because
file knows only a moderate number of different file types. However, it is fantastically useful when you want to know
an answer to this question: “Can I safely open that file in a text editor, or is it a binary application?” This particular
command can save you much heartache. You can also use file to determine which archival format an application is
written in, which is a great help when you need to extract from an archive but don’t know what kind! As an example,
if you run file against a binary executable such as /bin/bash, you should see the following:

$ file /bin/bash
/bin/bash: ELF 32-bit LSB executable, ARM, version 1 (SYSV), dynamically linked (uses shared libs),
for GNU/Linux 2.6.26, BuildID[sha1]=0xe370a0be978f49569f115c9f41bc54688be9fe32, stripped

The code shows that the file is an ELF 32-bit LSB executable compiled for an ARM system, so the file should be
compatible with your Pi. This is a good way to diagnose any issues you may have with applications downloaded from
the Internet because they may be compiled for x86!

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Essential Commands

102

The last file command I have for you in this section is one of those commands that many people hate and many
more love: grep. grep is short for Generalized Regular Expression Parser and is best known as being a pattern matcher.
Like less and find, grep is both useful on its own and useful when combined with other commands. You can use
grep to search a given file for any lines that contain a given text string. The basic format of grep is this:

grep <pattern> <file>

Both these values will take the wildcard format, so you can use grep to search through every file in an entire
directory for a string. As an example, let’s look for the word find in the /etc./init.d folder:

$ grep find /etc./init.d/*

The output would be this:

/etc./init.d/checkfs.sh:# Include /usr/bin in path to find on_ac_power if /usr/ is on the root
/etc./init.d/checkroot.sh:# Include /usr/bin in path to find on_ac_power if /usr/ is on the root
/etc./init.d/kbd: LIST_CONSOLES='cd /etc./init; find -name 'tty*.conf' -printf '%f '
| sed -e 's/[^0-9]//g''
/etc./init.d/kbd: # eventually find an associated SFM
/etc./init.d/nfs-common:# particularily heavy daemon, so we auto-enable it if we find an
/etc./exports
/etc./init.d/rc:# Now find out what the current and what the previous runlevel are.
/etc./init.d/sudo: find /var/lib/sudo -exec touch -t 198501010000 '{}' \;

grep also has some wonderful command-line options, including –i, which makes the search case insensitive.
grep also has the –v option. which turns a search on its head and returns everything not matching the given search
string! This should give you an idea of how powerful a tool grep can be when you wish to find a given piece of
information and thus why it is an awesome part for a systems administrator’s arsenal of commands.

Combining Commands
Now we get to the fun part! The ability to combine commands so that you can use the output of one command and
give it to a second command to work with. There are also a number of commands that I will detail here as they are
fantastic when combined with others. But first you need to understand how to combine commands and thankfully it
is a rather easy thing to accomplish. To combine commands, we use the pipe symbol (|).

Yep, it’s that simple. Let’s say we wanted to grep some things, but wanted the output in a more manageable way.
We would simply write the grep, add a pipe, and then add a less. By doing this you will find yourself inside less
looking at the output for your grep! This is where the fun truly begins. Want to search all the filenames in a given
directory? Use ls to list the files and pipe the output to grep to search. In this instance, you don’t even need to include
a filename with the grep as the pipe will provide grep with what is known as a buffer that grep will treat the same as
file contents! So the command is this:

$ ls <directory> | grep <search string>

Combine ps and grep
Now, if you want to play more with things, you can combine grep with ps –ef! In this way, you can search for a
specific application; for example, to search for the SSH application sshd,we would run this:

$ ps –ef | grep sshd

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Essential Commands

103

This will generate the following output:

root 1722 1 0 19:24 ? 00:00:00 /usr/sbin/sshd
root 1956 1722 0 19:43 ? 00:00:00 sshd: pi [priv]
pi 1963 1956 0 19:43 ? 00:00:01 sshd: pi@pts/0
pi 2030 1964 0 20:33 pts/0 00:00:00 grep --color=auto sshd

Add an Inverse grep
Ah! There’s a problem! We seemed to have caught our own grep in the command. But that’s no problem we can
simply pipe again to grep and do a –v for grep, which will return us every line without a grep. This gives us the
command:

$ ps –ef | grep sshd | grep –v grep

This gives an output of this:

root 1722 1 0 19:24 ? 00:00:00 /usr/sbin/sshd
root 1956 1722 0 19:43 ? 00:00:00 sshd: pi [priv]
pi 1963 1956 0 19:43 ? 00:00:01 sshd: pi@pts/0

Cut Down the Results
Much better! Now you can begin to see what we can accomplish with pipe, but I am far from done with the things
you can use this for! Let’s introduce the next command: awk. awk is a tool for doing data extraction from a line of text.
In this way, you can pull all kinds of information out of whatever commands you’re running. By default, awk will pull
each element out by splitting on whitespace, which is any tab or space between characters. You can set the character
to split against using the –F <delimiter> argument. Once you have told awk how to break your text, you will need to
output it. awk has an entire syntax for outputting commands, and it is an incredibly complex art form.

However, for most of your needs, simply printing the correct field will do. All awk outputs are wrapped in curly
braces { and }, and you will normally need to wrap them in single quotes so the command line will ignore any spaces.
This means the basic syntax looks like this:

$ awk '{ <command> }'

The most useful command for anyone working with awk has to be the print command because it is used to
display the delimited variables. Each of these variables is treated as the number it is in the sequence, so $1 for the first,
$2 for the second, and so on. Using this we can combine the awk with our ps –ef from earlier to print out the second
space delimited field, the PID! This gives us the following command:

$ ps –ef | grep ssh | grep –v grep | awk '{print $2}'

Wow, these commands are getting long! But examine the output of this command:

1722
1956
1963

Aha! The quick among you will realize what is coming next! We can pipe this to kill! In this fashion, we can use a
ps, grep, and awk to grab only the PIDs of processes matching a given pattern and then pass them off to be killed!

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Essential Commands

104

xargs to Work with Each Result
This is one of those pieces of magic that never gets old; however we can’t pass a list of PIDs directly to kill because
we want them passed one at a time. To do this, we need to take advantage of another command, xargs, which works
the same way that the –exec does in find. It allows you to treat each line of output from the commands before as
an individual argument for another command. To use xargs, we simply have them wrap the command in the same
manner sudo does. So if we wanted to pass each of those PIDs to xargs via kill, we would simply run the following
and that would be it:

$ ps –ef | grep ssh | grep –v grep | awk '{print $2}' | xargs kill −1

In this case, I will not be killing off my sshd process as I don’t want to reboot my Pi. But you should get the idea
of how you can begin taking output from one command and passing it through to another command to run further
executions on these commands.

There are actually a number of other commands that come in really handy when doing these kinds of “shell-
fu.” The first is wc, which is short for word count. By default, wc will give you the newline, word, and byte counts for a
given block of text or file, but it also has some great arguments, such as –l, which will give you the number of lines; –w,
which will give you the number of characters; or –m, which will give you the number of words.

Next is sort, which sorts each line of the output into order. You often see sort paired with uniq, which is short for
unique. With these two, you can pipe an output to sort then to uniq, and you will have only the unique values in your
given output!

The final thing to be aware of when working with a number of commands is the output operator >. This operator
is from the same family as pipe, but instead of being used to direct your command output to another command, it is
used to direct your output to a file. This is a great way to save the output of commands to a file so that you can revisit it
later or to have it useable as arguments for another command. By now, you should be getting the impression that the
shell is incredibly powerful and you can do all kinds of tricky manipulations by combining commands with pipe!

User Environment
We are going to take a small break from examining commands and have a look at some of the things that make up the
environment in which you work. Your environment is launched every time you log in, and each time is the same. This
is due to a number of files and commands that provide directives on how your simple shell environment is to be made
up and how it is to function. One of the key files involved in performing these tasks is your systems master controlling
environment script /etc./profile. This file provides the basis of the shell and environment variables that are the
base of each user’s session.

The profile file sets a number of variables, including the PATH variable. This variable is one of the key variables in
setting up how your shell environment works. So we will have a look at it in depth.

The PATH is one of (if not the most) important variables in your whole environment. It represents the systems
search path that basically means where it will look for applications. As an example, I am sure that by now you are
aware that all the commands we have run are just words entered into the shell, but in fact they are the names of fully
functional applications that are located within the OS. The PATH contains a list of folders that your shell will search
through and execute any command from within automatically. This means that you aren’t always searching for the
exact path of a command; you can just run it as needed by its name. The problem here is that you cannot be certain
where the program is being run from, or if you have multiple versions, which one is being run. There is a command
that solves this problem: the which command. It outputs the path of the application that your shell would use to
execute a given command. For example, let’s find the path of the ssh application, we type which ssh and we get this:

$ which ssh
/usr/bin/ssh

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Essential Commands

105

Yep, it’s that easy. The PATH is used by a number of programs to find information that they need. Your path
variable is initially set within /etc./profile but this can be modified. But before we go out and start playing with the
path variable we should find out what it is currently set too. There are two ways you can do this, first is to use the echo
command to print the variable. echo will interpret whatever you give it and then print to the command line, so if we
execute echo $PATH the echo command will output the contents of the PATH variable like so:

$ echo $PATH
/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/local/games:/usr/games

Okay, that’s what the PATH variable is. The path is a list of folders separated by colons. This brings us to the second
way of viewing the PATH variable: the env command displays all the currently set environment variables. This is a
fantastically useful command to check the current state of your whole system environment. Running env should give
you an output like this:

$ env
TERM=xterm
SHELL=/bin/bash
XDG_SESSION_COOKIE=eb95d80869be1ad62af36ec5502c41a1-1349772229.897557-1575821964
SSH_CLIENT=10.0.0.104 3643 22
SSH_TTY=/dev/pts/0
USER=pi
LS_COLORS=rs=0:di=01;34:ln=01;36:mh=00:pi=40;33:so=01;35:do=01;35:bd=40;33;01:cd=40;33;01:or=40;
31;01:su=37;41:sg=30;43:ca=30;41:tw=30;42:ow=34;42:st=37;44:ex=01;32:*.tar=01;31:*.tgz=01;31:*.
arj=01;31:*.taz=01;31:*.lzh=01;31:*.lzma=01;31:*.tlz=01;31:*.txz=01;31:*.zip=01;31:*.z=01;31:*.
Z=01;31:*.dz=01;31:*.gz=01;31:*.lz=01;31:*.xz=01;31:*.bz2=01;31:*.bz=01;31:*.tbz=01;31:*.
tbz2=01;31:*.tz=01;31:*.deb=01;31:*.rpm=01;31:*.jar=01;31:*.war=01;31:*.ear=01;31:*.sar=01;31:*.
rar=01;31:*.ace=01;31:*.zoo=01;31:*.cpio=01;31:*.7z=01;31:*.rz=01;31:*.jpg=01;35:*.jpeg=01;35:*.
gif=01;35:*.bmp=01;35:*.pbm=01;35:*.pgm=01;35:*.ppm=01;35:*.tga=01;35:*.xbm=01;35:*.xpm=01;35:*.
tif=01;35:*.tiff=01;35:*.png=01;35:*.svg=01;35:*.svgz=01;35:*.mng=01;35:*.pcx=01;35:*.mov=01;35:*.
mpg=01;35:*.mpeg=01;35:*.m2v=01;35:*.mkv=01;35:*.webm=01;35:*.ogm=01;35:*.mp4=01;35:*.m4v=01;35:*.
mp4v=01;35:*.vob=01;35:*.qt=01;35:*.nuv=01;35:*.wmv=01;35:*.asf=01;35:*.rm=01;35:*.rmvb=01;35:*.
flc=01;35:*.avi=01;35:*.fli=01;35:*.flv=01;35:*.gl=01;35:*.dl=01;35:*.xcf=01;35:*.xwd=01;35:*.
yuv=01;35:*.cgm=01;35:*.emf=01;35:*.axv=01;35:*.anx=01;35:*.ogv=01;35:*.ogx=01;35:*.aac=00;36:*.
au=00;36:*.flac=00;36:*.mid=00;36:*.midi=00;36:*.mka=00;36:*.mp3=00;36:*.mpc=00;36:*.ogg=00;36:*.
ra=00;36:*.wav=00;36:*.axa=00;36:*.oga=00;36:*.spx=00;36:*.xspf=00;36:
ALL_PROXY=SOCKS://localhost:9050
MAIL=/var/mail/pi
PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/local/games:/usr/games
PWD=/home/pi
LANG=en_US.UTF-8
SHLVL=1
HOME=/home/pi
LOGNAME=pi
SSH_CONNECTION=10.0.0.104 3643 10.0.0.56 22
_=/usr/bin/env

There are a lot of variables here that cover a range of things, including the shell we are using (SHELL), the variables
governing the colors displayed when we execute ls (LS_COLORS), the path, my current location (PWD), my home
directory (HOME), and my username (USER) in addition to the PATH. All these pieces of information can be incredibly
useful when trying to diagnose issues with running commands.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Essential Commands

106

Now that we have been able to view the PATH variable, we should look at modifying it. To modify a variable,
we need to use the export command in order to assign it into our environment. The syntax for setting a simple
variable is this:

$ export VARIABLE="SOMETHING"

If you run this and run env again, you should see this new variable show up within its output like so:

VARIABLE=SOMETHING

If we were to do this to our PATH variable, we would reset it to whatever we set it to, which is not what we want.
We could also simply rewrite the whole path, but that’s quite arduous for a simple change. The easiest way to append
something to the PATH variable is to include the PATH variable within the assignment. Let’s work with an example: say
we want to include the /opt directory into our path. We would start with export PATH= and then we would want to
use the current PATH variable (as we would use to display it with echo), so we write "$PATH". To the $PATH we would
add a colon as a separator and the new directory /opt, which gives us this command:

$ export PATH="$PATH:/opt"

When run, this will change your PATH variable to this:

/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/local/games:/usr/games:/opt

Awesome; the /opt was appended to the end. This brings us to a key point; PATH has an order, left to right. Those
on the left side of the PATH variable will be used before those on the right. In our example, /opt would be the last place
we search for any given file.

Now that you understand your user environment and how PATH works, you should learn about a special file
within your home directory. This is your local shell profile override file. In your home directory there are a number
of hidden files that end with rc. These files are normally executed by your shell or whichever application upon its
execution to load your personal preferences. The file for the standard Linux BASH shell is the .bashrc file. This
file is responsible for a number of the environment variables we saw before; it is also the reason that some of your
commands have color. For example, the ls command, which is normally located at /bin/ls (you can check with
which ls). If you were to execute this instead of the normal ls, you would not see the colors! These colors were added
specially by the .bashrc file using the alias command.

alias, as its name implies, is used to alias a command or a group of commands under a single shell command,
just like a program. In the case of your .bashrc file, it has aliased the ls command to execute this:

$ ls –-color=auto

This addition means that every time you issue an ls command, you are automatically adding the color argument
to ls. The way the .bashrc achieves this is by adding this line:

alias ls='ls --color=auto'

The great thing about files like .bashrc is they are designed to be user modified—after all, they are your local
system variables. In this way, your local environment is made from the base system values given by /etc./profile
and the additional values given in .bashrc.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Essential Commands

107

The cron Command
The last command is probably one of the most powerful and useful tools in a systems administrator toolkit: the
cron command. cron is a timing application that executes commands at a given time based on rules passed to it by
a steering file. cron has a steering file per user called a crontab, which it will check each minute to see if another
command needs to be executed. To view your current crontab, you would simply need to execute this:

$ crontab –l

Unfortunately, you won’t have one to begin with, so all you will get from this command is this:

no crontab for pi

Fear not because we will now go over the basics of creating a crontab timing file. The command to enter the
special crontab editor is as follows:

$ crontab –e

This will open a copy of your system’s standard editor and create an initial file with a nice block of comments that
outline how a crontab entry is laid out. It provides the following example:

0 5 * * 1 tar -zcf /var/backups/home.tgz /home/

This command will perform a tar and zip of all users’ home directories every Monday at 5 a.m. Recall that
tar creates a single archive file of all the documents, and the zip will compress the file—the upshot being a single
compressed file containing all the files. The five numbers at the start of the line govern the timing; these numbers
represent the following things, in the following order:

Minute of hour•	

Hour of day (in 24 hour format)•	

Day of month•	

Month of year•	

Day of week (Sun, 0 to Sat, 6)•	

As you can see from the example, this command runs on the zero-th minute of the fifth hour of any day of the
month, in any month of the year as long as that day is a Monday. With this combination, you can set up any number of
timing jobs in order to perform systems administrative functions. The best part is that you can use all the commands
we have discussed earlier to perform these tasks for you! Want to kill a process at a certain time? Write the cron timing
out for when you want things killed and then use the ps, grep, awk, xargs, and the kill command we worked up
earlier! With the combination of cron and all the commands we covered earlier, there is no limit to the tasks you can do!

Summary
Congratulations, you should now be well on your way to being a fully fledged systems administrator. You have at your
disposal more than two dozen individual commands and the ability to combine them in new ways to perform almost
any task your heart desires. In addition, you should now have the tools to automate the execution of these commands
using cron by editing your crontab file. All these tools form the basis of how a systems administrator will manage a
Linux system as they provide the flexibility to write robust commands and have them executed automatically.

www.it-ebooks.info

http://www.it-ebooks.info/

109

Chapter 6

Editing Files on the Command Line

Believe it or not, one of the things you’ll end up spending most of your time doing on Linux is editing text files. They
get absolutely everywhere, and you’ll find them used for content, source code for applications, configuration files,
and startup scripts. The reason is that despite their somewhat basic and boring nature, they are very useful for storing
human readable information. When you combine this with ease of use, you know you’re on to a winner. Linux doesn’t
have a registry like Windows, and it’s extremely rare for applications not to use text files for their configuration.
Even Sendmail, which has a historically evil config file (so evil in fact you need to write a config file for yet another
application that will then create the Sendmail config file for you), stores its config file as plain old text.

This chapter gives you a brief overview of text files and how they’re used today. We’ll then introduce the two
editors that we’ll cover in this chapter (nano and vim) and then we’ll get into the real meat of the chapter and show
you how to actually get things done.

What is a Text File?
When a computer stores data on disk, it can store data in one of two formats: as a text file or as a binary file. So
because computers store everything as binary data (those good old 1s and 0s), what exactly makes a text file different
from a binary file? After all, surely the text file must also be stored in a binary format. If you were thinking along those
lines, you’re quite correct. It’s not so much how the data itself is stored, but more to do with how that data can be read.

The best way to appreciate the difference is to think about the page you’re reading right now. The reason why you
can understand what I’m writing is because we have implicitly agreed to use English to communicate. The content of
this page has structure that we both understand. We start sentences with capital letters; we use punctuation to show
when sentences end or when to stop for a breath. In short, we have quite a complicated protocol here, but it works
because we are both capable of reading and writing English. We can understand both the structure (how the data is to
be read and written) as well as the semantics (what the words actually mean). So, what about the following sentence?

Goedemorgen. Hoe gaat het?

Straight away we can tell that it’s not English; after all, if it were, we would be able to understand it. Unless you
happen to speak Dutch (we don’t, but our good friend does), you probably wouldn’t know which language it was written
in. Even though the content doesn’t make sense, the structure itself does. We can see we have two sentences: one is a
statement and the other is a question. In this particular case, we can guess what the first word means. If we pronounce it
as we would English, it sounds very similar to good morning (which is actually what the word translates to). From that,
we can probably guess that the question is “How are you?”

The reason we can do that is because although we don’t understand the content, Dutch and English share
a common structure or format. We share an alphabet (although Dutch does have some characters not present in
English) and punctuation (full stops, commas, and question marks). Now you might not get the pronunciation right
(it is, after all, a foreign language) but because we share a common structure, we can at least handle the content, even
if we can’t understand it.

Let’s take this one step further with Figure 6-1.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ editing Files on the Command line

110

At least for the average reader of this book, Figure 6-1 will be unintelligible. It’s actually the same two
sentences that appeared in our Dutch example, but this time written in Chinese using simplified characters. To
the uninitiated, there is no way to tell from this collection of characters how they should be pronounced. In fact,
depending on the dialect spoken, these characters could be pronounced in many different ways. This is because
each character represents an idea rather than a sound, and once you recognize the idea, you know which word
to say. This is why in China it is possible for two people who cannot speak the same language to communicate
perfectly well by reading and writing characters.

So why did we sidetrack into foreign languages? Well, text files are like reading and writing English or Dutch.
Whether the content makes sense or not depends on whether the reader can speak English or Dutch. This is similar
to two applications and their config files. If you give an Apache web server configuration file to the Sendmail e-mail
server, it will spit it back in your face (Sendmail doesn’t speak Apache), but it can open and read in the file.

Chinese, on the other hand, is our example of a binary format. It is very alien for most Western speakers
(although arguably it is far more efficient, elegant, and sophisticated than phonetic writing used in Western European
languages). Unless you know Chinese, you can’t understand the content or the implied structure. In computing terms,
what you have is a blob of raw data that only makes sense to the application that wrote it.

Now you might be thinking that storing data in an arbitrary format is no big deal. After all, the application that
wrote it is the application that will read it, and as long as it understands the file, surely that’s enough. Well yes and no.
What happens if the program breaks? What if you need to read the file on another machine? Perhaps the vendor has
provided some special tools to do just that, but therein lies the problem: you need special tools.

Not so for text files; they can be opened in any text editor, and no special tools are required. Because the vast
majority of Linux applications all use text files (we can’t think of any off the top of our heads that don’t), all you
need to read or make changes to a configuration file is your favorite text editor, and Linux has a stunning variety of
editors to choose from. Thus you can become familiar with a single tool and then use that tool to reconfigure all your
applications, write source code when you’re doing scripting, and even use it for writing books (which is precisely what
we’re doing right now).

The Contenders
So the text editor is your Linux Swiss army knife and something you never want to leave home without. Of course, just
like Swiss army knives, there are many different text editors to choose from, and some have more features than others.
Sometimes you want a basic text editor that just lets you open files, edit some text, and then save the results. Other
times you might want to do a complex search and replace or delete to the end of the line. Of course, you can quite
easily use one of the more feature-full editors for all your tasks; after all, you don’t have to use the features if you don’t
need them. That said, it’s been our experience that people are generally familiar with at least two text editors: one
basic and one fully featured. In this book, that means nano and vim, respectively.

Figure 6-1. Some Chinese text

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Editing Files on the Command Line

111

The first text editor that we’ll cover is nano. It’s a lightweight and easy-to-use text editor and it tends to be
installed on most systems. Some later versions of nano have more features (such as syntax highlighting when writing
source code), but all effectively look and work the same way. If you can use nano on your Pi, you’ll be able to use it
equally well on any platform.

The nano editor was actually written to be a drop in replacement for the pico text editor that used to ship with
Pine, a text-based e-mail client. Pico can still be found on older systems (usually much older), and chances are if you
can’t find nano, you might still be able to find pico. Because it’s a drop in replacement, the same commands and basic
features used in nano will also be available in pico. Combined, this gives you coverage of most other UNIX platforms
as well as Linux.

Nano’s key selling point is its ease of use, but it does have a number of useful features. These features are accessed
from menus, and while nano has more than enough features for simply editing a config file, sometimes you need
something with a little more power. This is where the vim editor comes in. It can do all the things that nano can do,
but it can do so much more so that’s pretty much where the comparison ends. Vim enables the following: syntax
highlighting, different color schemes, cut and paste, delete blocks of text, indent chunks of text, open multiple files
and show both at the same time, and much more.

Now you might be thinking that if vim is this great, you might save yourself a lot of headaches by simply just
learning how to use that text editor rather than any others. Like nano, vim is available almost everywhere in some
form or another, and has the same basic features and accepts the same commands. The reason we’re covering nano is
that you can be up and running quite literally in just a few seconds. Its features are easy to explain, and getting it to do
what you want is really easy. Although vim users may disagree, in our experience, vim doesn’t exactly hold any ease-
of-use awards. That said, if you really don’t want to learn two editors and feel that you’d rather just learn vim, that’s
fine, you won’t really be missing out on anything; it just might take you a bit longer to get productive.

Starting out with nano
We’re starting out with nano for the simple reason that it’s really easy to use and doesn’t take much explaining. You
can quite literally do everything you need to in nano, and while you might be able to do it faster in another editor,
nano will help you get the job done just fine.

Nano can be run by using the nano command. Okay, no surprises there, but running nano by itself isn’t all that
useful. After all, you’ve got a text editor now and you want to do some editing. Unless making a few notes, no one ever
just writes text without wanting to save it afterward. When you open nano, you probably want to open a particular
file for editing. That file may or may not exist, but you probably know what it is you want to call it when it comes to
pressing the save button. For the sake of this introduction, we’re going to open nano and tell it that we want to edit
test.txt. We can do that with this:

$ nano test.txt

All being well, you should get something like Figure 6-2.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Editing Files on the Command Line

112

We’ve connected to our Pi using SSH but because nano is a terminal based application, it will look the same
regardless of how you run it. One interesting thing about these sorts of terminal applications is that they are sensitive
to how big your terminal is. A fixed terminal (such as the physical console) has a set screen size. When you connect via
SSH or use a virtual terminal, you can adjust the size of the screen and this will cause nano to resize along with it. This
makes it very flexible and can fit in with your needs regardless of the shape or size of your screen.

So What Does This All Mean?
Nano’s screen can be a bit confusing at first (especially the bit at the bottom), but most of the time you won’t actually
be paying attention to anything other than your text. In fact, all the other stuff melts away in the background. For
example, on the top left of your screen you can see that we’re running “GNU nano 2.0.9.” Until we came to write this
book, we had no idea what version of nano we were running and quite honestly until we had to describe it here, if
someone had asked us to draw the nano layout from memory, we’d have had a pretty hard time doing it. Actually, we
wouldn’t have been able to do it at all!

There are two other pieces of information that you can glean from nano’s title bar. Smack bang in the middle is
the name of the current file that you’re editing. In our case, it’s test.txt. Not exactly earth-shattering, but it’s quite
common to be working on multiple windows at once, and being able to quickly get your bearings can come in handy.

The third piece of useful information is whether the file has been modified; that is, are there any unsaved
changes? This can be very handy when you want to check whether you’ve saved your latest work. It’s also useful for
simply jogging your memory and reminding you to save your work. To see what this looks like, just press the spacebar
to make a change, and you’ll see that “Modified” appears in the top right of the screen (see Figure 6-3).

Figure 6-2.  Freshly opened nano with a new file

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Editing Files on the Command Line

113

That’s pretty much it for the title bar. At the bottom of the screen there are actually two sections. The first one is
the status line, which shows you important information (right now, it’s telling you that it’s a new file), and the second
one is the shortcut or menu bar. We’re not going to say much more about the status line because it’s pretty much self-
explanatory. Anything of importance that you need to know, nano will put it there. Of much greater interest (and in
fact the key to using nano) is the shortcut bar. Let’s take a closer look at it in Figure 6-4.

Figure 6-3.  Modified file in nano

Figure 6-4.  The shortcut bar

When you’ve been working in Windows or on the Mac, you’ve probably reached the point where rather than
using the mouse to copy and paste things you instead use the keyboard combinations. On Windows, you would
use the Ctrl and C keys, and on the Mac it would be the Command key and C. When you use more than one key in
concert with another, you end up with a key combination. Nano works in a very similar way, but rather than just copy
and paste, all its important functions are driven with key combinations. Because it would be somewhat difficult to
remember all the possible options available (although the ones you’ll use on a frequent basis will soon be committed
to your long-term memory), nano displays them in the shortcut bar. Actually, it only shows the most common
commands, but we have never needed to stray away from them.

To make use of any command, you need to use the correct key combination. You can find which combo you need
by looking at the shortcut bar. A shorthand way of writing control key is to use the carat (^) symbol. Looking at the
shortcut bar, you can see that if you want to get help, you need to use ^G; in other words, hold down the Control key
and press the G key.

Saving Your File
Saving a blank text file is pretty boring, and it’s hard to tell if it saved correctly if all you have is a space character. We’re
going to go for an old favorite here and punch in “Mary had a little lamb.”

Unlike some editors (most notably vim, which you’ll come across later), nano doesn’t have the concept of
different modes. That is, when you type into nano, it will be interpreted as text to put into the file. Vim, on the other
hand, stands in command mode, and if you just start typing, you will get some interesting results. As you might expect,
pressing Enter after each line will take you to the beginning of the next line. After typing in the nursery rhyme, you
should get something like Figure 6-5.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Editing Files on the Command Line

114

We shrank the nano window down a bit so that we don’t take up vast quantities of paper with blank whitespace.
It also acts as a pretty good example of why you might want to resize a window and how it looks when you actually do.
In this case, everything looks just fine, although admittedly for writing anything of a reasonable length, you’d need
something a bit bigger than this.

You may have noticed that the status line seems to have disappeared. This is because the file stops being a new
file once any content has been added to it. Our modified warning is still up in the top right hand corner though. It’s
time to get rid of that and get Mary safely on to disk.

Looking at the shortcut bar you can see the options we have available to use. The most common ones you’ll use
are WriteOut (which really just means Save File) and Exit. Exit actually doubles as WriteOut because if you try to exit
nano with unsaved changes, it will ask you if you want to save your changes.

Let’s start with the WriteOut command. Hold down the Control key and press the O key. Nano should now look
something like Figure 6-6.

Figure 6-5.  Mary had a little lamb, nano style

Figure 6-6.  Using the WriteOut command

We made two changes here:

The status line has made a comeback. This time it’s asking for information, or at least it wants •	
us to confirm it. Now that it’s time to save the file, nano is asking us to confirm what the name
should be. Because we passed it a name when we originally started nano, this is the name that
nano will provide by default. If we press the Enter key now, it will save the file; but before we
do that, let’s take a look at the shortcut bar.

The shortcut bar has changed to a whole new set of options because the shortcut bar is •	
actually contextual; that is, it will show you the most relevant things based on what it is you’re
doing at the time. These options are only useful (or even available) when saving a file, so this
is when you get to see them. We’ve never actually had to use any of these options apart from
Cancel (when you suddenly decide that saving is not what you want to do at all).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Editing Files on the Command Line

115

Okay, back to saving the file. If you like, you can change the name that the file will be saved as, and nano will not
only save it under your new name but will also continue using that name when you go back to editing, which is the
same file and you should get a message like the one shown in Figure 6-7.

Figure 6-7.  File has been written to disk

Figure 6-8.  Exiting before saving

You can see that the shortcut bar has gone back to its usual look and we have a new message in our status line.
You’ll also have spotted that the Modified status has vanished. So far so good.

Let’s quickly look at what happens if you try to exit nano while you have an edited file (see Figure 6-8):

All we did here was add a signature to the file (although admittedly it probably wasn’t Mary who wrote it) and
then tried to exit nano by using Control and X. This time the status line gives us a scary warning, and the shortcut bar
gives us a somewhat reduced number of choices. We can say yes, in which case nano will save the changes before it
exits; or we can say no, in which case nano will still exit, but we will lose all the changes we made since the last time
we saved the file. We can also think better of exiting and change our minds. In this case, we can use Control plus C to
cancel our exit request, which will just take us back to nano.

Moving Around in nano
You can move around your text just by using the cursor keys because you’re probably used to from your word
processor of choice. In fact the only reason we mention this here is because some editors don’t use those keys at all
because they take your hands too far off the home row (that is, they’re slow to use because you have to move your
hands a long distance to reach them). So rather than explaining cursor keys, we’ll show you the two features we use
most in nano, which are both coincidentally related to finding things.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Editing Files on the Command Line

116

The first thing you will probably want to use is the search feature that is somewhat oddly named “Where Is” under
nano. We can issue that command by pressing the Control and W keys to get to the next step, as shown in Figure 6-9.

Figure 6-9.  Searching for some text

Figure 6-10.  Nano found Mary

Once again we have some new options available to us. The most common task, though, is to simply find a word.
So let’s search for Mary and see what happens (see Figure 6-10).

After pressing the Enter key, nano will try to find the text you searched for. In our example, we were already at
the end of the file; that’s why you can see “Search Wrapped” in the status bar—nano reached the end of the file and
wrapped around to continue the search from the beginning. This is a really handy feature!

There will often be more than one occurrence of the word that you’re looking for. If you want the second Mary,
you repeat your search. You can do this by just pressing Control and W and then immediately pressing the Enter key.
Nano remembers what you searched for last time, and if you don’t supply a new word, it will simply search again with
the old word. This means you can easily cycle through the document to find the specific entry that you’re looking for.

The last feature that we’ll cover is a slightly more specific form of search. Suppose that rather than searching for
a word, you want to go to a specific line number. In day-to-day text editing this is not something that you’ll actually
do all that often. However, when you start writing scripts and they generate errors, you will generally be told which
line that error occurred on. For short programs it often doesn’t matter, but if you’re building something fairly epic,
you’ll want to be able to get to the line quickly. This is true even in medium-length programs because if you have a
particularly tricky problem, you’ll have to keep revisiting a specific piece of code and you certainly don’t want to have
to use the cursor keys to find it each time.

To go to a specific line number, you need to start the search as you did before by using Control plus W; but rather
than typing any text, you should then do Control plus T. This will change the status line as shown in Figure 6-11.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Editing Files on the Command Line

117

All you have to do here is enter the line number that you want to go to and press Enter. You can also see that
there are some other useful options here that allow you to go to the start of the file and the end of the file, respectively.
You can also press command and T to go back to searching for text, or you can press command and C and cancel the
search.

Wrapping Up nano
That’s all we’re going to cover for nano but as you can see, even the limited amount of functionality we’ve covered has
already given you the ability to edit configuration files or even compose your own book. Nano is great for these kinds
of tasks where you don’t want distractions and you just want to get the job done. As it happens, a good deal of this
book was written in nano, so it just goes to show that this tool is certainly not just a toy! That being said, let’s move on
now to look at what the vim editor can offer you instead.

Getting Started with vim
Vim is a bit more advanced than nano. Whereas nano was specifically designed to be simple, vim is designed to be a
fully featured environment for doing all sorts of tasks. You can even integrate other applications (such as the shell and
source code control) directly with vim, so you can do huge amounts of work without ever leaving your text editor.

The downside to this raw power is that you have to learn how to use it. Unlike nano, which is basically ready to
use right away, vim has the concept of modes. Generally speaking you’re either in the normal or insert modes, and
they are the ones that we’ll focus on in this section.

However, we do want to point out that even though we use vim on a regular basis, we’re not what you would call
vim experts. We know how to use the functionality that helps us with our work, but there are many features that we
don’t use or even know about. Because this is just a primer on vim, we don’t feel that this is an issue, but if you think
vim is the tool for you, there is a wealth of books dedicated solely to vim as well as numerous video tutorials on some
of its more advanced and powerful features.

Rather than having to type in yet another poem, let’s give Mary an encore and bring her back to the stage with
vim. First though, we need to install it:

$ sudo apt-get install vim

Now that we have vim, let’s see about that encore:

$ vim test.txt

Needless to say, starting vim is as straightforward as starting nano, but it does look a little different once it has
started (see Figure 6-12).

Figure 6-11.  Go to a specific line number

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Editing Files on the Command Line

118

Gone are the nice headers, status lines, and shortcut bars. In the land of vim, like Linux itself, we’re expected to
know what we’re doing. In the bottom left of the screen, you can see the name of the file that we’re editing. Next to that
is 6L, which tells us how many lines are in the file, followed by 115C which tells us the number of characters. On the
other side of the screen we have another useful piece of information: 1,1, which tells us the line that we’re currently on
and the column that we’re in. At present it is telling us that we’re on line 1 and in the first column. That makes sense
because we only just opened the file; if you look at the cursor, sure enough we’ve sitting on top of the first M.

Note■■  D epending on the version of vim and how it is configured, it will usually take you to the location you were at
when you last stopped editing that file. This is really useful when programming because it gets you immediately to where
the action is.

You can also see several lines of tildes (~) beneath the last line in the file. They are here to remind us that
although the screen is a certain size there is no content below Mary. This is especially useful when doing certain types
of programming and you want to make sure there’s no additional whitespace. It’s really just a visual clue and won’t get
in your way.

The vim Modes
Vim comes across as being a bit quirky because (unlike word processors and more basic text editors) with vim
you can’t start typing right away because vim has different modes or personalities. When you first start vim, it is in
command mode. Unlike nano, in which you give commands by using key combos, vim has a wide range of commands
that are single or double letters. You might think that this would be hellishly confusing and, well, you’d be right. Once
you know the magic key presses to make vim do your bidding, you’ll love this way of controlling your text editor. Until
then, however, it’s likely to drive you to distraction.

So let’s get out of command mode and slip into something more comfortable. We can replicate a nano-esque
environment in vim by pressing the i key. This will take us out of command mode and place us in insert mode. You
can tell when you’re in this mode because you see --INSERT-- in the bottom-left corner, as shown in Figure 6-13.

Figure 6-12.  Starting up vim

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Editing Files on the Command Line

119

At this point you can move around your text file just as you did with nano. The cursor keys work as expected and
you can add and delete text as you did under nano. The differences start when you want to do something other than
writing text, though. How do you save your changes?

Saving Your Changes
To save your changes in vim the first thing you need to do is exit from insert mode by pressing the escape (ESC) key.
This takes you back to normal mode, in which you can issue commands and consequently save your document. First,
though, let’s change the signatory to say John instead. This will give us the much-needed change for the document. To
actually save the document we use this command:

:w

The command really is a colon followed by a lowercase w. Vim is case-sensitive, so if you tried to do: W, you
would get an error message that it isn’t a valid command, as shown in Figure 6-14.

Figure 6-13.  Vim in insert mode

Figure 6-14.  Whoops, W isn’t a command

There’s no need to panic; just try the command again and you’ll be fine, as shown in Figure 6-15.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ editing Files on the Command line

120

If you want to change the file name while you were saving, you can simply type in the filename you want to use
after the command like so:

:w test2.txt

This will then save the changes to the new filename and will then continue to edit the new file.

Getting Out of vim
This leaves us with just one more feature to bring you to the same basic level that you had with nano (we’ll cover
searching in just a moment). Once you’ve done all your editing and you’ve saved your files, you’ll want to exit.
The command for this is as follows:

:q

As long as you haven’t made any changes, vim will immediately exit, and you’ll be back at the command line.
However, if you had made some changes and you try to do this, you’ll once again catch the wrath of vim, as shown
in Figure 6-16.

Figure 6-15. :w works like a charm

Figure 6-16. To quit without saving you’ll need an override

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Editing Files on the Command Line

121

Fortunately, vim has already told us how to fix the problem, but basically if you want to quit without having your
changes saved, you’ll need to explicitly tell vim that’s what you want to do:

:q!

And that’s all there is to leaving vim!

Searching in vim
In this section we’ll cover only the basics and show you how to do the same sorts of searches that you did in nano. In
actual fact, vim has very advanced search capabilities (you can use regular expressions for a start; see the following
sidebar) but although you might come to depend on these features as you become more advanced in your usage,
you’ll still probably find that you spend most of your time doing the simple things.

To search for a word in vim, all you need to do is prefix it with a forward slash. To give this a try, while in
command mode (tap the Escape key twice to ensure that you’re in the right mode) type:

/Mary

This should then find all instances of Mary and highlight them for you, as shown in Figure 6-17.

Figure 6-17.  Vim found Mary

You can see the “search hit BOTTOM, continuing at TOP” message, which is equivalent to the nano “Search
Wrapped” message. One thing to watch out for with vim is that because it uses regular expressions for searching, it’s
also case sensitive by default. That means if you search for mary rather than Mary, expect to receive a complaint as
shown in Figure 6-18.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Editing Files on the Command Line

122

One advantage that vim has over nano is repeated searches. To move to the next search result, all you need to do
is press the n key. In our preceding example text, if you search for Mary with /Mary and then keep pressing the n key,
you will see vim will cycle through the search results for you. We can’t really demonstrate that effect in print, but it’s
a nice distraction for a few seconds if you’d rather not be doing something else. If you’d like to search in the opposite
direction (i.e., toward the top of the file rather than the bottom), simply use a capital N instead.

Figure 6-18.  Vim can’t find mary

REGULAR EXPRESSIONS

Regular expressions in the right hands are like magic. They slice through complex text-processing tasks like
a hot chainsaw through warm butter. They are also frequently used to give system administrators bed-wetting
nightmares and to scare small children. Regular expressions are very powerful once you know how to use them,
but boy does that power come with a cost! Be that as it may, a basic knowledge of regular expressions will be
very useful to you, and you can use them directly in vim for searching, replacing, and otherwise manipulating
your text.

We don’t have enough space to go into regular expressions here (often referred to as regex), but there are some
fantastic resources available on the Internet to get you started, not to mention complete books on the topic.
A great starting place is Jan Goyvaerts’ website: www.regular-expressions.info/. Not only is this site full of
useful and helpful information (it is very often our first port of call) but Jan has also written some very powerful
software. We bought RegexBuddy many years ago and it’s still our first port of call when we’re trying to debug
some complicated regex. If you want a simpler tool for testing out your regular expressions, check out
http://rubular.com/, which does real time regex parsing in Ruby.

Moving to a Specific Line Number
The last thing we covered in nano was moving to a specific line number. This is actually much easier in vim, probably
because it’s something that programmers have to do all the time. To jump to a specific line number, all you need to do
is place the line number after the colon. For example to jump to the 5th line all you’d need to do is this:

:5

www.it-ebooks.info

http://www.regular-expressions.info/
http://rubular.com/
http://www.it-ebooks.info/

Chapter 6 ■ Editing Files on the Command Line

123

Once you hit the Enter key, you’ll be taken directly to the fifth line. As before, this feature isn’t particularly useful
for normal editing, but it comes in handy when you’re fiddling about with a program that simply refuses to work the
way you know it should!

Moving About in vim
Although we’ve already shown you how to move around your text file, we haven’t been leveraging the power of vim.
Vim provides additional commands that can allow us to navigate through text more quickly.

In command mode, you can still move around your text using the cursor keys, which is convenient. In effect,
you can do the same thing using two other commands: the h and l keys. The h key will move the cursor back one
character, and the l key will move the cursor forward one character. Admittedly that’s not very exciting, but we can
now introduce the b and w commands. They work just like the previous commands, but instead of stepping back just
one character, they jump to the beginning of words. Suddenly that’s more useful because now if you have a long line of
text, rather than pressing and holding down the cursor key for extended periods of time (tempting, though, isn’t it?),
you can greatly speed up the process by hopping a word at a time.

We can take this one step farther, though. If you want to jump to the beginning of a line you can press the 0 (zero)
key. To get to the end of the line, you simply use $ (in our case, that means holding down the Shift key and pressing the
4 key). This is surprisingly useful because there will be lots of times when you want to get to either the beginning or
the end of the line, and now you can do so with a single key press.

Table 6-1 makes it a bit clearer.

So what we have now is a progressive way to move our cursor from one end of the line to the other. No longer
do we have to fiddle about with the Enter or backspace keys, or fall asleep waiting for the cursor to trundle across the
screen. That’s just the beginning, though, because these keys can be used for a lot more than just moving around your
file; they can also be used to specify the scope of the commands you feed to vim.

Deleting in vim
In command mode, to delete a single character all you need to do is press the x key. This will remove whichever letter
happened to be under the cursor at the time. This is sometimes useful in its own right (usually when tweaking a typo),
but it doesn’t really offer you any great advantages over dropping into insert mode. The d key, however, provides a
very powerful delete command that you can now combine with your newly acquired knowledge of moving the cursor
to do some pretty impressive things.

Table 6-1.  Common Navigation Shortcuts in vim

Movement Key press

Start of line 0

Back one word b

Back one letter H

Forward one letter l

Forward one word w

End of line $

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Editing Files on the Command Line

124

The first delete command we’re going to try is dd. Let’s start out by deleting the first line in our file. To make sure
we’re all in the right place, use the following command to get back to the first line:

:1

Now we’re going to delete the current line by typing the following:

dd

Your poem should now be somewhat shorter and look like Figure 6-19.

Figure 6-20.  Deleting three lines in one go

Figure 6-19.  Deleting the first line

Now that we’ve ruined our poem, now would be a great time to introduce another very useful feature in vim:
the “undo” command. To undo the change we just made, simply press the u key, and Mary will be restored to her
former glory. This not only prevents panic attacks when accidentally deleting the wrong line but it also means
we can delete parts of this line in numerous fascinating ways.

If you have more than one line that you want to remove, you can tell vim how many times you want it to execute a
particular command by prefixing the command with a number. For example, if we want to remove three lines
from our poem, we could do this:

3dd

This is equivalent to pressing the d key six times and gives you the happy result shown in Figure 6-20.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Editing Files on the Command Line

125

You can see in the bottom-left corner that there are now “3 fewer lines” just as you hoped. Let’s restore Mary with
the u key and try something else. With our cursor at the beginning of the first line, try executing this command:

dw

This command combines the delete command with movement commands that you saw earlier. In this case, we
combined it with w. which means “one word to the right.” You can see the effect of that command in Figure 6-21.

Figure 6-21.  Deleting a single word

Figure 6-22.  Deleting two words at once

Rather than moving the cursor, we have effectively selected text that we wanted to delete. In this case, d will
start deleting from the cursor’s current location, up to the first letter of the next word. We could have achieved this
effect easily enough simply by pressing the x key multiple times, but using dw is clearly faster and more precise. Let’s
take this to the next level and combine what we know. We know that we can make vim execute a command multiple
times by prefixing the command with a number. We also know that we can combine the d command with w to delete
a complete word. Let’s revive Mary (another press of the u key) and try this new improved command (the results of
which are shown in Figure 6-22):

2dw

Well isn’t that interesting? We’ve been able to combine a serious of commands to express some reasonably
complicated tasks. You can, of course, combine them in any way. For example, if you want to delete everything to the
end of the line, you can use d$. If you want to delete everything from the start of the line, you can use d0. It’s being able
to combine commands in this way that makes vim such a powerful tool for working with text. Although these features
are of fairly limited used when working with English prose, when you start working with programming languages, they
become very useful indeed.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Editing Files on the Command Line

126

Miscellaneous Little Commands
Before we move on to look at some of the features of Vim’s visual mode, we’re going to provide a very quick overview
of some other simple commands that will come in handy. The i enters into insert mode, but sometimes you want to
write immediately above or below the current line. You can get this effect by using O and o respectively. These will
both insert a new line and then switch to insert mode. Sometimes you don’t need to actually edit the content of a file;
you just need to change a single letter. This could be because of a typo or maybe you just want to increment a number.
You can do this with the r key. This key allows you to replace the character under the cursor with any other character.
Simply press r and then type the character you want to replace it with. Simple but very effective!

Visual Mode
Visual mode is not something we use very often, but it can save us a huge amount of time and effort. This mode
enables you to select or highlight blocks of text for further processing. This is akin to highlighting text with your mouse
in a word processor. There are two ways you can enter visual mode from command mode: by pressing either the V key
or the v key. If you use the uppercase V, you will be able to select a block of text based on lines. With the lowercase v,
you gain extra precision as you can select based on single letters rather than entire lines. The overall result is the same,
and the option you choose depends only on which one would be most convenient to you.

So what exactly can you do with visual mode? Well it really doesn’t do anything in and of itself; it just provides
an easy way for you to tell vim what text the following command should be applied to. In keeping with our previous
examples, let’s select a chunk of Mary’s poem, as shown in Figure 6-23. (You don’t need to highlight the exact text that
we have, but try to get a fairly random chunk.)

Figure 6-23.  Highlighting text in visual mode

As you can see from the highlight, we used the lowercase v option as we wanted to highlight within a particular
word. There’s no real reason for that apart from a sense of the dramatic, so it could easily have been a bunch of lines
selected with V. Now let’s apply our favorite command: the delete command. By pressing d, you will find that the
highlight text magically disappears. In this case, you don’t need to provide additional information to vim to tell it what
to delete because in effect you’ve already told it by highlighting the text in the first place.

Indenting Text
Of course, you can do other interesting things apart from deleting text (though deleting text is fun). For example, if you
want to indent the first two lines of the poem, you can highlight the first two lines with V and then use the greater-than
and less-than signs (> and <, respectively) as appropriate. We can’t show you how that would look in print (honestly
moving huge chunks of text back and forth is surprisingly therapeutic), but we can show you the end result of this
command, as shown in Figure 6-24.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Editing Files on the Command Line

127

There is one more terribly useful feature that we haven’t covered yet that works very nicely with visual mode:
copy and paste.

Copy and Paste vim Style
Copy and paste in a terminal is something of an iffy proposition. The reason for that is an application running in the
terminal effectively lives in its own little world. If you copy text from the terminal on your laptop, for example, that
text is copied into your laptop’s clipboard. The remote application (in this case, vim) has no idea that you did that.
Likewise, if you paste content in to vim from your laptop, vim will simply receive it as a set of key strokes, it won’t have
a clue that it came from a clipboard. Generally speaking, this is okay. If you just want to move a bit of text about, using
the clipboard in this way is probably fine.

There are times when this doesn’t do what you want. For example, if you have a split screen and you have two
files side by side and you want to select the first paragraph on the left, you’re now a bit stuck. The terminal just shows
you a representation of what’s on the server; it’s just a display and as such the terminal has no real understanding of
what it’s displaying. If you try to copy and paste the left side, you’ll find the right side comes along for the ride. That’s
far from ideal (not to mention highly irritating).

You might want vim to do something with the text. If you just want to paste it once, no big deal, but what if you
want to paste exactly 10,004 times? Vim can’t help you there because it has no concept of your local clipboard. You’ll
find that when these issues do crop up, they’ll be fairly niche and you can work around them. However it is likely to
really irritate you because you will think “if only I could just copy this text!” while you sit there trying to work around
the problem.

What we need then is a remote clipboard—somewhere for the remote application to store data for processing.
There’s no standard for this, but many terminal-based applications offer a solution; for vim, it’s the yank and paste
feature. To yank some content, you need to use the y key, which takes the same modifiers that the d command uses, so
you can quite happily copy an entire line with yy (remember that the letter just doubles up) and a single word with yw.
Also like the delete command, we can also use this with the visual mode.

First, simply highlight the text that you want to copy. For simplicity, let’s go for the top two lines again. Once
you’ve highlighted that with the V key, press the y key to yank it into the clipboard. Phase one is complete; now all
we have to do is paste it back into our file. There are two ways you can use the paste command: with either P or p.
As with the V and v commands, the upper- and lowercase versions are usually related in some way. In this case, the
P key inserts the content before the current line, whereas the p key inserts it after. Feel free to move your cursor to
any location in the file before hitting one of those keys. The effect is really what you’d expect, and vim will just paste
content in. You can, of course, combine these commands with the numeric prefixes to repeat the number of times
something is inserted. Figure 6-25 shows what happens if you end 40p.

Figure 6-24.  Indenting highlighted text

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Editing Files on the Command Line

128

Although you don’t know it yet, you actually learned to cut as well as copy text. Whenever you use the d key, you
delete the text from the file, but a copy is placed in the clipboard. If you select a line and delete it with dd, you can
restore it with P. Bear in mind that if you use the p key instead, you’ll actually be inserting the original line after the
line you’re currently on because you’ve removed the line. If you want to restore it to its original location, you must use
the P key to paste before the current line.

Summary
This chapter looked at what separates a text file from a binary file and why text files are the lingua franca when it
comes to configuring software. We covered two of the key text editors that you are likely to come across in your travels,
and we’ve given you a good grounding in both of them. Certainly we have not been able to show you everything that is
possible, but now you should be in a good position to explore and try new things yourself.

In the next chapter, we’ll cover the BASH shell and show you some of the more important things that a system
administrator needs to know.

Figure 6-25.  Mass pasting

www.it-ebooks.info

http://www.it-ebooks.info/

129

Chapter 7

Managing Your Pi

So now you have this magical Pi, installed Raspbian, logged in and got your Pi the way you like it, and even have a few
things in mind to do with it. Although you are becoming familiar with Linux, the problem is that every time your Pi is
switched off or loses power, you need to go over to it, log in and physically set things up before you can use it again.
Well, no more!

This chapter is about systems administration and some of the basic application functions that will allow you to
manage the way your system functions at boot. To help, we will also give you a crash course in coding with the BASH
language so that you can create start scripts of your own to initiate applications (we’ll cover just what a script is,
too). Finally, we will cover some basic security for your system, including user management, so you can change your
password and add new users to your system.

Remotely Accessing the Pi
Probably one of the hardest things to get used to when working in a Linux environment when coming from a Windows
or an OSX environment is working in the shell. For starters, it’s not pretty, but more importantly humans are creatures
who are very much used to manipulating things to achieve an outcome. This means that a GUI-based environment is
much more intuitive—at first. Having come from a Windows environment, I can say for certain that the command line
is such a great environment to work in. The amount you can do with a few deft keystrokes—compared with keyboard
and mouse work, clicking, dragging, and performing context actions is amazing. Being able to work within a system
purely from the command line is a great asset indeed. But you need to become familiar with it, and the only way to do
this is practice!

Why am I talking about the command line when we need to talk about managing your Pi? Because most Linux
management is achieved through the command line, with most if not all of the system functions you want to use
being available from the command line. Moreover, it is far easier and less resource-intensive to access your system
via the command line than it is to access it via the GUI. To access your system remotely via the command line, you
simply need to use Secure Shell (or SSH for short), which you first saw in Chapter 3. You also need to ensure that your
system’s network access is available on boot as well. These two functions serve the basics of being able to manage
your system from anywhere as you have network enabled and then can use SSH to connect to your system. So, let’s
examine these two functions a little more closely so that you understand how to ensure you can always access your Pi
to manage it.

Networking
If you are like most people and have a router to provide multiple devices on your system with network access, you will
probably be aware that your router automatically provides network IP addresses to all your devices. It doesn’t do this
through any sort of magic, but rather through a special protocol called DHCP, which stands for Dynamic Host Control
Protocol. The purpose of DHCP is to automatically assign an IP address to a machine, which means there is no need

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Managing Your pi

130

to manually assign it one. DHCP is invoked automatically by the network service when it is configured to do so.
We cover how to configure networking in much more detail within Chapter 9 WiPi.

However, if for some reason you need to manually invoke DHCP to assign you an IP address and get you
connected to the network, you need to use the dhclient command. You will need to run it as root, as you will need to
do with most of these commands, because you are changing core system functionality. If you just run dhclient as is,
you will try and get a new IP address for every interface on the system, which may not be desirable. You can actually
specify a specific interface for dhclient to work with by simply adding it as the first argument of the command
(i.e., dhclient eth0).

DNS
Probably one of the most important things to keep in mind when working with your systems networking is DNS,
which is short for Domain Name System. DNS is the way that every system on the Internet is able to turn URLs
(e.g., www.apress.com) into an IP address (e.g., 173.203.147.183). DNS on your Linux machine works by knowing
where it should direct its queries. This is governed by the file /etc./resolv.conf, which contains a name server
directive that tells your system where the name server it should query is located. Normally this is your router, but it
can be an Internet DNS server such as Google’s 8.8.8.8. These will appear in resolv.conf like this:

nameserver 10.0.0.1

SSH
SSH is a way that you can remotely gain a secure and encrypted connection to your Pi’s shell without needing to
physically do anything to it. Getting SSH installed and running, along with basic commands to access your system, are
covered in Chapter 3 so we won’t go into much detail and will instead be diving deep into the function of SSH. SSH
is provided by the sshd daemon that is run at boot time on your Pi. You can start and stop this command in the same
way that your system does, which is to use the sshd init script. All system init scripts are normally located in /etc./
init.d/ and they are normally run as root. To use them, add the action you want to take (start, stop, and restart) to the
first argument of the script. So to restart SSH, run /etc./init.d/ssh restart. Additionally, these scripts are the ones
your system uses to run programs or commands on boot. So let’s have a look at how we can leverage this to write your
own init scripts.

BASH: Basic Coding
Besides “Hey can you fix my computer?” the most common computing question I am asked is “Can you teach me how
to write this application in C?.” Not a month goes by without someone I am working with, a friend, or a relative comes
and asks me to teach them how to write software. Normally, they ask for a quick rundown of how to write applications
in C. This is not an unreasonable question for the most part, but often when I ask them what they want to do, they
want to do something simple. And while I would happily advocate learning C, there is a much simpler way for them
to get introduced to the wonderful world of software design, without taking on the task of learning C (which for what
they are normally after is a lot of overkill).

That is the goal of this part of the chapter. We aim to introduce you to coding, to basic logic structures, and to
some of the basic software design principles so that you can get the job done. We will achieve this by introducing
you to BASH. While many people will scoff, BASH is a perfect way to introduce the core fundamentals of what
programming is about. BASH is also one of the most widely used languages for software in the world because most
applications on Linux systems will have some level of BASH software performing some kind of intermediary functions
somewhere along the route.

www.it-ebooks.info

http://www.apress.com
http://www.it-ebooks.info/

Chapter 7 ■ Managing Your Pi

131

What Is BASH?
As covered in Chapter 3, BASH is short for Bourne Again Shell and is the default shell environment for most Linux
and UNIX environments. When you log in to your system via the command line and are presented with your prompt,
this prompt is provided to you by the BASH shell. The shell will take commands and instructions and process them
to perform system functions. Most of the commands you normally issue when working with or administering your
system via the command line are ones to invoke other applications so that you can generate output.

While this seems like a very obvious and simple way to go about things, it is also a fantastic way of demonstrating
the core precept of how any software application works. You take a given input, perform some kind of computation
upon it, a response (called the output) is generated. This process is, in fact, the basic process of so many functions
of life and work that many people take for granted. It is this basic model of input, compute, output that will form the
basic model of how we go about understanding how programming functions.

So back to the first question: what is BASH? BASH is a shell, and a shell is a method for taking inputs and
computing against them to generate an output. BASH has a number of tools that allow you to use the same basic logic
constructs of just about all programming languages. This is how BASH works as a programming language as well as a
shell—you can write a number of these logical operations and commands and then use them to form a computation.
Now you have a rudimentary understanding of what BASH is, what a shell is, what the broad purpose of any computer
program is, and how all these functions are available to perform the basic action of input, compute, and output. Now
that you have a very broad overview of what we want to achieve, we can use this knowledge as the starting block for
learning how to write a program with BASH.

Starting in BASH
So you know what BASH is and what a shell is and how the rudimentary logic of a program works that’s often
considered by many to be head and shoulders above the pack. In fact, several interviewers commented that while
their employers had rigorous questioning of potential software engineers who could all espouse what we have
covered, they complained that many employees and graduates could not form the logic for a basic program on a piece
of paper. They went forward to propose a coding test, a very simple test that any software engineer should be able to
solve quickly. This test, which is called the FizzBuzz test, is based on a children’s game of the same name. The basic
principle is that you must count from 1 to 100 and say Fizz for every number that is a multiple of 3, you must say Buzz
for every number that is a multiple of 5, and finally you must say FizzBuzz for every number that is a multiple of both 3
and 5. It sounds simple; that’s because it is. After all, most coding is simply building small blocks of logic and attaching
them to other blocks of logic; mashing together lots and lots of little input, compute, and output nodes to form a larger
computing system that does a much larger input, compute, and output process.

To this end, we will start by writing our own solution to the FizzBuzz problem in BASH so that you all can pass
the basic software engineer competency test! That’s right; we will be programming in BASH. The BASH interpreter
provides commands that have the same function as common programmatic logic elements. These can be combined
with normal shell commands to form whole programs. So, let’s start writing (we covered text editors in Chapter 6, so
you can use any you like). All you need is to be able to edit a file and execute it on the command line afterward. Go
ahead and open up your favorite text editor and write the following:

#!/bin/bash

This is the first thing that anyone wanting to write a program in BASH should write. This is called the shebang,
and it is a special symbol that when placed on the first line of any file means that it is the path to the script interpreting
engine we are to use. In this case, we will be using the interpreter for BASH that is located in /bin/bash on your Pi
and on just about every other Linux and UNIX operating system. This will tell the outside command prompt shell that
when it is running this program, it should use the /bin/bash interpreter to execute it. You should always include some
form of shebang at the start of your given program for any interpreted language.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Managing Your Pi

132

Interpreted versus Compiled
This brings me nicely to the next point of order: interpreted vs. compiled languages. For these purposes, you won’t
need to have a deep knowledge of compiled languages, but it is always good to know that they exist and to be aware
of some of the differences between an interpreted language and a compiled language. So while both sets of languages
allow you to write your own programs for the computer to execute, they go about this in fundamentally different ways.

Interpreted languages (sometimes called scripting languages) write down a series of programmatic commands
that are fed to an interpreting engine (as given by the shebang, for example) that will extrapolate their computational
meaning and perform the functions that the program intended. This is the pen-and-paper equivalent of a recipe for
a cake, whereby you write down the exact method for how to make the cake, and the interpreter cooks it for you and
outputs tasty delicious cake.

Note■■  T his recipe nature is also much like a script for a play in that as long as you have the script and can read it you
will perform the same actions each time. This is why interpreted languages are often known as scripting languages: their
ultimate output is a collection of text that can be used to create the programmatic output the same way each time.

Compiled languages take a different approach. They also have a recipe (called source code), but instead of the
recipe running, it will be taken to a specialized piece of software called a compiler that will take the recipe and create
an executable package (called a binary) from it. This binary package is written in the computer’s own machine
language so when executed it performs all the actions itself. This is the equivalent of writing the plans for a specialized
cake-making system and then installing it in your system and having it make the cake. In both cases you get cake, but
the interpreted one may take a little longer to make from the moment you say go. The flip side of this is that creating
the specialized cake-making machinery takes much more effort. Now you should understand why I said languages
like C were overkill for small problems—C is a compiled language.

Output in BASH
Back to our application: if you were to save and run your program, it would not do anything for you. So the first order
of business should be to make your program output something. This is accomplished with the echo statement, which
is also available from your command prompt shell; you use echo to make the system output a given set of text. So let’s
add an output to your script to have it say hello to everyone out there in the big wide world. Modify your script so it
looks like this:

#!/bin/bash
echo "Hello World!"

Now go ahead and execute your script; to do this, you will need to change the script’s file permissions to allow it
to be executed. My script is called fizzbuzz.sh, so the commands needed to make it executable and then to execute it
are these:

$ chmod +x fizzbuzz.sh
$./fizzbuzz.sh

This code will generate the following output:

Hello World!

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Managing Your Pi

133

Congratulations! You have just written the world’s most simple program, the Hello World program, which is the
first program most software engineering students are given to create. It shows how to begin building a small piece
of software and accomplishes the basic task of any software program: it generates output. In this case, the chain was
that we gave it an input of “Please output ‘Hello World!’ ” and the system computed that and then gave us the desired
output: Hello World! I wrapped Hello World! in a pair of quotation marks. (This is done so that the line of Hello
World! is treated as a string of characters instead of other commands to execute.) All languages need to make the
distinction between what is a piece of data and what is an actual piece of programmatic logic. The quotation marks in
this instance show that everything within them is considered to be a string of text.

You may ask, “So what if I want to output a quotation mark? Suppose I want to output "Hello World!" like that
in quotation marks.” Well, not a problem, we have you covered! All systems have the concept of what is called an
escape. An escape is a special character that tells the interpreter or compiler to ignore the special properties of the next
character and just treat it as part of a given string. In most systems, the escape character is a backslash (\). So if we
wanted to make our Hello World! have quotation marks, we would modify it to be as follows:

#!/bin/bash
echo "\"Hello World!\""

This shows that we want to escape those inner pair of quotation marks, so if we execute, we should see the
following:

$./fizzbuzz.sh
"Hello World!"

Fantastic! You can even escape an escape if you want to print a backslash as the output of something in
your code. Remember this as you are writing software because this is one of the most common mistakes people
make—having unescaped characters in their code, which causes the rest of their software to have issues because
the strings are mixed up.

Note■■  P robably the most commonly escaped character is \n, which is short for newline. This can be used to output
text on the next line.

As an aside, this is where text editors that have syntax highlighting come into a realm of their own because they
are an immense help in displaying which characters are part of a string and which aren’t. Vim has syntax highlighting,
as does nano (but not over SSH); unfortunately, the default GUI editor LeafPad doesn’t, but there are a number of
editors out there that do you simply need to find one that suits you. They also have other functions such as bracket
matching and brace matching, but they won’t help us much at this stage.

Recap
So what have we learned so far? We have covered how to start off a BASH application using the shebang so we can pick
out the right interpreter. You learned how to print basic output to the screen and also how to use the escape character
within a string. This brings us nicely to the next point on our list: variables.

Variables
Variables are an abstract representation of a given piece of data. Come again? A variable is a way that a computer
can store a given piece on information so that it can be retrieved again. This is the way that most information within
a program is stored and manipulated because most programs do not work like our simple Hello World! They take

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Managing Your Pi

134

various forms of information and turn it into other information. So let’s depart from our first example and return to
the problem of writing a FizzBuzz application. We need to start by counting from 1 to 100.

We could simply write each of the numbers, one per line, and then perform the FizzBuzz calculations on each,
but that’s no really a good and logical way of going about writing this program. What we need is an abstract variable
that can contain the “number”; we can then run the FizzBuzz tests against this “number” and then we will simply
increase the “number” by one and rinse and repeat until the number 100 has been tested. Then we are done!

So now you should have some understanding of what a variable is. It’s a way that we can represent any single
piece of information. We don’t have to have a specific piece of information because the variable is just that—variable
in nature? However, there are a few limitations of variables to consider. First, there are many different types of
variables defined in the wider world of programming, such as Boolean, integer, double precision integer, long integer,
character, string, floating point integer, vector, array, and so on. For BASH, there are only a few variable types, but
we should be aware of the most important of the other types of variables because this can come into play with other
programming languages:

First is the •	 integer, which is a numeric variable that is designed to represent only a number
(and in most cases only a whole number). This type is defined to allow easy use of
mathematical and other numeric functions such as addition, subtraction, multiplication, and
so on.

Second is the •	 string, which is a type of written data and represents a long stream of written
characters. Strings are normally related to user input and output because they are far too
cumbersome to work with inside an application due to the highly variant nature of what can
be included in a string of text.

Third is the •	 array, which is a special type of variable because it is a metavariable and is basically a
carrier for a number of other variables. The subvariables within an array are called elements and
are referenced by adding a pair of square brackets to the end of the array variable and a number
that corresponds to the element of the array in question. Arrays do not start at 1; they instead start
at 0 because 0 is logically the first number in the counting sequence. So if you want to retrieve the
fourth element from an array you would be adding [3] to the end of your array variable.

So now that you know what a variable is, we can start to form our basic program logic for solving the FizzBuzz
problem.

Logical Operation: if
Now we have both the ability to output something and to store something, which covers the first and last portions of
what one needs to do with a computer program input and output. What we need to do now is to actually perform some
calculations on our variables so that we can have our program do something meaningful. This is where we break out
into logical operations. In programming there are two basic logical operations that you will need to become intimate
with. These two logical operations form the basis of most of the programming that will be done anywhere. They do this
because they allow people to perform tests and take divergent actions depending on the outcome of the test.

The first of these statements is the if statement. An if statement performs just as its name implies—if something
is true, an action is performed. It is the test nature of an if statement that provides it with all its power because when
combined with the use of variables we can test just about anything we want. So looking at the FizzBuzz example, we
know we have our initial variable “number” that will represent the counting numbers between 1 and 100. We will need
to perform tests on “number” to see if it is divisible by 3, divisible by 5, or divisible by both 3 and 5. If it matches one of
these conditions, we need to output the correct word.

So now you need to understand how an if statement is written into a program. In BASH, the basic syntax is this:

if [<TEST>]; then
 DO SOMETHING
fi

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Managing Your Pi

135

The preceding is a simple BASH if statement and it really isn’t that complex. You will notice that along with the
if and the test and doing something, there is also a fi. The fi denotes the end of things that are to be performed, as
you can perform multiple actions within an if statement. So, now we have our if statement, so we need to make it do
things. So let’s have a quick look at some mathematical operations.

Note■■  R emember to leave a space on either side of the open square bracket, a space before the close square bracket,
and a space after the semicolon; otherwise, you will get a syntax error.

Test Based Arithmetic
We know that we need to have a test for equality, so how does someone confirm if any given number is divisible by
another given number? The simple answer is to check that when divided by a given number, the result is a “whole”
number without any “remainder.” This is, in fact, as hard a concept to program as it sounds. Whereas multiplication,
addition, subtraction, and even division will give finite answers that can be tested upon, checking whether something
is divisible by another number requires a different operation. Thankfully, there is a specialized mathematical
operation designed for just this issue: the modulus. The modulus returns the remainder of a division of any two
numbers and is denoted by the symbol %. So the modulus gives you results like these:

12 % 3 = 0
12 % 5 = 2

And suddenly our test has appeared: if number modulus 3 is equal to 0 we output Fizz, if number modulus 5 is
equal to 0, we output Buzz, and if number modulus 3 and 5 is equal to 0, we output FizzBuzz. So, if we combine all of
these, we get the following:

if [number % 3 = 0]; then
 echo "Fizz"
fi
if [number % 5 = 0]; then
 echo "Buzz"
fi
if [number % 3 = 0]; then
 if [number % 5 = 0]; then
 echo "FizzBuzz"
 fi
fi

Okay, that’s a good-looking attempt, but there are a number of problems that relate to things about BASH we still
need to cover in order to make this into valid executable BASH.

Let’s start with the simple variables. In BASH, there are two modes that variables operate in. First is assignment
mode, which occurs when we are creating a new variable and giving it a value. In these instances, the variables work
just like the previous number, so we could create our number variable as 1 this way:

number=1

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Managing Your Pi

136

This is fine and looks like our example, but when we want to use the current value of the number variable, we need
to access the variable, which is done in dereferencing mode. In BASH, this means adding a dollar sign ($) to the front of
every variable for which we want to use the value.

To recap, there are two modes for a variable: one for loading the variable (called assigning) and one for pulling
the values out of the variable (called dereferencing). In the first mode, we use the variable as is; in the second, we use a
$ in front of the variable. Okay, not a problem. Let’s update the code:

if [$number % 3 = 0]; then
 echo "Fizz"
fi
if [$number % 5 = 0]; then
 echo "Buzz"
fi
if [$number % 3 = 0]; then
 if [$number % 5 = 0]; then
 echo "FizzBuzz"
 fi
fi

So our code looks a bit better, but you may have noticed the next problem that occurred when we assigned a
number the value of 1. The use of the equal sign (=) is used to assign values to variables, so in this context it looks like
we are trying to assign the variable 5 with the number 0, which will cause all kinds of problems with the test in the if.
Most languages handle this using a pair of equal signs (==) to denote a test for equality, but in BASH there are a number
of special arithmetic testing operators we are given to test this:

•	 -eq for equality

•	 -ne for not equal

•	 -gt for greater than

•	 -lt for less that

•	 -ge for greater than or equal to

•	 -le for less than or equal to

We can take advantage of these operators in our code to do the comparison of the result of our modulus and 0. So
make these changes to your code again and you should have the following:

if [$number % 3 -eq 0]; then
 echo "Fizz"
fi
if [$number % 5 -eq 0]; then
 echo "Buzz"
fi
if [$number % 3 -eq 0]; then
 if [$number % 5 -eq 0]; then
 echo "FizzBuzz"
 fi
fi

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Managing Your Pi

137

Finally, when doing an arithmetic operation (such as modulus), we need to tell BASH that this is meant as
an arithmetic operation. To do this, we use a $ and a pair of parentheses around the actual bit of arithmetic so the
operation of 5 % 3 means that we need $((5 % 4)), and we can make the change:

if [$(($number % 3)) -eq 0]; then
 echo "Fizz"
fi
if [$(($number % 5)) -eq 0]; then
 echo "Buzz"
fi
if [$(($number % 3)) -eq 0]; then
 if [$(($number % 5)) -eq 0]; then
 echo "FizzBuzz"
 fi
fi

There you have it; you have written three simple tests for the FizzBuzz application; and used if statements, a
variable, the print, and the special arithmetic operator. That’s a lot of code, so let’s test it and make sure what we have
got now works!

We can do this simple test by creating the number variable with a single value for now. Let’s assign it to 15 so we
can guarantee some output. With the number variable added, your script should look like this:

#!/bin/bash
number=15
if [$(($number % 3)) -eq 0]; then
 echo "Fizz"
fi
if [$(($number % 5)) -eq 0]; then
 echo "Buzz"
fi
if [$(($number % 3)) -eq 0]; then
 if [$(($number % 5)) -eq 0]; then
 echo "FizzBuzz"
 fi
fi

When executed, the output will be this:

$./fizzbuzz.sh
Fizz
Buzz
FizzBuzz

Troubleshooting
Oh dear. That output is a problem. We said all three words at once, not just the FizzBuzz when the number was
divisible by both 3 and 5. We just failed! Argh! Okay, take a few deep breaths; this isn’t the end of the world. In fact,
it’s a great time to introduce a new feature. The if statement does something when the test is true, but there is also

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Managing Your Pi

138

another part we can add: the else. The else is the flip side of the if, and the logic flows like this: if the test is true,
do something, else do a different thing. We can use a combination of these two to perform our tests for FizzBuzz. The
syntax of an if, else statement is as follows:

if [TEST]; then
 DO SOMETHING
else
 DO A DIFFERENT THING
fi

The syntax is almost identical to the original if statement, so it is easy to make a few changes to make your if
statements into if, else statements. But now we run into the much bigger problem—and one that is the cause of most
people’s problems with programming; it’s the logical order flow. We need to create a sequence of tests so that we can
determine if something is divisible by 3, divisible by 5, or divisible by both; and perform a wholly different action in
each case. This kind of thinking is what makes programming so hard for so many people, and there is no trick to it:
you simply have to work it out. So let’s have a go at working this one out together.

If we find something that is divisible by 3 or 5, and output something before checking whether it is divisible by
both, we run into the potential for outputting a Fizz, a Buzz, and a FizzBuzz, which is not what we want. So let’s start
with a test for both:

 if [$(($number % 3)) -eq 0]; then
 if [$(($number % 5)) -eq 0]; then
 echo "FizzBuzz"
 fi
fi

Okay, now we have FizzBuzz, but what if the answer is divisible by 3 but not by 5 (which is the case for Fizz)? Then
we can just output the Fizz. Thus, if we add an else to the divisible by 5 tests, we will be guaranteed a number that is
divisible by 3 and not by 5. This means we avoid the issue when we output both Fizz and FizzBuzz at once. We can use
the new else statement here to accomplish this, so when we add the else to the divisible by 5 test, we get this:

if [$(($number % 3)) -eq 0]; then
 if [$(($number % 5)) -eq 0]; then
 echo "FizzBuzz"
 else
 echo "Fizz"
 fi
fi

Fantastic. Now we only have one case left: when a number is not divisible by 3 but is divisible by 5. We can do
this test in another else statement off the divisible by 3 test. By doing this as part of an else statement and adding a
second divisible by 5 test, we can ensure that a number is not already divisible by 3 when we output when it is divisible
by 5. This means we avoid running into the issue from before, so add this test in and your code becomes the following:

if [$(($number % 3)) -eq 0]; then
 if [$(($number % 5)) -eq 0]; then
 echo "FizzBuzz"
 else
 echo "Fizz"
 fi
else

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Managing Your Pi

139

 if [$(($number % 5)) -eq 0]; then
 echo "Buzz"
 fi
fi

And that should do it! We have ourselves a new series of tests to run. Go ahead and replace the old statement in
your script and run this new one:

$./fizzbuzz.sh
FizzBuzz

Perfect! That’s the correct result for 15! You can change the value of number and execute a few more times to test,
but this test should stand up well because we have thought through our programming. Now we need to have the
numbers from 1 to 100 counted. To do this, we will use the second logical operation!

Logical Operation: Loop
A loop is a special type of logical operation that functions at its core like an if statement, but instead of running the
code if a statement is true, it will run the statement over and over again as long as the statement is true. This is how
we will be able to increase the value of number by 1 over and over again to count to 100. A loop in BASH uses the
following syntax:

while [TEST]; do
 DO SOMETHING
done

A loop is very similar to an if statement by design. Both are testing that some condition is true and both will then
execute a section of code. The difference is that an if statement will execute only once and a while loop will execute
until something is no longer true. This brings be to the first and biggest warning about loops: if you forget to have a
leaving condition for your loop, then you won’t EVER leave it. This is called an infinite loop, in which your program
will get stuck, do nothing, and run forever. There are a few situations when this is desirable but not many. Luckily for
us we have the Ctrl+C shortcut that will send a terminate signal to whichever program we are running and we can use
it to snap programs out of their infinite loops.

You might be thinking, “Oh, so that’s why so many programs get stuck!” This is 100% true. Sometimes cases that
you may not have considered arise, and your program can wind up running in a loop forever, so consider yourself
warned.

For our FizzBuzz program, we want to count the numbers 1 to 100, so we can do a simple test of numbers less
than or equal to 100. So for all situations in which our number is less than or equal to 100, we will execute the loop. So
let’s go ahead and write the loop around our existing block of tests. When done, it should look like the following. Don’t
execute it yet because we have no way to increase the number from 1 to 100 (which means we’ll get an infinite loop
because we can never reach 100 and leave the loop).

#!/bin/bash
number=1
while [$number –le 100]; do
if [$(($number % 3)) -eq 0]; then
 if [$(($number % 5)) -eq 0]; then
 echo "FizzBuzz"
 else
 echo "Fizz"
 fi

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Managing Your pi

140

else
 if [$(($number % 5)) -eq 0]; then
 echo "Buzz"
 fi
fi
done

Okay, we have our code block, now we need to add the increasing number. We simply need to increase the value
of number by 1 each time it goes around the loop. But we also want to perform all the calculations prior to changing the
number. We can do this by using the arithmetic operations and assignment operation we have already. And we can
add this block to the bottom of the code before the done statement:

number=$(($number +1))

Once you have made this change, execute your script! It will run and give you an output like this:

Fizz
Buzz
Fizz
Fizz
Buzz
Fizz
FizzBuzz
...

This is great, and it looks like it worked, but we should go ahead and print the current value of number for each
trip round the loop. We could output the value at the start before we Fizz or Buzz or FizzBuzz, but that means we
will have numbers on each line. Better if we can integrate it into our echo statements. To do this, we simply add the
$number variable within the string of text to print. You learned earlier that the quotation marks mean everything is
treated like a string of text, but there is one marker that supersedes it: the $ sign operator. This operator is used to
make your life easier when you want to print out data from a variable in a block of text.

We should also add one final else statement, which will take care of the output of all the “other” numbers. Try
and work it out for yourself; then check against this code:

#!/bin/bash
number=1
while [$number -le 100]; do
if [$(($number % 3)) -eq 0]; then
 if [$(($number % 5)) -eq 0]; then
 echo "$number - FizzBuzz"
 else
 echo "$number - Fizz"
 fi
else
 if [$(($number % 5)) -eq 0]; then
 echo "$number - Buzz"
 else
 echo $number
 fi
fi
number=$(($number +1))
done

And there you have it! A working FizzBuzz solution. Congratulations!

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Managing Your Pi

141

Troubleshooting
Having trouble with your code can be a bit of a nightmare. Probably the best tool at your disposal is the echo
command. You can output anything you want, so if you are unsure of where your application is within your code, write
an echo to output stuff and then check. Are you not entering the loop correctly? Output the variables that go into the
test and compare by hand. Not sure why the if statement didn’t work? Add an else, output the full test case, and see
if you went in correctly. Using these outputs to trace where you are in your code is the best way of doing diagnostics.
Otherwise, pay attention to any errors; most should provide a line number and will tell you (in a manner of speaking)
what’s wrong with what line. If you are in doubt, feel free to Google around because it’s almost certain someone,
somewhere has had the same error before you and asked for a solution.

Practical BASH: An Init Script
You should be aware by now that most Linux applications are started by a special script called an init script. These
scripts aren’t magic; they are simply scripts in BASH that take a given value and perform a series of actions based
on what they are told to do—just as any good program does. The init scripts do have a small amount of special
information in them, but none of this is actually program logic.

Let’s go through one together and examine exactly how one of these init scripts works. Following is the init
script for XBMC, which you will see again later in this book:

#! /bin/bash
BEGIN INIT INFO
Provides: xbmc
Required-Start: $all
Required-Stop: $all
Default-Start: 2 3 4 5
Default-Stop: 0 1 6
Short-Description: Start XBMC
Description: Start XBMC
END INIT INFO
DAEMON=/usr/bin/xinit
DAEMON_OPTS="/usr/lib/xbmc/xbmc.bin"
NAME=xbmc
DESC=XBMC
RUN_AS=root
PID_FILE=/var/run/xbmc.pid
test -x $DAEMON || exit 0
set -e
case "$1" in
 start)
 echo "Starting $DESC"
 start-stop-daemon --start -c $RUN_AS --background --pidfile $PID_FILE --make-pidfile --exec
$DAEMON -- $DAEMON_OPTS
 ;;
 stop)
 echo "Stopping $DESC"
 start-stop-daemon --stop --pidfile $PID_FILE
 ;;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Managing Your Pi

142

 restart|force-reload)
 echo "Restarting $DESC"
 start-stop-daemon --stop --pidfile $PID_FILE
 sleep 5
 start-stop-daemon --start -c $RUN_AS --background --pidfile $PID_FILE --make-pidfile --exec
$DAEMON -- $DAEMON_OPTS
 ;;
 *)
 echo "Usage: /etc./init.d/$NAME{start|stop|restart|force-reload}" >&2
 exit 1
 ;;
esac
exit 0

The first thing you will notice is there are a lot of lines that start with #. These lines are comments; because # is
the comment symbol in BASH, any line that starts with a # will not be executed as part of the application. The top lines
of INIT INFO are in fact very important for an init script. These are special comments that can be processed to show
how the application controlled by the script is to be run. The blocks look like this:

BEGIN INIT INFO
Provides: xbmc
Required-Start: $all
Required-Stop: $all
Default-Start: 2 3 4 5
Default-Stop: 0 1 6
Short-Description: Start XBMC
Description: Start XBMC
END INIT INFO

These blocks provide a few bits of description and say for which application they provide a function; in this
case, the application provided is XBMC. They also mention what applications are needed to be running before this
application can start or stop. The $all symbol means that this application will be started last, so that it is guaranteed
that all other applications on which it can depend are started before it. Probably the more important set of operators
are Default-Start and Default-Stop. These operators correlate with the Linux system’s run levels, which govern the
various stages of the Linux system boot process.

The Linux specification defines the following run levels:

•	 Level 0: Halt; shut down and power off

•	 Level 1: Single User Mode; only basic system functionality (used for repairs)

•	 Levels 2 % 3: Multi User; adds networking and multiple user functionality

•	 Level 4: User Defined

•	 Level 5: Normal System running state

•	 Level 6: Reboot

The numbers next to the start and stop switches correlate to these levels, so XBMC will start in run levels 2–5 and
will shut down in levels 0, 1, and 6.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Managing Your Pi

143

Pick and Match with the case Statement
Once all the initialization is done and the script has set some initial variables, it performs a few quick tests and then
moves on to the case statement. A case statement is very much like a series of running if statements against the same
variable. Insofar as you take a given variable and for each of a series of given values for said variable, you perform a
function. In most init scripts, this is used to confirm which action it is to perform.

The case statement in this start script is working on the special $1 variable. This variable represents the first
thing passed to the script from the command line; so when trying to start the xbmc application, you will execute
with this:

/etc./init.d/xbmc start

This gives the $1 variable the value of start. The case statement offers a number of different options of the
potential value of the case statement:

•	 start: Self-explanatory.

•	 stop: Self-explanatory.

•	 restart|force-reload: The values of restart or force-reload, which perform the stop
application and then the start application in one process. The pipe (|) between them is used
to denote an OR operation, which means that if either of the values here match, we treat this
as having been a match.

•	 *: Anything else.

After each case value, there is a small block of code that is executed in that case, followed by a pair of semicolons.
These semicolons are like a fi and are used to denote the end of a block of case statement code.

Application within Application: Forking
Once within the case statement, you can see that each line will perform some action with the start-stop-daemon.
But this isn’t a variable or anything special; it’s another program. The most powerful part of BASH is the bit we haven’t
gotten to yet. BASH has the capability to execute any command-line process from within your programs just by using
their names. Because BASH is the shell we use most of the rest of the time, this actually makes a lot of sense.

The last function of an init script: it will use the start-stop-daemon to create a new process for you. This action
is called forking because you are forking something off of the currently running application. The start-stop-daemon
is a small application that is used to fork off processes and will manage their running for you. The start script corrals
the arguments for it, works out what action needs to be performed, and then tells start-stop-daemon which action
needs to be taken against which application.

Now that you are armed with this knowledge, you should be able to write your own simple init scripts to start
and stop any process you want by providing the starting comment block to describe how the script should be loaded,
having a case statement determine which action to take, and finally executing the start-stop-daemon process to
launch and manage your application!

Update the Run Files
Now you have a fully working script ready to go. You need to use chmod to set the executable flag on your file and then you
can test it with the start and stop commands. It does as intended—fantastic! Now we need to add it into the system’s
boot logic. Historically, this involved linking the file in a special way into the various run levels. However, this has been
made much easier with the update-rc.d application. The update-rc.d application takes advantage of those special
comment headers we added to our BASH scripts in order to know which run levels should have which shortcuts.

r
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Managing Your Pi

144

All we need to do to add the init script to the boot sequence is to issue the update-rc.d command with the
name of the init script we want, which is xbmc in the example. Then we need to add the argument to say that we
should use the defaults from the comments in the script; the argument unsurprisingly defaults. This gives us the
command update-rc.d xbmc defaults, which will need to be executed as root. When run, the outputs should be
as follows:

$ sudo update-rc.d xbmc defaults
update-rc.d: using dependency based boot sequencing

And that’s it; if you reboot, your application should run on boot!

Creating Your Own init Script
We have covered how init scripts are created; now we can create one. The process is relatively simple because we
simply need to re-create the structure and input our own code in the correct place to perform the functions we need.
You can have these init scripts do quite literally whatever you want, but for this example I will be creating a file with
the touch command and then deleting it with rm when done. The touch command is used to simply create a file
on disk with nothing in it; if it runs on an existing file, it will change the last modified time of the file. As mentioned
earlier, you can have your programs managed by start-stop-daemon or you can simply perform system functions,
as I will do in my example.

As you will recall, the first thing we need in this script is the shebang, which is the starting point for all BASH
scripts and is thus the best place to start.

#! /bin/bash

Now that we have our shebang, recall the XBMC start script we worked with earlier: the first thing in that script is
the opening comment block that gives us details about which init levels will run this script, and so on. So let’s add
that next. You should fill in all your own details here. My script will be called touchfile.sh and will provide the Touch
File service. My opening block of script will look like this:

BEGIN INIT INFO
Provides: touchfile
Required-Start: $all
Required-Stop: $all
Default-Start: 2 3 4 5
Default-Stop: 0 1 6
Short-Description: Run TouchFile
Description: Run TouchFile
END INIT INFO

Now that I have defined the comment block, I can define my variables. They will be the variables that will cover
what my application does. Anything you can think of needing in order to start this that can be configured should
be defined as a variable. In the case of my touchfile command the thing I need to have defined as a variable is the
filename of my touchfile. Remember that this is your code, and thus you can define literally anything you desire as a
variable. My variable is this:

TOUCHFILE="/var/tmp/touch.file"

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Managing Your Pi

145

Now that my touchfile is defined, I need to add the case statement to cover the available actions. In this case,
I want to have the following actions:

•	 Start: Touch the file

•	 Stop: Remove the touched file

•	 Restart: Remove and then re-touch the file

•	 Reload: Touch the file

•	 Default Case: Tell people about how to use this file

This means I will have four case statements within my case. I will define the case statements (sans code to
perform actions) as such:

case "$1" in
 start)
;;
 stop)
;;
 restart)
;;
 reload)
;;
 *)
;;
esac
exit 0

Now that we have the case entries, we just need to make them do something. I mentioned earlier what I want to
do in each of the cases, so let’s write out the commands into each block and combine them into the script we have
already. This will give us the following script:

#!/bin/bash
BEGIN INIT INFO
Provides: touchfile
Required-Start: $all
Required-Stop: $all
Default-Start: 2 3 4 5
Default-Stop: 0 1 6
Short-Description: Run TouchFile
Description: Run TouchFile
END INIT INFO
TOUCHFILE="/var/tmp/touch.file"
case "$1" in
 start)
 echo "Creating $TOUCHFILE"
 touch $TOUCHFILE
;;
 stop)
 echo "Removing $TOUCHFILE"
 rm $TOUCHFILE
;;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Managing Your Pi

146

 restart)
 echo "Recreating $TOUCHFILE"
 rm $TOUCHFILE
 touch $TOUCHFILE
;;
 reload)
 echo "Re-Touching $TOUCHFILE"
 touch $TOUCHFILE
;;
 *)
 echo " Usage: touchfile.sh <start|stop|restart|reload>"
;;
esac
exit 0

And that’s it. The code is a simple init script, which accepts the start, stop, restart, and reload
commands and outputs what it is doing and performs actions based on what arguments we provide it. This can be
placed in /etc./init.d and can be set to be executable with chmod +x. Once they are done, you can test the script
to ensure that it works. Finally, you can use update-rc.d to add this to your system boot process as we did earlier.
It is in this fashion that you can write your own start scripts to run applications as you design.

Security and User Management
Security is one of the most neglected areas of systems administration. Because it is perceived as a black art to many,
it often gets neglected.

The Rules of Raspbian Security
There are some very simple ways to make your system secure; just follow a few rules:

Don’t log in as root, but if you must, log out when done.•	

Use •	 sudo whenever possible for admin tasks.

Choose a nontrivial password—one that is long enough and complex enough that it cannot be •	
readily guessed or worked out by hand without taking a long time.

Change your password regularly.•	

Review your system logs regularly, specifically •	 /var/log/auth.log because it lists all user
authentications to your system.

If you don’t need an application running, don’t run it.•	

Expose as little of your system to the Internet as possible.•	

Restrict file permissions whenever possible.•	

Most of these rules will seem like common sense and that is because they are. Yet most people seem to fall into
the trap of thinking that they won’t be attacked and ignore most of this advice. Now that you know these rules, you
are probably saying, “I will change my password if only you would show me how!” Changing your password from the
Linux command line is relatively easy: you simply use the passwd command and you will be prompted to enter a new
password (twice, so that you can’t misspell it by accident the first time).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Managing Your Pi

147

You can also change the password for other users as root. To do this, you simply append the name of the user
whose name you are changing as the first argument of the command. This is incredibly useful when configuring new
user details or resetting passwords.

Adding a New User
Because you aren’t supposed to use root at all times, it’s important to be able to create new users and understand how
user creation takes place. In Linux operating systems, the users are governed by the file /etc./passwd. You can have a
look for yourself and you will see a number of lines like this:

root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/bin/sh

These lines show the user, X for the password, the user’s ID number, the user’s group ID number, the user’s group
identifier, the path of the user’s home directory, and the user’s shell. These are the basics of what is needed for a user
to function within the Linux environment.

While this file has a password field, it is no longer used and normally contains a placeholder (in this case, X). The
passwords are stored in the shadow file, /etc./shadow. The shadow file was separated so that only root could access
password data and all the more common user data could be read by other more generic system applications.

Now that you understand how Linux stores users, add a new one called raspberry. To add this user, we will use
the useradd command and a few arguments. There is another command, adduser, which performs user additions,
but instead of being supplied with arguments will prompt you for details. adduser is a great command to use in a
pinch when you forget a necessary argument for useradd.

First we want to specify the user’s home directory, which is done with the –d flag and the full path of the
directory we want to use. Most home directories for users are /home/<username>, and we will do this for raspberry.
Currently, /home/raspberry doesn’t exist, but before you rush out and add it, we can use the –m flag to tell useradd to
do it for us! This gives us this command:

$ sudo useradd –d /home/raspberry –m raspberry

We could go a step further and even specify the group with –g <groupname> to set the primary group for the user.
Or even specify the shell that the user would use with –s <shell path> or finally a password with –p <password>.
Once you have executed your command, you can go and inspect the changes to /etc./passwd, where you should see
something like this at the bottom of your file:

raspberry:x:1001:1001::/home/raspberry:/bin/sh

That’s it; you have now successfully added a new user! If you didn’t specify a password, you can use the passwd
command we covered earlier to change your new user’s password and then you’re set to go. However, let’s say that you
forgot to set the shell path with –s earlier and you want to change that so you start with /bin/bash rather than /bin/sh.
Well, first you could edit the passwd file to change the shell or you can use the usermod command. The usermod command
functions exactly the same as the useradd command, right down to the arguments; it simply adjusts the values. So run
the following:

$ sudo usermod -s /bin/bash raspberry

We can expect the shadow file to be changed and, yes it is:

raspberry:x:1001:1001::/home/raspberry:/bin/bash

Fantastic! With these tools, you should be capable of creating new user accounts to allow people to access your Pi.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Managing Your Pi

148

Summary
This chapter covered quite a number of things. We introduced SSH, DHCP and DNS. We covered some of the basics of
how these systems function and how daemons are launched via init scripts. We then dove deep into learning BASH
so that we could write our own init scripts. Finally, we covered some common security do’s and don’ts; then went on
to cover how the basics of Linux systems manage users and their passwords. We even went so far as to create a whole
new user ready for use.

These skills should enable you to manage the startup and networking of your Pi and should have given you an
introduction into the wonderful world of software development!

www.it-ebooks.info

http://www.it-ebooks.info/

149

Chapter 8

A LAMP of Your Own

One of the key things that many people who come to Linux want to know is how to establish themselves by setting up
a small website of their own. And many have difficulty finding a place to start. Which OS, which applications, what
hardware, and how exactly to do all this? All these are legitimate questions as there are so many facets to the greater
Linux environment that it is very easy to get lost.

Our goal is to provide the first few stepping stones on your way to being able to navigate the Linux environment.
One of the key stepping stones on this path is to show you how to install, configure, and maintain a web server.
Although you will be able to connect this server to the Internet, in these examples we will only cover using your Pi as a
local network server (in other words, for running an intranet). In addition, there is also the extra challenge of learning
how to make a basic interactive website. While this may seem a lot to take on, and others devoted entire books and
lives to finding the absolute optimum solution this problem, we aim to cover it for the Raspberry Pi in one chapter.

To this end we will be using a LAMP. No, not one of those bedroom luminescence devices, but a Linux, Apache,
MySQL, and PHP system designed to make delivering web content easy. This is one of the easiest ways to create
your own web server and there are a number of variations on the original LAMP, which include, but are not limited
to, the following:

WAMP (Windows, Apache, MySQL, PHP)•	

MAMP (Mac OS, Apache, MySQL, PHP)•	

Replacement Ps with Python or Perl•	

Replacement M with MariaDB•	

So, as you can gather from the amount of mixing, matching, and improving that people have done, it is a
great way to get a powerful web server up and going. Best of all, it is simple to set up and can be run on just about
any hardware.

One of the most regularly cited potential uses of the Pi is to enable the ability to build, run, and maintain a
website. What better way to inspire a generation of young developers than to teach them how to make their own
websites with a minimum of cost!

First Steps
Now it is time to get real about what we can accomplish here. Within this chapter, we will provide you the skills to set
up a full website stack and show you how to integrate the functions of a MySQL database into a website using PHP to
dynamically generate website content. However, there are a few things we won’t be able to do for you here:

Set up and configure a DNS or domain naming•	

Advanced SQL and database administration•	

Full coverage of HTML and HTML development methods•	

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ a LaMp of Your own

150

Full coverage of PHP development and PHP development methods•	

JavaScript•	

CSS•	

There are a number of resources that you can take advantage of to get help with these other areas, including other
great and weighty texts by Apress. We still have our work cut out for us, so let’s get started.

L is for Linux
There are only a few prerequisites for setting up a LAMP stack. You will need to

Have the Raspbian OS (the •	 L of LAMP) installed and configured

Have the memory split set to 240/16 (run •	 sudo raspi-config)

Be familiar with working within the Raspbian OS using the command line•	

Have a basic understanding of how to write simple software•	

Have your Pi connected to a network and the Internet (how else can we serve content if we •	
aren’t?)

There are only a few other provisos for Raspberry LAMP. We will be doing all of this from a shell. Given that the
website will be viewed from outside the Pi, there is no need to use any extra resources to run the GUI. Now that we
know what we need to get going, let’s do it.

A is for Apache
Probably the most important part of any web server is the web server application. A web server is an application that
will take requests for a website and then return the requested web page content. Most web servers can also provide a
large number of other functions that can help enhance their capability to provide web content to end users. For our
LAMP stack, we will be using the Apache web server.

Apache is considered by many to be the world’s premiere web server. It was first released in 1995 and has become
renowned for playing a role in the growth of the World Wide Web by providing a simple, powerful, and free web server
to the masses.

As reinforcement of this fact, it is estimated that Apache delivers between an estimated 54 to 58 percent of the
world’s websites.

There are two stories that are told about how Apache came to be named:

The first is that it was named for it being “A patchy web server” when first developed all those •	
years ago.

The second (and much better from a storytelling perspective) is that Apache is said to be •	
named for the Apache tribes of America.

Being named for a tribe is not even a misnomer as acting like a tribe is one of the key features of Apache. Apache’s
first task when it starts is to create its own small tribe of “workers” that are tasked with the actual serving up of your
website’s content. Now that you have a clearer understanding of what Apache does, the first step becomes to get
Apache installed, up and running.

For our installs, we will rely (as ever) on the ever-faithful apt-get tool:

$ sudo apt-get install apache2
Reading package lists... Done
Building dependency tree

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ A LAMP of Your Own

151

Reading state information... Done
The following extra packages will be installed:
 apache2-mpm-worker apache2-utils apache2.2-bin apache2.2-common libapr1
 libaprutil1 libaprutil1-dbd-sqlite3 libaprutil1-ldap ssl-cert
Suggested packages:
 apache2-doc apache2-suexec apache2-suexec-custom openssl-blacklist
The following NEW packages will be installed:
 apache2 apache2-mpm-worker apache2-utils apache2.2-bin apache2.2-common
 libapr1 libaprutil1 libaprutil1-dbd-sqlite3 libaprutil1-ldap ssl-cert
0 upgraded, 10 newly installed, 0 to remove and 71 not upgraded.
Need to get 1,348 kB of archives.
After this operation, 4,990 kB of additional disk space will be used.
Do you want to continue [Y/n]?

Now that you have installed Apache, we should go and validate that it is all up and running. There are a few ways
we can do this. First, run this:

$ ps -ef | grep apache
root 2306 1 0 Sep17 ? 00:00:09 /usr/sbin/apache2 -k start
www-data 2309 2306 0 Sep17 ? 00:00:00 /usr/sbin/apache2 -k start
www-data 2311 2306 0 Sep17 ? 00:00:00 /usr/sbin/apache2 -k start
www-data 2315 2306 0 Sep17 ? 00:00:00 /usr/sbin/apache2 -k start

From this output, you can see that Apache is indeed up and running. From this point, there are another few
important things to note. The first process listed with the following line is different from the others:

root 2306 1 0 Sep17 ? 00:00:09 /usr/sbin/apache2 -k start

This is the chief of the Apache tribe mentioned earlier. It is owned by root (as indicated in the first column),
and its process ID (PID) is 2306. The other three are owned by a user called www-data, which is a user specifically for
Apache. While each worker has a different PID, they all have a PPID (parent process ID) of 2306, meaning that the
Apache chief process made them (its PID is 2306).

Now for the second and by far more fun test; on this test, we will actually get Apache to display its default starting
web page! For this, you can either log in to the GUI or you can get the system’s IP address using ifconfig. Your output
should look like the one following with the relevant IP addresses highlighted:

$ ifconfig
eth0 Link encap:Ethernet HWaddr b8:27:eb:8a:46:ba
 inet addr:10.0.0.20 Bcast:10.0.0.255 Mask:255.255.255.0
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:213812 errors:0 dropped:0 overruns:0 frame:0
 TX packets:5119 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:19226371 (18.3 MiB) TX bytes:495394 (483.7 KiB)
 
lo Link encap:Local Loopback
 inet addr:127.0.0.1 Mask:255.0.0.0
 UP LOOPBACK RUNNING MTU:16436 Metric:1
 RX packets:8 errors:0 dropped:0 overruns:0 frame:0
 TX packets:8 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:1104 (1.0 KiB) TX bytes:1104 (1.0 KiB)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ A LAMP of Your Own

152

Assuming your system is (like mine) attached to a network, you can use the first IP address (10.0.0.20). This
address in the eth0 block represents its network port. The address in lo block is the loopback address, which is used
for internal self-reference and is always 127.0.0.1.

The next test is to access the Apache default web page; and to do so, you simply need to input one of those
IP addresses into a browser (assuming that you are on the same network as the Pi, of course!). If you want to test
using the Pi’s onboard browser, that’s completely fine, too, and you can choose between either address (10.0.0.20 or
127.0.0.1). So what are you waiting for? Open a browser window and have a look at the default web page, as shown
in Figure 8-1.

Figure 8-1.  It works!

As you should by now be aware, it works! This is the default web page for the Apache web server and as it suggests
there is no content added yet, we will be getting to that later. For now, let’s have a look at how that one default page is
generated, as this will give you some insight into how Apache truly works.

Apache Configuration
Getting your head around the Apache config is, to be frank, a bit of a nightmare. If you’re game, go ahead and have
a look in /etc/apache2 for an idea of what I mean. There are a number of folders in there with different meanings
and how those folders interrelate changes how your Apache server instance works. Thankfully, though, once you
understand where you need to make changes, everything becomes much easier.

The first file of note in the Apache configuration is the apache2.conf file. This is the governing config file that says
where each of the other separate pieces are located, and how the application should load them. The second things to
be aware of are the mods-available and mods-enabled folders. If you have a look at the mods-available file, you will
see that there are a large number of .load and .conf files. These files represent where Apache should load a module
from and any configuration information this module needs, respectively.

Next is mods-enabled, an initial look over this folder will make it seem just like mods-available. However, if you
run an ls –l on this directory, you will see this:

$ ls -l /etc/apache2/mods-enabled/
total 0
lrwxrwxrwx 1 root root 28 Sep 17 21:44 alias.conf -> ../mods-available/alias.conf
lrwxrwxrwx 1 root root 28 Sep 17 21:44 alias.load -> ../mods-available/alias.load
lrwxrwxrwx 1 root root 33 Sep 17 21:44 auth_basic.load -> ../mods-available/auth_basic.load
lrwxrwxrwx 1 root root 33 Sep 17 21:44 authn_file.load -> ../mods-available/authn_file.load
...

This shows that, in fact, each of the files in mods-enabled is actually a link to a file in mods-available! This is the
first intricacy of the Apache configuration, while there are a number of available modules at any given time only a

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ A LAMP of Your Own

153

certain number are actually loaded. Using symlinks like this means that only one copy of the configuration needs to
be kept and maintained at a given time. And more to the point, any changes made to one will be made to both.

If you look inside the sites-available and sites-enabled folders, you will see the same layout, except there
might be fewer sites. This brings us to the true object of our search: the first default site that is available within the
Apache system. So open up either /etc/apache2/sites-available/default or /etc/apache2/sites-enabled/
000-default because it doesn’t matter; they are the same thing! So, now that you’re inside, go over what everything in
the config means. Many of them will be important for you later on if you wish to add additional websites or modify how
websites are displayed.

<VirtualHost *:80>
 ServerAdmin webmaster@localhost
 DocumentRoot /var/www
 <Directory />
 Options FollowSymLinks
 AllowOverride None
 </Directory>
 <Directory /var/www/>
 Options Indexes FollowSymLinks MultiViews
 AllowOverride None
 Order allow,deny
 allow from all
 </Directory>
 ScriptAlias /cgi-bin/ /usr/lib/cgi-bin/
 <Directory "/usr/lib/cgi-bin">
 AllowOverride None
 Options +ExecCGI -MultiViews +SymLinksIfOwnerMatch
 Order allow,deny
 Allow from all
 </Directory>
 ErrorLog ${APACHE_LOG_DIR}/error.log
 # Possible values include: debug, info, notice, warn, error, crit,
 # alert, emerg.
 LogLevel warn
 
 CustomLog ${APACHE_LOG_DIR}/access.log combined
</VirtualHost>

The first line is probably one of the most important; it specifies that this web server is available to any incoming
address on port 80. Changing this means you can run multiple web servers on the same site by using different ports to
reference each.

Note■■   You can specify a port when connecting to just about any application by adding :<port number> at the end
of the URL.

Following the VirtualHost address, the next relevant thing is the DocumentRoot. This is critical as it says where
Apache will load all the web server content from. This means that anything that is in the /var/www folder will become

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ A LAMP of Your Own

154

available via the basic website on port 80. For example, if you go into the /var/www folder, you will see one file: index.html.
If you examine this file, you will see some very familiar content:

<html><body><h1>It works!</h1>
<p>This is the default web page for this server.</p>
<p>The web server software is running but no content has been added, yet.</p>
</body></html>

Yep, that’s the website content that is used to generate the basic start page that Apache is currently showing. I try to
think of it this way: the web server is providing you access to that folder (and all subfolders and documents within it).
As proof of this, try executing the following command as root:

$ echo "Hello World" > /var/www/foo

Note■■   You can gain root by executing sudo su –.

Once you have successfully executed this command, direct your browser to http://<IP Address>/foo and you
should see hello world displayed there. You may be wondering why we didn’t need to use index.html in the first
request to our website (i.e., use http://10.0.0.2/index.html). This is because files named “index” are special ones.
They are the default page displayed if no other content is available.

The next portions of the config you should be aware of are the Directory config sections. These are a list of
directories that can provide special rules as to how they are accessed and even who can access them. In this instance,
there are two directories that Apache has configuration settings for: the / root directory and /var/www. While there
are a number of very interesting things you can do with the directory values, there isn’t much we need to do with
them here. For more information, you should head over to the Apache website and read through the far more detailed
documentation available there.

After the directory details comes ScriptAlias, which governs how CGI scripts are accessed by the application.
The ScriptAlias is a special directory in which these CGI programs live and are executed from. As PHP is a scripting
system much like BASH (covered in Chapter 7), you may think this has a direct bearing, but it is not the case. PHP is
run by a special interpreter module (modphp) rather than by a single CGI program.

The directory value below the ScriptAlias is related to it. The quick give away is that both reference /usr/lib/
cgi-bin/. This directory contains the +ExecCGI directive. Again, this relates to how scripts and things such as PHP are
executed. Finally, the configuration file comes to a close with a few very useful config lines. These values are the logfile
directives for the Apache server; they say where the logfiles will go and which files they will write to. Both access logs
(so you can spy on everyone who visits you) and the much more standard error logs are covered here. The LogLevel
directive in the middle governs at which level logs regarding the running of the server should be output, and right now
it is set at WARN, which is sensible.

Given that you will probably need to take advantage of these logs later when working with PHP, you should
become familiar with them now. But first let’s make a small change to the log that we will make Apache incorporate.
Let’s change that logging level to notice, so go ahead and change it then save the newly edited file. Once the file has
been changed, we need to tell Apache this so it will reload the config. Unlike making a content change to your website,
we need to inform Apache of config changes. Thankfully, Apache makes this easy by including a reload function that
we can issue to it. Go ahead and issue this:

$ sudo /etc/init.d/apache2 reload
[....] Reloading web server config: apache2apache2: Could not reliably determine the server's fully
qualified domain name, using 127.0.1.1 for ServerName
. ok

www.it-ebooks.info

http://10.0.0.2/index.html
http://www.it-ebooks.info/

Chapter 8 ■ A LAMP of Your Own

155

This has told Apache to reload its config and get going again. Now have a look at the logfiles to see the changes we
made. The Apache log directory is /var/log/apache2, and the file we are interested in is the error.log. Once you are
looking inside, you should see something like this:

[Tue Sep 18 22:46:56 2012] [notice] SIGUSR1 received. Doing graceful restart
apache2: Could not reliably determine the server's fully qualified domain name, using 127.0.1.1 for
ServerName
[Tue Sep 18 22:46:56 2012] [notice] Apache/2.2.22 (Debian) configured -- resuming normal operations

This says that my Apache instance was given a signal and it performed a graceful restart; then it resumed normal
operation within the same second. This is the configuration reload we performed just now. We can also look at the
access log and see ourselves accessing content off the web server, go ahead and open up the access.log file in /var/
log/apache2 and have a look. You should see something like this:

10.0.0.104 - - [18/Sep/2012:20:31:17 +1000] "GET / HTTP/1.1" 200 482 "-" "Mozilla/5.0 (Windows NT
6.1; WOW64) AppleWebKit/537.10 (KHTML, like Gecko) Chrome/23.0.1262.0 Safari/537.10"
10.0.0.104 - - [18/Sep/2012:22:21:22 +1000] "GET /favicon.ico HTTP/1.1" 404 498 "-" "Mozilla/5.0
(Windows NT 6.1; WOW64) AppleWebKit/537.10 (KHTML, like Gecko) Chrome/23.0.1262.0 Safari/537.10"
10.0.0.104 - - [18/Sep/2012:22:28:36 +1000] "GET /foo HTTP/1.1" 200 274 "-" "Mozilla/5.0 (Windows NT
6.1; WOW64) AppleWebKit/537.10 (KHTML, like Gecko) Chrome/23.0.1262.0 Safari/537.10"

These lines show that someone on IP 10.0.0.104 made a GET request on the / of the web server, which is the
/var/www folder and the index.html file within (because index is the default file). It also shows someone accessing
the foo file within this directory. They were both me accessing the website in sequence. You will also notice that
there is a request in the middle, which is for a favicon.ico. This represents my browser trying to request the
favorite’s icon of this website; there is not one, unfortunately.

Troubleshooting
For the most part, setting up an Apache server is a breeze. It’s only when you start making a lot of changes that you
might run into trouble. However, if you did find yourself running into issues, try the following. Check that you can see
the Apache process running with ps –ef. If Apache is not running, try and start it. If that fails, try examining the error
logfile as this will contain information on any errors that Apache has suffered. Most of the entries in the error log are
fairly self-explanatory. However, if you find yourself at a loss, head over to the Apache website where there is a large
amount of help available there for those in need.

M is for MySQL
Now that you have your web server up and running, you are probably asking, “I see that you can make a website
by just writing content into a web server and it will be displayed. What more software could I possibly need?” And
it’s true; right now, you could write a web page in basic HyperText Markup Language (HTML) and be done with it.
The problem with writing in HTML alone is that HTML is static, meaning that any time you wish to change what
is displayed, you need to open up and edit the file to change what is said. This is not going to make for very good
management when you want to display different things to different people. You would need to be manually sitting
there and editing a whole bunch of things—that’s pointless.

This is where we begin to see the power of the full LAMP stack. We have Apache to serve content, PHP will handle
the dynamic portion, and the MySQL database will actually contain the various different bits of information you want
to display. It is only when you have all these components in and working together that you begin to see the true power
of a LAMP system.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ A LAMP of Your Own

156

Installing MySQL
A database (DB) is a system for the easy storage and retrieval of data. They take large volumes of input and then
structure the data so that information can be easily retrieved with a query. All SQL databases are named for the
Structured Query Language, which they use to process requests for information retrieval. MySQL is the world’s most
widely deployed open source database. It is what is called a relational database system that is used because it is easy
to set up and to work with, thus its wide adoption. To install MySQL, we will again turn to our old friend apt-get; this
time, we will be installing the mysql-server package. Execute the following:

$ sudo apt-get install mysql-server
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following extra packages will be installed:
 heirloom-mailx libaio1 libdbd-mysql-perl libdbi-perl libhtml-template-perl
 libmysqlclient16 libnet-daemon-perl libplrpc-perl mysql-client-5.5
 mysql-common mysql-server-5.5 mysql-server-core-5.5
Suggested packages:
 libipc-sharedcache-perl libterm-readkey-perl tinyca
The following NEW packages will be installed:
 heirloom-mailx libaio1 libdbd-mysql-perl libdbi-perl libhtml-template-perl
 libmysqlclient16 libnet-daemon-perl libplrpc-perl mysql-client-5.5
 mysql-common mysql-server mysql-server-5.5 mysql-server-core-5.5
0 upgraded, 13 newly installed, 0 to remove and 84 not upgraded.
Need to get 9,770 kB of archives.
After this operation, 91.5 MB of additional disk space will be used.
Do you want to continue [Y/n]?

Once the actual MySQL install has finished, you will be asked to provide a root password for your DB; this is the
master admin password for your database. Make sure you remember it; you will need it later. Now that the installation
has finished, confirm that the process has started with this:

$ ps –ef | grep mysql

The output should show a few different things, including the MySQL daemon, which is highlighted here:

root 5254 1 0 20:23 ? 00:00:00 /bin/sh /usr/bin/mysqld_safe
mysql 5592 5254 3 20:23 ? 00:00:03 /usr/sbin/mysqld --basedir=/usr --datadir=/var/
lib/mysql --plugin-dir=/usr/lib/mysql/plugin --user=mysql --pid-file=/var/run/mysqld/mysqld.pid
--socket=/var/run/mysqld/mysqld.sock --port=3306
root 5593 5254 0 20:23 ? 00:00:00 logger -t mysqld -p daemon.error

That’s one big process command, but it does show that MySQL is up and running. We can go over the MySQL
config, but thankfully the system will work for all our basic needs without the need to modify the configuration. Given
that, let’s start working on some basic ways to both insert data and retrieve it.

Structured Query Language
Structured Query Language (SQL) is a language for inserting and retrieving information from an SQL database.
In SQL, there are a number of different queries you can do, ranging from the simple to the extremely complex. Given
that there are (as with everything) a number of other resources that spend much more time and go into far more detail

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ A LAMP of Your Own

157

about syntax and origin and whatever, we won’t cover those here. Besides, for our purposes there should only be five
types of queries we need:

Basic admin commands•	

Insert new data•	

Find data•	

Update data•	

Delete data•	

While it sounds incredibly simple, it is very easy to get lost in the syntax if you wish to do something more
complex. If that is the case, and you wish to do something slightly more complex than what we have covered here
please head over to the MySQL web page as they have full documentation on how exactly to perform each query
and what the large number of options on each command entail. If you want something a little more focused on web
development with all the Apress niceties, have a look at Beginning PHP and MySQL 5, by Jason W. Gilmore.

Anyway, enough product placement; let’s start with the basic administration stuff and make a database. The
syntax for this one is dead simple:

create database <database name>

To perform commands on your MySQL instance, you need to connect to it and get into the mysql shell. This is the
command to do this:

mysql –uroot –p

So jump into the shell, provide your root password, and execute create database pi; which should generate
the following output:

mysql> create database pi;
Query OK, 1 row affected (0.00 sec)

Okay, awesome. We have a database called pi. In an SQL database system, a database is the highest-level
construct. Underneath that is a table, which is the object that holds your data (a database holds multiple tables). Each
of these items of data in a table is called a row. So our next step is to create a table; the problem is that we need to give
our table some structure. We need to tell it what kind of data it should hold and how we will lay out that data, which
means we need a project. The most obvious for now is a simple to-do list, so let’s make one of those.

Note■■  A ll MySQL commands end with a semicolon (;). It signifies that this is the end of a statement. This is done as
you can put lines in for one command over multiple lines to make it easier to follow.

Creating Tables
Just stepping aside quickly, I have departed from the normal project planning method a little here so that we can
run through a basic database setup together. When undertaking a big project, it is far better to plan ahead and fully
understand what will be going into a database long before any data is ever added to it.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ A LAMP of Your Own

158

So, for our to-do list, we want to keep the following information for each “thing to do”:

Description•	

Person doing the task (owner)•	

Date to be done by (date)•	

Location•	

Importance•	

Who set the task (creator)•	

Okay, so with this information, we have our rough table structure; so now let’s go ahead and create it. The syntax
for a table creation is this:

create table <tablename> (
<column name> <column type>,
<column name> <column type>,
...
<column name> <column type>
);

That’s the basic syntax, but there is one final thing we need to make sure we have when creating our table: a
key. Given that we need to ensure we are getting the right value back each time, we need to have something unique
about each individual piece of data. Many of these tasks could wind up almost identical, excluding one or two minor
variations. For this reason, we will need what is called a primary key, which is a unique identifier for each row. In
this case, it’s best just to use a simple count that will automatically go up for each row we add. Now we know what we
want; let’s flesh it out into the syntax from before and see what we have.

create table todolist (
idnumber <column type>,
description <column type>,
owner <column type>,
date <colunm type>,
location <column type>,
importance <column type>,
creator <column type
);

Well, looking better, but we still don’t have those <column types>, nor do we have anything that will say that
our idnumber is the primary key, or should be automatically updated for each new row. This brings us nicely to what
the column types are about. MySQL will need to know what kind of values each of our data elements will be so it
can know how to store them and what kind of queries they can be involved in. There are at least 30 different data
types in MySQL, which can perform all kinds of operations, but for our simple purposes there are only three we need
to be concerned with: one is text or a string of text that is known as a VARCHAR and is given a maximum number of
characters, the second is a number or integer known as an INT, and the last is a date value that is known as a DATE.
Given that we now know some data types, we can set them out into our create table command. Go ahead and do
that now and remember that text strings (VARCHAR) need to be given a maximum number of characters long:

create table todolist (
idnumber INT,
description VARCHAR(200),

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ A LAMP of Your Own

159

owner VARCHAR(40),
date DATE,
location VARCHAR(40),
importance VARCHAR(10),
creator VARCHAR(40)
) ;

That looks much better and will probably run, but remember we wanted to have that number be our
unique identifier and be automatically updated for us to make our lives easier. The syntax for the idnumber being
automatically incremented (updated to be +1) is PRIMARY KEY NOT NULL AUTO_INCREMENT. This gives us a final
command of this:

create table todolist (
idnumber INT PRIMARY KEY NOT NULL AUTO_INCREMENT,
description VARCHAR(200),
owner VARCHAR(40),
date DATE,
location VARCHAR(40),
importance VARCHAR(10),
creator VARCHAR(40)
);

So, go ahead and run it:

ERROR 1046 (3D000): No database selected

Oh, whoops. We need to tell MySQL which database we are using, and thus under which database this table will
reside. To change which database we are using, we need to use the USE command. To change to using the Pi database
we simply execute USE pi; and MySQL will tell us that the database has changed. If you have forgotten your database
name, you can use the SHOW command to see things, SHOW DATABASES; will show you all the databases on your system.
Now go ahead and execute the table creation again. This time you should see this:

Query OK, 0 rows affected (0.91 sec)

Fantastic, we have a table. Let’s have a look and see if we can see it. Issue the SHOW command, but this time for
tables. You should see the following output, which lists off all the tables within the Pi database:

mysql> SHOW TABLES;
+−−------------+
| Tables_in_pi |
+−−------------+
| todolist |
+−−------------+
1 row in set (0.00 sec)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ a LaMp of Your own

160

Yahoo! Now, say for example that you have forgotten what exactly the table looks like; you will want MySQL to
describe how the table is made up. You can use the DESCRIBE command to do just this, so let’s try describing our new
todolist table so we can see how MySQL understands it.

mysql> DESCRIBE todolist;
+−−-----------+−−------------+−−----+−−---+−−-------+−−--------------+
| Field | Type | Null | Key | Default | Extra |
+−−-----------+−−------------+−−----+−−---+−−-------+−−--------------+
idnumber	int(11)	NO	PRI	NULL	auto_increment
description	varchar(200)	YES		NULL	
owner	varchar(40)	YES		NULL	
date	date	YES		NULL	
location	varchar(40)	YES		NULL	
importance	varchar(10)	YES		NULL	
creator	varchar(40)	YES		NULL	
+−−-----------+−−------------+−−----+−−---+−−-------+−−--------------+
7 rows in set (0.00 sec)

Awesome; you can even see that our idnumber is the PRI key and has automatic incrementing on the end!
Everything registered successfully. We have successfully created a database and a table. We have given structure to our
table. Now it is time to put it to good use, but before we start playing with data there’s one last admin command I want
to cover: creating a user other than root. This way, we don’t have to constantly use the root user, which will cut down
the potential security risk. The syntax for this command (called a GRANT) is this:

GRANT ALL ON <databse>.<table> TO '<username>'@'<user location>' IDENTIFIED BY '<password>';

So, let’s say we want to grant the default pi user on our system access to our todolist table with the password
raspberry. The command will become this:

GRANT ALL ON pi.todolist TO 'pi'@'localhost' IDENTIFIED BY 'raspberry';

Run this command and then quit MySQL shell by typing quit. Now try logging back in with your new username
and password. Remember, the syntax for this:

$ mysql –u<username> −p

Note  Quotation marks are needed when putting in any text data in MySQL that is not for something that MySQL
already “understands” (i.e., table names and column names).

Inserting Data
Now you’re logged back in as the pi user, let’s start learning some actual commands to insert data into MySQL. The first
command to cover is one for inserting data. How else can we be expected to work with MySQL data if there is no data
available! The command for inserting data is the aptly named INSERT command. The basic syntax for INSERT is this:

INSERT INTO <TABLE> (<FIELD1>, <FIELD2>, ... <FIELDX>) VALUES ('<VAL1>', '<VAL2>', ... '<VALX>');

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ A LAMP of Your Own

161

So, now that we know how an insert is supposed to look, let’s go ahead and make one into the database. Let’s
insert a pair of tasks into our to-do list. The first one will be my writing of this chapter. So the command will be this
(after ensuring we typed USE pi):

INSERT INTO todolist (description, owner, date, location, importance, creator) VALUES ('Finish LAMP
Chapter', 'David', '2012-09-22', 'Australia', 'HIGH', 'David');
Query OK, 1 row affected (0.43 sec)

That worked. Let’s add another, just for good measure. Let’s make Peter do something now:

INSERT INTO todolist (description, owner, date, location, importance, creator) VALUES ('Finish GUI
Chapter', 'Peter', '2012-09-22', 'Hong Kong', 'HIGH', 'David');
Query OK, 1 row affected (0.48 sec)

Now that we have a pair of records to play with. But how are we certain that they are correct? How can we check
that the idnumbers are incremented, given that we didn’t even add them into our insert statement? For that we will
need to issue a query to our SQL database!

Querying a Database
Unlike most of the other statements, a data query is not done with a QUERY command. This is because all of the
commands we have been executing are considered to be queries themselves. The command for retrieving data is
called a SELECT and its syntax is as follows:

SELECT <Fields1>, <Field2>... <FieldX> FROM <TABLENAME> WHERE <INFORMATION QUERY>

Yes, I know that syntax is a little strange, but once we fill it out you will get more of an idea of why it is the way it
is. For starters let’s just grab everything. Normally you put field names that you wish to get, which limits the amount
of excess data being transmitted, but in this case we can use the special wildcard *. Thus to query everything from our
todolist table, we will execute this:

mysql> SELECT * FROM todolist;
+−−--------+−−-------------------+−−-----+−−----------+−−---------+−−----------+−−-------+
| idnumber | description | owner | date | location | importance | creator |
+−−--------+−−-------------------+−−-----+−−----------+−−---------+−−----------+−−-------+
| 1 | Finish LAMP Chapter | David | 2012-09-22 | Australia | HIGH | David |
| 2 | Finish GUI Chapter | Peter | 2012-09-22 | Hong Kong | HIGH | David |
+−−--------+−−-------------------+−−-----+−−----------+−−---------+−−----------+−−-------+
2 rows in set (0.00 sec)

You will notice that I left off the WHERE, this is done, as there is no actual limitation of what we want, we want
everything. After this, you can see that everything else we entered is in the format we gave it and more importantly the
ID numbers are incrementing! This validates everything that we inserted before. Now that you understand the very
basic syntax we can do some slightly more advanced queries. Let’s say I want to find out whom to blame for assigning
me (David) a task. The relevant information in this case is the creator as that’s all we want, whom to blame. This will
give us the first half of a query:

SELECT creator FROM todolist

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ A LAMP of Your Own

162

Now the next part we need is the portion in which we specify that the owner must be David. The syntax for this is
a very simple WHERE owner = "David" giving us the final query:

SELECT creator FROM todolist WHERE owner = "David";
+−−-------+
| creator |
+−−-------+
| David |
+−−-------+
1 row in set (0.00 sec)

Beautiful. I now know that I have only myself to blame for this mess. In the same vein, let’s try another. I want
to know the description and priority of all tasks that are due after today (which, in this example, is the 20th of
September). So again we start building our query. We want the description and importance fields this time, so in they
go. We also want a date greater than 2012-09-20. Thankfully, MySQL understands date data, so all we need to do is
give it our date and the greater-than symbol, which is >. This will give you the query:

mysql> SELECT description, importance FROM todolist WHERE date > "2012-09-20";
+−−-------------------+−−----------+
| description | importance |
+−−-------------------+−−----------+
| Finish LAMP Chapter | HIGH |
| Finish GUI Chapter | HIGH |
+−−-------------------+−−----------+
2 rows in set (0.01 sec)

There is one last simple part of a SELECT query that will likely be relevant later. This is the ORDER BY statement
that can be added to the end of a query. Take our last one for instance; let’s say we want them ordered by the order in
which they were added (by idnumber). This will make our query into this:

mysql> SELECT description, importance, idnumber FROM todolist WHERE date > "2012-09-20" ORDER BY
idnumber;
+−−-------------------+−−----------+−−--------+
| description | importance | idnumber |
+−−-------------------+−−----------+−−--------+
| Finish LAMP Chapter | HIGH | 1 |
| Finish GUI Chapter | HIGH | 2 |
+−−-------------------+−−----------+−−--------+
2 rows in set (0.00 sec)

And there it is, sorted. Okay, so we can’t see it as it is in ascending order and has been previously displayed as
such. To reverse (or force) an order, we can add an ASC or DESC to the end of the statement, so let’s try that with the
same query as before and watch the change:

mysql> SELECT description, importance, idnumber FROM todolist WHERE date > "2012-09-20" ORDER BY
idnumber DESC;
+−−-------------------+−−----------+−−--------+
| description | importance | idnumber |
+−−-------------------+−−----------+−−--------+
| Finish GUI Chapter | HIGH | 2 |
| Finish LAMP Chapter | HIGH | 1 |
+−−-------------------+−−----------+−−--------+
2 rows in set (0.00 sec)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ A LAMP of Your Own

163

That’s better; you can see the change in order now! Having things returned in order is great as this means the
database system is doing the sort for you—something that it is programmed to do very easily. If we were to attempt
to write this sort, it would likely take us much longer than the database to perform. Now we have covered our second
basic command, and we can insert and retrieve data. The next command we will look into is one to update our data.

Updating a Database
Now that we are past the slight silliness of the SELECT command to query, we are back into named-as-they-mean
territory with the UPDATE command. An update is somewhat of a hybrid of both the INSERT and SELECT queries,
and rightfully so, given that we need to both find something and then update that something. The basic syntax of an
UPDATE is this:

UPDATE <table name> SET <column name1> = "<value1>",<column name2> = "<value2>"... <column nameX> =
"<valueX>" WHERE <Information Query>

Let’s work our way through an example. Let’s say I need a deadline extension on this chapter because I’m
working way too hard and want to take it easy for a night. This means I will want to increase my deadline to the 23rd
instead of the 22nd. So we know what we want to update, which gives us this command:

UPDATE todolist SET date="2012-09-23" WHERE

Now we just need a query; we can’t pick something on the 22nd as there are two things using that date; the same
with severity and creator. We could use owner or description or idnumber. In this case I would choose ID number, as
we have set this as the primary key and thus totally unique identifier. This makes our UPDATE query into

mysql> UPDATE todolist SET date="2012-09-23" WHERE idnumber=1;
Query OK, 1 row affected, 1 warning (0.48 sec)
Rows matched: 1 Changed: 1 Warnings: 0

You will notice that I did not add quotation marks around number 1 on the end. This is because MySQL treats
numbers as INT differently to numbers as a VARCHAR; while this seems semantic. it is an important distinction as
mathematical operations cannot be carried out against a VARCHAR, but can be against an INT. MySQL has not
displayed the actual output of the data; to see it we will need to issue another select, so let’s go ahead and examine the
change:

mysql> SELECT * FROM todolist WHERE idnumber=1;
+−−--------+−−-------------------+−−-----+−−----------+−−---------+−−----------+−−-------+
| idnumber | description | owner | date | location | importance | creator |
+−−--------+−−-------------------+−−-----+−−----------+−−---------+−−----------+−−-------+
| 1 | Finish LAMP Chapter | David | 2012-09-23 | Australia | HIGH | David |
+−−--------+−−-------------------+−−-----+−−----------+−−---------+−−----------+−−-------+
1 row in set (0.00 sec)

And there you have it; I’ve just given myself a night off. But because of this, Peter and I will both have to work
harder on the chapters we have remaining. This means that we will need to set the importance of both our chapters
up to highest! The first part is simple:

UPDATE todolist SET importance="HIGHEST" WHERE

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ A LAMP of Your Own

164

This is where we can look at changing how we do queries again. Do we wish to do everything? And set everything
to HIGHEST by removing the WHERE? Let’s search for HIGH and make it HIGHEST, which makes our final query:

mysql> UPDATE todolist SET importance="HIGHEST" WHERE importance="HIGH";
Query OK, 2 rows affected (0.49 sec)
Rows matched: 2 Changed: 2 Warnings: 0

Again there is no output, so we must retrieve the data again:

mysql> SELECT * FROM todolist;
+−−--------+−−-------------------+−−-----+−−----------+−−---------+−−----------+−−-------+
| idnumber | description | owner | date | location | importance | creator |
+−−--------+−−-------------------+−−-----+−−----------+−−---------+−−----------+−−-------+
| 1 | Finish LAMP Chapter | David | 2012-09-23 | Australia | HIGHEST | David |
| 2 | Finish GUI Chapter | Peter | 2012-09-22 | Hong Kong | HIGHEST | David |
+−−--------+−−-------------------+−−-----+−−----------+−−---------+−−----------+−−-------+
2 rows in set (0.00 sec)

We were able to update both those HIGH values to HIGHEST. Now for the one last remaining task: delete.

Deleting Data
We want to be able to remove tasks as they are finished. The syntax of a DELETE command is constructed almost
exactly like a SELECT command:

DELETE FROM <table name> WHERE <information query>;

Here’s one final example. Let’s say my reason for a night off wasn’t that I was tired; it was because I was finished
with this chapter early! Woohoo! So let’s build the delete. Again let’s go by the idnumber to be certain. The command
will be this:

mysql> DELETE FROM todolist WHERE idnumber=1;
Query OK, 1 row affected (0.42 sec)

As with UPDATE, there is no information returned other than the short output saying that we deleted one row.
Let’s issue a SELECT again and see what has changed:

mysql> SELECT * FROM todolist;
+−−--------+−−------------------+−−-----+−−----------+−−---------+−−----------+−−-------+
| idnumber | description | owner | date | location | importance | creator |
+−−--------+−−------------------+−−-----+−−----------+−−---------+−−----------+−−-------+
| 2 | Finish GUI Chapter | Peter | 2012-09-22 | Hong Kong | HIGHEST | David |
+−−--------+−−------------------+−−-----+−−----------+−−---------+−−----------+−−-------+
1 row in set (0.01 sec)

Only Peter’s chapter remains, and he has to work the hardest since it’s on highest. Okay, let’s be kind—one last
command. This one gets rid of a table; it’s called the DROP command and is very simple:

DROP TABLE <table name>;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ A LAMP of Your Own

165

Let’s drop our todolist table since we are done with these MySQL examples and we don’t want it taking
up room:

mysql> DROP TABLE todolist;
Query OK, 0 rows affected (0.49 sec)

Okay, now we only have our pi database left. If you wish to delete it, you simply need to replace the world TABLE
with the word DATABASE in the DROP command. It’s up to you; we will be reusing this one later. For now, let’s head on to
the last part of our LAMP stack: PHP.

P is for PHP
PHP is a system for allowing you to add dynamic functions into your web page. Originally, all web pages were made
from HTML alone, which doesn’t allow for much flexibility based on inputs and actions. HTML just displays a static
page of content that needs to be modified to show something different. To solve this initial issue, the Common
Gateway Interface (CGI) was developed. This provided a way for web servers to take requests that would allow them to
return content.

Originally, most CGIs were full-blown applications that output various pieces of HTML depending on their input,
and whole portions of these applications were dedicated to outputting large chunks of the same HTML over and over.
This is where the development of PHP came in. PHP was designed to be a language in which one could add snippets
of actual dynamic code into the static HTML and presto: a dynamic web page would be formed.

Since its creation, PHP has become widespread with installation figures of 20 million being cited. This success is
in no small part due to the ease in which PHP can be used as a CGI compared with the original application form CGIs.
Now that you have an understanding of what PHP is, let’s install it on the Raspberry Pi. As ever, we will rely on the
services of apt-get to fetch and install PHP for us. The command to run is this:

$ sudo apt-get install php5
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following extra packages will be installed:
 apache2-mpm-prefork libapache2-mod-php5 libonig2 libqdbm14 php5-cli php5-common
Suggested packages:
 php-pear
The following packages will be REMOVED:
 apache2-mpm-worker
The following NEW packages will be installed:
 apache2-mpm-prefork libapache2-mod-php5 libonig2 libqdbm14 php5 php5-cli php5-common
0 upgraded, 7 newly installed, 1 to remove and 84 not upgraded.
Need to get 5,707 kB of archives.
After this operation, 16.3 MB of additional disk space will be used.
Do you want to continue [Y/n]?

Notice that PHP is making a modification to our Apache installation. This is to replace the Apache tribesman
modules with ones that are preferred for utilizing PHP. Once the PHP has finished installing, we want to go ahead and
test that it is working. There is a simple PHP page that we can write, which will show all our installation settings and
confirm that PHP is up and running. To test this first page, we need to replace index.html in /var/www with a new
index.php that has the following line inside it:

<?php phpinfo(); ?>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ A LAMP of Your Own

166

Once you have removed index.html and added index.php, direct your browser to your Apache server. Figure 8-2
will be your reward.

Figure 8-2.  PHP info page

This is the PHP info page, which describes the entire current configuration of your newly installed PHP instance.
Since we are viewing it, it also proves that the PHP interpreter is working correctly. It also shows that index.php has
been picked up as a default page by Apache. The code that we added to generate this was the following:

<?php phpinfo(); ?>

This is a great example of PHP code; first we have the opening markers that show that this is PHP and to be
interpreted as such (<?php and ?> to close) and we have a single function call inside to phpinfo(); that displays all
our data.

A function is a reference to a predefined piece of code that we run by invoking the function name. Functions
always end with a pair of parentheses, which can contain data (variables that will be passed into the function for
use there). In addition to functions, PHP uses arrays, much like the arrays you saw in Chapter 7. To recap, arrays are
variables that contain a number of values rather than one. An array can be manipulated as a whole array or by each of
its individual elements. To access the array elements, you need to add a pair of square brackets to the end of the array
variable and enter the number of the element you wish to access. These element numbers start from 0 as the first
element and increment.

The other important things one needs to know for PHP are these:

All PHP statements end with a semicolon•	

All PHP variables start with a •	 $ sign (recall variables from BASH in Chapter 7; PHP variables
are used for the same thing)

All PHP array variables start with an •	 @ sign

All PHP function’s internal code are surrounded with curly braces •	 { and }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ A LAMP of Your Own

167

Next we need to have a look through the PHJP Info page; start by searching for MySQL. Oh dear, there’s no
mention of it. PHP will need to understand how to communicate with MySQL in order for us to be able to display
database content on our web page. Thankfully, apt-get comes to the rescue again. This time, we need to install the
php5-mysql package:

$ sudo apt-get install php5-mysql
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following extra packages will be installed:
 libmysqlclient18
The following NEW packages will be installed:
 libmysqlclient18 php5-mysql
0 upgraded, 2 newly installed, 0 to remove and 84 not upgraded.
Need to get 711 kB of archives.
After this operation, 3,547 kB of additional disk space will be used.
Do you want to continue [Y/n]?

Again, you will see that this install adds a new MySQL client library for communications and the new PHP
MySQL interleave. It will also automatically restart your Apache web server and change several PHP configuration
files for you. Once again, open up and direct your browser to the Apache web page and search for MySQL, and there
we go! (See Figure 8-3.)

Figure 8-3.  PHP MySQL config info

f
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ A LAMP of Your Own

168

We have confirmed the following:

We have a working PHP system•	

Apache can render the PHP•	

MySQL and PHP know how to communicate•	

This means that we have just accomplished creating a working LAMP setup! Now let’s put it to use.

Simple Web App
Now that we have built our new LAMP stack and it is up and running on your Pi, it is time to make good use of it. Good
use can be literally anything you want as you now have a web server of your own that you can write web applications
on. For many of you, however, this may seem a daunting task, as you are unfamiliar with PHP or even HTML. Fear not;
like Linux in general this seems daunting at first and there are intricacies, but nothing insurmountable and nothing
that you can’t get over with a little help. I’ve always found that the best way to learn is to actually do it, which means
we can undertake a project together, which will illustrate how you can use your new LAMP stack to create a web
application.

In order to build a web application, we need to understand both HTML and PHP. One final thing: this will be a
bare-bones web page and may look a little rough. There are so many ways to improve the visual aspect of your web
page, but there are whole books dedicated to this, which will cover a larger amount of content and interactions. So
with this in mind, let’s have a look at understanding HTML.

HTML
Hyper Text Markup Language (HTML) is the language that makes the Internet. HTML provides the basis for all
transmitted web application content, it is made up as a series of tags and they are sent as a HTML document to your
browser. Your browser then uses these tags to assemble its version of your web page. This means that web content can
be very small and can be viewed by any system that has the capacity to decode HTML tags. The downside here is that
different software can display websites with slight differences in them.

HTML tags are words surrounded by angle brackets. These tags are written in what is called a markup language.
HTML tags come in two varieties, on their own or in pairs, with pairs being the much more common. Here are two
sets of HTML tags

•	 <html></html>: An open and a close HTML tag (these tags tell your browser where the HTML
page starts and finishes)

•	 <hr/>: An hr tag on its own (<hr/> will draw a line across your web page because it stands for
headed rule)

The slashes at the front of the second HTML tag show that this is the close of this tag. The slash at the end of the
hr tag shows it is meant to be on its own. Have a look at a very basic website:

<html>
 <head>
 <title>Pi Brand - Todo List App</title>
 </head>
 <body>
 <h1>Pi Todo List App</h1>
 </body>
</html>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ A LAMP of Your Own

169

If you place this into index.php on your Pi, open up your browser you should see a basic white page with the
phrase Pi Todo List App in large black text. Additionally up the top of your browser should say the same. This website
is wholly generated by the HTML tags we just entered. Let’s go over these as an explanation of how the website works:

First you will see that all the content is wrapped within a pair of HTML tags, which say that all •	
the content within them is HTML.

At the next level are the •	 head and body tags, which represent the next level of tags, the heading
information of the page and the actual body of the page.

The •	 title tags are used to set the title bar at the top of the page.

And within the body is one pair of •	 h1 tags that are the big block of text. The h1 is short for
header 1, which represents the largest size of header tags. There are an almost unlimited
number of hx tags you can use; as long as they are defined, most browsers will only go as far as
h4 or h5 without one being defined separately.

So we have now covered five basic HTML tags but there are many, many more. For a reference of a host of the
common HTML tags, some examples and great tutorials, head over to wc3schools.com or have a look at “Beginning
HTML with CSS and XHTML,” by Craig Cook and David Schultz.

Here are a few more HTML tags and how they are used:

•	 <p>: Paragraph tag, used to create text into a paragraph block

•	
: Break tag, used to insert a break into the page

•	 <hr>: Horizontal rule, creates a horizontal line across the screen

•	 <a>: Hyperlink tag, for a link to another page

•	 : Image tag, for adding images to a page

Table tags•	

•	 <table>: Top-level tag of a table

•	 <th>: Element of the tables heading row

•	 <tr>: Row for the table

•	 <td>: Cell of a table within a row

Form tags•	

•	 <form>: Top-level element of a form

•	 <input>: Input element of a form

These are some of the basic HTML tags we will use in our project to create output and drive input to the to-do list.
In addition to the raw tags, there are a number of different options you can use to change the various aspects of how
these elements are displayed; unfortunately, it would take more than the rest of this book to cover each element, so
we will have to discuss them as they come along. Now that you’re familiar with what HTML can do and what some of
these tags look like, we can move on to trying to add some PHP into the mix here. But first, let’s have a look at actually
designing our page.

Starting Our Page
The basic concept for our page will be a website in two parts; first will be a page that contains a to-do list, listing off
all the elements in the database. Next will be a form for the submission of new elements to the database down the

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ a LaMp of Your own

170

bottom. We will also add a check box that will allow you to delete elements you no longer need. Now that we have
the basic layout, there are some functional decisions that need to be made regarding how the processing of the page
should occur. Since the design and output will remain constant with just some processing to connect to the database
to load the elements or remove elements, we can just go ahead and have one page, which will attempt to perform any
of the actions it needs (the additions and deletions before displaying the page.

Now we can start actually writing the page out. To start, add all the content to the page and get the output
going. However, first we need to have our database set up so we have data to display. We have already created the Pi
database and we have the to-do list table structure from earlier, so let’s use them. The create statement for this table
was as follows:

create table todolist (
idnumber INT PRIMARY KEY NOT NULL AUTO_INCREMENT,
description VARCHAR(200),
owner VARCHAR(40),
date DATE,
location VARCHAR(40),
importance VARCHAR(10),
creator VARCHAR(40)
);

Now that we have a dataset to work with and a layout for our data, we can begin to add display elements. Since
our data is tabular, we can use the table elements to display it. This will make arranging the data much easier. So, we
have our basic page layout from earlier; next we should set up our data connection. A MySQL PHP connection uses
the mysqli interface. Thus to establish a connection to the database we must create a new mysqli that has the details
of our database and connection:

<?php
$mysqli = new mysqli('localhost', 'pi', 'raspberry', 'pi');
if ($mysqli->connect_error) {
 die('Connect Error (' . $mysqli->connect_errno . ') '
 . $mysqli->connect_error);
}

$mysqli->close();
?>

The preceding is a small segment of PHP code, which does the following:

Creates a new •	 mysqli object to connect to the system, which is available on the local machine
using the username pi and password raspberry.

Checks that the connection to the database was successful; and if not, displays an error •	
message.

Closes the connection as we don’t want to leave a potentially open connection there unused.•	

Now that we have this block of code for database connectivity, add this to the original block of code in index.php:

<html>
<head>
<title>Pi Brand - Todo List App</title>
</head>
<body>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ A LAMP of Your Own

171

<h1>Pi Todo List App</h1>
<?php
$mysqli = new mysqli('localhost', 'pi', 'raspberry', 'pi');
if ($mysqli->connect_error) {
 die('Connect Error (' . $mysqli->connect_errno . ') '
 . $mysqli->connect_error);
}
$mysqli->close();
?>
</body>
</html>

Display the Database Content
We now have that original piece of HTML from before, with the addition of one little mysqli connection object. This
won’t do much unless there is an error because nothing else will be displayed. Now it’s time to add another block of
code to display the to-do list. This will take two forms: the table block and the table head. Then we will need to display
everything within the MySQL table. Displaying them means creating a loop that will display the content of each row,
and placing it within the correct set of HTML tags. Let’s start with the basic HTML table layout:

<table>
<tr>
<th>Description</th>
<th>Owner</th>
<th>Due Date</th>
<th>Location</th>
<th>Importance</th>
<th>Creator</th>
</tr>
...
</table>

This code sets out the table and its first row, which are all tagged as being table header elements. Now add the
PHP to display all the content from the MySQL table:

<?php
$result = $mysqli->query("SELECT * FROM todolist");
while($row = $result->fetch_assoc()){
 print "<tr>";
 print "<td>".$row["description"]."</td>";
 print "<td>".$row["owner"]."</td>";
 print "<td>".$row["date"]."</td>";
 print "<td>".$row["location"]."</td>";
 print "<td>".$row["importance"]."</td>";
 print "<td>".$row["creator"]."</td>";
 print "</tr>";
}
?>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ A LAMP of Your Own

172

The PHP section performs this nicely. First, it creates a new variable, $result, which contains the output of
executing a query on mysqli. The query is, of course, SELECT * FROM todolist. Each line of the result is then
passed out one by one in the while loop by the $result->fetch_assoc() call and assigned to the row variable. For
each row that comes out, we print the row value for each field we request. You can see the resemblance between
the output section of the PHP and the raw HTML. This is deliberate as we want the output of the PHP to marry up
with the table header.

Now we should add this back to the original code block, but when doing so we need to make one more change,
which is to move the $mysqli->close(); to the bottom of the new block, just before the close of the PHP segment.
This move needs to occur because otherwise we will have closed off the database connection before we have actually
pulled the data out of the database.

...
<body>
<h1>Pi Todo List App</h1>
<?php
$mysqli = new mysqli('localhost', 'pi', 'raspberry', 'pi');
if ($mysqli->connect_error) {
 die('Connect Error (' . $mysqli->connect_errno . ') '
 . $mysqli->connect_error);
}
?>
<table>
<tr>
<th>Description</th>
<th>Owner</th>
<th>Due Date</th>
<th>Location</th>
<th>Importance</th>
<th>Creator</th>
</tr>
<?php
$result = $mysqli->query("SELECT * FROM todolist");
while($row = $result->fetch_assoc()){
 print "<tr>";
 print "<td>".$row["description"]."</td>";
 print "<td>".$row["owner"]."</td>";
 print "<td>".$row["date"]."</td>";
 print "<td>".$row["location"]."</td>";
 print "<td>".$row["importance"]."</td>";
 print "<td>".$row["creator"]."</td>";
 print "</tr>";
}
$mysqli->close();
?>
</table>
</body>
</html>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ A LAMP of Your Own

173

Website Data Insertion
This HTML is now working in concert with the PHP to generate a full page of content. The static HTML provides a
framework and then we have two pieces of PHP: one piece to establish a connection and a second to pull the results
out of the to-do list table and add them to the page. Now that we have the basic display working, we need to add a
form to give ourselves a form to submit new content. This basic form should have an input stream for each of the
elements we will insert into the table. We will also need one more element, a special hidden one that will tell our
processor what kind of things it is to do with the data. In this case, I like to use a variable called "action" and assign
it as needed. The final element we will need is a submission one, which allows us to push the data to the server to be
processed. In addition to all these elements, we need to give the form an action and method variable, which says how
it is to invoke CGI on our web server and what method it should use. This block when it is put together looks like this:

...
</table>
<form action="index.php" method="POST">
<input type="hidden" name="action" value="insert" />
Description: <input name="description" />

Owner: <input name="owner" />

Date: <input name="date" />

Location: <input name="location" />

Importance: <input name="importance" />

Creator: <input name="creator" />

<input type="submit" />
</form>
</body>
</html>

This code block can then be added below the table and even separated with an <hr /> tag, which means that you
will have a table of display content and a section below it that will give you the ability to add new content. When put
together and installed into the web server, the content that it generates will look like Figure 8-4.

Figure 8-4.  To-do list app with insert table

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ A LAMP of Your Own

174

If you press the submit button, you will wind up right back on the page, but you can see that the page is
referenced in the URL. This is the action block sending the CGI command to run on this page. So now we will need to
add some CGI processing to our PHP in order to process this data.

Recall that we set a method of POST earlier, which is one of two methods that we can use to pass data from
our page into the CGI system to be processed. The other method is GET, and the difference between the two is
limited as both pass data in basically the same manner. For all practical purposes, the only difference is that GET
will display the content data on the web address, whereas POST will keep it hidden. You can check this out for
yourself by changing the POST to GET and then pressing the submit button. Your URL will look something like
http://10.0.0.20/index.php?action=insert&description=&owner=&date=&location=&importance=&creator=.

There is actually a large amount of data being transmitted that will need to be processed. Thankfully, PHP
has methods to make this much easier; it has special variables that are automatically populated with the data
from CGI requests. There are three special variables that you can access (as we did with the SQL assoc variables):
_POST, _GET, and _REQUEST.

To process our CGI, we need to do quite a few things. First, check if the action variable is set and contains data;
that it will when we press the submit button as we have it set to insert (and later have an action of remove). Once we
have ensured that action is set, we can check what it is set to. Once we know which action we are performing, we can
simply pull apart the remainder of the output and then perform the required actions on the database. Finally, if we do
this before the main page load, we will actually have the latest version of the data displayed automatically!

Our CGI should start looking like this:

if(isset($_REQUEST["action"])){
switch($_REQUEST["action"]){
 case "insert":
 $SQL="INSERT INTO todolist (description, owner, date, location, importance, creator)
VALUES (";
 $SQL=$SQL."'".$_REQUEST["description"]."',";
 $SQL=$SQL."'".$_REQUEST["owner"]."',";
 $SQL=$SQL."'".$_REQUEST["date"]."',";
 $SQL=$SQL."'".$_REQUEST["location"]."',";
 $SQL=$SQL."'".$_REQUEST["importance"]."',";
 $SQL=$SQL."'".$_REQUEST["creator"]."'";
 $SQL=$SQL.");";
if ($mysqli->query($SQL)=== FALSE) {
 printf("Error – Unable to insert data to table " . $mysqli->error);
}
 
 break;
 case "delete":
 print "Delete function yet to be added!";
 break;
}
}

www.it-ebooks.info

http://10.0.0.20/index.php?action=insert&description=&owner=&date=&location=&importance=&creator
http://www.it-ebooks.info/

Chapter 8 ■ A LAMP of Your Own

175

The first thing is to see whether the action variable specified in the hidden field within the form is set. If it is,
we can be reliably certain that an action needs to be performed. Next, if action is set, we go into a switch (or case)
statement to work out which function we are performing. I’ve added a case for both insert and delete, but the delete
function is just printing that we will add it later. Besides, how would we access it without a submit method for it and
an action field in a form?

Inserting to the Database
In the insert case, we simply need to create and the build the SQL command. The command we are trying to build is
exactly like the previous SQL inserts. First, I laid out the static content: the frame of the INSERT statement, the table
name, and which fields we will be writing into. Then I have started adding variable by variable to that statement.
You can see that the additions have a lot of funny stuff around them because each of these variables will need to be
surrounded by single quotation marks and have a comma on the end. Each of these little pieces of text needs to be
treated as such, which means wrapping them in a pair of double quotation marks like so:

$SQL=$SQL."'".$_REQUEST["description"]."',";

This assigns the SQL variable the value of the current SQL value (given by $SQL=$SQL) and then adds to it (marked
by the period) a single quote (given by "'") and the value of the REQUEST variable description, then a single quote, and
then a comma. I know it seems a lot of work, but we have been able to pull out each of the variables we need and have
the whole SQL statement in one tiny variable.

Caution■■   It’s also important to note at this point that the above is not to be considered secure. Those variables can quite
literally be anything and there are special functions that you can use to perform some sanity checking on those values. The
recommended function for performing a good selection of these sanity checks is the mysqli_real_escape_string.

Once we have created the SQL variable, we need to insert it by simply invoking the mysqli query function again.
In this example, I’ve also added a check to see that the execution of the query failed. And that’s it; this block of code
will process the CGI insert into our database from our PHP. All that remains is to insert the block correctly into the
right place in our code. I have chosen to append this to the first block of PHP we added instead of giving it its own.
This means the flow of the page becomes first to draw the header of the page, then to create the database connection
and perform any CGI actions, then to display the actual content of our to-do list, and then to display the final form.
Once the code is in, you can test that it works by placing values into the form and pressing submit. This should go
ahead and add an extra row that will show up in your table, as shown in Figure 8-5.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ A LAMP of Your Own

176

Remove Entries
Now that the add functionality is working, we need to create a delete functionality. As with all things in life, there are
a number of ways to can approach it. The easiest is to simply add a form and delete option for each individual row,
which means that if you want to delete, you need to issue them one at a time. The second option is to have a series of
check boxes that will delete all the ticked elements. I am a fan of the second option as it gives a lot more flexibility with
the deletions.

We need to make two changes for this process to work. The first change is to add a form around the table that
will be the delete form, a hidden field with the action delete, a submission button below the form, and check boxes to
each element. To add the check boxes, we will also need to add an empty element to the start of the table header row.
Figure 8-6 is what your page should look like with the added check boxes and submit button.

Figure 8-5.  All work and no play…

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ A LAMP of Your Own

177

The code section for the form content generation is shown following. You can see that there is another form
wrapping the table that has the same method and action. Next is the new hidden input value that sets the action
to delete, allowing us to access the correct section in our case statement. Probably the most important change is
the addition of the empty td pair and the additional input of type check box. This check box is probably the most
complex set of elements we have added—it contains the type of check box, the value that is specially configured to be
accessible as an array that is done by adding the square brackets before and after. The final element is the value, which
I have set to be the value of the check box. This means that when we go into CGI mode, we will take the array value of
check boxes and it will contain a list of the idnumber values for the elements we wish to delete.

Here is a short summary of all the changes we have made to the form to add the check boxes:

...
<h1>Pi Todo List App</h1>
<form action="index.php" method="POST">
<input type="hidden" name="action" value="delete" />
<table>
<tr>
<td></td>
...
</tr>
<?php
$result = $mysqli->query("SELECT * FROM todolist");
while($row= $result->fetch_assoc()){
 print "<tr>";
 print “<td><input type='checkbox' name='checkboxes[]' value='".$row[“idnumber"]."' /></td>";
 print "<td>".$row["description"]."</td>";
 print "<td>".$row["owner"]."</td>";
 print "<td>".$row["date"]."</td>";
 print "<td>".$row["location"]."</td>";

Figure 8-6.  Now with extra check boxes

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ A LAMP of Your Own

178

 print "<td>".$row["importance"]."</td>";
 print "<td>".$row["creator"]."</td>";
 print "</tr>";
}
$mysqli->close();
?>
</table>
<input type="submit"/>
</form>
...

Remove Data from DB
We have one final change to make, which is adding the delete processing in the case statement. We can use a
similar logic to the insert statement, whereby we create a SQL variable and then iteratively add the remove for the
idnumbers one after another. In this case, we will need to have a for loop that will run through each element of the
_REQUEST['checkboxes'] variable that we can get from the count function being run on the variable. This gives us a
full for loop as follows:

for($i=0; $i < count($_REQUEST['checkboxes']); $i++){

Once we are within the loop, we simply need to pull out the $i’th element of the _REQUEST['checkboxes'] array
each time in the loop. In addition, we will need to add an or to the end of each of them so that we will delete each of
the elements by idnumber; we use or because we want it to delete the variable if the idnumber is the first number, the
second number, or the third, and so on.

However, we will have one issue with the or: we will add it to the end of the last element that we don’t want. We
will need to use the rtrim function to trim off the or from the end. The rtrim function will trim off a given value from
the right side of a string, which will give us the SQL we want. Finally, we perform the same query action as in the insert
and will again check to see whether there is an error. This will give us a code block like this:

$SQL="DELETE FROM todolist WHERE";
for($i=0; $i < count($_REQUEST['checkboxes']); $i++){
 $SQL=$SQL . " idnumber=" . $_REQUEST['checkboxes'][$i] . " or";
}
$SQL= rtrim($SQL, "or");
if ($mysqli->query($SQL)== FALSE) {
printf("Error Unable to delete value " . $mysqli->error);
}

Figure 8-7 is the final result. I have used the delete to remove the original entry so we are just left with the one.
Remember that all examples from this book are available online via the Apress website. If you are unsure about how
all this code is assembled, please download a copy and have a look!

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ A LAMP of Your Own

179

Troubleshooting
Now let’s go over some ways to troubleshoot some issues. First, try making each code change in sequence and then
reload the page. You can use the view source command to see the full HTML that is being generated by the PHP and
see whether the values are showing up correctly. If you can’t get that far, have a look at the error log, (the one from
right back at the start when we configured Apache). This file will list all of the PHP errors that occur. Have a look to
ensure that your quotation marks are open and closed correctly and you haven’t left any dangling. Check that you
have a semicolon on the end of each of your statements (I always forget this one). Check that your parentheses, square
brackets, and circle brackets are opened and closed correctly with no overlap.

Much of the stuff in PHP and web development is trial and error. You should check that each statement or block
of code that you add functions and generates as expected. You can use a print statement to output variables as
they are generated to see what exactly you are doing, which is a great way to diagnose any problems with your SQL
statements. Finally, remember that you have access to the full system, go ahead and test inserting values into your
SQL and delete them as needed; use the system to work out what it is doing and what causes your problems.

Where From Here?
We’ve done all this development and we have a functional to-do list that you can use to display, add, and delete
entries with. We have used a variety of different programming tools to do things, but there are a lot of things we can do
from here. These are some of the changes you could make to your to-do list:

Add •	 isset(); checks to each of the insert values to check that you are actually inserting
values, not just blank spaces.

Wrap each of the inserted values with the •	 mysqli_real_escape_string function. This will
increase the security of the to-do list because it prevents people writing “nasty” values into
your application that will execute as separate SQL queries.

Figure 8-7.  Lowering my workload

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ a LaMp of Your own

180

Change the •	 value option of each of the submit elements, so that they say what we are using
them for: inserting or deleting.

Create a table around the form elements for inserting and give each of the labels and insert •	
fields their own row and own cell. Wrapping them in a table makes the display much more
uniform.

Start looking into CSS because it can make a big difference in how your to-do list looks. •	
Twitters “bootstrap” is a great starting point.

Summary
So we’ve come a long way since we started. We’ve done a lot. We have installed and configured Apache, MySQL,
and PHP. You have learned how to create simple SQL statements to create and delete databases and tables and then
learned how to insert and delete data from these tables. Finally, you have learned how web content is displayed from
an Apache web server. Then we combined all and went through some PHP and HTML to generate a whole application
that provides access to a database to-do list table.

This has been a monumental undertaking because we have not only gone and installed three different
applications and created an interconnected application stack but also gone over three languages to create an
application on top of the application stack.

Congratulations—job well done!

www.it-ebooks.info

http://www.it-ebooks.info/

181

Chapter 9

WiPi: Wireless Computing

One of the biggest advantages of the Raspberry Pi is that it is tiny and can fit in just about any small nook or cranny
you care to think of. This is why it is constantly touted as a great choice for people to use when designing—it can
be placed just about anywhere and, with the right peripherals, can do almost any task. Additionally, its low power
consumption means that there is less of a barrier to its usage in these situations as it doesn’t need a large amount
of electrical plumbing to “just work.” Which is to say that Raspberry Pi is a super tiny machine that provides a
monumental bang for your buck!

However, this is not without some strings attached (see Figure 9-1)! All that power is for naught without a small
supply of external electricity. While 5 volts isn’t much, it does need to somehow magically enter your Raspberry Pi to
turn the lights on. In addition to requiring power, the Pi is almost useless on its own as there is little you can do with
the Pi on 5 volts alone beyond making the power LED go on and off. You need to attach devices to make the Pi useful.
To use the Pi as a simple home computer you need the following (at a minimum):

HDMI or composite cable for video•	

Ethernet cable for Internet and network access•	

A keyboard to enter data with•	

An SD card to provide storage•	

Figure 9-1.  Constrained Pi

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ WiPi: Wireless Computing

182

Suddenly, you see what I’m getting at; the Raspberry Pi, the tiny unattached super machine is actually quite
tied down. Tied down with the needs of human usability and interactiveness, these constraints mean running a
large number of cables to your Pi just to get some of the basic functionality out of it. As you can probably guess, all
is not lost! There are a number of ways you can detach your Pi and make it a lot more mobile and give yourself a lot
more flexibility in what you can do with it. That’s the purpose of this chapter: to provide you with the tools and some
background to remove the wires constraining your Raspberry Pi.

Preparing for WiPi
In addition to having your SD card loaded with a copy of Raspbian, you will want to ensure that your version of
Raspbian has been upgraded because the September release included significant improvements in how WiFi access is
managed. To get this system up, you first need to run a few quick commands:

$ sudo apt-get update
$ sudo apt-get upgrade

These two commands will first tell your apt-get instance to update to know which versions of the software are
available to you for usage. The second will tell apt-get to compare and then install every upgraded version of all
software currently installed on the system. As you can imagine, running these commands on a regular basis is a very
good idea because it allows you to keep your system running the latest version of the software.

Simple Constraint Removal
Before you begin chopping off cables willy-nilly, you need to understand what you want to achieve with your Pi. This
will automatically place a number of constraints on what you want to do with it. I can’t presuppose what you want
to do with your Pi because there are genuinely so many options. So given this, what I will try and provide here are
individual ways that you can cut the cord (not literally) and unconstrain your Pi. You may well be able to make use of
your newfound cable-cutting skills with some of the content in later chapters to improve on the designs or to make
them better suit your purpose.

Removing Human Input Devices
Start with the easiest and lowest hanging of fruits: the monitor, keyboard, and audio cables. I know it sounds funny
to say that cutting out three peripherals at once is easiest, but you really are cutting something much different out of
the equation: you. By far, the easiest set of connections to cut is that of the human interaction devices. Much of this
book is, in fact, geared toward giving you the skills to work with your Pi without the aid of a monitor, a keyboard, or
speakers. This is not to say you can’t ever go without; you can always plug them back in as needed to diagnose any
really critical issues, but you can start by removing them and managing your Pi remotely. The use of SSH is key here
because you can use SSH to remotely connect to your Pi over your network connection. Once you have connected to
your Pi, you have full command-line access to perform whatever tasks you need. There is also the added benefit that
you can go and change the memory distribution within your Pi using sudo raspi-config and set the memory_split
value to 240/16, which puts most of the memory into free RAM for your system to use and as little as possible into the
Graphics display, which you won’t normally be using.

Before you assume that this means no use of monitor and keyboard ever, stop. All the things you want to do with
your Pi should be tested and configured in a working environment with keyboard, monitor, mouse, and so on, all
available for usage. Once you have your system to a state where it works without your interference, you can power on
and off without needing to jump back in and manage each time you know you should be able to remove all the human
interface devices. This is a great start for anyone: being able to remove all the cables and interface with your system
remotely. This is also means you can do other things such as manage your Raspberry Pi via your phone or from a

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ WiPi: Wireless Computing

183

system at work across the Internet. Once you get the feeling for jumping across the Internet to manage your machine,
I guarantee you will ask yourself how you did without it before.

Adding a Remote GUI
Alright, while I will readily admit that there are some true benefits from working within a console–only remote
environment there are some people who just cannot get their head around it. And there are a number of cases where
it is impractical for whatever reason. In these situations, it’s best to use a tool called Virtual Network Computing
(VNC) to give you the ability to interact with your Pi’s desktop from another machine.

To do this, you will need to install a VNC server on your Pi and you will need a client on your machine. There
are numerous different VNC solutions out there, and as long as they obey the VNC protocol, they should all be
compatible. For your Pi, you will be using tightvnc because it aims to be efficient and “tight.” You can download the
clients for both Windows and Linux systems at www.tightvnc.com. But before you go jumping into clients, start by
installing the server on your Pi. Run the following command:

$ sudo apt-get install tightvncserver

This command will install tightvnc with the package management tool; your output should be similar to
the following:

Reading package lists... Done
Building dependency tree
Reading state information... Done
The following extra packages will be installed:
 x11-xserver-utils xfonts-base xfonts-encodings xfonts-utils
Suggested packages:
 tightvnc-java nickle cairo-5c xorg-docs-core
The following NEW packages will be installed:
 tightvncserver x11-xserver-utils xfonts-base xfonts-encodings xfonts-utils
0 upgraded, 5 newly installed, 0 to remove and 91 not upgraded.
Need to get 7,824 kB of archives.
After this operation, 11.7 MB of additional disk space will be used.
Do you want to continue [Y/n]?

Once you have Tight VNC Server installed, you need to power it up and start it running so you can connect. So go
ahead and execute this command:

$ tightvncserver

You will then be prompted for a pair of passwords: one is the actual VNC password that allows you to use the
mouse and keyboard to manipulate the screen; the second is the optional “View Only” password that allows you to
view what’s on the screen but not interact. This is what you should expect to see after executing:

You will require a password to access your desktops.
Password:
Warning: password truncated to the length of 8.
Verify:
Would you like to enter a view-only password (y/n)? n
New 'X' desktop is raspberrypi:1
Creating default startup script /home/pi/.vnc/xstartup
Starting applications specified in /home/pi/.vnc/xstartup
Log file is /home/pi/.vnc/raspberrypi:1.log

www.it-ebooks.info

http://www.tightvnc.com
http://www.it-ebooks.info/

Chapter 9 ■ WiPi: Wireless Computing

184

Now all you need to do is go ahead and connect with the tightvnc client on the machine you wish to browse
from. Go ahead and fire up the client. I am working from a Windows environment, and you should see a screen like
in Figure 9-2.

In Figure 9-2, you can see that I have entered my Raspberry Pi’s IP address and :1. Normally a single colon after
an IP address designates a port number, but in this case it designates a screen number. If you go back over the output
from the tight VNC startup, you can see that it says it created a new desktop of raspberrypi:1, which is what I have
connected to. Now press Connect and boom, there is the lovely pink raspberry displayed on your screen and you are
able to move around in the Raspberry Pi environment.

If you were to restart, however, you would be without a VNC server again, and running tightvncserver will ask
you for credentials again. This is not the optimal way to do this, so instead you will run the following command if you
wish to restart the server:

$ vncserver :1 -geometry 1920x1080 -depth 24

This command says to run a vncserver on screen :1 with the dimensions 1920 x 1080, which is the maximum
resolution of your Pi (full 1080p high definition) and set the color depth to 24 bits. You can lower these values if need
be to fit the dimensions of your client screen or to lower the number of resources used by your Pi in hosting a VNC
connection. In addition to this, you may wish to run your VNC server on boot so you don’t need to SSH in to set up a
video connection. After all, that’s just redundant! The simple way is to add the vncserver command to
/etc/rc.local as everything in this file gets executed during the boot process.

By default, your rc.local file will look like this:

#!/bin/sh -e
#
rc.local
#
This script is executed at the end of each multiuser runlevel.

Figure 9-2.  TightVNC Client

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ WiPi: Wireless Computing

185

Make sure that the script will "exit 0" on success or any other
value on error.
#
In order to enable or disable this script just change the execution
bits.
#
By default this script does nothing.
 
Print the IP address
_IP=$(hostname -I) || true
if ["$_IP"]; then
 printf "My IP address is %s\n" "$_IP"
fi
 
exit 0

You can then add the following line to start tightvnc just before the exit 0:

vncserver :1 -geometry 1920x1080 -depth 24

If you want a proper start process, you can use something like the following script as the file
/etc/init.d/tightvnc:

BEGIN INIT INFO
Provides: tightvnc
Required-Start: $remote_fs $syslog
Required-Stop: $remote_fs $syslog
Default-Start: 2 3 4 5
Default-Stop: 0 1 6
Short-Description: Start Tight VNC Server at boot time
Description: Start Tight VNC Server at boot time.
END INIT INFO
#! /bin/sh
/etc/init.d/tightvnc
 
USER=pi
HOME=/home/pi
export USER HOME
 
case "$1" in
 start)
 echo "Starting Tight VNC Server"
 /usr/bin/vncserver :1 -geometry 1920x1080 -depth 24
;;
 
 stop)
 echo "Stopping Tight VNC Server"
 /usr/bin/vncserver -kill :1
 ;;
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ WiPi: Wireless Computing

186

 *)
 echo "Usage: /etc/init.d/tightvnc {start|stop}"
 exit 1
 ;;
esac
 
exit 0

Once you have created this file, you need to execute the following command to allow the script to be executed:

$ sudo chmod +x /etc/init.d/tightvnc

Then you can start and stop the script with /etc/init.d/tightvnc. Be aware that the first time you run this script
you will have to enter a VNC password again as this script is being run as root, rather than the Pi user. Finally, you can
set the script to automatically boot with this:

$ sudo update-rc.d tightvnc defaults:
update-rc.d: using dependency based boot sequencing

Now that you have installed and configured VNC on your Pi and been able to remove the dependency on human
input devices for working with the Pi, you can move into the next area.

True WiPi with WiFi
From your earlier work with VNC and SSH, you will have come to realize that in removing human input devices, you
have increased the dependency on your network connection. This dependency comes in the form of management
because you can’t interact directly via keyboard and monitor anymore; you need to have another access method: the
Ethernet network connection. Of course, this is still a wire, so you may as well keep the input devices, right? There is a
very obvious solution here—WiFi—but to the chagrin of many people the Raspberry Pi doesn’t come with WiFi on the
board itself. You will need to go out and purchase a wireless adapter for your Pi if you wish to use one.

Okay, simple enough, you say, and off you pop down to the local computer hardware store to pick up a wireless
adapter. You look around and urgh. There are so many wireless adapters available! So which of the dozens available
is best for the Pi? Will all of them even work with the Pi? While most people would intuitively go and pick up the
cheapest that will fit in with their WiFi setup at home, this is not the correct thing to do here as there are other
factors at play.

First, all USB devices require power, and, as you are well aware, the Raspberry Pi runs on 5 volts of power. This
means that you will need to get a wireless device that runs on a lower amount of power (if you place too much draw on
your Pi’s USB you can crash it), or you will need to invest in a powered USB device that connects to an external power
source (not good for your purposes, but I will cover this later because there are other uses for them). So you need to be
mindful of power; you also need to be mindful of compatibility as some of the stranger wireless adapters may not have
support within Linux systems. I have included some data from the Raspberry Pi community on their experiences with
various wireless adapters to supplement my own.

As you can see in Figure 9-3, I chose to use a D-Link DWA-131 wireless adapter purchased from my local tech
store. The rest of this example will cover some of the basics of getting your Pi to communicate with your local wireless
network using the DWA-131.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ WiPi: Wireless Computing

187

Note■■   Your Pi may restart when you connect the wireless adapter, so save any work beforehand.

This doesn’t mean you need to use this particular adapter alone; the setup of most wireless adapters to work with
your Pi should be the same process once you have managed to get it to register correctly. So without further ado, start
and plug in the wireless adapter and get to work. The current state of the board is shown in Figure 9-4.

As you can see, I have still got my Ethernet cable attached for now. I will show you how to configure wireless on
your Pi from both the command line and the GUI. Before you jump straight into configuration, you need to know
exactly what you are working with, so jump into the shell and run the lsusb command, which is just like the ls
command, but for USB devices.

$ lsusb
Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub
Bus 001 Device 002: ID 0424:9512 Standard Microsystems Corp.

Figure 9-3.  D-Link DWA-131 802.11n wireless N nano adapter

Figure 9-4.  Three down, two to go!

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ WiPi: Wireless Computing

188

Bus 001 Device 003: ID 0424:ec00 Standard Microsystems Corp.
Bus 001 Device 004: ID 07d1:3303 D-Link System DWA-131 802.11n Wireless N Nano Adapter(rev.A1)
[Realtek RTL8192SU]

Perfect! You can see from this command that my wireless adapter has been recognized by the system and
should be able to function—fantastic. If not, don’t fear; you will simply need to install the driver for your particular
network card. A small amount of Google research and you should be able to find the chipset of the WiFi card. The
chipset refers to the small silicon chip inside the wireless adapter that “runs” the wireless adapter. The chipset is often
manufactured by an entirely different company from the one whose badge appears on the device, and it is the chipset
with which you need to interface and is thus what determines which drivers you need to find. Once you have found
the chipset, a quick search on this should point out what driver packages you will need to install. Once you have
installed your driver packages and you can see your wireless adapter in lsusb, you can move to the next step.

Since you have the device installed and registered, you should check that the device has registered correctly as a
network device. When working with Linux, the most common tool for network management is ifconfig. So go ahead
and run ifconfig and examine the output:

$ ifconfig
eth0 Link encap:Ethernet HWaddr b8:27:eb:8a:46:ba
 inet addr:10.0.0.20 Bcast:10.0.0.255 Mask:255.255.255.0
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:6558 errors:0 dropped:0 overruns:0 frame:0
 TX packets:268 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:374403 (365.6 KiB) TX bytes:28129 (27.4 KiB)
 
lo Link encap:Local Loopback
 inet addr:127.0.0.1 Mask:255.0.0.0
 UP LOOPBACK RUNNING MTU:16436 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)
 
wlan0 Link encap:Ethernet HWaddr 90:94:e4:51:81:7a
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

The previous configuration actually shows information for three devices rather than just the wireless adapter
(two of which you saw in Chapter 3):

It shows first the •	 eth0 device that is the physical Ethernet device.

Next is the •	 lo adapter; recall that this is the system’s internal self-reference device that is used
when you want to address traffic to within the Pi (or any system) from itself.

Finally you have •	 wlan0, which is the wireless device. You should be able to notice a few
differences between the eth0 and lo devices and the wlan device—it doesn’t have an IP
address (denoted by inet addr) or a mask. These are things you will need to configure to get it
talking with your wireless network—along with the details of your wireless networks SSID and
security arrangements. So that will be your next step.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ WiPi: Wireless Computing

189

If your adapter didn’t show up, but did register in the lsusb, reboot and perform the same troubleshooting
steps. The system may be able to recognize your device, but be unable to interface with it correctly. Installing a driver
package for your system will likely be the solution here.

To begin with, make this easy and do the configuration via the GUI, which ironically involves installing something
via the command line. Go ahead and fire up apt-get to install wpa-gui. WPA GUI is an application that has recently
been added to Raspbian to make the installation and configuration of wireless devices much, much simpler. It is so
recent, in fact, that this chapter needed to be rewritten to include it because the version of Raspbian that was used
during the first round of the writing did not include it! If you’re unsure about whether you have the correct version,
you should run this command because there is no harm in doing so. The command to install this application
is the following:

$ sudo apt-get install wpagui

If you have the latest version of Raspbian, which includes wpagui, you will see the following output stating that
the package is already installed:

Reading package lists... Done
Building dependency tree
Reading state information... Done
wpagui is already the newest version.
0 upgraded, 0 newly installed, 0 to remove and 0 not upgraded.

If you have not installed the package, your installation will look something like this:

Reading package lists... Done
Building dependency tree
Reading state information... Done
The following extra packages will be installed:
 libaudio2 liblcms1 libmng1 libqt4-svg libqtcore4 libqtgui4 menu
Suggested packages:
 nas liblcms-utils qt4-qtconfig menu-l10n
The following NEW packages will be installed:
 libaudio2 liblcms1 libmng1 libqt4-svg libqtcore4 libqtgui4 menu wpagui
0 upgraded, 8 newly installed, 0 to remove and 96 not upgraded.
Need to get 8,921 kB of archives.
After this operation, 22.6 MB of additional disk space will be used.
Do you want to continue [Y/n]?

Fantastic! Now that you have installed wpagui, you should be able to make good use of it via the user interface.
But before you jump in, go ahead and reboot your Pi because you have made a major change to how the Pi manages
your network connections and you want to make sure it’s bombproof before continuing. Booted okay? You can run
ifconfig and the output looks the same, great.

Now you can begin configuring your wireless adapter. You’ll start with the GUI and then see how to do it over the
command line.

Note■■  I f you notice your Pi slowing or failing to connect to WiFi, it may be your keyboard drawing too much power.
Try removing it and using VNC or SSH to configure your wireless.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Wipi: Wireless Computing

190

GUI WiFi Configuration
Log in to the GUI and there should be a new icon called WiFi Config, as shown in Figure 9-5.

Double-click this icon to open the application and you should be presented with the wpagui window, as shown
in Figure 9-6.

Figure 9-5. WiFi Config icon

Figure 9-6. wpa_gui window

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ WiPi: Wireless Computing

191

From within the wpagui window, press the Scan button. It will take a few moments, but another window will pop
up, as shown in Figure 9-7.

This window should look familiar to everyone. This is the window for selecting your wireless network. Find your
particular network and then double-click it to open the configuration window (see Figure 9-8).

Figure 9-7.  Scan results window

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ WiPi: Wireless Computing

192

I am assuming that you should have your details available to set up your configuration. Most of this is intuitive,
but there are a few things you need to be aware of:

SSID is the “name” given to your wireless network, so you need to type this name.•	

Next is Authentication, which specifies the type of authentication that you are using: WEP, •	
WPA, WPA2, and so on.

Next is Encryption, which selects the encryption mode that you will be using.•	

The last is PSK, which stands for preshared key. This is your WiFi password.•	

Now change to the Wireless Security tab and set up whichever authentication method, encryption method, and
password you are using for your WiFi. This information is normally inside your router’s configuration system, but can
also be written on the router itself or within the router manual. Now click Add. Your wireless settings should be saved
into the system and it will pick these up and begin attempting to connect to your adapter; after a few moments, you
should expect to see something like Figure 9-9.

Figure 9-8.  Network details

y
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ WiPi: Wireless Computing

193

If you didn’t see this, have a look at the mouse-over message it should give you an idea of what is going wrong
with your connection. Check that your settings are correct and that you have picked the right security method. If in
doubt, open your router configuration to double-check. Finally, you can go back into the console and issue ifconfig
again to check out your wireless adapter settings!

wlan0 Link encap:Ethernet HWaddr 90:94:e4:51:81:7a
 inet addr:10.0.0.59 Bcast:10.0.0.255 Mask:255.255.255.0
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:772 errors:0 dropped:10 overruns:0 frame:0
 TX packets:35 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:100749 (98.3 KiB) TX bytes:4254 (4.1 KiB)

That looks much more like what you expect; it has an IP address, mask, and so on. It also shows that it has been
sending and receiving packets (those are the RX and TX packet numbers) without error. The final test is to ping that IP
address from a second machine, and that’s it. You can now go ahead and remove that Ethernet cable. As a final test, go
ahead and reboot; you should be able to ping your system on the wlan0 IP address after the reboot, showing that you
have successfully kept the wireless adapter details stored across a reboot. Now you can go ahead and remove that next
cable and reboot as you want to ensure your system is using the wireless adapter by default.

Figure 9-9.  WiFi connected!

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ WiPi: Wireless Computing

194

Managing WiFi from the Command Line
For those of you who don’t really want to use the GUI or who consider themselves purists to the true Linux tradition
of using only the command line to manage your systems, this is the bit for you! To do this, you will be modifying the
NetworkManager configuration. The basic way the NetworkManager system decides how it should manage your
Ethernet devices is twofold:

It checks to see whether the •	 managed flag in /etc/NetworkManager/NetworkManager.conf is set.

It takes over management of anything configured within •	 /etc/network/interfaces; these
settings say how this device should be managed.

You don’t want the NetworkManager system to jump in and take over your settings from above, so you need to
ensure that it’s not going to. This will be an issue only if you installed the GUI earlier, or if NetworkManager came
bundled with your Raspbian image, but it is best to be thorough. So go ahead and check /etc/NetworkManager/
NetworkManager.conf and ensure that the managed flag is set to false. The file should look like:

[main]
plugins=ifupdown,keyfile
 
[ifupdown]
managed=false

Once this is done, go ahead and reboot your Pi; you want to ensure that the Pi comes up correctly and all
existing Ethernet connections are working after this first reboot. Now you need to add the configuration into
/etc/network/interfaces so that it knows how to manage the device and connect to your WiFi. So go ahead and
open up /etc/network/interfaces. You will see that the file is already partially populated with the following lines:

auto lo
 
iface lo inet loopback
iface eth0 inet dhcp

You may also see the following lines in your file, depending on whether your system has already done some
wireless configuration or not.

allow-hotplug wlan0
iface wlan0 inet manual
wpa-roam /etc/wpa_supplicant/wpa_supplicant.conf
iface default inet dhcp

These lines correspond to the loopback and eth0 devices, respectively, and provide some simple details about
their management; is in this case, the loopback is an automatically managed loopback device, and the eth0 device is
given an IP address via DHCP. There may also be some existing configuration for your wlan0 device; if they exist, you
should comment them out by adding a # to the front of them or delete them from the file. You now need to
add a new configuration for the wlan0 wireless device, so go ahead and add the following to your config below the
existing content:

auto wlan0
iface wlan0 inet dhcp
 wpa-ssid <Your WiFi SSID>
 wpa-psk <Your WiFi password>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ WiPi: Wireless Computing

195

This block says that you will have an automatically managed wlan0 device, which gets its connection information
via DHCP. You also pass it the SSID and PSK. This configuration will work for both WPA and WPA2 network security
implementations. Once you’ve finished, it’s time to test your new device, so go ahead and run the following, which
will start the interface. It may take a few moments, but your output should resemble mine:

$ sudo ifdown wlan0
$ sudo ifup wlan0
Internet Systems Consortium DHCP Client 4.2.2
Copyright 2004–2011 Internet Systems Consortium.
All rights reserved.
For info, please visit https://www.isc.org/software/dhcp/
 
Listening on LPF/wlan0/90:94:e4:51:81:7a
Sending on LPF/wlan0/90:94:e4:51:81:7a
Sending on Socket/fallback
DHCPDISCOVER on wlan0 to 255.255.255.255 port 67 interval 8
DHCPDISCOVER on wlan0 to 255.255.255.255 port 67 interval 15
DHCPDISCOVER on wlan0 to 255.255.255.255 port 67 interval 9
DHCPREQUEST on wlan0 to 255.255.255.255 port 67
DHCPOFFER from 10.0.0.1
DHCPACK from 10.0.0.1
bound to 10.0.0.59 -- renewal in 444671 seconds.

All this shows that the device has connected to my wireless network and has been given an IP address via DHCP,
which is exactly what you told it to do! Now suppose that you don’t want to use DHCP, but would rather give your WiFi
adapter a static IP address. You simply need to change the iface line to read static rather than dhcp and then add
details for your IP address, subnetmask and gateway. Your config will look like this instead:

auto wlan0
iface wlan0 inet static
 address 10.0.0.57
 netmask 255.255.255.0
 gateway 10.0.0.1
 wpa-ssid <Your WiFi SSID>
 wpa-psk <Your WiFi password>

Now that you have successfully configured wireless on your system, you can go ahead and reboot your Pi to check
that the wireless adapter automatically comes up. If not, go back and ensure that you set auto wlan0 and that you
enabled the managed=false flag in the NetworkManager config file.

If that doesn’t work, go over your configuration settings for SSID and WiFi password. You can confirm whether or
not you can start your wireless adapter with ifup wlan0; if there are problems connecting and getting an IP address
your system should show them here giving you a chance to work out what’s going wrong. Finally, if you just can’t get it
to run, try removing any other attached USB devices; they can draw valuable power away from your WiFi adapter.

One last thing on the command line that may help you is the iw series of commands:

You can run •	 iwlist with the scan option to get a scan of information about nearby
wireless hotspots.

Or you can use •	 iwconfig to get configuration details about your wireless adapter.

www.it-ebooks.info

https://www.isc.org/software/dhcp/
http://www.it-ebooks.info/

Chapter 9 ■ WiPi: Wireless Computing

196

Down to One
Congratulations, you are on your way to a fully wireless Raspberry Pi! You have successfully removed the need for an
Ethernet cable and you can now access your Pi wirelessly. It should now be down to just one cable! (See Figure 9-10.)

Figure 9-11.  WiPi at long last!

Figure 9-10.  Last cable standing

Removing the Need for Power
There is very little you can do to shortcut the need to provide your Raspberry Pi with power; it needs it, and there are
only a finite number of solutions to this problem. By far the most easy and convenient is to get a large USB battery.
These are available just about everywhere these days for charging any of the many devices people commonly carry on
the go. The simple solution here is to attach your Pi to one of these batteries for use because this kind of battery should
guarantee the correct level of power output to your Pi—as they are designed to power USB devices. The important
thing when looking at batteries to power your Pi is to be certain they can provide the full 1 amp of power, as some USB
batteries are okay for charging but don’t pack quite enough juice to power a Pi. Figure 9-11 shows the final WiPi.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ WiPi: Wireless Computing

197

There are a few hacks out there with a combination of rechargeable batteries and solar panels, which will go
much further for you, but those are well beyond the scope of this book.

Powered USB Adapters
I made mention earlier that if you place too much draw on your Pi’s USB, you can crash it as it has only got a limited
power supply of its own. The solution is to get your hands on a powered USB hub. These powered hubs normally
have one connection out and a number of connections in and will also have a mains connection with which to supply
power. The principle with these is that people rarely use the full data transmission volume of a USB but will often run
out of power, so having a way to supplement the power of a USB device with a mains power source is a good way to
give people more flexibility with their devices. If you find that when you attach your device your Pi switches itself off,
it’s a fair bet that you will need something like one of these to help spread out the power load (see Figure 9-12).

Figure 9-12.  Powered USB hub in action

Summary
After all that work, you should have seen a large payoff. You should now know how to configure your Pi to make
it wireless. You should be able to set up and connect to your Pi via a VNC client in addition to the normal SSH
connections. You have learned how to configure your Raspberry Pi to take a wireless adapter and can attach it to your
existing wireless network. Finally, you should be aware of some of the limitations of your Pi with regard to power
consumption and how you can resolve these issues.

www.it-ebooks.info

http://www.it-ebooks.info/

199

Chapter 10

The Raspberry sPi

Everyone wants to be James Bond. Or at least I know I do. He seems to get into all sorts of situations; then whips out
a handy gadget to save the day. The Raspberry Pi is, as we have shown, supremely versatile for such a tiny little piece
of hardware. This makes it the perfect tool for a secret agent because with just a little bit of energy you can provide a
fully-fledged technological solution at a fraction of the expense of employing John Cleese (admittedly the Pi is not as
funny). So, with this in mind, we can now don our tuxedos and get down to secret agent business.

All good secret agents know that you need to be able to detect and be alerted to intruders in your secret hideout.
So this makes it the perfect time to introduce you to the Raspberry sPi! The Raspberry sPi is a combination spy camera
and alerting system, the perfect solution for spotting dastardly intruders into your inner sanctum! Or for monitoring
your pets over the Internet. The basic concept here is that we will be configuring our Raspberry Pi. So without further
ado, let’s get started.

Materials Needed
Here are the materials needed for this project (also shown in Figure 10-1):

Figure 10-1.  The Raspberry sPi kit

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ The Raspberry sPi

200

1x Raspberry Pi•	

1x Micro USB cable (for power)•	

1x Ethernet cable•	

1x USB webcam•	

1x SD card•	

At this point, you should note that not all webcams are compatible with the Raspberry Pi. This document was
created with a Logitech C525 webcam. Thankfully, the Pi community maintains a list of compatible hardware, which
is available at http://elinux.org/RPi_VerifiedPeripherals#USB_Webcams. If you are in doubt, please check there to
see which peripherals will work with your Pi.

Presetup
Nothing special here; just attach your micro USB for power, attach the Ethernet for network access, attach the SD for
storage, and make sure you leave the camera unattached—we will do that later. The rest of this process assumes you
are familiar with the following:

Installing the Raspbian OS•	

Knowledge of how to work within a Raspbian Linux environment•	

If you aren’t familiar with either of these two, that’s perfectly okay. That’s what this book is for after all, so please
go back and read Chapter 1 for how to get started with Raspbian and Part 2 of this book to gain familiarity with
working in a Raspbian Linux environment.

Getting Started
So, without further ado, let’s get started. Go ahead and load up Raspbian and connect your Pi to your network.
Go through the Raspbian setup procedures and make sure to enable SSH because you will need to remote in later.
(We don’t see James Bond carrying round a keyboard, HDMI cable, and a monitor, do we?) Once you are set up,
go ahead and SSH into your Pi (covered in Chapter 3).

Okay, once you’re logged in, go ahead and issue the command dmesg and have a look at the output.

dmesg
The dmesg command is a tool called a driver message that shows a logged output of all the messages to the kernel,
which includes messages from devices and the drivers that are attached to your system. dmesg is infinitely useful in
determining which devices are attached, and where and how you should interface with them. It also lists driver and
kernel messages that are incredibly useful when diagnosing low-level problems. So, let’s have a look at the relevant
section of the output.

Note■■   less is more. If you find that the output for a command is running over the top of the screen and you can’t see
it any more, reissue the command and then pipe it to less (i.e., dmesg | less). This should allow you to navigate the
output of just about any command using the arrow keys and spacebar to page down.

www.it-ebooks.info

http://elinux.org/RPi_VerifiedPeripherals#USB_Webcams
http://www.it-ebooks.info/

Chapter 10 ■ the raspberry spi

201

[1.998581] Waiting for root device /dev/mmcblk0p2...
[2.071268] mmc0: new high speed SD card at address 7d37
[2.079917] mmcblk0: mmc0:7d37 SD02G 1.83 GiB
[2.088723] mmcblk0: p1 p2
[2.132278] EXT4-fs (mmcblk0p2): mounted filesystem with ordered data mode. Opts: (null)
[2.145275] VFS: Mounted root (ext4 filesystem) on device 179:2.
[2.155272] Freeing init memory: 200K
[2.187333] usb 1–1: new high speed USB device number 2 using dwc_otg
[2.418045] usb 1–1: New USB device found, idVendor=0424, idProduct=9512
[2.427750] usb 1–1: New USB device strings: Mfr=0, Product=0, SerialNumber=0
[2.438708] hub 1–1:1.0: USB hub found
[2.445041] hub 1–1:1.0: 3 ports detected
[2.727674] usb 1–1.1: new high speed USB device number 3 using dwc_otg
[2.837920] usb 1–1.1: New USB device found, idVendor=0424, idProduct=ec00
[2.857413] usb 1–1.1: New USB device strings: Mfr=0, Product=0, SerialNumber=0
[2.878968] smsc95xx v1.0.4
[2.942985] smsc95xx 1–1.1:1.0: eth0: register 'smsc95xx' at usb-bcm2708_usb-1.1, smsc95xx
USB 2.0 Ethernet, b8:27:eb:8a:46:ba
[11.006171] EXT4-fs (mmcblk0p2): re-mounted. Opts: (null)
[11.426960] ### snd_bcm2835_alsa_probe c05c88e0 ############### PROBING FOR bcm2835 ALSA
device (0):(1) ###############
[11.442869] Creating card...
[11.448268] Creating device/chip ..
[11.454771] Adding controls ..
[11.460340] Registering card
[11.475463] bcm2835 ALSA CARD CREATED!
[11.487786] ### BCM2835 ALSA driver init OK ###
[18.493739] smsc95xx 1–1.1:1.0: eth0: link up, 100Mbps, full-duplex, lpa 0x45E1
[24.672322] Adding 102396k swap on /var/swap. Priority:-1 extents:1 across:102396k SS

As you can see, the output from dmesg is a little offputting and hard to understand. Much of the information relies
on understanding a few basic tenets of how the dmesg system works. First is the numerical values within the square
brackets [and]. This value is a timer value that registers the amount of time that has passed since system launch.
This is a good way to follow the sequence of events in your system and to tell recent ones from those that occurred in
the past.

Next is the content itself. Most of these lines are diagnostically useless alone, but together they form a very
interesting picture of what exactly has gone on in my Pi. Let’s start with the first line:

waiting on root device /dev/mmcblk0p2

The first few lines are obvious: the system is waiting for something, but what is /dev/mmcblk0p2? Well, the first
giveaway is the /dev; this is where the Linux OS lists all its devices so we know /dev/mmcblk0p2 is a device. Second is
the mmcblk0p2, which looks like a string of garbage but is actually a series of abbreviations.

•	 mmc means multimediacard (the flash device standard)

•	 blk means a block storage device

•	 0 means the first logical device of this type

•	 p2 means partition two of the device

So we are waiting for the SD card. The second through fourth lines are what we are waiting for: the SD card to
register as you can see it actually registers as each of the subdevices we mentioned, in order no less! After that, the

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ The Raspberry sPi

202

next two lines are the device mounting the filesystem on this device as readable. Continuing down, you can see the
registration of the Pi’s USB devices (lines 8–15), its Ethernet port (lines 16, 17, and 26) and finally an Advanced Linux
Sound Architecture (ALSA) device, which is the audio port (lines 19–25).

Now that you understand why we didn’t just attach the webcam to begin with, I wanted to view the dmesg output.
Given that you know what to look for, now go ahead and attach your webcam and run dmesg again. Have a look at the
new lines that have shown up. These should all be related to your newly attached webcam! Here is the output from me
attaching mine:

[8168.793423] usb 1–1.2: new high speed USB device number 4 using dwc_otg
[8169.147691] usb 1–1.2: New USB device found, idVendor=046d, idProduct=081d
[8169.147736] usb 1–1.2: New USB device strings: Mfr=0, Product=0, SerialNumber=1
[8169.147758] usb 1–1.2: SerialNumber: 8627F4C0
[8169.314171] Linux video capture interface: v2.00
[8169.336482] uvcvideo: Found UVC 1.00 device <unnamed> (046d:081d)
[8169.402071] input: UVC Camera (046d:081d) as /devices/platform/bcm2708_usb/usb1/1-1/1-1.2/
1-1.2:1.2/input/input0
[8169.402280] usbcore: registered new interface driver uvcvideo
[8169.402299] USB Video Class driver (1.1.1)
[8169.460903] usbcore: registered new interface driver snd-usb-audio

So, what can you tell from these lines? For starters, you can see a large difference in timing for this particular
entry in the dmesg log, which represents the delay from start up until I connected my device. Next, you will recognize
that the first four lines represent the USB ports picking up a new attached device; in fact, the first line references the
module used to do this dwc_otg (short for DesignWare Cores—On The Go). Line 5 shows that it’s a video capture
interface, and line 6 shows that the module uvcvideo found a USB Video Class (UVC) device that it identifies and
registers. Finally, we can also see that the webcam’s microphone has also been registered on the last line as a
snd-usb-audio device. From this we can see that my webcam has been attached and has registered itself with a driver
into the OS.

Now that the device has been registered, we need a way to reference it so it can be used by an application. You
will notice that the dmesg output didn’t actually specify which device we added, so let’s have a look and see if we can’t
match it the other way. Let’s start by listing the contents of /dev (results shown in Figure 10-2).

$ ls /dev/

Figure 10-2.  Contents of /dev directory

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ The Raspberry sPi

203

That is a few devices. We can quickly eliminate a few right off the bat: all the tty devices because they are teletype
devices, all the ram devices because that’s the Pi’s RAM, all the loop devices because they are loop back connectors,
all the memblck devices because they relate to the SD card, and all the vcs devices because they are virtual consoles.
There are still a few, but the best looking is video0. We are looking for a webcam, right? It registered as a video capture
device didn’t it? Okay, so we think that’s right—but how can we tell?

udev, more specifically the udev administration function, is the device manager for the Linux kernel. It governs
how and where devices register themselves so that they can be accessed as part of the OS by applications. In Debian
(and thus Raspbian), the inner workings of udev can be accessed with the udevadm command, so let’s go ahead and
use it. Execute the following:

$ udevadm info –q all –n /dev/video0
P: /devices/platform/bcm2708_usb/usb1/1-1/1-1.2/1-1.2:1.2/video4linux/video0
N: video0
S: v4l/by-id/usb-046d_081d_8627F4C0-video-index0
S: v4l/by-path/platform-bcm2708_usb-usb-0:1.2:1.2-video-index0
E: DEVLINKS=/dev/v4l/by-id/usb-046d_081d_8627F4C0-video-index0 /dev/v4l/by-path/platform-bcm2708_
usb-usb-0:1.2:1.2-video-index0
E: DEVNAME=/dev/video0
E: DEVPATH=/devices/platform/bcm2708_usb/usb1/1-1/1-1.2/1-1.2:1.2/video4linux/video0
E: ID_BUS=usb
E: ID_MODEL=081d
E: ID_MODEL_ENC=081d
E: ID_MODEL_ID=081d
E: ID_PATH=platform-bcm2708_usb-usb-0:1.2:1.2
E: ID_PATH_TAG=platform-bcm2708_usb-usb-0_1_2_1_2
E: ID_REVISION=0010
E: ID_SERIAL=046d_081d_8627F4C0
E: ID_SERIAL_SHORT=8627F4C0
E: ID_TYPE=video
E: ID_USB_DRIVER=uvcvideo
E: ID_USB_INTERFACES=:010100:010200:0e0100:0e0200:
E: ID_USB_INTERFACE_NUM=02
E: ID_V4L_CAPABILITIES=:capture:
E: ID_V4L_PRODUCT=UVC Camera (046d:081d)
E: ID_V4L_VERSION=2
E: ID_VENDOR=046d
E: ID_VENDOR_ENC=046d
E: ID_VENDOR_ID=046d
E: MAJOR=81
E: MINOR=0
E: SUBSYSTEM=video4linux
E: TAGS=:udev-acl:
E: UDEV_LOG=3
E: USEC_INITIALIZED=8168852755

Wow, okay, that’s a big block of scary looking output. As I’m sure you’ve guessed by now, we just asked the udev
system to give us an info query for all info relevant to the device with name /dev/video0, which it well and truly has.
However, before hyperventilation sets in, actually have a look at the first few lines. The first line should spring out
as familiar—it’s the device identifier that we saw in dmesg from when the webcam was attached! In fact, most of the
information in here is all data that was referenced somewhere in the dmesg block. Okay, so given that we can match
the device from dmesg to the device here in our system, it’s safe to say that the USB webcam we attached is available on
the filesystem as /dev/video0.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ The Raspberry sPi

204

Troubleshooting
If, unlike mine, your webcam had issues when registering with the kernel in dmesg, you may need to install a driver.
You should check with the manufacturer and online to see whether there is a driver that’s available for your webcam.
If so, install the driver and then try reattaching your webcam to see if it can be registered. You may even get lucky, and
your device driver will have the kernel list where the webcam is registered in /dev in dmesg—as it did with my SD card
in the preceding example.

Additionally, if you don’t have a device such as /dev/video0 listed, you should check to see whether any of the
other devices match up with output that relates to your device from dmesg. While Linux tries to be sensible in how the
/dev filesystem is laid out, manufacturers and software engineers can do funny things to try and stand out—with the
upshot that you sit there screaming about how you cannot find a device. So just be patient and have a look around and
use the process of elimination to try and work out where your device has been attached. The goal here is to ensure
that you know which /dev file references your webcam.

Motion Capture
Okay, system configured, check. Webcam attached, check. Now let’s make all this actually do something! To do the
webcam capture, we will be using the Linux motion capture ironically named motion. So let’s go ahead and install it.
Run the following command to direct apt-get to download and install the motion package:

$ sudo apt-get install motion

Your output should resemble the following:

Reading package lists... Done
Building dependency tree
Reading state information... Done
The following extra packages will be installed:
 ffmpeg libav-tools libavcodec53 libavdevice53 libavfilter2 libavformat53 libavutil51
libdc1394-22 libdirac-You
 libjack-jackd2-0 libmp3lame0 libpostproc52 libpq5 libraw1394-11 libschroedinger-1.0-0
libspeex1 libswscale2 libtheora0 libva1
 libvpx1 libx264-123 libxvidcore4
Suggested packages:
 jackd2 libraw1394-doc speex mysql-client postgresql-client
The following NEW packages will be installed:
 ffmpeg libav-tools libavcodec53 libavdevice53 libavfilter2 libavformat53 libavutil51
libdc1394-22 libdirac-encoder0 libgsm1
 libjack-jackd2-0 libmp3lame0 libpostproc52 libpq5 libraw1394-11 libschroedinger-1.0-0
libspeex1 libswscale2 libtheora0 libva1
 libvpx1 libx264-123 libxvidcore4 motion
0 upgraded, 24 newly installed, 0 to remove and 71 not upgraded.
Need to get 8,365 kB of archives.
After this operation, 17.6 MB of additional disk space will be used.
Do you want to continue [Y/n]? y

I don’t know about you, but I’m way too excited to bother with all the setup and config; let’s just fire up motion
and see what it does! Start it up with this:

$ motion –s

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ The Raspberry sPi

205

The light on the camera goes on and action! Start waving and moving about, because you want it to capture you!

[1] Changes: 3374 - noise level: 15
[1] Changes: 3198 - noise level: 15
[1] Changes: 3011 - noise level: 15
[1] Changes: 2922 - noise level: 15
[1] Changes: 2555 - noise level: 15
[1] Changes: 2390 - noise level: 15
[1] Changes: 2491 - noise level: 15
[1] Changes: 2874 - noise level: 15
[1] Changes: 2817 - noise level: 15
[1] Changes: 3238 - noise level: 15
[1] Changes: 3093 - noise level: 15
[1] Motion detected - starting event 1
[1] File of type 1 saved to: ./01-20120910203217-05.jpg
[1] Changes: 2912 - noise level: 15
[1] File of type 1 saved to: ./01-20120910203217-06.jpg
[1] Changes: 2480 - noise level: 15
[1] File of type 1 saved to: ./01-20120910203217-07.jpg

There you go, you can see it capturing changes in the image and registering any changes in noise level as you
move. And finally, it’s capturing images! If it may take a moment to write the image file out, depending on your SD
card speed—so be patient. Awesome, works like a charm, to cancel out of the application you can go ahead and press
Ctrl+C. If you want, you can go ahead and log in with console to have a look at any images it’s captured. Inspecting the
output is generally a good idea because your webcam driver may need fine tuning or may not generate valid output.
If you don’t want to get out a cable and HDMI, you can copy these images off with tools such as scp. From a Windows
machine, you can use a tool such as winscp to copy any files off. If you are copying to a Mac or Linux system, you just
need to copy the files by issuing the following command:

$ scp <raspberry pi's ip>:/home/pi/*.jpg.

Note■■  P lease remember the period on the end of the scp command It’s important because it is the destination
identifier for the command.

This command says to copy from the server on the Raspberry Pi identified by IP in the directory /home/pi the
home directory of the pi user and the first place you will be when you log in (I said I was excited, didn’t I?) and match
any file that ends in .jpg. The final period on the end is the destination: in Linux a period is a reference to the current
directory, so that’s where we are copying.

OK, now that we have had fun with the pictures, let’s get down to business. The aim for the Raspberry sPi is to
have it function with no intervention; this means we will need to have the motion application function without us
telling it to. Raspbian has handled most of this for us already, but there are still a few little things we need to do.

Note■■  Y ou will need to edit these files as root, so remember to start your text editor with sudo.

First, open and edit the file /etc/default/motion and change the line start_motion_daemon=no to be start_
motion_daemon=yes; this file governs whether the daemon will start when we issue the daemon’s start command,

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ The Raspberry sPi

206

and having it run on command is exactly what we want. Now we tackle the config, so go ahead and open it. The file is
/etc/motion/motion.conf, so open it up. First thing you will note is that daemon mode will be set to off, so go ahead
and set that to on because we want motion to be started as a daemon, which means it will run in the background. Next
thing to check is the videodevice line and ensure that the listed device matches the devices we confirmed earlier (for
most of us, that should be /dev/video0).

Following this, we begin getting into the nuts and bolts of the situation. First we can modify the height, width,
and framerate. The defaults are to capture two images per second at a resolution of 320 x 240. This creates a file about
12 Kb in size—you can check by examining the files that we generated earlier during our testing of the motion capture.
You can increase this as you see fit; just remember not to exceed the maximum available resolution of your webcam
and also that each file will increase in size as resolution increases.

Next is threshold. The threshold value is the amount of change that needs to occur so that an image will be
captured. You can leave this value for now, but remember it later because you may want to make the capture more or
less sensitive.

Next is ffmpeg_cap_new, which determines whether or not you want to capture a video file. I have turned this one
off, but you can keep it on if you want to generate video files of your motion captures. These files are generated as .swf
files now (think YouTube) but you can change them by editing the ffmpeg_video_codec variable.

Finally, you can change the target_dir, which says where you will output the image files when running as a
daemon. This one is important because you will need to know where you are to copy your files from. Additionally, it’s
important to be aware that the /tmp directory is just that, a temporary space. This temporary space is emptied each
time your OS is restarted.

This kind of functionality is perfect for what we intend because we don’t want to have to deal with extra files that
will stay on the disk until we clean it out; simply reboot your Raspberry sPi and off you go again. However, there are
cases where we may want these files to be saved beyond a restart of the system—but more on them later.

Finally, save all your changes and exit so we can test the new config! My config is displayed here for your reference:

daemon on
process_id_file /var/run/motion/motion.pid
setup_mode off
videodevice /dev/video0
v4l2_palette 8
input 8
norm 0
frequency 0
rotate 0
width 320
height 240
framerate 2
minimum_frame_time 0
netcam_tolerant_check off
auto_brightness off
brightness 0
contrast 0
saturation 0
hue 0
roundrobin_frames 1
roundrobin_skip 1
switchfilter off
threshold 1500
threshold_tune off
noise_level 32
noise_tune on
despeckle EedDl

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ The Raspberry sPi

207

smart_mask_speed 0
lightswitch 0
minimum_motion_frames 1
pre_capture 0
post_capture 0
gap 60
max_mpeg_time 0
output_all off
output_normal on
output_motion off
quality 75
ppm off
ffmpeg_cap_new off
ffmpeg_cap_motion off
ffmpeg_timelapse 0
ffmpeg_timelapse_mode daily
ffmpeg_bps 500000
ffmpeg_variable_bitrate 0
ffmpeg_video_codec swf
ffmpeg_deinterlace off
snapshot_interval 0
locate off
text_right %Y-%m-%d\n%T-%q
text_changes off
text_event %Y%m%d%H%M%S
target_dir /tmp/motion
snapshot_filename %v-%Y%m%d%H%M%S-snapshot
jpeg_filename %v-%Y%m%d%H%M%S-%q
movie_filename %v-%Y%m%d%H%M%S
timelapse_filename %Y%m%d-timelapse
webcam_port 8081
webcam_quality 50
webcam_motion off
webcam_maxrate 1
webcam_localhost on
webcam_limit 0
control_port 8080
control_localhost on
control_html_output on
track_type 0
track_auto off
track_motorx 0
track_motory 0
track_maxx 0
track_maxy 0
track_iomojo_id 0
track_step_angle_x 10
track_step_angle_y 10
track_move_wait 10
track_speed 255
track_stepsize 40

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ The Raspberry sPi

208

This test will be just like the one before; we simply want to start motion and check that it will run and capture
images. This time, however, we want to use the config file and the Linux start commands because it allows us to
emulate a power on of our Raspberry sPi. So go ahead and execute sudo /etc/init.d/motion start this should start
motion. You should see your camera light come on and if you move about, you should start seeing image captures
appear almost immediately in /tmp/motion (or wherever you pointed target_dir). You can also check that the process
is running by typing the following to check for a running motion process:

$ ps –ef | grep motion

Troubleshooting
Still not working? Go back over the section on connecting your webcam, unplug it, plug it back in, and check for the
output from dmesg. Validate that the output you see in dmesg matches what you get from udev in examining the device
you have said is your webcam. Did the motion package install correctly? examine the output from apt-get to see that
it did; if not, try installing again or try this:

$ apt-get --reinstall install motion

Does motion run when you execute it on the command line with motion –s? If not, examine the messages on the
screen, which will help you understand what has gone wrong.

If all that failed, go over your motion configuration file. Did you accidentally mis-set one of the variables? Did
you forget to set the value in /etc/default/motion to yes? Is the motion daemon running, but you can’t see images
appear in your given output directory? If not, examine the file /var/log/messages, which is a repository of messages
from daemons started by the system, including motion. The output that was onscreen before should now be in
this file.

Alerting Yourself
Thus far, we have attached a webcam, configured the webcam, installed motion detection software and configured it to
start automatically along with your Raspberry sPi. Now we have a fully fledged monitoring system that you can use to
spy on your enemies and keep you notified about intruders entering your inner sanctum. Well, almost. You now need to
create a system that will allow you to send messages to yourself so that you can be alerted when intruders enter.

To do this, we will be taking advantage of one of the oldest and most efficient messaging systems ever developed:
e-mail. We won’t, however, be going as far as to set up our own mail server and domain; that’s a big task and well
outside the scope of what we will be doing in this chapter. Instead, we will be aiming to set up a lightweight mail client
to forward messages to a mail service in which it can then be sent on to you on whatever handy spy gadget you use to
receive e-mail. Now that you understand the plan, let’s begin.

Installing SSMTP
The application we will be using to send our mail to the mail server is called SSMTP. SSMTP is a highly simplified mail
transfer agent (MTA) that is used when a system administrator needs to be able to send mail from a server, but doesn’t
need to be set up as a fully fledged mail domain. The advantage here should be obvious: a significantly less intensive
setup process and much lower overhead—all of which should scream Raspberry Pi to you.

With all this in mind, let’s begin. Start by issuing the command to download and install the SSMTP application
and install it:

$ sudo apt-get install ssmtp

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ The Raspberry sPi

209

Your output should look like mine:

$ sudo apt-get install ssmtp
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following extra packages will be installed:
 libgnutls-openssl27
The following NEW packages will be installed:
 libgnutls-openssl27 ssmtp
0 upgraded, 2 newly installed, 0 to remove and 71 not upgraded.
Need to get 272 kB of archives.
After this operation, 279 kB of additional disk space will be used.
Do you want to continue [Y/n]?

Once we have installed SSMTP we need to configure it. The SSMTP configuration file is /etc/ssmtp/ssmtp.conf.
Open it up with your favorite text editor and get started.

The first thing we need to configure is where the mail is destined to go. Most people who read this book will
have some different and specific location they want their mail to go. Although all good spies want to be as efficient as
possible, I can deal only with what’s in front of me, so we will be configuring this for the most generic and free option
available to everyone: Gmail.

So we need to configure where the mail is to be sent; in SSMTP, this is governed by the mailhub value. This value
is the DNS name of the mail server for the domain we will use to send outbound mail. This name is traditionally
mail.<yourdomain>.<whatever>, but for us it will be smtp.gmail.com:587, which is Google’s SMTP server.

Having set the Gmail server, you may have noticed that we included a :587 on the end. The studious among you
will recognize this as a port number. The even more studious would be aware that 587 is not the default port for SMTP
(it is port 25). It is the port dedicated for Transport Layer Security (TLS) e-mail, (secure e-mail over SSL). This means
we need to add another pair of options to ensure that we have encrypted communications:

UseTLS=YES
UseSTARTTLS=YES

The next option to configure is the hostname option, which is the hostname listed by the Raspberry sPi. Go ahead
and list a hostname for the sPi if you have a domain. If not, just give it something like raspberry.spi. The next option
should be FromLineOverride=yes, which allows us to set the “from” field on an e-mail if we so desire.

Finally, the last sets of options are related to authentication. There are three options you need to configure here.
The first two are the most obvious: username and password. So go ahead and add AuthUser=username@gmail.com
and AuthPass=password. The third, which is a little more circuitous, is the AuthMethod option, which is used to specify
which authentication method will be used to allow users to register with the server. The method we will be using for
Google is the LOGIN method. Although other mail servers may not require this to be specified, with Google we should
set AuthMethod=LOGIN.

That’s it; your config should now look something like this:

root=
Mailhub=smtp.gmail.com:587
UseTLS=YES
UseSTARTTLS=YES
Hostname=raspberry.spi
FromLineOverride=yes
AuthUser=username@gmail.com
AuthPass=password
AuthMethod=LOGIN

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ The Raspberry sPi

210

Note■■  I t should go without saying, but you should always have a secure root password.

One final change to make is to secure this data so that nobody except those that we intend can read the file. This
is incredibly important because you have put your precious GMail password in the file! The solution is to change
permissions so that nobody but the intended users can read it. Execute the following:

$ sudo chmod 640 /etc/ssmtp/ssmtp.conf

This will change the file so that the only user who can access it is root, and the only users who can are members of
the mail group.

Once SSMTP is configured, all you need to do is invoke it to send the e-mail and get it to send the captured. . .
Wait. There’s something more we need; we need a way to invoke SSMTP so that we can tell it to send the file to our
e-mail and alert us to the intruders. And we need a tool that can do all this from the command line. The best tool here
is one called mutt.

Installing and Using mutt
The mutt tool is a text-based e-mail client with the fantastic motto of “All mail clients suck. This one just sucks less.”
(Isn’t it obvious why we are using it?) The other benefit of mutt over other mail clients is that it is happy to send
attachments from files on the filesystem—which is key to what we need to make the sPi send images of our intruders.

Now you know that it is mutt that we are installing, go ahead and install it by using the following:

$ sudo apt-get install mutt

Your output should look like this:

Reading package lists... Done
Building dependency tree
Reading state information... Done
The following extra packages will be installed:
 libgpgme11 libpth20 libtokyocabinet9
Suggested packages:
 gpgsm gnupg2 urlview mixmaster
The following NEW packages will be installed:
 libgpgme11 libpth20 libtokyocabinet9 mutt
0 upgraded, 4 newly installed, 0 to remove and 71 not upgraded.
Need to get 1,985 kB of archives.
After this operation, 7,181 kB of additional disk space will be used.

Did mutt install okay? Good. As I mentioned earlier, mutt is designed to be small, simple, and easy to use and
configure—lofty goals. With that in mind, the setup process for mutt is incredibly simple: we just need to tell mutt
how to use our MTA (which is SSMTP). To do this, we need to create a file that will live hidden in the Pi users’ home
directory. The file is .muttrc, which will contain only one line:

set sendmail="/usr/sbin/ssmtp""

Instead of using a text editor we will use a “cheat” to do this. Run the following command:

$ echo "set sendmail=\"/usr/sbin/ssmtp\"" > ~/.muttrc

That’s it.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ the raspberry spi

211

Note T the backslashes before the quotation marks are escapes.

You can go and look in the root user’s home directory for the file .muttrc and check the contents. Yep, it’s
there and exactly as expected. The .muttrc file is a config file used by mutt to load important configuration options
automatically on startup. Many different applications use hidden files that end in rc, so if you are wondering how an
application is storing certain configuration options, have a look in your home directory for files starting with a period
and ending in rc.

Testing the Alerting System
Now that we have installed and configured SSMTP and mutt, we need to test them in combination. The way to use
mutt is, strangely enough, to run the mutt command. The syntax is rather simple, so send yourself an e-mail from the
command line. Execute the following command:

$ echo "the quick brown fox jumps over the lazy dog" | sudo mutt –s "[INTRUDER ALERT] Test of
intruder system" <your email>@gmail.com

I know it’s a long command, but don’t worry because I will explain it in a moment. Go ahead and check your
e-mail; you should have one there from the user root just as shown in Figure 10-3!

Figure 10-3. E-mail from the Rasperry sPi

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ The Raspberry sPi

212

Now I’ll explain the syntax and how we will use this to send alert messages from the sPi. The preceding message
can be broken down into a few much smaller segments. The basic syntax that I use is this:

echo <mail content> | mutt –s <subject> <recipient>

You may be wondering about the use of echo. You need to generate the value that will be passed as output and
then have the pipe direct it into mutt, rather than providing it as an argument.

Note■■  Y ou can include whole sentences with spaces in a shell command by enclosing the whole thing in quotation
marks. You can even escape quotes within a command to create quotes within quotes!

We need to also be able to send attachments with our e-mail. mutt has us covered here because it provides the
capability to attach files to its outgoing e-mail. The reason why I elected to use mutt to create the Raspberry sPi is
because it is not only easy to configure but also provides the capability to send attachments.

The syntax to send an attachment with the e-mail we just sent is as follows:

echo <mail content> | mutt –s <subject> −a <filename> −- <recipient>

Yes, it’s as easy as that! The –a signifies attachments, and the –- is used to separate attachments from recipients.

Troubleshooting
Did everything work as expected? If not, try configuring both SSMTP and mutt from scratch. When you send an
e-mail, does it output an error regarding login details? If so, double-check your username and password. Is it an
error regarding unsupported login type? If so check the TLS settings and the AuthMethod setting. Did you spell your
mail server incorrectly? Is their trailing whitespace? That is spaces or tabs at the end of any of your entries. When you
changed permissions did you move them too far so that now you can no longer read the file?

You may also encounter an error if you try and send an e-mail as the pi user, without sudo because the pi user is
not a member of the mail group on your system. If you wish to allow the pi user or any other user for that matter, you
need to add them using gpasswd, the syntax is this:

$ gpasswd –a <username> mail

Okay, so all sorted? You can capture the presence of intruders. You can alert yourself from the Raspberry sPi. You
can send the captured images of your intruders to yourself from your sPi. So what’s left? Automating it all.

Bringing It All Together
So far we have done the following:

Attached a webcam to the Raspberry sPi•	

Installed and configured the monitor application to use the webcam•	

Used the webcam and monitor application to function as a motion sensor and capture images•	

Installed and configured SSMTP as an MTA•	

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ The Raspberry sPi

213

Installed and configured •	 mutt mail application to use SSMTP

Sent e-mail from the command line to ourselves using SSMTP and •	 mutt

The remaining problem is that we have done most of this with human intervention. We need a solution that
enables the capture of images to automatically trigger an e-mail being set to us, with the image attached. Although
I’m sure that someone has dreamed up a software solution to this problem, there is no reason why we can’t write a
solution ourselves!

Understanding the Problem
The first step in any software design problem, no matter how small a job, is to understand what the exact needs of the
software solution are. So let’s start by listing our goals:

Capture of a new image should trigger the solution•	

An e-mail should be sent with any new captured image(s)•	

Should function automatically without needing to be started manually•	

Okay, that seems like the solution we need. But there are a few other things that having those two main
requirements brings into play. These extra requirements are these:

Only new images should be sent•	

Only images captured by motion should be sent•	

The application should always be running and not need to be manually started, just like •	
motion

Okay, that seems a bit better; we are now pretty firm on what exactly our software solution should do. But what
about how it should do it? Maybe we should be a little specific on how the application we are to write will achieve
its goal.

Some things we should consider when developing the application include these:

We should send the time that the image was captured•	

We should check and send regularly, but given that e-mail has a delay, a semiregular check •	
should be enough

Okay, now we’re cooking. Those are looking like some good requirements to remember when building our
application. We were specific in what we wanted and about how we should achieve it. Now that we know exactly what
we want in our application, we can move on to the next step.

Making Decisions
The next step after working out what we want to achieve is to make some decisions about how it should be achieved.
So, first decision: how should we write this? Well, much of what we want to achieve here is manipulation of shell
commands. We want to list image files and then use those image files within another shell command to send us
the e-mail alert. Additionally, you learned bash earlier in this book, so that makes it a perfect fit for what we want
to develop.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ The Raspberry sPi

214

Okay, we know what language we will be working in. Next, how will we start this one? I see two options here and
both will inform which direction we take:

One is to have the application executed from within the start script for •	 motion because we
want them to run together. This means that we can ensure that they are both running at the
same time and that the script would need to be always running and then check periodically.

The second option is to have the script automatically executed regularly. This means we •	
wouldn’t need to start it and keep the script running permanently. It also means that if the
worst happens and the script dies, we don’t need to deal with that and reboot it because it will
be automatically started again. It does mean that we need to have something that will execute
the script on a timer, but that can be handled by the cron daemon.

So, we have two options to decide from, but let’s put off that decision for a moment because there is another thing
we need to look at first.

What will we do with the images? We have two options again:

First is to delete each image after we send it. This is good because it means we can save on •	
space as we clean up after ourselves.

The second option is to keep track of all the images that we have and send only the new ones. •	
This means keeping a running track of which images we have in stock so we can determine
which ones to send out.

So, now that you understand the options, it is time to make decisions. I know that it’s hard to decide, so let me
make it easier for you. Instead of four possible scripts, let’s narrow it down to two:

A script that will be run from •	 cron and will search for images, send them, and then remove
them

A script that will start with the •	 motion daemon and will monitor all the files, keep a running
count and then recognize when there is a new image.

Okay, now that we have two working designs, let’s head on to the next step.

Designing Solution
“Wait; you have two solutions and you didn’t actually pick one. You giant flake.” I hear you say that and it’s true;
I didn’t. Because we had two very different ways to achieve our one goal we felt it would be best to cover both, give
you the options, and share some guidance. So, let’s start by looking at the commonalities between the two; first,
they will both need to have a reference for the folder where motion’s captured files will be going. We could keep
this in a variable and just edit it when we change the output folder, but that is a lot of effort to go to, changing two
whole files. That’s not the Linux way. So let’s just load it from the motion config file and be done with it. It means
that we need two variables: a variable that will contain the motion config file and the second that we will create
dynamically to contain the file location. The variable that will contain the filename is simple enough with
MOTIONCONF=/etc/motion/motion.conf.

Note■■  A ll the following is being done as the root user (you can sudo su to get a root shell) because it is the root user
who will spawn motion.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ The Raspberry sPi

215

The next step is to pull the variable out, and the best way to do this is with a combination of two commands: one
is grep, which will find any information in a file that contains a particular pattern, in this case any line that contains
the line target_dir, but we also need to ensure that we avoid comments, so we need to grab lines that start with
target_dir. This is achieved by simply adding one extra symbol so that grep can know that we are looking for a value
that starts with our desired value. This gives us a command of grep "^target_dir" $MOTIONCONF. If you execute this
command you will see the following result:

root @raspberrypi ~ $ grep "^target_dir" $MOTIONCONF
target_dir /tmp/motion

Now the next problem with our command rears its head: we need to get rid of the target_dir portion so we only
have the location we are after. To remove the first part, we need to use the awk command, which will split the given
data at whitespace values by default. This is perfect and then we just need to print the second value that results. So
building this on to our command, we get this:

root@raspberrypi ~ $ grep "^target_dir" $MOTIONCONF | awk '{ print $2}'
/tmp/motion

Now all that’s left is to push the result into a variable, which is accomplished with the back-tick symbol, giving us
a final result of this:

MOTIONDIR=' grep "^target_dir" $MOTIONCONF | awk '{ print $2}''

Now, one thing that you may not have considered: if this directory is not created, motion will create it when it
captures its first image, but that can take hours. We need it now, so let’s go ahead and do a check to see whether it
exists and if not, create it. The check to see whether a directory exists is if [−d <directory name>]. We also need to
add a note to see if the directory doesn’t exist, so go ahead and add an exclamation point before the –d, which means
not. Finally, mix this with a mkdir and you should have the following if statement:

if [! -d $MOTIONDIR]; then
 mkdir $MOTIONDIR
fi

Along with making the directory, you need to ensure that it is owned by the correct user. The motion daemon
is run by root, but this ownership is passed to motion, so you need to add a chown to this command, which gives
this value:

if [! -d $MOTIONDIR]; then
 mkdir $MOTIONDIR
 chown motion $MOTIONDIR
fi

Okay, so now we have the directory where the files will be found, and we need to write some code to check it
and count the number of files. Normally, you would think “Sweet, let’s just use ls to list the files in the directory.”
But this won’t help in the event that there are no files because ls will give us an error. To do this, we need to use the
find command. To find all the .jpg files within only that directory, we need to add a pair of arguments to find the
following:

•	 -maxdepth 1 says not to go within any subdirectories to search

•	 –type f to tell it to only search for files

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ The Raspberry sPi

216

I also wrapped the command in a pair of parentheses, which means that the file is meant to be treated as an
array. This gives us this command:

LISTFILES=('find $MOTIONDIR –maxdepth 1 –type f')

Now, in case there are non-image files, we should also add in a grep to pull out only the .jpg files. A simple grep
for anything ending in .jpg (using the $ operator) should suffice. This will give us the following:

LISTFILES=('find $MOTIONDIR –maxdepth 1 –type f | grep jpg$')

Now we need to get the count of files in our list using the wc -l command. This will list all the files in a directory
and if we pipe that to wc with the -l argument, we get the number of files within a given folder. This gives us our
next line:

NUMFILES=' find $MOTIONDIR -maxdepth 1 -type f | grep jpg$ | wc -l'

There is one final common piece of code that will be common to both scripts that we can work up now: the mutt
mailer line that will send the image file and a message. The original one we sent was good, but I’ve modified it slightly
here to include a variable name for the attachment that is the variable IMAGEFILE. I’ve also added a new –F /root/.
muttrc option, which forces mutt to use the root muttrc file we created. The new mail line is this:

echo -e "Warning,\nAn intruder was detected at 'date'\nPlease see the image attached for details"|
mutt –F /root/.muttrc –s "[INTURDER ALERT] Intruder Detected" -a $IMAGEFILE -- you@gmail.com

As you can see, it’s a bit of a mouthful. I’ve added some nice body text that will come out as follows:

Warning,
An intruder was detected at Sat Sep 15 22:50:32 EST 2012
Please see the image attached for details

You may be asking yourself how I got those newlines in there, and how I was able to get a very nice date and time
output in the e-mail. The date and time come from the shell date command, which I have encased in back-ticks to
give us the output. I’ve also added some \ns, which are references to newlines, but only when you give echo the –e
argument to tell it to interpret special escape values. Now that we have a block of code to work from, let’s start with
script number 1, the cron executed run once script.

Script 1
To begin, let’s go over what we have so far; we can get the number of files in the correct working directory. The next
step then is to check whether that number shows that there are indeed files to work with, which is to say > 0. This
means we need the following if statement:

if [$NUMFILES -gt 0]; then

With our if statement in place, we should now know whether there are any files we need to send urgently. Now
we just need to iterate through the list and send each as an e-mail and then delete it. To iterate through anything, you
need to use a loop; in this case, we will be using a for loop. This loop will split each image off from the list as its own
variable, allowing us to take action on each one after another. The loop will look like the following, where IMAGEFILE is
the current image from the list; this image changes to the next one in the list each time the for loop starts again. The
for loop will finish when there are no more images to process from the list.

for IMAGEFILE in $LISTFILES

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ The Raspberry sPi

217

Note■■  R emember to chmod +x your script so it can be executed!

Okay, that’s it. We have all our code blocks, so let’s assemble. The final script should look something like this:

#!/bin/bash
MOTIONCONF=/etc/motion/motion.conf
MOTIONDIR=' sudo grep "^target_dir" $MOTIONCONF | awk '{ print $2}''
if [! -d $MOTIONDIR]; then
 mkdir $MOTIONDIR
 chown motion $MOTIONDIR
fi
LISTFILES=('find $MOTIONDIR -maxdepth 1 -type f | grep jpg$')
NUMFILES=' find $MOTIONDIR -maxdepth 1 -type f | grep jpg$ | wc -l'
if [$NUMFILES -gt 0]; then
 for IMAGEFILE in $LISTFILES
 do
 echo -e "Warning,\nAn intruder was detected at 'date'\nPlease see the image attached
for details" \
 | mutt -s "[INTURDER ALERT] Intruder Detected" \
 –F /root/.muttrc \
 -a $IMAGEFILE -- <your email>
 rm $IMAGEFILE
 done
fi

Script 2
Because we have finished discussing script 1, let’s work on script 2. This one is slightly more complex. The first thing
we need to do is add a counter that will tell us how many images we have dealt with already. Initially, we can set this
to 0. So let’s initialize this variable with LASTCOUNT=$ NUMFILES. Next is to create a simple loop that will keep the
application running forever; this is, in fact, the easiest kind of loop and is simply while true (for more on while loops,
see Chapter 7).

Now within the loop we need to update LASTCOUNT and NUMFILES, so have those commands run again to update
their values. We need to compare to see if we have had anything new added (i.e., that NUMFILES is greater than
LASTCOUNT). If it is, we need to read off the latest files and send them. Normally, this sounds like the place for an if
statement, but in this case we will use a while loop because we want to do things while LASTCOUNT is greater than
NUMFILES, so our second inner while loop is this:

while [$LASTCOUNT -lt $NUMFILES]

Now we simply need to update; first we need to get each new image a filename. Thankfully they are found in
order because the motion package names them sequentially. This means that we simply need to pull off the top X
to make up the difference. This means we will need an iterator value so we can count each of the top X as we go. So
create an ITERATOR set to 0 outside the second loop but inside the first, so we reset it every round.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ The Raspberry sPi

218

Now that we have this iterator, we can use it with the LISTFILES to pull off each of the numbers. Because we are
treating LISTFILES as an array, we just need to use the ITERATOR to access that array element. We need to wrap the
whole array output within a pair of curly braces because this will perform the array dereferencing and give us the
output value:

IMAGEFILE=${LISTFILES[$ITERATOR]}

Finally, we need to increment LASTCOUNT and ITERATOR so that they can count off each image as we process it.
This is done with the following:

LASTCOUNT='expr $LASTCOUNT + 1' and ITERATOR='expr $ITERATOR + 1'

The expr function treats given values as mathematical expressions and returns their result, which is perfect when
we want to increment a value by 1.

So, now we need to assemble each of these items of code. When put together, they should look like this:

#!/bin/bash
MOTIONCONF=/etc/motion/motion.conf
MOTIONDIR=' sudo grep "^target_dir" $MOTIONCONF | awk '{ print $2}''
if [! -d $MOTIONDIR]; then
 mkdir $MOTIONDIR
 chown motion $MOTIONDIR
fi
LISTFILES='find $MOTIONDIR -maxdepth 1 -type f | grep jpg$'
NUMFILES='find $MOTIONDIR -maxdepth 1 -type f | grep jpg$ | wc -l'
LASTCOUNT=0
while true
do
 LISTFILES=('find $MOTIONDIR -maxdepth 1 -type f | grep jpg$')
 NUMFILES='find $MOTIONDIR -maxdepth 1 -type f | grep jpg$ | wc -l'
 ITERATOR=0
 while [$LASTCOUNT -lt $NUMFILES];
 do
 IMAGEFILE=${LISTFILES[$ITERATOR]}
 echo -e "Warning,\nAn intruder was detected at 'date'\nPlease see the image
attached for details" \
 | mutt –F /root/.muttrc \
 -s "[INTURDER ALERT] Intruder Detected" \
 -a $IMAGEFILE -- <your email> LASTCOUNT='expr $LASTCOUNT + 1' ITERATOR='expr
$ITERATOR + 1' done sleep 1
done

Testing
So, let’s take this super script for a spin. Ensure that motion is up and running and execute your script.

Note■■  T o cancel running the script, press Ctrl + c to stop execution. This is the only way to stop script 2.

You shouldn’t expect to see any output, so just watch your e-mail inbox (see Figure 10-4).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ The Raspberry sPi

219

As you can see, it works. In fact, it works rather well; I have 18 unread e-mails from the intruder detection system.
Perfect! Now that we have tested that the script will function in sending us e-mails of new images from motion, we
need to configure the script so that it will start automatically—the one final requirement that remains unmet. Looking
back, we decided that we would start each of the two scripts in different ways: script 1 would be added to cron and
script 2 would be added to the motion start script, so that it would run with motion!

For script 1, things are fairly simple. cron will automatically evaluate if it should run something once a minute, so
all we need to do is have a cron job that will run at all times. So as root (since we want to run this as root), open up the
cron table with crontab –e and enter the following:

* * * * * /root/script1.sh

That’s it; we have no added script 1 to start and run from a crontab entry every minute. So that every minute we
will check to see if there are any files in /tmp/motion, send them to us and then delete them, which fulfills all
our requirements.

The second script’s launch method requires modification to the launch script for motion /etc/init.d/motion,
so go ahead and open that up to be edited as root. The basic format of any of these start scripts is to have a large case
statement that processes the given action it is to perform be that start, stop, restart, or any other number of required
cases. So look for the line start, which is the action we want to enhance. Within this, we can see that there are a
number of nested checks and preliminaries; we want our script only to be started after motion, which is invoked by
the start-stop-daemon command.

So go ahead and add a link to your script after that; then add a & on the end. The ampersand says “run this script
and then let it go in the background.” If we don’t do this, the start script will assume that its next function is to wait for
that script to end, which it won’t! Your final updated start section should look like this:

start)
 if check_daemon_enabled ; then
 if ! [−d /var/run/motion]; then

Figure 10-4.  One full inbox!

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ The Raspberry sPi

220

 mkdir /var/run/motion
 fi
 chown motion:motion /var/run/motion
 
 log_daemon_msg "Starting $DESC" "$NAME"
if start-stop-daemon --start --oknodo --exec $DAEMON -b --chuid motion ; then
 /root/script2.sh &
 log_end_msg 0
 else
 log_end_msg 1
 RET=1
 fi
 fi
 ;;

Once you’ve finished editing, go and restart your Pi; then log back in and execute a check to see if the script is
running! It is? Fantastic, you now have a fully automated Raspberry sPi of your very own!

$ ps -ef | grep script
root 2058 1 0 11:23 pts/0 00:00:00 /bin/bash /home/pi/script2.sh

Troubleshooting
As I’m sure you’re aware by now, there are so many things that can go wrong when doing software development. So
there is plenty of space for troubleshooting. and it makes my giving you advice about where to look a little difficult.
That being said, there are a number of things you can do to make diagnosis easier.

There’s a reason why I started off scripting by writing out each little section of code and then adding it. This is
a version of what’s called isolation testing, which involves doing as much as you can to isolate a particular section of
code to execute it with controlled inputs and then evaluating the outputs to see that they work as you intend.

As you can imagine, doing this block by block means that you can test each little bit of an application as it grows.
The next thing is to take advantage of the echo command to output a working value or a location in the code.

You can see what an application is working with and where within the code it is running, which lets you pick up on
unexpected values and where your software is failing.

Finally, if all else fails, change the shell from #!/bin/bash to #!/bin/bash –x. Adding the –x will put your
instance of bash into debug mode and it will output every variable, every manipulation, and every change it
goes through. While there can be a lot of output this is the ideal way to see what’s going on within a troublesome
application.

Where to Go from Here
Wow. We’ve come a long way from where we started. We have:

Attached a webcam to our Raspberry sPi•	

Installed and configured the monitor application to use the webcam•	

Used the webcam and monitor application to function as a motion sensor and capture images•	

Installed and configured ssmtp as an MTA•	

Installed and configured •	 mutt mail application to use SSMTP

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ the raspberry spi

221

Figure 10-5. Maybe I should have invested in a stetson!

Send an e-mail from the command line to ourselves using SSMTP and •	 mutt

Written two scripts to automatically pick up any new image files and then e-mail them to •	
ourselves using all of the above

This is quite an accomplishment, but what now? As spies, you all know how adaptability is the key to success.
What we have gone through here should be a guide on how you can take advantage of software like motion, SSMTP and
mutt. You should now also be familiar with using dmesg and how to locate newly loaded devices and integrate them
into your system. Finally, you should see how you can use scripts written in bash to fill a gap in your application stack
and solve complex problems. So what can you do from here?

You can add a wireless adapter, so you don’t need to be cabled in, giving you a wireless •	
Raspberry sPi that you can hide in the most innocuous of places.

You can add a USB battery pack to remove the need for access to a power point.•	

You can change which directory the files are stored in out of •	 /tmp. That way, you can have your
images persisted to disk, where you can review them at a later date.

Or you can go full Bond. I’ve taken my inspiration further afield, modified the software to •	
capture full video, and disabled the image capture. I changed the storage location to be away
from /tmp and I’ve attached a USB battery pack. I then added a little tape to hold this all
together and mounted the webcam inside a hat (see Figure 10-5).

Summary
You should be able to understand the output of dmesg and know how udev works. You should also be able to configure
the motion application, SSMTP application, and mutt application. Finally, you should be able to send e-mail with
different recipients, body text, subjects, and attachments.

www.it-ebooks.info

http://www.it-ebooks.info/

223

Chapter 11

Pi Media Center

The beautiful things about a Raspberry Pi are that it is so flexible a device and its potential uses are nearly limitless.
You can do just about anything with Pi, and it has an array of peripheral input ports that can be used to great effect.

You should also be aware that while your Pi can display through a standard HDMI, the power of the device
doesn’t end there. It can display at a full 1920 x 1080 resolution, commonly called 1080P, which is the benchmark level
for high definition. Your tiny little Raspberry Pi is capable of displaying video at full high-definition resolution, and
thanks to the sound interleave of HDMI it can also play back audio on the same channel as video. That is the goal of
this chapter; we are going to take advantage of the Pi’s media playback capabilities to create two different varieties of
Pi media center. One is a video playback center that you can use to play videos over your network. It can sit attached to
your TV and allow you to tap into the Internet for video. The second is a wireless playback device that enables you to
remotely stream your music collection and play back across a network.

Video with XBMC
As mentioned earlier, one big advantage of Raspberry Pi is that it can play back in full high definition, but we need a
way to take advantage of this, which is where XBMC comes in.

XBMC (which is short for XBox Media Center) was originally designed as a media center for the original (Fat)
XBox. People liked the project so much that it has subsequently been ported to just about every operating system
under the sun, including but not limited to Windows, Android, OS X, and iOS. There is even a full-blown, stand-alone
version called XMBCbuntu that is a port of Ubuntu that has XBMC installed, preconfigured, and ready to go out of the
box. Given its wide use, open source nature, and easy-to-work-with nature, it has been ported and forked many times
with its progeny, including MediaPortal, Plex, Voddlern, and Boxee. This goes to show how popular media center
systems are; as a further example, Boxee makes a small device called the Boxee Box that costs upward of $200. What
we are creating is a tool that is just as powerful and only costs $35—the price of the Pi. So now that you’re all excited
about the bright and shiny media center future, it’s time to take advantage of it.

You’ve reached the end of the book, so it’s time to crack out the big guns and do a proper Linux install from the
application source. While most applications come prepackaged via apt-get, there are some that do not and they need
to be compiled. Installing XBMC from source is a somewhat involved process and is very time-consuming. We have
chosen to compile it from source because not only does it help you through one of the more complex ways of getting
an application running in Linux but it also means that our installation of XBMC is optimized for our system because
we have built it on our own system. Historically, compiling from source was considered to be an arduous process,
but as the number of people using Linux has grown so has the need for simple-to-use installation tools and the rise
of precompiled binary installation systems such as apt-get. But as with everything, there are still times when using
a prebuild is never as good as doing it from scratch, and as time as gone on, tools for compilation have grown and
become much more approachable. It’s also easier to do when someone steps you through the process—which is what
this book is all about.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Pi Media Center

224

So let’s get started. First, I have stepped away from the primary build of Raspbian to use one of the slightly cut-
down versions of Raspbian called Pisces that is available from Raspbian at www.raspbian.org/PiscesImages. I am
using Pisces because it has been cut down and doesn’t include as much overhead, which means more power for
doing what we want: playing movies! Download and install this image on an SD card (you will need one with 4 GB of
space) and then boot up and get the OS attached to the Internet so you can work with it. The default user is raspbian
and the password is also raspbian, which is also the root password.

RASPMC

There is a much more simple way to get XBMC working on your Pi: using a prebuilt version of Raspbian called
RaspMC. You can download a RaspMC installer and push the image onto an SD card just as you did with
Raspbian. You can download this image from http://www.raspbmc.com/download/. This installation is very
simple and will take between 15–25 minutes. You simply attach your Pi to your network, turn it on, and off the
installer goes. It will download everything it needs from the Internet and then set itself up. This is by far the
easiest way to get XBMC running on your Pi. For those of you who take the path of using RaspMC, you can skip to
the “Starting and Using XBMC” section of this chapter.

Note■■  I f ifconfig is missing, install the net-tools package using apt-get. See Chapter 3 for more on apt-get.

Once you are inside the operating system, it’s time to issue some commands and start getting XBMC installed.
This is a very long process: the compiler is much slower than using apt-get because all the software installed by
apt-get is precompiled, thus cutting out some steps. The compile in this case takes about 12 hours—yes hours, half a day.
I find it best to leave the final compile to run overnight so I won’t be tempted to sit there for hours on end and watch it.

The process takes such a long time because of the nature of the ARM processor and the speed at which it can
work. This means that compiling takes longer, but we can do as much work on a lower level of power.

Setup to Build
Let’s start with the build. The first step is to ensure that we can divert as much power and memory to the compile
as possible. In the core Raspbian we did this with the rapsi-config command, but Pisces doesn’t have that control
script, so you have to change this manually by replacing the start.elf file with a different one that will change how
the system’s resources are allocated. Run this command:

$ sudo cp /boot/arm224_start.elf /boot/start.elf

This will copy the version that allocates 224 MB to system RAM and 32 MB to graphics into the system to be used.
Now we need to make this configuration change registered within the system and then reboot so that the changes can
take effect by issuing the following two commands:

$ sudo rpi-update
$ sudo reboot

Once your system has rebooted, and you are back up and running, it is best if you upgrade the OS to ensure it is
running the latest versions of software. To do this, we will leverage apt-get by telling it to update itself with the latest

www.it-ebooks.info

http://www.raspbian.org/PiscesImages
http://www.raspbmc.com/download/
http://www.it-ebooks.info/

Chapter 11 ■ Pi Media Center

225

version of its configuration from the Internet and then upgrade all available packages on your system. To do this, issue
the following commands:

$ sudo apt-get update
$ sudo apt-get upgrade

This execution will take a little bit of time because it needs to download, unpack, and replace a large number of
system components. So get this up and running and then go have a coffee; it should be done when you return, and
you can move on to the next step.

Note■■   Some of these packages might already be installed on your system. We include them as they might not be
installed for everyone.

The next step is to install packages to give us the ability to compile; they include the essential build tools,
automatic configuration tools, zip and unzip tools, and so on. To install these tools, run the following command:

$ sudo apt-get install build-essential autoconf ccache gawk gperf mesa-utils zip unzip
Reading package lists... Done
Building dependency tree
Reading state information... Done
build-essential is already the newest version.
The following packages were automatically installed and are no longer required:
 libcdio-cdda0 libcdio-paranoia0 libcdio10 libcelt0-0 libdb4.8 librpmio2
Use 'apt-get autoremove' to remove them.
The following extra packages will be installed:
 automake autotools-dev libglew1.7 libsigsegv2
Suggested packages:
 autoconf2.13 autoconf-archive gnu-standards autoconf-doc libtool gettext distcc gawk-doc
glew-utils
The following NEW packages will be installed:
 autoconf automake autotools-dev ccache gawk gperf libglew1.7 libsigsegv2 mesa-utils
The following packages will be upgraded:
 unzip zip
2 upgraded, 9 newly installed, 0 to remove and 187 not upgraded.
Need to get 2,647 kB/3,174 kB of archives.
After this operation, 7,143 kB of additional disk space will be used.
Do you want to continue [Y/n]?

Once you have installed these basic packages, move on to the far bigger install job. We now need to install a
number of packages that will install video and decoder libraries and specialized graphics libraries. In addition to all
these, you will need to install a few other packages to enable you to connect remotely to the XBMC. This command
is very long, so I recommend you download the source code from the Apress website. There is a script within
that package that will execute these commands for you. The command to install this giant number of packages
is as follows:

$ sudo apt-get install autotools-dev comerr-dev dpkg-dev libalsaplayer-dev \
libapt-pkg-dev libasound2-dev libass-dev libatk1.0-dev \
libavahi-client-dev libavahi-common-dev libavcodec-dev libavformat-dev \
libavutil-dev libbison-dev libbluray-dev libboost1.49-dev \

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Pi Media Center

226

libbz2-dev libc-dev-bin libc6-dev libcaca-dev libcairo2-dev \
libcdio-dev libclalsadrv-dev libcrypto++−dev libcups2-dev libcurl3-gnutls-dev \
libdbus-1-dev libdbus-glib-1-dev libdirectfb-dev libdrm-dev libegl1-mesa-dev \
libelf-dev libenca-dev libept-dev libevent-dev libexpat1-dev libflac-dev \
libfontconfig1-dev libfreetype6-dev libfribidi-dev libgconf2-dev \
libgcrypt11-dev libgdk-pixbuf2.0-dev libgl1-mesa-dev libgles2-mesa-dev \
libglew-dev libglewmx-dev libglib2.0-dev libglu1-mesa-dev \
libgnome-keyring-dev libgnutls-dev libgpg-error-dev libgtk2.0-dev libhal-dev \
libhunspell-dev libice-dev libicu-dev libidn11-dev libiso9660-dev \
libjasper-dev libjbig-dev libjconv-dev libjpeg8-dev libkrb5-dev \
libldap2-dev libltdl-dev liblzo2-dev libmad0-dev libmicrohttpd-dev \
libmodplug-dev libmp3lame-dev libmpeg2-4-dev libmysqlclient-dev \
libncurses5-dev libnspr4-dev libnss3-dev libogg-dev libopenal-dev \
libp11-kit-dev libpam0g-dev libpango1.0-dev libpcre++−dev libpcre3-dev \
libpixman-1-dev libpng12-dev libprotobuf-dev libpthread-stubs0-dev \
libpulse-dev librtmp-dev libsamplerate0-dev \
libsdl-image1.2-dev libsdl1.2-dev libslang2-dev \
libsm-dev libsmbclient-dev libspeex-dev \
libsqlite3-dev libssh-dev libssh2-1-dev libssl-dev libstdc++6-4.6-dev \
libtagcoll2-dev libtasn1-3-dev libtiff4-dev libtinfo-dev libtinyxml-dev \
libts-dev libudev-dev libv8-dev libva-dev libvdpau-dev \
libvorbis-dev libvpx-dev libwebp-dev libwibble-dev \
libx11-dev libx11-xcb-dev libxapian-dev libxau-dev \
libxcb-glx0-dev libxcb-render0-dev libxcb-shm0-dev \
libxcb1-dev libxcomposite-dev libxcursor-dev libxdamage-dev \
libxdmcp-dev libxext-dev libxfixes-dev libxft-dev libxi-dev \
libxinerama-dev libxml2-dev libxmu-dev libxrandr-dev \
libxrender-dev libxslt1-dev libxss-dev libxt-dev \
libxtst-dev libxxf86vm-dev libyajl-dev libzip-dev linux-libc-dev \
lzma-dev mesa-common-dev python-dev python2.7-dev x11proto-composite-dev \
x11proto-core-dev x11proto-damage-dev x11proto-dri2-dev x11proto-fixes-dev \
x11proto-gl-dev x11proto-input-dev x11proto-kb-dev x11proto-randr-dev \
x11proto-record-dev x11proto-render-dev x11proto-scrnsaver-dev \
x11proto-xext-dev x11proto-xf86vidmode-dev x11proto-xinerama-dev xtrans-dev \
zlib1g-dev

This list of packages has a number of slashes on the end; they are line breaks that say that the current command
should be executed and that there will be another line of command following. Line breaks are very useful when you
need to break up long commands over a large number of lines, as I have done here. This command will take a while
to run because there are is a large number of packages to be downloaded and installed. So execute this command, go
cook dinner, and then come back.

Once you have installed all these packages, you need to copy some special files into place and create other ones
that are linked into the correct location so they can be used. Again, they will be included within the script that we have
created to help ease the execution of these commands.

The first of these is to copy the VideCoreIV include files from the Raspberry Pi firmware into /usr/include. This
directory is a special directory from which the compiler will search for libraries and files that are to be included within
a build. To copy all these files into the correct place, execute the following commands:

$ sudo cp -R /opt/vc/include/* /usr/include
$ sudo cp /opt/vc/include/interface/vcos/pthreads/* /usr/include/interface/vcos

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Pi Media Center

227

Now in addition to copying these files into place, there are a number we need to link correctly into the right
location so they can be read. While in the last step we copied include files that are predominantly source code, this
time we need to link in precompiled portions of the firmware into the correct spot to be read by the compiler at
compile time. Instead of copying, we are linking because we are happy to use the files in their current location and
save on some space. Run the following:

$ sudo ln -fs /opt/vc/lib/libEGL.so /usr/lib/libEGL.so
$ sudo ln -fs /opt/vc/lib/libEGL.so /usr/lib/arm-linux-gnueabihf/libEGL.so
$ sudo ln -fs /opt/vc/lib/libEGL.so /usr/lib/arm-linux-gnueabihf/libEGL.so.1
$ sudo ln -fs /opt/vc/lib/libEGL_static.a /usr/lib/libEGL_static.a
$ sudo ln -fs /opt/vc/lib/libEGL_static.a /usr/lib/arm-linux-gnueabihf/libEGL_static.a
$ sudo ln -fs /opt/vc/lib/libGLESv2.so /usr/lib/libGLESv2.so
$ sudo ln -fs /opt/vc/lib/libGLESv2.so /usr/lib/arm-linux-gnueabihf/libGLESv2.so
$ sudo ln -fs /opt/vc/lib/libGLESv2.so /usr/lib/arm-linux-gnueabihf/libGLESv2.so.2
$ sudo ln -fs /opt/vc/lib/libGLESv2_static.a /usr/lib/libGLESv2_static.a
$ sudo ln -fs /opt/vc/lib/libGLESv2_static.a /usr/lib/arm-linux-gnueabihf/libGLESv2_static.a
$ sudo ln -fs /opt/vc/lib/libbcm_host.so /usr/lib/libbcm_host.so
$ sudo ln -fs /opt/vc/lib/libbcm_host.so /usr/lib/arm-linux-gnueabihf/libbcm_host.so
$ sudo ln -fs /opt/vc/lib/libvchiq_arm.a /usr/lib/libvchiq_arm.a
$ sudo ln -fs /opt/vc/lib/libvchiq_arm.a /usr/lib/arm-linux-gnueabihf/libvchiq_arm.a
$ sudo ln -fs /opt/vc/lib/libvchiq_arm.so /usr/lib/libvchiq_arm.so
$ sudo ln -fs /opt/vc/lib/libvchiq_arm.so /usr/lib/arm-linux-gnueabihf/libvchiq_arm.so
$ sudo ln -fs /opt/vc/lib/libvcos.a /usr/lib/libvcos.a
$ sudo ln -fs /opt/vc/lib/libvcos.a /usr/lib/arm-linux-gnueabihf/libvcos.a
$ sudo ln -fs /opt/vc/lib/libvcos.so /usr/lib/libvcos.so
$ sudo ln -fs /opt/vc/lib/libvcos.so /usr/lib/arm-linux-gnueabihf/libvcos.so

Note■■   We found that these links can be removed by other processes and sometimes by rebooting; if they do, you need
to re-create them.

Now that you have linked all the files into the correct place, go ahead and get the source code. Change the
directory into your home directory with this:

$ cd ~

If you can’t type a tilde (~), you can try reconfiguring the Pi keyboard layout with dpkg-reconfigure
keyboard-configuration and then rebooting the Pi. You can also just use cd with no arguments because it will also
take you to your home directory. The tilde is just a symbol to reference the current user’s home directory.

Now that you have changed into your home directory, it is time to download the source code so you can work
with it and correctly compile everything. Thankfully, a modern tool has appeared that makes doing source code
downloads much easier: Git, which is named for Linus Torvalds of Linux Kernel fame. Git is used for source code
management and version control; all users can download the current source version of a set of source code and
submit modifications back to the central repository.

Note■■  T his means that we always download the latest version, but we might get a less stable build if something is
wrong with the current version in Git. Most developers strive to keep their Git repositories in good working order, but it is
something to be aware of.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Pi Media Center

228

All we want to do at this point is download the source code into our home directory to work with it. To do this, use
the git command and tell it to clone the repository of source code onto the system. We have also added the –-depth 1
to the command to say that we only want to clone the most recent 1 revision of the source code (the absolute latest
version of the code) and avoid getting a lot of extra and unwanted historical code.

Start your clone by running the following:

$ git clone --depth 1 git://github.com/xbmc/xbmc-rbp.git
Cloning into 'xbmc-rbp'...
remote: Counting objects: 35172, done.
remote: Compressing objects: 100% (22895/22895), done.
remote: Total 35172 (delta 15265), reused 27885 (delta 10698)
Receiving objects: 100% (35172/35172), 158.26 MiB | 385 KiB/s, done.
Resolving deltas: 100% (15265/15265), done.

Now that we have cloned the source code of XBMC, we need to start building the application. This is the part that
will take the longest by far. Change the directory into the newly created xbmc-rbp directory because there are a few last
steps we need to take.

Changing Files with Sed and Regular Expressions
Before we go ahead and kick off the build of our XBMC application, we need to make a few minor adjustments to
the source code so that it compiles in the exact manner we want it to. Instead of making these changes by hand, we
will use a tool called Sed (short for Stream Editor). It does just as its name implies: it takes a stream of text and then
performs edits on that text. The tricky part of Sed is that it makes use of a highly specialized language called regular
expressions, which are used to perform the equivalent of a find-and-replace function.

Regular expressions evolved out of the need to validate a given set of data to see if it conforms to a given standard
and to edit when the given example is found. While a simple find and replace is enough for most people when editing
text, how do you perform a find-and-replace when you want to edit only words that start with T as the third letter in a
given sentence? Probably one of the easiest cases for a regular expression is e-mail. You want to confirm that a given
string is a valid e-mail: an e-mail will contain a username (who it’s from), a domain (where it’s from, e.g., Hotmail or
Gmail), and there will be an at (@) symbol in between. Okay, we can do that with just a wildcard like *. So something
that looks like *@* will be an e-mail, right? Well the * that we use to denote anything will pick up anything. Even
spaces, numbers, strange symbols, and so on. So we need a way to pick up something that is made up of a string of
valid e-mail characters (letters, numbers, period, underscores) and then @, and finally a valid domain. This will be
a collection of letters, followed by a period and then perhaps another set (or a few sets) of letters. Describing this is
exhausting, which is why we have a specialized language for performing them.

Now that you understand what we are trying to achieve, run the following two commands to alter the file
tools/rbp/setup-sdk.sh. These sed commands make use of the –i option, which says to edit the given file:

$ sed -i 's/USE_BUILDROOT=1/USE_BUILDROOT=0/' tools/rbp/setup-sdk.sh
$ sed -i 's/TOOLCHAIN=\/usr\/local\/bcm-gcc/TOOLCHAIN=\/usr/' tools/rbp/setup-sdk.sh

These commands change the USE_BUILDROOT variable from a value of 1 to a value of 0 wherever it is found within
that file and to replace any instance of the phrase TOOLCHAIN=/usr/local/bcm-gcc with TOOLCHAIN=/usr. Once you
have edited the tools/rbp/setup-sdk.sh file, you should execute it with the following command:

$ sudo sh tools/rbp/setup-sdk.sh

www.it-ebooks.info

http://git://github.com/xbmc/xbmc-rbp.git
http://www.it-ebooks.info/

Chapter 11 ■ Pi Media Center

229

The command will generate a makefile, but won’t display anything onscreen. Once it is finished it’s time to edit
the newly created tools/rbp/depends/xbmc/Makefile. All you need to do then is run one last sed on the file to add
a # to the start of any instance of cd $(SOURCE); $(CONFIGURE):

$ sed -i 's/cd $(SOURCE); $(CONFIGURE)/#cd $(SOURCE); $(CONFIGURE)/'
tools/rbp/depends/xbmc/Makefile

What we did is change the way our system will compile the XBMC software and make it use some of our system
libraries rather than use the ones that can be found within the XBMC source code.

Now that the Makefile is created, it is time to compile!

Compiling Source Code
Most compilations use a very simple logic: you run the command ./configure to generate a configuration file
that knows about the makeup of your system. This generates a file that is called a makefile. This file is in a slightly
specialized language that describes the way in which a compile for a collection should be performed. It is not a script
that executes code in and of itself; it is a collection of directions that will be used by the make application.

Unfortunately, this compile is slightly more advanced. We need to make our configuration tools to match the
setup we are trying to do before we run the configuration and the compile. This will take a little while to execute, so
kick off and go have another cuppa.

The command to execute is this:

$ make -C tools/rbp/depends/xbmc/

This command will run the make within the directory tools/rbp/depends/xbmc/, which will generate the config
file. The output for this is very long, but when it’s done successfully, you should see something like this on your
console window:

examples/Makefile.am: installing './depcomp'
Makefile.am: installing './INSTALL'
autoreconf: Leaving directory 'lib/libdvd/libdvdnav'
Please (re)run configure...
#cd ../../../../; ./configure --prefix=/opt/xbmc-bcm/xbmc-bin --build=i686-linux --host=arm-
bcm2708-linux-gnueabi --enable-gles --disable-sdl --disable-x11 --disable-xrandr --disable-openmax
--disable-optical-drive --disable-dvdcss --disable-joystick --disable-debug --disable-crystalhd
--disable-vtbdecoder --disable-vaapi --disable-vdpau --disable-pulse --disable-projectm
--with-platform=raspberry-pi --disable-optimizations --enable-rpi-cec-api
#cd ../../../../; make -j 1
#cd ../../../../; make install
make: Leaving directory '/home/raspbian/xbmc-rbp/tools/rbp/depends/xbmc'

Now that the compile of the configuration utility has gone through its time to perform the configure. This
configure command is very long and again, you will find code that will perform this for you in the Apress source code
repository, the configure command is this:

$./configure --prefix=/usr --build=arm-linux-gnueabihf --host=arm-linux-gnueabihf \
--localstatedir=/var/lib --with-platform=raspberry-pi --disable-gl --enable-gles \
--disable-x11 --disable-sdl --enable-ccache --enable-optimizations \
--enable-external-libraries --disable-goom --disable-hal --disable-pulse \
--disable-vaapi --disable-vdpau --disable-xrandr --disable-airplay \

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Pi Media Center

230

--disable-alsa --enable-avahi --disable-libbluray --disable-dvdcss \
--disable-debug --disable-joystick --enable-mid --disable-nfs --disable-profiling \
--disable-projectm --enable-rsxs --enable-rtmp --disable-vaapi \
--disable-vdadecoder --disable-external-ffmpeg --disable-optical-drive

Specify a number of arguments to the configure command that specifies where this installation should
go (−−prefix=/usr), which architecture to build (−−build=arm-linux-gnueabihf), where to keep its running
files (−−localstatedir=/var/lib), and which platform (−−with-platform=raspberry-pi), along with a whole
host of disable and e-mail options to remove features such as CD drives and joysticks and enable things such as
optimizations and Avahi automated detection of peripherals. Ultimately, when the command has finished executing,
the output on your screen should look like this:

 XBMC Configuration:

 Debugging: No
 Profiling: No
 Optimization: Yes
 Crosscomp.: No
 target ARCH: arm
 target CPU: arm1176jzf-s
 OpenGLES: Yes
 ALSA: No
 DBUS: Yes
 VDPAU: No
 VAAPI: No
 CrystalHD: No
 VDADecoder: No
 VTBDecoder: No
 OpenMax: No
 Joystick: No
 XRandR: No
 GOOM: No
 RSXS: Yes
 ProjectM: No
 Skin Touched: No
 X11: No
 Bluray: No
 TexturePacker:Yes
 MID Support: Yes
 ccache: Yes
 ALSA Support: No
 PulseAudio: No
 HAL Support: No
 DVDCSS: No
 Avahi: Yes
 Non-free: Yes
 ASAP Codec: No
 MySQL: Yes
 Webserver: Yes
 libRTMP support: Yes
 libsmbclient support: Yes

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Pi Media Center

231

 libnfs client support:No
 libafpclient support: No
 AirPLay support: No
 AirTunes support: No
 Optical drive: No
 libudev support: Yes
 libusb support: No
 libcec support: No
 libmp3lame support: Yes
 libvorbisenc support: Yes
 libcap support: No
 External FFmpeg: No
 prefix: /usr

This configuration specifies all the flags we asked for in our installation, which is designed to get the best from
the Raspberry Pi. So, now we have done our configure onto the actual compilation. The command itself highly
anticlimactic for what it will do: tell the system to spend the next 12 hours generating code for our system. All these
other jobs taking a little time is nothing compared to how long this compile will run for. So saddle up, and execute this
simple four-letter command m a k e:

$ make

Don’t be alarmed if you see lines such as the following:

/tmp/ccGvUe1g.s:507: Warning: swp{b} use is deprecated for this architecture

The only thing that will stop the compile is a critical error or success. These warnings are related to some of the
functions being used within the XBMC compile being a bit old for our Pi. When the compile has succeeded, you
should expect to see this:

XBMC built successfully

This shows that we have successfully build XBMC and can do the last step in this process, which is to install our
newly compiled software. The make system will actually take care of installation, too. To install, you simply run make
install, which copies all the freshly compiled binaries into the correct spot in your OS. You will need to prefix this
with sudo because the location we are copying too (/usr) is a system location, and only root is given write access. Your
output should look like this:

$ sudo make install
Copying XBMC binary to /usr/lib/xbmc/xbmc.bin
You can run XBMC with the command 'xbmc'
Copying support and legal files...
Done!
Copying system files to /usr/share/xbmc

And we are done! While it was long and required a little bit of work to begin with, the actual process of compiling
is relatively pain-free, you know, beyond the pain of waiting. So now that the XBMC is installed, how do we use it?

Troubleshooting
Before we jump ahead and run XBMC, we should have a look at some of the issues you could have run into. Most of
these steps should take care of themselves because this setup is generic and meant to work on any Pi because they

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ pi Media Center

232

all share the same hardware. If you are ever in doubt, remove the xbmc-rbp directory and start over. Ensure that you
execute the copies and the linking in full. I found that when doing the git clone, things could sometimes get stuck and
not move.

When this is the case, it is best to stop the current job with Ctrl + C, remove the directory, reboot, and start again.
It was also better to remove peripherals from the system during the compile and install stages because having too
many peripheral devices caused load issues on my system. Additionally, you should ensure that your output for
commands such as configure match the ones given as these flags can play a much bigger role when compiling and
save you a nasty headache and another 12–hour compile job. Finally, ensure that all your apt-gets run and complete
successfully because these packages are required to provide the libraries that your Pi will use when building XBMC.

Starting and Using XBMC
Now that we have gone through that mega compile process, it is time to start up XBMC and get going! First, though,
we need to reset the options we set earlier, directing a larger amount of memory into system RAM. We will need to go
to the graphics device because we want to do some serious display work with XBMC. Execute the following command
to change over the Pi boot system:

$ sudo cp /boot/arm128_start.elf /boot/start.elf

Go back and check that the linked files mentioned earlier are correct. Now we can also make some changes to the
/boot/config.txt file because it governs how the Pi’s low-level hardware runs. The most simple change to make is to
add the line disable_overscan=1 as it will remove the need to do overscan processing because overscan processing
will make the amount of video we play back larger, thus consuming more resources. Once you have made these
changes, issue the following commands to reconfigure and reboot your Pi one last time:

$ sudo rpi-update
$ sudo reboot

Now that you have changed the settings back to 50/50 resource allocation, start XBMC by logging in as root and
issuing the following command:

$ /usr/lib/xbmc/xbmc.bin

Your screen will freeze for a moment, and Figure 11-1 will greet you.

Figure 11-1. XBMC boot screen

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Pi Media Center

233

You should get to the XBMC menu, which looks like Figure 11-2.

From within the main menu, there are options to select different types of playback, and XBMC is a fully graphical
system that will present you with options and locations for getting files from when you are within it. As long as your
media are accessible on a network, XBMC should be able to access it and play it back! Now on the topic of playback,
you will probably be sitting there thinking, “Will I be stuck with this keyboard for all my playback?” The answer is a
resounding no! There are two solutions:

Purchase a USB remote and attach it to your Pi.•	

The second is much sneakier: use your smartphone!•	

Most smartphones have the capability to download an XBMC remote control application that simply needs to
be paired with your XBMC system to function. To do this, we need to enable two options within XBMC to allow it
to receive remote control. Go into the settings menu and then into services, and change the remote control settings
to “Allow programs on other systems to control XBMC.” Once you have allowed remote control, you need to go into
Webserver and set “Allow control of XBMC via HTTP”; you should also go ahead and set a username and password
so that only people with the password can control your XMBC instance, not just anyone on your network with an
XBMC app!

Once you have enabled these remote control options, it is simply a matter of downloading the application
from your favorite app store and then setting the options within the application. You should only need to give the
application the local address of your Pi, which you can see via the System ➤ System info menu, set the port to 8080,
and furnish an instance name for the XBMC and the username/password, as shown in Figure 11-3.

Figure 11-2.  XBMC main menu

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Pi Media Center

234

Once you have given all the details, your phone should turn into a remote for your XBMC instance! Complete
with a whole host of directional buttons and playback controls, as shown in Figure 11-4.

Figure 11-3.  XBMC remote application

Figure 11-4.  XBMC remote in action!

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Pi Media Center

235

XBMC on Boot
Although we have started XBMC by hand thus far, most people will want it to occur automatically because what is the
point of a media center that you need to plug a keyboard into each time you want to start it up?

The following is a simple start script that will allow you to execute XBMC using a start script. Create this in the
file /etc/init.d/xbmc (like all other long files, it can be found in the Apress repository for this book):

#! /bin/sh
BEGIN INIT INFO
Provides: xbmc
Required-Start: $all
Required-Stop: $all
Default-Start: 2 3 4 5
Default-Stop: 0 1 6
Short-Description: Start XBMC
Description: Start XBMC
END INIT INFO
DAEMON=/usr/bin/xinit
DAEMON_OPTS="/usr/lib/xbmc/xbmc.bin"
NAME=xbmc
DESC=XBMC
RUN_AS=root
PID_FILE=/var/run/xbmc.pid
test -x $DAEMON || exit 0
set -e
case "$1" in
 start)
 echo "Starting $DESC"
 start-stop-daemon --start -c $RUN_AS --background --pidfile $PID_FILE --make-pidfile
--exec $DAEMON -- $DAEMON_OPTS
 ;;
 stop)
 echo "Stopping $DESC"
 start-stop-daemon --stop --pidfile $PID_FILE
 ;;
 restart|force-reload)
 echo "Restarting $DESC"
 start-stop-daemon --stop --pidfile $PID_FILE
 sleep 5
 start-stop-daemon --start -c $RUN_AS --background --pidfile $PID_FILE --make-pidfile
--exec $DAEMON -- $DAEMON_OPTS
 ;;
 *)
 echo "Usage: /etc/init.d/$NAME{start|stop|restart|force-reload}" >&2
 exit 1
 ;;
esac
exit 0

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Pi Media Center

236

Once this file is created, run the following commands to make it executable and have it loaded into the Pi’s
boot process:

$ sudo chmod +x /etc/init.d/xbmc
$ sudo update-rc.d xbmc defaults

Now go ahead and reboot your system; it will bring you automatically into XBMC! Congratulations; at this point,
you should have a fully functional XBMC instance complete with working smartphone remote!

Troubleshooting
Because you compiled from source successfully, there shouldn’t be any issues with getting your XBMC instance up
and going. The first thing to check is that the compile did indeed complete fully and so did the install. They are the
two most likely culprits. If you start your XBMC instance, you might see warnings like the following:

libEGL warning: DRI2: xcb_connect failed

If you do, you have to re-run the previous copy and linking commands. This issue relates to being unable to load
those library files.

Stream Music with Airplay
People often want to use the Raspberry Pi as a streaming music system, which means that it is connected to a set of
speakers and can be remotely controlled and has music streamed to it from a central controlling system. There are
already a large number of systems out there for doing this kind of playback, but for us the plan is to take advantage of
the Apple AirPlay protocol. You can continue working in this on Pisces or you can revert to the original Raspbian. This
install will work the same way on both devices.

This setup is much easier to do than the video update; we still need to do some compiling to get things to work,
but we won’t need to run a ./configure because there are far fewer moving parts. Additionally, we want to have the
ability to play audio out to a given device, so you need to ensure you have speakers attached.

The first thing to do is to install the following precursor packages:

$ sudo apt-get install build-essential libssl-dev libcrypt-openssl-rsa-perl libao-dev
libio-socket-inet6-perl libwww-perl avahi-utils pkg-config alsa-utils
Reading package lists... Done
Building dependency tree
Reading state information... Done
build-essential is already the newest version.
libio-socket-inet6-perl is already the newest version.
libio-socket-inet6-perl set to manually installed.
libssl-dev is already the newest version.
libwww-perl is already the newest version.
libwww-perl set to manually installed.
pkg-config is already the newest version.
pkg-config set to manually installed.
The following packages were automatically installed and are no longer required:
 libcdio-cdda0 libcdio-paranoia0 libcdio10 libcelt0-0 libdb4.8 librpmio2
Use 'apt-get autoremove' to remove them.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Pi Media Center

237

The following extra packages will be installed:
 alsa-base avahi-daemon libao-common libao4 libavahi-core7 libcrypt-openssl-bignum-perl
libdaemon0 libnss-mdns
Suggested packages:
 alsa-oss oss-compat avahi-autoipd libaudio2 libesd0 libesd-alsa0
The following NEW packages will be installed:
 alsa-base alsa-utils avahi-daemon avahi-utils libao-common libao-dev libao4 libavahi-core7
libcrypt-openssl-bignum-perl libcrypt-openssl-rsa-perl libdaemon0
 libnss-mdns
0 upgraded, 12 newly installed, 0 to remove and 139 not upgraded.
Need to get 1,699 kB of archives.
After this operation, 3,702 kB of additional disk space will be used.
Do you want to continue [Y/n]?

Once you have installed all these packages, load the sound module into the system to take advantage of it. To load
a module, use the modprobe command. In this instance, load the snd_bcm2835 module, which is the Broadcom sound
adapter in the Pi. Issue this command:

$ sudo modprobe snd_bcm2835

The command will run, but it doesn’t generate any output to tell us the status of the execution or just about
anything else. We need to check and see whether the module has been loaded. Just like the ls command for
directories and lsusb for listing USB devices, there is an lsmod command for listing the modules that are currently
installed within your system. Issue the lsmod command and check that you can see the snd_bcm2835 module loaded
within your system (like mine):

$ lsmod
Module Size Used by
snd_bcm2835 21485 0
snd_pcm 82208 1 snd_bcm2835
snd_page_alloc 5383 1 snd_pcm
snd_seq 59808 0
snd_seq_device 6920 1 snd_seq
snd_timer 21905 2 snd_seq,snd_pcm
snd 57668 5 snd_timer,snd_seq_device,snd_seq,snd_pcm,snd_bcm2835
ipv6 290227 34
r8712u 182646 0
spi_bcm2708 4815 0
i2c_bcm2708 3818 0

Because you are loading the sound module for the first time, you also need to select which audio device is being
used (because none was used before). To change the device, use the amixer command as follows:

$ sudo amixer cset numid=3 1
numid=3,iface=MIXER,name='PCM Playback Route'
 ; type=INTEGER,access=rw------,values=1,min=0,max=3,step=0
 : values=1

We changed the numid=3 value, which is the PCM Playback Route, to be equal to 1, which is the value of the 3.5
jack. You can change the 1 on the end to a 2, which signifies that you should use the HDMI’s inbuilt audio channel to
send the sound.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Pi Media Center

238

Now that the hardware is sorted out, it is time to take care of the software by downloading the shairport software
from its repository on the Internet. By far the easiest way to do this is by using the wget (short for Web GET) command
to download all the available contents on a given URL. In this manner, we can download a whole software package
from the Internet with a simple URL. Execute the following:

$ wget https://github.com/albertz/shairport/zipball/master
--2012-09-30 18:13:36-- https://github.com/albertz/shairport/zipball/master
Resolving github.com (github.com)... 207.97.227.239
Connecting to github.com (github.com)|207.97.227.239|:443... connected.
HTTP request sent, awaiting response... 302 Found
Location: https://nodeload.github.com/albertz/shairport/zipball/master [following]
--2012-09-30 18:13:42-- https://nodeload.github.com/albertz/shairport/zipball/master
Resolving nodeload.github.com (nodeload.github.com)... 207.97.227.252
Connecting to nodeload.github.com (nodeload.github.com)|207.97.227.252|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 46413 (45K) [application/zip]
Saving to: 'master'
100%[==>] 46,413 60.1K/s in 0.8s
2012-09-30 18:13:50 (60.1 KB/s) - 'master' saved [46413/46413]

Now that we have downloaded the shairport software we need to work with it. The file is called master, so let’s
neaten it up and name it correctly. Just use the move command to change the filename. Once you have moved the file,
unzip it with the unzip command and cd into the newly created albertz-shairport-b58f156 directory:

$ mv master albertz-shairport-b58f156.zip
$ unzip albertz-shairport-b58f156.zip
$ cd albertz-shairport-b58f156

Now you need to build the application, so run the make command. Thankfully this application is far simpler than
the XBMC one and thus doesn’t need to be preconfigured.

$ make
cc -O2 -Wall -c alac.c -o alac.o
cc -O2 -Wall -DHAIRTUNES_STANDALONE hairtunes.c alac.o -o hairtunes -lm -lpthread -lssl
-lcrypto -lao
cc -O2 -Wall -c socketlib.c -o socketlib.o
cc -O2 -Wall -c shairport.c -o shairport.o
cc -O2 -Wall -c hairtunes.c -o hairtunes.o
cc -O2 -Wall socketlib.o shairport.o alac.o hairtunes.o -o shairport -lm -lpthread -lssl
-lcrypto -lao

Once the compile is finished, it is time to test; shairport is run by executing the shairport.pl file. So execute
it as such:

$./shairport.pl
Can't locate Net/SDP.pm in @INC (@INC contains: /usr/lib/perl5/site_perl /usr/share/perl5/site_perl
/usr/lib/perl5/vendor_perl /usr/share/perl5/vendor_perl /usr/lib/perl5/core_perl /usr/share/perl5/
core_perl .) at ./shairport.pl line 45.

Whoops! There’s an error related to a particular module of code not being available to the Perl system that it
needs to perform the install. In this case, it is the Net/SDP module that we need to install.

www.it-ebooks.info

https://github.com/albertz/shairport/zipball/master
https://github.com/albertz/shairport/zipball/master
http://github.com
http://github.com
http://github.com
http://github.com
https://nodeload.github.com/albertz/shairport/zipball/master
https://nodeload.github.com/albertz/shairport/zipball/master
http://nodeload.github.com
http://nodeload.github.com
http://nodeload.github.com
http://nodeload.github.com
http://www.it-ebooks.info/

Chapter 11 ■ Pi Media Center

239

Unfortunately, apt-get cannot fix this one, so you have to get it working by downloading the module from the
Perl CPAN library (which is much like a giant apt-get repository for Perl software that developers can borrow and
use) and then install it. You will again use wget to download the file from the Internet. Issue the following command:

$ wget http://search.cpan.org/CPAN/authors/id/N/NJ/NJH/Net-SDP-0.07.tar.gz
--2012-09-30 19:01:11-- http://search.cpan.org/CPAN/authors/id/N/NJ/NJH/Net-SDP-0.07.tar.gz
Resolving search.cpan.org (search.cpan.org)... 199.15.176.161
Connecting to search.cpan.org (search.cpan.org)|199.15.176.161|:80... connected.
HTTP request sent, awaiting response... 302 Found
Location: http://mirror.westfield.com.au/cpan/authors/id/N/NJ/NJH/Net-SDP-0.07.tar.gz [following]
--2012-09-30 19:01:11-- http://mirror.westfield.com.au/cpan/authors/id/N/NJ/NJH/Net-SDP-0.07.tar.gz
Resolving mirror.westfield.com.au (mirror.westfield.com.au)... 203.42.62.21
Connecting to mirror.westfield.com.au (mirror.westfield.com.au)|203.42.62.21|:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 20679 (20K) [application/x-gzip]
Saving to: 'Net-SDP-0.07.tar.gz'
100%[===>] 20,679
--.-K/s in 0.05s
2012-09-30 19:01:12 (382 KB/s) - 'Net-SDP-0.07.tar.gz' saved [20679/20679]

Once the file is downloaded, you need to extract it with the tar command. Issue a tar command to unpack the
file with the arguments –zxvf to unzip and extract this tarball. Then change into the newly created Net-SDP-0.07
directory:

$ tar –zxvf Net-SDP-0.07.tar.gz
$ cd Net-SDP-0.07

Now that the package is here, you just need to issue commands to the Perl build system here. The first is to
execute the Build.PL script to generate the build file:

$ perl Build.PL
Created MYMETA.yml and MYMETA.json
Creating new 'Build' script for 'Net-SDP' version '0.07'

Once the build file is created, you need to run it with this:

$./Build
Building Net-SDP

And once the build is finished, run the inbuilt tests to ensure there are no problems by issuing the test command
to the build script:

$./Build test
t/00use.t ok
t/10generate.t .. ok
t/10parse.t ok
t/20repeat.t ok
t/30asstring.t .. ok
All tests successful.
Files=5, Tests=69, 5 wallclock secs (0.97 usr 0.05 sys + 3.40 cusr 0.29 csys = 4.71 CPU)
Result: PASS

www.it-ebooks.info

http://search.cpan.org/CPAN/authors/id/N/NJ/NJH/Net-SDP-0.07.tar.gz
http://search.cpan.org/CPAN/authors/id/N/NJ/NJH/Net-SDP-0.07.tar.gz
http://search.cpan.org
http://search.cpan.org
http://search.cpan.org
http://search.cpan.org
http://mirror.westfield.com.au/cpan/authors/id/N/NJ/NJH/Net-SDP-0.07.tar.gz
http://mirror.westfield.com.au/cpan/authors/id/N/NJ/NJH/Net-SDP-0.07.tar.gz
http://mirror.westfield.com.au
http://mirror.westfield.com.au
http://mirror.westfield.com.au
http://mirror.westfield.com.au
http://www.it-ebooks.info/

Chapter 11 ■ Pi Media Center

240

Finally, you need to install the modules, so issue the install command to the build script (you might need to
press Enter after the command to get the install to finish and display):

$ sudo ./Build install
[sudo] password for raspbian:
Building Net-SDP
Installing /usr/local/man/man1/sdp2rat.1p
Installing /usr/local/share/perl/5.14.2/Net/SDP.pm
Installing /usr/local/share/perl/5.14.2/Net/SDP/Time.pm
Installing /usr/local/share/perl/5.14.2/Net/SDP/Media.pm
Installing /usr/local/man/man3/Net::SDP::Media.3pm
Installing /usr/local/man/man3/Net::SDP::Time.3pm
Installing /usr/local/man/man3/Net::SDP.3pm
Installing /usr/local/bin/sdp2rat

Once the build is done, it is a simple matter to run the shairport.pl script again, and this time it should work!
The output should look like this:

$ cd..
$./shairport.pl
Established under name '891BEA3BF8A1@ShairPort 2113 on pisces'

Now you need to establish connectivity with the application and test that you can send music to it. Open up
iTunes and then change the output destination in the bottom-right corner of iTunes (see Figure 11-5). You should see
a shairport name there. Select it and press Play on your favorite song and presto: streaming music!

Figure 11-5.  ShairPort enabled

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Pi Media Center

241

Troubleshooting
As with XBMC, this process is fairly painless because the Raspberry Pi has a fixed hardware platform, and without all
these variables there is not as much to worry about—things should just work.

If you find that no sound is coming out of your speakers when they are attached, check that you correctly issued
both the modprobe and the amixer commands because both are needed to make the audio function.

Other than this issue, most of the commands should work. If not, you should delete any downloaded content and
start over.

Airport on Boot
As with using the XBMC instance, most people won’t want to have shairport started with their system without needing
to manually log in to your Pi and start the application. This is easy for us because the shairport install has all the files
needed to do this bundled with it! To perform this, first install the shairport system: run sudo make install, and your
output should look like this:

$ sudo make install
install -D -m 0755 hairtunes /usr/local/bin/hairtunes
install -D -m 0755 shairport.pl /usr/local/bin/shairport.pl
install -D -m 0755 shairport /usr/local/bin/shairport

Once the install is finished, you can copy the provided init script into the correct location:

$ sudo cp shairport.init.sample /etc/init.d/shairport

Now that the file is copied, you need to make one small modification: add the modprobe command from
earlier—modprobe snd_bcm2835—into the /etc/init.d/shairport file just before you start the shairport application.
The start section should look like this:

start() {
 echo -n "Starting shairport: "
 modprobe snd_bcm2835
 start-stop-daemon --start --quiet --pidfile "$PIDFILE" \
 --exec "$DAEMON" -b --oknodo -- $DAEMON_ARGS
 log_end_msg $?
}

The last commands we need to run are these:

$ sudo chmod +x /etc./init.d/shairport
$ sudo update-rc.d shairport defaults

These commands make the new start script writeable and update the boot sequence to include the new
shairport scripts! Reboot your Pi, and shairport should be up and running for you on boot! Congratulations.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ pi Media Center

242

Summary
In this comprehensive chapter, you installed a whole course of precursor applications and learned how to download
source code, configure it, and compile from it. This is quite a lot of work and the XBMC compile took in excess of
12 hours!

You also created and installed start scripts to get these new media playback systems to run on the Pi at boot,
avoiding the need to manually intervene.

Finally, you connected the XBMC instance to the remote control application for smartphones. This has been an
incredible amount of work for one chapter, so well done!

www.it-ebooks.info

http://www.it-ebooks.info/

243

n A
Advanced Linux Sound Architecture (ALSA) device, 202
Airplay

amixer command, 237
boot, 241
central controlling system, 236
build script, 239–240
lsmod command, 237
Net-SDP-0.07 directory, 239
execute, 238
precursor packages, 236
ShairPort enable, 240
troubleshooting, 241
wget, 238–239

Apache
apt-get tool, 150
browser window, 152
configuration, 152–155
output, 151
running, 151
stories, 150
troubleshooting, 155
web server, 150

n B
BASH

basic coding
FizzBuzz test, 131
goals, 130
meaning, 131
text editor, 131

init script
blocks, 142
case statement, 143
creation, 144–145
forking, 143

Linux system, 142
run files, 143
XBMC, 141–142

interpreted versus compiled, 132
logical operation

if, 134
infinite loop, 139
loop, 139–140

output, 132–133
recap, 133
security and user management

new user adding, 147
rules-Raspbian security, 146

test based arithmetics
advantage, 136
arithmetic operation, 137
assignment mode, 135
dereferencing mode, 136
modulus, 135
output, 137
testing operators, 136
variable, 136

troubleshooting, 137, 139, 141
variables, 133–134

n C
Combine commands

buffer, 102
environment, 104
inverse grep, 103
PATH, 105–106
ps and grep, 102
results, 103
xargs, 104

Commands. See also System resources monitoring
bit confusing, 90
filesystem, 89

Index

www.it-ebooks.info

http://www.it-ebooks.info/

﻿■ Index

244

Linux distributions, 91
RTFM, 91
sudo command, 89
system/administrative function, 89

Common Gateway Interface (CGI), 165
Compiled languages, 132
Computer terminals. See also Three terminals

command line, 66–67
shells, 68
TeleVideo 925, 53
till-duh, 67
Ye Olde computer, 54–58

always available, 57
convinced, 57
dumb terminal, 54
fast, 57
GUIs, 55
key problem, 54
lightweight, 57
modern terminals, 55–56
power, 57
simple, 56
TUI, 55
virtual terminal, 58

n D
dmesg command

abbreviations, 201
/dev, 202
logged output, 200–201
output, 202
troubleshooting, 204
udev administration function, 203

Driver message. See dmesg command
Dynamic Host Configuration Protocol (DHCP), 60

n E
Editing text files

arbitrary format, 110
binary data format, 109
Chinese text, 110
contenders, 110–111
foreign languages, 110
nano command

changes, 114
disk file, 115
edited file, 115
file saving, 113–114
line number, 117
Mary, 116
mean, 112–113
move around, 115–116

new file, 112
shortcut bar, 113
style, 114
text editor, 111
wrapping up, 117
WriteOut command, 114

overview, 109
semantics, 109
statement, 109
structure, 109
vim

charm, 120
copy and paste style, 127
delete command, 124–125
error message, 119
escape (ESC) key, 119
features, 117
getting out, 120
indenting text, 126
insert mode, 118
install, 117
mass pasting, 128
miscellaneous little commands, 126
move around, 123
navigation shortcuts, 123
regular expressions, 122
save changes, 119
search, 121–122
specific line number, 122–123
straightforward, 117–118
tildes, 118
visual mode, 126

n F
File commands. See also Commands

combine commands
buffer, 102
environment, 104
inverse grep, 103
PATH, 105–106
ps and grep, 102
results, 103
xargs, 104

command-line arguments, 101
cron Command, 107
generalized regular expression parser, 102
kind, 101
usage, 101

File-paths
command, 72
disk set, 72
file permissions

chmod command, 84
execute bit, 84

Commands (cont.)

www.it-ebooks.info

http://www.it-ebooks.info/

﻿■ Index

245

Linux, 83
ls command, 82
pi, 83
Raspberry file, 82–83
roles, 82
set, 84–87

filing system
all together, 71
definition, 69
directory, 70
filesystem, 70
libraries, 69
Mac different, 71
paper-based system, 70
separate roots, 70–71
unified filesystem, 71

hard disk, 72
layouts

/bin and /sbin, 74
/boot, 74
/dev, 74
/etc., 73
/home, 74
/lib, 75
/lost+found, 75
/media, 75
/mnt, 75
/opt, 75
/proc, 73
/root, 73
/ root directory, 73
/srv, 75
/sys, 76
/tmp, 76
/usr, 75
/var, 74
wrapper, 76

Linux, 73
SCSI-based disks, 72
shortcuts and links, 87–88
user and groups, 81–82
working

directories, 78
cp command, 79–80
file/directory, 81
mv command, 79
rm command, 80
mkdir, 78
overview, 76
pwd, 76
touch, 77–78
use of, 77

Filing system
all together, 71
definition, 69

directory, 70
filesystem, 70
libraries, 69
Mac different, 71
separate roots, 70–71
unified filesystem, 71

n G
Graphical user interface (GUI), 55

n H
Hyper Text Markup Language (HTML). See also MySQL

tags, 168–169
websites, 168–169

n I, J, K
Integrated development environments (IDEs), 48
Interpreted languages, 132
init script

blocks, 142
case statement, 143
creation, 144–145
forking, 143
Linux system, 142
run files, 143
XBMC, 141–142

n L
LAMP

A stand for Apache
apt-get tool, 150
browser window, 152
configuration, 152
output, 151
running, 151
stories, 150
troubleshooting, 155
web server, 150

L stand for Linux, 150
P stand for PHP, 165

CGIs, 165
command, 165
dynamic functions, 165
functions, 166
info page, 166
MySQL config info, 167
php5-mysql package, 167
points, 166

web application
basic concept, 169
connection and database, 170

www.it-ebooks.info

http://www.it-ebooks.info/

﻿■ Index

246

create statement, 170
database content, 171–172
DB-remove data, 178–179
HTML, 168–169
index.php, 170
insert case, 175–176
overview, 168
PHP code, 170
remove entries, 176–178
to-do list, 179
troubleshooting, 179
website data insertion, 173–174

website content, 149
Layouts, File-paths

/bin and /sbin, 74
/boot, 74
/dev, 74
/etc., 73
/home, 74
/lib, 75
/lost+found, 75
/media, 75
/mnt, 75
/opt, 75
/proc, 73
/root, 73
/ root directory, 73
/srv, 75
/sys, 76
/tmp, 76
/usr, 75
/var, 74
wrapper, 76

Lightweight Desktop Environment (LXDE), 59
Lightweight X11 Desktop Environment (LXDE)

meaning, 32
Pi, 32
right side-task bar, 33–34
shutdown/rebooting, 34
start menu concept, 34–45

accessories, 36–43
and bottom left, 33
Education, 43–45
Internet, 46–47
operating system, 34
preferences, 50–52
programming menu, 47–49
run command, 35
system tools, 49–50
window, 35

X-server, 31
Linux. See also LAMP

definition, 9
features, 9

histroy, 9
open source, 9
Raspbian, 10

n M
Mail transfer agent (MTA), 208
Media center. See also Airplay

XBox Media Center
boot screen, 232, 235–236
main menu, 233
operating system, 224
Pi boot system, 232
Pisces, 224
program running, 234
RaspMC, 224
regular expressions and sed,

228–229
remote application, 234
setup-build, 224–228
solutions, 233
source code, 229–231
troubleshooting, 232, 236
XMBCbuntu, 223

MySQL
HTML, 155
installation, 156
Structured Query Language

(SQL)
DELETE, 164
insert data, 160–161
pi, 157
SELECT, 161–162
syntax, 157
table creation, 157–158, 160
types, 157
UPDATE, 163–164

n N, O, P, Q
Nano command

changes, 114
disk file, 115
edited file, 115
file saving, 113–114
line number, 117
Mary, 116
mean, 112–113
move around, 115–116
new file, 112
shortcut bar, 113
style, 114
text editor, 111
wrapping up, 117
WriteOut command, 114

LAMP (cont.)

www.it-ebooks.info

http://www.it-ebooks.info/

﻿■ Index

247

n P
Paper-based systems. See Filing system
PHP

CGIs, 165
command, 165
dynamic functions, 165
php5-mysql package, 167
functions, 166
info page, 166
MySQL config info, 167
points, 166

Pi. See also Media center
boot-it, 17–18
filesystem, 19
first boot, 18–19
keyboard, 19–23

configuration, 21–22
customization, 21, 23
Generic 105 key (Intl) PC, 19
layout, 20–21
X server, 23

LED, 18
locale

choose, 24
default, 24–25
symbols, 24

memory allocation
memory split, 28
memory_split option, 27
mini desktop computer, 27

reboot process
desktop, 29–30
output window, 28

remote access
command line, 129
DNS, 130
Linux environment, 129
networking, 130
SSH, 130

SD card, 18
set/change password, 23–24
time zone

country/city, 26–27
regions, 26

TV/monitor, 18

n R
Raspberry Pi. See also Pi, Raspbian, Linux

average-sized mouse, 3
envelope, 1–2
ingredients

BIOS, 8
capable display-HDMI, 5

HDMI lead, 5
keyboard and mouse, 7
lists, 3
loaded Pi, 8
micro USB lead, 4
multicard reader, 7
reader-SD card, 6–7
SD card, 5–6
USB power adapter, 4

picture, 2
Raspberry sPi

altering system
advantage, 208
mutt tool, 210–211
SSMTP, 208, 210
testing, 211–212
troubleshooting, 212

designing solution, 214–215
dmesg command

abbreviations, 201
/dev, 202
logged output, 200–201
output, 202
troubleshooting, 204
udev administration function, 203

making decisions, 213–214
materials needed, 199
motion, 204–206, 208

camera, 205
command, 205
ffmpeg_cap_new, 206
open and edit file, 205
output, 204
package, 204
process, 208
reference, 206, 208
target_dir, 206
threshold, 206
troubleshooting, 208

presetup, 200
problems

goals, 213
requirements, 213

Script 1, 216
Script 2, 217
so far, 212–213
stack and solve complex problems, 221
start up, 220
stetson, 221
testing

cron, 219
inbox-output, 218
script launch method, 219
updates, 219

troubleshooting, 220

www.it-ebooks.info

http://www.it-ebooks.info/

﻿■ Index

248

Raspbian
Image Writer, 11–13

action shot, 13
binary version, 11
disk image, 11–12
error message, 12

Mac
image writing, 14–17
terminals, 14

meaning, 10
Read The Flaming Manual (RTFM), 91
Regular expressions, 228–229

n S
Scripting languages. See Interpreted languages
Secure Shell (SSH)

client-sort out, 61–66
Mac, 65–66
putty, 61–64

de facto standard, 60
server to Pi

ifconfig, 60–61
interface configuration, 60
IP address, 60

Send our mail to the mail server (SSMTP),
208–210

Source code. See Compiled languages
Start menu concept, LXDE

accessories
Debian reference, 36–37
File Manager, 37–38
Image Viewer, 38–39
Leafpad, 40
LXTerminal, 41
menu, 36
Root Terminal, 41–43
XArchiver, 43

Education
menu, 43–44
Scratch, 44
Squeak, 45–46

Internet menu, 46–47
operating system, 34
preferences

customize look and feel, 51–52
desktop, 50–51

programming menu
IDEs, 48
IDLE, 49
Python, 48
window, 47–48

run command, 35–36

system tools
menu, 49
RAM usage, 50
task manager list, 49–50

window, 35
Stream Editor (sed), 228
Structured Query Language (SQL)

DELETE, 164
insert data, 160–161
pi, 157
SELECT, 161–162
syntax, 157
table creation, 157–158, 160
types, 157
UPDATE, 163–164

System resources monitoring
CPU utilization percentage, 93
disk usage, 95–97
free to view memory allocation, 95
managing processes, 97–100

current processes, 97
in /proc, 100
kill processes, 99
ps –ef, 98
ps means, 99

memory usage, 94
output, 91–92
process table, 94
tasks, 93
uptime and load average, 93

n T, U
Terminals, 53. See also Computer terminals
Test based arithmetics

advantage, 136
arithmetic operation, 137
assignment mode, 135
dereferencing mode, 136
modulus, 135
output, 137
testing operators, 136
variable, 136

Text-based user interface (TUI), 55
Three terminals

console, 58
LXDE, 59
SSH

client, 61–66
de facto standard, 60
equation, 59
server to Pi, 60–61

virtual terminal, 59

www.it-ebooks.info

http://www.it-ebooks.info/

﻿■ Index

249

n V
Video, 223
Vim

charm, 120
copy and paste style, 127
delete command, 124–125
error message, 119
escape (ESC) key, 119
features, 117
getting out, 120
indenting text, 126
insert mode, 118
install, 117
mass pasting, 128
miscellaneous little commands, 126
move around, 123
navigation shortcuts, 123
regular expressions, 122
save changes, 119
search, 121–122
specific line number, 122–123
straightforward, 117–118
tildes, 118
visual mode, 126

Virtual Network Computing (VNC)
execution, 183
install, 183
output, 183
TightVNC Client, 184
vncserver, 184, 186

Virtual terminal, 58

n W
WiFi

command line, 194–195
configuration

aware of, 192
connect, 192
icon, 190
ifconfig, 193
network details, 191–192
scan results window, 191
wpagui window, 190

D-Link DWA-131, 186
Ethernet cable, 196
installation, 189
lsusb command, 187
output, 188

overview, 186
setup, 187
USB devices, 186
wireless adapter, 188
wpa-gui, 189

Wireless Computing (WiPi). See also WiFi
commands, 182
Pi usage, 181–182
power output, 197
simple contraint removal, 182–184, 186
human input devices, 182

remote GUI, 183–184, 186
USB adapters, 197

n X
XBox Media Center (XBMC)

boot screen, 232, 235–236
build-setup, 224–228
main menu, 233
operating system, 224
Pi boot system, 232
Pisces, 224
program running, 234
RaspMC, 224
remote application, 234
sed and regular expressions, 228–229
solutions, 233
source code, 229–231
troubleshooting, 232, 236
XMBCbuntu, 223

X-server, 31

n Y, Z
Ye Olde computer

always available, 57
convinced, 57
dumb terminal, 54
fast, 57
GUIs, 55
key problem, 54
lightweight, 57
modern terminals, 55–56
pipes, 57
power, 57
simple, 56
TUI, 55
virtual terminal, 58

www.it-ebooks.info

http://www.it-ebooks.info/

Learn Raspberry Pi
with Linux

Peter Membrey
David Hows

www.it-ebooks.info

http://www.it-ebooks.info/

Learn Raspberry Pi with Linux

Copyright © 2013 by Peter Membrey and David Hows

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material
supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the
purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the
Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are
liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4302-4821-7

ISBN-13 (electronic): 978-1-4302-4822-4

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

President and Publisher: Paul Manning
Lead Editor: Michelle Lowman
Developmental Editor: Matthew Moodie
Technical Reviewer: Stewart Watkiss
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Louise Corrigan, Morgan Ertel,

Jonathan Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham, Matthew
Moodie, Jeff Olson, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Gwenan
Spearing, Matt Wade, Tom Welsh

Coordinating Editor: Jill Balzano
Copy Editor: Nancy Sixsmith
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit
www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science +
Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales–eBook
Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available to readers
at www.apress.com. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code/.

www.it-ebooks.info

http://orders-ny@springer-sbm.com
http://www.springeronline.com
http://rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
http://www.apress.com
http://www.apress.com/source-code/
http://www.it-ebooks.info/

To my parents, Peter and Bev, for all their support.

— David Hows

For my wife Sarah, son Kaydyn, and my close friends Jacqui Koo and Mark Stephens,
who together make my world go ‘round.

— Peter Membrey

www.it-ebooks.info

http://www.it-ebooks.info/

vii

Contents

About the Authors ��� xv

About the Technical Reviewer��� xvii

Acknowledgments�� xix

Introduction�� xxi

Chapter 1: Your First Bite of Raspberry Pi■■ ��1

Your Freshly Baked Pi Arrives���1

List of Ingredients��3

Micro USB lead��� 4

USB Power Adapter�� 4

HDMI Lead�� 5

HDMI Capable Display�� 5

SD Card��� 5

SD Card Reader�� 6

USB Keyboard and Mouse�� 7

Whew, We’re Done!��� 7

Don’t Panic!�� 8

Linux���8

What Is Linux?�� 9

Downloading Raspbian��� 10

Getting Raspbian onto Your SD Card��10

Using Image Writer on Windows��� 11

Using dd on the Mac��� 14

First Boot��17

www.it-ebooks.info

http://www.it-ebooks.info/

■ Contents

viii

Configuring Your Pi���18

Expanding the Filesystem��� 19

Configuring the Keyboard��� 20

Changing the Password�� 23

Configuring the Locale�� 24

Changing the Time Zone��� 26

Allocating Memory�� 27

At Last! It’s Configured!�� 28

Summary��30

Chapter 2: Surveying the Landscape■■ ��31

Welcome to LXDE���31

What Do We Have Here?��� 32

The Start Menu and Bottom Left of the Task Bar�� 33

And on the Right Side…��� 33

The Start Menu���34

Accessories�� 36

Education�� 43

Internet��� 46

Programming�� 47

System Tools��� 49

Preferences�� 50

Summary��52

Chapter 3: Getting Comfortable■■ ��53

Ye Olde Computer���54

Say Hello to the Dumb Terminal��� 54

Modern Terminals��� 55

Why Do We Still Care About These Things?�� 56

Three Terminals��58

Console��� 58

Opening a Virtual Terminal in the GUI��� 59

Connecting via SSH�� 59

www.it-ebooks.info

http://www.it-ebooks.info/

■ Contents

ix

Welcome to the Command Line���66

Different Shells���68

Summary��68

Chapter 4: The File-Paths to Success■■ ���69

What Is a Filing System?��69

More than One Filesystem�� 70

Separate Roots��� 70

Unified Filesystem�� 71

The Mac has to be Different��� 71

Bring it All Together�� 71

Everything as a File��72

Filesystem Layout��73

/ (Root Directory)��� 73

/root�� 73

/etc��� 73

/proc��� 73

/var��� 74

/boot��� 74

/bin and /sbin��� 74

/dev��� 74

/home��� 74

/lib�� 75

/lost+found��� 75

/mnt�� 75

/media�� 75

/usr��� 75

/opt��� 75

/srv��� 75

/sys��� 76

/tmp�� 76

Wrapping it Up�� 76

www.it-ebooks.info

http://www.it-ebooks.info/

■ Contents

x

Putting it to Work��76

Where Are We? Using pwd�� 76

What’s in Here with Us? Using ls�� 77

Creating Files to Play with: Using Touch��� 77

Somewhere to Store our Files: Using mkdir��� 78

Making Use of a New Directory: Using the mv Command�� 79

Time for Some Cloning: How to Use the cp Command��� 79

The Power to Destroy: Using the rm Command�� 80

Fully Qualified and Relative Paths�� 81

Users and Groups���81

File Permissions���82

Setting File Permissions��� 84

Shortcuts and Links���87

Summary��88

Chapter 5: Essential Commands■■ ���89

Become the Boss���89

RTFM��91

System Resource Monitoring���91

Uptime and Load Average��� 92

Tasks�� 93

CPU Utilization Percentage��� 93

Memory Usage�� 94

Process Table�� 94

Using free to View Memory Allocation�� 95

Disk Usage�� 95

Managing Processes�� 97

File Commands���100

Combining Commands��� 102

User Environment��� 104

The cron Command�� 107

Summary��107

www.it-ebooks.info

http://www.it-ebooks.info/

■ Contents

xi

Chapter 6: Editing Files on the Command Line■■ ���109

What is a Text File?��109

The Contenders��110

Starting out with nano��111

So What Does This All Mean?��� 112

Saving Your File�� 113

Moving Around in nano��� 115

Wrapping Up nano�� 117

Getting Started with vim��117

The vim Modes��� 118

Saving Your Changes�� 119

Getting Out of vim��� 120

Searching in vim��� 121

Moving to a Specific Line Number�� 122

Moving About in vim��� 123

Deleting in vim�� 123

Miscellaneous Little Commands��� 126

Visual Mode�� 126

Indenting Text��� 126

Summary��128

Chapter 7: Managing Your Pi■■ ��129

Remotely Accessing the Pi���129

Networking��� 129

DNS��� 130

SSH��� 130

BASH: Basic Coding��130

What Is BASH?�� 131

Starting in BASH��� 131

Interpreted versus Compiled�� 132

Output in BASH��� 132

www.it-ebooks.info

http://www.it-ebooks.info/

■ Contents

xii

Recap�� 133

Variables��� 133

Logical Operation: if�� 134

Test Based Arithmetic��� 135

Troubleshooting�� 137

Logical Operation: Loop�� 139

Troubleshooting�� 141

Practical BASH: An Init Script���141

Pick and Match with the case Statement��� 143

Application within Application: Forking�� 143

Update the Run Files�� 143

Creating Your Own init Script�� 144

Security and User Management���146

The Rules of Raspbian Security�� 146

Adding a New User��� 147

Summary��148

Chapter 8: A LAMP of Your Own■■ ���149

First Steps��149

L is for Linux���150

A is for Apache���150

Apache Configuration��� 152

Troubleshooting�� 155

M is for MySQL���155

Installing MySQL��� 156

Structured Query Language�� 156

P is for PHP���165

Simple Web App���168

HTML�� 168

Starting Our Page��� 169

Display the Database Content�� 171

www.it-ebooks.info

http://www.it-ebooks.info/

■ Contents

xiii

Website Data Insertion��� 173

Inserting to the Database��� 175

Remove Entries��� 176

Remove Data from DB�� 178

Troubleshooting�� 179

Where From Here?�� 179

Summary��180

Chapter 9: WiPi: Wireless Computing■■ ���181

Preparing for WiPi��182

Simple Constraint Removal��182

Removing Human Input Devices��� 182

Adding a Remote GUI�� 183

True WiPi with WiFi���186

GUI WiFi Configuration�� 190

Managing WiFi from the Command Line�� 194

Down to One��� 196

Removing the Need for Power��196

Powered USB Adapters��197

Summary��197

Chapter 10: The Raspberry sPi■■ ���199

Materials Needed���199

Presetup���200

Getting Started���200

dmesg��� 200

Troubleshooting�� 204

Motion Capture���204

Troubleshooting�� 208

Alerting Yourself���208

Installing SSMTP��� 208

Installing and Using mutt�� 210

www.it-ebooks.info

http://www.it-ebooks.info/

■ Contents

xiv

Testing the Alerting System�� 211

Troubleshooting�� 212

Bringing It All Together���212

Understanding the Problem�� 213

Making Decisions��� 213

Designing Solution�� 214

Script 1��� 216

Script 2��� 217

Testing�� 218

Troubleshooting�� 220

Where to Go from Here���220

Summary��221

Chapter 11: Pi Media Center■■ ���223

Video with XBMC��223

Setup to Build��� 224

Changing Files with Sed and Regular Expressions�� 228

Compiling Source Code�� 229

Troubleshooting�� 231

Starting and Using XBMC���232

XBMC on Boot��� 235

Troubleshooting�� 236

Stream Music with Airplay���236

Troubleshooting�� 241

Airport on Boot�� 241

Summary��242

Index��243

www.it-ebooks.info

http://www.it-ebooks.info/

xv

About the Authors

Peter Membrey is a Chartered IT Professional with nearly 15 years of experience
using Linux and open source solutiuons to solve problems in the real world. An
RHCE since the age of 17, he has also had the honor of working for Red Hat and
writing several books covering open source solutions. He holds a masters degree in
IT (Information Security) from the University of Liverpool and is currently a PhD
candidate at the Hong Kong Polytechnic University where his research interests
include cloud computing, big data science and security. He lives in Hong Kong with
his wonderful wife Sarah and son Kaydyn. His Cantonese continues to regress.

David Hows is an Honors graduate from the University of Woolongong in NSW
Australia. He got his start in computing trying to drive more performance out of his
family PC without spending a fortune. This lead to a career in IT where David has
worked as a Systems Administrator, Performance Engineer, Software Developer,
Solutions Architect and Database Engineer. David has tried in vain for many years
to play soccer well and his coffee mug reads “Grumble Bum.”

www.it-ebooks.info

http://www.it-ebooks.info/

xvii

About the Technical Reviewer

Stewart Watkiss graduated from The University of Hull, UK, with a Master’s degree
in electronic engineering. He has been a fan of Linux since first installing it on a
home computer during the late 1990s, back when Linux was installed using floppy
disks. While working as a Linux system administrator, he was awarded Advanced
Linux Certification (LPIC 2) in 2006, and created the PenguinTutor website to help
others working toward Linux certification (http://www.penguintutor.com).

After ordering his first Raspberry Pi on the launch day, he has since gotten
three more, which he uses as a family friendly proxy, a media center, for working
on hobby electronic projects, and teaching his two children about computers.

www.it-ebooks.info

http://www.penguintutor.com
http://www.it-ebooks.info/

xix

Without a doubt, the true heroes of this book are the Raspberry Pi Foundation and the Raspberry Pi community
because without either of them, we wouldn’t be here. The Raspberry Pi Foundation, the group who bought us the Pi,
is a nonprofit charity with the stated goal with the Pi was to reinvigorate the development spirit of the ‘80s and to
provide an affordable platform for generations of youngsters to get into the wonderful world of computing in a truly
meaningful way. It has done so much to bridge the digital divide and bring computing to the common man, and for
this it deserve our thanks.

If the Raspberry Pi Foundation is the heart, the Raspberry Pi community has to be the soul. These people have
sought to provide the tools and support people need to get started with the Pi regardless of skill level. They have
invested countless hours (and dollars) in writing, fixing, porting, hacking, and testing things for the Pi. Please feel free
to pay a visit to them at http://www.raspberrypi.org/ and see what we mean.

Acknowledgments

www.it-ebooks.info

http://www.raspberrypi.org/
http://www.it-ebooks.info/

	Learn Raspberry Pi with Linux
	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Your First Bite of Raspberry Pi
	Your Freshly Baked Pi Arrives
	List of Ingredients
	Micro USB lead
	USB Power Adapter
	HDMI Lead
	HDMI Capable Display
	SD Card
	SD Card Reader
	USB Keyboard and Mouse
	Whew, We’re Done!
	Don’t Panic!

	Linux
	What Is Linux?
	Downloading Raspbian

	Getting Raspbian onto Your SD Card
	Using Image Writer on Windows
	Using dd on the Mac
	Finding the Terminal
	Using the Terminal to Write the Image

	First Boot
	Configuring Your Pi
	Expanding the Filesystem
	Configuring the Keyboard
	Changing the Password
	Configuring the Locale
	Changing the Time Zone
	Allocating Memory
	At Last! It’s Configured!

	Summary

	Chapter 2: Surveying the Landscape
	Welcome to LXDE
	What Do We Have Here?
	The Start Menu and Bottom Left of the Task Bar
	And on the Right Side…

	The Start Menu
	Accessories
	Debian Reference
	File Manager
	Image Viewer
	Leafpad
	LXTerminal
	Root Terminal
	XArchiver

	Education
	Scratch
	Squeak

	Internet
	Programming
	System Tools
	Preferences
	Desktop Preferences
	Customizing the Look and Feel

	Summary

	Chapter 3: Getting Comfortable
	Ye Olde Computer
	Say Hello to the Dumb Terminal
	Modern Terminals
	Why Do We Still Care About These Things?
	Simple
	Fast
	Lightweight
	Powerful
	Always Available
	Convinced Yet?

	Three Terminals
	Console
	Opening a Virtual Terminal in the GUI
	Connecting via SSH
	Setting Up an SSH Server on the Pi
	Sorting Out an SSH Client
	Putty for Windows
	SSH on the Mac

	Welcome to the Command Line
	Different Shells
	Summary

	Chapter 4: The File-Paths to Success
	What Is a Filing System ?
	More than One Filesystem
	Separate Roots
	Unified Filesystem
	The Mac has to be Different
	Bring it All Together

	Everything as a File
	Filesystem Layout
	/ (Root Directory)
	/root
	/etc
	/proc
	/var
	/boot
	/bin and /sbin
	/dev
	/home
	/lib
	/lost+found
	/mnt
	/media
	/usr
	/opt
	/srv
	/sys
	/tmp
	Wrapping it Up

	Putting it to Work
	Where Are We? Using pwd
	What’s in Here with Us? Using ls
	Creating Files to Play with: Using Touch
	Somewhere to Store our Files: Using mkdir
	Making Use of a New Directory: Using the mv Command
	Time for Some Cloning: How to Use the cp Command
	The Power to Destroy: Using the rm Command
	Fully Qualified and Relative Paths

	Users and Groups
	File Permissions
	Setting File Permissions

	Shortcuts and Links
	Summary

	Chapter 5: Essential Commands
	Become the Boss
	RTFM
	System Resource Monitoring
	Uptime and Load Average
	Tasks
	CPU Utilization Percentage
	Memory Usage
	Process Table
	Using free to View Memory Allocation
	Disk Usage
	Managing Processes
	Killing a Process
	Reading Information in /proc

	File Commands
	Combining Commands
	Combine ps and grep
	Add an Inverse grep
	Cut Down the Results
	xargs to Work with Each Result

	User Environment
	The cron Command

	Summary

	Chapter 6: Editing Files on the Command Line
	What is a Text File?
	The Contenders
	Starting out with nano
	So What Does This All Mean?
	Saving Your File
	Moving Around in nano
	Wrapping Up nano

	Getting Started with vim
	The vim Modes
	Saving Your Changes
	Getting Out of vim
	Searching in vim
	Moving to a Specific Line Number
	Moving About in vim
	Deleting in vim
	Miscellaneous Little Commands
	Visual Mode
	Indenting Text
	Copy and Paste vim Style

	Summary

	Chapter 7: Managing Your Pi
	Remotely Accessing the Pi
	Networking
	DNS
	SSH

	BASH: Basic Coding
	What Is BASH?
	Starting in BASH
	Interpreted versus Compiled
	Output in BASH
	Recap
	Variables
	Logical Operation: if
	Test Based Arithmetic
	Troubleshooting
	Logical Operation: Loop
	Troubleshooting

	Practical BASH: An Init Script
	Pick and Match with the case Statement
	Application within Application: Forking
	Update the Run Files
	Creating Your Own init Script

	Security and User Management
	The Rules of Raspbian Security
	Adding a New User

	Summary

	Chapter 8: A LAMP of Your Own
	First Steps
	L is for Linux
	A is for Apache
	Apache Configuration
	Troubleshooting

	M is for MySQL
	Installing MySQL
	Structured Query Language
	Creating Tables
	Inserting Data
	Querying a Database
	Updating a Database
	Deleting Data

	P is for PHP
	Simple Web App
	HTML
	Starting Our Page
	Display the Database Content
	Website Data Insertion
	Inserting to the Database
	Remove Entries
	Remove Data from DB
	Troubleshooting
	Where From Here?

	Summary

	Chapter 9: WiPi: Wireless Computing
	Preparing for WiPi
	Simple Constraint Removal
	Removing Human Input Devices
	Adding a Remote GUI

	True WiPi with WiFi
	GUI WiFi Configuration
	Managing WiFi from the Command Line
	Down to One

	Removing the Need for Power
	Powered USB Adapters
	Summary

	Chapter 10: The Raspberry sPi
	Materials Needed
	Presetup
	Getting Started
	dmesg
	Troubleshooting

	Motion Capture
	Troubleshooting

	Alerting Yourself
	Installing SSMTP
	Installing and Using mutt
	Testing the Alerting System
	Troubleshooting

	Bringing It All Together
	Understanding the Problem
	Making Decisions
	Designing Solution
	Script 1
	Script 2
	Testing
	Troubleshooting

	Where to Go from Here
	Summary

	Chapter 11: Pi Media Center
	Video with XBMC
	Setup to Build
	Changing Files with Sed and Regular Expressions
	Compiling Source Code
	Troubleshooting

	Starting and Using XBMC
	XBMC on Boot
	Troubleshooting

	Stream Music with Airplay
	Troubleshooting
	Airport on Boot

	Summary

	Index

