

Preface

About SunFounder

SunFounder is a technology company focused on Raspberry Pi and Arduino open source

community development. Committed to the promotion of open source culture, we strive to

bring the fun of electronics making to people all around the world and enable everyone to

be a maker. Our products include learning kits, development boards, robots, sensor modules

and development tools. In addition to high quality products, SunFounder also offers video

tutorials to help your own project. If you have interest in open source or making something

cool, welcome to join us! Visit www.sunfounder.com for more!

About the Super Kit 3.0

This super kit is suitable for the Raspberry Pi B, model B+, Pi 2 model B, Pi 3 model B and Pi 3

model B+. It includes various components and chips that can show different interesting

phenomena. You can make it happen by following the experiment instructions, and learn

basic knowledge about them. Also you can explore more application after mastering the

principle and code. Now get on the road!

In this book, we will show you circuits with both realistic illustrations and schematic diagrams.

You can go to our official website www.sunfounder.com to download the related code by

clicking LEARN --> Get tutorials and watch related videos by clicking VIDEO.

Free Support

If you have any TECHNICAL questions, add a topic under FORUM section on our website

and we'll reply as soon as possible.

For NON-TECH questions like order and shipment issues, please send an email to

service@sunfounder.com. You're also welcomed to share your projects on FORUM.

Reprint 2.0

http://www.sunfounder.com/
http://www.sunfounder.com/
mailto:support@sunfounder.com

Contents

Components List .. 1

Components Introduction.. 8

Resistor .. 8

Potentiometer ..10

LED ...11

RGB LED ..12

Jumper Wires ..13

Breadboard ..13

Get Started .. 16

Preparation ...16

Access to Raspberry Pi’s Console ...16

Using Console in GUI (terminal, recommended for beginners) ...16

Using Console Only ...18

Introduction to Raspberry Pi ... 22

RAB Holder...22

Raspberry Pi ..24

Raspberry Pi Pin Name ...24

Extension Board ...25

GPIO Libraries .. 28

WiringPi ...28

Introduction ...28

RPi.GPIO ...29

Introduction ...29

Download the Code .. 30

Lesson 1 Blinking LED .. 31

Lesson 2 Controlling an LED by a Button .. 40

Lesson 3 Flowing LED Lights .. 44

Lesson 4 Breathing LED ... 48

Lesson 5 RGB LED ... 52

Lesson 6 Buzzer ... 56

Lesson 7 Relay .. 60

Lesson 8 4N35 ... 64

Lesson 9 Ne555 .. 68

Lesson 10 Slide Switch .. 72

Lesson 11 How to Drive a DC Motor ... 76

Lesson 12 Rotary Encoder .. 81

Lesson 13 Driving LEDs by 74HC595 .. 86

Lesson 14 Driving 7-Segment Display by 74HC595 .. 91

Lesson 15 Driving Dot-Matrix by 74HC595 ... 98

Lesson 16 LCD1602 ... 106

Lesson 17 ADXL345 ... 112

1

 Components List

No. Name Quantity Component

1
555 Timer IC

1

2
Optocoupler (4N35)

2

3
Shift Register (74HC595)

2

4
L293D

1

5
Accelerometer ADXL345

1

6
Rotary Encoder

1

2

7
Potentiometer (50k)

1

8
Resistor (220Ω)

8

(red, red, black, black, brown)

9
Resistor (1kΩ)

8

(brown, black, black, brown, brown)

10
Resistor (10kΩ)

4
(brown, black, black, red, brown)

11
Resistor (100kΩ)

4
(brown, black, black, orange, brown)

12
Resistor (1MΩ)

1

(brown, black, green, gold)

13
Resistor (5.1MΩ)

1
(green, brown, green, gold)

14
Diode Rectifier

4

15
Switch

1

3

16
Button

5

17
Power Supply Module

1

18
LCD1602

1

19
Dot Matrix Display (8*8)

1

20
7-Segment Display

2

21
DC Motor

1

4

22
RGB LED

1

23
LED (red)

8

24
LED (white)

4

25
LED (green)

4

26
LED (yellow)

4

27
NPN Transistor (S8050)

2

5

28
PNP Transistor (S8550)

2

29 Capacitor Ceramic

100nF

4

30 Capacitor Ceramic

10nF

4

31
Breadboard

1

32
Active Buzzer

1

33
Relay

1

6

34
Fan

1

35 Male-to-Male

Jumper Wire

65

36 Female-to-Male

Dupont Wire

20

37
5-Pin Anti-reverse Cable

2

38
9V Battery Buckle

1

39 M3*10 Screw 2

40 M2.5*6 Screw 4

41 M3*6 Screw 6

7

42
RAB Holder

1

43 T-Extension Board 1

44 40-Pin GPIO Cable 1

Notes:

After unpacking, please check that the number of components is correct and that all

components are in good condition.

8

Components Introduction

Resistor

Resistor is an electronic element that can limit the branch current. A fixed resistor is one whose

resistance cannot be changed, when that of a potentiometer or variable resistor can be

adjusted.

The resistors in this kit are fixed ones. It is essential in the circuit to protect the connected

components. Figure (a) below shows a 220Ω resistor. Ω is the unit of resistance and the larger

includes KΩ, MΩ, etc. Their relationship can be shown as follows: 1 MΩ=1000 KΩ，1 KΩ = 1000

Ω, which means 1 MΩ = 1000,000 Ω = 10^6 Ω. Figure (b) and (c) show two generally used

circuit symbols for resistor. Normally, the resistance is marked on it. So if you see these symbols

in a circuit, it stands for a resistor.

(a)

(b） (c)

The resistance can be marked directly, in color code, and by character. The resistors offered

in this kit are marked by different colors. Namely, the bands on the resistor indicate the

resistance.

When using a resistor, we need to know its resistance first. Here are two methods: you can

observe the bands on the resistor, or use a multimeter to measure the resistance. You are

recommended to use the first method as it is more convenient and faster. If you are not sure

about the value, use the multimeter.

In the kit, a Resistor Color Code Calculator card is provided as shown below:

(d)

9

As shown in the card, each color stands for a number.

Black Brown Red Orange Yellow Green Blue Violet Grey White Gold Silver

0 1 2 3 4 5 6 7 8 9 0.1 0.01

The 4- and 5-band resistors are frequently used, on which there are 4 and 5 chromatic bands.

Let’s see how to read the resistance value of a 5-band resistor as shown below. Normally,

when you get a resistor, you may find it hard to decide which end to start for reading the

color. The tip is that the gap between the 4th and 5th band will be comparatively larger.

Therefore, you can observe the gap between the two chromatic bands at one end of the

resistor; if it's larger than any other band gaps, then you can read from the opposite side.

(e)

So for this resistor, the resistance should be read from left to right. The value should be in this

format: 1st Band 2nd Band 3rd Band x 10^Multiplier (Ω) and the permissible error is ±Tolerance%. So

the resistance value of this resistor is 2(red) 2(red) 0(black) x 10^0(black) Ω = 220 Ω, and the

permissible error is ± 1% (brown).

One more example. The resistance of the resistor below should be 1(brown) 0(black) 0(black)

x 10^1(brown) Ω =100x10 Ω = 1000 Ω = 1KΩ, and the permissible error is ± 1%(brown). Now try

it by yourself!

(f)

Now let’s try a 4-band resistor. There are two 4-band resistors in the kit: a 1MΩ one and a

5.1MΩ one. You may not use such a large resistor in the experiments of the kit but you can

use them in other projects. Unlike 5-band resistors, the third band of a 4-band one is not the

3rd band but the multiplier; its fourth band is Tolerance. So the resistance value of a 4-band

resistor should be 1st band 2nd band x 10^Multiplier (Ω), and the permissible error is

±Tolerance%.

(g)

10

Read the resistance of the above resistor from left to right. The value is 1(brown) 0(block) x

10^5(green)=10x10^5Ω=10^6Ω=1MΩ and the permissible error is ±5%（gold）

The resistance value of the resistor below is 5(green) 1(brown) x 10^5(green) = 51 x 10^5 Ω =

5.1 x 10^6 Ω = 5.1 MΩ, and the permissible value is ±5% (gold).

(h)

You can also use a multimeter to measure the resistance value of these resistors to double

check whether you've read it correctly or not.

Potentiometer

Potentiometer is also a resistance component with 3 terminals and its resistance value can

be adjusted according to some regular variation. Potentiometer usually consists of resistor

and movable brush. When the brush is moving along the resistor, there is a certain resistance

or voltage output depending on the displacement. Figure (i) is the potentiometer and figure

(j) is the corresponding circuit symbol. The middle pin in figure (i), represented by the arrow

in Fig. (j) is the movable brush.

(i) (j)

The functions of the potentiometer in the circuit are as follows:

1. Serving as a voltage divider

Potentiometer is a continuously adjustable resistor. When you adjust the shaft or sliding

handle of the potentiometer, the movable contact will slide on the resistor. At this point, a

voltage can be output depending on the voltage applied onto the potentiometer and

the angle the movable arm has rotated to or the travel it has made.

2. Serving as a rheostat

11

3. When the potentiometer is used as a rheostat, connect the middle pin and one of the

other 2 pins in the circuit. Thus you can get a smoothly and continuously changed

resistance value within the travel of the moving contact.

4. Serving as a current controller

When the potentiometer acts as a current controller, the sliding contact terminal must be

connected as one of the output terminals.

LED

Semiconductor light-emitting diode is a type of component which can turn electric energy

into light energy via PN junctions. By wavelength, it can be categorized into laser diode,

infrared light-emitting diode and visible light-emitting diode which is usually known as light-

emitting diode (LED).

 (k) (l)

See LED in figure (k). Figure (l) is the circuit symbol. Diode has unidirectional conductivity, so

the current flow will be as the arrow indicates in figure (l). You can only provide the anode

with a positive power and the cathode with a negative. Thus the LED will light up.

In this kit, LEDs of red, green, yellow and white are provided. An LED has two pins. The longer

one is the anode, and shorter one, the cathode. Pay attention not to connect them inversely.

There is fixed forward voltage drop in the LED, so it cannot be connected with the circuit

directly because the supply voltage can outweigh this drop and cause the LED to be burnt.

The forward voltage of the red, yellow, and green LED is 1.8 V and that of the white one is

2.6 V. Most LEDs can withstand a maximum current of 20 mA, so we need to connect a

current limiting resistor in series.

The formula of the resistance value is as follows:

R = (Vsupply – VD)/I

R stands for the resistance value of the current limiting resistor, Vsupply for voltage supply, VD

for voltage drop and I for the working current of the LED.

If we provide 5 voltage for the red LED, the minimum resistance of the current limiting resistor

should be: (5V-1.8v)/20mA = 160Ω. Therefore, you need a 160Ω or larger resistor to protect

the LED. You are recommended to use the 220Ω resistor offered in the kit.

12

RGB LED

An RGB LED is provided in this kit. RGB LEDs emit light in various colors. An RGB LED packages

three LEDs of red, green, and blue into a transparent or semitransparent plastic shell. It can

display various colors by changing the input voltage of the three pins and superimpose them,

which, according to statistics, can create 16,777,216 different colors.

RGB LEDs can be categorized into common anode and common cathode ones. In this

experiment, the latter is used. The common cathode, or CC, means to connect the cathodes

of the three LEDs. After you connect it with GND and plug in the three pins, the LED will flash

the corresponding color. Its circuit symbol is shown as figure (n).

(m) (n)

An RGB LED has 4 pins: the longest one is GND; the others are Red, Green and Blue. Touch its

plastic shell and you will find a cut. The pin closest to the cut is the first pin, marked as Red,

then GND, Green and Blue in turn.

(o)

Or you can distinguish them in another way. As GND is the longest one and can be defined

directly, you just need to confirm the other three pins. You can test it by giving them a small

voltage. The forward voltage drop from the three pins to the GND are respectively 1.8V (red),

2.5V (blue), and 2.3V (green). Thus, when you connect the same current limiting resistor with

the three pins and supply them with the same voltage, the red one is the brightest, and then

13

comes the green and the blue one. Therefore, you may need to add a current limiting resistor

with different resistances to the three pins for these colors.

Jumper Wires

Wires that connect two terminals are called jumper wires. There are various kinds of jumper

wires. Here we focus on those used in breadboard. Among others, they are used to transfer

electrical signals from anywhere on the breadboard to the input/output pins of a

microcontroller.

Jumper wires are fitted by inserting their "end connectors" into the slots provided in the

breadboard, beneath whose surface there are a few sets of parallel plates that connect the

slots in groups of rows or columns depending on the area. The "end connectors" are inserted

into the breadboard, without soldering, in the particular slots that need to be connected in

the specific prototype.

There are three types of jumper wire: Female-to-Female, Male-to-Male, and Male-to-Female.

The reason we call it Male-to-Female is because it has the outstanding tip in one end as well

as a sunk female end. Male-to-Male means both side are male and Female-to-Female

means both ends are female.

Male-to-Female Male-to-Male Female-to-Female

 (p) (q) (r)

More than one type of them may be used in a project. The colors of the jumper wires are

different but it doesn’t mean their functions are different accordingly; it's just designed so to

better identify the connection between each circuit. The Male-to-Male and Male-to-Female

jumper wires are included in the kit. But actually only some Male-to-Male ones will be used in

the experiments. You can use the Male-to-Female wires in other experiments.

Breadboard

A breadboard is a construction base for prototyping of electronics. It is used to build and test

circuits quickly before finalizing any circuit design. And it has many holes into which

components like ICs and resistors as well as jumper wires mentioned above can be inserted.

The breadboard allows you to easily plug in and remove components. If there is going to be

many changes or if you just want to make a circuit quickly, it will be much quicker than

14

soldering up your circuit. Therefore, in lots of experiments, it is often used as a hub to connect

two or more devices.

Normally, there are two types of breadboard: full+ and half+. You can tell their difference

from the names. A half+ breadboard is half the size of a full+ one and their functions are the

same. Here take the full+ breadboard.

(s) Full+

(t) Half+

This is the internal structure of a full+ breadboard. Although there are holes on the

breadboard, internally some of them are connected with metal strips. Those holes are to

insert pins of devices or wires. As shown in the fig. (t) below, there are four long metal strips

on the long sides; the blue and red lines are marked just for clear observation. But you can

take the blue line as the GND and red one as VCC for convenience. Every five holes in the

middle are vertically connected with metal strips internally which don’t connect with each

other. You can connect them horizontally with wires or components. A groove is made in the

middle on the breadboard for IC chips.

15

(u) Internal structure of the full+

Now let’s make some simple experiment with the breadboard. Turn on an LED as shown in

the figure below. You can have a try and the LED will light up. The breadboard makes it

possible for you to plug and pull components at any time without welding, which is very

convenient for tests.

(v)

16

Get Started

Preparation

1. Prepare a MicroSD/TF card of no less than 8GB, a 5V 2A DC power adapter with a

MicroUSB port, and a network cable (to connect your router and Raspberry Pi, or plug in

the USB Wi-Fi adapter directly if you have one).

2. Download the image for the Raspbian system onto your computer. Refer to instructions

through DOWNLOADS->RASPBIAN on the official website raspberrypi.org:

https://www.raspberrypi.org/documentation/installation/installing-images/README.md.

Write the image into the microSD/TF card, and then plug the card into the slot on your

Raspberry Pi.

Note: For 2016-11-25 release or above, SSH (a protocol securing remote login session and

other network service) is Disabled by default. Therefore, when you need to log in remotely,

you need to create a file named "ssh" under /boot/ to enable it.

Access to Raspberry Pi’s Console

In the subsequent tutorials, the console will be used from time to time. It is platform for

interactions in Linux. Therefore, before starting the lessons, you may need to know how to

access to Raspberry Pi’s console.

Using Console in GUI (terminal, recommended for beginners)

Using console in GUI is of great help for the beginners. You can not only compile and run the

code in terminal, but also be able to do some simple file operating, code-downloading, etc.

cooperating with GUI.

1. Preparations: a screen monitor, an HDMI cable (if your monitor only support VGA, use a

VGA-HDMI converter), a USB mouse, a USB keyboard and a network cable or a USB Wi-Fi

dongle.

2. Connect the monitor to power. Then connect it with the Raspberry Pi via the converter

cable (HDMI cable). Connect the Ethernet cable or the USB Wi-Fi dongle, and the mouse

and keyboard to USB ports. At last, connect a 5V 2A DC power to the RPi. Power on the

screen if needed. Then you can see the display showing the Raspberry Pi icon as shown

below.

https://www.raspberrypi.org/documentation/installation/installing-images/README.md

17

If the monitor displays colored texts with a black background after booting, and that is in

console. You can just use this as a terminal (but not recommend for beginners), or change

the option for automatically loading a graphic user interface (GUI). To activate GUI, you

can type in startx with the keyboard and press Enter, and to always boot up to GUI, type

in sudo raspi-config and go through Boot Options > Desktop/Desk Autologin, and reboot.

Wait for a while and the GUI display will show up as below.

Note:

The screen monitor shown above is the 10.1 inch one we're using, available on our website

www.sunfounder.com and our Amazon store. Check out now and use your Raspberry Pi

in a most convenient way.

3. Now click the icon of Terminal on the screen, or press CTRL+ALT+T simultaneously.

http://www.sunfounder.com/

18

4. Then a terminal will pop up as follows:

Here’s the console we talk about before.

Using Console Only

There are several ways to use the console only and they can be divided into mainly two ways:

using directly and remotely.

A. Directly

A screen is needed when you use the console directly.

1. Preparations: a screen monitor, an HDMI cable (if your monitor only support VGA, use a

VGA-HDMI converter), a USB keyboard and a network cable or a USB Wi-Fi dongle. Yes,

you don’t need a mouse, or you cannot use mouse.

2. Connect the monitor to power. Then connect it with the Raspberry Pi via the converter

cable. Connect the Ethernet cable or the USB Wi-Fi dongle, and keyboard. At last,

connect a 5V 2A DC power to the RPi. Power on the screen if needed. Then you can see

the console full screen. If you boot into GUI instead, Open a terminal, type in sudo raspi-

config and press enter, go through Boot Options > Console/Console Autologin, and reboot.

B. Remotely

For three platforms: Windows, Mac and Linux, it might be a little bit different to do this.

Linux and Mac users can easily log into the Raspberry Pi via ssh.

On Linux or Mac, find Terminal and open it.

19

Type in ssh pi@<ip_address>

 – ssh is the tool for remote login; pi, the user name, and <ip_address> as the name suggests,

your RPi's IP address. For example:

 ssh pi@192.168.0.1

Press Enter to confirm.

If you get a prompt that no ssh is found, you need to install a ssh tool like Ubuntu and Debian

by yourself:

 sudo apt-get install ssh

For other platforms, please contact your supplier.

For Windows users, you may use a ssh tool to log into Raspberry Pi remotely, like PuTTY.

1. Similarly plug the TF card into the Raspberry Pi (RPi), power the RPi with a 5V 2A DC power

and connect the Ethernet cable (Better not a USB Wi-Fi dongle). Now). Now the Raspberry

Pi is ready.

2. Then you need to know the IP address of the RPi. You can find it on the settings interface

of your router. For more details, please refer to your router provider's page.

3. Open PuTTY and click Session on the left tree-alike structure (generally it's collapsed upon

PuTTY startup):

20

4. Enter the IP address of the RPi you just got in the textbox under Host Name (or IP address)

and 22 under Port (by default it is 22)

5. Click Open. Note that when you first log in to the Raspberry Pi with the IP address, you'll

be prompted with a security reminder. Just click Yes. When the PuTTY window prompts

login as: type in the user name of the RPi: pi, and password: raspberry (the default one, if

you haven't changed it).

21

Note: when you're typing the password in, the window shows nothing just null, but you're

in fact is typing things in. So just focus on typing it right and press Enter. After you log in the

RPi successfully, the window will display as follows.

Now, no matter what method you take, you can get in the console of your Raspberry Pi.

22

Introduction to Raspberry Pi

RAB Holder

RAB Holder is a basic but indispensable component for your experiment. It makes your

experiment easier and can be used for fixing a bread board, an Arduino board like Uno

board or Mega2560, or a Raspberry Pi board.

Before starting the experiment, you need to fix the Raspberry Pi and the breadboard on the

RAB Holder first.

Remove the sticker from the back of the breadboard first, and fix the breadboard on the

RAB Holder. Pay attention to place it in such a position as shown in the figure below, so that

the 3.3V pin and 5V pin on the T-Extension Board align with the bus strips besides the two red

lines when we insert the T-Extension Board later.

Then insert the T-Extension Board into the Breadboard, and insert the 40-pin GPIO Cable into

the board.

Red line

Blue line

23

Then place the Raspberry Pi in the holder, fasten it with M2.5x5 screws. Since it may be a little

difficult to fasten it, be careful to operate.

Pay attention to the direction when plugging in the 40-pin GPIO Cable into the Raspberry Pi

pins. The triangle sign at the edge should be close to the TF card slot. DO NOT connect them

inversely, or the Raspberry Pi will be short cut!

24

Raspberry Pi

A Raspberry Pi is an indispensable component for the kit, the control device. But it is not

included in the kit and you need to prepare one yourself.

The Raspberry Pi is a kind of minicomputer for users like amateurs, teachers, students and

small businesses, etc. With a pre-installed Linux system, it is credit card-sized and equipped

with an ARM architecture processor, whose operational performance is similar to that of

smart phone. As for ports, the Raspberry Pi provides USB ports for mouse and keyboard. In

addition, there are also ports for the Fast Ethernet, SD card and HDMI display or TV’s

connection. Being low cost and low consumption, the Raspberry Pi is very suitable for

embedded projects. Many people have been able to apply the Pi to a variety of projects

including some simple ones for children and complex ones with more advanced functions.

You can apply it like a PC for spreadsheets-making, word-processing and games, or to play

HD videos of up to 1080p.

It can’t be better describing the Raspberry Pi as "though small, perfectly formed". It has the

same ability compared with the PC and carries ports for the USB, Ethernet, HDMI, RCA, and

3.5mm stereo jack. Moreover, it can control GPIOs, while the PC cannot. Through this kit, you

will learn how to use the GPIOs to make simple experiments and how to program.

The Raspberry Pi evolves through many versions including the latest (so far) Raspberry Pi 3

Model B+ , 3 Model B, 2 model B, 1 Model B+, Zero, and 1 Model A+. Certainly, the newer,

the more powerful. The 3 Model B+ and 3 model B now even supports Bluetooth and Wi-Fi.

You can choose according to actual needs.

Raspberry Pi Pin Name

There are no pins printed on the latest Raspberry Pi, which may bring various troubles to new

users. The following is the actual pins definition and form definition of the Raspberry Pi. The

actual pins are corresponding to the Physical on the right. There are 40 pins in total from left

25

to right. The columns near Physical are the V (voltage), Mode (Input or Output), Name

(original name), wPi (wiringPi, C language based on), BCM (Python based on) of the pins.

Besides the original name of the pins, there are other three ways of naming including physical,

wiringPi and BCM. If you see a pin being defined as 0 in the C language, its original name is

GPIO 0. In Python code, it’s 17 (BCM) or 11(physical). So you need to know the name,

physical, wiringPi and BCM of a pin.

Extension Board

The function of the extension board is to lead out pins of the Raspberry Pi to breadboard by

GPIO Extension Board to avoid GPIO damage caused by frequent plugging in or out. For

plugging convenience, we designed it in T-shape and name it T-Shape Extension Board.

40-pin GPIO Extension Board

1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35
37
39

26

This is our 40-pin GPIO Extension Board and GPIO cable for Raspberry Pi model B+, 2 model

B, 3 model B and 3 model B+.

For your better understanding of every pins, we have drawn a table for you to know the

Name, BCM and wiring pi of each pin.

26-pin GPIO Extension Board

26-pin GPIO Extension Board and GPIO cable for Raspberry Pi model B and Raspberry Pi

model A.

27

Also, we have drawn a table of the corresponding BCM, wiringPi and Name of each pins.

28

GPIO Libraries

WiringPi

Introduction

WiringPi is a GPIO library for C applied to the Raspberry Pi. It complies with GUN Lv3. The

functions in wiringPi are similar to those in the wiring system of Arduino. They enable the users

familiar with Arduino to use wiringPi more easily.

Now the Raspbian system has wiringPi pre-installed, you can use it directly.

Test whether wiringPi is installed or not.

WiringPi includes lots of GPIO commands which enable you to control all kinds of interfaces

on Raspberry Pi. You can test whether the wiringPi library is installed successfully or not by the

following instructions.

 gpio –v

If the message above appears, the wiringPi is installed successfully.

Use the command below to see the GPIO layout

 gpio readall

29

RPi.GPIO

If you are a Python user, you can program GPIOs with API provided by RPi.GPIO and use

BCM numbering method to control the GPIOs of Raspberry Pi. Please note that it differs from

the way that using wiringPi numbering method to control the GPIO on a Raspberry Pi in C

language.

Introduction

RPi.GPIO is a module to control Raspberry Pi GPIO channels. This package provides a class

to control the GPIO on a Raspberry Pi. For examples and documents, visit

http://sourceforge.net/p/raspberry-gpio-python/wiki/Home/.

Now the Raspbian Jessie 2016-05-27 has RPi.GPIO pre-instalLED, you can use it directly, too.

Test whether RPi.GPIO is installed or not:

Type in python to python CLI:

In Python CLI, Type in:

import RPi.GPIOimport RPi.GPIO

If no error prompts, it means RPi.GPIO is installed.

Then, type in

RPi.GPIO.VERSION

If it shows its version like above, your Pi is ready to go!

So in this kit, please note that the example code is ONLY test on Raspbian.

http://sourceforge.net/p/raspberry-gpio-python/wiki/Home/

30

Download the Code

We provide two methods for download:

Method 1: Use git clone (Recommended)

Log into Raspberry Pi’s console, just as previously shown.

Change directory to /home/pi

 cd /home/pi/

Note: cd to change to the intended directory from the current path. Informally, here is to go to

 the path /home/pi/.

Clone the repository from GitHub

 git clone https://github.com/sunfounder/SunFounder_Super_Kit_V3.0_for_Raspberry_Pi.git

The advantage of this method is that, you can update the latest code any time you want,

using git pull under the folder.

Method 2: Download the code.

Download the source code from github:

https://github.com/sunfounder/SunFounder_Super_Kit_V3.0_for_Raspberry_Pi

https://github.com/sunfounder/SunFounder_Super_Kit_V3.0_for_Raspberry_Pi

31

Lesson 1 Blinking LED

Introduction

In this lesson, we will learn how to program Raspberry Pi to make an LED blink. You can play

numerous tricks with an LED as you want. Now get to start and you will enjoy the fun of DIY

at once!

Components

- 1 * Raspberry Pi

- 1 * Breadboard

- 1 * T-Extension Board

- 1 * 40-Pin Cable

- 1 * LED

- 1 * Resistor (220Ω)

- Jumper wires

Principle

In this experiment, connect a 220Ω resistor to the anode (the long pin of the LED), then the

resistor to 3.3 V, and connect the cathode (the short pin) of the LED to B17 of Raspberry Pi.

We can see from the schematic diagram that the anode of LED connects to a current-

limiting resistor and then to 3.3V. Therefore, to turn on an LED, we need to make B17 low (0V)

level. It can be realized by programming.

Experimental Procedures

Step 1: Build the circuit

32

For C language users:

Step 2: Go to the folder of the code.

If you use a monitor, you're recommended to take the following steps.

Go to /home/pi/ and find the folder SunFounder_Super_Kit_V3.0_for_Raspberry_Pi .

 Find C in the folder, right-click on it and select Open in Terminal.

 Then a window will pop up as shown below. So now you've entered the path of the code

01_blinkLed.c

In the lessons later, we will show how to get into the folder of the code in command way, not

with the display. You only need to find out the code file and right click Open in Terminal. You

can back to lesson 1 to check if you forgot. Certainly, the terminal can be opened if you’re

using display, and then use cd command directly to go to the code path.

If you log into the Raspberry Pi remotely, use “cd” to change directory:

 cd /home/pi/SunFounder_Super_Kit_V3.0_for_Raspberry_Pi/C

Note: Change directory to the path of the code in this experiment via cd.

33

In either way, you now are in the folder C. The subsequent procedures under the two

methods are the same. Let's move on.

Step 3: Compile the Code

gcc 01_blinkLed.c -o 01_blinkLed -lwiringPi

Note: gcc is GNU Compiler Collection. Here, it functions like compiling the C language file

01_blinkLed.c and outputting an executable file 01_blinkLed. In the command, -o means

outputting and -lwiringPi is to load the library wiringPi (l is short for library).If you want to write your

own C code and compile to run it, you need to master gcc.

Since the gcc command is too long, you can use make to test the experimental effect of the

kit to make the process quicker and more convenient.

make 01_blinkLed

Note: The make command will compile according to the rules in the Makefile. Two files will be

generated after compiling: “*.o” and an executable file.

We use makefile, in essence, is to write the compilation method of gcc into the automated

script. If you have written your own program in C language, you need to write and modify the

makefile so as to use make command to compile your C code.

Step 4: Run the executable file output in the previous step:

 sudo ./01_blinkLed

Note: To control the GPIO, you need to access to led with the permission of superuser (sudo is

not needed to control the GPIO for the raspbian system after 2016-5-27), namely, by the

command sudo. In the command “./” indicates the current directory. The whole command is to

run the 01_blinkLed in the current directory.

34

If you want to view the code 01_blinkLed.c, press Ctrl + C to stop running the code. Then

type the following command to open it:

nano 01_blinkLed.c

Note: nano is a text editor tool. The command is to open the code file 01_edblinkLed.c by this

tool.

35

Code Explanation

#include <wiringPi.h>//The hardware drive library designed for the C language of

Raspberry Pi. Adding this library is convenient for hardware initialization, I/O ports,

PWM outputs, etc.

#include <stdio.h>// Standard I/O library. The pintf function used for printing the data

displayed on the screen is realized by this library. There are many other performance

functions for you to explore.

#define LedPin 0 // Pin B17 of the T_Extension Board is corresponding to the pin0 in

wiringPi, namely, GPIO 0 of the raspberry Pi. Assign GPIO 0 to LedPin, LedPin represents

GPIO 0 in the code later.

pinMode(LedPin, OUTPUT)// Set LedPin as output to write value to it.

digitalWrite(LedPin, LOW)// Set GPIO0 as 0V (low level). Since the cathode of LED is

connected to GPIO0, thus the LED will light up if GPIO0 is set low. On the contrary, set

GPIO0 as high level, digitalWrite (LedPin, HIGH): LED will go out.

Press Ctrl+X to exit. If you have modified the code, there will be a prompt asking whether to

save the changes or not. Type in Y (save) or N (don’t save). Then press Enter to exit. Repeat

Step 3 and Step 4 to see the effect after modifying.

For Python users

Step 2: Go to the folder of the code and run it.

Open the downloaded folder SunFounder_Super_Kit_V3.0_for_Raspberry_Pi/Python and

you can see them.

If you use a monitor, you're recommended to take the following steps.

Find 01_blinkLed.py and double click it to open. Now you're in the file.

36

Click Run ->Run Module in the window and the following contents will appear.

To stop it from running, just click the X button on the top right to close it and then you'll back

to the code details. If you modify the code, before clicking Run Module (F5) you need to

save it first. Then you can see the results.

If you want to log into the Raspberry Pi remotely, type in the command:

 cd /home/pi/SunFounder_Super_Kit_V3.0_for_Raspberry_Pi/Python

 Run the code:

 sudo python 01_blinkLed.py

Note: Here sudo – superuser do, and python means to run the file by Python.

If you want to view the code 01_blinkLed.py, press Ctrl + C to stop running the code. Then

type the following command to open it:

nano 01_blinkLed.py

37

Note: nano is a text editor tool. The command is to open the code file 01_blinkLed.c

 by this tool.

Code Explanation

#!/usr/bin/env python:

When the system detects this, it will search the installation path of python in the env

setting, then call the corresponding interpreter to complete the operation. It’s to

prevent the user not installing the python onto the /usr/bin default path.

import RPi.GPIO as GPIO # import RPI.GPIO package, thus python code control GPIO easily

with it.

import time # import time package, for time delay function in the following program.

LedPin = 17 # LED connects to the B17 of the T-shape extension board, namely, the

GPIO 0 of the Raspberry Pi.

Define a setup function for some setup

def setup():

 GPIO.setmode(GPIO.BCM) # Set the GPIO modes to BCM Numbering

 # Set LedPin's mode to output, and initial level to High (3.3v)

 GPIO.setup(LedPin, GPIO.OUT, initial=GPIO.HIGH)

Define a main function for main process

def main():

 # Print messages

 print_message()

 while True:

 print '...LED ON'

 # Turn on LED

 GPIO.output(LEDPin, GPIO.LOW)

38

 # delay 0.5 second, which is equals to the delay in C language, using second as

the unit,

 time.sleep(0.5)

 print 'LED OFF...'

 # Turn off LED

 GPIO.output(LedPin, GPIO.HIGH)

 time.sleep(0.5)

Define a destroy function for clean up everything after the script finished

def destroy():

 # Turn off LED

 GPIO.output(LedPin, GPIO.HIGH)

 # Release resource

 GPIO.cleanup()

If run this script directly, do:

if __name__ == '__main__':

 setup()

 try:

 main()

 # When 'Ctrl+C' is pressed, the child program destroy () will be executed.

 except KeyboardInterrupt:

 destroy()

Press Ctrl+X to exit. If you have modified the code, there will be a prompt asking whether to

save the changes or not. Type in Y (save) or N (don’t save).

39

Then press Enter to exit. Type in nano 01_blinkLed.py again to see the effect after the

change.

Run the code to make it work. It will be like below:

Further Exploration

If you want the LED to speed up the blinking, just change the delay time. For example,

change the time to delay (200) (for C) or time.sleep(0.2) (for python) in the program,

recompile and run, and then you will see the LED blink faster.

Summary

Raspberry Pi packages many low-level detail designs, which ease your way to explore your

own apps. Maybe that is the charm of Raspberry Pi. Now you have already learnt how to

use the Raspberry Pi GPIO to blink an LED. Keep moving to the next contents.

FAQ

If you haven't modified the code, you do not need to run make 01_blinkLed again.

make 01_blinkLed

Or a message will appear: make: ’01_blinkLed’ is up to date

It will not appear only when you run the make command after having changed the code

and saved it.

Tips: For any TECHNICAL questions, add a topic under FORUM section on our website

www.sunfounder.com and we'll reply as soon as possible.

http://www.sunfounder.com/

40

Lesson 2 Controlling an LED by a Button

Introduction

In this lesson, we will learn how to turn an LED on or off by a button.

Components

- 1 * Raspberry Pi

- 1 * Breadboard

- 1 * LED

- 1 * Button

- 1 * Resistor (220Ω)

- Jumper wires

- 1 * T-Extension Board

- 1 * 40-Pin Cable

Principle

Button

Buttons are a common component used to control electronic devices. They are usually used

as switches to connect or disconnect circuits. Although buttons come in a variety of sizes

and shapes, the one used here is a 6mm mini-button as shown in the following pictures. Pin

1 is connected to pin 2 and pin 3 to pin 4. So you just need to connect either of pin 1 and

pin 2 to pin 3 or pin 4.

The following is the internal structure of a button. Since the pin 1 is connected to pin

2, and pin 3 to pin 4. The symbol on the right below is usually used to represent a

button in circuits.

41

When the button is pressed, the 4 pins are connected, thus closing the circuit.

Use a normally open button as the input of Raspberry Pi, the detailed connection is as shown

in the schematic diagram below. When the button is pressed, the B18 will turn into low level

(0V). We can detect the state of the B18 through programming. That is, if the B18 turns into

low level, it means the button is pressed. You can run the corresponding code when the

button is pressed, and then the LED will light up. Note: The longer pin of the LED is the anode

and the shorter one is the cathode.

Experimental Procedures

Step 1: Build the circuit

For C language users:

Step 2: Open the code file:

 cd /home/pi/SunFounder_Super_Kit_V3.0_for_Raspberry_Pi/C

Note: Change directory to the path of the code in this experiment via cd.

Step 3: Compile the Code

gcc 02_buttonControlLed.c -o 02_buttonControlLed -lwiringPi

42

or

make 02_buttonControlLed

Step 4: Run the executable file above

 sudo ./02_buttonControlLed

Step 5: Check the code

 nano 02_buttonControlLed.c

Code Explanation

#define LedPin 0 Pin B17 in the T_Extension Board connects to the GPIO0. GPIO0

corresponds to pin0 in the wiringPi pin figure. So in C program, LedPin is defined as 0.

#define ButtonPin 1 Pin B18 in the T_Extension Board connects to the GPIO8. GPIO8

corresponds to pin1 in the wiringPi pin figure. So in C program, LedPin is defined as 1.

pinMode(LedPin, OUTPUT) Set LedPin as output to assign value to it.

pinMode(ButtonPin, INPUT) Set ButtonPin as input to read the value of ButtonPin.

pullUpDnControl(ButtonPin, PUD_UP) Set the ButtonPin as pull-up input. When the button

is not pressed, the I/O port is 3.3V. When the button is pressed, the I/O port connects

to GND (OV). You can judge the button status by reading the level value of the I/O port.

while(1){

// indicate that button has pressed down

if(digitalRead(ButtonPin) == 0){

// LED on

digitalWrite(LedPin, LOW);

printf("...LED on\n");

}

else{

// LED off

digitalWrite(LedPin, HIGH);

printf("LED off...\n");

}

digitalWrite (LedPin, HIGH) in while: close the LED. if (digitalRead (ButtonPin) == 0:

check whether the button has been pressed. Execute digitalWrite(LedPin, LOW) when

pressed to light up LED.

Press Ctrl+X to exit, if you have modified the code, there will be a prompt asking whether to

save the changes or not. Type in Y (save) or N (don’t save). Then press Enter to exit. Repeat

Step 3 and Step 4 to see the effect after modifying.

For Python users:

Step 2: Open the code file

43

 cd /home/pi/SunFounder_Super_Kit_V3.0_for_Raspberry_Pi/Python

Step 3: Run the code

 sudo python 02_buttonControlLed.py

Step 4: Check the code

 nano 02_buttonControlLed.py

Code Explanation

LedPin = 17 # Set #17 as LED pin

BtnPin = 18 # Set #18 as button pin

Set up a falling detect on BtnPin, and callback function to swled

GPIO.add_event_detect(BtnPin, GPIO.FALLING, callback=swLED)

Define a callback function for button callback, execute the function after the

callback of the interrupt.

def swLed(ev=None):

 global Led_status

 # Switch Led status (on-->off; off-->on)

 Led_status = not Led_status

 GPIO.output(LedPin, Led_status)

 if Led_status:

 print 'LED OFF...'

 else:

 print '...LED ON'

Now, press the button, and the LED will light up; press the button again, and the LED will go

out. At the same time, the state of the LED will be printed on the screen.

44

Lesson 3 Flowing LED Lights

Introduction

In this lesson, we will learn how to make eight LEDs blink in various effects as you want based

on Raspberry Pi.

Components

- 1 * Raspberry Pi

- 1 * Breadboard

- 8 * LED

- 8 * Resistor (220Ω)

- Jumper wires

- 1 * T-Extension Board

- 1 * 40-Pin Cable

Principle

Principle: Judging from the schematic diagram, we can know that a LED and a current-

limiting resistor have been connected to B17, B18, B27, B22, B23, B24, B25, and B4 respectively.

The current-limiting resistor has been connected to the 3.3V power supply on other side.

Therefore, if we want to light up one LED, we only need to set the GPIO of the LED as low

level. So in this experiment, set B17, B18, B27, B22, B23, B24, B25, and B4 to low level in turn by

45

programming, and then LED0-LED7 will light up in turn. You can make eight LEDs blink in

different effects by controlling their delay time and the order of lighting up.

Experimental Procedures

Step 1: Build the circuit

For C language users:

Step 2: Open the code file

 cd /home/pi/SunFounder_Super_Kit_V3.0_for_Raspberry_Pi/C

Note: Use the cd command to switch to the code path of this experiment.

Step 3: Compile the Code

 gcc 03_8Led.c -o 03_8Led -lwiringPi

or

make 03_8Led

Note: gcc is a linux command which can realize compiling and generating the C language

program file 03_8Led.c to the executable file 03_8Led.

make is a linux command which can compiling and generating the executable file

according to the rule inside the makefile.

Step 4: Run the executable file above

 sudo ./03_8Led

Note: Here the Raspberry Pi will run the executable file 03_8Led compiled previously.

46

Code Explanation

void Led_on(int channel): This is a subfunction with a formal parameter int channel for

importing the numbers of the controlled pins. Its function body is digitalWrite(channel,

LOW); Set the I/O port of channel as low level(0V), the LED on this port lights up. void

led_off(int channel) is to turn off the LED. Setting function simplifies the input for

the repeated content.

for(i=0;i<8;i++){ //make 8 pins' mode is output

pinMode(i, OUTPUT);

}//The cathodes of the 8 LEDs connect to B17, B18, B27, B22, B23, B24, B25, and B4 of

the T-shape extension board respectively, corresponding to 0,1,2,3,4,5,6,7. It is to set

the 8 LEDs as output separately. Use for loop to make it more concise and efficient.

for(i=0;i<8;i++){ //make LED on from left to right

Led_on(i); // turn the LED i on

delay(100); // keep the LED i lighting for 100ms.

Led_off(i); // Turn the LED i off

} // Light up and turn off the LEDs in GPIO0~7 successively. i increases

progressively from 0 to 7, LED0 to LED7 changes accordingly, making it like a flowing

LED light from left to right.

for(i=;i>=0;i--){ //make LED off from right to left

led_on(i); // turn the LED i on

delay(100); // keep the LED i lighting for 100ms

led_off(i); //turn the LED i off

}/ In this for loop, light up and turn off the LED in GPIO7 to GPIO0 successively,

making a flowing LED light from left to right.

For Python users:

47

Step 2: Open the code file

 cd /home/pi/SunFounder_Super_Kit_V3.0_for_Raspberry_Pi/Python

Step 3: Run

 sudo python 03_8Led.py

Code Explanation

LedPins = [17, 18, 27, 22, 23, 24, 25, 4] # The cathodes of the 8 LEDs connect to B17,

B18, B27, 22, 23, 24, 25, 4 of the T-shape extension board. In BCM, these pins are

corresponding to 17, 18, 27, 22, 23, 24, 25, and 4.

leds = ['-', '-', '-', '-', '-', '-', '-', '-'] # the array to print out the status of

the 8 LEDs

for pin in LedPins # Assign the element in pins list to pin variable one by one. In

GPIO.setup (pin, GPIO.OUT), set the pins in list as output one by one.

GPIO.output(pin, GPIO.LOW) # Set each element in the pins list as low level to

light up the LEDs

leds[LedPins.index(pin)] = 0 # Show which LED is on

time.sleep(0.1) # wait for 0.1s

GPIO.output(pin, GPIO.HIGH)) # After delaying, set it as high level to light up or

turn off the LED.

leds[LedPins.index(pin)] = '-' # Show the led is off

You will see the eight LEDs lighten up one by one, and then dim in turn.

48

Lesson 4 Breathing LED

Introduction

In this lesson, we will try something interesting – gradually increase and decrease the

luminance of an LED with PWM, just like breathing. So we give it a magical name - Breathing

LED.

Components

- 1 * Raspberry Pi

- 1 * Breadboard

- 1 * LED

- 1 * Resistor (220Ω)

- Jumper wires

- 1 * T-Extension Board

- 1 * 40-Pin Cable

Principle

PWM

Pulse Width Modulation, or PWM, is a technique for getting analog results with digital means.

Digital control is used to create a square wave, a signal switched between on and off. This

on-off pattern can simulate voltages in between full on (3.3 Volts) and off (0 Volts) by

changing the portion of the time the signal spends on versus the time that the signal spends

off. The duration of "on time" is called pulse width. To get varying analog values, you change,

or modulate, that width. If you repeat this on-off pattern fast enough with some device, an

LED for example, the result would be like this: the signal is a steady voltage between 0 and

3.3v controlling the brightness of the LED.

Duty Cycle

A duty cycle is the percentage of one period in which a signal is active. A period is the time

it takes for a signal to complete an on-and-off cycle. As a formula, a duty cycle may be

expressed as:

Where is the duty cycle, is the time the signal is active, and is the total period of the

signal. Thus, a 60% duty cycle means the signal is on 60% of the time but off 40% of the time.

The "on time" for a 60% duty cycle could be a fraction of a second, a day, or even a week,

depending on the length of the period.

http://en.wikipedia.org/wiki/Frequency
http://en.wikipedia.org/wiki/Turn_(geometry)

49

In this experiment, we use this technology to make the LED brighten and dim slowly so it looks

like our breath.

Experimental Procedures

Step 1: Build the circuit

For C language users:

Step 2: Open the code file

 cd /home/pi/SunFounder_Super_Kit_V3.0_for_Raspberry_Pi/C

50

Step 3: Compile the Code

 make 04_breathLed

Step 4: Run the executable file above

 sudo ./04_breathLed

Code Explanation

pinMode(LedPin, PWM_OUTPUT); // Set the I/O as pwn output

for(i=0;i<1024;i++){ // i,as the value of pwm, increases progressively during 0-1024.

pwmWrite(LedPin, i); // Write i into the LEDPin

delay(2); // wait for 2ms, interval time between the changes indicates the speed of

breathing.

} // the value of pwm add 1 every 2ms, when the value of pwm increases, the luminance of

the LED increases.

for(i=1023;i>=0;i--){

pwmWrite(LedPin, i);

delay(2);

} // the value of pwm minus 1 every 2ms, when the value of pwm decreases, the luminance

of the LED decreases.

For Python users:

Step 2: Open the code file

 cd /home/pi/SunFounder_Super_Kit_V3.0_for_Raspberry_Pi/Python

Step 3: Run

 sudo python 04_breathLed.py

Code Explanation

GPIO.setup(LedPin, GPIO.OUT, initial=GPIO.LOW) # Set LedPin as OUTPUT, initialize the

pin as low level.

pLED = GPIO.PWM(LedPin, 1000) # use PWM in the RPi.GPIO library. Set LedPin as analog

PWM output, the frequency as 1000Hz, assign these configurations to pLed.

pLed.start(0) # Start pLed with 0% pulse width

time.sleep(0.05)

while True:

 # Increase duty cycle from 0 to 100

 for dc in range(0, 101, step): # set dc from 0 to 100 in for loop. Set step to

cycle.

 # Change duty cycle to dc

51

 pLed.ChangeDutyCycle(dc) # ChangeDutyCycle() function in pLED output

pulse width 0~100% according to the variable dc.

 print " ++ Duty cycle: %s"%dc # print information

 time.sleep(delay) # it will delay after changing the pulse width for

each time, this parameter can be modified to change the LED’s lighting and dimming

speed.

 time.sleep(1)

 # decrease duty cycle from 100 to 0

 for dc in range(100, -1, -step): # the luminance of the LED decreases with each

cycle.

 # Change duty cycle to dc

 pLED.ChangeDutyCycle(dc) # same as the last for loop

 print " -- Duty cycle: %s"%dc

 time.sleep(delay)

Now you will see the gradual change of the LED luminance, between bright and dim.

Summary

Through this experiment, you should have mastered the principle of PWM and how to

program Raspberry Pi with PWM. You can try to apply this technology to DC motor speed

regulation later.

52

Lesson 5 RGB LED

Introduction

Previously we've used the PWM technology to control an LED brighten and dim. In this lesson,

we will use it to control an RGB LED to flash various kinds of colors.

Components

- 1 * Raspberry Pi

- 1 * Breadboard

- 1 * RGB LED

- 3 * Resistor (220Ω)

- Several jumper wires

- 1 * T-Extension Board

- 1 * 40-Pin GPIO Cable

Principle

In this experiment, we will use a RGB. For details of RGB, please refer to the introduction of

RGB LED in Components Introduction.

The three primary colors of the RGB LED can be mixed into various colors by brightness. The

brightness of LED can be adjusted with PWM. Raspberry Pi has only one channel for hardware

PWM output, but it needs three channels to control the RGB LED, which means it is difficult to

control the RGB LED with the hardware PWM of Raspberry Pi. Fortunately, the softPwm library

simulates PWM (softPwm) by programming. You only need to include the header file

softPwm.h (for C language users), and then call the API it provides to easily control the RGB

LED by multi-channel PWM output, so as to display all kinds of color.

53

Experimental Procedures

Step 1: Build the circuit

For C language users:

Step 2: Open the code file

 cd /home/pi/SunFounder_Super_Kit_V3.0_for_Raspberry_Pi/C

Step 3: Compile the Code

 make 05_rgb

Step 4: Run the executable file above

 sudo ./05_rgb

Code Explanation

#include <softPwm.h> // library used for realizing the pwm function of the software.

void ledInit(void){ // define function used for initializing I/O port to output for

pwm.

 // LedPinX refers to one pin. 0 is the minimum value and 100 is the maximum (as a

percentage). The function is to use software to create a PWM pin, set its value between

0-100%.

softPwmCreate(LedPinRed, 0, 100);

softPwmCreate(LedPinGreen,0, 100);

softPwmCreate(LedPinBlue, 0, 100);

void ledColorSet(uchar r_val, uchar g_val, uchar b_val){ // This function is to set the

colors of the LED. Using RGB, the formal parameter r_val represents the luminance of the

red one, g_val of the green one, b_val of the blue one. The three formal parameters’

different values corresponds to various colors. You can modify the 3 formal parameters

randomly to verify.

softPwmWrite(LedPinRed, r_val);

54

softPwmWrite(LedPinGreen, g_val);

softPwmWrite(LedPinBlue, b_val);

}

ledColorSet(0xff,0x00,0x00); // red calls the function defined before. Write oxff into

LedPinRed and ox00 into LedPinGreen and LedPinBlue. Only the Red LED lights up after

running this code. If you want to light up LEDs in other colors, just modify the

parameters.

For Python users:

Step 2: Open the code file

 cd /home/pi/SunFounder_Super_Kit_V3.0_for_Raspberry_Pi/Python

Step 3: Run

 sudo python 05_rgb.py

Code Explanation

Set up a color table in Hexadecimal

COLOR = [0xFF0000, 0x00FF00, 0x0000FF, 0xFFFF00, 0xFF00FF, 0x00FFFF]

Set pins' channels with dictionary

pins = {'Red':17, 'Green':18, 'Blue':27}

p_R = GPIO.PWM(pins['Red'], 2000) # the same as the last lesson, here we configure

the channels and frequencies of the 3 PWM.

p_G = GPIO.PWM(pins['Green'], 2000)

p_B = GPIO.PWM(pins['Blue’], 2000)

p_R.start(0) # the same as the last lesson, the PWM of the 3 LEDs begin with 0.

p_G.start(0)

p_B.start(0)

Define a MAP function for mapping values. Like from 0~255 to 0~100

def MAP(x, in_min, in_max, out_min, out_max):

 return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min

def setColor(color): # configures the three LEDs’ luminance with the inputted

color value .

 R_val = (color & 0xFF0000) >> 16 # these three lines are used for analyzing the

col variables

 G_val = (color & 0x00FF00) >> 8 # assign the first two values of the

hexadecimal to R, the middle two assigned to G

55

 B_val = (color & 0x0000FF) >> 0 # assign the last two values to B, please

refer to the shift operation of the hexadecimal for details.

 R_val = MAP(R_val, 0, 255, 0, 100) # use map function to map the R,G,B

value among 0~255 into PWM value among 0-100.

 G_val = MAP(G_val, 0, 255, 0, 100)

 B_val = MAP(B_val, 0, 255, 0, 100)

 p_R.ChangeDutyCycle(R_val) # Assign the mapped duty cycle value to the

corresponding PWM channel to change the luminance.

 p_G.ChangeDutyCycle(G_val)

 p_B.ChangeDutyCycle(B_val)

for color in COLOR: # Assign every item in the COLOR list to the color

respectively and change the color of the RGB LED via the setColor() function.

 setColor(color) # change the color of the RGB LED

 time.sleep(0.5) # set delay for 0.5s after each color changing. Modify this

parameter will changed the LED’s color changing rate.

Here you should see the RGB LED flash different colors in turn.

Further Exploration

You can modify the parameters of the function ledColorSet() by yourself, and then and

run the code to see the color changes of the RGB LED.

56

Lesson 6 Buzzer

Introduction

In this lesson, we will learn how to drive an active buzzer to beep with a PNP transistor.

Components

- 1 * Raspberry Pi

- 1 * Breadboard

- 1 * Buzzer (Active)

- 1 * PNP transistor (8550)

- 1 * Resistor (1KΩ)

- Jumper wires

- 1 * T-Extension Board

- 1 * 40-Pin GPIO Cable

Principle

Buzzer

As a type of electronic buzzer with integrated structure, buzzers, which are supplied by DC

power, are widely used in computers, printers, photocopiers, alarms and other electronic

products for voice devices. Buzzers can be categorized as active and passive ones (see the

following picture). Turn the pins of two buzzers face up, and the one with a green circuit

board is a passive buzzer, while the other enclosed with a black tape is an active one.

The difference between an active buzzer and a passive buzzer is: An active buzzer has a

built-in oscillating source, so it will make sounds when electrified. But a passive buzzer does

not have such source, so it will not beep if DC signals are used; instead, you need to use

square waves whose frequency is between 2K and 5K to drive it. The active buzzer is often

more expensive than the passive one because of multiple built-in oscillating circuits.

The following is the electrical symbol of a buzzer. It has two pins with positive and negative

poles. With a + in the surface represents the anode and the other is the cathode.

57

You can check the pins of the buzzer, the longer one is the anode and the shorter one is the

cathode. Please don’t mix them up when connecting, otherwise the buzzer will not make

sound.

Transistor

The transistor is a semiconductor device that controls current by current. It functions by

amplifying weak signal to larger amplitude signal and is also used as a non-contact switch.

A transistor is a three-layer structure composed of P-type or N-type semiconductors. They

form the three regions internally. The thinner in the middle is the base region; the other two

are all N-type or P-type ones – the smaller region with intense majority carriers is the emitter

region, when the other one is the collector region. This composition enables the transistor to

be an amplifier.

From these three regions, three poles are generated respectively, which are base (b), emitter

(e), and collector (c). They form two P-N junctions, namely, the emitter junction and

collection junction. The arrow in the circuit symbol indicates the direction of emitter junction.

Transistors can be divided into two kinds: the NPN and PNP one. The former is made of two

N-type semiconductors and one P-type and that the latter is the opposite. See the figure

below.

When a High level signal goes through an NPN transistor, it is energized. But a PNP one

needs a Low level signal to manage it. Both types of transistor are frequently used for

contactless switches, just like in this experiment.

58

The schematic diagram:

Principle: In this experiment, an active buzzer, a

PNP transistor and a 1k resistor are used

between the base of the transistor and GPIO to

protect the transistor. When the B17 of Raspberry

Pi output is supplied with low level (0V) by

programming, the transistor will conduct

because of current saturation and the buzzer

will make sounds. But when high level is supplied

to the IO of Raspberry Pi, the transistor will be cut

off and the buzzer will not make sounds.

Experimental Procedures

Step 1: Build the circuit (Pay attention to poles of the buzzer: The one with + label is the

positive pole and the other is the negative.)

For C language users:

Step 2: Open the code file

 cd /home/pi/SunFounder_Super_Kit_V3.0_for_Raspberry_Pi/C

Step 3: Compile the Code

 make 06_beep

Step 4: Run the executable file above.

 sudo ./06_beep

Code Explanation

59

digitalWrite(BeepPin, LOW); // We use an active buzzer in this experiment, so it will

make sound automatically when connecting to the direct current. This sketch is to set

the I/O port as low level (0V), thus to manage the transistor and make the buzzer beep.

digitalWrite(BeepPin, HIGH); // To set the I/O port as high level(5V), thus the

transistor is not energized and the buzzer doesn’t beep.

For Python users:

Step 2: Open the code file

 cd /home/pi/SunFounder_Super_Kit_V3.0_for_Raspberry_Pi/Python

Step 3: Run

 sudo python 06_beep.py

Code Explanation

GPIO.output(BeepPin, GPIO.LOW)# Set the buzzer pin as low level.

time.sleep(0.1) # Wait for 0.1 second. Change the switching frequency by changing this

parameter. Note: Not the sound frequency. Active Buzzer cannot change sound frequency.

GPIO.output(BeepPin, GPIO.HIGH) # close the buzzer

time.sleep(0.1)

Now, you should hear the buzzer make sounds.

Further Exploration

If you have a passive buzzer in hand, you can replace the active buzzer with it. Now you can

make a buzzer sound like “do re mi fa so la si do” with just some basic knowledge of

programming. Give a try!

60

Lesson 7 Relay

Introduction

As we know relay is a device which is used to provide connection between two or more

points or device in response to the input signal applied. In another words relay provide

isolation between the controller and the device as we know devices may work on AC as

well as on DC. However, they receive signals from microcontroller which works on DC hence

we require a relay to bridge the gap. Relay is extremely useful when you need to control a

large amount of current or voltage with small electrical signal.

Components

- 1 * Raspberry Pi

- 1 * Breadboard

- 1 * Relay

- 1 * LED

- 1 * Resistor (220Ω)

- 1 * Resistor (1KΩ)

- 1 * NPN Transistor

- 1 * Diode (Rectifier)

- Several jumper wires

- 1 * T-Extension Board

- 1 * 40-Pin GPIO Cable

Principle

Relay

There are 5 parts in every relay:

1. Electromagnet – It consists of an iron core wounded by coil of wires. When electricity is

passed through, it becomes magnetic. Therefore, it is calLED electromagnet.

2. Armature – The movable magnetic strip is known as armature. When current flows through

them, the coil is it energized thus producing a magnetic field which is used to make or break

the normally open (N/O) or normally close (N/C) points. And the armature can be moved

with direct current (DC) as well as alternating current (AC).

3. Spring – When no currents flow through the coil on the electromagnet, the spring pulls the

armature away so the circuit cannot be completed.

4. Set of electrical contacts – There are two contact points:

． Normally open - connected when the relay is activated, and disconnected when it

is inactive.

61

． Normally close – not connected when the relay is activated, and connected when

it is inactive.

5. Molded frame – Relays are covered with plastic for protection.

Working of Relay

The working principle of relay is simple. When power is supplied to the relay, currents start

flowing through the control coil; as a result, the electromagnet starts energizing. Then the

armature is attracted to the coil, pulling down the moving contact together thus connecting

with the normally open contacts. So the circuit with the load is energized. Then breaking the

circuit would a similar case, as the moving contact will be pulled up to the normally closed

contacts under the force of the spring. In this way, the switching on and off of the relay can

control the state of a load circuit.

Schematic diagram:

62

Experimental Procedures

Step 1: Build the circuit

For C language users:

Step 2: Open the code file

 cd /home/pi/SunFounder_Super_Kit_V3.0_for_Raspberry_Pi/C

Step 3: Compile the Code

 make 07_relay

Step 4: Run the executable file above

 sudo ./07_relay

Code Explanation

digitalWrite(relayPin, LOW); // set the I/O port as low level (0V) to energize the

transistor. The coil of the relay is powered and generate electromagnetic force, and the

relay closes.

digitalWrite(relayPin, HIGH); // Set the I/O port as high level (5V), thus the

transistor is not energized and the coil is not powered. There is no electromagnetic

force, so the relay opens.

For Python users:

Step 2: Open the code file

 cd /home/pi/SunFounder_Super_Kit_V3.0_for_Raspberry_Pi/Python

Step 3: Run

 sudo python 07_relay.py

Code Explanation

GPIO.output(relayPin, GPIO.LOW) # Set the pins of transistor as low level to actuate

the relay.

63

time.sleep(1) # wait for 1 second. Change the switching frequency of the relay by

changing this parameter. Note: Relay is a kind of metal dome formed in mechanical

structure. So its lifespan will be shortened under high-frequency using.

GPIO.output(relayPin, GPIO.HIGH) # Set the pins of the transistor as low level to

let the relay open.

time.sleep(1)

Now, connect a device of high voltage, and the relay will close and the LED will light up;

connect one of low voltage, and it will open and the LED will go out. In addition, you can

hear a ticktock caused by breaking normally close contact and closing normally open

contact.

64

Lesson 8 4N35

Introduction

The 4N35 is an optocoupler for general purpose application. It consists of gallium arsenide

infrared LED and a silicon NPN phototransistor. When the input signal is applied to the LED in

the input terminal, the LED lights up. After receiving the light signal, the light receiver then

converts it into electrical signal and outputs the signal directly or after amplifying it into a

standard digital level. Thus, the transition and transmission of electricity-light-electricity is

completed. Since light is the media of the transmission, meaning the input terminal and the

output one are isolated electrically, this process is also be known as electrical isolation.

Components

-1 * Raspberry Pi

-1 * 4N35

-1 * LED

-1 * 220 Ohm Resistor

- 1* 1k Ohm Resistor

- Some jump wires

- 1 * T-Extension Board

- 1 * 40-Pin GPIO Cable

Principle

4N35

The 4N35 is an optocoupler for general purpose application. It consists of gallium arsenide

infrared LED and a silicon NPN phototransistor.

What an optocoupler does is to break the connection between signal source and signal

receiver, so as to stop electrical interference. In other words, it is used to prevent interference

from external electrical signals. 4N35 can be used in AV conversion audio circuits. Broadly it

is widely used in electrical insulation for a general optocoupler.

65

See the internal structure of 4N35 above. Pin 1 and 2 are connected to an infrared LED. When

the LED is electrified, it'll emit infrared rays. To protect the LED from burning, usually a resistor

(about 1K) is connected to pin 1. Then the NPN phototransistor is power on when receiving

the rays. This can be done to control the load connected to the phototransistor. Even when

the load short circuit occurs, it won't affect the control board, thus realizing good electrical

isolation.

The schematic diagram:

Principle: In this experiment, use an LED as the load connected to the NPN phototransistor.

Connect pin 2 of 4N35 to pin B17, pin 1 connects a 1K current-limiting resistor and then a 3.3V.

Connect pin 4 to GND, and pin 5 to the cathode of the LED. Then hook the anode of the LED

to 3.3V after connecting with a 220 Ohm resistor. When in program, a LOW level is given to

pin B17, the infrared LED will emit infrared rays. Then the phototransistor receives infrared rays

and gets electrified, and the LED cathode is LOW, thus turning on the LED. Also you can

control the LED by circuits only – connect pin 2 to ground and it will brighten.

Step 1: Build the circuit

66

For C language users:

Step 2: Open the code file

 cd /home/pi/SunFounder_Super_Kit_V3.0_for_Raspberry_Pi/C

Step 3: Compile the Code

 make 08_4N35

Step 4: Run the executable file above.

 sudo ./08_4N35

Code Explanation

digitalWrite(_4N35Pin, LOW); // set the I/O port as low level (0V), thus the optocoupler

is energized, and the pin connected to LED conducts to the 0V. Then the LED lights up.

delay(500); // optocoupler is a kind of electronic device and there is no limitation on

its on-off frequency.

digitalWrite(_4N35Pin, HIGH); // set I/O port as high level (3.3V), thus the optocoupler

is not energized ,and the pin connected to LED cannot conduct to the 0V. Then the LED

goes out.

For Python users:

Step 2: Open the code file

 cd /home/pi/SunFounder_Super_Kit_V3.0_for_Raspberry_Pi/Python

Step 3: Run

 sudo python 08_4N35.py

Code Explanation

GPIO.output(Pin_4N35, GPIO.LOW) # set the pins of optocoupler as low level, thus the

optocoupler is energized, and the pin connected to LED conducts to the 0V.Then the LED

lights up.

time.sleep(0.5) #wait for 0.5 second. The on-off frequency of the

optocoupler can be changed by modifying this parameter.

GPIO.output(Pin_4N35, GPIO.HIGH) # set the pins of optocoupler as high level, thus the

optocoupler is disconnected, and the pin connected to LED break the connection to the

0V. Then the LED goes out.

time.sleep(0.5)

You will see the LED blinks.

67

Exploration

4N35 is an optocoupler that usually used for driving relay as well as motor circuits. As there is

no direct connection between the input and output, even if a short circuit at the output end

occurs, the control board will not be burnt. Have a try!

68

Lesson 9 Ne555

Introduction

If you ask anyone in the know to rank the most commonly and widely used IC, the famous

555 time base IC would certainly be at the top of the list. The 555 – a mixed circuit composed

of analog and digital circuits – integrates analogue and logical functions into an

independent IC, and hence tremendously expands the application range of analog

integrated circuits. The 555 is widely used in various timers, pulse generators, and oscillators.

Components

- 1 * Raspberry Pi

- 1 * Breadboard

- 1 * NE555

- 2 * 104 ceramic capacitor

- 1 * Potentiometer (50KΩ)

- 1 * Resistor (10KΩ)

- 1 * USB cable

- Jumper wires

- 1 * T-Extension Board

- 1 * 40-Pin GPIO Cable

Principle

The 555 IC was originally used as a timer, hence the name 555 time base circuit. It is now

widely used in various electronic products because of its reliability, convenience, and low

price. The 555 is a complex hybrid circuit with dozens of components such as a divider,

comparator, basic R-S trigger, discharge tube, and buffer.

555 chip pins are introduced as follows:

As shown in the picture, the 555 IC is dual in-line with the 8-pin package. Thus:

 Pin 1 (GND): the ground;

 Pin 2 (TRIGGER): the input of lower comparator;

 Pin 3 (OUTPUT): having two states of 0 and 1 decided by the input electrical level;

69

 Pin 4 (RESET): output low level when supplied a low one;

 Pin 5 (CONTROL VOLTAGE): changing the upper and lower level trigger values;

 Pin 6 (THRESHOLD): the input of upper comparator;

 Pin 7 (DISCHARGE): having two states of suspension and ground connection also

decided by input, and the output of the internal discharge tube;

 Pin 8 (VCC): the power supply;

The schematic diagram

Experimental Procedures

Step 1: Build the circuit

For C language users:

Step 2: Go to the folder of the code.

 cd /home/pi/SunFounder_Super_Kit_V3.0_for_Raspberry_Pi/C

Step 3: Compile

 make 09_ne555

70

Step 4: Run the executable file above.

 sudo ./09_ne555

Code Explanation

static volatile int globalCounter = 0 ; // a static integer variable to store the pulse

count

void exInt0_ISR(void) { //GPIO0 interrupt service routine

++globalCounter;

}

wiringPiISR(Pin0, INT_EDGE_FALLING, &exInt0_ISR); // set an interrupt here and the

signal is falling edge for Pin 0. When the interrupt happens, execute the function

exInt0_ISR(), and the pulse count will add 1.

while(1){ // if no interrupt happens, the pulse count will stay and just print it.

printf("Current pulse number is : %d\n", globalCounter);

}

For Python users:

Step 2: Get into the folder of the code.

 cd /home/pi/SunFounder_Super_Kit_V3.0_for_Raspberry_Pi/Python

Step 3: Run

 sudo python 09_ne555.py

Now you can see the number of square waves printed. Spin the potentiometer and the value

will decrease or increase.

71

Code Explanation

g_count = 0 # a global variable used to store the pulse count

def count(ev=None): ＃ Define a function to be run when an interrupt happens

 global g_count # this function will change the value of the global variable g_count,

thus here we add global before it.

 g_count += 1

GPIO.add_event_detect(SigPin, GPIO.RISING, callback=count) # set an interrupt here and

the interrupt signal is a rising edge for Pin Sig. It will run the function count()

accordingly

while True: # wait for the interrupt

 print 'g_count = %d' % g_count # print the information

 time.sleep(0.001)

72

Lesson 10 Slide Switch

Introduction

In this lesson, we will learn how to use a Slide Switch. Usually, the slide switch is soldered on

PCB as a power switch, but here we need to insert it into the breadboard, thus it may not be

tightened. And we use it on the breadboard is to show its function.

Components

- 1 * Raspberry Pi

- 1 * T-Extension Board

- 1 * 40-Pin GPIO Cable

- 1 * Breadboard

- 1 * Slide Switch

- 2 * LED

- 3 * Resistors (220Ω,10kΩ)

- 1 * USB cable

- Jumper wires

- 1 * 104 Capacitor Ceramic

Principle
Slide Switch

A slide switch, just as its name implies, is to slide the switch bar to connect or break the circuit,

and further switch circuits. The common-used types are SPDT, SPTT, DPDT, DPTT etc. The Slide

Switch is commonly used in low-voltage circuit. It features flexibility and stability, and widely

applies in electric instruments and electric toys.

How it works: Use the middle pin as the fixed one. When you pull the slide to the left, the left

two pins are connected; to the right, the right two pins connected. Thus, it connects and

disconnects circuits as a switch. See the figure below:

The circuit symbol of the slide switch is as shown below. 2 in the figure means the middle pin.

73

Principle: Connect the middle pin of the Slide Switch to B17, and two LEDs to pin B18 and B27

respectively. Then when you pull the slide, you can see the two LEDs light up alternately.

Experimental Procedures

Step 1: Build the circuit

For C language users:

Step 2: Go to the folder of the code.

 cd /home/pi/SunFounder_Super_Kit_V3.0_for_Raspberry_Pi/C

Step 3: Compile

 make 10_slideSwitch

Step 4: Run the executable file above.

74

 sudo ./10_slideSwitch

Code Explanation

// When the slide is pulled to the left, the middle pin and left one are connected; the Raspberry

Pi reads a high level at the middle pin, so the LED1 is on and LED2 off

if(digitalRead(slidePin) == 1){

digitalWrite(led1, LOW);

digitalWrite(led2, HIGH);

printf("LED1 on\n");

}

// When the slide is pulled to the right, the middle pin and right one are connected; the

Raspberry Pi reads a low, so the LED2 is on and LED1 off

if(digitalRead(slidePin) == 0){

digitalWrite(led2, LOW);

digitalWrite(led1, HIGH);

printf(".....LED2 on\n");

}

For Python users:

Step 2: Get into the folder of the code

 cd /home/pi/SunFounder_Super_Kit_V3.0_for_Raspberry_Pi/Python

Step 3: Run

 sudo python 10_slideSwitch.py

Code Explanation

When the slide is pulled to the left, the middle pin and left one are connected; the

Raspberry Pi reads a high level at the middle pin, so the LED1 is on and LED2 off.

if GPIO.input(slidePin) == 1:

print 'LED1 ON (High Value)'

 GPIO.output(led1Pin, GPIO.LOW)

 GPIO.output(led2Pin, GPIO.HIGH)

When the slide is pulled to the right, the middle pin and right one are connected; the

Raspberry Pi reads a low, so the LED2 is on and LED1 off.

if GPIO.input(slidePin) == 0:

 print 'LED2 ON (Low Value)'

 GPIO.output(led2Pin, GPIO.LOW)

 GPIO.output(led1Pin, GPIO.HIGH)

75

Now pull the slide, and you can see the two LEDs light up alternately.

76

Lesson 11 How to Drive a DC Motor

Introduction

In this lesson, we will learn to how to use L293D to drive a DC motor and make it rotate

clockwise and counterclockwise. Since the DC Motor needs a larger current, for safety

purpose, here we use the Power Supply Module to supply motors.

Components

- 1 * Raspberry Pi

- 1 * Breadboard

- 1 * L293D

- 1 * DC motor

- 1 * Power Module

-Jumper wires

- 1 * T-Extension Board

- 1 * 40-Pin GPIO Cable

Principle

L293D

L293D is a 4-channel motor driver integrated by chip with high voltage and high current. It's

designed to connect to standard DTL, TTL logic level, and drive inductive loads (such as relay

coils, DC, stepping motors) and power switching transistors etc. DC Motors are devices that

turn DC electrical energy into mechanical energy. They are widely used in electrical drive

for their superior speed regulation performance.

See the figure of pins below. L293D has two pins (Vcc1 and Vcc2) for power supply. Vcc2 is

used to supply power for the motor, while Vcc1 to supply for the chip. Since a small-sized DC

motor is used here, connect both pins to +5V. If you use a higher power motor, you need to

connect Vcc2 to an external power supply.

The following is the internal structure of L293D. Pin EN is an enable pin and only works with

high level; A stands for input and Y for output. You can see the relationship among them at

77

the right bottom. When pin EN is High level, if A is High, Y outputs high level; if A is Low, Y

outputs Low level. When pin EN is Low level, the L293D does not work.

In this experiment, it just needs to drive one motor, so here only half of the L293D will be used.

DC Motor

This is a 5V DC motor. It will rotate when you give the two terminals of the copper sheet one

high and one low level. For convenience, you can weld the pins to it.

Size: 25*20*15MM Operation Voltage: 1-6V

Free-run current (3V): 70m A Free-run speed (3V): 13000RPM

Stall current (3V): 800mA Shaft diameter: 2mm

Power Supply Module

In this experiment, it needs large currents to drive the motor especially when it starts and

stops, which will severely interfere with the normal work of Raspberry Pi. Therefore, we

separately supply power for the motor by this module to make it run safely and steadily.

You can just plug it in the breadboard to supply power. It provides a voltage of 3.3V and 5V,

and you can connect either via a jumper cap included.

78

Schematic diagram:

Principle: Plug the power supply module in breadboard, and insert the jumper cap to pin of

5V, then it will output voltage of 5V. Connect pin 1 of L293D to B27, and set it as high level.

Connect pin2 to B18, and pin7 to B27, then set one pin high, while the other low. Thus you

can change the motor’s rotation direction.

Experimental Procedures

Step 1: Build the circuit. Since the power supply module and T-cable are incompatible, we

will not use the T-Cable in this experiment.

79

Note: The power module can apply a 9V battery with the 9V Battery Buckle in the kit. Insert

the jumper cap of the power module into the 5V bus strips of the breadboard.

 0

For C language users:

Step 2: Get into the folder of the code

 cd /home/pi/SunFounder_Super_Kit_V3.0_for_Raspberry_Pi/C

Step 3: Compile

 make 11_motor

Step 4: Run the executable file above.

 sudo ./11_motor

Code Explanation

digitalWrite(MotorEnable, HIGH); // Enable the L239D

digitalWrite(MotorPin1, HIGH); // Set a high level for 2A(pin 7); since 1,2EN(pin 1) is

in high level, 2Y will output high level

digitalWrite(MotorPin2, LOW); // Set a low level for 1A, then 1Y will output low level,

and the motor will rotate.

for(i=0;i<3;i++){

delay(1000);

} // this loop is to delay for 3*1000ms

digitalWrite(MotorEnable, LOW) // If 1,2EN (pin1) is in low level, L293D does not work.

Motor stops rotating.

digitalWrite(MotorPin1, LOW)

digitalWrite(MotorPin2, HIGH) // Reverse the current flow of the motor, then the motor

will rotate reversely.

For Python users:

Step 2: Get into the folder of the code

 cd /home/pi/SunFounder_Super_Kit_V3.0_for_Raspberry_Pi/Python

Step 3: Run

 sudo python 11_motor.py

Code Explanation

GPIO.setup(MotorPin1, GPIO.OUT) # Set pin1 and pin2 for motor’s rotation direction

as output pin

80

GPIO.setup(MotorPin2, GPIO.OUT)

GPIO.setup(MotorEnable, GPIO.OUT) # Set pins for motor’s working condition as

output pin

GPIO.output(MotorEnable, GPIO.LOW) # Set the motor low level for initial state

GPIO.output(MotorEnable, GPIO.HIGH) # Set the motor in high level

GPIO.output(MotorPin1, GPIO.HIGH) # Set pin1 in high level and pin2 in low level

GPIO.output(MotorPin2, GPIO.LOW) # Make the motor rotate clockwise

time.sleep(5) # rotate for 5 seconds

GPIO.output(MotorEnable, GPIO.LOW) # Stop the motor

time.sleep(5) #wait for 5 seconds

Code for motor counter-clockwise rotation is similar to sketch above

Now, you should see the motor blade rotating.

Further Exploration

You can use buttons to control the clockwise and counterclockwise rotation of the motor

blade based on the previous lessons. Also you can apply the PWM technology to control the

rotation.

81

Lesson 12 Rotary Encoder

Introduction

A rotary encoder is an electro-mechanical device that converts the angular position or

motion of a shaft or axle to analog or digital code. Rotary encoders are usually placed at

the side which is perpendicular to the shaft. They act as sensors for detecting angle, speed,

length, position, and acceleration in automation field.

Components

- 1 * Raspberry Pi

- 1 * Breadboard

- 4 * Jumper wires (Male to Male, 2 red and 2 black)

- 1 * Network cable (or USB wireless network adapter)

- 1 * Rotary Encoder module

- 1 * 5-Pin anti-reverse cable

- 1 * T-Extension Board

- 1 * 40-Pin GPIO Cable

Experimental Principle

A rotary encoder is an electronic switch with a set of regular pulses with strictly timing

sequence. When used with IC, it can achieve increment, decrement, page turning， and

other operations such as mouse scrolling, menu selection, and so on.

There are mainly two types of rotary encoders: absolute and incremental (relative) encoders.

Here we use an incremental (relative) encoders.

Most rotary encoders have 5 pins with three functions of turning left & right and pressing down.

Pin 1 and pin 2 are switch wiring terminals used to press. Pin 4 is generally connected to

ground. Pin 3 and pin 5 are first connected to pull-up resistor and connect to VCC. Pin 3 and

82

pin 5 generate two-phase square waves whose phase difference is 90°. Usually the two-

phase square waves are called channel A and channel B as shown below:

We can see from the figure above: If channel A is in low level, and channel B converts from

high level to low, it indicates the Rotary Encoder has spun clockwise (CW). If channel A is in

low level, and channel B converts from low level to high, it indicates the Rotary Encoder has

spun counter-clockwise (CCW). Thus when channel A is in low level, we can know the

direction that Rotary Encoder spun by channel B.

The schematic diagram of the Rotary Encoder is shown as below. We can see that pin 3 on

the Rotary Encoder is CLK of the module, while pin 5 is DT. Then we can know the Rotary’s

rotating direction by the value of CLK and DT.

It is summarized by using oscilloscope to observe the output waveform of CLK and DT and

operating the rotary encoder. You can try yourself.

83

Experimental Procedures

Step 1: Build the circuit

For C language users:

Step 2: Get into the folder of the code.

 cd /home/pi/SunFounder_Super_Kit_V3.0_for_Raspberry_Pi/C

Step 3: Compile

 make 12_rotaryEncoder

Step 4: Run the executable file above

 sudo ./12_rotaryEncoder

Code Explanation

#define RoAPin 0 // CLK connects to B17, define B17 as 0 in wiring Pi.

#define RoBPin 1 // DT connects to GPIO1, define B18 as 1 in wiring Pi.

#define SWPin 2 // SW connects to GPIO2

void rotaryDeal(void) : // Pi detects the pulse when spinning the rotary encoder, and

judge the spinning direction, then increase or decrease the value of globalCounter to

record the angular displacement.

Last_RoB_Status = digitalRead(RoBPin); // Read the value of DT

while(!digitalRead(RoAPin){ // If CLK is low, run the program below.

 Current_RoB_Status = digitalRead(RoBPin); // Read the value of DT, and store it

in Current_RoB_Status.

 flag = 1;

}

 if(flag == 1) // If CLK outputs low level, then flag=1

{flag = 0;

84

 if((Last_RoB_Status == 0)&&(Current_RoB_Status == 1)){ // If DT value converts

from low to high, the globalCounter adds 1.

 }

 if((Last_RoB_Status == 1)&&(Current_RoB_Status == 0)){ //If DT value converts

from high to low,

 globalCounter --; // the globalCounter

decreases 1.

 }

}

printf("globalCounter : %d\n",globalCounter); // Print the value of globaCounter.

void btnISR(void): // If the rotary encoder is pressed down, reset the value.

For Python users:

Step 2: Get into the folder of the code.

 cd /home/pi/SunFounder_Super_Kit_V3.0_for_Raspberry_Pi/Python

Step 3: Run

 sudo python 12_rotaryEncoder.py

Code Explanation

globalCounter = 0 # Set a global variable to count

flag = 0 # Set a flag for reverse spinning.

Last_RoB_Status = 0 # Set a variable to store the previous state of pinB

Current_RoB_Status = 0 # Set a variable to store the present state of pinB

Define a function to deal with rotary encoder

def rotaryDeal():

 global counter

 global Last_RoB_Status, Current_RoB_Status

 flag = 0

 Last_RoB_Status = GPIO.input(RoBPin) # Store channel B state

 # When RoAPin level changes

 while(not GPIO.input(RoAPin)): # When channel A is not in low, exit the while

loop

 Current_RoB_Status = GPIO.input(RoBPin)

 flag = 1

 if flag == 1: # If flag value is 1, the rotary encoder is CW rotating

 # Reset flag

 flag = 0

85

 if (Last_RoB_Status == 0) and (Current_RoB_Status == 1):

 counter = counter + 1

 if (Last_RoB_Status == 1) and (Current_RoB_Status == 0):

 counter = counter - 1

 print 'counter = %d' % counter

Define a callback function on switch, to clean "counter"

def clear(ev=None):

 global counter

 counter = 0

Now, gently rotate the encoder to change the value of the variable in the above program，

and you will see the value printed on the screen. Rotate the encoder clockwise, the value

will increase; or rotate it counterclockwise, the value will decrease.

86

Lesson 13 Driving LEDs by 74HC595

Introduction

In this lesson, we will learn how to use 74HC595 to make eight LEDs blink regularly.

Components

- 1 * Raspberry Pi

- 1 * Breadboard

- 1 * 74HC595

- 8 * LED

- 8 * Resistor (220Ω)

- Jumper wires

- 1 * T-Extension Board

- 1 * 40-Pin GPIO Cable

Principle

74HC595

The 74HC595 consists of an 8−bit shift register and a storage register with three−state parallel

outputs. It converts serial input into parallel output so that you can save IO ports of an MCU.

The 74HC595 is widely used to indicate multipath LEDs and drive multi-bit segment displays.

"Three-state" mentioned above refers to the fact that you can set the output pins as either

high, low or high impedance. With data latching, the instant output will not be affected

during the shifting; with data output, you can cascade 74HC595s more easily. Compatible

with low voltage TTL circuit, 74HC595 can transform serial input of 8-bit data into parallel

output of 8-bit data. So it is often used to extend GPIO for embedded system and drive low

power devices.

Pins of 74HC595 and their functions:

Q0-Q7: 8-bit parallel data output pins, able to control 8 LEDs or 8 pins of 7-segment display

directly.

87

Q7’: Series output pin, connected to DS of another 74HC595 to connect multiple 74HC595s

in series

MR: Reset pin, active at low level; here it is directly connected to 5V to keep the chip from

resetting.

SH_CP: Time sequence input of shift register. On the rising edge, the data in shift register

moves successively one bit, i.e. data in Q1 moves to Q2, and so forth. While on the falling

edge, the data in shift register remain unchanged.

ST_CP: Time sequence input of storage register. On the rising edge, data in the shift register

moves into memory register.

OE: Output enable pin, active at low level; here connected to GND to keep 74HC595 in

output enable state.

DS: Serial data input pin

VCC: Positive supply voltage

GND: Ground

The schematic diagram is shown as below:

Principle: In this experiment, connect 74HC595’s ST_CP to Raspberry Pi’s B18, SH_CP to B27,

and DS to B17; connect a current-limit resistor and then a LED to Q0-Q7 respectively; connect

MR and VCC to 5V, CE and GND to GND. Input data in DS pin to the shift register when SH_CP

(the clock input of the shift register) is at the rising edge, and to the memory register when

ST_CP (the clock input of the memory) is at the rising edge, and output to Q0-Q7. Then you

can control the states of SH_CP and ST_CP via Raspberry Pi GPIO to transform serial input

data into parallel output data so as to save Raspberry Pi GPIOs.

88

Experimental Procedures

Step 1: Build the circuit. If you want to take out the chip from the breadboard, DO NOT pull

it in one direction forcefully, for fear that the pins on it may be bent and you may get hurt.

Try to use a sharp tool to cross the notch of the breadboard to remove the chip.

For C language users:

Step 2: Get into the folder of the code.

 cd /home/pi/SunFounder_Super_Kit_V3.0_for_Raspberry_Pi/C

Step 3: Compile

 make 13_74HC595_LED

Step 4: Run the executable file above.

 sudo ./13_74HC595_LED

Code Explanation

unsigned char LED[8] = {0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80}; // This array is to

store the output values of Q0-Q7. For example, 0x01 in binary format is 0000 0001, thus

Q7 Q6 Q5 Q4 Q3 Q2 Q1 Q0 are 0 0 0 0 0 0 0 1 respectively, that is Q0=1, and the LED

connected to Q0 will light up. Thus we can light up the eight LEDs separately in this

way.

void pulse(int pin){ // generate a rising edge

 digitalWrite(pin, 0);

 digitalWrite(pin, 1);

}

void SIPO(unsigned char byte){ // Assign the char byte to the SDI bit by bit

 int i;

 for(i=0;i<8;i++){

 digitalWrite(SDI, ((byte & (0x80 >> i)) > 0)); // Use the for loop to count 8

times in cycle, and write a 1-bit data to the SDI each time. The data is a result of the

89

AND operation. (0x80 >> i) is to implement the operation from left to right by bit, so

each time one of the eight bits in byte (0000 0001).

 pulse(SRCLK); // the shift register generates a rising edge pulse, and data in

DS will shift to the shift register.

 } // This part is to assign the data in byte to SDI(DS) by bits, thus when the shift

register generates a rising edge pulse, data in SDI(DS) will transfer to it by bits.

}

void init(void): // Set DS, ST_CP, SH_CP as output, and low level as the initial state

for(i=0;i<8;i++){

 SIPO(LED[i]); // Assign the value in the LED[i] array to SDI(DS). When i=1,

LED[0]=0x01 shifts to the shift register.

 pulse(RCLK); // RCLK (ST_CP) generates a rising edge pulse, and the data of the

shift register is stored in the RCLK (ST_CP) storage register, and output at Q0-Q7.

 delay(150);

} After 8 cycles, Q0-Q7 will output 0x01 to 0x10 in sequence, that is to light up the

LEDs connected to Q0-Q7 in turn.

Sketch in later part not explained here is to light up 8 LEDs together, and dim them; then light

up LEDs connected to Q7-Q0 one by one, and all 8 LEDs light up, dim in the end. Thus, a

cycle completes. You can observe the LEDs’ state.

For Python users:

Step 2: Get into the folder of the code

 cd /home/pi/SunFounder_Super_Kit_V3.0_for_Raspberry_Pi/Python

Step 3: Run

 sudo python 13_74HC595_LED.py

Code Explanation

LED0 = [0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80] # Define some LED blinking

modes. Convert hexadecimal value to binary value will be more intuitionistic. For

instance, 0x01 is binary 00000001, meaning the last LED lighting up; 0x80 is binary

10000000, representing the first LED lighting up.

LED1 = [0x01,0x03,0x07,0x0f,0x1f,0x3f,0x7f,0xff] # blink mode 1

LED2 = [0x01,0x05,0x15,0x55,0xb5,0xf5,0xfb,0xff] # blink mode 2

LED3 = [0x02,0x03,0x0b,0x0f,0x2f,0x3f,0xbf,0xff] # blink mode 3

Shift the data to 74HC595

def hc595_shift(dat): # Shift the data to 74HC595

for bit in range(0, 8):

90

 GPIO.output(SDI, 0x80 & (dat << bit)) # Assig·n dat data to SDI pins of HC595

by bits

 GPIO.output(SRCLK, GPIO.HIGH) # Every SRCLK adds one, the shift register moves

one bit.

 time.sleep(0.001)

 GPIO.output(SRCLK, GPIO.LOW)

 GPIO.output(RCLK, GPIO.HIGH) # Everytime RCLK adds one, the HC595 updates output.

 time.sleep(0.001)

GPIO.output(RCLK, GPIO.LOW)

leds = ['-', '-', '-', '-', '-', '-', '-', '-'] # the array storing the LED state, used

for command line printing.

 while True:

 # Change LED status from mode

 print " mode"

 for onoff in mode: # Assign value to variable onoff by mode[] list

 hc595_shift(onoff)

 leds[mode.index(onoff)] = 1 # Show which led is on

 print leds

 time.sleep(sleeptime)

 leds[mode.index(onoff)] = '-' # Show the led is off

for loops in later part work similarly, lighting up LED by list.

Input a 2-bit hexadecimal parameter dat via hc595_in(dat) to control 8 LEDs state, and

hc595_out() will output state to 8 LEDs. In While True, the for loop will shift the LED blinking

list to the hc595_in(dat) function, thus we can see the LED light flowing

Here you should see eight LEDs light up one by one, and then all light up and dim after a

while; then eight LEDs will light up from reverse direction one by one, and then all light up

and then dim after a while. This cycle will keep running.

91

Lesson 14 Driving 7-Segment Display by 74HC595

Introduction

Since we've got some knowledge of the 74HC595 in the previous lesson, now let's try to use

it and drive a 7-segment display to show a figure from 0 to 9 and A to F.

Components

- 1 * Raspberry Pi

- 1 * Breadboard

- 1 * 74HC595

- 1 * 7-segment display

- 1 * Resistor (220Ω)

- Jumper wires

- 1 * T-Extension Board

- 1 * 40-Pin GPIO Cable

Principle

7-Segment Display

A 7-segment display is an 8-shaped component which packages 7 LEDs. Each LED is called

a segment – when energized, one segment forms part of a numeral (both decimal and

hexadecimal) to be displayed. An additional 8th LED is sometimes used within the same

package thus allowing the indication of a decimal point (DP) when two or more 7-segment

displays are connected together to display numbers greater than ten.

Each of the LEDs in the display is given a positional segment with one of its connection pins

led out from the rectangular plastic package. These LED pins are labeled from "a" through

to "g" representing each individual LED. The other LED pins are connected together forming

a common pin. So by forward biasing the appropriate pins of the LED segments in a particular

order, some segments will brighten and others stay dim, thus showing the corresponding

character on the display.

The common pin of the display generally tells its type. There are two types of pin connection:

a pin of connected cathodes and one of connected anodes, indicating Common Cathode

92

(CC) and Common Anode (CA). As the name suggests, a CC display has all the cathodes

of the 7 LEDs connected when a CA display has all the anodes of the 7 segments connected.

Common Cathode 7-Segment Display

In a common cathode display, the cathodes of all the LED segments are connected to the

logic "0" or ground. Then an individual segment (a-g) is energized by a "HIGH", or logic "1"

signal via a current limiting resistor to forward bias the anode of the segment.

Common Anode 7-Segment Display

In a common anode display, the anodes of all the LED segments are connected to the logic

"1". Then an individual segment (a-g) is energized by a ground, logic "0" or "LOW" signal via a

current limiting resistor to the cathode of the segment.

In this experiment, a common cathode 7-segment display is use. It should be connected to

ground. When the anode of an LED in a certain segment is at high level, the corresponding

segment will light up; when it is at low, the segment will stay dim.

93

The schematic diagram is shown as below:

Principle: Connect pin ST_CP of 74HC595 to Raspberry Pi B18, SH_CP to B27, DS to B17, parallel

output ports to 8 segments of the LED segment display. Input data in DS pin to shift register

when SH_CP (the clock input of the shift register) is at the rising edge, and to the memory

register when ST_CP (the clock input of the memory) is at the rising edge. Then you can

control the states of SH_CP and ST_CP via the Raspberry Pi GPIOs to transform serial data

input into parallel data output so as to save Raspberry Pi GPIOs and drive the display.

Experimental Procedures

Step 1: Build the circuit

94

For C language users:

Step 2: Get into the folder of the code.

 cd /home/pi/SunFounder_Super_Kit_V3.0_for_Raspberry_Pi/C

Step 3: Compile

 make 14_segment

Step 4: Run the executable file above.

 sudo ./14_segment

Code Explanation

unsigned char SegCode[17] =

{0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x71,0x80};

// display array from 0 to F.

void init(void){} // Initialize the function, set ds, st_cp, sh_cp three pins to low

level, and the initial state as 0.

void hc595_shift(unsigned char dat){

 int i;

 for(i=0;i<8;i++){

 digitalWrite(SDI, 0x80 & (dat << i)); // Assign the dat data to SDI(DS) by

bits. Here we assume dat=0x3f(0011 1111, when i=0, 0x3f will shift right(<<) 0 bits,

0x3f & 0x80 = 1000 0000,

 digitalWrite(SRCLK, 1); // SH_CP will convert from low to high, and generate a

rising edge pulse, then shift the DS date to shift register.

 delay(1);

 digitalWrite(SRCLK, 0);

 } // to assign 8 bit value to 74HC595’s shift register

 digitalWrite(RCLK, 1); // ST_CP converts from low to high and generate a rising

edge, then shift data from shift register to storage register.

 delay(1);

 digitalWrite(RCLK, 0);

}// Transfer data in shift register to data register to update the displayed data.

For Python users:

Step 2: Get into the folder of the code.

 cd /home/pi/SunFounder_Super_Kit_V3.0_for_Raspberry_Pi/Python

Step 3: Run

 sudo python 14_segment.py

Code Explanation

Define a segment code from 0 to F in Hexadecimal

Commen cathode

95

segCode =

[0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x71]

Commen anode

segCode =

[0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90,0x88,0x83,0xc6,0xa1,0x86,0x8e]

Shift the data to 74HC595

def hc595_shift(dat):

 for bit in range(0, 8):

 GPIO.output(SDI, 0x80 & (dat << bit))

 GPIO.output(SRCLK, GPIO.HIGH)

 time.sleep(0.001)

 GPIO.output(SRCLK, GPIO.LOW)

 GPIO.output(RCLK, GPIO.HIGH)

 time.sleep(0.001)

GPIO.output(RCLK, GPIO.LOW)

for code in segCode: # Input item in segCode list to hc595_shift()function, to display

the character.

 hc595_shift(code)

If you want to display a number, use the hc595_shift() function, segCode list and decimal

value x in the sketch:

hc595_shift(segCode[x]) # x is a number needs to be displayed ranging from 0~15, and it

will be coverted and displayed by 0~F in hexadecimal.

Note: The hexadecimal format of number 0~15 are (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F)

You should see the 7-segment display from 0 to 9 and A to F.

Further Exploration

96

You can slightly modify the hardware and software based on this experiment to make a dice.

For hardware, add a button to the original board.

Build the circuit:

Get into the folder of the code.

 cd /home/pi/SunFounder_Super_Kit_V3.0_for_Raspberry_Pi/C

Next, Compile the Code

 make 14_dice

Run

 sudo ./14_dice

Code Explanation

void randomISR(void){ // An interrupt function, run when the interrupt happens

flag = 1; // flag represents the state of the button

}

if(wiringPiISR(TouchPin, INT_EDGE_FALLING, &randomISR)){ //Set an interrupt here as the

falling edge for TouchPin. When the interrupt happens, execute the function randomISR().

printf("Unable to setup ISR : %s\n", strerror(errno));

return 1;

}

srand(time(NULL));

num = rand() % 6;

// Two functions here: One is the srand function, which is used before calling function

rand() and used as seed for the random number generator; while the other is rand(),

which is a function to generate the random number. Usually, these two functions are used

97

together to generate the random number. Thus a random number of 0-6 will be displayed on

the 7-segment display.

For Python users:

Step 2: Get into the folder of the code.

 cd /home/pi/SunFounder_Super_Kit_V3.0_for_Raspberry_Pi/Python

Step 3: Run

 sudo python 14_dice.py

Code Explanation

import random # use this function to generate the random number

SegCode = [0x06, 0x5b, 0x4f, 0x66, 0x6d, 0x7d] # Define a segment code from 1 to 6

in Hexadecimal

GPIO.add_event_detect(TouchPin, GPIO.RISING, callback = randomISR, bouncetime = 20) #

Set an interrupt, and the rising edge for TouchPin. When the interrupt happens, execute

the function randomISR(). Set bouncetime for button to 20ms.

def randomISR(channel): # Interrupt calling the function

 global flag

flag = 1

 num = random.randint(1,6)

 # Generate a random number from 1~6.

hc595_shift(SegCode[num-1]) ＃ Output the hexadecimal values in list by 74HC595.

Now you should see a number flashing between 0 and 6 quickly on the segment display.

Press the button on the breadboard, and the display will statically display a random number

between 0 and 6 for 2 seconds and then circularly flash randomly between 0 and 6 again.

98

Lesson 15 Driving Dot-Matrix by 74HC595

Introduction

As the name suggests, an LED dot matrix is a matrix composed of LEDs. The lighting up and

dimming of the LEDs formulate different characters and patterns.

Components

- 1 * Raspberry Pi

- 1 * Breadboard

- 2 * 74HC595

- 1 * Dot-Matrix

- Jumper wires

- 1 * T-Extension Board

- 1 * 40-Pin GPIO Cable

Principle

Dot Matrix

Generally, dot matrix can be categorized into two types: common cathode (CC) and

common anode (CA). They look much alike, but internally the difference lies. You can tell by

test. A CA one is used in this kit. You can see 788BS labeled at the side.

See the figure below. The pins are arranged at the two ends at the back. Take the label side

for reference: pins on this end are pin 1-8, and oh the other are pin 9-16.

The external view:

99

Below the figures show their internal structure. You can see in a CA matrix, ROW represents

the anode of the LED, and COL is cathode; it's contrary for a CC one. One thing in common:

for both types, pin 13, 3, 4, 10, 6, 11, 15, and 16 are all COL, when pin 9, 14, 8, 12, 1, 7, 2, and

5 are all ROW. If you want to turn on the first LED at the top left corner, for a CA matrix, just

set pin 9 as High and pin 13 as Low, and for a CC one, set pin 13 as High and pin 9 as Low. If

you want to light up the whole first column, for CA, set pin 13 as Low and ROW 9, 14, 8, 12, 1,

7, 2, and 5 as High, when for CC, set pin 13 as High and ROW 9, 14, 8, 12, 1, 7, 2, and 5 as Low.

Consider the following figures for better understanding.

The internal view:

Common Anode Common Cathode

Pin numbering corresponding to the above rows and columns:

COL 1 2 3 4 5 6 7 8

Pin No. 13 3 4 10 6 11 15 16

ROW 1 2 3 4 5 6 7 8

Pin No. 9 14 8 12 1 7 2 5

In this experiment, a CA dot matrix is used. You can see the label ends with "BS". The wiring

and code are done for the CA matrix. Therefore, if you happen to have a CC matrix, you

need to change the wiring and code. In addition, two 74HC595 chips are used here. One is

to control the rows of the dot matrix while the other, the columns.

The schematic diagram

100

Experimental Procedures

Step 1: Build the circuit. Since the wiring is complicated, let's make it step by step. First, inset

the T-Cobbler and two 74HC595 chips into breadboard. Connect the 5V and GND of the T-

Cobbler to holes on the two sides of the board, then hook up pin16 and 10 of the two

74HC595 chips to VCC and pin 13 respectively, and pin 8 to GND.

Step 2: Connect pin 11 of the two 74HC595 together, and then to GPIO27; then pin 12 of the

two chips, and to GPIO18; next, pin 14 of the 74HC595 on the left side to GPIO17 and pin 9

to pin 14 of the other 74HC595.

101

Step 3: Insert the dot matrix onto the breadboard. The 74HC595 on the right side is to control

columns of the matrix. See the table below for the mapping. Therefore, Q0-Q7 pins of the

74HC595 are mapped with pin 13, 3, 4, 10, 6, 11, 15, and 16 respectively.

COL 1 2 3 4 5 6 7 8

Pin No. 13 3 4 10 6 11 15 16

Step 4: Now connect the ROWs of the dot matrix. The 74HC595 on the left controls ROW of

the matrix. See the table below for the mapping. We can see, Q0-Q7 of the 74HC595 on the

left are mapped with pin 9, 14, 8, 12, 1, 7, 2, and 5 respectively.

ROW 1 2 3 4 5 6 7 8

Pin No. 9 14 8 12 1 7 2 5

102

Note: PLEASE connect devices correctly. DO NOT wire up insufficiently. DO NOT connect to

the wrong side of the dot matrix. In the Fritzing image above, the side with label is at the

bottom.

For C language users:

Step 2: Get into the folder of code

 cd /home/pi/SunFounder_Super_Kit_V3.0_for_Raspberry_Pi/C

Step 3: Compile

 make 15_dotMatrix

Step 4: Run

 sudo ./15_dotMatrix

Code Explanation

void hc595_in(unsigned char dat){ // Write an 8-bit data to the shift register of the

74HC595

 int i;

 for(i=0;i<8;i++){

 digitalWrite(SDI, 0x80 & (dat << i)); // Write the value of dat to pin SDI of

the HC595 bit by bit

 digitalWrite(SRCLK, 1); // Everytime SRCLK adds one, the shift register moves 1

bit

 delay(1);

 digitalWrite(SRCLK, 0);

 }

103

}

void hc595_out(){ // Update the output data of the 74HC596

 digitalWrite(RCLK, 1); // Everytime RCLK adds 1, the HC595 updates the output.

 delay(1);

 digitalWrite(RCLK, 0);

}

while(1){

 for(i=0;i<sizeof(code_H);i++){ // The data of ROW and COL table for the matrix adds

1 each time.

 hc595_in(code_L[i]); // Write to the first data of the Row table

 hc595_in(code_H[i]); // Write to the first data of the COL table, and the ROW

data previously goes to the other HC595.

 hc595_out(); // Update the output of the 74HC595; output the data controlled

by both two HC595, and the dot matrix will show the pattern.

 delay(100);

 }

 for(i=sizeof(code_H);i>=0;i--){ // The data of ROW and COL table for the matrix

decreases by 1 each time.

 hc595_in(code_L[i]); // Write to the first data of the Row table

 hc595_in(code_H[i]); // Write to the first data of the COL table, and the ROW

data previously goes to the other HC595.

 hc595_out(); // Update the output of the 74HC595; output the data controlled

by both two HC595, and the dot matrix will show the pattern.

 delay(100);

}

}

For Python users:

Step 2: Get into the folder of code

 cd /home/pi/SunFounder_Super_Kit_V3.0_for_Raspberry_Pi/Python

Step 3: Run

 sudo python 15_DotMatrix.py

Code Explanation

We use a Common Anode matrix, so ROW pins are the common anode, and COL, the common

cathode.

row and column lists. When characters are displayed, an element in row and one in

column are acquired and assigned to the two HC595 chips respectively. Thus a pattern is

shown on the matrix.

104

ROW ++++

code_H =

[0x01,0xff,0x80,0xff,0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80,0xff,0xff,0xff,0xff,0xff,0x

ff,0xff,0xff]

COL ----

code_L =

[0x00,0x7f,0x00,0xfe,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0xfe,0xfd,0xfb,0xf7,0xef,0x

df,0xbf,0x7f]

def get_matrix(row_buffer, col_buffer, max_row=8, max_col=8): # The functions is to

print the pattern on the matrix by the 2D array on the command line interface (CLI).

 matrix_msg = [[0 for i in range(max_row)] for i in range(max_col)] # Initialize a 2D

array

 print "row_buffer = 0x%02x , col_buffer = 0x%02x"%(row_buffer, col_buffer)

 for row_num in xrange(0,8):

 for col_num in xrange(0,8):

 if (((row_buffer >> row_num) & 0x01) - ((col_buffer >> col_num) & 0x01)): #

for Common Anode type matrix, when row is High and column is low, the LED will light up.

 matrix_msg[row_num][col_num] = 1 # To turn on an LED at a certain row

and column, assign 1 to the corresponding elements in the 2D array

 print_matrix(matrix_msg) # Print the 2D array on the CLI

 matrix_msg = [[0 for i in range(max_row)] for i in range(max_col)] # Reset the array

after one print

def hc595_shift(dat): # Shift the data to 74HC595

 for bit in range(0, 8):

 GPIO.output(SDI, 0x80 & (dat << bit)) # Write the value of dat bit by bit to pin

SDI of the HC595

 GPIO.output(SRCLK, GPIO.HIGH) # Everytime SRCLK is High, the shift register

shifts one bit

 time.sleep(0.001)

 GPIO.output(SRCLK, GPIO.LOW)

 GPIO.output(RCLK, GPIO.HIGH) # Everytime RCLK is high, HC595 updates its output.

 time.sleep(0.001)

GPIO.output(RCLK, GPIO.LOW)

def main():

 print_msg()

 while True:

105

 for i in range(0, len(code_H)): # Assign elements of the column table in

sequence

 hc595_shift(code_L[i]) # Write to the first data of the Row table

 hc595_shift(code_H[i]) # Write to the first data of the COL table, and the

ROW data previously goes to the other HC595.

 get_matrix(code_L[i], code_H[i]) # Print the 2D array on the CLI

 time.sleep(0.1)

 for i in range(len(code_H)-1, -1, -1): # Assign elements of the column table

in inverse order

 hc595_shift(code_L[i])

 hc595_shift(code_H[i])

 get_matrix(code_L[i], code_H[i])

 time.sleep(0.1)

You should see LEDs light up as you control.

Summary

Through this lesson, you have got the basic principle of LED dot matrix and how to program

the Raspberry Pi to drive an LED dot matrix based on 74HC595 cascade. With the knowledge

learnt, try more fascinating creations!

Further Exploration

If you want to display characters on the matrix, please refer to a python code:

https://github.com/sunfounder/SunFounder_Dot_Matrix.

https://github.com/sunfounder/SunFounder_Dot_Matrix

106

Lesson 16 LCD1602

Introduction

In this lesson, we will learn how to use LCD1602 to display characters and strings.

Components

- 1 * Raspberry Pi

- 1 * Breadboard

- 1 * LCD1602

- 1 * Potentiometer

- 1 * T-Extension Board

- 1 * 40-Pin GPIO Cable

- Jumper wires

Principle

LCD1602

Generally, LCD1602 has parallel ports, that is, it would control several pins at the same time.

LCD1602 can be categorized into eight-port and four-port connections. If the eight-port

connection is used, then all the digital ports of the SunFounder Uno board are almost

completely occupied. If you want to connect more sensors, there will be no ports available.

Therefore, the four-port connection is used here for better application.

LCD1602 uses the standard 16-pin port, among which:

Pin 1 (GND): connected to Ground

Pin 2 (Vcc): connected to 5V power supply

Pin 3 (Vo): used to adjust the contrast of LCD1602; the level is lowest when it’s connected to

a positive power supply, and highest when connected to ground (you can connect a

10K potentiometer to adjust its contrast when using LCD1602)

Pin 4 (RS): register select pin, controlling where in the LCD’s memory you are writing data to.

You can select either the data register, which holds what goes on the screen, or an

instruction register, where the LCD’s controller looks for instructions on what to do next.

Pin 5 (R/W): to read/write signals; it reads signals when supplied with high level (1), and writes

when low level (0) (in this experiment, you only need to write data to LCD1602, so just

connect this pin to ground)

107

Pin 6 (E): An enable pin that, when low-level energy is supplied, causes the LCD module to

execute relevant instructions

Pin 7 (D0-D7): pins that read and write data

A and K: controlling LCD backlight; K connects to GND, and A to 3.3V. Turn the backlight on

and you can see the characters displayed clear in a dim environment

LCD1602 has two operation modes: 4-bit and 8-bit. When the IOs of the MCU are insufficient,

you can choose the 4-bit mode, under which only pins D4~D7 are used. After connecting

the circuit, you can operate LCD1602 by the Raspberry Pi.

Experimental Procedures

Step 1: Build the circuit (please be sure the pins are connected correctly. Otherwise,

characters will not be displayed properly):

LCD1602 T-Extension Board

VDD 5V

VSS GND

OV Connect to the middle pin of potentiometer

RS B27

R/W GND

E B22

D0-D3 Not connected

D4 B25

D5 B24

D6 B23

108

D7 B18

A 3.3V

K GND

Note: After you run the code, characters may not appear on the LCD1602. You need

to adjust the contrast of the screen (the gradual change from black to white) by

spinning the potentiometer clockwise or anticlockwise, until the screen displays

characters clearly.

For C language users:

Step 2: Get into the folder of code

 cd /home/pi/SunFounder_Super_Kit_V3.0_for_Raspberry_Pi/C

Step 3: Compile

 make 16_lcd1602

Step 4: Run

 sudo ./16_lcd1602

Code Explanation

#include <lcd.h> // includes the lcd library, containing some functions for the LCD1602

display for convenient use

const unsigned char Buf[] = "---SUNFOUNDER---"; // An array to store the characters to

be displayed on the LCD1602

const unsigned char myBuf[] = " sunfounder.com"; // Another array to store the

characters

fd = lcdInit(2,16,4, 2,3, 6,5,4,1,0,0,0,0); // Initialize the LCD display, see

/usr/local/include/lcd.h

109

// lcdInit(rows, cols, bits, rs, strb, d0, d1, d2, d3, d4, d5, d6, d7) - LCD1602 shows

2 rows and 16 columns. If the initialization succeeds, it will return True.

lcdClear(fd); // Clear the screen

lcdPosition(fd, 0, 0); // Locate the position of the cursor at Row 0 and Col 0 (in fact

it's the first line and first column)

lcdPuts(fd, "Welcom To--->"); // Display the character "Welcom To--->"on the LCD1602

lcdPosition(fd, 0, 1); // Place the cursor at Col 0, Row 0.

lcdPuts(fd, " sunfounder.com");

while(1){

lcdClear(fd);

for(i=0; i<16; i++){ // i adds one in the loop. i means the number of columns, so i

adds to 16 at most.

lcdPosition(fd, i, 0); // Place the cursor at the first row, and moves left to

right from the first character

lcdPutchar(fd, *(myBuf+i)); // *(myBuf+i) is a pointer that points to contents in

the myBuf[] array, and output the pointed data to lcd

delay(100);

}

for(i=0;i<sizeof(Buf)-1;i++){

lcdPosition(fd, i, 1); // Place the cursor at the second row, moves from the

first character

lcdPutchar(fd, *(Buf+i)); // A pointer that points to data in the Buf[] array;

output it to lcd

delay(200);

}

sleep(0.5);

}

For Python users

Step 2: Get into the folder of code

 cd /home/pi/SunFounder_Super_Kit_V3.0_for_Raspberry_Pi/Python

Step 3: Run

 sudo python 16_lcd1602.py

Code Explanation

class LCD: # Write an LCD class

 def __init__(self, pin_rs=27, pin_e=22, pins_db=[25, 24, 23, 18], GPIO = None);

Initialization function for the class, run when an object is created of the class. A

110

parameter needs to be transferred to the object when it's created; otherwise, the

default value in __init__ will be assigned.

 self.used_gpio = self.pins_db[:] # Note down the used gpio to easily clear

IO setting after the stop. pins_db[:] writes all in the pins_db list to the used_gpio

list; if here use used_gpio = self.pins_db, it means used_gpio call pins_db, in other

words, any change of pins_db will affect used_gpio.

 self.used_gpio.append(pin_e)

 self.used_gpio.append(pin_rs)

 self.write4bits(0x33) # initialization

 self.write4bits(0x32) # initialization

 self.write4bits(0x28) # 2 line 5x7 matrix

 self.write4bits(0x0C) # turn cursor off 0x0E to enable cursor

 self.write4bits(0x06) # shift cursor right

 """ Initialize to default text direction (for romance languages) """

 self.displaymode = self.LCD_ENTRYLEFT | self.LCD_ENTRYSHIFTDECREMENT

 self.write4bits(self.LCD_ENTRYMODESET | self.displaymode) # Set the entry

mode

 def begin(self, cols, lines): # Start the LCD

 def setCursor(self, col, row): # Set the cursor location

 def message(self, text): # Send strings to the LCD. The new line wraps to the

second line

 def destroy(self): # Clean up the used gpio

lcd = LCD(0, 2) # Create an lcd object

lcd.clear() # Clear the LCD display

for i in range(0, len(line0)): # i adds 1 each time within the length of the

character line0

 lcd.setCursor(i, 0) # Locate the cursor at character No. i, Row 0

 lcd.message(line0[i]) # Display the character on the screen

 sleep(0.1)

for i in range(0, len(line1)): # i adds 1 each time within the length of the

character line0

 lcd.setCursor(i, 1) # Locate the cursor at character No. i, Row 1

 lcd.message(line1[i]) # Display the character on the LCD

You should see two lines of characters displayed on the LCD1602: " Welcome to ---> " ,"

sunfounder.com " and "---SUNFOUNDER--- ".

111

Further Exploration

In this experiment, the LCD1602 is driven in the 4-bit mode. You can try programming by

yourself to drive it in the 8-bit mode.

112

Lesson 17 ADXL345

Introduction

In this lesson, we will learn how to use the acceleration sensor ADXL345.

Components

- 1 * Raspberry Pi

- 1 * Breadboard

- 1 * ADXL345 module

- 1 * T-Extension Board

- 1 * 40-Pin GPIO Cable

- Jumper wires

Principle

ADXL345

The ADXL345 is a small, thin, low power, 3-axis accelerometer with high resolution (13-bit)

measurement at up to ±16 g. Digital output data is formatted as 16-bit two’s complement

and is accessible through either an SPI (3- or 4-wire) or I2C digital interface.

The ADXL345 is well suited to measure the static acceleration of gravity in tilt-sensing

applications, as well as dynamic acceleration resulting from motion or shock. Its high

resolution (4 mg/LSB) enables the inclination change measurement by less than 1.0°. And the

excellent sensitivity (3.9mg/LSB @2g) provides a high-precision output of up to ±16g.

In this experiment, I2C digital interface is used.

ADXL345 works like this:

Axes of detection by ADXL345

When you place the module face up, Z_OUT is at the maximum which is +1g; face down,

Z_OUT is at the minimum. No matter of face, as long as it's placed on a level surface, X_OUT

113

increases along the Ax axis direction, so does Y_OUT along the Ay axis. See the picture below.

Thus, when you rotate the module, you can see the changes of X_OUT, Y_OUT, and Z_OUT.

Relationship between output and gravity direction

Pin Function of ADXL345 Module:

Name Description

VS Supply Voltage

CS
Chip Select; I2C mode is enabled if it's tie-high to VDD

I/O VDD I/O = 1.8V).

SDO Serial Data Out, alternate I2C address select

INT1 Interrupt 1 Output

INT2 Interrupt 2 Output

3.3V 3.3V

SDA
Serial Data (I2C), Serial Data In (SPI 4-Wire), Serial Data

In/Out (SPI 3-Wire)

SCL Serial Communications Clock

GND GND

114

Experimental Procedures

Step 1: Build the circuit

The I2C interface is used in the following program. Before running the program, please make

sure the I2C driver module of Raspberry Pi has loaded normally.

For C language users:

Step 2: Get into the folder of code

 cd /home/pi/SunFounder_Super_Kit_V3.0_for_Raspberry_Pi/C

Step 3: Compile the Code

 make 17_adxl345

Step 4: Run

115

 sudo ./17_adxl345

Code Explanation

#include <wiringPiI2C.h> // Include functions and method for the IIC protocol

#define DevAddr 0x53 // device address

struct acc_dat{ // a struct variable to store the value of x，y，and z

int x;

int y;

int z;

};

fd = wiringPiI2CSetup(DevAddr); // This initialises the I2C system with your given

device identifier

void adxl345_init(int fd){ // Initialize the device by i2c

wiringPiI2CWriteReg8(fd, 0x31, 0x0b); // These write an 8-bit data value into the

device register indicated.

wiringPiI2CWriteReg8(fd, 0x2d, 0x08); // Write 0x08 to the address (0x21) of the i2c

device

… …

}

struct acc_dat adxl345_read_xyz(int fd){ // a struct function, returning a struct value

char x0, y0, z0, x1, y1, z1;

struct acc_dat acc_xyz;

x0 = 0xff - wiringPiI2CReadReg8(fd, 0x32); // These read an 8- or 16-bit value from

the device register indicated.

x1 = 0xff - wiringPiI2CReadReg8(fd, 0x33); // Read an 8-bit data from the 0x33

register of the I2C device fd, assign to x1

y0 = 0xff - wiringPiI2CReadReg8(fd, 0x34);

y1 = 0xff - wiringPiI2CReadReg8(fd, 0x35);

z0 = 0xff - wiringPiI2CReadReg8(fd, 0x36);

z1 = 0xff - wiringPiI2CReadReg8(fd, 0x37);

printf(" x0 = %d ",x0);printf("x1 = %d \n",x1);

printf(" y0 = %d ",y0);printf("y1 = %d \n",y1);

printf(" z0 = %d ",z0);printf("z1 = %d \n",z1);

acc_xyz.x = (int)(x1 << 8) + (int)x0; // Assign values to members of the struct; the

value of x consists of x1 (high 8 bits) and x0 (low 8 bits).

acc_xyz.y = (int)(y1 << 8) + (int)y0;

acc_xyz.z = (int)(z1 << 8) + (int)z0;

if(acc_xyz.x > 32767){ // Set the value of x as no more than 0x7FFF

acc_xyz.x -= 65536;

116

}

if(acc_xyz.y > 32767){ // Set the value of y as no more than 0x7FFF

acc_xyz.y -= 65536;

}

if(acc_xyz.z > 32767){

acc_xyz.z -= 65536;

}

return acc_xyz; // The function ends, return to the acc_xyz struct

}

acc_xyz = adxl345_read_xyz(fd); // Call the function to read the data collected by the

accelerometer module

printf("x: %05d y: %05d z: %05d\n", acc_xyz.x, acc_xyz.y, acc_xyz.z); // Print the

data collected by the accelerometer; %05d means the printed data is a 5-bit one, and the

empty bit will be replaced by 0.

For Python users:

Step 2: Get into the folder of the code

 cd /home/pi/SunFounder_Super_Kit_V3.0_for_Raspberry_Pi/Python

Step 3: Run

 sudo python 17_ADXL345.py

Code Explanation

class ADXL345(I2C): # Define a class ADXL345，and the class inheritance is I2C

 def __init__(self, busnum=-1, debug=False): # The initialize function of the

class, which is run when an instance is created of the class

 def setRange(self, range): # Read the data format register to preserve bits.

Update the data rate, make sure that the FULL-RES bit is enabled for range scaling

 def getRange(self): # Read an 8-bit data from the device register

 def setDataRate(self, dataRate): # Note: The LOW_POWER bits are currently

ignored; we always keep the device in 'normal' mode

 def getDataRate(self): # get the rate from the register

 def read(self): # Read data from the accelerometer

 raw = self.accel.readList(self.ADXL345_REG_DATAX0, 6) # Read 6 values from

the register, respectively equal to the high and low bits of the x, y, and z value

 print raw

 res = []

 for i in range(0, 6, 2):

117

 g = raw[i] | (raw[i+1] << 8) # Combine the high 8 bits and low 8 bits

and obtain a measurement value

 if g > 32767:

 g -= 65535

 res.append(g)

 return res

accel = ADXL345() # Create an instance accel of class ADXL345

x, y, z = accel.read() # accel calls itself to measure x, y, and z and store

them in a list. Then assign the values measured to x, y, and z.

Now, rotate the acceleration sensor, and you should see the values printed on the screen

change.

Copyright Notice

All contents including but not limited to texts, images, and code in this manual are owned by

the SunFounder Company. You should only use it for personal study, investigation, enjoyment,

or other non-commercial or nonprofit purposes, under the related regulations and copyrights

laws, without infringing the legal rights of the author and relevant right holders. For any

individual or organization that uses these for commercial profit without permission, the

Company reserves the right to take legal action.

