Richard Blum
Christine Bresnahan

SamsTeach Yourself

Python
Programming
for Raspberry Pi

FREE SAMPLE CHAPTER
SHARE WITH OTHERS

f ¥ 8B @@ @

http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780789752055
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780789752055
https://plusone.google.com/share?url=http://www.informit.com/title/9780789752055
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780789752055
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780789752055/Free-Sample-Chapter

Richard Blum
Christine Bresnahan

SamsTeachYourself

Python
Programming for
Raspberry Pr

Hours

SAMS 800 East 96th Street, Indianapolis, Indiana, 46240 USA

Sams Teach Yourself Python Programming for Raspberry Pi® 24 Hours

Copyright © 2014 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or
transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise, without
written permission from the publisher. No patent liability is assumed with respect to the use of
the information contained herein. Although every precaution has been taken in the preparation of
this book, the publisher and author assume no responsibility for errors or omissions. Nor is any
liability assumed for damages resulting from the use of the information contained herein.
Raspberry Pi is a trademark of the Raspberry Pi Foundation.

ISBN-13: 978-0-7897-5205-5

ISBN-10: 0-7897-5205-0

Library of Congress Control Number: 2013946052
Printed in the United States of America
First Printing: October 2013

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have been
appropriately capitalized. Sams Publishing cannot attest to the accuracy of this information. Use
of a term in this book should not be regarded as affecting the validity of any trademark or service
mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible, but no
warranty or fitness is implied. The information provided is on an “as is” basis. The author(s) and
the publisher shall have neither liability nor responsibility to any person or entity with respect to
any loss or damages arising from the information contained in this book.

Bulk Sales

Sams Publishing offers excellent discounts on this book when ordered in quantity for bulk pur-
chases or special sales. For more information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact
International Sales
international@pearsoned.com

Editor-in-Chief
Greg Wiegand
Executive Editor
Rick Kughen
Development

Editor
Mark Renfrow

Managing Editor
Kristy Hart

Project Editor
Andy Beaster

Copy Editor
Kitty Wilson

Indexer
Tim Wright
Proofreader

Sarah Kearns

Technical Editor
Jason Foster

Publishing
Coordinator

Kristen Watterson

Interior Designer
Mark Shirar

Cover Designer
Mark Shirar

Compositor
Nonie Ratcliff

Contents at a Glance

Introduction

Part I: The Raspberry Pi Programming Environment
HOUR 1 Setting Up the Raspberry Pi
2 Understanding the Raspbian Linux Distribution

3 Setting Up a Programming Environment

Part Il: Python Fundamentals
HOUR 4 Understanding Python Basics

5 Using Arithmetic in Your Programs
6 Controlling Your Program

7 Learning About Loops

Part lll: Advanced Python
HOUR 8 Using Lists and Tuples

9 Dictionaries and Sets
10 Working with Strings
11 Using Files
12 Creating Functions
13 Working with Modules

14 Exploring the World of Object-Oriented Programming

15 Employing Inheritance
16 Regular Expressions

17 Exception Handling

27
45

71
97
115
131

155
175
199
217
239
257
277
293
317
337

iv Sams Teach Yourself Python Programming for Raspberry Pi in 24 Hours

Part IV: Graphical Programming

HOUR 18 GUI Programming 361
19 Game Programming 387

Part V: Business Programming

HOUR 20 Using the Network 423
21 Using Databases in Your Programming 447
22 Web Programming 469

Part VI: Raspberry Pi Python Projects

HOUR 23 Creating Basic Pi/Python Projects 493
24 Working with Advanced Pi/Python Projects 529

Part VII: Appendix
A Loading the Raspbian Operating System onto an SD Card 553

Index 561

Table of Contents

Introduction
Programming with Python
Who Should Read This Book?

Conventions Used in This Book

Part I: The Raspberry Pi Programming Environment

HOUR 1: Setting Up the Raspberry Pi
What Is a Raspberry Pi?
Acquiring a Raspberry Pi
What Raspberry Pi Peripherals Are Necessary?
Nice Additional Peripherals
Deciding How to Purchase Peripherals
Getting Your Raspberry Pi Working
Troubleshooting Your Raspberry Pi
Summary
Q&A
Workshop

HOUR 2: Understanding the Raspbian Linux Distribution
Learning About Linux
Interacting with the Raspbian Command Line
Interacting with the Raspbian GUI
Summary
Q&A
Workshop

HOUR 3: Setting Up a Programming Environment
Exploring Python
Checking Your Python Environment

Installing Python and Tools

w N R =

11
17
19
19
24
25
25
26

27
27
28
33
43
43
44

45
45
46
48

Sams Teach Yourself Python Programming for Raspberry Pi in 24 Hours

Learning About the Python Interpreter 50
Learning About the Python Interactive Shell 51
Learning About the Python Development Environment Shell 54
Creating Python Scripts 59
Knowing Which Tool to Use and When 65
Summary 66
Q&A 66
Workshop 67

Part Il: Python Fundamentals

HOUR 4: Understanding Python Basics 71
Producing Python Script Output 71
Formatting Scripts for Readability 78
Understanding Python Variables 81
Assigning Value to Python Variables 82
Learning About Python Data Types 86
Allowing Python Script Input 88
Summary 94
Q&A 95
Workshop 95

HOUR 5: Using Arithmetic in Your Programs 97
Working with Math Operators 97
Calculating with Fractions 103
Using Complex Number Math 105
Getting Fancy with the math Module 106
Using the Numpy Math Libraries 110
Summary 112
Q&A 113
Workshop 113

HOUR 6: Controlling Your Program 115
Working with the if Statement 115

Grouping Multiple Statements 117

Contents vii

Adding Other Options with the else Statement 118
Adding More Options Using the e1if Statement 120
Comparing Values in Python 121
Checking Complex Conditions 126
Negating a Condition Check 127
Summary 128
Q&A 129
Workshop 129
HOUR 7: Learning About Loops 131
Performing Repetitive Tasks 131
Using the for Loop for Iteration 132
Using the while Loop for Iteration 143
Creating Nested Loops 149
Summary 150
Q&A 150
Workshop 151

Part lll: Advanced Python

HOUR 8: Using Lists and Tuples 155
Introducing Tuples 155
Introducing Lists 160
Using Multidimensional Lists to Store Data 167
Working with Lists and Tuples in Your Scripts 168
Creating Lists by Using List Comprehensions 170
Working with Ranges 170
Summary 172
Q&A 172
Workshop 172

HOUR 9: Dictionaries and Sets 175
Understanding Python Dictionary Terms 175
Exploring Dictionary Basics 176

Programming with Dictionaries 182

viii Sams Teach Yourself Python Programming for Raspberry Pi in 24 Hours

Understanding Python Sets 187
Exploring Set Basics 187
Obtaining Information from a Set 189
Modifying a Set 192
Programming with Sets 193
Summary 197
Q&A 197
Workshop 197
HOUR 10: Working with Strings 199
The Basics of Using Strings 199
Using Functions to Manipulate Strings 202
Formatting Strings for Output 209
Summary 215
Q&A 215
Workshop 215
HOUR 11: Using Files 217
Understanding Linux File Structures 217
Opening a File 221
Reading a File 224
Closing a File 230
Writing to a File 231
Summary 237
Q&A 237
Workshop 238
HOUR 12: Creating Functions 239
Utilizing Python Functions in Your Programs 239
Returning a Value 243
Passing Values to Functions 244
Handling Variables in a Function 250
Using Lists with Functions 253

Using Recursion with Functions 254

Contents ix

Summary 255
Q&A 256
Workshop 256
HOUR 13: Working with Modules 257
Introducing Module Concepts 257
Exploring Standard Modules 259
Learning About Python Modules 261
Creating Custom Modules 265
Summary 275
Q&A 275
Workshop 276
HOUR 14: Exploring the World of Object-Oriented Programming 277
Understanding the Basics of Object-Oriented Programming 277
Defining Class Methods 280
Sharing Your Code with Class Modules 287
Summary 290
Q&A 290
Workshop 290
HOUR 15: Employing Inheritance 293
Learning About the Class Problem 293
Understanding Subclasses and Inheritance 294
Using Inheritance in Python 296
Using Inheritance in Python Scripts 302
Summary 314
Q&A 314
Workshop 315
HOUR 16: Regular Expressions 317
What Are Regular Expressions? 317
Working with Regular Expressions in Python 319
Defining Basic Patterns 321

Using Advanced Regular Expressions Features 330

Sams Teach Yourself Python Programming for Raspberry Pi in 24 Hours

Working with Regular Expressions in Your Python Scripts 332
Summary 334
Q&A 335
Workshop 335
HOUR 17: Exception Handling 337
Understanding Exceptions 337
Handling Exceptions 342
Handling Multiple Exceptions 344
Summary 357
Q&A 357
Workshop 357

Part IV: Graphical Programming

HOUR 18: GUI Programming 361
Programming for a GUI Environment 361
Examining Python GUI Packages 363
Using the tkinter Package 364
Exploring the tkinter Widgets 372
Summary 384
Q&A 384
Workshop 384

HOUR 19: Game Programming 387
Understanding Game Programming 387
Learning About Game Frameworks and Libraries 388
Setting Up the pyGame Library 389
Using pyGame 394
Learning More About pyGame 403
Dealing with pyGame Action 408
Summary 418
Q&A 418

Workshop 418

Contents Xi

Part V: Business Programming

HOUR 20: Using the Network 423
Finding the Python Network Modules 423
Working with Email Servers 424
Working with Web Servers 432
Linking Programs Using Socket Programming 438
Summary 445
Q&A 445
Workshop 446

HOUR 21: Using Databases in Your Programming 447
Working with the MySQL Database 447
Using the PostgreSQL Database 458
Summary 466
Q&A 466
Workshop 467

HOUR 22: Web Programming 469
Running a Web Server on the Pi 469
Programming with the Common
Gateway Interface 473
Expanding Your Python Webpages 475
Processing Forms 482
Summary 488
Q&A 488
Workshop 488

Part VI: Raspberry Pi Python Projects1

HOUR 23: Creating Basic Pi/Python Projects 493
Thinking About Basic Pi/Python Projects 493
Displaying HD Images via Python 493
Playing Music 514

Creating a Special Presentation 521

Xii Sams Teach Yourself Python Programming for Raspberry Pi in 24 Hours

Summary
Q&A
Workshop

HOUR 24: Working with Advanced Pi/Python Projects
Exploring the GPIO Interface
Using the rri.GP10 Module
Controlling GPIO Output
Detecting GPIO Input
Summary
Q&A
Workshop

Part VII: Appendix

APPENDIX A: Loading the Raspbian Operating System onto an SD Card
Windows: Loading Raspbian onto an SD Card
Linux: Loading Raspbian onto an SD Card

Mac: Loading Raspbian onto an SD Card

Index

526
526
526

529
529
535
536
542
548
549
549

553
553
556
558

561

About the Authors

Richard Blum has worked in the IT industry for over 25 years as a network and systems
administrator, managing Microsoft, Unix, Linux, and Novell servers for a network with
more than 3,500 users. He has developed and teaches programming and Linux courses

via the Internet to colleges and universities worldwide. Rich has a master’s degree in man-
agement information systems from Purdue University and is the author of several Linux
books, including Linux Command Line and Shell Scripting Bible (coauthored with Christine
Bresnahan, 2011, Wiley), Linux for Dummies, 9th edition (2009, Wiley), and Professional Linux
Programming (coauthored with Jon Masters, 2007, Wiley). When he’s not busy being a com-
puter nerd, Rich enjoys spending time with his wife, Barbara, and two daughters, Katie Jane
and Jessica.

Christine Bresnahan started working in the IT industry more than 25 years ago as a
system administrator. Christine is currently an adjunct professor at Ivy Tech Community
College in Indianapolis, Indiana, teaching Python programming, Linux system administra-
tion, and Linux security classes. Christine produces Unix/Linux educational material and is
the author of Linux Bible, 8th edition (coauthored with Christopher Negus, 2012, Wiley) and
Linux Command Line and Shell Scripting Bible (coauthored with Richard Blum, 2011, Wiley).
She has been an enthusiastic owner of a Raspberry Pi since 2012.

Dedication

To the Lord God Almighty.

“I am the vine, you are the branches; he who abides in Me and I in him,
he bears much fruit, for apart from Me you can do nothing.”
—John 15:5

Acknowledgments

First, all glory, and praise go to God, who through His Son, Jesus Christ, makes all things
possible and gives us the gift of eternal life.

Many thanks go to the fantastic team of people at Sams Publishing, for their outstanding
work on this project. Thanks to Rick Kughen, the executive editor, for offering us the oppor-
tunity to work on this book and keeping things on track. We are grateful to the development
editor, Mark Renfrow, who provided diligence in making our work more presentable. Thanks
to the production editor, Andy Beaster, for making sure the book was produced. Many
thanks to the copy editor, Kitty Wilson, for her endless patience and diligence in making our
work readable. Also, we are indebted to our technical editor, Jason Foster, who put in many
long hours double-checking all our work and keeping the book technically accurate.

Thanks to Tonya of Tonya Wittig Photography, who created incredible pictures of our
Raspberry Pis and was very patient in taking all the photos we wanted for the book. We
would also like to thank Carole Jelen at Waterside Productions, Inc., for arranging this
opportunity for us and for helping us out in our writing careers.

Christine would also like to thank her student, Paul Bohall, for introducing her to the
Raspberry Pi, and her husband, Timothy, for his encouragement to pursue the “geeky stuff”
students introduce her to.

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we're doing right, what we could do better, what areas
you’d like to see us publish in, and any other words of wisdom you're willing to pass our
way.

We welcome your comments. You can email or write to let us know what you did or didn’t

like about this book—as well as what we can do to make our books better.

Please note that we cannot help you with technical problems related to the topic of this
book.

When you write, please be sure to include this book’s title and author as well as your name
and email address. We will carefully review your comments and share them with the author
and editors who worked on the book.

Email: consumer@samspublishing.com

Mail: Sams Publishing
ATTN: Reader Feedback
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services

Visit our website and register this book at informit.com/register for convenient access to any
updates, downloads, or errata that might be available for this book.

This page intentionally left blank

Introduction

Officially launched in February 2012, the Raspberry Pi personal computer took the world by
storm, selling out the 10,000 available units immediately. It is an inexpensive credit card-sized
exposed circuit board, a fully programmable PC running the free open source Linux operat-
ing system. The Raspberry Pi can connect to the Internet, can be plugged into a TV, and costs
around $35.

Originally created to spark schoolchildren’s interest in computers, the Raspberry Pi has caught
the attention of home hobbyist, entrepreneurs, and educators worldwide. Estimates put the sales
figures around 1 million units as of February 2013.

The official programming language of the Raspberry Pi is Python. Python is a flexible pro-
gramming language that runs on almost any platform. Thus, a program can be created on a
Windows PC or Mac and run on the Raspberry Pi and vice versa. Python is an elegant, reliable,
powerful, and very popular programming language. Making Python the official programming
language of the popular Raspberry Pi was genius.

Programming with Python

The goal of this book is to help guide both students and hobbyists through using the Python
programming language on a Raspberry Pi. You don’t need to have any programming experi-
ence to benefit from this book; we walk through all the necessary steps in getting your Python
programs up and running!

Part I, “The Raspberry Pi Programming Environment,” walks through the core Raspberry Pi
system and how to use the Python environment that’s already installed in it. Hour 1, “Setting
Up the Raspberry Pi,” demonstrates how to set up a Raspberry Pi system, and then in

Hour 2, “Understanding the Raspbian Linux Distribution,” we take a closer look at Raspbian,
the Linux distribution designed specifically for the Raspberry Pi. Hour 3, “Setting Up a
Programming Environment,” walks through the different ways you can run your Python pro-
grams on the Raspberry Pi, and it goes through some tips on how to build your programs.

Part II, “Python Fundamentals,” focuses on the Python 3 programming language. Python v3 is
the newest version of Python, and is fully supported in the Raspberry Pi. Hours 4 through 7 take
you through the basics of Python programming, from simple assignment statements (Hour 4,

2 Introduction

“Understanding Python Basics”), arithmetic (Hour 5, “Using Arithmetic in Your Programs”), and
structured commands (Hour 6, “Controlling Your Program”), to complex structured commands
(Hour 7, “Learning About Loops”).

Hours 8, “Using Lists and Tuples,” and 9, “Dictionaries and Sets,” kick off Part III, “Advanced
Python,” showing how to use some of the fancier data structures supported by Python—Iists,
tuples, dictionaries, and sets. You'll use these a lot in your Python programs, so it helps to know
all about them!

In Hour 10, “Working with Strings,” we take a little extra time to go over how Python handles
text strings. String manipulation is a hallmark of the Python programming language, so we
want to make sure you're comfortable with how that all works.

After that primer, we walk through some more complex concepts in Python: using files (Hour
11, “Using Files”), creating your own functions (Hour 12, “Creating Functions”), creating your
own modules (Hour 13, “Working with Modules”), object-oriented Python programming (Hour
14, “Exploring the World of Object-Oriented Programming”), inheritance (Hour 15, “Employing
Inheritance”), regular expressions (Hour 16, “Regular Expressions”), and working with excep-
tions (Hour 17, “Exception Handling”).

Part IV, “Graphical Programming,” is devoted to using Python to create real-world applications.
Hour 18, “GUI Programming,” discusses GUI programming so you can create your own windows
applications, and Hour 19, “Game Programming,” introduces you to the world of Python game
programming.

Part V, “Business Programming,” takes a look at some business-oriented applications that you
can create. In Hour 20, “Using the Network,” we look at how to incorporate network functions
such as email and retrieving data from webpages into your Python programs, Hour 21, “Using
Databases in Your Programming,” shows how to interact with popular Linux database servers,
and Hour 22, “Web Programming,” demonstrates how to write Python programs that you can
access from across the Web.

Part VI, “Raspberry Pi Python Projects,” walks through Python projects that focus specifically on
features found on the Raspberry Pi. Hour 23, “Creating Basic Pi/Python Projects,” shows how

to use the Raspberry Pi video and sound capabilities to create multimedia projects. Hour 24,
“Working with Advanced Pi/Python Projects,” explores connecting your Raspberry Pi with
electronic circuits using the General Purpose Input/Output (GPIO) interface.

Who Should Read This Book?

This book is aimed at readers interested in getting the most from their Raspberry Pi system by
writing their own Python programs, including these three groups:

» Students interested in an inexpensive way to learn Python programming.

» Hobbyists who want to get the most out of their Raspberry Pi system.

Conventions Used in This Book 3

» Entrepreneurs looking for an inexpensive Linux platform to use for application
deployment.

If you are reading this book, you are not necessarily new to programming but you may be new
to using the Python programming

Conventions Used in This Book

To make your life easier, this book includes various features and conventions that help you get
the most out of this book and out of your Raspberry Pi:

Steps Throughout the book, we've broken many coding
tasks into easy-to-follow step-by-step procedures.

Filenames, folder names, and code These things appear in a monospace font.

Commands Commands and their syntax use bold.

Menu commands We use the following style for all application menu
commands: Menu, Command, where Menu is the
name of the menu you pull down and Command
is the name of the command you select. Here’s an
example: File, Open. This means you select the File
menu and then select the Open command.

This book also uses the following boxes to draw your attention to important or interesting
information:

BY THE WAY

By the Way boxes present asides that give you more information about the current topic. These tid-
bits provide extra insights that offer better understanding of the task.

DID YOU KNOW

Did You Know boxes call your attention to suggestions, solutions, or shortcuts that are often hidden,
undocumented, or just extra useful.

WATCH OUT!

Watch Out! boxes provide cautions or warnings about actions or mistakes that bring about data loss
or other serious consequences.

This page intentionally left blank

This page intentionally left blank

HOUR 4

Understanding Python Basics

What You’ll Learn in This Hour:

» How to produce output from a script
» Making a script readable

» How to use variables

» Assigning value to variables

» Types of data

» How to put information into a script

In this hour, you will get a chance to learn some Python basics, such as using the print func-
tion to display output. You will read about using variables and how to assign them values, and
you will gain an understanding of their data types. By the end of the hour, you will know how
to get data into a script by using the input function, and you will be writing your first Python
script!

Producing Python Script Output

Understanding how to produce output from a Python script is a good starting point for
those who are new to the Python programming language. You can get instant feedback on
your Python statements from the Python interactive interpreter and gently experiment with
proper syntax. The print function, which you met in Hour 3, “Setting Up a Programming
Environment,” is a good place to focus your attention.

Exploring the print Function

A function is a group of python statements that are put together as a unit to perform a specific
task. You can simply enter a single Python statement to perform a task for you.

72 Understanding Python Basics

BY THE WAY

The “New” print Function
In Python v2, print is not a function. It became a function when Python v3 was created.

The print function’s task is to output items. The “items” to output are correctly called an argu-
ment. The basic syntax of the print function is as follows:

print (argument)

DID YOU KNOW

Standard Library of Functions

The print function is called a built-in function because it is part of the Python standard library of
functions. You don’t need to do anything special to get this function. It is provided for your use when
you install Python.

The argument portion of the print function can be characters, such as ABC or 123. It can also
be values stored in variables. You will learn about variables later in this hour.

Using Characters as print Function Arguments

To display characters (also called string literals) using the print function, you need to enclose
the characters in either a set of single quotes or double quotes. Listing 4.1 shows using a pair of
single quotes to enclose characters (a sentence) so it can be used as a print function argument.

LISTING 4.1 Using a Pair of Single Quotes to Enclose Characters

>>> print ('This is an example of using single quotes.')
This is an example of using single quotes.

>>>

Listing 4.2 shows the use of double quotes with the print function. You can see that the output
that results from both Listing 4.1 and Listing 4.2 does not contain the quotation marks, only the
characters.

LISTING 4.2 Using a Pair of Double Quotes to Enclose Characters

>>> print ("This is an example of using double quotes.")
This is an example of using double quotes.

>>>

Producing Python Script Output 73

BY THE WAY

Choose One Type of Quotes and Stick with It

If you like to use single quotation marks to enclose string literals in a print function argument,
then consistently use them. If you prefer double quotation marks, then consistently use them. Even
though Python doesn’t care, it is considered poor form to use single quotes on one print function
argument and then double quotes on the next. This makes the code hard for humans to read.

Sometimes you need to output a string of characters that contain a single quote to show posses-
sion or a contraction. In such a case, you use double quotes around the print function argu-
ment, as shown in Listing 4.3.

LISTING 4.3 Protecting a Single Quote with Double Quotes

>>> print ("This example protects the output's single quote.")
This example protects the output's single quote.

>>>

At other times, you need to output a string of characters that contain double quotes, such as
for a quotation. Listing 4.4 shows an example of protecting a quote, using single quotes in the
argument.

LISTING 4.4 Protecting a Double Quote with Single Quotes

>>> print ('I said, "I need to protect my quotation!" and did so.')
I said, "I need to protect my quotation!" and did so.

>>>

DID YOU KNOW

Protecting Single Quotes with Single Quotes

You can also embed single quotes within single quote marks and double quotes within double quote
marks. However, when you do, you need to use something called an “escape sequence,” which is
covered later in this hour.

Formatting Output with the print Function

You can perform various output formatting features by using the print function. For example,
you can insert a single blank line by using the print function with no arguments, like this:

print ()

74 Understanding Python Basics

The screen in Figure 4.1 shows a short Python script that inserts a blank line between two other
lines of output.

pi@raspberrypi: ~
Fle Edit Tabs Help
pi@raspberrypi ~ $
pi@raspberrypi -~ ¢
pi@raspberrypi cat py3prog/script0401.py
print ("This is my first line.")
print ()
print ("This is the line after a blank line.")

pi@raspberrypi
pi@raspberrypi ~ % python3 py3prog/script0401.py
This is my first line.

This is the 1line after a blank line.
pi@raspberrypi - %
pi@raspberrypi ~ 35 [

FIGURE 4.1
Adding a blank line in script output.

Another way to format output using the print function is via triple quotes. Triple quotes are
simply three sets of double quotes.

Listing 4.5 shows how you can use triple quotes to embed a linefeed character by pressing the
Enter key. When the output is displayed, each embedded linefeed character causes the next sen-
tence to appear on the next line. Thus, linefeed moves your output to the next new line. Notice
that you cannot see the linefeed character embedded on each line in the code; you can only see
its effect in the output.

LISTING 4.5 Using Triple Quotes

>>> print ("""This is line one.
. This is line two.
. This is line three.""")
This is line one.
This is line two.
This is line three.

>>>

BY THE WAY

But | Prefer Single Quotes

Triple quotes don’t have to be three sets of double quotes. You can use three sets of single quotes
instead to get the same result!

Producing Python Script Output 75

By using triple quotes, you can also protect single and double quotes that you need to be dis-
played in the output. Listing 4.6 shows the use of triple quotes to protect both single and double
quotes in the same character string.

LISTING 4.6 Using Triple Quotes to Protect Single and Double Quotes

>>> print ("""Raz said, "I didn't know about triple quotes!" and laughed.""")
Raz said, "I didn't know about triple quotes!" and laughed.

>>>

Controlling Output with Escape Sequences

An escape sequence is a series of characters that allow a Python statement to “escape” from nor-
mal behavior. The new behavior can be the addition of special formatting for the output or the
protection of characters typically used in syntax. Escape sequences all begin with the backslash
(\) character.

An example of using an escape sequence to add special formatting for output is the \n escape
sequence. The \n escape sequence forces any characters listed after it onto the next line of
displayed output. This is called a newline, and the formatting character it inserts is a linefeed.
Listing 4.7 shows an example of using the \n escape sequence to insert a linefeed. Notice that it
causes the output to be formatted exactly as it was Listing 4.5, with triple quotes.

LISTING 4.7 Using an Escape Sequence to Add a Linefeed

>>> print ("This is line one.\nThis is line two.\nAnd this is line three.")

This is line one.
This is line two.
And this is line three.

>>>

Typically, the print function puts a linefeed only at the end of displayed output. However, the
print function in Listing 4.7 is forced to “escape” its normal formatting behavior because of the
addition of the \n escape sequence.

DID YOU KNOW

Quotes and Escape Sequences

Escape sequences work whether you use single quotes, double quotes, or triple quotes to surround
your print function argument.

76 Understanding Python Basics

You can also use escape sequences to protect various characters used in syntax. Listing 4.8 shows
the backslash (\) character used to protect a single quote so that it will not be used in the print
function’s syntax. Instead, the quote is displayed in the output.

LISTING 4.8 Using an Escape Sequence to Protect Quotes

>>> print ('Use backslash, so the single quote isn\'t noticed.')
Use backslash, so the single quote isn't noticed.

>>>

You can use many different escape sequences in your Python scripts. Table 4.1 shows a few of
the available sequences.

TABLE 4.1 A Few Python Escape Sequences

Escape Sequence Description

\! Displays a single quote in output.

\" Displays a double quote in output.

A\ Displays a single backslash in output.

\a Produces a “bell” sound with output.

\f Inserts a formfeed into the output.

\n Inserts a linefeed into the output.

\t Inserts a horizontal tab into the output.

\u#### Displays the Unicode character denoted by the character’s four

hexadecimal digits (####).

Notice in Table 4.1 that not only can you insert formatting into your output, you can produce
sound as well! Another interesting escape sequence involves displaying Unicode characters in
your output.

Now for Something Fun!

Thanks to the Unicode escape sequence, you can print all kinds of characters in your output. You
learned a little about Unicode in Hour 3. You can display Unicode characters by using the \u
escape sequence. Each Unicode character is represented by a hexadecimal number. You can find
these hexadecimal numbers at www.unicode.org/charts. There are lots of Unicode characters!

The hexadecimal number for the pi (II) symbol is 03c0. To display this symbol using the Unicode
escape sequence, you must precede the number with \u in your print function argument.
Listing 4.9 displays the pi symbol to output.

http://www.unicode.org/charts

Producing Python Script Output 17

LISTING 4.9 Using a Unicode Escape Sequence

>>> print ("I love my Raspberry \u03cO!")
I love my Raspberry m!

>>>

TRY IT YOURSELF V¥

Create Output with the print Function

This hour you have been reading about creating and formatting output by using the print
function. Now it is your turn to try out this versatile Python tool. Follow these steps:

1. If you have not already done so, power up your Raspberry Pi and log in to the system.

2. If you do not have the LXDE GUI started automatically at boot, start it now by typing
startx and pressing Enter.

3. Open the LXTerminal by double-clicking the LXTerminal icon.

4. At the command-line prompt, type python3 and press Enter. You are taken to the Python
interactive shell, where you can type Python statements and see immediate results.

5. At the Python interactive shell prompt (>>>), type print ('I learned about the
print function.') and press Enter.

6. At the prompt, type print ('I learned about single quotes.') and press
Enter.

7. At the prompt, type print ("Double quotes can also be used.") and press
Enter.

BY THE WAY

Multiple Lines with Triple Double Quotes

In steps 8 through 10, you will not be completing the print function on one line. Instead, you will
be using triple double quotes to allow multiple lines to be entered and displayed.

8. At the prompt, type print ("""I learned about things like... and press
Enter.

9. Type triple quotes, and press Enter.

10. Type and displaying text on multiple lines.""")and press Enter. Notice that
the Python interactive shell did not output the Python print statement’s argument until you
had fully completed it with the closing parenthesis.

11. At the prompt, type print ('Single quotes protect "double quotes" in
output. ') and press Enter.

78 Understanding Python Basics

n 12. At the prompt, type print ("Double quotes protect ‘single quotes’ in

output.") and press Enter.

13. At the prompt, type print ("A backslash protects \"double quotes\" in
output.") and press Enter.

14. At the prompt, type print ('A backslash protects \'single quotes\' in
output. ') and press Enter. Using the backslash to protect either single or double quotes
will allow you to maintain your chosen method of consistently using single (or double
quotes) around your print function argument.

15. At the prompt, type print ("The backslash character \\ is an escape
character.") and press Enter.

16. At the prompt, type print ("Use escape sequences to \n insert a
linefeed.") and press Enter. Notice how part of the sentence, “Use escape sequences
to,” is on one line and the end of the sentence “insert a linefeed.” is on another line. This
is due to your insertion of the escape sequence \n in the middle of the sentence.

17. At the prompt, type print ("Use escape sequences to \t\t insert two
tabs or") and press Enter.

18. At the prompt, type print ("insert a check mark: \u2714") and press Enter.

You can do a lot with the print function to display and format output! In fact, you could spend
this entire hour just playing with output formatting. However, there are additional important
Python basics you need to learn, such as formatting scripts for readability.

Formatting Scripts for Readability

Just as the development environment, IDLE, will help you as your Python scripts get larger, a few
minor practices will also be helpful to you. Learn these tips early on, so they become habits as
your Python skills grow (and as the length of your scripts grow!).

Long Print Lines

Occasionally you will have to display a very long line of output using the print function. It
may be a paragraph of instructions you have to provide to your script user. The problem with
long output lines is that they make your script code hard to read and the logic behind the script
harder to follow. Python is supposed to “fit in your brain.” The habit of breaking up long output
lines will help you meet that goal. There are a couple of ways you can accomplish this.

Formatting Scripts for Readability 79

BY THE WAY

A Script User?

You may be one of those people who have never heard the term “user” in association with comput-
ers. A user is a person who is using the computer or running the script. Sometimes the term “end
user” is used instead. You should always keep the “user” in mind when you write your scripts, even
if the “user” is just you!

The first way to break up a long output line of characters, is to use something called string con-
catenation. String concatenation takes two or more strings of text and “glues” them together, so
they become one string of text. The “glue” in this method is the plus (+) symbol. However, to get
this to work properly, you also need to use the backslash (\) to escape out of the normal print
function behavior of putting a linefeed at the end of a string of characters. Thus, the two items
you need are +\, as shown in Listing 4.10.

LISTING 4.10 String Concatenation for Long Text Lines

>>> print ("This is a really long line of text " +\
"that I need to display!")
This is a really long line of text that I need to display!

>>>

As you can see in Listing 4.10, the two strings are concatenated and displayed as one string in
the output. However, there is an even simpler and cleaner method of accomplishing this!

You can forgo the +\ and simply keep each character string in its own sets of quotation marks.
The characters strings will be automatically concatenated by the print function! The print
function handles this perfectly and it is a lot cleaner looking. This method is demonstrated in
Listing 4.11.

LISTING 4.11 Combining for Long Text Lines

>>> print ("This is a really long line of text "
"that I need to display!")
This is a really long line of text that I need to display!

>>>

It is always a good rule to keep your Python syntax simple to provide better readability of the
scripts. However, sometimes you need to use complex syntax. This is where comments will help
you. No, not comments spoken aloud, like “I think this syntax is complicated!” We're talking
about comments that are embedded in your Python script.

80 Understanding Python Basics

Creating Comments

In scripts, comments are notes from the Python script author. A comment’s purpose is to provide
understanding of the script’s syntax and logic. The Python interpreter ignores any comments.
However, comments are invaluable to humans who need to modify or debug scripts.

To add a comment to a script, you precede it with the pound or hash symbol (#). The Python
interpreter ignores anything that follows the hash symbol.

For example, when you write a Python script, it is a good idea to insert comments that include
your name, when you wrote the script, and the script’s purpose. Figure 4.2 shows an example.
Some script writers believe in putting these type of comments at the top of their scripts, while
others put them at the bottom. At the very least, if you include a comment with your name as
the author in your script, when the script is shared with others, you will get credit for its writing.

pi@raspberrypi: ~
Fle Edit Tebs Help

pi@raspberrypi

pi@raspberrypi cat py3prog/script0401.py

script040l.py - Demonstrate inserting a blank line using print.
Author: Christine Bresnahan

Date: November 10, 2014

s e s e e e e e e e e e e e
print ("This is my first line.")

print () # Inserts a blank line in ouput.
print ("This is the line after a blank line.")

pi@raspberrypi

pi@raspberrypi

FIGURE 4.2
Comments in a Python script.

You can also provide clarity by breaking up sections of your scripts using long lines of the # sym-
bol. Figure 4.2 shows a long line of hash symbols used to separate the comment section from the
main body of the script.

Finally, you can put comments at the end of a Python statement. Notice in Figure 4.2 that the
print () statement is followed by the comment # Inserts a blank line in output.
A comment placed at the end of a statement is called an end comment, and it provides clarity
about that particular line of code.

Those few simple tips will really help you improve the readability of your code. Putting these tips
into practice will save you lots of time as you write and modify Python scripts.

Understanding Python Variables 81

Understanding Python Variables

A variable is a name that stores a value for later use in a script. A variable is like a coffee cup. A
coffee cup typically holds coffee, of course! But a coffee cup can also hold tea, water, milk, rocks,
gravel, sand...you get the picture. Think of a variable as a “holder of objects” that you can look
at and use in your Python scripts.

BY THE WAY

An Object Reference

Python really doesn’t have variables! Instead, they are “object references.” However, for now, just
think of them as variables.

When you name your coffee cup...err, variable...you need to be aware that Python variable
names are case sensitive. For example, the variables named CoffeeCup and coffeecup are two
different variables. There are other rules associated with creating Python variable names:

» You cannot use a Python keyword as a variable name.
» The first character of a variable name cannot be a number.

» There are no spaces allowed in a variable name.

Python Keywords

The list of Python keywords changes every so often. Therefore, it is a good idea to take a look at
the current list of keywords before you start creating variable names. To look at the keywords,
you need to use a function that is part of the standard library. However, this function is not built
-in, like the print function is built -in. You have this function on your Raspbian system, but
before you can use it, you need to import the function into Python. The function’s name is key-
word. Listing 4.12 shows you how to import into Python and determine keywords.

LISTING 4.12 Determining Python Keywords

>>> import keyword

>>> print (keyword.kwlist)

['False', 'None', 'True', 'and', 'as',
'assert', 'break', 'class', 'continue',
'def', 'del', 'elif', ‘'else', 'except',
'finally', 'for', 'from', 'global', 'if',
'import', 'in', 'is', 'lambda', 'nonlocal',
'not', 'or', 'pass', 'raise', 'return',

'try', 'while', ‘'with', ‘'yield'l]

>>>

82 Understanding Python Basics

In Listing 4.12, the command import keyword brings the keyword function into the Python
interpreter so it can be used. Then the statement print (keyword.kwlist) uses the keyword
and print functions to display the current list of Python keywords. These keywords cannot be
used as Python variable names.

Creating Python Variable Names

For the first character in your Python variable name, you must not use a number. The first char-
acter in the variable name can be any of the following:

> A letter a through z
> A letter A through Z

» The underscore character ()

After the first character in a variable name, the other characters can be any of the following:

» The numbers O through 9

v

The letters a through z

» The letters A through Z

v

The underscore character ()

DID YOU KNOW

Using Underscore for Spaces

Because you cannot use spaces in a variable’s name, it is a good idea to use underscores in

their place, to make your variable names readable. For example, instead of creating a variable name
like coffeecup, use the variable name coffee cup.

After you determine a name for a variable, you still cannot use it. A variable must have a value
assigned to it before it can be used in a Python script.

Assigning Value to Python Variables

Assigning a value to a Python variable is fairly straightforward. You put the variable name first,
then an equal sign (=), and finish up with the value you are assigning to the variable. This is the
syntax:

variable = value

Assigning Value to Python Variables 83

Listing 4.13 creates the variable coffee cup and assigns a value to it.

LISTING 4.13 Assigning a Value to a Python Variable

>>> coffee cup = 'coffee’

>>> print (coffee cup)
coffee

>>>

As you see in Listing 4.13, the print function can output the value of the variable without any
quotation marks around it. You can take output a step further by putting a string and a variable
together as two print function arguments. The print function knows they are two separate
arguments because they are separated by a comma (,), as shown in Listing 4.14.

LISTING 4.14 Displaying Text and a Variable

>>> print ("My coffee cup is full of", coffee cup)

My coffee cup is full of coffee

>>>

Formatting Variable and String Output

Using variables adds additional formatting issues. For example, the print function automati-
cally inserts a space whenever it encounters a comma in a statement. This is why you do not
need to add a space at the end of My coffee cup is full of, as shown in Listing 4.14.
There may be times, however, when you want something else besides a space to separate a string
of characters from a variable in the output. In such a case, you can use a separator in your
statement. Listing 4.15 uses the sep separator to place an asterisk (*) in the output instead of

a space.

LISTING 4.15 Using Separators in Output

>>> coffee cup = 'coffee’

>>> print ("I love my", coffee cup, "!", sep='*"')
I love my*coffeex*!

>>>

Notice you can also put variables in between various strings in your print statements. In Listing
4.15, four arguments are given to the print function:

» The string "I love my"

» The variable coffee cup

84 Understanding Python Basics

» The string "! "

» The separator designation ' *'

The variable coffee_cup is between two strings. Thus, you get two asterisks (*), one between
each argument to the print function. Mixing strings and variables in the print function gives
you a lot of flexibility in your script’s output.

Avoiding Unassigned Variables

You cannot use a variable until you have assigned a value to it. A variable is created when it is
assigned a value and not before. Listing 4.16 shows an example of this.

LISTING 4.16 Behavior of an Unassigned Variable

>>> print (glass)

Traceback (most recent call last):

File "<stdin>", line 1, in <module> Name
Error: name 'glass' is not defined

>>>

>>> glass = 'water!’

>>> print (glass)

water

>>>

Assigning Long String Values to Variables

If you need to assign a long string value to a variable, you can break it up onto multiple lines by
using a couple methods. Earlier in the hour, in the “Formatting Scripts for Readability” section,
you looked at using the print function with multiple lines of outputted text. The concept here is
very similar.

The first method involves using string concatenation (+) to put the strings together and an
escape character (\) to keep a linefeed from being inserted. You can see in Listing 4.17 that two
long lines of text were concatenated together in the assignment of the variable long_ string.

LISTING 4.17 Concatenating Text in Variable Assignment

>>> long string = "This is a really long line of text" +\
" that I need to display!"

>>> print (long string)

This is a really long line of text that I need to display!

>>>

Assigning Value to Python Variables 85

Another method is to use parentheses to enclose your variable’s value. Listing 4.18 eliminates
the +\ and uses parentheses on either side of the entire long string in order to make it into one
long string of characters.

LISTING 4.18 Combining Text in Variable Assignment

>>> long string = ("This is a really long line of text"
" that I need to display!")
>>> print (long string)

This is a really long line of text that I need to display!

>>>

The method used in Listing 4.18 is a much cleaner method. It also helps improve the readability
of the script.

BY THE WAY

Assigning Short Strings to Variables

You can use parentheses for assigning short strings to variables, too! This is especially useful if it
helps you improve the readability of your Python script.

More Variable Assignments

The value of a variable does not have to only be a string of characters; it can also be a number.
In Listing 4.19, the number of cups consumed of a particular beverage are assigned to the vari-

able cups_consumed

LISTING 4.19 Assighing a Numeric Value to a Variable

>>> coffee cup = 'coffee’

>>> cups_consumed = 3

>>> print ("I had", cups_consumed, "cups of",
... coffee cup, "today!")

I had 3 cups of coffee today!

>>>

You can also assign the result of an expression to a variable. The equation 3+1 is completed in
Listing 4.20, and then the value 4 is assigned to the variable cups consumed.

86 Understanding Python Basics

LISTING 4.20 Assigning an Expression Result to a Variable

>>> coffee cup = 'coffee’

>>> cups_consumed = 3 + 1

>>> print ("I had", cups_consumed, "cups of",
. coffee cup, "today!")

I had 4 cups of coffee today!

>>>

You will learn more about performing mathematical operations in Python scripts in Hour 5,
“Using Arithmetic in Your Programs.”

Reassigning Values to a Variable

After you assign a value to a variable, the variable is not stuck with that value. It can be reas-
signed. Variables are called variables because their values can be varied. (Say that three times
fast.)

In Listing 4.21, the variable coffee_cup has its value changed from coffee to tea. To reassign
a value, you simply enter the assignment syntax with a new value at the end of it.

LISTING 4.21 Reassigning a Variable

>>> coffee cup = 'coffee’

>>> print ("My cup is full of", coffee cup)
My cup is full of coffee

>>> coffee cup = 'tea'

>>> print ("My cup is full of", coffee_ cup)
My cup is full of tea

>>>

DID YOU KNOW

Variable Name Case

Python script writers tend to use all lowercase letters in the names of variable whose values might
change, such as coffee_ cup. For variable names that are never reassigned values, all upper-
case letters are used (for example, PI = 3.14159). The unchanging variables are called symbolic
constants.

Learning About Python Data Types

When a variable is created by an assignment such as variable = value, Python determines
and assigns a data type to the variable. A data type defines how the variable is stored and the

Learning About Python Data Types 87

rules governing how the data can be manipulated. Python uses the value assigned to the vari-
able to determine its type.

So far, this hour has focused on strings of characters. When the Python statement coffee cup
= 'tea' was entered, Python saw the characters in quotation marks and determined the vari-
able coffee cup to be a string literal data type, or str. Table 4.2 lists a few of the basic data
types Python assigns to variables.

TABLE 4.2 Python Basic Data Types

Data Type Description

float Floating-point number

int Integer

long Long integer

str Character string or string literal

You can determine what data type Python has assigned to a variable by using the type func-
tion. In Listing 4.22, you can see that the variables have been assigned two different data types.

LISTING 4.22 Assigned Data Types for Variables

>>> coffee cup = 'coffee'

>>> type (coffee_ cup)
<class 'str's>

>>> cups_consumed = 3
>>> type (cups_consumed)
<class 'int'>

>>>

Python assigned the data type str to the variable coffee cup because it saw a string of char-
acters between quotation marks. However, for the cups_consumed variable, Python saw a whole
number, and thus it assigned it the integer data type, int.

DID YOU KNOW

The print Function and Data Types

The print function assigns to its arguments the string literal data type, str. It does this for any-
thing that is given as an argument, such as quoted characters, numbers, variables values, and so
on. Thus, you can mix data types in your print function argument. The print function will just
convert everything to a string literal data type and spit it out to the display.

88 Understanding Python Basics

Making a small change in the cups_consumed variable assignment statement causes Python to
change its data type. In Listing 4.23, the number assigned to cups_consumed is reassigned from
3 to 3.5. This causes Python to reassign the data type to cups_consumed from int to float.

LISTING 4.23 Changed Data Types for Variables

>>> cups_consumed = 3
>>> type (cups_consumed)
<class 'int's>

>>> cups_consumed = 3.5
>>> type (cups_consumed)
<class 'float's>

>>>

You can see that Python does a lot of the “dirty work” for you. This is one of the many reasons
Python is so popular.

Allowing Python Script Input

There will be times that you need a script user to provide data into your script from the key-
board. In order to accomplish this task, Python provides the input function. The input function
is a built-in function and has the following syntax:

variable = input (user prompt)

In Listing 4.24, the variable cups_consumed is assigned the value returned by the input func-
tion. The script user is prompted to provide this information. The prompt provided to the user is
designated in the input function as an argument. The script user inputs an answer and presses
the Enter key. This action causes the input function to assign the answer 3 as a value to the

variable cups_consumed.

LISTING 4.24 Variable Assignment via Script Input

>>> cups_consumed = input("How many cups did you drink? ")
How many cups did you drink? 3

>>> print ("You drank", cups_consumed, "cups!")

You drank 3 cups!

>>>

For the user prompt, you can enclose the prompt’s string characters in either single or double
quotes. The prompt is shown enclosed in double quotes in Listing 4.24’s input function.

Allowing Python Script Input 89

BY THE WAY

Be Nice to Your Script User

Be nice to the user of your script, even if it is just yourself. It is no fun typing in an answer that is
“squished” up against the prompt. Add a space at the end of each prompt to give the end user a
little breathing room for prompt answers. Notice in the input function in Listing 4.24 that there is a
space added between the question mark (?) and the enclosing double quotes.

The input function treats all input as strings. This is different from how Python handles other
variable assignments. Remember that if cups consumed = 3 were in your Python script, it
would be assigned the data type integer, int. When using the input function, as shown in
Listing 4.25, the data type is set to string, str.

LISTING 4.25 Data Type Assignments via Input

>>> cups_consumed = 3

>>> type (cups_consumed)

<class 'int's>

>>> cups_consumed = input("How many cups did you drink? ")
How many cups did you drink? 3

>>> type (cups_consumed)

<class 'str's>

>>>

To convert variables which are input from the keyboard, from strings, you can use the int func-
tion. The int function will convert a number from a string data type to an integer data type.
You can use the float function to convert a number from a string to a floating-point data type.
Listing 4.26 shows how to convert the variable cups consumed to an integer data type.

LISTING 4.26 Data Type Conversion via the int Function

>>> cups_consumed = input ("How many cups did you drink? ")
How many cups did you drink? 3

>>> type (cups_consumed)

<class 'str's>

>>> cups_consumed = int (cups_consumed)

>>> type (cups_consumed)

<class 'int's>

>>>

You can get really tricky here and use a nested function. Nested functions are functions within
functions. The general format, is as follows:

variable = functionA(functionB(user prompt))

90

Understanding Python Basics

Listing 4.27 uses this method to properly change the input data type from a string to an integer.

LISTING 4.27 Using Nested Functions with input

>>> cups_consumed = int (input("How many cups did you drink? "))

How many cups did you drink? 3

>>> type (cups_consumed)

<class 'int's>

>>>

Using nested functions makes a Python script more concise. However, the trade-off is that the

script is a little harder to read.

V¥ TRY IT YOURSELF

Explore Python Input and Output with Variables

You are now going to explore Python input and output using variables. In the following steps, you
will write a script to play with, instead of using the interactive Python shell:

1.
2.

If you have not already done so, power up your Raspberry Pi and log in to the system.

If you do not have the LXDE GUI started automatically at boot, start it now by typing
startx and pressing Enter.

Open the LXTerminal by double-clicking the LXTerminal icon.

At the command-line prompt, type nano py3prog/script0402.py and press Enter.
The command puts you into the nano text editor and creates the file py3prog/
script0402.py.

. Type the following code into the nano editor window, pressing Enter at the end of each line:

script0402.py - My first real Python script.
Written by <your name heres>
Date: <today's date>

#

HH##HH#HHH#AHH Define Variables #####H#H##H#H#

#

amount = 4 #Number of vessels.

vessels = 'glasses' #Type of vessels used.

liquid = 'water' #What is contained in the vessels.
location = 'on the table' #Location of vessels.

#

HH#HHH##AH#E Output Variable Description #############H#H##H
#

print
#
print
#
print
#
print
#
print
#
print
print

#

0

("The variables are as follows:"

("name :

("name :

("name :

("name :

()

amount", "data type:", type
vessels", "data type:", type
liquid", "data type:", type
location", "data type:", type

Allowing Python Script Input

HH##H#######H## Output Sentence Using Variables ##########H###

#
print

print

BY THE WAY

("There are", amount, vessels,

0

"full of", liquid,

(amount), "value:", amount)

(vessels), "value:", vessels)

(ligquid), "value:", liquid)
(location), "value:", location)

location, end='.\n")

91

Be Careful!

Be sure to take your time here and avoid making typographical errors. Double-check and make sure
you have entered the code into the nano text editor window as shown above. You can make correc-
tions by using the Delete key and the up- and down-arrow keys.

6. Write out the information you just typed in the text editor to the script by pressing Ctrl+O.

The script file name will show along with the prompt File name to write. Press Enter
to write out the contents to the script0402.py script.

7. Exit the nano text editor by pressing Ctrl+X.

8. Type python3 py3prog/script0402.py and press Enter to run the script. If you
encounter any errors, note them so you can fix them in the next step. You should see out-
put like the output shown in Figure 4.3. The output is okay, but it's a little sloppy. You can
clean it up in the next step.

92

File Edit Tabs Help
pi@raspberrypi
pi@raspberrypi
pi@raspberrypi python3 py3prog/script0402.py
This script has four varibles pre-defined in it.

The variables are as follows:
name:
name:
name:
name:

There are 4 glasses full of water on the table.

pi@raspberrypi ~ $ i

Understanding Python Basics

pi@raspberrypi: ~

amount data type: <class 'int'> value: 4

vessels data type: < ‘st value: glasses
liquid data type: 'str'> value: water

location data type: 'str'> value: on the table

FIGURE 4.3
Output for the Python script script0402.py.

10.

11.

12,
13.

At the command-line prompt, type nano py3prog/script0402.py and press Enter. The
command puts you into the nano text editor, where you can modify the script0402.py
script.

Go to the Output Variable Description portion of the script and add a separator to
the end of each line. The lines of code to be changed and how they should look when you
are done are shown here:

print ("name: amount", "data type:", type (amount), "value:", amount, sep='\t')
#

print ("name: vessels", "data type:", type (vessels), "value:", vessels,
wsep="\t")

#

print ("name: liquid", "data type:", type (liquid), "value:", liquid, sep='\t')
#

print ("name: location", "data type:", type (location), "value:",

wlocation, sep="'\t"')
Write out the modified script by pressing Ctrl+0. Press Enter to write out the contents to
the script0402.py script.

Exit the nano text editor by pressing Ctrl+X.

Type python3 py3prog/script0402.py and press Enter to run the script. You should
see output like the output shown in Figure 4.4. Much neater!

Allowing Python Script Input 93

pi@raspberrypi: ~
Fle Edit Tebs Help
pi@raspberrypi - %
pi@raspberrypi ~ $ python3 py3prog/script0402.py
This script has four varibles pre-defined in it.

The variables are as follows:

name: amount data type: <class 'i > value: 4

name: vessels data type: <class - value: glasses
name: liquid data type: <class value: water

name: location data type: <class r'> value: on the table

There are 4 glasses full of water on the table.

pi@raspberrypi ~ 5 ||

FIGURE 4.4
The script0402.py output, properly tabbed.

14. To try adding some input into your script, at the command-line prompt, type nano
py3prog/script0402.py and press Enter.

15. Go to the bottom of the script and add the additional Python statements shown here:

#

HHHHHAHHHAHHAFHHRS Get Input HEHHHFHHAEFHASHHARHHHE

#

print ()

print ("Now you may change the variables' values.")
print ()

#

amount=int (input ("How many vessels are there? "))

print ()

#

vessels = input ("What type of vessels are being used? ")
print ()

#

liquid = input("What type of liquid is in the vessel? ")
print ()

#

location=input ("Where are the vessels located? ")

print ()

#

HHHHHAHHHAHHHRH#E Display New Input to Output H##HH#H#HH#HH#HH
#

print ("So you believe there are", amount, vessels, "of", liquid, location,
wend='. \n')

print ()
#
HHHHHAHHHAHHAFHHAH#E End of Script HHHHHHHHHAHHHHHHAHHHRH

94 Understanding Python Basics

16. Write out the modified script by pressing Ctrl+0. Press Enter to write out the contents to
the script0402.py script.

17. Exit the nano text editor by pressing Ctrl+X.

18. Type python3 py3prog/script0402.py and press Enter to run the script. Answer the
prompts any way you want. (You are supposed to be having fun here!) Figure 4.5 shows
what your output should look like.

pi@raspberrypi: ~
Fle Edit Tebs Help
pi@raspberrypi -~ $
pi@raspberrypi ~ ython3 py3prog/script0402.py
This script has four varibles pre-defined in it.
The variables are as follows:
name: amount data type: <class 'i > value: 4
name: vessels data type: <class > value: glasses
name: liquid data type: <class r'> value: water
name: location data type: <class r'> value: on the table

There are 4 glasses full of water on the table.

Now you may change the variables' values.
How many vessels are there? 99

What type of vessels are being used? bottles
What type of liquid is in the vessel? tea
Where are the vessels located? on the wall

So you believe there are 99 bhottles of tea on the wall.

pi@raspberrypi ~ 5 ||

FIGURE 4.5
The complete script0402.py output.

Run this script as many times as you want. Experiment with the various types of answers you
put in and see what the results are. Also try making some minor modifications to the script
and see what happens. Experimenting and playing with your Python script will enhance your
learning.

Summary

In this hour, you got a wonderful overview of Python basics. You learned about output and for-
matting output from Python; creating legal variable names and assigning values to variables;
and various data types and when they are assigned by Python. You explored how Python can
handle input from the keyboard and how to convert the data types of the variables receiving

Workshop 95

that input. Finally, you got to play with your first Python script. In Hour 5, your Python explora-
tion will continue as you delve into mathematical algorithms with Python.

Q&A

Q. Can | do any other kind of output formatting besides what | learned about in this chapter?

A. Yes, you can also use the format function, which is covered in Hour 5.

Q. Which is better to use with a print function, double quotes or single quotes?

A. Neither one is better than the other. Which one you use is a personal preference. However,
whichever one you choose, it's best to consistently stick with it.

Q. Bottles of tea on the wall?!

A. This is a family-friendly book. Feel free to modify your answers to script0402.py to
your liking.

Workshop

Quiz
1. The print function is part of the Python standard library and is considered a built-in func-
tion. True or false?

2. When is a variable created and assigned a data type?
3. Which of the following is a valid Python data type?

a. int

b. input

€. print

Answers

1. True. The print function is a built-in function of the standard library. There is no need to
import it.

2. Avariable is created and assigned a data type when it is assigned a value. The value and
data type for a variable can be changed with a reassignment.

3. int is a Python data type. input and print are both built-in Python functions.

This page intentionally left blank

Index

Symbols

// (floor division operator), 98
{} placeholder, 102-103

* (asterisk), as pattern for
regular expressions, 329

“ (double quotes), print
function syntax, 72-73

(hash symbol), 80

| (pipe symbol), 331

+ (plus sign), 330

? (question mark), 330

‘ (single quotes), print function
syntax, 72-73

A

absolute directory
references, 219

accessing

data from dictionaries,
178-180

with get operation,
178-179

with for loops, 179

with sorted() function,
179-180

data in tuples, 157
GUI, 29

562 accessing

information from sets,
189-192

set difference, 190-191
set intersection, 190
set membership, 189
set union, 189-190

symmetric set
difference, 191

range of values in tuples,
157-158

accessor methods, 281-283
acquiring Raspberry Pi, 9-11
.add operation, 188-189
adding
comments to Python
scripts, 80

elements to sets, 188-189

line feeds with escape
sequences, 75-76

new data values to lists,
164-165

subclasses to object
module file, 298-300

widgets to windows,
366-370

advanced regular expression
features, 330-332

Akerman, Dave, 9

allowing input in Python
scripts, 88-89

altering strings with functions,
202-204

string-joining functions,
205

string-splitting functions,
204-205

string-testing functions,
205-206

analog televisions, connecting
Raspberry Pi to, 15
anchor characters as pattern

for regular expressions,
324-325

AND operators, 98
Apache web server
CGl, 473-475
installing, 470-471
append() function, 164
arguments
passing, 244-246
print function, 72-73
array() function, 111
arrays

associative arrays,
175-176

creating with NumPy
module, 111-112

ASCII code, converting to
string value, 200

assigning
calculation results to
variables, 101
value to variables, 82-86

long string values,
84-85

number values, 85-86
associative arrays, 175-176

asterisk (*), as pattern for
regular expressions, 329

asynchronous events, 547-548

audio, adding to games, 407

available modules, exploring,
264-265

backslash, 75

base classes, 294

binary operators, 98
bind() function, 441
Blender3D, 389

blinking the LED, 540-541

Boolean comparisons,
124-125

booting
directly to GUI, 35-36
Raspberry Pi, 21-23
troubleshooting, 24-25
break statement, terminating
infinite loops, 146-147
Broadcom chip, 529
building
Gertboard circuit, 538-539
Pi Cobbler circuit, 537-538
built-in modules, 258
Button widget, 373
buying Raspberry Pi, 9-11
required peripherals,
11-16
keyboard, 16
output display, 15-16
power supply, 13-15
SD card, 12-13

C

calculations

complex humber math,
105-106

floating-point accuracy,
102

Fraction object, 103-105
variables, 100-101
calendar command, 31
camel Case, 194
cases, selecting, 17-18
cat -n command, 338-339
centering photos, 503-507

CGl (Common Gateway
Interface), 473-475

debugging, 480-482
cgi module, 484-487
changing

order of operations, 100

passwords, 32-33
character classes

negating, 327-328

as pattern for regular

expressions, 326-327

charitable organizations

Raspberry Pi Foundation, 9
Checkbutton widget, 373-375
classes, 278-279

the class problem,
293-294

default attribute values,
279-280

deleting, 285
documenting, 286
inheritance, 295-302
instantiating, 279

methods, 280-287

accessor methods,
281-283

constructors, 283-284

mutator methods,
280-281

modules, creating,
287-289

output, customizing,
284-285

subclasses, 294-295,
308-314

creating, 297-298

polymorphism, 306

storing in its own object
module file, 301-302

superclasses, 294
client programs

creating, 441-444

running, 443-445

client/server programs,
438-439

closing files, 228-231
cocos2D, 389

color coding syntax in
development environment,
53

combining condition checks,
126-127

command line, 29-33
entering commands, 31-33
whoami command, 29

commands
calendar, 30
cat -n, 338-339

for creating Python
scripts, 65

complex humbers 563

entering at command line,
31-33

Is, 31

mkdir, 31

nano, 65

pwd, 31

reboot, 31

reviewing, 54

for running Python
scripts, 65

structured commands, 115

if statement, 115-117
sudo, 32

for testing Python
statements, 65

whoami, 29
comments, adding to
scripts, 80
comparing
discard and remove
operations, 193
Model A and Model B,
10-11
Python v2 and Python v3,
46
tuples, 124
values

Boolean comparisons,
124-125

numeric comparisons,
122

string comparisons,
122-124

compiled programming
languages, 50
complex numbers, 105-106
creating, 105

How can we make this index more useful? Email us at indexes@samspublishing.com

564 concatenating

concatenating
lists, 165-166
tuples, 160
condition checks
combining, 126-127
negating, 127-128
configuring

direct bootup to GUI,
35-36
U.S. keyboard, 49-50
connecting
to GPIO, 530-534
via Gertboard, 533-534
via Pi Cobbler, 532-533
to MySQL databases, 452

to PostgreSQL databases,
463-464

Raspberry Pi to analog
televisions, 15

Raspberry Pi to modern
output displays, 16
constructors, 283-284
controlling
music playback, 517-521

output with escape
sequences, 75-76

converting

ASCII code to string
value, 200

variable data types, 89-90
count() function, 166
creating

arrays with NumPy module,

111-112
class modules, 287-289

client programs, 441-444
complex numbers, 105
custom modules, 264-275
dictionaries, 176

factorial functions,
254-255

fractions, 103-105
functions, 240

image presentation script,
495-496

lists, 160-161

multidimensional
lists, 167

MySQL databases,
449-450

output with print
function, 78

PostgreSQL databases,
459-460

Python scripts
commands used for, 65
in IDLE, 62-63
with nano, 64-65
server programs, 439-441
sets, 187-188
shapes, 404-407
strings, 200-201
subclasses, 297-298
tuples, 155-156
web forms, 483-484
windows, 364-366

CSSSelector() method,
435-436

custom modules

creating, 264-272,
272273

testing, 267-268, 272

customizing class output,
284-285

dash shell, 29
data types, 86-88
converting, 89-90

in NumPy module,
110111

range, 170-171
tuples, 155-160
accessing data in, 157

comparison operations,
158-159
concatenating, 160
creating, 155-156
maximum value,
identifying, 159-160
minimum value,
identifying, 159-160
number of values in,
identifying, 159
range of values,
accessing, 157-158
databases, 447
MySQL, 447-458
connecting to, 452
creating, 449-450

environment, setting
up, 448-452

inserting data, 455-457

installing, 448

querying data, 457-458

tables, creating,
451-452

user accounts, creating,
450-451

PostgreSQL, 447, 458-466
connecting to, 463-464
creating, 459-460

environment, setting
up, 459-463

inserting data, 464-465

querying data, 465-466

tables, creating,
461-463

user accounts, creating,
460-461

publishing data on the
web, 478

relational databases, 451
Debian, 28
debugger features (IDLE), 56
debugging CGl, 480-482
deep copy, 184

default class attribute values,
279-280

default parameter values,
setting, 246-247

defining
classes, 278279
event handlers, 370-372
functions, 240-243

deleting
class instances, 285
list values, 163

designating open() function
mode, 222-223

desktop environments (Linux),

changing, 34
detecting GPIO input, 542

development environment
shell (Python), 50, 53-57.
See also IDLE

dictionaries, 175-176

accessing data from,
178-180

with get operation,
178-179

with for loops, 179

with sorted() function,
179-180

creating, 176

deep copy, 184

managing, 181-182

populating, 176-178

programming with,
182-187

shallow copy, 184

updating, 180-181

values, retrieving, 249-250

Digital Clock icon
(LXPanel), 39

dir() function, 262
directories

absolute directory
references, 219

home directory, 31

dynamic webpages

Linux directory structure,
217-219

managing, 220-221

path directories, checking,
270271

present working
directory, 31

production directory,
moving modules to,
268-270

relative directory
references, 219

test directories, creating
modules in, 266-267

upside-down trees, 217
discard operation, 192
displaying

numbers, 102-103

text on game screen,
399-403

Unicode, 76-77
distributions (Linux), 27

documentation for Debian
distribution, 28

documenting classes, 286

dot character as pattern
for regular expressions,
325-326

double quotes (“), print
function syntax, 72-73

downloading Raspbian, 20
dpi (dots per inch), 494
drawing shapes, 404-407
duty cycle, 541

dynamic webpages, 476-480

How can we make this index more useful? Email us at indexes@samspublishing.com

566 ehlo() method

ehlo() method, 429
elements
adding to sets, 188-189
set difference, 190-191
set intersection, 190
set membership, 189
set union, 189-190

symmetric set
difference, 191

elif statement, 120-121

else clause (while loops), 145
else statement, 118-120
email servers, 423-432

Linux, modular email
environment, 425-427

remote email servers, 428

RFC 2822 email standard,
429

sending messages,
430432

smtplib module, 427-429

entering commands at
command line, 31-33

Entry widget, 397-398
equations

complex number math,
105-106

floating-point accuracy in
calculations, 102

Fraction object, 103-105

numbers, displaying,
102-103

variables, 100-101

errors

generic exception handling,
350

runtime error exceptions,
340-342

syntactical error
exceptions, 337-339

escape sequences
line feeds, adding, 75-76
output, controlling, 75-76
quotes, protecting, 76
Unicode, displaying, 76-77
etree methods, parsing HTML
elements, 434-435

evaluating function results,
125-126

event handling, 370-372,
403-404

event-driven programming,
362-363

exception handling, 337,
342-344. See also
troubleshooting

generic exceptions, 350

for multiple exceptions,
344-352

runtime error exceptions,
340-342

syntactical error
exceptions, 337-339

try except statement, 344
options, 350-352
exit () statement, 57
exiting
IDLE, 57
Python interactive shell, 52

exploring
available modules,
264-265

inheritance, 308-314
Python interactive shell, 54
subclasses, 308-314

expressions, assigning results
of to variables, 85-86

extend() function, 166

extracting data from lists,
161-162

extracting data from
webpages, 432-438

F

factorial algorithms, 254

factorial functions, creating,
254-255

features
of IDLE, 56-57
debugger, 56
help facility, 57
of Raspberry Pi, 10-11
fifengine, 389
file extensions, .py, 63

File Manger icon
(LXPanel), 38

file objects, 223-224
files
closing, 228-231
managing, 220-221
opening, 221-224

preexisting files, writing
to, 234
reading, 224-228
entire file, 224-225
line by line, 225-227,
228-229

nonsequentially,
227-228

types of, 217
writing to, 231-235,
235-236
find() function, 208
findall() function, 320
finditer() function, 320
flapping, 544

flavors of Python modules,
258

floating-point accuracy in
calculations, 102

floating-point values,
formatting, 212-213

floor division operator (//), 98

folders, present working
directory, 31

Font object, creating, 399
for loops, 132-143
assigning data types from
a list, 135-136
iterating with variables,
137
iteration
with range function,
137-140
through character
strings in a list,
136-137
through numbers in a
list, 133-134

nested loops, 149-150
structure, 134-135

traversing dictionaries
with, 179

validating user input with,
141-142

format function, 102
format() function, 209-210

positional formatting,
214-215

sign formatting, 213-214
formatting

long print lines with string
concatenation, 79

numbers

floating-point values,
212-213

integer values, 212
output with print function,
73-75
strings for output, 209-215

format() function,
209-210

named placeholders,
210-211

positional placeholders,
210

webpage output, 475-476
Fraction object, 103-105
frozensets, 187
fsum() function, 108
functions, 239-243

append(), 164

array() function, 111

bind() function, 441

count() function, 166

creating, 240

functions 567

defining, 240-243
dir(), 262
extend() function, 166

factorial functions,
creating, 255-254

find() function, 208
findall() function, 320
finditer() function, 320
format function, 102
format() function, 209-210
fsum() function, 108
index() function, 167
input function, 88-89
int function, 89
len() function, 159
lists, 253-254
match() function, 319-320
modules, 257-259
built-in, 258
flavors of, 258
packages, 259
naming, 242-243
nested functions, 89
open() function, 221-222

passing values to,
244-250

arguments, 244-246
pop() function, 163
pow() function, 108
prcal(), 263
print function, 71-75

arguments, 72-73

output, formatting,
73-75

range function, 137-140
in re module, 319-320

How can we make this index more useful? Email us at indexes@samspublishing.com

568 functions

recursion, 254

results, testing, 125-126
reverse() function, 167
reversed(), 169-170
rfind() function, 208
search() function, 320
sort() function, 166

sorted() function, 169-170,
179-180

string-manipulation
functions, 202-204

type function, 87
variables

global variables,
251-253

local variables, 251

G

game designers, 388

game developers, 388

game frameworks, 388

game programming, 387-388
game frameworks, 388
libraries, 388
PyGame library

adding sound to
games, 407

event handling,
403-404

game screen, setting
up, 397-398

installing, 390-391
modules, 394

object classes, 396
setting up, 388-394

shapes, drawing,
404-407

source code, obtaining,
392-393

verifying installation,
390
Raspberry Pie game,
410417
SDL, 388
game screen
displaying text on,
399-403
graphics
interacting with,
409-410

moving, 408-409,
411-414

setting up, 397-398

generic exception handling,
350

Gertboard
circuit, building, 538-539
connecting to GPIO
interface, 533-534

get operation, 178-179
global variables, 251-253
GNOME, 34

GPIO (General Purpose Input/
Output) interface, 529-534

blinking the LED, 540-541

connecting to, 530-534
via Gertboard, 533-534
via Pi Cobbler, 532-533

input
detecting, 542
events, 546-548
polling, 545-546
switch bounce, 548
input signals, 544-545
output
testing, 539-540
viewing, 536-539
pin layout, 530
PWM output, 530
RPI1.GPIO module, 535-536
installing, 535

startup methods,
535-536

GPU (Graphics Processing
Unit), 10

graphics
interacting with, 409-410
moving on the game
screen, 408-409,
411-414
grouping
comparisons with logical
operators, 126-127

multiple statements
elif statement, 120-121

else statement,
118-120

if statement, 117-118

regular expressions,
331-332

GUI (graphical user interface),
29-43. See also GUI
programming

accessing, 29
booting directly to, 35-36

LXDE graphical interface,
35

desktop icons, 35
logging out of, 38-39
LXPanel, 36-39

GUI programming, 361-363,
381-382

frame, 362
packages, 363-364

tkinter package,
364-372

widgets, 362
window interface, 362

Hacking Raspberry Pi, 19
hash symbol (#), 80
HD (High Definition), 494-495
megapixel rating, 494-495
resolution, 494
HDMI cables, connecting
Raspberry Pi to output
display, 16
help function (modules),
261-262
help utility
IDLE, 57
PyGame library, 404
Python interactive shell, 52

improving image presentation speed 569

history of Raspberry Pi, 7-9
home directory, 31
HTML

elements, parsing,
434-435

files, serving, 471-472

web forms, creating,
483-484

hyperbolic functions in math
module, 108

icons

File Manger icon (LXPanel),
38

LXDE desktop icons, 35

LXDE Programs Menu icon,
37-39

ICs (integrated circuits),
SoC, 10
identifying
maximum value in a tuple,
159-160

minimum value in a tuple,
159-160

number of values in a
tuple, 159

IDLE, 55-57
color coding, 56
exiting, 57
features, 56-57
debugger, 56
help facility, 57
online documentation, 57

print function, 58-59
Python scripts
creating, 62-63
running, 60-62
starting up, 55
verifying installation, 47-48
if statement, 115-117

condition checks, negating,
127-128

multiple statements,
grouping, 117-118

syntax, 115

image handling, testing
PyGame library for, 405-407

image presentation script
creating, 495-496
images, locating, 497-498
modifying, 513
photos
centering, 503-507
framing, 503
scaling, 501-503

storing on removable
drive, 498-501

presentation screen,
setting up, 496-497
presentation speed,
improving, 507-513
importing
keywords into Python,
81-82
math module to Python
scripts, 106
re module, 319
improving image presentation
speed, 507-513

How can we make this index more useful? Email us at indexes@samspublishing.com

570 indentation

indentation

in loops, 132

multiple statements,

grouping, 117-118
index() function, 167
index values (tuples), 157
infinite loops, 146-147
inheritance, 294-302,
307-313

subclasses, creating,
297-298

syntax, 296
initializing PyGame library,
396-397
input, 91-90
GPIO
detecting, 542
events, 546-548
switch bounce, 548

validating with for loops,
141-142

input function, 88-89

input polling, 545-546

input signals, GPIO, 544-545
installing

Apache web server,
470-471

LXML module, 433

module-building tools,
391-392

MySQL, 448
MySQL/Connector
module, 452

packages for PyGame
library, 393-394

PostgreSQL, 458
psycopg2 module, 463

PyGame library, 390-391
Python, 48-50
RPI1.GPIO module, 535
screen saver software
package, 41-43
instantiating classes, 279
int function, 89
integers
converting to strings,
89-90
formatting, 212

interacting with graphics on
game screen, 409-410

interactive shell (Python),
51-54

exiting, 52
exploring, 54
help utility, 52

Python scripts, running, 60

Python v2, 51
verifying, 46-47
interpreted programming
languages, 50
isdigit() method, 125-126
iteration, 131
lists, 168-169
for loop, 132-143
for loops
iterating through
character strings in a
list, 136-137
iterating through
numbers in a list,
133-134
iterating with range
function, 137-140
iterating with variables,
137

tuples, 168-169
while loops, 143-148

using numeric
conditions, 143-144

using string conditions,
144-145

J-K

joining strings, 205

jumping to lines with
syntactical errors (hano),
339

KDE, 34
keyboard

selecting, 16

setup, verifying, 49-50
key/value pairs, 175

accessing from
dictionaries, 178

dictionaries, populating,
176-178
updating, 180-181
keywords, 81-82
importing into Python,
81-82
kivy, 389

L

Label widget, 373

LAMP
(Linux-Apache-MySQL-PHP)
server environment, 447

Leaf Pad, 64

LED, blinking, 540-541
len() function, 159

libraries for game
programming, 388

LIFO (last in, first out), 164

line feeds, adding with escape

sequence, 75-76
Linux, 27-28
command line. See
command line, 29-33
desktop environment,
changing, 34
directory structure,
217-219

absolute directory
references, 219

relative directory
references, 219

distributions, 27

modular email
environment, 425-427

Linux shell, 29
list comprehensions, 170
Listbox widget, 378-380

listing functions in
modules, 262

lists, 160-167. See also
tuples

concatenating, 165-166
creating, 160-161

extracting data from,
161-162

iteration, 168-169

list values
deleting, 163
popping, 163
replacing, 162

multidimensional lists,
167-168

creating, 167

referencing values in,
168

new data values, adding,
164-165

sorting, 169-170

using with functions,
253-254

loading
PyGame library, 396-397
Raspbian to SD card
from Linux, 556-558

from Mac 0S, 558-560
from Windows, 553-556

local variables, 251
locating images for

presentation script, 497-498

logarithmic functions in math
module, 108

logging in to Raspberry Pi,
28-29

logging out of Linux GUI
sessions, 38-39

logical operators, 98-100

comparisons, grouping,
126-127

long print lines
comments, adding, 80

formatting with string
concatenation, 79

loops
indentation, 132
infinite loops, 146-147
for loop, 132-143

LXML module 571

for loops

assigning data types
from a list, 135-136

iterating through
numbers in a list,
133-134

iterating with range
function, 137-140

structure, 134-135

validating user input
with, 141-142

nested loops, 149-150
while loops, 143-148
else clause, 145

entering data with,
147-148

iteration using numeric
conditions, 143-144

iteration using string
conditions, 144-145

terminating, 144

Is command, 31
LXDE graphical interface, 35

desktop icons, 35
LXPanel, 36-39
Digital Clock icon, 39
ScreenlLock icon, 39

LXDE Logout Manager, 38-39

LXDE Programs Menu icon,
37-39

LXML module

CSSSelector() method,
435-436

etree methods, 434-435
installing, 433

How can we make this index more useful? Email us at indexes@samspublishing.com

572 LXPanel

LXPanel, 36-39
Digital Clock icon, 39
File Manger icon, 38

LXDE Logout Manager,
38-39

LXDE Programs Menu icon,

37-39
ScreenlLock icon, 39
LXTerminal icon (LXDE), 35

managing
dictionaries, 181-182
directories, 220-221
manipulating
files, 220-221

strings with functions,
202-204
string-joining functions,
205
string-splitting
functions, 204-205

string-testing functions,
205-206

mappings, 178
match() function, 319-320

math module, 106-107. See
also NumPy module

hyperbolic functions, 108
logarithmic functions, 108

number theory functions,
107-108

statistical math functions,
110

trigonometric functions,
108

mathematical operators,
97-100

binary operators, 98
floor division operator, 98
logical operators, 98-100

comparisons, grouping,
126-127

order of operations, 100

shortcuts, 103
maximum value in a tuple,

identifying, 159-160

megapixel rating, 494-495
Menu widget, 380-381
methods, 280-287

accessor methods,
281-283

constructors, 283-284

CSSSelector() method,
435-436

ehlo() method, 429

file object methods,
223-224

isdigit() method, 125-126
mutator methods, 280-281
os methods, 220-221
overriding, 306

property() method,
286-287

range() method, 171
in socket module, 439

minimum value in a tuple,
identifying, 159-160

mkdir command, 31
Model A, 7
features, 10-11
Model B, 10
features, 10-11
modifying
image presentation script,
513
sets, 192-193
modules, 257-259

available modules,
exploring, 264-265

built-in, 258
cgi module, 484-487

class modules, creating,
287-289

custom modules

creating, 264-272,
272-273

testing, 267-268, 272
flavors of, 258
help function, 261-262

installing tools for building,
391-392

listing functions in, 262

moving to a production
directory, 268-270

MySQL/Connector module,
installing, 452

naming, 266
networking modules, 423
packages, 259
psycopg2 module
coding with, 463-466
installing, 463

in PyGame library, 394
re module, 319-321

compiled regular
expressions, 320-321

RPI.GPIO module, 535-536
installing, 535

startup methods,
535-536

smtplib module, 427-429
socket module, 439

standard modules,
259-261

moving

graphics on the game
screen, 408-409

modules to a production
directory, 268-270

operating system to SD
card, 21

multidimensional lists,
167-168

creating, 167

referencing values in, 168
multiple statements, grouping

elif statement, 120-121

else statement, 118-120

if statement, 117-118
music

playback, controlling,
517-521

playing, 514-521
playlists, 516-517

special presentations,
521-525

storing on removable drive,
515-516

mutator methods, 280-281
MySQL, 447-458
databases
connecting to, 452
creating, 449-450
inserting data, 455-457
querying data, 457-458
environment, setting up,
448452
installing, 448
tables, creating, 451-452

user accounts, creating,
450-451

MySQL/Connector module,
installing, 452

named placeholders, 210-211
naming
functions, 242-243
modules, 266
variables, 82
nano
commands, 65
jumping to lines with
syntactical errors, 339
Python scripts, creating,
64-65
verifying installation, 48
website, 65
negating
character classes,
327-328
condition checks, 127-128

obtaining 573

nested functions, 89
nested loops, 149-150
network cables, 18-19

networking, email servers,
423-432

networking modules, 423
urllib module, 432-433

number theory functions in
math module, 107-108

number values, assigning to
variables, 85-86
numbers
displaying, 102-103
floating-point values,
formatting, 212-213

integer values, formatting,
212

numeric comparison
operators, 122

NumPy module, 110-112
arrays, 111-112
data types, 110-111

o

obtaining

information from sets,
189-192

set difference, 190-191
set intersection, 190
set membership, 189
set union, 189-190
symmetric set
difference, 191
source code for PyGame
library, 392-393

How can we make this index more useful? Email us at indexes@samspublishing.com

574 official Python website

official Python website, 57

online documentation,
IDLE, 57

OOP (object-oriented
programming), 277-280

classes, 278279

class modules,
creating, 287-289

the class problem,
293-294

inheritance, 295
instantiating, 279
methods, 280-287
subclasses, 294-295

default attribute values,
279-280

open() function, 221-222

mode, designating,
222-223

opening files, 221-224
operating systems
downloading, 21
image, troubleshooting, 25
Linux, 27-28
desktop environment,
changing, 34
modular email
environment, 425-427
moving to SD card, 21
Raspbian

loading to SD card,
553-560

updating, 41-43
selecting, 20

operators, mathematical
operators, 97-100

binary operators, 98
logical operators, 98-100
order of operations, 100
shortcuts, 103

OR operators, 98

order of operations, changing,
100

os methods, 220-221
output, 91-90
{} placeholder, 102-103

of classes, customizing,
284-285

controlling with escape
sequences, 75-76

formatting with print
function, 73-75
GPIO
testing, 539-540
viewing, 536-539
producing from Python
scripts, print function,
71-78
separators, 83

strings, formatting,
209-215

format() function,
209-210

positional placeholders,
210

output display, selecting,
15-16

overriding a method, 306

P

packages, 259

in GUI programming,
363-364

tkinter package,
364-372

for PyGame library,
installing, 393-394

PyPi, 261
Panda3D, 389
parameters, 244-246

default values, setting,
246-247

multiple parameters,
retrieving, 248-249

positional parameters, 246
parsing

data from webpages, 433

HTML elements, 434-435
passing by reference, 253

passing values to functions,
244-250

arguments, 244-246
password prompt, 32
passwords, changing, 32-33

path directories, checking,
270-271

patterns for regular
expressions

anchor characters,
324-325

asterisk, 329
braces, 330-331

character classes,
326-327

dot character, 325-326
grouping, 331-332
pipe symbol, 331
plain text, 321-323
plus sign, 330
question mark, 330
ranges, 328-329
special characters, 323
performing repetitive
tasks, 131
peripherals
cases, 17-18
cords, troubleshooting, 24
network cables, 18-19
plugging in, 21-23
purchasing, 19

required peripherals,
11-16

keyboard, 16

output display, 15-16
power supply, 13-15
SD card, 12-13

SD card, transferring
operating system to, 21

self-powered USB hub, 18
USB mouse, 18
verifying operation, 21-23
phone number validator
script, 333-334
photos
centering, 503-507
scaling, 501-503

special presentations,
521-525

storing on removable drive,
498-501

Pi Cobbler
circuit, building, 537-538
connecting to GPIO
interface, 532-533

pin layout, GPIO interface,
530

pipe symbol (|), 331
placeholders
{} placeholder, 102-103

named placeholders,
210-211

positional placeholders,
210

plain text as regular
expression pattern, 321-323

playing music, 514-521
playlists, 516-517
songs, queuing, 515
playlists, 516-517
randomizing, 521
plugging in peripherals, 21-23
plus sign (+), 330
polling, 545-546
polymorphism, 306
pop() function, 163
popping list values, 163
populating
dictionaries, 176-178
sets, 188-189, 194
portable power supplies, 15
positional formatting, 214-215

privileges 575

positional parameters, 246
positional placeholders, 210
POSIX BRE (Basic Regular
Expression) engine, 318
POSIX ERE (Extended Regular
Expression) engine, 318
PostgreSQL, 447, 458-466
databases
connecting to, 463-464
creating, 459-460
querying data, 465-466
environment, setting up,
459-463

inserting data, 464-465
installing, 458
tables, creating, 461-463

user accounts, creating,
460-461

pow() function, 108
power supply

portable power supplies,
15

selecting, 13-15
prcal() function, 263
preexisting files, writing

to, 234
prepackaged kits, 11-12
present working directory, 31
print function, 71-75

arguments, 72-73

IDLE, 58-59
private attributes, 281
privileges

root account, 32

sudo command, 32

How can we make this index more useful? Email us at indexes@samspublishing.com

576 procedural programming

procedural programming, 277
programming
with dictionaries, 182-187

event-driven programming,
362-363

game programming. See
game programming,
381-382

GUI programming,
361-363, 381-382

tkinter package,
363-364

widgets, 362

window interface, 362
OOP, 277-280

classes, 278-279

procedural programming,
277

with sets, 193-196

socket programming,
438-445

web programming, 447
property() method, 286-287

protecting quotes with escape
sequences, 76

psycopg2 module
coding with, 463-466
installing, 463
publishing
database data on the
web, 478
webpages, 472
purchasing Raspberry Pi, 9-11
required peripherals,
11-16

keyboard, 16
output display, 15-16

power supply, 13-15
SD card, 12-13
pwd command, 31
PWM output, 530, 541-542
.py file extension, 63
PyGame library, 389
event handling, 403-404
game screen
displaying text on,
399-403
setting up, 397-398
graphics
interacting with

on game screen,
409-410

moving on the game
screen, 408-409,
411-414

help facility, 404

image handling, testing,
405-407

initializing, 396-397
installing, 390-391, 394
loading, 396-397
modules, 394

object classes, 396

packages, installing,
393-394

setting up, 388-394
shapes, drawing, 404-407

sound, adding to games,
407

source code, obtaining,
392-393

verifying installation, 390

Pyglet, 389
PyPi (Python Package
Index), 261

PySoy, 389

Python, 9. See also Python
scripts

development environment
shell, 50, 53-57. See
also IDLE

syntax, color coding, 53
history of, 45-46
installing, 48-50
interactive shell, 51-54

exiting, 52

exploring, 54

help utility, 52
official Python website, 57
reasons for learning, 45
scripts, 51
versions, comparing, 46

Python interpreter, verifying,
46-47
Python scripts, 57-65
comments, adding, 80
creating
commands used for, 65
in IDLE, 62-63
with nano, 64-65
functions, 240-243
image presentation script
creating, 495-496
images, locating,
497-498
presentation screen,
setting up, 496-497

inheritance, 299-302
input, 90-91

input, allowing, 88-89
keywords, 81-82

music script, creating,
514-515

output, 90-91
producing with print
function, 71-78

phone number validator,
333-334

Raspberry Pie game,
410417
running
commands used for, 65
in IDLE, 60-62
in interactive shell, 60
separators, 83
users, 79
variables

assigning value to,
82-86
data types, 86-88
long string values,
assigning, 84-85
naming, 82
number values,
assigning, 85-86
reassigning values
to, 86
unassigned, 84

Python v2, interactive
shell, 51

Python-Ogre, 389

PYTHONPATH environment
variable, 271

Q

querying data
with MySQL, 457-458
with PostgreSQL, 465-466
question mark (?), 330
queuing songs, 515
quotes, protecting with escape
sequences, 76

randomizing playlists, 521
range function, 137-140
range() method, 171
ranges, 170-171

as pattern for regular
expressions, 328-329

Raspberry Pi
acquiring, 9-11
features, 10-11
history of, 7-9
logging in to, 28-29
prepackaged kits, 11-12
troubleshooting, 24-25

Raspberry Pi Foundation,
9,19
Raspberry Pie game, 410-417

regular expressions 577

Raspbian
loading to SD card
from Linux, 556-558
from Mac 0S, 558-560
from Windows, 553-556
updating, 41-43
re module

compiled regular
expressions, 320-321

functions, 319-320
importing, 319
reading files, 224-228
entire file, 224-225
line by line, 225-227,
228-229
nonsequentially, 227-228

reasons for learning
Python, 45

reassigning values to
variables, 86

reboot command, 31
rebooting, 32

recursion, using with
functions, 254

referencing
strings, 201-202
values in multidimensional
lists, 168

regular expressions, 317-318

advanced features,
330-332

grouping, 331-332
patterns

anchor characters,
324-325

How can we make this index more useful? Email us at indexes@samspublishing.com

578 regular expressions

asterisk, 329
braces, 330-331

character classes,
326-327

dot character, 325-326
pipe symbol, 331

plain text, 321-323
plus sign, 330
question mark, 330
ranges, 328-329
special characters, 323

phone number validator
script, 333-334

POSIX BRE engine, 318
POSIX ERE engine, 318
re module, 319-321

compiled regular
expressions, 320-321

functions, 319-320
relational databases, 451

relative directory
references, 219

remote email servers, 428
remove operation, 193

repetitive tasks,
performing, 131

replacing list values, 162
required peripherals, 11-16
keyboard, 16
output display, 15-16
power supply, 13-15
SD card, 12-13

transferring operating
system to, 21

resolution, 494
megapixel rating, 494-495

results of expressions,
assigning to variables, 85-86

results of functions, testing,
125-126

retrieving

data from websites,
437-438

multiple parameters,
248-249

values with dictionaries,
249-250

webpages, 432-433
return statement, 243-244
reverse() function, 167
reversed() function, 169-170
reviewing, commands, 54

RFC 2822 email standard,
429

rfind() function, 208
root account, 32
RPIL.GPIO module, 535-536
installing, 535
startup methods, 535-536
running
client programs, 443-445
Python scripts
commands used for, 65
in IDLE, 60-62
in interactive shell, 60
server programs, 443-445

runtime error exceptions,
340-342

S

scaling photos, 501-503
screen saver software
package
installing, 41-43
ScreenlLock icon (LXPanel), 39
scripts (Python), 51, 57-65
SD card
loading Raspbian to
from Linux, 556-558
from Mac 0S, 558-560
from Windows, 553-556
selecting, 12-13

transferring operating
system to, 21

troubleshooting, 24

SDL (Simple DirectMedia
Layer), 388

search() function, 320
searching strings, 207-209
selecting
cases, 17-18
keyboard, 16
operating system, 20
output display, 15-16
power supply, 13-15
SD card, 12-13
Wi-Fi adapters, 18-19
self-powered USB hub,
selecting, 18

sending email messages,
430-432

separators, 83

server programs, 438-439
creating, 439-441
running, 443-445

serving HTML files, 471-472

set difference, 190-191

set intersection, 190

set theory, 189

set union, 189-190

sets, 187
creating, 187-188

elements, membership,
189

frozensets, 187

modifying, 192-193

obtaining information from,
189-192

populating, 188-189, 194

programming with,
193-196

traversing, 191-192

shallow copy, 184

shapes, drawing with PyGame
library, 404-407

shortcuts for mathematical
operators, 103

shutting down Raspberry
Pi, 23

sign formatting (format()
function), 213-214

single quotes (‘), print function
syntax, 72-73

slicing, 202

smtplib module, 425,
427-429

SoC (system on a chip), 10
socket module, 439

socket programming, 438-445
client programs, 438-439
creating, 441-444
running, 443-445
server programs
creating, 439-441
running, 443-445
servers, 438-439
songs

playback, controlling,
517-521

playing continuously,
522-525

playlists, 516-517
randomizing, 521
queuing, 515

special presentations,
521-525

sort() function, 166

sorted() function, 169-170,
179-180

sorting lists, 169-170
sound, adding to games, 407

source code, obtaining for
PyGame library, 392-393

special characters as regular
expression pattern, 323

speed of presentations,
improving, 507-513

splitting strings, 204-205

sprites, 396

stacks, 164

standard modules, 259-261

starting up IDLE, 55

strings 579

statements
commands for testing, 65
try except statement, 344

creating multiple blocks
of, 347-350

options, 350-352

statistical math functions in
math module, 110

storing

music on removable drive,
515-516

photos on removable drive,
498-501

subclasses in its own
object module file,
301-302

string comparison operators,
122-124

string concatenation, 79
string literals, 72
strings

ASCII code, 200

converting to integers,
89-90

creating, 200-201
formatting
positional formatting,
214-215
sign formatting,
213-214
formatting for output,
209-215
format() function,
209-210
named placeholders,
210-211

positional placeholders,
210

How can we make this index more useful? Email us at indexes@samspublishing.com

580 strings

joining, 205

manipulating with
functions, 202-204

referencing, 201-202

regular expressions,
317-318

advanced features,
330-332

POSIX BRE engine, 318
POSIX ERE engine, 318
re module, 319-321
searching, 207-209
slicing, 202
splitting, 204-205
testing, 205-206

structure of for loops,
134-135

structured commands, 115
if statement, 115-117
multiple statements,
grouping, 117-118
syntax, 115
subclasses, 294-295, 308-314

adding to object module
file, 298-300
creating, 297-298
polymorphism, 306
storing in its own object
module file, 301-302
sudo command, 32
superclasses, 294
superuser, 32
switch bounce, 548
symmetric set difference, 191

synchronous events, 546-547

syntactical error exceptions,
337-339

syntax
color coding, 53
if statement, 115
for inheritance, 296
input function, 88
for loop, 132
print function, 73-75
while loops, 143

T

tables, creating

for MySQL databases,
451-452

for PostgreSQL databases,
461-463

televisions, connecting
Raspberry Pi to analog
televisions, 15

terminating
infinite loops, 146-147
while loops, 144

test directories, creating
modules in, 266-267

testing

custom modules, 267-268,
272

function results, 125-126
GPIO output, 539-540

Python statements,
commands used for, 65

strings, 205-206

text editors
Leaf Pad, 64
nano
commands, 65
jumping to lines with
syntactical errors, 339

Python scripts, creating,
64-65

verifying installation, 48
Text widget, 377-378
tkinter package, 364-372
Button widget, 373

Checkbutton widget,
373-375

Entry widget, 397-398
event handlers, defining,
370-372

Label widget, 373
Listbox widget, 378-380
Menu widget, 380-381
Text widget, 377-378

windows, creating,
364-366

transferring operating system
to SD card, 21

transparency, adding to
images, 405-406
traversing sets, 191-192

trigonometric functions in
math module, 108

triple quotes, 74-78

troubleshooting Raspberry Pi,
24-25

CGl, 480-482
peripheral cords, 24

try except statement, 344

creating multiple blocks of,
347-350

options, 350-352
tuples, 155-160

accessing data in, 157

comparing, 124

comparison operations,
158-159

concatenating, 160
creating, 155-156
index values, 157
iteration, 168-169
maximum value,
identifying, 159-160
minimum value, identifying,
159-160
number of values in,
identifying, 159
range of values,
accessing, 157-158
turning off Raspberry Pi, 23
type function, 87

unassigned variables, 84
Unicode, 46

displaying, 76-77
updating

dictionaries, 180-181

Raspbian Linux distribution
software, 41-43

sets, 192-193

upside-down trees, 217
Upton, Eben, 7
U.S. keyboard, configuring,
49-50
USB mouse, selecting, 18
user accounts
MySQL, creating, 450-451
PostgreSQL, creating,
460-461

users, 79
utilities, Linux shell, 29

Vv

validating
custom modules, 272
GPIO output, 539-540

user input with for loops,
141-142

values
comparing
Boolean comparisons,
124-125

numeric comparisons,
122

string comparisons,
122-124

passing to functions,
244-250

arguments, 244-246

retrieving with dictionaries,
249-250

returning, 243-244
van Rossum, Guido, 45

verifying 581

variables, 81-82. See also
object references

assigning value to, 82-86

long string values,
84-85

number values, 85-86

calculation results,
assigning, 101

camel Case, 194

data types, 86-88

converting, 89-90

in equations, 100-101

global variables, 251-253

local variables, 251

naming, 82

parameters, 244-246

default values, setting,
246-247

multiple parameters,
retrieving, 248-249

positional parameters,
246

reassigning values to, 86
separators, 83
unassigned, 84

verifying
IDLE, 47-48
keyboard setup, 49-50
peripherals, 21-23

PyGame library installation,
390

Python interactive shell,
46-47

Python interpreter, 46-47
text editor installation, 48

How can we make this index more useful? Email us at indexes@samspublishing.com

582

versions of Python,
comparing, 46
viewing GPIO output, 536-539

w

web forms, 482-487
creating, 483-484
web programming, 447

CGl, 473-475
dynamic webpages,
476-480

serving HTML files,
471-472

web forms, 482-487
creating, 483-484

webpages, formatting
output, 475-476

web servers

Apache web server,
473-475

installing, 470-471

HTML elements, parsing,
434-435

webpages
parsing data from, 433
retrieving, 432-433

versions of Python, comparing

webpages
CGl, debugging, 480-482

dynamic webpages,
476-480

output, formatting,
475-476

publishing, 472

retrieving, 432-433
websites

nano editor homepage, 65

official Python website, 57

PyGame wiki, 394

PyPi, 261

Raspberry Pi Foundation,

19

retrieving data from,
437-438

while loops, 143-148
else clause, 145

entering data with,
147-148

iteration

using numeric
conditions, 143-144

using string conditions,
144-145
nested loops, 149-150
terminating, 144
whoami command, 29

widgets, 362
adding to windows,
366-370

Button widget, 373

Checkbutton widget,
373-375

Entry widget, 397-398
Label widget, 373
Listbox widget, 378-380
Menu widget, 380-381

Wi-Fi adapters, selecting,
18-19

window interface (GUI
programming), 362

windows
creating, 364-366
widgets, adding, 366-370
writing to files, 231-236
preexisting files, 234

X-Y-Z

Xfce, 34

	Table of Contents
	Introduction
	Programming with Python
	Who Should Read This Book?
	Conventions Used in This Book

	HOUR 4: Understanding Python Basics
	Producing Python Script Output
	Formatting Scripts for Readability
	Understanding Python Variables
	Assigning Value to Python Variables
	Learning About Python Data Types
	Allowing Python Script Input
	Summary
	Q&A
	Workshop

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J-K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X-Y-Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on '[RRD Book 20050524\(1\).joboptions2]'] Use these settings to create PDF documents for RR Donnelley Book plants. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug true
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [756.000 756.000]
>> setpagedevice

