

http://Dummies.com
http://Dummies.com
http://Dummies.com
http://www.dummies.com/cheatsheet/raspberrypi

Raspberry Pi®

by Sean McManus and Mike Cook

Raspberry Pi®

Raspberry Pi® For Dummies®
Published by
John Wiley & Sons, Inc.
111 River Street
Hoboken, NJ 07030-5774
www.wiley.com

Copyright © 2013 by John Wiley & Sons, Inc., Hoboken, New Jersey
Published by John Wiley & Sons, Inc., Hoboken, New Jersey
Published simultaneously in Canada
No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as
permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to
the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-
8600. Requests to the Publisher for permission should be addressed to the Permissions Department, John
Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at
http://www.wiley.com/go/permissions.
Trademarks: Wiley, the Wiley logo, For Dummies, the Dummies Man logo, A Reference for the Rest of Us!,
The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, Making Everything Easier, and
related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates
in the United States and other countries, and may not be used without written permission. All other
trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not associated with any
product or vendor mentioned in this book.
Raspberry Pi and the Raspberry Pi logo are registered trademarks of the Raspberry Pi Foundation in the United
Kingdom and other countries. Raspberry Pi For Dummies is not endorsed by the Raspberry Pi Foundation.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE
CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT
LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE
CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES
CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE
UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR
OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF
A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE
AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION OR
WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FURTHER
INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION
THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER,
READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED
OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care
Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.
For technical support, please visit www.wiley.com/techsupport.
Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material
included with standard print versions of this book may not be included in e-books or in print-on-demand.
If this book refers to media such as a CD or DVD that is not included in the version you purchased, you
may download this material at http://booksupport.wiley.com. For more information about Wiley
products, visit www.wiley.com.
ISBN 978-1-118-55421-0 (pbk); ISBN 978-1-118-55422-7 (ebk); ISBN 978-1-118-55423-4 (ebk);
ISBN 978-1-118-55424-1 (ebk)
Manufactured in the United States of America at Bind-Rite
10 9 8 7 6 5 4 3 2 1

http://www.wiley.com
http://www.wiley.com/go/permissions
http://www.wiley.com/techsupport
http://booksupport.wiley.com
http://www.wiley.com

About the Authors
Sean McManus is an expert technology and business author. His other books
include Microsoft Office for the Older and Wiser, Social Networking for the
Older and Wiser, Web Design in Easy Steps, and iPad for the Older and Wiser.
His tutorials and articles have appeared in magazines including Internet
Magazine, Internet Works, Business 2.0, Making Music, and Personal Computer
World. His personal website is at www.sean.co.uk.

Mike Cook has been making electronic things since he was at school. Former
Lecturer in Physics at Manchester Metropolitan University, he wrote more
than three hundred computing and electronics articles in the pages of com-
puter magazines for 20 years starting in the 1980s. Leaving the University
after 21 years when the Physics department closed down, he got a series of
proper jobs where he designed digital TV set top boxes and access control
systems. Now retired and freelancing, he spends his days surrounded by
wires, patrolling the forums as Grumpy Mike.

http://www.sean.co.uk/

Dedication
Thank you to my wife, Karen, for all her support throughout this project.
—Sean

To my wife, Wendy, who always acts delighted whenever I show her yet
another blinking LED. And also to the late Leicester Taylor, World War II
radar researcher and inspirational supervisor of my post-graduate research
at the University of Salford. —Mike

Authors’ Acknowledgments
Thank you to my co-author, Mike, for bringing his electronics expertise and
fantastic project ideas. Thank you to Craig Smith for commissioning us to
write this book, to Linda Morris for her editing support, and to Paul Hallett,
our technical editor. Thanks also to Lorna Mein and Natasha Lee in market-
ing, and to the . . . For Dummies team for making it all happen.

Many people helped with research or permissions requests, including Karen
McManus, Leo McHugh, Mark Turner, Peter Sayer, Bill Kendrick, Simon Cox,
Jon Williamson, Paul Beech, Peter de Rivaz, Michał Męciński, Ruairi Glynn,
Stephen Revill, and Lawrence James.

We wouldn’t have a book to write if it weren’t for the wonderful work of the
Raspberry Pi Foundation, the manufacturers who took a gamble on it, and the
many thousands of people who have contributed to the Raspberry Pi’s soft-
ware. —Sean

I would like to thank Sean McManus for inviting me to contribute to this book
and the staff at Wiley for making the process of producing this book as pain-
less as possible. —Mike

Publisher’s Acknowledgments
We’re proud of this book; please send us your comments at http://dummies.custhelp.com.
For other comments, please contact our Customer Care Department within the U.S. at 877-762-2974,
outside the U.S. at 317-572-3993, or fax 317-572-4002.
Some of the people who helped bring this book to market include the following:

Acquisitions and Editorial
Project Editor: Linda Morris
Acquisitions Editor: Craig Smith
Copy Editor: Linda Morris
Technical Editor: Paul Hallett
Editorial Manager: Jodi Jensen
Editorial Assistant: Anne Sullivan
Sr. Editorial Assistant: Cherie Case
Cover Photo: © Dr. Andrew Robinson

Composition Services
Sr. Project Coordinator: Kristie Rees
Layout and Graphics: Carrie A. Cesavice,

Jennifer Creasey, Joyce Haughey
Proofreader: Linda Seifert
Indexer: Potomac Indexing, LLC

Publishing and Editorial for Technology Dummies
Richard Swadley, Vice President and Executive Group Publisher
Andy Cummings, Vice President and Publisher
Mary Bednarek, Executive Acquisitions Director
Mary C. Corder, Editorial Director

Publishing for Consumer Dummies
Kathleen Nebenhaus, Vice President and Executive Publisher

Composition Services
Debbie Stailey, Director of Composition Services

http://dummies.custhelp.com

Contents at a Glance
Introduction .. 1

Part I: Getting Started with Raspberry Pi 7
Chapter 1: Introducing the Raspberry Pi .. 9
Chapter 2: Downloading the Operating System ... 19
Chapter 3: Connecting Your Raspberry Pi ... 31

Part II: Getting Started with Linux 43
Chapter 4: Using the Desktop Environment ... 45
Chapter 5: Using the Linux Shell .. 71

Part III: Using the Raspberry Pi
for Both Work and Play .. 107
Chapter 6: Being Productive with the Raspberry Pi.. 109
Chapter 7: Editing Photos on the Raspberry Pi with GIMP 121
Chapter 8: Building Your First Website with the Raspberry Pi 131
Chapter 9: Playing Audio and Video on the Raspberry Pi .. 159

Part IV: Programming the Raspberry Pi 171
Chapter 10: Introducing Programming with Scratch .. 173
Chapter 11: Programming an Arcade Game Using Scratch 189
Chapter 12: Writing Programs in Python .. 211
Chapter 13: Creating a Game with Python and Pygame ... 241

Part V: Exploring Electronics with the Raspberry Pi 259
Chapter 14: Understanding Circuits and Soldering ... 261
Chapter 15: Making Your First Project with the Raspberry Pi 281
Chapter 16: Putting the Raspberry Pi in Control ... 313
Chapter 17: The Raspberry Pi in an Analog World .. 337

Part VI: The Part of Tens .. 359
Chapter 18: Ten Great Software Packages for the Raspberry Pi 361
Chapter 19: Ten Inspiring Projects for the Raspberry Pi .. 371

Appendix A: Troubleshooting and Configuring the
Raspberry Pi ... 377

Appendix B: The GPIO on the Raspberry Pi 391

Index .. 393

Table of Contents
Introduction ... 1

About Raspberry Pi For Dummies ... 1
Why You Need This Book ... 2
Foolish Assumptions ... 2
How This Book Is Organized .. 3
Icons Used in This Book ... 5
Visit the Book’s Website ... 5

Part I: Getting Started with Raspberry Pi 7

Chapter 1: Introducing the Raspberry Pi .9
Getting Familiar with the Raspberry Pi ... 11
Figuring Out What You Can Do with a Raspberry Pi 12
Determining Its Limitations .. 13
Getting Your Hands on a Raspberry Pi ... 13
Deciding What Else You Need .. 14

Chapter 2: Downloading the Operating System 19
Introducing Linux .. 19
Determining Which Distribution to Use ... 20
Using RISC OS on the Raspberry Pi ... 21
Downloading a Linux Distribution ... 21
Unzipping Your Linux Distribution ... 22
Flashing Your SD Card .. 22

Flashing an SD card in Windows .. 23
Flashing an SD card on a Mac ... 24
Flashing an SD card using Linux .. 27

Chapter 3: Connecting Your Raspberry Pi .31
Inserting the SD Card .. 32
Connecting a Monitor or TV ... 33

Connecting an HDMI or DVI display .. 33
Connecting a television using composite video 34

Connecting a USB Hub .. 34
Connecting a Keyboard and Mouse .. 35
Connecting Audio .. 35
Connecting to Your Router .. 36

Raspberry Pi For Dummies xii
Connecting the Power and Turning on the Raspberry Pi 37
Using Raspi-config to Set Up Your Raspberry Pi 37
Logging In ... 41
Creating a Protective Case for Your Raspberry Pi 41

Part II: Getting Started with Linux 43

Chapter 4: Using the Desktop Environment .45
Starting the Desktop Environment .. 45
Navigating the Desktop Environment ... 46

Using the icons on the desktop .. 46
Using the Programs menu... 47
Using multiple desktops.. 48
Resizing and closing your program windows 49

Using the Task Manager ... 50
Using External Storage Devices in the Desktop Environment 51
Using the File Manager .. 51

Navigating the file manager .. 52
Copying and moving files and folders ... 55
Selecting multiple files and folders .. 55
Creating new folders and blank files ... 56
Changing how files are displayed .. 57
Opening a folder as root or in the terminal 58

Browsing the Web ... 59
Using Midori to browse the web .. 59
Searching for and within web pages.. 61
Using tabbed browsing ... 61
Adding and using bookmarks ... 62
Zooming the page and opening it full screen 63
Protecting your privacy .. 63

Using the Image Viewer .. 64
Using the Leafpad Text Editor ... 66
Customizing Your Desktop ... 67
Logging Out from LXDE .. 69

Chapter 5: Using the Linux Shell .71
Understanding the Prompt ... 72
Exploring Your Linux System ... 72

Listing files and directories .. 72
Changing directories ... 73
Checking file types ... 73
Changing to the parent directory .. 74
Understanding the directory tree .. 75
Using relative and absolute paths ... 78
Investigating more advanced listing options 80

xiii Table of Contents

Understanding the Long Listing Format and Permissions 83
Slowing Down the Listing and Reading Files with the Less Command 85
Speeding Up Entering Commands ... 86
Using Redirection to Create Files in Linux ... 87
Top Tips for Naming Your Files in Linux .. 88
Creating Directories .. 89
Deleting Files in Linux ... 90
Using Wildcards to Select Multiple Files in Linux 91
Removing Directories .. 93
Copying and Renaming Files .. 94
Installing and Managing Software on Your Raspberry Pi 96

Updating the cache .. 96
Finding the package name .. 97
Installing software.. 97
Running software ... 98
Upgrading the software on your Raspberry Pi 98
Removing software and freeing up space ... 99
Finding out what’s installed on your Raspberry Pi 100

Managing User Accounts on Your Raspberry Pi 100
Learning More About Linux Commands ... 102
Customizing Your Shell with Your Own Linux Commands 104

Part III: Using the Raspberry Pi
for Both Work and Play .. 107

Chapter 6: Being Productive with the Raspberry Pi 109
Installing LibreOffice on Your Raspberry Pi .. 110
Starting LibreOffice on the Raspberry Pi .. 110
Saving Your Work .. 111
Writing Letters in LibreOffice Writer .. 111
Managing Your Budget in LibreOffice Calc .. 113
Creating Presentations in LibreOffice Impress .. 116
Creating a Party Invitation with LibreOffice Draw 118

Chapter 7: Editing Photos on the Raspberry Pi with GIMP121
Installing and Starting GIMP ... 122
Understanding the GIMP Screen Layout ... 122
Resizing an Image in GIMP .. 124
Cropping Your Photo .. 125
Rotating and Flipping Your Photo ... 126
Adjusting the Colors .. 127
Fixing Imperfections .. 127
Converting Images Between Different Formats 128
Finding Out More about GIMP ... 129

Raspberry Pi For Dummies xiv
Chapter 8: Building Your First Website with the Raspberry Pi 131

Understanding What a Website Is ... 132
Discovering How to Write a Web Page ... 132
Organizing Your Files .. 133
Creating Your First Web Page .. 133

Your first HTML code snippet .. 134
Structuring an HTML document .. 136

Formatting Your HTML Content .. 138
Adding additional headings .. 139
Adding images to your web page ... 139
Adding links in your web content .. 141
Formatting lists .. 142
Additional formatting tags you can use .. 144

Validating Your HTML .. 145
Using CSS to Change Your Page’s Appearance .. 145

Adding a style sheet to your web page ... 145
Adding a touch of color... 147
Formatting your text.. 149
Styling lists .. 150
Adding borders to your content .. 151
Adding spacing around and between page elements 152

Applying Styles to More Specific Parts of the Page 152
Creating a Navigation Bar from a List ... 155
Adding the Finishing Touches ... 156
Publishing Your Web Page on the Internet .. 157
Taking It Further .. 158

Chapter 9: Playing Audio and Video on the Raspberry Pi159
Setting Up Raspbmc .. 160
Navigating Raspbmc .. 161
Adding Media ... 163

Adding a USB device .. 163
Adding networked media .. 164
Using streaming media .. 164

Playing Music ... 165
Playing Videos .. 166
Viewing Photos .. 167
Changing the Settings in Raspbmc .. 167
Using a Remote Control .. 168
Playing Music in the Desktop Environment ... 169

xv Table of Contents

Part IV: Programming the Raspberry Pi 171

Chapter 10: Introducing Programming with Scratch 173
Understanding What Programming Is ... 174
Starting Scratch ... 174
Understanding the Scratch Screen Layout ... 174
Positioning and Resizing Your Sprite .. 176
Making Your Sprite Move ... 176

Using directions to move your sprite.. 177
Using grid coordinates to move and position your sprite 178
Showing sprite information on the Stage .. 180

Changing Your Sprite’s Appearance ... 181
Using costumes .. 181
Using speech and thought bubbles ... 182
Using graphic effects ... 183
Resizing your sprite ... 184
Changing your sprite’s visibility .. 184

Adding Sounds and Music .. 185
Creating Scripts ... 186
Using the Wait Block to Slow Down Your Sprite 187
Saving Your Work .. 188

Chapter 11: Programming an Arcade Game Using Scratch 189
Starting a New Scratch Project and Deleting Sprites 190
Changing the Background .. 191
Adding Sprites to Your Game ... 191
Drawing Sprites in Scratch ... 192
Naming Your Sprites ... 195
Controlling When Scripts Run .. 195

Using the green flag to start scripts .. 195
Using the Forever Control block .. 196
Enabling keyboard control of a sprite ... 197
Enabling a sprite to control another sprite 198

Using Random Numbers ... 201
Detecting When a Sprite Hits Another Sprite ... 201
Introducing Variables .. 203
Making Sprites Move Automatically .. 204
Fixing the Final Bug ... 205
Adding Scripts to the Stage .. 208
Duplicating Sprites .. 208
Playing Your Game .. 208
Adapting the Game’s Speed ... 209
Taking It Further with Scratch ... 209

Raspberry Pi For Dummies xvi
Chapter 12: Writing Programs in Python .211

Starting Python .. 212
Entering Your First Python Commands .. 212
Using the Shell to Calculate Sums ... 214
Creating the Times Tables Program ... 215

Creating and running your first Python program 216
Using variables ... 218
Accepting user input ... 219
Printing words, variables, and numbers together 219
Using for loops to repeat .. 221

Creating the Chatbot Program ... 223
Introducing lists ... 224
Using lists to make a random chat program 227
Adding a while loop ... 229
Using a loop to force a reply from the player 230
Using dictionaries .. 231
Creating your own functions .. 233
Creating the dictionary look-up function .. 235
Creating the main conversation loop .. 237
Final thoughts on Chatbot .. 238
The final Chatbot program ... 239

Chapter 13: Creating a Game with Python and Pygame 241
Installing and Updating Pygame .. 242
Importing Pygame ... 242
Setting Up the Game Window .. 243
Using Colors in Pygame .. 243
Drawing with Pygame .. 244
Creating the Game Map .. 245
Drawing the Bricks .. 247
Positioning the Bat .. 248
Positioning the Ball ... 250
Displaying the End Game Messages .. 251
Checking for a Win .. 252
Setting Up the Timings .. 252
Making the Bat Move ... 253
Making the Ball Move .. 254
Adapting the Game .. 257

xvii Table of Contents

Part V: Exploring Electronics with the Raspberry Pi 259

Chapter 14: Understanding Circuits and Soldering 261
Discovering What a Circuit Is ... 262

Understanding the nature of electricity .. 262
Determining how a component needs to be treated 269
Testing circuits with simulators .. 269

Getting Familiar with the GPIO .. 270
Putting the general purpose in GPIO ... 271
Understanding what GPIOs do ... 271
Putting an output pin to practical use .. 272
Using GPIOs as inputs ... 274
Learning which end is hot: Getting to grips with a

soldering iron ... 276
Making a soldered joint ... 277

Looking at Ready-Made Add-On Boards ... 278
The Gert board ... 278
Pi Face ... 279
Other boards .. 280

Chapter 15: Making Your First Project with the Raspberry Pi 281
Getting Started with the Blastoff Project .. 281
Getting at the GPIO Pins ... 283

Being aware of Raspberry Pi board revisions 283
Making the connection .. 285

Making a Breakout Board ... 286
Creating the cable .. 287
Wiring the cable ... 289
Testing the breakout board .. 293
Controlling the GPIO pins ... 294
Floating GPIO pins ... 296
Getting a better display ... 297

Creating the Blastoff Game ... 298
Making the box ... 298
Making the ball traps ... 300
Wiring up the Blastoff game ... 301
Testing the hardware .. 306
Writing the software .. 307
The game logic ... 310
Creating the sounds... 310

Customizing the Blastoff game .. 311

Raspberry Pi For Dummies xviii
Chapter 16: Putting the Raspberry Pi in Control 313

Using GPIO Pins as Outputs ... 313
Preparing to Build the Copycat Game .. 315
Choosing an LED .. 316
Creating the Copycat Game .. 318
Customizing the Game .. 326
Making a Better Game ... 327
Putting It All Together ... 332

Chapter 17: The Raspberry Pi in an Analog World337
Exploring the Difference: Analog versus Digital 338

Taking small steps ... 338
Reading small steps ... 340

Investigating Converter Chips ... 341
Building the Raspberry Ripple ... 342

The chip at the heart of the Ripple.. 343
Putting the chip into a circuit .. 343
Wiring it up ... 345
Installing the drivers ... 346
Using the Raspberry Ripple .. 347
Testing the analog inputs ... 348
Testing the analog output ... 350

Making a Curve Tracer .. 351
Making a Pot-a-Sketch ... 354
Making Real Meters ... 356
Making a Steve Reich Machine ... 356
Taking the Temperature ... 357

Part VI: The Part of Tens ... 359

Chapter 18: Ten Great Software Packages for the Raspberry Pi . . .361
Penguins Puzzle ... 361
FocusWriter .. 362
Chromium ... 363
XInvaders 3D .. 364
Fraqtive ... 364
Evolution ... 365
Tux Paint ... 366
Grisbi ... 367
Beneath a Steel Sky ... 367
LXMusic .. 368

xix Table of Contents

Chapter 19: Ten Inspiring Projects for the Raspberry Pi371
One-Button Audiobook Player ... 371
Raspberry Pi Synthesizer ... 372
Bird Feeder Webcam ... 372
Scratch Games ... 373
Weather Station ... 373
Jukebox ... 373
Baby Monitor ... 374
Remote-Controlled Cars ... 374
A Talking Boat .. 375
Home Automation .. 376

Appendix A: Troubleshooting and Configuring
the Raspberry Pi .. 377

Troubleshooting the Raspberry Pi .. 377
Making More Space on the SD Card .. 380
Adjusting the Settings on Your Raspberry Pi .. 380

Using Nano to edit config.txt .. 381
Troubleshooting screen display issues .. 383
Adjusting the screen display .. 386
Exploring more advanced settings .. 386

Mounting External Storage Devices .. 386
Fixing Software Installation Issues .. 388
Troubleshooting Your Network Connection .. 388

Appendix B: The GPIO on the Raspberry Pi 391

Index ... 393

Raspberry Pi For Dummies xx

Introduction

I
n recent years, computer education has focused largely on office skills,
and not on understanding how computers work, or how you can use them

to create new programs and inventions. The Raspberry Pi redresses the bal-
ance. It can be used for games, music, photo editing, and word processing,
like any computer. But it can do so much more, providing a gateway into
programming, electronics, and the mysterious world of Linux, the technically
powerful (and free) rival to Windows and Mac OS.

Although the Raspberry Pi presents new opportunities to everyone, it can also
be a daunting prospect. It comes as a bare circuit board, so to do anything
with it, you’ll need to add an operating system on an SD card and connect it
up to a screen, mouse, and keyboard. To get started, you need to learn a few
basics of Linux, or at least get acquainted with LXDE, the graphical desktop.
You might be a geek who relishes learning new technologies, or you might be
someone who wants a new family computer to use with the children. In either
case, Raspberry Pi For Dummies helps you to get started with your Raspberry
Pi and teaches you about some of the many fun and inspiring things you can
do with it.

About Raspberry Pi For Dummies
Raspberry Pi For Dummies provides a concise and clear introduction to the
terminology, technology, and techniques that you need to get the most from
your Pi. With the book as your guide, you’ll learn how to

 ✓ Connect up your Raspberry Pi.

 ✓ Change its settings so it works optimally for you.

 ✓ Discover and install great free software you can use on your Raspberry Pi.

 ✓ Use the desktop environment to run programs, manage your files, surf
the web, and view your photos.

 ✓ Use the Linux command line to manage your Raspberry Pi and its files.

 ✓ Use the Raspberry Pi as a productivity tool.

 ✓ Edit photos.

2 Raspberry Pi For Dummies

 ✓ Play music and video.

 ✓ Build and publish your first website using the tools on the Raspberry Pi
and free tools you can download.

 ✓ Create animations and arcade games with the child-friendly Scratch
programming language.

 ✓ Write your own games and other programs using the Python programming
language.

 ✓ Get started with electronics, from an introduction to soldering, to the
design and creation of sophisticated electronic games, controlled by the
Raspberry Pi.

Why You Need This Book
After you shake the Raspberry Pi out of the little electrostatic bag it comes
in, what next?

This book answers that question. It enables you to get your Raspberry Pi up
and running and also introduces you to some of the great things you can do
with it, through satisfying practical projects. With this book as your compan-
ion, you can build websites, write games, and create your own electronic
gadgets, all without any prior knowledge.

The Raspberry Pi is most likely a bit different compared to other computers
you’ve used, so this book also helps you to do some of the things on your
Pi that you expect of every computer, such as playing music and editing
documents.

You can learn a lot of this through trial and error, of course, but that can be
a frustrating way to spend your time. Using this book as a reference, you can
more quickly start using your Raspberry Pi, whatever you plan to do with it.

Foolish Assumptions
Raspberry Pi For Dummies is written for beginners, by which we mean people
who have never used a similar computer before. However, we do have to
make a few assumptions in writing this book because we wouldn’t have
enough space for all the cool projects if we had to start by explaining what a
mouse is! Here are our assumptions:

3 Introduction

 ✓ You are familiar with other computers, such as Windows or Apple com-
puters. In particular, we assume that you’re familiar with using windows,
icons, and the keyboard and mouse, and that you know the basics of
using your computer for things like the Internet or writing letters.

 ✓ The Raspberry Pi is not your only computer. At times, you’ll need to
have access to another computer, for example to create your SD card
for the Pi (see Chapter 2). When it comes to networking, we assume you
already have a router set up with an Internet connection and a spare
port that you can plug the Raspberry Pi into.

 ✓ The Raspberry Pi is your first Linux-based computer. If you’re a Linux
ninja, this book still gives you a solid reference on the Raspberry Pi and
the version of Linux it uses, but no prior Linux knowledge is required.

 ✓ You share our excitement at the world of possibilities that the
Raspberry Pi can open up to you!

Other than those assumptions, we hope this book is approachable for every-
one. The Raspberry Pi is being adopted in classrooms and youth groups, and
this book is a useful resource for teachers and students. The Raspberry Pi is
also finding its way into many homes, where people of all ages (from children
to adult) are using it for education and entertainment.

How This Book Is Organized
This book is organized into six parts:

 ✓ Part I shows you how to set up your Raspberry Pi, including guidance
on what else you need; how you download the Raspberry Pi’s operating
system software and copy it to an SD card; and how you connect every-
thing up. You’ll learn how to use the configuration software and log in to
your Raspberry Pi.

 ✓ Part II gets you up and running with Linux, the operating system that
runs on the Raspberry Pi. You’ll learn about the desktop environment,
which you can use to run programs, manage your files, browse the web,
and view your images. Many Raspberry Pi users spend most of their
time in the desktop environment, but others want to dig deeper into
Linux, learning how to enter text commands to manage the computer
and its files. The book also shows you how to do this, so you can exploit
the full power of Linux.

 ✓ Part III is all about using your Raspberry Pi for work and play. You can’t
use Windows or Mac OS software on your Raspberry Pi, so you need to
find and install some new programs for work, photo-editing, and playing

4 Raspberry Pi For Dummies

music and video. You also learn how to build your first website, using
HTML and CSS, the languages that underpin every website in the world.

 ✓ Part IV teaches you how to write your own programs for the Raspberry
Pi, using the two programming languages that come with the operating
system. Scratch is highly visual and ideal for making games and anima-
tions. After we introduce you to the concepts of Scratch, we show you
how you can bring them together to make a shoot-‘em-up game. After
that, you learn Python, a more powerful programing language that
comes with the Raspberry Pi. We’ll show you how to create a basic
Chatbot that analyzes what you type in and gives intelligent responses
(sometimes, at least). After you’ve mastered the basics of Python, we
show you how to write an arcade game using Pygame.

 ✓ Part V introduces you to some electronics projects you can undertake
with your Raspberry Pi. You learn the basics of electronics theory, how
to use a soldering iron, and how the Raspberry Pi can be connected to
your own electronics circuits. This section builds on your knowledge of
Python to show you how to make two electronic games controlled by
the Raspberry Pi, Marble Slalom, and Copycat. The last chapter in this
part shows you how to make an analog-to-digital converter that you can
use for a wide range of your own electronics projects.

 ✓ Part VI is the Part of Tens, a unique feature of the For Dummies series.
This part contains concise guides to great software you can install on
your Raspberry Pi and inspiring projects you can make with it.

 ✓ Finally, Appendix A covers troubleshooting and more advanced con-
figuration options of your Raspberry Pi. This gives you solutions for
the most common problems people experience, and some guidance on
directly editing the configuration files. You might not need this chapter,
but it’s good to know it’s there if things go wrong! Appendix B provides
a reference to the GPIO that you can consult when connecting your own
electronics projects to the Raspberry Pi.

It’s up to you how you read this book. It’s been organized to take you on a
journey from acquiring and setting up your Raspberry Pi, through learning
the software that comes with it, to writing your own programs, and finally
creating your own electronics projects. Some chapters build on knowledge
gained in earlier chapters, especially the sections on Scratch, Python, and all
of Part V.

We understand, though, that some projects or topics might interest you more
than others, and you might need help in some areas right now. When a chap-
ter assumes knowledge from elsewhere, we’ve included cross-references to
help you quickly find what you might have missed. We’ve also included some
signposts to future chapters too, so you can skip ahead to a later chapter if it
provides the quickest answer for you.

5 Introduction

Icons Used in This Book
If you’ve read other For Dummies books, you know that they use icons in the
margin to call attention to particularly important or useful ideas in the text.
In this book, we use four such icons:

 The Tip icon highlights expert shortcuts or simple ideas that can make life
easier for you.

 Arguably, the whole book is technical stuff, but this icon highlights something
that’s particularly technical. We’ve tried to avoid unnecessary jargon and
complexity, but some background information can give you a better under-
standing of what you’re doing, and sometimes we do need to get quite techy,
given the sophistication of the projects we’re doing. Sections highlighted
with this icon might be worth re-reading to make sure you understand, or you
might decide that you don’t need to know that much detail. It’s up to you!

 Although we’d like to think that reading this book is an unforgettable experience,
we’ve highlighted some points that you might want to particularly commit to
memory. They’re either important take-aways, or they are fundamental to the
project you’re working on.

 As you would on the road, slow down when you see a warning sign. It high-
lights an area where things could go wrong.

Visit the Book’s Website
You can find the dedicated website for this book at www.dummies.com/go/
raspberrypifd. You can download the files used in the website design,
programming, and electronics projects there. That saves you having to retype
them, and also gives you a sound base you can build on for your own projects.

Occasionally, we have updates to our technology books. If this book does
have technical updates, they will be posted at www.dummies.com/go/
raspberrypifdupdates.

Both of us maintain our own personal websites too, which contain some
additional information on the Raspberry Pi. Mike’s is at www.thebox.
myzen.co.uk and Sean’s is at www.sean.co.uk.

http://www.dummies.com/go/raspberrypifd
http://www.dummies.com/go/raspberrypifd
http://www.dummies.com/go/raspberrypifdupdates
http://www.dummies.com/go/raspberrypifdupdates
http://www.thebox.myzen.co.uk
http://www.thebox.myzen.co.uk
http://www.sean.co.uk

6 Raspberry Pi For Dummies

Part I

Raspberry

Pi
getting started

with the

 Visit www.dummies.com for great Dummies content online.

http://www.dummies.com/

In this part . . .
 ✓ Get to know the Raspberry Pi, and what other equipment you

will need to be able to use it.

 ✓ Download the Linux operating system and flash it to an SD
card.

 ✓ Connect your Raspberry Pi to the power, USB hub, keyboard,
mouse, and screen.

 ✓ Use Raspi-config to change the settings on your Raspberry Pi.

Chapter 1

Introducing the Raspberry Pi
In This Chapter
▶ Getting familiar with the Raspberry Pi
▶ Figuring out what you can do with a Raspberry Pi
▶ Determining its limitations
▶ Getting your hands on a Raspberry Pi
▶ Deciding what else you need

T
he Raspberry Pi is perhaps the most inspiring computer available today.
Although most of the computing devices we use (including phones, tablets,

and games consoles) are designed to stop us from tinkering with them, the
Raspberry Pi is exactly the opposite. From the moment you see its shiny
green circuit board, it invites you to prod it, play with it, and create with
it. It comes with the tools you need to start making your own software (or
programming), and you can connect your own electronic inventions to it. It’s
cheap enough that if you break it, it’s not going to break the bank, so you can
experiment with confidence.

Lots of people are fired up about its potential, and they’re discovering exciting
new ways to use it together. Dave Akerman (www.daveakerman.com) and
friends attached one to a weather balloon and sent it nearly 40 kilometers
above the earth to take pictures of earth from near space using a webcam.

Professor Simon Cox and his team at the University of Southampton connected
64 Raspberry Pi boards to build an experimental supercomputer, held together
with Lego bricks. In the supercomputer (see Figure 1-1), the Raspberry Pis
work together to solve a single problem. The project has been able to cut the
cost of a supercomputer from millions of dollars to thousands or even hundreds
of dollars, making supercomputing much more accessible to schools and
students.

The Pi is also being used at the frontier of exploration. The FishPi project
(www.fishpi.org) aims to create a vessel that can navigate across the
Atlantic unmanned and take environmental measurements along the way,
communicating with base by satellite. London Zoo is looking at using the
Raspberry Pi in a device to detect and photograph animals in their natural
habitats, called EyesPi.

http://www.daveakerman.com
http://www.fishpi.org

10 Part I: Getting Started with Raspberry Pi

Figure 1-1:
Two of the
Raspberry
Pi boards

used in the
University
of South-
ampton’s

supercom-
puter, with
the rest of
the super-
computer

in the
background.

 Courtesy of Simon Cox and Glenn Harris, University of Southampton

Although those projects are grabbing headlines, another story is less visible
but more important: the thousands of people of all ages who are taking their
first steps in computer science thanks to the Raspberry Pi.

Both of the authors of this book used computers in the 1980s, when the
notion of a home computer first became a reality. Back then, computers were
less friendly than they are today. When you switched them on, you were
faced with a flashing cursor and had to type something in to get it to do any-
thing. As a result, though, a whole generation grew up knowing at least a little
bit about how to give the computer commands, and how to create programs
for it. As computers became friendlier, and we started to use mice and win-
dows, we didn’t need those skills any more, and we lost touch with them.

Eben Upton, designer of the Raspberry Pi, noticed the slide in skill levels
when he was working at Cambridge University’s Computer Laboratory in
2006. Students applying to study computer science started to have less expe-
rience of programming than students of the past did. Upton and his univer-
sity colleagues hatched the idea of creating a computer that would come with
all the tools needed to program it, and would sell for a target price of $25. It
had to be able to do other interesting things too so that people were drawn
to use it, and had to be robust enough to survive being pushed in and out of
school bags hundreds of times.

11 Chapter 1: Introducing the Raspberry Pi

That idea started a six-year journey that led to the Raspberry Pi you probably
have on your desk you as you read this book. It was released in February
2012, and sold half a million units by the end of the quarter. Early in 2013, it
reached the milestone of one million sales.

Getting Familiar with the Raspberry Pi
When your Raspberry Pi arrives, you’ll see it’s a circuit board, about the size
of a credit card, with components and sockets stuck on it, as shown in Figure
1-2. In an age when most computing devices are sleek and shiny boxes, the
spiky Pi, with tiny codes printed in white all over it, seems alien. It’s a big
part of its appeal, though: most of the cases you can buy for the Raspberry Pi
are transparent because people love the look of it.

Figure 1-2:
Up close
with the

Raspberry
Pi.

There are two versions of the Raspberry Pi: the Model B (which was released
first) and the Model A. The differences between the two are that the Model B
has two USB sockets (whereas the Model A only has one), the Model B has an
Ethernet socket, and editions of the Model B released after October 2012 con-
tain twice the memory (512MB, compared to 256MB on the Model A and the
first batches of the Model B). The Model A sells for $25, whereas the Model B
sells for around $35.

12 Part I: Getting Started with Raspberry Pi

 The Raspberry Pi was made possible in part by the advances in mobile com-
puter chips that have happened in recent years. At its heart is a Broadcom
BCM2835 chip that contains an ARM central processing unit (CPU) and a
Videocore 4 graphics processing unit (GPU). The CPU and GPU share the
memory between them. The GPU is powerful enough to be able to handle
Blu-ray quality video playback.

Instead of running Windows or Mac OS, the Raspberry Pi uses an operating
system called Linux. It’s a leading example of open source, a completely dif-
ferent philosophy to the commercial software industry. Instead of being cre-
ated within the heavily guarded walls of a company, with its design treated
as a trade secret, Linux is built by companies and expert volunteers working
together. Anyone is free to inspect and modify the source code (a bit like the
recipe) that makes it work. You don’t have to pay to use Linux, and you’re
allowed to share it with other people too.

Unless you already use Linux, you won’t be able to run the software you
have on your other computers on your Raspberry Pi, but a lot of software for
Linux is free of charge.

Figuring Out What You Can
Do with a Raspberry Pi

The Raspberry Pi is a fully featured computer, and you can do almost any-
thing with it that you can do with a desktop computer.

When you switch it on, it has a text prompt (see Chapter 5), but you can use
a graphical windows desktop to start and manage programs. You can use it
for browsing the Internet (see Chapter 4), word processing and spreadsheets
(see Chapter 6), or for editing photos (see Chapter 7). You can use it for play-
ing back music or video (see Chapter 9), or for playing games. You can use
the built-in software to build a website (see Chapter 8). It’s the perfect tool
for homework, but it’s also a useful computer for writing letters, managing
your accounts, and paying bills online.

The Raspberry Pi is at its best, however, when it’s being used to learn how
computers work, and how you can create your own programs or electronics
projects using them. It comes with Scratch (see Chapter 10), which enables
people of all ages to create their own animations and games, while learning
some of the core concepts of computer programming along the way.

It also comes with Python (see Chapter 12), a professional programming
language used by YouTube, Google, and Industrial Light & Magic (the special
effects gurus for the Star Wars films), among many others.

13 Chapter 1: Introducing the Raspberry Pi

It has a General Purpose Input/Output (GPIO) port on it that you can use
to connect up your own circuits to the Raspberry Pi, so you can use your
Raspberry Pi to control other devices and to receive and interpret signals
from them. In Part V, we show you how to build some electronic games con-
trolled by the Raspberry Pi.

Determining Its Limitations
For something that costs so little, the Raspberry Pi is amazingly powerful,
but it does have some limitations. Although you probably use it as a desktop
computer, its power is closer to a mobile device (like a tablet) than a modern
desktop PC.

By way of example, the Raspberry Pi Foundation says the Pi’s overall perfor-
mance is comparable with a PC using a 300 MHz Pentium 2 processor, which
you might have bought in the mid to late nineties, except that the Raspberry
Pi has much better graphics. The memory of the Raspberry Pi is more limited
than you’re probably used to, with just 512MB or 256MB available. You can’t
expand that with extra memory in the way you can a desktop PC.

The graphics capabilities lag behind today’s market somewhat too: The
Raspberry Pi Foundation says the Pi’s graphics are roughly the same as the
original Xbox games console, which was released 10 years ago.

Both the Pentium 2 PC and the original Xbox were fine machines, of course,
for their time. They’re just not as snappy as we’re used to, and that’s where
you might experience some problems. You might find that the Pi can’t keep
up with the demands of some modern software and that some programs
don’t run fast enough to be useful on it. However, it’s easy to find programs,
try them, and remove them if they’re no good (see Chapter 5), and plenty of
programs for work and play run well on the Raspberry Pi (see Chapter 18).

If you already have another computer, the Raspberry Pi is unlikely to usurp it
as your main machine. But the Pi gives you the freedom to try lots of things
you probably wouldn’t dare to try, or wouldn’t know how to try, with your
main PC.

Getting Your Hands on a Raspberry Pi
The Raspberry Pi was created by the Raspberry Pi Foundation, a charity reg-
istered in the UK. The charity’s six trustees funded the manufacture of the
first large batch themselves, but it sold out rapidly so it quickly became clear
that they needed something that would scale better.

14 Part I: Getting Started with Raspberry Pi

The Foundation now licenses the design of the Raspberry Pi to RS Components
(www.rs-components.com) and Premier Farnell, which uses the brand name
Element 14 (www.element14.com/community/groups/raspberry-pi).
Both companies fund and manage the manufacture of the Raspberry Pi, market
and sell it, and look after their customers. They accept orders through their
websites and are able to offer a number of the accessories you might also need.

It’s possible that more companies will license the design of the Pi in the future,
so check the Raspberry Pi Foundation’s website at www.raspberrypi.org
for current links to stores that sell the Pi.

Second-hand Raspberry Pis can be bought on eBay (www.ebay.com), but we
would recommend getting a new one so you benefit from the customer support
available, and have the peace of mind that it hasn’t been damaged by the
previous owner.

Deciding What Else You Need
The creators of Raspberry Pi have stripped costs to the bone to enable you to
own a fully featured computer for about $25–$35, so you’ll need to scavenge
or buy a few other bits and pieces. I say “scavenge” because the things you
need are exactly the kind of things many people have lying around their house
or garage already, or can easily pick up from friends or neighbors. In particular,
if you’re using a Raspberry Pi as your second computer, you probably have
most of the peripherals you need. That said, you might find they’re not fully
compatible with the Raspberry Pi and you need to buy replacements to use
with the Pi.

Here’s a checklist of what else you might need:

 ✓ Monitor: The Raspberry Pi has a high definition video feed and uses
an HDMI (high definition multimedia interface) connection for it. If
your monitor has an HDMI socket, you can connect the Raspberry Pi
directly to it. If your monitor does not support HDMI, it probably has a
DVI socket, and you can get a simple and cheap converter that enables
you to connect an HDMI cable to it. Older VGA (video graphics array)
monitors aren’t officially supported by the Raspberry Pi Foundation,
but devices are available to convert the HDMI signal into a VGA one. If
you’re thinking of buying a converter, check online to see whether it
works with the Raspberry Pi first. A lot of cheap cables are just cables,
when what you need is a device that converts the signal from HDMI
format to VGA, not one that just fits into the sockets on the screen and
your Raspberry Pi. If your monitor is connected using a blue plug, and the
connector has three rows on five pins in it, it’s probably a VGA monitor.

 ✓ TV: You can connect your Raspberry Pi to a high definition TV using
the HDMI socket and should experience a crisp picture. If you have an

http://www.rs-components.com
http://www.element14.com/community/groups/raspberry-pi
http://www.raspberrypi.org
http://www.ebay.com

15 Chapter 1: Introducing the Raspberry Pi

old television in the garage, you can also press it into service for your
Raspberry Pi. The Pi can send a composite video signal through an RCA
cable, so it can use a TV as its display. When we tried this, it worked but
the text lacked definition, which made it difficult to read. If a TV is your
only option, see Appendix A for advice on tweaking the settings to get
the clearest possible picture. It’s better to use a computer monitor if you
can, though.

 ✓ USB hub: The Raspberry Pi has one or two USB sockets (depending on
the model you get), but you should use a powered USB hub for two rea-
sons. Firstly, you’re going to want to connect other devices to your Pi at
the same time as your keyboard and mouse, which use two sockets. And
secondly, you should use a USB hub because it provides external power
to your devices and minimizes the likelihood of experiencing problems
using your Raspberry Pi. Make sure your USB hub has its own power
source independent of the Raspberry Pi.

 ✓ USB keyboard and mouse: The Raspberry Pi only supports USB key-
boards and mice, so if you’re still using ones with PS/2 connectors
(round rather than flat), you need to replace them.

 When the Raspberry Pi behaves unpredictably it’s often because the
keyboard is drawing too much power, so avoid keyboards with too
many flashing lights and features.

 ✓ SD card: The Raspberry Pi doesn’t have a hard disk built in to it, so it uses
an SD card as its main storage. You probably have some SD cards that
you use for your digital camera, although you might need to get a higher
capacity one. We would recommend a 4GB SD card as a minimum, and SD
cards are cheap enough now that it’s worth getting an 8GB or 16GB one.
Even that isn’t much space for your files and data compared to the hard
drive on a modern computer, but you can use other storage devices such
as external hard drives with your Raspberry Pi too. SD cards have differ-
ent class numbers that indicate how fast you can copy information to and
from them. Element14 sells a class 4 SD card with the operating system
preloaded on it (see Figure 1-3), and RS Components recommends a class
6 SD card to use with the Raspberry Pi.

 ✓ SD card writer for your PC: Many PCs today have a slot for SD cards so
you can easily copy photos from your camera to your computer. If yours
doesn’t, you might want to consider getting an SD card writer to con-
nect to your computer. You’ll use it to copy Linux to an SD card for use
with your Raspberry Pi, but you won’t be able to use it to copy files from
your Raspberry Pi to a Windows computer. Alternatively, you can buy
an SD card that has the recommended version of Linux already on it for
use with the Raspberry Pi. That means you can avoid the expense of an
SD card writer, but it doesn’t enable you to experiment with the different
operating systems available for the Pi (see Chapter 2).

16 Part I: Getting Started with Raspberry Pi

Figure 1-3:
A SD card
preloaded

with the
Raspberry

Pi operating
system.

 ✓ USB keys: USB keys (also known as flash drives or memory sticks) are
fairly cheap and high capacity now (a 64GB USB key is readily afford-
able), which makes them an ideal complement to your Raspberry Pi.
You can transfer files between your PC and your Raspberry Pi using a
USB key, too.

 ✓ External hard drive: If you want lots of storage, perhaps so you can use
your music or video collection with the Raspberry Pi, you can connect
an external hard drive to it over USB. You’ll need to connect your hard
drive through a powered USB hub, or use a hard drive that has its own
external power source.

 ✓ Speakers: The Raspberry Pi has a standard audio out socket, compatible
with headphones and PC speakers that use a 3.5mm audio jack. You can
plug your headphones directly into it, or use the audio jack to connect
to speakers, a stereo, or a TV. If you’re using a TV or stereo for sound,
you can get a cable that goes between the 3.5mm audio jack and the
audio input(s) on your television or stereo. You won’t always need
speakers: If you’re using an HDMI connection, the audio is sent to the
screen with the video signal so you won’t need separate speakers, but
note that this doesn’t work if you use a DVI monitor.

 ✓ Power supply: The Raspberry Pi uses a Micro USB connector for its
power supply, and is theoretically compatible with a lot of mobile phone
and tablet chargers. In practice, many of these can’t deliver enough cur-
rent (up to 700 milliamperes), which can make the Raspberry Pi perform
unreliably. The resistance in the cables that connect the Pi to the power
supply varies greatly too, and this can prevent peripherals like the

17 Chapter 1: Introducing the Raspberry Pi

mouse from working. It’s worth checking whether you have a charger
that might do the job (it should say how much current it provides on it),
but for best results, we recommend buying a compatible charger from
the same company you got your Raspberry Pi from. Don’t try to power
the Pi by connecting its Micro USB port to the USB port on your PC with
a cable, because your computer probably can’t provide enough power
for your Pi.

 ✓ Case: It’s safe to operate your Raspberry Pi as-is, but many people prefer
to protect it from spills and precariously stacked desk clutter by getting
a case for it. You can buy plastic cases on eBay (www.ebay.com), most
of which are transparent so you can still admire the circuitry and see
the Pi’s LED lights. These cases typically come as simple kits for you to
assemble. The Pibow (www.pibow.com) is one of the most attractively
designed cases, with layers of plastic giving it a rainbow look, side-on (see
Figure 1-4). It’s designed by Paul Beech, who designed the Raspberry Pi
logo. You don’t have to buy a case, though. You can go without or make
your own (see Chapter 3). Whatever case you go with, make sure you can
still access the GPIO pins so you can experiment with connecting your Pi
to electronic circuits and try the projects in Part V of this book.

Figure 1-4:
The Pibow
Raspberry

Pi case.

 Pibow™ Pimoroni Ltd (www.pibow.com)

http://www.ebay.com
http://www.pibow.com

18 Part I: Getting Started with Raspberry Pi

 ✓ Cables: You’ll need cables to connect it all up, too. In particular, you
need an HDMI cable (if you’re using an HDMI or DVI monitor), an HDMI
to DVI adapter (if you’re using a DVI monitor), an RCA cable (if you’re
connecting to an older television), an audio cable (if connecting the
audio jack to your TV or stereo), and an Ethernet cable (for networking).
You can get these cables from an electrical components retailer and
might be able to buy them at the same time as you buy your Raspberry
Pi. Any other cables you need (for example to connect to PC speakers or
a USB hub) should come with those devices.

 The Raspberry Pi has been designed to be used with whatever accessories
you having lying around to minimize the cost of getting started with it but, in
practice, not all devices are compatible. In particular, incompatible USB hubs,
keyboards, and mice can cause problems that are hard to diagnose.

A list of compatible and incompatible devices is maintained at http://
elinux.org/RPi_VerifiedPeripherals and you can check online
reviews to see whether others have experienced difficulties using a particular
device with the Raspberry Pi.

If you’re buying new devices, you can minimize the risk by buying recommended
devices from Raspberry Pi retailers.

In any case, you should set a little bit of money aside to spend on accessories.
The Raspberry Pi is a cheap device, but buying a keyboard, mouse, USB hub,
SD cards, and cables can easily double or triple your costs, and you might have
to resort to that if what you have on hand turns out not to be compatible.

http://elinux.org/RPi_VerifiedPeripherals
http://elinux.org/RPi_VerifiedPeripherals

Chapter 2

Downloading the
Operating System

In This Chapter
▶ Introducing Linux
▶ Determining which Linux distribution to use
▶ Downloading and unzipping a Linux distribution
▶ Flashing your SD card

B
efore you can do anything with your Raspberry Pi, you need to provide
it with an operating system. The operating system software enables

you to use the computer’s basic functions and looks after activities such as
managing files and running applications, like word processors or web browsers.
Those applications use the operating system as an intermediary to talk to the
hardware and they won’t work without it. This concept isn’t unique to the
Raspberry Pi. On your laptop, the operating system might be Microsoft
Windows or Mac OS. On an iPad or iPhone, it’s iOS.

In this chapter, we show you how to create your own SD card with the operat-
ing system on it. It only takes a few minutes, but it might require you to use
unfamiliar software or commands, so this chapter takes you through it in detail.

Even if you buy an SD card preloaded with the operating system (see Chapter 1),
flashing an SD card for the Raspberry Pi is a valuable skill because you might
want to experiment by trying some versions of Linux (or distributions) that
aren’t available to buy preloaded.

Introducing Linux
The operating system used on the Raspberry Pi is GNU/Linux, often called
just Linux for short. The Raspberry Pi might be the first Linux computer
you’ve used, but the operating system has a long and honorable history.

20 Part I: Getting Started with Raspberry Pi

Richard Stallman created the GNU Project in 1984 with the goal of building an
operating system that users were free to copy, study, and modify. Such soft-
ware is known as free software, and although this software is often given away
at no cost, the ideology is about free as in “free speech,” rather than free as
in “free beer.” Thousands of people have joined the GNU Project, creating
software packages that include tools, applications, and even games.

In 1991, Linus Torvalds released the central component of Linux, the kernel,
which acts as a conduit between the applications software and the hardware
resources, including the memory and processor. He is still “the ultimate
authority on what new code is incorporated in the standard Linux kernel,”
according to the Linux Foundation, the non-profit consortium that promotes
Linux and supports its development. The Linux Foundation reports that 7,800
people from almost 800 different companies have contributed to the kernel
since 2005.

GNU/Linux brings the Linux kernel together with the GNU components it
needs to be a complete operating system, reflecting the work of thousands
of people on both the GNU and Linux projects. That so many people could
cooperate to build something as complex as an operating system, and then
give it away for anyone to use, is a modern miracle.

Because it can be modified and distributed by anyone, lots of different versions
of GNU/Linux exist. They’re called distributions or distros, but not all of them are
suitable for the Raspberry Pi. Software created for one version of Linux usually
works on another version, but Linux isn’t designed to run Windows or Mac OS
software.

Strictly speaking, Linux is just the kernel in the operating system, but as is
commonly done, we’ll be referring to GNU/Linux as Linux in the rest of this
book.

Determining Which Distribution to Use
There are several different Linux distributions available for the Raspberry
Pi, and you can find an officially endorsed list at www.raspberrypi.org/
downloads. As you might expect, with such vibrant communities around the
Raspberry Pi and Linux, there are lots of other distributions in various stages
of development and availability too. You can find a longer list of distros with
brief notes on each one at http://elinux.org/RPi_Distributions.

The officially recommended distribution for beginners is called Raspbian
Wheezy. It’s a version of a distribution called Debian, and it has been optimized
for the Raspberry Pi by two developers, Mike Thompson and Peter Green.
It includes the LXDE graphical desktop software (see Chapter 4), the Midori
web browser (see Chapter 4), and various development tools. This is the
quickest way to get up and running with your Raspberry Pi, and for most

http://www.raspberrypi.org/downloads
http://www.raspberrypi.org/downloads
http://elinux.org/RPi_Distributions

21 Chapter 2: Downloading the Operating System

users, this is the one you’ll want to use. In this book, we assume you’re using
Raspbian Wheezy.

There is also a distribution called Arch Linux ARM. The guiding principle in
the design of this distribution is that the user should be in full control of the
software they install, so it only includes the bare essentials. It has no graphical
desktop, for example, although you can choose to install one. This distribution
is relatively unfriendly, so although it might suit Linux power users, it’s not a
good choice for beginners.

Unless you have a good reason to try something else, or you’re an experienced
Linux user wanting to use a distribution you prefer, we recommend you stick
with the Raspberry Pi Foundation’s recommendation to use Raspbian Wheezy.

That said, this isn’t a permanent decision: You can easily reuse an SD card
with a different Linux distribution, or keep a couple of SD cards with different
distributions on them. Before you power up the Raspberry Pi, just take your
pick for which distribution you want to use today and insert the appropriate
SD card.

Using RISC OS on the Raspberry Pi
Most people run Linux on the Raspberry Pi, but you can also use an operating
system called RISC OS, which has a graphical user interface. RISC OS dates
back to 1987, when Acorn Computers created it for use with the up-market
Archimedes home computer. Today, it’s maintained and managed by RISC OS
Open Limited.

The RISC OS operating system for the Raspberry Pi is available for free down-
load, and you can also buy an SD card called Nut Pi, which contains 20 top
applications to use with it. You flash a RISC OS SD card in the same way as
you create a Linux one (see Flashing Your SD Card, in this chapter).

We won’t cover RISC OS further in this book, but we recommend you try it. You
can find a link to download it at www.raspberrypi.org/downloads and you
can find documentation and the store to buy Nut Pi at www.riscosopen.org.

Downloading a Linux Distribution
You’ll need to use another computer to set up the SD card. It doesn’t matter
whether you use a Windows, Mac OS, or Linux machine, but you need to have
the ability to write to SD cards using it and a connection to the Internet.

http://www.raspberrypi.org/downloads
http://www.riscosopen.org

22 Part I: Getting Started with Raspberry Pi

The first step is to download the distribution you want to use. If you’re using
a recommended distribution, start by opening your web browser and going
to the Raspberry Pi Foundation’s downloads page (www.raspberrypi.org/
downloads). This page lists several different distributions, and each one has
two ways to download it:

 ✓ You can use a BitTorrent file. This enables you to download the Linux
distribution in small pieces from a number of other users, and then
combine it into the single file you want. It’s a fast and effective way to
download large files, and it helps to save the Raspberry Pi Foundation
money on its web hosting bills. To use this option, you need to have a
BitTorrent application installed on your computer. Because of that, this
option is best suited to those who already use BitTorrent for file sharing.

 ✓ You can also use a direct download, which downloads the file in one
go using your web browser. When you click the link for a direct down-
load, you’re taken to a new web page. After five seconds, your file should
start to download. When you’re asked whether you want to open or save
the file, we recommend you save it. If the download doesn’t begin auto-
matically, use one of the mirror links provided to download it. (A mirror
is just another place that stores a copy of the file to help people down-
load it.)

Unzipping Your Linux Distribution
When you download your Linux distribution, it will most likely be contained
in a Zip file, which means it has been compressed so it is as small as possible.
That saves you time downloading, but if you use Windows or Linux, the first
thing you’ll need to do with it is uncompress it, or unzip it. If you double-
click the Zip file, it should show you the Linux distribution file and give you a
button to click to extract (or unzip) it.

Some distributions will have more than one file inside the Zip file. In that case,
the one you need is the one that has .img at the end. It doesn’t matter if you
decompress any others, but the one you need to work with is the .img file.

If you use a Mac, you don’t have to unzip the file before you flash the SD card
as long as you follow the instructions later in this chapter (see “Flashing an
SD card on a Mac”).

Flashing Your SD Card
You should now have an SD card (see Chapter 1 for tips on buying compatible
SD cards) and the Linux distribution you have downloaded. Unfortunately,
copying your Linux distribution to your SD card isn’t as simple as just copying

http://www.raspberrypi.org/downloads
http://www.raspberrypi.org/downloads

23 Chapter 2: Downloading the Operating System

the file across. The Linux distribution is in a special format (an image file)
that describes all the different files that need to be created on the SD card.
To convert the image file into an SD card that will work on the Raspberry Pi,
you need to flash the SD card.

The way you do this varies depending on what kind of computer you’re
using, so we’ve provided instructions for Windows, Mac, and Linux in this
section.

 Whichever computer you’re using, you need to be extremely careful in doing
this. When an SD card is flashed, its previous contents are completely erased,
so make sure you’ve made copies of any files or photos you might need from
the card before you begin flashing.

Take care with the instructions too: If you’re going to erase a disk, make sure
it’s your SD card and not your main computer hard drive!

Flashing an SD card in Windows
To flash an SD card in Windows, you’ll need to download and install a small
program that does the job. Image Writer for Windows (see Figure 2-1) is avail-
able for free download and makes the job easy.

 This software is alpha software, which means it’s still in a fairly early stage of
development, so make sure you have a current backup of your computer, just
in case something goes wrong.

Here are the steps you need to follow using Image Writer:

 1. Visit the website at https://launchpad.net/win32-image-writer
and download the latest version of Image Writer.

 There are two different types of file available: a source and a binary. The
binary is the one you need.

 2. Double-click the Zip file you downloaded. You should see a folder
containing a number of files. Click Extract All Files above them, and
then extract the files into a folder and open it.

 Make sure you’re looking at the extracted files (and not the zipped files:
The window should not say Extract All Files at the top any more).

 3. Double-click the file Win32DiskImager.exe to start it.

 If you are asked to give the program permission to make modifications
on the computer, allow it.

 When the program opens, the long white box is for the filename of your
Linux distribution image.

https://launchpad.net/win32-image-writer

24 Part I: Getting Started with Raspberry Pi

 4. Click the folder icon on the right of the filename box to open a file
browser, navigate to your Linux distribution .img file and double-click it.

 5. Use the device menu on the right to choose which drive your SD card
is in.

 Double-check this information, and then check it again. Remember: This
drive is going to be completely wiped.

 You can go through the Start menu to My Computer to check the let-
ters assigned to the different drives on your PC. As a failsafe, this menu
should only list removable drives, so you shouldn’t usually have an
option for your hard drive here.

 6. Click the Write button, and Image Writer starts its work.

Figure 2-1:
Image

Writer, used
to flash the
SD card on
Windows.

Flashing an SD card on a Mac
On the Mac, you can use a script called RasPiWrite to automate much of
the process of flashing the SD card with a Raspberry Pi image, including
unzipping it.

 Because this operation involves erasing a disk (the SD card) using beta soft-
ware (which means it’s in the final stages of development), we strongly advise
you to make sure your computer is backed up before you begin, just in case
something goes wrong.

RasPiWrite can download one of the officially recommended distributions
before flashing it to the SD card. Our instructions are slightly different than
the instructions provided with RasPiWrite because we prefer to download
the distribution separately, so that we can choose from any of the distribu-
tions available, not just those that are officially endorsed, and so we can
more easily see how the download is progressing.

Here’s how you can use the script to flash your SD card:

25 Chapter 2: Downloading the Operating System

 1. In your Documents folder, create a folder called SD Card Prep and a
subfolder called RasPiWrite inside that.

 2. Visit https://github.com/exaviorn/RasPiWrite and download
the Zip file for RasPiWrite.

 3. Double-click the downloaded file and open the resulting folder.

 4. Drag the three files it contains into the RasPiWrite folder you created.

 5. Drag the Zip file of your Linux distribution into the RasPiWrite folder.

 6. Launch the terminal. If you can’t find it, press Cmd+Space bar and
type terminal into the Spotlight search bar. Press Enter to launch the
terminal.

 7. Go to the SD Card Prep folder in a Finder window and, in the terminal
window, type cd, followed by a space. Then, without pressing another
key, drag the RasPiWrite folder into the terminal window.

 This places the path of that folder into the command line.

 8. Press Enter. Then type ls (in lowercase) and press Enter to see a list
of files in the folder.

 You will use this list later to copy the name of your distribution Zip file
so you can avoid making a mistake while typing it.

 You should now be in the RasPiWrite folder in the terminal.

 9. Remove any memory cards, USB keys, or other removable storage
devices you might have plugged in and then run RasPiWrite by typing
sudo python raspiwrite.py (in lowercase).

 10. Enter your system password.

 You will see a few paragraphs of information about the script, topped off
with a lovely raspberry created using text characters.

 11. Insert your SD card either in the Mac’s SD slot (if it has one) or
through an SD card reader, and then press the Enter key.

 What happens next depends on your system. On Mike’s system, for
example, he has a partition that he runs Boot Camp from and RasPiWrite
thinks this is his SD card. This is why you’ve got to be vigilant: RasPiWrite
can get confused about which device is your SD card and could mistakenly
wipe the wrong one if you drop your guard. (In practice, it doesn’t work if
it can’t unmount the drive, so it wouldn’t actually wipe Mike’s Boot Camp
partition, but other disks might be vulnerable to accidental loss.) The
display looks like this:

https://github.com/exaviorn/RasPiWrite

26 Part I: Getting Started with Raspberry Pi

The following drives were found, please verify the name of
the SD card in finder with the name under the Mounted On
column (after /volumes/):

Filesystem Size Used Avail
Capacity

Mounted
on

Volumes/WINDOWS

/dev/disk1s1 56Mi 34Mi 22Mi 61% /Volumes/
Untitled

I believe this is your SD card: /WINDOWS is that correct?
(Y/n)

 12. This is not an SD card, so we respond with N for No and press Enter.

 If RasPiWrite correctly identifies your SD card, enter Y and skip to Step 15.

 13. RasPiWrite then responds with Please Enter the Location You Believe
Holds the SD Card. Enter dev/disk1s1 or simply copy and paste this
from the window.

 14. You’ll see a message that says, I Believe This Is Your SD Card: /dev/
disk1s1. Is That Correct? (Y/n). Reply by pressing Y and then Enter.

 It will then ask if you want it to download a distribution.

 15. Because we have already done this, type N and press Enter.

 The script asks you to locate the disk image. Scroll the terminal window
back up to where you used the ls command and copy the file name of
the distribution, and then scroll down to the bottom of the window and
paste in the filename.

 The image file is extracted from the Zip file, which might take a short
while. After that, RasPiWrite summarizes the setup you have chosen and
reminds you that you use RasPiWrite at your own risk. Double-check
the details here, especially that the SD card has been correctly chosen.
Whatever you’ve selected here is where the Linux distribution will be
installed.

 16. To proceed, type accept and press Enter.

 At this point, you might think that the program has hung up. You should
see a series of dots being slowly printed on the screen. This can take
a long time: Paul, our technical editor, found his computer finished in
under half an hour but Mike’s computer took over an hour. You can use
the computer for other things while this is going on, but if the computer
crashes, you have to start over from the beginning of the flashing pro-
cess. When it’s finished, you get a message telling you that you can dis-
mount your SD card.

27 Chapter 2: Downloading the Operating System

There’s one other thing you should look out for when using this script. After
typing accept, you might immediately get an error message like this:

Running dd bs=1m if=2012-08-16-wheezy-raspbian/2012-08-16-
wheezy-raspbian.img of=/dev/disk1...

Waitingdd: 2012-08-16-wheezy-raspbian/2012-08-16-wheezy-
raspbian.img: No such file or directory

done!
.Transfer Complete! Please remove the SD card

The message telling you that the transfer is complete is not true, and the clue
is that there was no delay before you saw this message. The message “No Such
File or Directory” is saying that it couldn’t find your Linux distribution image.

This can happen if the distribution contains just an image file instead of the
image file inside a folder of the same name. In this case, go back to the Finder
and create a folder inside the RasPiWrite folder and give it the same name as
your distribution Zip file, but without the .zip on the end. Then go into the
RasPiWrite folder and drag the .img file (which the RasPiWrite script has now
unzipped for you) into the folder you just created. You can then repeat the
previous steps successfully.

Flashing an SD card using Linux
Our recommended approach for flashing an SD card using a Linux-based
computer does not require any additional software. We’re using Ubuntu, the
most popular desktop distribution, so you might see some variations if you
prefer a different distribution. These steps should give you the guidance you
need in any case.

 Because this process involves completely erasing a disk (your SD card), make
sure you have a recent backup of your computer before you proceed, just in
case you accidentally wipe the wrong disk.

Figure 2-2 shows our terminal screen as we went through the process of
flashing an SD card for the Raspberry Pi, so refer to it as you read the follow-
ing walkthrough.

 Linux is case-sensitive, so you need to use upper- and lowercase as we have in
these instructions. You can’t use LS in place of ls, for example.

 1. Remove any SD cards or USB keys that you won’t be using for this
process from your computer.

 2. Insert the SD card you want to erase and install the Linux distribution
onto.

28 Part I: Getting Started with Raspberry Pi

Figure 2-2:
Flashing

an SD card
for the

Raspberry
Pi using

the Linux
terminal in

Ubuntu.

 Canonical

 3. Open a terminal window.

 You can do this through Dash Home in Ubuntu, or the applications menu
in your distribution, or use a keyboard shortcut (Ctrl+Alt+T in Ubuntu).

 4. Enter sudo fdisk –l, where the last character is the letter l.

 This gives you a list of the disks available, as you can see in Figure 2-2.

 5. Study this list to find your SD card.

 In Figure 2-2, the screen lists three disks, with the information about
each one starting with the word Disk. The file size is usually a good indi-
cator of which is your SD card. The first one (Disk /dev/sda) is 500.1GB,
which is a large hard drive. The second one (Disk /dev/sdb) is 1000.2GB,
which is a huge hard drive. The third one (Disk /dev/sdg) is just 8068MB.
8068MB is roughly 8GB, so that’s the SD card. Take a note of the disk’s
directory, which in this case is /dev/sdg.

 6. Use cd to go to the directory where you stored your Linux distribution
image.

 We put ours in the Documents directory, so we used cd Documents, as
you can see in Figure 2-2.

 7. To see the name of your image on screen, enter ls *.img.

29 Chapter 2: Downloading the Operating System

 8. To actually write the Linux image to the SD card, use
sudo dd if=distribution.img of=/dev/sdX bs=2M

 You need to replace distribution.img with the name of your distribution
(in our case 2012-09-18-wheezy-raspbian.img) and replace sdX with the
directory of your SD card, which was sdg when we did it.

 Double-check this: The content of the device you name here is erased
and replaced with the Raspberry Pi Linux distribution when you press
Enter.

 You can copy and paste the distribution filename from where it was
listed onscreen in Step 7. Use the mouse to highlight it, and then right-
click to copy. Right-click in the sudo dd command to paste in the file-
name. Alternatively, if you start to type the name and then press the Tab
key on the keyboard, Linux attempts to complete the name for you.

 Flashing the SD card takes about two minutes. The screen won’t update
during that, but if your SD card slot has a light beside it, you might see
it flickering. When it’s finished, you’ll see a short statement onscreen
telling you how much data was copied (1.9GB in this example, but it
depends on the Linux distribution you use), and a proud declaration of
how quickly it was finished. (About 146 seconds — nice work!)

30 Part I: Getting Started with Raspberry Pi

Chapter 3

Connecting Your Raspberry Pi
In This Chapter
▶ Inserting the SD card
▶ Connecting a monitor or TV
▶ Connecting a keyboard and mouse
▶ Connecting to your router
▶ Using Raspi-config to set up your Raspberry Pi
▶ Creating a protective case for your Raspberry Pi

Y
ou might be a bit daunted to be faced with a bare circuit board, but
it’s easy to connect your Raspberry Pi and get it up and running. You

might need to change some of its configuration (see Appendix A), but many
people find that their Raspberry Pi works well the moment they connect it all
together.

Before we start, make sure you have the Raspberry Pi the right way around,
at least as far as these directions are concerned. The top of your Raspberry
Pi is the side that has the Raspberry Pi logo printed on the circuit board.
Arrange your Raspberry Pi so that the Raspberry Pi writing is the right way
up as you look at it, and you should have two silver boxes on the right of
your board (the USB sockets and the Ethernet socket).

Figure 3-1 shows the ports and sockets you will need to use to connect up
your Raspberry Pi.

 Chapter 1 lists everything you might need to use your Raspberry Pi, including
the various cables.

32 Part I: Getting Started with Raspberry Pi

Figure 3-1:
The

Raspberry
Pi.

Composite video Audio

Power HDMI
Ethernet

USB

Inserting the SD Card
The Raspberry Pi requires an SD card with the operating system on it to start
up. If you don’t have one, see Chapter 2 for advice on downloading the oper-
ating system and copying it to an SD card.

To insert your SD card, flip your Raspberry Pi over (see Figure 3-2) so you’re
looking at its underside. On one of the short sides is a plastic fixture for your
SD card. Slide the SD card in with the label side facing you and gently press
the card home to make sure it’s well connected. The fixture is not big enough
to cover your SD card, so most of the card will stick out from the side of the
board and will be visible when you turn your Pi back over again.

33 Chapter 3: Connecting Your Raspberry Pi

Figure 3-2:
The SD

card, cor-
rectly

aligned
with the

socket on
the under-
side of the
Raspberry

Pi.

Connecting a Monitor or TV
You can connect a display device to your Raspberry Pi in one of two ways,
depending on the type of screen you have available. This means one of the
Raspberry Pi’s display sockets will always be unconnected.

Connecting an HDMI or DVI display
On the top surface of your board, in the middle of the bottom edge is the
HDMI connector (see Figure 3-1). Insert your HDMI cable into that, and then
insert the other end into your monitor.

If you have a DVI display, rather than a HDMI display, you need to use an
adapter on the screen end of the cable. The adapter itself is a simple plug,
so you just plug the HDMI cable into the adapter, and then plug the adapter
into your monitor and turn the silver screws on the adapter to hold the cable
in place. Figure 3-3 shows the HDMI cable lined up for insertion into the DVI
adapter.

34 Part I: Getting Started with Raspberry Pi

Figure 3-3:
A photo

showing
how the

HDMI cable
is inserted

into the DVI
converter.

Connecting a television
using composite video
If your television has a HDMI socket, use that for optimal results.
Alternatively, you can use the round yellow and silver socket on the top edge
of your Raspberry Pi for composite video (see Figure 3-1). Connect your RCA
cable to this, and the other end to the Video In socket on your television,
which is also likely to be silver and yellow.

 You might need to use your TV’s remote control to switch your television over
to view the external signal coming from the Raspberry Pi. Don’t worry about
this until you’ve powered up the Raspberry Pi.

Connecting a USB Hub
Your Raspberry Pi’s USB socket(s) can be found on the right of the circuit
board (see Figure 3-1). Your USB hub should have a USB cable that connects
snugly into one of these sockets.

It’s important to use a USB hub that has its own power source, so plug your
USB hub into a wall socket (mains electricity) using the power supply unit
that came with it.

35 Chapter 3: Connecting Your Raspberry Pi

Figure 3-4 shows a USB hub that works with the Raspberry Pi. You plug the
USB cable coming out of it into your Raspberry Pi’s USB socket, and you can
then plug your other devices (such as your keyboard and mouse) into the
USB hub. There is a tiny round hole on the front of this USB hub where its
power supply is connected. USB hubs come in lots of different shapes and
sizes: This one has four sockets (two on each long side), but you can get
many compatible hubs with seven sockets too.

Figure 3-4:
A USB hub
that works

with the
Raspberry

Pi.

Connecting a Keyboard and Mouse
Your keyboard and mouse can be connected directly to the USB socket(s)
on your Raspberry Pi; however, it’s better to connect them to your external-
powered USB hub that is connected to the Pi. It reduces the risk of problems
caused by the devices drawing too much power from the Pi.

Connecting Audio
If you’re using a HDMI television, the sound is routed through the HDMI cable
to the screen, so you don’t need to connect a separate audio cable.

Otherwise, the audio socket of your Raspberry Pi is a small black box stuck
along the top edge of the board (see Figure 3-1). If you have earphones or

36 Part I: Getting Started with Raspberry Pi

headphones from a portable music player, you can plug them directly into
this socket.

Alternatively, you can plug a suitable cable into this socket to feed the audio
into a television, stereo, or PC speakers for a more impressive sound. Figure 3-5
shows such a cable with the Pi’s 3.5mm audio jack on the right of the picture,
and the two stereo plugs that feed audio into many stereos shown on the
right. The cable you need might be different, depending on the input sockets
on your audio equipment.

If you’re using PC speakers, note that they need to have their own power
supply.

Figure 3-5:
A cable for

connect-
ing your

Raspberry
Pi to your

stereo.

Connecting to Your Router
The Raspberry Pi Model A has no network connection on the board. The
Model B Raspberry Pi has an Ethernet socket on the right edge of the board,
indicated in Figure 3-1. Use this socket to connect your Raspberry Pi to your
Internet router with a standard Ethernet cable.

The Raspberry Pi automatically connects to the Internet when used with a
router that supports the Dynamic Host Configuration Protocol (DHCP), which
means it works with most domestic routers. For advice on troubleshooting
your Internet connection, see Appendix A.

37 Chapter 3: Connecting Your Raspberry Pi

Connecting the Power and Turning
on the Raspberry Pi

The last thing you should do is connect the power. The Micro USB power
socket can be found in the bottom-left corner of the board (indicated in
Figure 3-1).

The Raspberry Pi has no on/off switch, so when you connect the power, it
starts working. To turn it off again, you disconnect the power. Sean plugs his
USB hub and Raspberry Pi into power sockets on an extension lead, so he
can switch them both on simultaneously by switching on the power to that
extension lead. It’s less clumsy than removing or inserting the plug in the
wall socket or the power lead in the Raspberry Pi all the time.

When you switch on your Raspberry Pi, the screen shows a rainbow of color
briefly, and then starts to run the Linux operating system software on the SD
card. The first time you switch on the Raspberry Pi, you feel a thrill to see it
working, followed by nerves that you don’t understand all the text shooting
up the screen. The text tells you what the Raspberry Pi is doing as it starts
up, but you don’t need to know or worry about this. It takes a short while for
the Raspberry Pi to finish starting up.

Using Raspi-config to Set
Up Your Raspberry Pi

The first time you use the Raspberry Pi, it goes into a program called Raspi-
config, which you use to change some of the settings on your Raspberry Pi.
Figure 3-6 shows Raspi-config in action, although the options available are
changed from time to time, so you might see additional options here.

 Note that you can’t use the mouse to move through these menus. You use up
and down keys to select different options on the screen, and left and right (or
Tab, which is usually above the Caps Lock key) to select actions such as OK,
Cancel, Select, and Finish. Press Enter to confirm a choice. There is often a
short delay between pressing Enter and the next menu appearing.

38 Part I: Getting Started with Raspberry Pi

Figure 3-6:
Raspi-
config,

which is
used to set

up your
Raspberry

Pi.

The options available are

 ✓ info: This provides a short paragraph explaining the purpose of the
tool. After you’ve read it, press Enter to return to the menu.

 ✓ expand_rootfs: When you flash your SD card, an exact copy of the
operating system and its disk formatting is copied to the card. As a
result, the SD card can look like it has less capacity than it really does,
which means you can quickly run out of space, even on a higher capac-
ity card. If you’re using a Linux image that is 2GB, for example, your SD
card appears to have a capacity of 2GB, even if it is an 8GB card. One of
the first things you should do is use this option in Raspi-config to ensure
your Raspberry Pi can use all the space on your SD card. When you
press Enter with this option highlighted, it runs straight away. When you
next start up (or boot) your Raspberry Pi, your Raspberry Pi resizes the
file system, which can take a few minutes, during which the screen won’t
update. The new capacity then becomes available to you.

 ✓ overscan: The overscan settings control how much of a border
should be used around the screen image and can be used to correct an
image that spills off the side of the monitor. In Appendix A, we show you
how to change the overscan settings more exactly, but Raspi-config
provides an easy way for you to enable or disable them. If your image is
surrounded by a black border you want to get rid of, disable overscan.
If you’re happy with your screen image, ignore this setting.

39 Chapter 3: Connecting Your Raspberry Pi

 ✓ configure_keyboard: When you press Enter, there is a short pause,
and then a menu opens for you to select the keyboard you’re using. Lots
of keyboards are listed by name and model number, but there are also
options for generic keyboards if yours isn’t. Press Enter to confirm your
choice. You are then asked to confirm the keyboard layout for your key-
board, in our case, UK. There are additional options to choose an AltGr
key if your keyboard doesn’t have one (you probably never notice it, but
it’s usually to the right of the space bar), to choose a Compose key (used
to enter characters not on the keyboard: Holding down the Compose key
while you type quotation marks and then keeping the Compose key held
down while you tap an A enters an A with an umlaut on it, for example),
and to enable Ctrl+Alt+Backspace to terminate the X Server (a part of
Linux used in networked computer systems). You’re unlikely to need any
of these additional options. When you finish configuring your keyboard,
you are returned to the Raspi-config menu after a short while. We found
we didn’t need to make any changes in the keyboard configuration: The
Raspberry Pi’s default option for us was Generic 105-key (Intl) PC key-
board, and this worked perfectly. If you have the wrong symbols coming
up on screen when you type, try changing the keyboard choice.

 If you don’t know what make and model of keyboard you have, turn it
over. Many of them have a sticker underneath with this information.

 ✓ change_pass: This option enables you to change the password for the
default user on your Raspberry Pi, which is the user called pi. You can
leave this setting alone, unless you’re particularly security-conscious or
are using your Raspberry Pi for particularly sensitive activities. When
you use this option, you are asked to enter your new password twice at
the bottom of the screen. If you change your password, don’t forget it!

 ✓ change_locale: This setting is used to choose your language and its
associated character set. You don’t need to worry about this option if
you’re happy using your Raspberry Pi in English. If you go into this set-
ting by accident and want to cancel, press the Tab key on your keyboard
to highlight Cancel and then press Enter.

 ✓ change_timezone: Your Raspberry Pi detects the time from the
Internet when you switch it on, but you’ll need to tell it what time zone
you’re in when you first set it up. When you use this option, you are first
asked to choose a region, and then asked to choose the city within it
that reflects your time zone.

 ✓ memory_split: Your Raspberry Pi’s memory is shared between the
central processing unit (CPU) and the graphics processing unit (GPU).
These processors work together to run the programs on your Raspberry
Pi, but some programs are more demanding of the CPU and others rely
more heavily on the GPU. If you plan to do lots of graphics-intensive
work, including playing videos and 3D games, you can improve your
Raspberry Pi’s performance by giving more of the memory to the GPU.
Otherwise, you may be able to improve performance by stealing some

40 Part I: Getting Started with Raspberry Pi

memory from the GPU and handing it over to the CPU. The Raspbian
Wheezy distribution allocates 64MB to the graphics processor and
gives the rest to the CPU. In most cases, this setting will work fine, but
if you experience problems, you can change how the memory is shared
between the two processors. The Raspi-config program asks how much
memory you want to give to the GPU and fills your entry box with the
current value as a guide. The rest of the memory is allocated to the CPU.
You can safely experiment with the memory split to see which works
best for the kind of applications you like to use.

 ✓ overclock: Overclocking is making a computer work faster than the
manufacturer recommends by changing some of its settings. You’ve
always been able to do this on the Raspberry Pi, although users were
warned that there was a risk of damaging the Pi or at least reducing its
lifespan. For that reason, overclocking used to invalidate the warranty,
and your Pi supplier can check a fuse built in to the processor to see if
you’ve been overclocking. Now, however, overclocking is provided as an
option in Raspi-config, and using it does not invalidate your warranty.
The menu warns that overclocking may reduce the lifetime of your
Raspberry Pi, but the Raspberry Pi Foundation says it is confident you
can use the new settings without any measurable reduction in your Pi’s
lifetime. You have five different presets to choose from. The speed of the
CPU is measured in MHz, and the highest overclocking setting increases
the speed from 700 MHz to 1000 MHz. You won’t necessarily be able to
use the top setting: It depends on your Pi and your power supply. If your
Pi doesn’t work with your chosen setting, hold down the Shift key when
you switch on the Raspberry Pi and overclocking is disabled. You can
then go into Raspi-config to try a different option.

 ✓ ssh: SSH is a way of setting up a secure connection between computers,
usually so you can control one computer from another computer. The
settings let you enable or disable this, but unless you know you need to
use it, you can ignore this setting.

 ✓ boot_behaviour: You can use this setting to make your Raspberry Pi go
straight into the desktop environment (see Chapter 4) when you switch it
on. Some people might prefer the convenience of this, especially if the Pi
is being used by younger children. Part of the fun of the Raspberry Pi is
that you get to learn a bit of Linux, however, so we recommend you leave
this setting alone.

 ✓ update: Use this setting to install an update to Raspi-config if one is
available. You need to have a working Internet connection to use this. If
you’ve just created your SD card using the most recent available Linux
distribution, you should already be using the latest version of Raspi-config.

When you have finished configuring your Raspberry Pi, press the right arrow
key twice to highlight Finish, and then press Enter. Depending on the changes
you have made, you might be asked whether you would like to reboot (or
restart) your Raspberry Pi. If so, say yes. Some changes only take effect after
a reboot.

41 Chapter 3: Connecting Your Raspberry Pi

You can use Raspi-config at any time. To start it, enter the following at the
Linux command line:

sudo raspi-config

Logging In
When you switch on your Raspberry Pi, you might be asked for a username
and password. The default username and password differ depending on which
version of Linux you are using, but for the Raspbian Wheezy distribution,
the username is pi and the password is raspberry. Both of these are case-
sensitive, so you can’t type in PI, for example. You receive no feedback on the
screen as you enter the password. It not only hides your password, but also
doesn’t show you that a key press happened, which is a bit unsettling the first
time. Press on regardless and you should find your login details are accepted.

After logging in, you are shown the command line prompt followed by a
blinking line:

pi@raspberrypi ~ $

This means your Raspberry Pi is ready for you to use and you can enter
Linux commands now to manage your files and programs.

Chapter 4 shows you how to get from here to the desktop environment,
which uses windows and icons, and how you can use it to browse the web,
manage your files, view your images, edit text files, and more.

Chapter 5 shows you how you can use the Linux command line to manage
your Raspberry Pi and its files.

Creating a Protective Case
for Your Raspberry Pi

You can buy a case for your Raspberry Pi (see Chapter 1), but many people
prefer to make their own cases, which is consistent with the do-it-yourself
ethos of the Pi. You can download a paper template if you want to make a
paper or cardboard case, called the Punnet (see www.raspberrypi.org/
archives/1310). Print, cut, fold, and decorate.

Sean made his first Pi case from Lego bricks, and he’s not alone in that. Biz,
a twelve-year-old girl and robotics fan, designed a Lego case and published

http://www.raspberrypi.org/archives/1310
http://www.raspberrypi.org/archives/1310

42 Part I: Getting Started with Raspberry Pi

the instructions on the Raspberry Pi website (www.raspberrypi.org/
archives/1354). If you’d like to copy her design (which includes a cute
Raspberry logo on the lid, as you can see in Figure 3-7), you can buy a kit
with all the Lego pieces you need and assembly instructions from The Daily
Brick (www.thedailybrick.co.uk).

Figure 3-7:
Biz’s Lego
Raspberry

Pi case
design.

 The Daily Brick

http://www.raspberrypi.org/archives/1354
http://www.raspberrypi.org/archives/1354
http://www.thedailybrick.co.uk

Part II
Getting Started with Linux

Visit www.dummies.com/extras/raspberrypi for great Dummies content
online.

http://www.dummies.com/extras/raspberrypi

In this part . . .
 ✓ Use the LXDE desktop environment to manage the files and

start the programs on your Raspberry Pi.

 ✓ Use Midori to surf the web and manage bookmarks for your
favorite sites.

 ✓ Watch slide shows with the Image Viewer and use it to rotate
your photos.

 ✓ Explore your Linux system and get to know the directory tree
and file structure.

 ✓ Use the Linux shell to organize, copy, and delete files on your
SD card, to manage user accounts, and to discover and down-
load great software.

Chapter 4

Using the Desktop Environment
In This Chapter
▶ Starting and navigating the desktop environment
▶ Using external storage devices in the desktop environment
▶ Using the File Manager and Image Viewer
▶ Browsing the web
▶ Customizing your desktop
▶ Logging out from LXDE

T
he quickest way to start playing with your Raspberry Pi is to use the more
visual desktop environment, which is called LXDE (short for Lightweight X11

Desktop Environment). LXDE is part of the Raspbian Wheezy Linux distribution
for the Raspberry Pi (see Chapter 2), the distribution that is recommended for
beginners. LXDE is designed to be as efficient as possible in its use of memory
and the processor. That makes it perfect for the Raspberry Pi, which is limited
in both respects compared to many modern computers.

The desktop environment works in a similar way to the Windows or Mac OS
operating systems, which let you use icons and the mouse to find and manage
files and operate programs. That makes it relatively intuitive to navigate, and
means you can easily find and try out some of the software that comes with
your Linux distribution.

In this chapter, we talk you through using the desktop environment and
introduce you to some of its programs.

Starting the Desktop Environment
When you switch on your Raspberry Pi, it usually takes you into the command
line interface (see Chapter 5), which enables you to control your computer
by typing in instructions for it. You might be asked to enter a password first
(see Chapter 3), but when you get to the prompt (pi@raspberrypi ~ $),
you should type in startx to enter the desktop environment. It takes a
moment or two to start and the screen might go blank for a short time.

46 Part II: Getting Started with Linux

Navigating the Desktop Environment
Figure 4-1 shows the LXDE desktop environment. The giant raspberry logo in
the middle of the screen is just a wallpaper (a decorative background image
on the screen), so don’t worry if you see a different image there.

The strip along the bottom of the screen is called the task bar, and this is usu-
ally visible whatever program you’re using.

Figure 4-1:
The desktop

environ-
ment, LXDE.

 LXDE Foundation e.V.

Using the icons on the desktop
Down the left of the screen you can find icons that provide rapid access to
essential programs, including your web browser, programming tools, and
demonstration games (for purely educational purposes, of course!). These
programs are

 ✓ Scratch: This is a simple programming language, approachable for
people of all ages, which can be used to create games and animations.
Chapters 10 and 11 introduce you to Scratch and show you how to make
your own game.

47 Chapter 4: Using the Desktop Environment

 ✓ LXTerminal: This opens a window you can use to issue instructions
through a command line (see Chapter 5) without leaving the desktop
environment. This is handy if you want to do something quickly using the
command line, but you don’t want to exit your desktop session to do it.

 ✓ Pi Store: This store is used to discover and download free and paid
software for your Raspberry Pi. When you double-click the icon, you are
shown a notification that the program is running as root, which means
it has permission to read and write any files on your SD card. Click the
Explore button to start searching the store. It includes only a fraction of
the packages available to install from the shell (see Chapter 5), but the
store makes it easier to discover and install great applications and games.

 ✓ IDLE and IDLE 3: These programs are used for programming in the
Python programming language. See Chapters 12 and 13 for advice on
using these and getting started with Python.

 ✓ Midori: This is a web browser. We cover it in greater depth later in this
chapter.

 ✓ Debian Reference: The Raspbian version of Linux is a Pi-specific version
of the Debian distribution, so this icon gives you a guide to using Linux
on your Pi. The documentation is stored on your SD card, but appears
in a web browser like a website. To get started, double-click the icon
and then click the HTML (Multi-Files) link at the top of the screen. You
probably won’t need to use this resource often, but it’s good to know it’s
there if you get stuck.

 ✓ Wi-Fi Config: The Wi-Fi Config tool is used to set up a wireless Internet
connection. You use it together with a Wi-Fi dongle that you can plug in
to a spare USB socket on your Raspberry Pi’s USB hub. You can buy a
compatible Wi-Fi dongle from www.thepihut.com.

 ✓ Python games: These games, created by Al Sweigart, are demonstra-
tions of Python, but they also provide entertainment. Games include
Reversi, Four in a Row, a sliding puzzle game, and a snake game. You can
choose any of 13 games to play from a simple menu.

To start a program using one of the icons on the desktop, just double-click it
as you would in Microsoft Windows or Mac OS.

 Note that it might take a moment for a program to open: The Raspberry Pi
probably isn’t as powerful as the computers you are used to using, and so it
can feel a bit less responsive.

Using the Programs menu
For all the other programs you might want to run, you use the Programs
menu. At the bottom left of the screen is an icon that looks like a bird in
flight. Click it and you’ll see the menu appear, similar to Figure 4-2.

http://www.thepihut.com

48 Part II: Getting Started with Linux

The menu works in the same way as the Windows Start menu. As you move
your mouse over the categories of programs, a submenu appears on the right,
showing you the programs in that category. Click one of these once to start it.

Figure 4-2:
The

Programs
menu in

the bottom
left of your

screen.

 File Manager
Web browser

Minimize programs
Desktop 1

Desktop 2

 LXDE Foundation e.V.

 You can access the programs on your desktop through the Programs menu,
but you can also access some additional programs in the menu too. Most of
these are covered later in this chapter. You can also find Squeak, which is the
programming language Scratch is built on, Xarchiver, which is used for creat-
ing and opening compressed collections of files, and VLC Media Player (see
Chapter 9). If you right-click a program in the menu, you can add its icon to
the desktop, so you can start it more quickly in future.

 The bottom-left corner of the screen also includes some buttons (see Figure 4-2)
that you can use to gain quick access to the File Manager and the Midori web
browser.

Using multiple desktops
LXDE enables you to use two desktops on your monitor, which is particularly
helpful if you’re using a small screen. It means you can double the amount
of space you have for using and arranging your programs. You can use two
buttons at the bottom left of the screen to switch between the desktops (see
Figure 4-2).

49 Chapter 4: Using the Desktop Environment

 Even if you have no plans to use multiple desktops, it’s worth knowing about
them because it can make it look like your programs have disappeared with
all your work if you click one of the buttons by accident. That’s never a good
feeling!

The two desktops work independently of each other, so if you start a pro-
gram on one desktop, you can’t see it when you switch to the other, but the
program is still there. You can switch desktops to go back to it again.

You can move a program from one desktop to the other by clicking the icon
in the top-left corner of its window, hovering over Send to Desktop in the
menu that opens, and then choosing which desktop you would like it to go to.
You can also send a program to all desktops this way, so you can see the pro-
gram no matter which desktop you’re using. Another way to move a program
to another desktop is to click the title bar at the top of its window, drag the
window to the side of the screen, and hold it there (with the mouse button
still held down) until the desktop switches.

You can run different programs in each desktop, but in practice, you
shouldn’t run too many programs at the same time.

Resizing and closing your program windows
You’ll probably want to use more than one program in an LXDE session, so
you need to know how to close programs when you’ve finished with them,
and how to rearrange programs on the screen.

The program windows in LXDE have similar controls to Microsoft Windows
that enable you to resize and close them. Figure 4-3 shows the Task Manager
application, with these controls indicated:

 ✓ The X button in the top-right corner of the application’s window closes
the application.

 ✓ The Maximize button is used to enlarge the application so it fills your
screen. After you’ve used it, you can click the new button in its place to
return the window to its original size, just like in Windows.

 ✓ The Minimize button hides your program from view but doesn’t stop
it from running. You can get back to the program again by clicking its
name on the task bar at the bottom of the screen.

 If you want to get back to an empty desktop quickly, click the button on the
task bar to minimize all your programs (refer to Figure 4-2).

50 Part II: Getting Started with Linux

Figure 4-3:
The Task

Manager for
LXDE.

Close application
Maximize application

Minimize application

LXDE Task Manager written by Hong Jen Yee, Jan Dlabal, derived from Xfce4 Task Manager by Johannes Zellner

It’s easy to change the size of windows so you can see more than one at a time,
for example. Move your mouse cursor to one of the edges until the mouse icon
changes, and you can click and drag it inwards or outwards to reshape the
window. You can also click and drag a corner to change the window’s height
and width at the same time. To arrange the windows side by side, you can
move them around by clicking and dragging the title bars at the top of them.

Using the Task Manager
If your Raspberry Pi doesn’t seem to be responding, it might just be very
busy. At the bottom right of the task bar is the CPU Usage Monitor, which
tells you how heavily the Raspberry Pi’s processor is being used. It’s a bar
chart that scrolls from right to left, so the right-most edge shows the latest
information. A green bar that fills the height of the graph indicates that your
Raspberry Pi is working flat out, so it might take a moment or two to respond
to you, especially when starting programs. In my experience, the Raspberry
Pi doesn’t crash often, but it can sometimes be overwhelmed to the extent
that it looks like it has. It’s usually worth being patient.

You can see which programs are running on your Raspberry Pi by running
the Task Manager (see Figure 4-3). You can find it in the Programs menu
among your system tools, but you can also go straight to it by holding down
the Ctrl and Alt keys and pressing Delete.

If you have a program that is not responding, you can stop it using the Task
Manager. Right-click it in the task list and choose Term to terminate it. This
sends a request to the program and gives it a chance to shut down safely,
closing any files or other programs it uses. Alternatively, you can choose Kill.
That terminates the program immediately, with the possible loss of data.

51 Chapter 4: Using the Desktop Environment

 You should only use the Task Manager to close programs as a last resort.
Most of the tasks you see in the Task Manager are system tasks, which need to
be running for LXDE to work properly. Avoid closing programs you don’t rec-
ognize — that might crash LXDE and result in you losing data in any open
applications.

Using External Storage Devices
in the Desktop Environment

When you’re using the desktop environment, you can plug in external USB
storage devices, such as external hard drives or USB keys (also known as
flash drives), and the Raspberry Pi automatically recognizes them. Figure 4-4
shows you the window that appears when you connect a device. You can
then view the device in the File Manager to access its files.

Flipping ahead to Figure 4-5, my USB key is shown in my list of places on the
left as 66 MB Filesystem. I can click its name to see its files.

Figure 4-4:
Removable

storage
attached

to your
Raspberry
Pi is auto-
matically
detected.

 LXDE Foundation e.V.

Using the File Manager
You can manage your files using the command line (see Chapter 5), but
it’s often easier to do it in LXDE. The File Manager (see Figure 4-5) is used
to browse, copy, delete, rename, and otherwise manage the files on your
Raspberry Pi or connected storage devices.

52 Part II: Getting Started with Linux

Figure 4-5:
The

LXDE File
Manager

on the
Raspberry

Pi.

Add Tab
Previous Folder

Next Folder
Folder History

Up a Level
Home Current Path Close Tab

Tabs
Bookmark pane
 LXDE File Manager written by Hong Jen Yee

You start the File Manager by clicking its button at the bottom left of the
screen (indicated on Figure 4-2), or by using the Programs menu, where it is
among the System Tools.

In Linux, people usually talk of storing files in directories, but LXDE uses the
term folders instead, which is probably familiar to you from other comput-
ers you’ve used. A folder is just a way of grouping a collection of files or
programs and giving that collection a name. You can put folders inside other
folders too.

Navigating the file manager
On the right of the File Manager, you can see the files (and any folders) that
are inside the folder you’re currently looking at. Each file has an icon indicating
what type of file it is, except for image files, which have a small representation

53 Chapter 4: Using the Desktop Environment

of the picture itself. In Figure 4-5, you can see the different files that make up
the Python games that come with your Raspberry Pi, including pictures of
game characters and backgrounds, and sound effects that are shown with a
musical note on the icon.

You can double-click a folder in this area to open it, and you can double-click
a file to open it with the default program for that file type. An image file opens
using the Image Viewer, for example, and a Scratch file opens in Scratch. If
you want to choose which program to open a file in instead, you can right-
click the file’s icon to bring up an option called Open With. Select it to bring
up a menu of all the programs available on your Raspberry Pi, and then make
your choice.

On the left is a list of your places, which are special types of folders. There
are four main folders here:

 ✓ The pi folder is where you are expected to store most of your files, such
as your documents and photos. It is the only place you have permission
to write and edit files as an ordinary user. In the next chapter, we look
at Linux and its directory structure in more detail, but for now, the key
thing is to only try to store files and folders in your pi folder, or in any
folder inside that.

 ✓ The Desktop folder shows you the programs and files that are on the
desktop. If you’re always editing a document and you want it to be on
the desktop for easy access, simply move it into the Desktop folder.

 ✓ The Rubbish Bin is used as a temporary place to put any folders or files
you plan to remove. You can empty the Rubbish Bin, and delete any
files or folders in it, by right-clicking on its name in the File Manager.
If you put something in the Rubbish that you change your mind about,
right-click its icon in the Rubbish Bin and choose to Restore it to where
it was before. You can also cut or copy it, so you can paste it wherever
you want (especially useful if you’ve forgotten where it used to be!). You
can send files to the Rubbish Bin by right-clicking on them in the File
Manager or selecting them (see the section on “Copying and moving files
and folders” later in this chapter) and then pressing the Delete key on
your keyboard (usually marked Del or Delete, and not to be confused
with the Backspace key).

 ✓ The Applications folder gives you access to the same programs as the
Programs menu at the bottom of the screen.

You might also see other places here, depending on how your Raspberry Pi
is set up. Figure 4-5 shows an entry beneath Applications for a 64MB USB key
Sean plugged in.

 If there are folders you use particularly often, you can bookmark them — an
idea borrowed from web browsers, and from (in the dim distant past) print
books before that. A bookmark makes it easy for you to go straight back
to where you were. To add a bookmark to the folder you are viewing, click

54 Part II: Getting Started with Linux

Bookmarks on the menu at the top of the File Manager, and then choose Add
to Bookmarks. Your bookmarks are shown in the Bookmarks pane, under
your Places list. In Figure 4-5, you can see we’ve bookmarked the Scratch and
screenshots folders. Click one of these bookmarks to go straight to its folder.
To remove or rename a bookmark, right-click its entry in the Bookmarks pane
and select the appropriate option from the menu that opens.

Across the top of the File Manager is a menu bar, including File, Edit, Go,
Bookmarks, View, Tools, and Help menus. Most of the options here you can
also do in other ways with the File Manager, as we will show you, but if you
get stuck, this menu is a good way to quickly get back on track.

Underneath the menu bar is an icon bar that includes a number of useful
shortcuts. They’re indicated in Figure 4-5:

 ✓ Add Tab: Tabs are particularly useful if you’re carrying out work
that involves more than one folder. You might want to quickly switch
between the source and destination folders if you’re copying files, for
example. The tab metaphor comes from paper filing cabinets, with
cardboard tabs sticking out of the folders at the top so you can easily
find the one you’re looking for. In web browsers today, it’s common to
find tabs that you use to switch between different web pages open in
the browser. It’s similar in File Manager. The tabs enable you to have
two different folders open at the same time. You simply click the tabs
to switch between them. Within each tab, you can use the File Manager
as usual, navigating between the different folders. In Figure 4-5, you can
see we have three tabs open: the pi folder, the Rubbish Bin, and the
python_games folder. To close a tab and its associated folder, click on
the orange X icon in the tab (see Figure 4-5).

 ✓ Previous Folder: File Manager keeps a history of the folders you navigate
through, and the Previous Folder button works a bit like a web browser’s
Back button. It takes you back to the last folder you accessed in that tab.
You can click it repeatedly to keep going back.

 ✓ Next Folder: After you’ve used the Previous Folder button, you can
use the Next Folder button to go forwards through your history again,
taking you back to a folder you visited after the one you’re looking at
now. If you click the Previous Folder button and then the Next Folder
button, you’ll end up where you started.

 ✓ Folder History: Click the Folder History button to open a menu showing
you a list of the folders in the history. You can go straight to one of them
by clicking it. That saves you wearing out your clicking finger by repeat-
edly clicking the Previous Folder or Next Folder button!

 ✓ Up a Level: A folder might be inside another folder, known as a parent
folder. Your Desktop folder is inside your pi folder, for example, so pi is
the parent folder for Desktop. Click the Up a Level button to go to the
parent folder. Pressing the Backspace key (usually used when typing to

55 Chapter 4: Using the Desktop Environment

delete a single character to the left of the cursor) has the same effect as
clicking this button.

 ✓ Home: This button takes you back to your pi folder so you have quick
access to your work.

 ✓ Path: The path is a text description of the location of the folder you are
looking at, including a list of the folders above it. Chapter 5 covers paths
in depth, but if you know a path, you can type it in here, and then press
the Enter key to go straight to it in the File Manager.

Copying and moving files and folders
File Manager makes it easy to copy and move your files and folders, without
the need for any text commands.

When you right-click on a file or folder in the File Manager, a menu opens that
enables you to rename the file, delete the file or folder (which sends it to the
Rubbish Bin), and to cut or copy it.

If you cut a file, it is moved to wherever you choose to paste it. If you copy
the file, a duplicate copy of it is placed where you paste it. You paste by going
to the folder where you would like the file to be stored and then right-clicking
on an empty space inside a folder and choosing Paste from the menu that
appears. (If you copy or cut a file without pasting it, nothing happens to it.)

 You can also drag files onto a folder’s icon to move them into it.

Selecting multiple files and folders
There are several ways to select more than one file at a time, so you can
delete, copy, or move them all at the same time:

 ✓ The first way is to hold down the Ctrl key and click each of the files in
turn to select them.

 ✓ You can also select a group of consecutive icons (read from left to right,
top to bottom) by clicking the first icon, holding down the Shift key, and
then clicking the last icon.

 ✓ Finally, you can click the mouse on the background of the File Manager
and hold the button down while you lasso the files you want to select.

After you’ve selected a group of files, you can drag them all into a different
folder by clicking one of the selected files and dragging it into the folder. You
can also right-click on one of your selected files and choose to cut or copy
the whole group, as shown in Figure 4-6. If you delete one of the selected files,
they will all be moved to the Rubbish Bin.

56 Part II: Getting Started with Linux

Figure 4-6:
Right-

clicking
a file in
the File

Manager
brings up

a menu of
options.

 LXDE File Manager written by Hong Jen Yee

LXDE supports some keyboard shortcuts that might be familiar to you from
Microsoft Windows. You can use Ctrl+A to select all files and folders, Ctrl+C
to copy, Ctrl+V to paste, and Ctrl+X to cut selected files and folders in LXDE.
It’s worth remembering, however, that Ctrl+C is used to cancel an operation
in the Linux command line (see Chapter 5), so the Copy shortcut isn’t univer-
sal on your Raspberry Pi the way it is in Windows.

 If you’re selecting almost all the files, it’s probably easiest to use Ctrl+A to
select all, and then hold down the Ctrl key and click to deselect the files you
don’t want. There’s also an option on the Edit menu to invert your selection,
so you can select the files you don’t want and then use this option to flip your
choice so everything else is selected instead.

Creating new folders and blank files
Organizing your files in folders makes it easier to manage them. You can more
easily see what files you have where, go straight to a file when you need it, and
back up a group of files by copying the folder to an external storage device.

It’s easy to make a new folder. First go to the location where you would like
your new folder to be stored. Typically, this will be in your pi folder, or one of
its subfolders, such as your Desktop. Right-click on a blank space in the right
pane of the File Manager and hover the mouse over Create New. Click Folder
in the fly-out menu that appears and you’ll be prompted to enter a name and
click OK to confirm. If you change your mind, click Cancel instead.

You can also click the File menu at the top left of the File Manager, find
Create New, and then click Folder.

 Both options also enable you to create a blank file. If you want to practice creat-
ing folders and moving files around, you can create a few blank files so you can
do this safely without worrying about moving anything you didn’t intend to.

57 Chapter 4: Using the Desktop Environment

Changing how files are displayed
When you right-click on an empty space in the right pane in the File Manager,
a menu opens with an option to change how the files there are sorted. You
can sort files by name, modification time, size, or file type, in either ascending
or reverse order.

You can change how files and folders are shown in File Manager, so you can
strike a balance between how many you can see at once, and how easy they
are to see. The View menu in the menu bar at the top of the File Manager
gives you the choice of four different ways to display the files and folders. By
default, the File Manager uses the icon view, which strikes a good balance
between the number of files you can see at a time and how large each icon
is. The thumbnail view is particularly useful in a folder of images because it
enlarges the preview that takes the place of a generic icon for picture files.
To see as many files as possible at once, use the Compact view, which lists
the files and folders in columns with a small icon and the filename.

The detailed list view (see Figure 4-7) reveals more information about each
file, showing a short description, its size, and when it was last modified. You
can click the column headings to sort the view by the filename, description
(which groups similar files), size, or modification date. If you click the column
heading again, the sort order is reversed.

Figure 4-7:
The detailed

list view
in the File
Manager.

 LXDE File Manager written by Hong Jen Yee

Sometimes you might need to refresh the view of the File Manager to reflect
your latest changes. To do that, tap the F5 key on the keyboard or choose
Reload Folder from the View menu.

The View menu also enables you to change the side pane in File Manager so
it shows you the directory tree instead of the places. You’ll learn more about
the directory tree in Chapter 5, but it’s worth knowing there’s an option to
navigate using it in the File Manager too.

58 Part II: Getting Started with Linux

Opening a folder as root or in the terminal
Linux has a rigorous permissions structure that governs who can access all
its files, and whether they have permission to modify them or run them. It’s
a good thing because it means it’s relatively difficult for you to do any real
harm to your Raspberry Pi’s operating system accidentally. You’re free to use
the File Manager to explore all the files your operating system uses, but if you
try to delete an essential file, you’ll be told you don’t have permission (see
Figure 4-8).

If you want to explore your system, go to your pi folder, click the Up a Level
button twice (see Figure 4-5), and then take a look in the folders there.
Chapter 5 covers some of these in more depth.

Figure 4-8:
Whoops!

Denied
permission
to delete a

file from the
Raspberry

Pi’s boot
folder.

 LXDE Foundation e.V.

If you find you need to do something you don’t have permission to do, you
can brush away all the restrictions by opening the current folder as the root
user, one of the options in the Tools menu. As a root user, you can do any-
thing on the computer, including deleting things you shouldn’t, so it’s good
practice to only use this option if you really need to. When you’ve finished
working as the root user (also called the Super User in the File Manager),
close the File Manager window to protect yourself against accidentally
making further changes you shouldn’t.

The Tools menu also has an option to open the current folder in the terminal.
This enables you to use Linux commands (see Chapter 5) to make changes to
the folder. Often this is the quickest way to accomplish something, especially
after you’ve mastered the finer points of Linux. While you’re using the File
Manager, you can also use the keyboard shortcut F4 to access the terminal.

59 Chapter 4: Using the Desktop Environment

Browsing the Web
When it comes to browsing the web on your Raspberry Pi, you really are spoilt
for choice, with three browsers to choose from. Midori is the recommended
browser for most websites, although it’s good to be aware of the others
because they can be faster (albeit they achieve speed by stripping out some
of the web page’s features). Open the Programs menu, and you’ll see the
browsers in the Internet category:

 ✓ Dillo: This browser is fast, but web pages look different than intended on
it because it can’t handle sophisticated layout instructions or JavaScript,
the language used for creating interactive web pages. Several websites
we tried were rendered as a single deep column because Dillo couldn’t
understand where the header box, sidebars, the main page content, and
the bottom box should go. You can switch off images in the Tools menu,
which can greatly speed up downloads of complex pages. If you’re access-
ing mainly text information or have a particularly slow web connection,
this browser might be a good choice, but you won’t benefit from much
of the work website owners put in to creating web page designs that are
easy to use.

 ✓ Netsurf: This is capable of handling more sophisticated layouts than
Dillo, but it also lacks support for JavaScript. Many websites look as
they do on a PC or Mac browser, but any sites that require JavaScript
won’t work (including Facebook). Netsurf offers a friendlier experience
than Dillo for most websites.

 ✓ Midori: This browser does support JavaScript, so it should be able to
re-create the richer experience you have with websites using other
devices. Sites like Facebook and Google Maps work, but might be notice-
ably slower than you’re used to.

 At present, the Raspberry Pi does not support Flash. Flash is used for online
games and videos (including YouTube), so often these won’t work on your
Raspberry Pi. On the upside, Flash is also used for annoying blinking adverts,
so surfing the web with the Raspberry Pi might be more serene than you are
used to!

Using Midori to browse the web
Figure 4-9 shows the Midori browser in use. Its layout is similar to other
browsers you might have used in the past, with a thin toolbar at the top, and
most of the screen given over to the web page you’re viewing. To get started
with it, either run it from the Programs menu or double-click its icon on the
desktop.

60 Part II: Getting Started with Linux

Figure 4-9:
The Midori

browser.

Open a New Tab

Back
Forward

Next Sub-Page
Reload

Add Bookmark
Address bar

Search box
Menu

Reopen

The Find bar
 The Midori browser is written by Christian Dywan with artwork by Nancy Runge

 The address bar doesn’t appear if Midori’s window isn’t wide enough, so
you’ll probably need to maximize your Midori window to fill the screen (see
“Resizing and closing your program windows,” earlier in this chapter).

If you know the address of the website you want to visit, you can type it into
the address bar (see Figure 4-9). When you start to type an address, a menu
under the address bar suggests pages you’ve previously visited that might
match what you want. Click one of these to go straight to it or carry on typing.
When you’ve finished typing the address, press the Enter key or click the down
arrow inside the right of the search box.

You can scroll your page using the scrollbar on the right of the browser, or
the scrollwheel on your mouse.

When your mouse pointer is over a link, the pointer changes to a small hand
in a sleeve. You can then click the left mouse button to follow that link to
another web page. The browser keeps a list of the web pages you visit (called

61 Chapter 4: Using the Desktop Environment

your history), so you can click the Back button (indicated in Figure 4-9) to
retrace your steps and revisit the pages you browsed before the current one.
The Forward button beside it takes you forwards through your history again.

Some web pages update frequently with new information, so you can click
the Reload button to download the current page again and see any updates
since you first opened it.

One innovation in Midori that isn’t common in other browsers is the button
to go to the next sub-page. When a website splits an article across differ-
ent pages, this button gives you quick access to the next page in the series.
It’s also useful in web forums, which often have conversation threads that
span multiple pages. The button can only be clicked when the browser has
detected the next page, so it won’t always work. When it can be used, the
button has a strong outline on it. Otherwise, it’s faded out.

Searching for and within web pages
The default search engine in Midori is called Duck Duck Go. (It’s not clear
why.) Most search engines today track your behavior and use that to tailor
their results and advertising to you. Duck Duck Go promises not to do that,
and also aims to instantly deliver as many answers as possible along with its
web page suggestions. For example, you can search for weather London, map
London, similar to funny (for synonyms), 100usd to eur (to convert $100 U.S.
to its euro equivalent), or scrabble raspber (to get Scrabble suggestions using
those letters). The answers to those questions are shown at the top of your
search results. You can find a list of the kinds of instant answers the search
engine can provide at http://duckduckgo.com/goodies.html.

If you prefer to consult an alternative search engine, click the duck logo
inside the search box to select Google, Yahoo, Wikipedia, or The Free
Dictionary instead.

To find a word or phrase within a web page, press Ctrl+F after the page has
loaded. The Find bar opens at the bottom of the screen (visible in Figure
4-9), with a box for you to type into. The first occurrence of the text you’re
looking for is highlighted on the page in blue, and you can press the Enter
key or click the Next button to move to the next one. After that, you can click
Highlight Matches in the Find bar to highlight all occurrences of the text
you’re looking for in yellow. You can close the Find bar again by clicking the
close button (an orange box with an X on it) on the far right of the Find bar.

Using tabbed browsing
Like many other browsers today, Midori uses tabs to enable you to switch
between several websites you have open at the same time. In Midori, a tab is

http://duckduckgo.com/goodies.html

62 Part II: Getting Started with Linux

a bit like a window that lives inside the browser with a web page in it. Click
the button in the top left (see Figure 4-9) to add a new tab, which opens to
show you Speed Dial, a page of prominent links for quick access to your
favorite websites. You can click to visit one of these, type an address in the
address bar, or use the search box in the top right.

To switch to a page, just click its tab above the main web page area, or use
Ctrl+Tab on your keyboard to cycle through them all in order. In Figure 4-9,
Google, a computer book web page, and Sean’s blog are open, and we can
click the tabs to flick between those pages instantly. To close a tab, click the
Close button to the right of its name. You can click the Reopen button in the
top right to recover a tab or window you’ve closed accidentally.

 If you hold down the Ctrl key while you click a link, the link opens in a new tab.

Adding and using bookmarks
Bookmarks make it easy to revisit your favorite web pages. When you click
the Add Bookmark button (see Figure 4-9), the New Bookmark window opens,
shown in Figure 4-10. The default name for a bookmark is the web page’s
title, but you can edit it, and choose a folder to put it in. If you click the box
to show your bookmark in the toolbar, a link is shown in a strip underneath
the address bar all the time, which is handy for the sites you use every day.
If you click the box to run the web page as a web application, it opens in its
own window without most of the browser features when you use the book-
mark. You can use this feature to make the most of limited screen space,
but it’s usually less convenient than having your controls handy. To add the
bookmark, you click the Add button.

Figure 4-10:
Adding a

bookmark in
Midori.

The Midori browser is written by Christian Dywan with artwork by Nancy Runge

The bookmarks option also enables you to add a page to Speed Dial. To do
this, click the button in the middle of the Bookmarks window. If you want a
bookmark too, you’ll still have to click the Add button at the bottom of it,
though.

63 Chapter 4: Using the Desktop Environment

To access your bookmarks while you’re browsing, you need to open the side-
panel, which is shown on the left in Figure 4-9. Click the menu in the top-right
(its icon is indicated in Figure 4-9), and choose Sidepanel. At the bottom of
the sidepanel are three icons: a folder with a star on it for bookmarks; a clock
for your history; and a parcel for transfers (or files you are downloading).
Click the Bookmarks icon and you’ll see your bookmarks in the panel. To
open the page, double-click the bookmark’s title. At the top of the panel are
buttons to add a new bookmark, edit an existing bookmark, delete a bookmark,
or create a folder to organize bookmarks.

Zooming the page and
opening it full screen
If you’re struggling to read a web page, you can zoom in on it. Right-click
the web page to see zoom options. Each click, the magnification changes by
one step. As on a Windows PC, you can also use Ctrl plus the mouse’s scroll
wheel to zoom in and out. You can also view the web page full screen, which
gets rid of all the browser options and clutter. To do this, choose Fullscreen
from the menu in the top right (shown in Figure 4-9). This is an immersive
way to navigate the web without getting distracted. To get the controls back
again, right-click the web page and choose Leave Fullscreen from the menu
that appears.

Protecting your privacy
As you know, your browser stores the history of web pages you visit. If you
want to make a visit to a website without any traces being left in the browser,
perhaps to plan your Christmas shopping without the risk of other family
members coming across the websites you’ve visited, open a new private
browsing window first. You do this through the menu in the top right. When
you are in private browsing mode, a (Private Browsing) message is shown
after the web page title in the title bar at the top of your browser. When you
close the private browsing window, your secret session stops.

When information has already been stored in the browser, you can delete
it by choosing Clear Private Data from the menu in the top right. You can
choose what information you want to remove. Your history is particularly
easy for others to discover through the browser, and cookies are used to
identify you when you return to a website and so might spoil your surprise
if someone else uses the browser to visit Amazon. You can safely click all
the boxes to delete all the private data. The worst thing that could happen is
you’ll have to log in to lots of websites all over again.

64 Part II: Getting Started with Linux

Using the Image Viewer
It’s easy to look at your digital photos and other images using LXDE. Among
the accessories in the Programs menu is the Image Viewer. You can start
it through the menu, but most of the time it starts automatically when you
double-click a photo or other image file in one of your folders.

The Image Viewer displays your picture, with a toolbar along the bottom
underneath it, as you can see in Figure 4-11. From left to right, this is what the
buttons do:

 ✓ Previous: Goes to the previous photo in the folder. Note that any
unsaved changes (such as rotation) are lost. You can also use the left
arrow key on the keyboard.

 ✓ Next: Goes to the next photo in the folder. As with the Previous button,
clicking this discards any unsaved changes you’ve made to the current
photo. You can also use the right arrow key on the keyboard.

 ✓ Start Slideshow: Click this button to begin a slideshow of all the photos
in the folder. The interval between photos is set at five seconds, but you
can change that in the preferences. You can also use the W key to start a
slideshow.

 ✓ Zoom Out: Click this to reduce the magnification of the image. The
keyboard shortcut is the minus key.

 ✓ Zoom In: Increase the magnification of the image. Scrollbars appear if the
image becomes too big to fit in the Image Viewer, and you can use these
to see different parts of the picture. The keyboard shortcut is the + (plus
sign) key, with no need to use Shift.

 ✓ Fit Image to Window: This shrinks a large image to make it fit the Image
Viewer snugly. If an image is smaller than the Image Viewer window, it
won’t be blown up to fill it, though. This button (or its keyboard short-
cut F) is a good way to recover if you get lost zooming in or out.

 ✓ Go to Original Size: This resets any zooming by showing the image at its
full original size. This might be bigger than the Image Viewer window, in
which case scrollbars appear to enable you to move around the image.
The keyboard shortcut is G.

 ✓ Full Screen: The image fills the monitor, and you lose your Image Viewer
controls. Right-click the image to open a menu with all the same options.
To revert to using the Image Viewer in a window, chose Full Screen from
the menu. You can also use the F11 key to switch the full screen view on
and off.

 ✓ Rotate Left: This rotates the image 90 degrees counterclockwise. The
keyboard shortcut is L.

65 Chapter 4: Using the Desktop Environment

Figure 4-11:
Sean with

a feathered
friend,

as seen
through

the Image
Viewer.

 GPicView written by Hong Jen Yee

 ✓ Rotate Right: This rotates the image 90 degrees clockwise. The key-
board shortcut is R.

 ✓ Flip Horizontally: This mirrors the image horizontally and can also be
done with the H key.

 ✓ Flip Vertically: This turns the image upside down. The V key does the
same.

 ✓ Open File: Click the folder icon to open a new image file. You can also
drag and drop an image on the Image Viewer from a folder in the File
Manager. This doesn’t move the file, just opens it.

 ✓ Save File: This saves your image (including any rotations or mirror-
ing you have done) and replaces the original image. You get a warning
before it happens. Keyboard shortcut: S.

 ✓ Save File As: Use this button (or press the A key) to save your image
with a new filename so it doesn’t overwrite your original image.

 ✓ Delete: Click the bin icon or use the Delete key to delete an image from
your storage device. If you delete an image, it’s not sent to the Rubbish
Bin: It’s deleted and cannot be recovered. You get one warning but then
it’s toast!

 ✓ Preferences: This is where you change the settings for Image Viewer,
so you can customize it for your needs. You can turn off the warnings
you get before overwriting or deleting an image, set Image Viewer to
automatically save rotated images, change the background colors of
Image Viewer, and change the slideshow interval here. There’s also an
option to rotate images by changing their orientation value in the EXIF

66 Part II: Getting Started with Linux

tag, which changes some of the information stored with the image to
say which way up the camera was, instead of actually rotating the image
content itself. It’s okay to keep this selected, but this is where you dis-
able it if you prefer.

 ✓ Exit Image Viewer: Click the far-right icon in Image Viewer to close it.
Confusingly, the same icon design is used to exit the Image Viewer as
is used to log out of LXDE itself. It doesn’t matter if you click the wrong
one because LXDE makes you confirm before it exits.

Using the Leafpad Text Editor
Among the accessories in the Programs menu is Leafpad, which is a simple
text editor (see Figure 4-12). You can use it for writing and word processing,
but it’s not ideal for creating print-ready documents. It’s most useful for edit-
ing documents intended to be read by computers, such as web pages and
configuration files.

Figure 4-12:
The Leafpad

text editor.

 Leafpad written by Tarot Osuji with artwork by Lapo Calamandrei

The menus are logically organized, and if you’ve ever used a text editor on
another computer, you’ll find your way around in Leafpad easily.

The File menu is used to start new documents and open, save, and print files.
There’s also an option to Quit here, although you can just close the Leafpad
window.

The Edit menu gives you tools for undoing and redoing your work, cutting,
copying, pasting, and deleting, and selecting all your text. Leafpad uses

67 Chapter 4: Using the Desktop Environment

Windows shortcuts too, so you can use Ctrl+C to copy, Ctrl+V to paste,
Ctrl+X to cut, and Ctrl+A to select all the text.

The Search menu has options to find a particular word or phrase, jump to a
particular line in the document, or replace a chosen word or phrase with an
alternative. You can click the box to replace all in one go, or step through them
individually. The search and replace features highlight all the occurrences
in yellow, and the one that it’s currently focused on in blue. You can use the
Search menu to move forwards or backwards through the list of results.

The Options menu (shown in Figure 4-12) has options to change the font
(although the choices available are more limited than you’re probably used
to), switch on Word Wrap (which means text goes on to a new line when it
reaches the edge of the window, instead of a horizontal scrollbar appearing),
and switch on Line Numbers (shown in the upper left in Figure 4-12). The auto
indent feature means that any indentation used on one line is automatically
applied to the next line when you press Enter.

Customizing Your Desktop
You can do quite a few things to stamp your identity on LXDE and make
it easier to use. Just like other desktop computers you might have used,
you can change the look and feel of it. To find the options for this, click
Customise Look and Feel in the Preferences section of the Programs menu
(shown in Figure 4-13).

The Customise Look and Feel option opens, as shown in Figure 4-13. You can
choose the default font and pick from different colors and styles used for the
content of windows in the Widget tab, including a style named Redmond for
the location of Microsoft’s HQ, which might be a suitable look for Windows
users suffering from homesickness on their Raspberry Pi. In the Colour tab,
you can choose your own color scheme. The Icon Theme tab (shown in
Figure 4-13) includes a high contrast style, and you can change the layout of
toolbars in the Other tab.

To adjust the sensitivity of the keyboard and mouse, use the keyboard and
mouse settings in the Programs menu. For left-handers, you can swap the left
and right mouse buttons too.

Two other entries in the Programs menu are available to tailor your desktop
environment. The Openbox Configuration Manager gives you control over the
look of menus and title bars at the top of your windows, where new windows
appear, and how many desktops you have.

68 Part II: Getting Started with Linux

Figure 4-13:
The LXDE

Preferences
section

of the
Programs

menu,
and the

Customise
Look and

Feel dialog
box.

 LXDE Foundation e.V.

The Preferred Applications settings let you choose your default web browser
and e-mail program, which is opened when you click on links to web pages or
e-mail addresses. There is no e-mail program in LXDE, but you can add one of
your own choice (see Chapter 5 on installing programs, and Chapter 18 for a
recommended e-mail client).

The task bar at the bottom of the screen can be customized by right-clicking
it and then selecting Panel Preferences. You can move it to the top or one
of the sides of the screen, change its height and the size of icons, change
its background picture and colors, and change the tools you have on there
(Panel Applets). Not all of these are useful on the Raspberry Pi, but you can
add a volume control, which is useful. If you would rather not see the task
bar, you can set it to hide (minimize) when you’re not using it by going to
Advanced options.

 Any settings you change in the Panel Preferences change immediately without
you having a chance to save or confirm them. Don’t go too wild experimenting
because you’ll have to manually reset everything again if you don’t like the
results.

If you want to change your desktop wallpaper (the image behind the windows
and icons), right-click the background and click Desktop Preferences. Click
the filename of the wallpaper to choose a new one using a file browser that is

69 Chapter 4: Using the Desktop Environment

a bit like the File Manager. Click the pi icon in the Places list on the left to find
your own photos to use as a background. You can set the wallpaper to be
centered onscreen, repeated to cover it, or stretched to fill it.

Logging Out from LXDE
To log out from LXDE and get back to the command prompt, click the red
power off icon in the bottom right of the screen, or open the Programs menu
and click Logout. You are prompted to confirm you want to log out, and LXDE
then closes and returns you to the command line prompt.

 If you have set up your Raspberry Pi to go straight into LXDE when you switch
it on, it works a bit differently. When you log out, you are prompted to log
on again. When you click the power off icon, you also see options to reboot
(which means restart) or shut down your Raspberry Pi.

 Remember that you don’t have to log out to use the Linux command line. You
can double-click the LXTerminal icon on the desktop to open the terminal in
a window, or use the File Manager to find the folder you want to use and then
choose to open the current folder in the terminal, using the Tools menu. When
you are using the File Manager, the F4 key on your keyboard also opens the
terminal for you.

70 Part II: Getting Started with Linux

Chapter 5

Using the Linux Shell
In This Chapter
▶ Exploring the Linux file system
▶ Creating, removing, and browsing files and directories
▶ Discovering and installing great free software
▶ Managing user accounts on your Raspberry Pi
▶ Customizing your shell with your own commands

Y
ou’ve already had a glimpse of the Linux shell: It’s the text-based way
of issuing instructions to your Raspberry Pi. When you switch on your

Raspberry Pi, the shell is the first thing you see, and it’s where you type startx
if you want to enter the desktop environment. The shell on the Raspberry Pi
is called Bash, which is used in most other Linux distributions too. Its name
is short for Bourne Again Shell, a pun because it was created to replace the
Bourne shell.

In this chapter, you learn how to use the shell to manage your Raspberry Pi.
There are several reasons why it’s a good idea to learn how to use the shell.
Most importantly, it’s a faster solution for certain tasks than the desktop
environment is. Learning Linux is also a useful skill in itself: Linux is a pow-
erful and popular operating system, and the Raspberry Pi can provide an
accessible introduction to the basics. It also gives you some understanding of
what’s going on behind the scenes on your Raspberry Pi.

To get ready for this chapter, log in to your Raspberry Pi, but don’t type
startx to go into the desktop environment. Alternatively, if you’re already in
the desktop environment, double-click the LX Terminal icon to open a shell
session in a window there.

 If the screen goes blank while you’re using the shell, don’t worry. You can get
it back again by pressing any key on the keyboard.

72 Part II: Getting Started with Linux

Understanding the Prompt
When you log in to your Raspberry Pi, you see a prompt that looks like this,
with a cursor beside it ready for you to enter your command:

pi@raspberrypi ~ $

At first glance, that prompt can look quite foreign and unnecessarily compli-
cated (why doesn’t it just say OK or Ready?), but it actually contains a lot of
information. This is what the different bits mean:

 ✓ pi: This is the name of the user who is logged in. Later in this chapter,
we show you how to add different users to your Raspberry Pi, and if you
log in as a different user, you see that user’s name here instead.

 ✓ raspberrypi: This is the hostname of the machine, which is the name
other computers might use to identify the machine when connecting to it.

 ✓ ~ : In Linux, people talk about organizing files in directories rather than
folders, but it means the same thing. This part of the prompt tells you
which directory you are looking at (the current working directory). The
tilde symbol (a horizontal wiggly line) is shorthand for what is known
as your home directory, and its presence in the prompt here shows that
you’re currently working in that directory. As explained in Chapter 4,
this is where you should store your work and other files. An ordinary
user doesn’t have permission to put files anywhere except for his or her
home directory or any directories inside that home directory.

 ✓ $: The dollar sign means that you are a humble ordinary user, and not
an all-powerful superuser. If you were a superuser, you would see a #
symbol instead. Later in this chapter, we go into more detail about user
permissions.

Exploring Your Linux System
It’s perfectly safe to take a look at any of the files and directories on your
SD card. As an ordinary user, you’re blocked from deleting or damaging any
important files in any case, so you can explore the files on your SD card with-
out fear of deleting anything important.

Listing files and directories
The command for listing files and directories is ls. Because you start in your
home directory, if you enter it now, you see the folders and files (if any) in
your home directory. Here’s what the output looks like on Sean’s Raspberry Pi.

73 Chapter 5: Using the Linux Shell

In this chapter, we use bold text for the bits you type, and normal text for the
computer’s output.

pi@raspberrypi ~ $ ls
Desktop python_games

 Linux is case-sensitive, which means LS, ls, Ls, and lS are completely differ-
ent instructions. Linux doesn’t see that uppercase and lowercase letters are
related to each other, so an S and an s look like completely different symbols
to the computer, in the same way that an A and a Z look different to us. If you
get the capitalization wrong in your command, it won’t work, and that applies
to everything in the shell. If you misplace a capital letter in a filename, Linux
thinks the file you want doesn’t exist. When you come to use more advanced
command options later, you might find that some commands use upper- and
lowercase options to mean different things.

Changing directories
There are two results here: Desktop and python_games. They’re both blue,
which means they are directories, so we can go into them to take a look at
the files they have inside. The command to change a directory is cd, and you
use it together with the name of the directory you would like to go into, like
this:

pi@raspberrypi ~ $ cd python_games

Your prompt changes to show the directory you have changed to after the
tilde character, and you can double-check that the current directory has
changed by using ls to view the files there.

Checking file types
If you want to find out more about a particular file, you can use the file
command. After the command name, put the name of the file you’d like more
information on. You can list several files in one command by separating them
with spaces, like this:

pi@raspberrypi ~/python_games $ file boy.png match0.wav
wormy.py

boy.png: PNG image data, 50 x 85, 8-bit/color RGBA,
non-interlaced

match0.wav: RIFF (little-endian) data, WAVE audio,
Microsoft PCM, 16 bit, mono 44100 Hz

wormy.py: Python script, ASCII text executable

74 Part II: Getting Started with Linux

The file command can tell you quite a lot about a file. You not only learned
what kind of data is in the first two files (an image and an audio recording),
but also how big the image is (50×85 pixels) and that the audio is mono.

 If you’re an experienced computer user, you might have been able to guess
what kind of files those were from the file extensions (the .png, .wav, and .py
on the end of the filenames). Linux doesn’t require files to have extensions like
that, however, so the file command can sometimes be a huge help. (In prac-
tice, a lot of applications choose to use file extensions, and users often prefer
to do so because it’s more user-friendly than having filenames without any
context for the file type.)

 You can also use the file command on a directory. For example, when you’re
in your pi directory, you can find out about Desktop and python_games like
this:

pi@raspberrypi ~ $ file Desktop python_games
Desktop: directory
python_games: directory

That confirms to us that both of these are directories. It might seem counter-
intuitive to use a command called file to find out about a directory, but it
illustrates an important feature of Linux: Linux considers everything to be a
file, including hard disks and network connections. It’s all just a bunch of files
according to Linux.

Changing to the parent directory
In this chapter so far, we’ve used cd to change into a directory that’s inside
the current working directory. However, you will often want to change into
the directory above your current working directory, which is known as its
parent directory. The python_games directory is inside your pi directory, for
example, so the pi directory is the parent directory for it.

To change to the parent directory, you use cd with two dots. You can use
that command while in python_games to change your home directory
(indicated by a ~ symbol in the command prompt).

pi@raspberrypi ~/python_games $ cd ..
pi@raspberrypi ~ $

The ~ symbol is really just a shorthand for your home directory. Its real name
is the same as your username, which means it will usually be pi, the default
username. The parent directory of your home directory is, rather confusingly,

75 Chapter 5: Using the Linux Shell

called home and it’s used to store the home directories of all users of the
computer.

When you’re in your home directory, try using cd .. to go into the directory
called home. If you use it again, you will find yourself at the highest directory
of your operating system, known as the root and indicated with a / in your
command prompt. Try navigating through the parent directories to get to the
root and then listing what’s there, like this:

pi@raspberrypi ~ $ cd ..
pi@raspberrypi /home $ cd ..
pi@raspberrypi / $ ls
bin boot dev etc home lib lost+found media mnt

opt proc root run sbin selinux srv sys
tmp usr var

Feel free to use the cd command to nose around these directories. You can
use ls to see what’s in the directory, cd to change into a directory you come
across, and file to investigate any files you find.

Understanding the directory tree
When people think about how the directories are organized on a computer,
they often use the metaphor of a tree. A tree has a single trunk with many
branches that come off it, secondary branches that sprout from those
branches, and so on until you get down to twigs.

Your Raspberry Pi has a single root directory, with directories that come off
it, and subdirectories inside those, and maybe subdirectories inside those too.

Figure 5-1 is a partial picture of the directory tree on your Raspberry Pi. It
doesn’t show all of the subdirectories in the root, and it doesn’t show all
their subdirectories either, but it does show you where your home directory
is, relative to other directories and the root. You can think of it as a map. If
you are at the root and you want to get to the python_games directory, the
tree shows you need to go through the home and pi directories to get there.

When you get to the root, there are 20 directories there. All the programs,
files, and operating system data on your Raspberry Pi are stored in these
directories, or in their subdirectories. It’s safe to go into the various directo-
ries and have a look around, and to use file to investigate any files you find.

76 Part II: Getting Started with Linux

Figure 5-1:
Part of the

directory
tree on your

Rasp-
berry Pi.

bin

/

boot dev etc home lib lost+found

pi

Desktop python_games

 You will rarely need to use any of these directories, but in case you’re curious,
here’s what some of them are used for:

 ✓ bin: This is short for binaries, and contains small programs that behave
like commands in the shell, including ls and mkdir, which you will use
to make directories later.

 ✓ boot: This contains the Linux kernel, the heart of the operating system,
and also contains configuration files that store various technical set-
tings for the Raspberry Pi. Appendix A shows you how you can edit the
config.txt file here to change some of your computer’s settings.

 ✓ dev: This stores a list of devices (such as disks and network connections)
the operating system understands.

 ✓ etc: This is used for various configuration files that apply to all users on
the computer.

 ✓ home: As already discussed, this directory contains a directory for each
user and that is the only place a user is allowed to store or write files by
default.

 ✓ lib: This directory contains libraries (shared programs) that are used
by different operating system programs.

 ✓ lost+found: The name looks intriguing, but hopefully you’ll never have
to deal with this directory. It’s used if the file system gets corrupted and
recovers partially.

 ✓ media: When you connect a removable storage device like a USB key
and it is automatically recognized in the desktop environment, its details
are stored here in the media directory.

 ✓ mnt: This directory is used to store the details of removable storage
devices that you mount yourself (see “Mounting External Storage Devices”
in Appendix A).

77 Chapter 5: Using the Linux Shell

 ✓ opt: This directory is used for optional software on your Raspberry Pi.
Usually in Linux, this directory is used for software you install yourself,
but on the Raspberry Pi, programs tend to install into /usr/bin.

 ✓ proc: This directory is used by the Linux kernel to give you information
about its view of the system. Most of this information requires specialist
knowledge to interpret, but it’s fun to take a peek anyway. Try enter-
ing less /proc/cpuinfo to see how the kernel views the Raspberry
Pi’s processors, or less /proc/meminfo to see how much memory
your Raspberry Pi has and how it’s being used. (You’ll learn how to use
less fully later, but for now, you just need to know that you press Q to
quit). If you use the file command to look at these files, they appear to
be empty, which is a peculiarity that arises because they’re being con-
stantly updated.

 ✓ root: You don’t have permission to change into this directory as an
ordinary user. It’s reserved for the use of the root user, which in Linux
is the all-powerful user account that can do anything on the computer.
The Raspberry Pi discourages the use of the root account and instead
encourages you to use sudo to issue specific commands with the
authority of the root user (sometimes called the superuser). Later in this
chapter, we show you how this is used to install software (see “Installing
software”).

 ✓ run: This directory is a relatively recent addition to Linux and provides
a place where programs can store data they need and have confidence
it will be available when the operating system starts up. Data in the tmp
folder is vulnerable to being removed by disk cleanup programs, and the
usr directory might not always be available at startup on all Linux systems
(it can be on a different file system).

 ✓ sbin: This directory contains software that is typically reserved for the
use of the root user.

 ✓ selinux: This directory is used by Security-Enhanced Linux, a security
enhancement to Linux. The directory is empty by default.

 ✓ srv: This is another empty directory, which is sometimes used in Linux
for storing data directories for services such as FTP, which is used to
copy files over the Internet.

 ✓ sys: This directory is used for Linux operating system files.

 ✓ tmp: This directory is used for temporary files.

 ✓ usr: This directory is used for the programs and files that ordinary
users can access and run.

 ✓ var: This directory stores files that fluctuate in size (or are variable),
such as databases and log files. You can see the system message log
with the command less /var/log/messages (use the arrow key to
move down and press Q to quit).

78 Part II: Getting Started with Linux

Using relative and absolute paths
We’ve been discussing how to move between directories that are immedi-
ately above or below each other on the directory tree, a bit like the way you
might work in a desktop environment. You click to open one folder, click to
open the folder inside it, and click to open the folder inside that. It’s easy
(which is why it’s popular), but if you’ve got a complex directory structure, it
soon gets tedious.

If you know where you’re going, the shell enables you to go straight there
by specifying a path, which is a description of a file’s location. There are
two types of paths: relative and absolute. A relative path is a bit like giving
directions to the directory from where you are now (go up a directory, down
through the Desktop directory and there it is!). An absolute path is more like
a street address: it’s exactly the same wherever you are.

Absolute paths are usually measured from the root, so they start with a /
and then they list the directories you go through to find the one you want.
For example, the absolute path to the pi directory is /home/pi. Whichever
directory you are in, you can go straight to the pi directory using

cd /home/pi

If you wanted to go straight to the Desktop directory, you would use

cd /home/pi/Desktop

To go straight to the root, just use a slash by itself, like this:

cd /

Besides using the root as a reference point for an absolute path, you can also
use your home directory, which you represent with a tilde (~). You can use it
by itself to jump back to your home directory:

cd ~

Alternatively, you can use it as the start of an absolute path to another direc-
tory that’s inside your home directory, like this:

cd ~/Desktop

Relative paths use your current working directory as the starting point. It’s
shown in the command prompt, but you can also check it by entering the
command

pwd

79 Chapter 5: Using the Linux Shell

Whereas your command prompt uses the tilde (~) character if you’re in your
home directory, pwd tells you where that actually is on the directory tree and
reports it as /home/pi.

A relative path that refers to a subdirectory below the current one just lists
the path through the subdirectories in order, separating them with a slash.
For example, on Figure 5-1, you can see that there is a directory called home,
with a directory called pi inside it, and a directory called Desktop inside that.
When you’re in the directory with the name home, you can change into the
Desktop directory by specifying a path of pi/Desktop, like this:

pi@raspberrypi /home $ cd pi/Desktop
pi@raspberrypi ~/Desktop $

You can change into any directory below the current one in this way. You
can also have a relative path that goes up the directory tree by using .. to
represent the parent directory. Referring to Figure 5-1 again, imagine you
want to go from the Desktop directory into the python_games directory. You
can do that by going through the pi directory using this command:

pi@raspberrypi ~/Desktop $ cd ../python_games
pi@raspberrypi ~/python_games $

As the prompt shows, you’ve moved from the Desktop directory into the
python_games directory. You started in Desktop, went into its parent direc-
tory (pi), and then changed into the python_games directory there. You can
go through multiple parent directories to navigate the tree. If you wanted to
go from the pi directory to the boot directory, you could use

pi@raspberrypi ~ $ cd ../../boot
pi@raspberrypi /boot $

That takes you into the parent directory of pi (the directory called home),
takes you up one more level to the root, and then changes into the boot
directory.

You can choose to use an absolute or relative path depending on which is
most convenient. If the file or directory you’re referring to is relatively close to
your current directory, it might be simplest to use a relative path. Otherwise,
it might be less confusing to use an absolute path. It’s up to you. Paths like this
aren’t just used for changing directories. You can also use them with other
commands and to refer to a specific file by adding the filename at the end of
the path. For example, you can use the file command like this:

file /boot/config.txt

As you discover more commands in this chapter that work with files, you’ll
be able to use your knowledge of paths to refer to files that aren’t in the same
directory as your current working directory.

80 Part II: Getting Started with Linux

 Be careful not to confuse absolute and relative paths. In particular, pay atten-
tion to where you use a slash. You should only use a / at the start of your
path if you intend to use an absolute path starting at the root.

If you want to change into a directory for a quick look around and then go back
again, you can use a shortcut to change back to your previous directory:

cd -

If you enter this, the shell shows you the previous directory you were in and
then changes your current working directory to that.

You can also change to your home directory quickly by using the cd com-
mand alone, like this:

pi@raspberrypi /boot $ cd
pi@raspberrypi ~ $

Investigating more advanced
listing options
You can use ls to look inside any directory outside the current working
directory by specifying its path, like this:

pi@raspberrypi ~ $ ls /boot

Although you’re in your home directory, that command gives you a listing
from the /boot directory.

When we provide information for a command to process like this, such as
a filename or a path, it’s called an argument. Many Linux commands can
accept arguments in this way (including the cd and file commands). Some
commands can also accept options. Options tell the command how to do its
work, and they have the format of a hyphen followed by a code that tells the
command which option(s) to use.

There are several options you can use with ls to change its results, shown in
Table 5-1. For example, change into your home directory and use

pi@raspberrypi ~ $ ls -R

This lists all the contents in your home directory, and then all the contents
in the Desktop and python_games folders, which are both inside your home
directory.

81 Chapter 5: Using the Linux Shell

When you are using options and arguments together, the options come
before the arguments, so the format of the typical Linux command is

command -options arguments

For example, try using the -X option to list the contents of the python_games
folder. All the .png, .py, and .wav files will be grouped together, so it’s easier
to see what’s there. The command to use is

pi@raspberrypi ~ $ ls –X ~/python_games

You can use several options together by adding all the option codes after a
single hyphen. For example, if you want to look in all your directories under
your current directory (option R), and you want to group the results by file
type (option X), and use symbols to indicate directories and executables
beside their filenames (option F), you would use

pi@raspberrypi ~ $ ls -RXF

Figure 5-2 shows the resulting output. One thing you might notice here is that
a single period (full stop) is used to refer to the current directory in the path
names, so the path for the first set of results is simply a period. This short
code for the current directory is similar to the two periods used to refer to
the parent directory.

Figure 5-2:
A listing

including all
subdirecto-
ries, sorted
by file type,

with sym-
bols used

to indicate
folders and

executables
by their

filenames.

82 Part II: Getting Started with Linux

 When you’re experimenting with ls (or at any other time, come to that), use
the command clear to empty the screen if it gets messy and hard to follow.

Table 5-1 Options for ls Command
Option Description

-1 Adding a number 1 outputs the results in a single column instead of a
row. Note that this option uses a number one.

-a Displays all files, including hidden files. The names of hidden files start
with a period (full stop). Hidden files are usually put there (and required)
by the operating system, so they’re best left alone. You can create your
own hidden files by using filenames that start with a period.

-F This option puts a symbol beside a filename to indicate its type. When
you use this option, directories have a / after their names, and executa-
bles have a * after their name.

-h In the long format, this option expresses file sizes using kilobytes,
megabytes, and gigabytes to save you the mental arithmetic of working
them out. It’s short for human-readable.

-l This displays results in the long format, which shows information about
the permissions of files, when they were last modified and how big they
are. Note that this option uses a letter l for long.

-m Lists the results as a list separated by commas.

-R This is the recursive option. As well as listing files and directories in the
current working directory, it opens any subdirectories and lists their
results too, and keeps opening subdirectories and listing their results,
working its way down the directory tree. You can look at all the files on
your Raspberry Pi using ls -R from the root. Be warned: It’ll take a
while. To cancel when you get bored, use Ctrl+C.

-r This is the reverse option, and it displays results in reverse order. By
default, results are in alphabetical order, so this will show them in
reverse alphabetical order. Note that -r and -R are completely differ-
ent options.

-S This sorts the results by their size.

-t This sorts the results according to the date and time they were last
modified.

-X This sorts the results according to the file extension.

83 Chapter 5: Using the Linux Shell

Understanding the Long Listing
Format and Permissions

One of the most useful ls options is long format, which provides more infor-
mation on a file. You trigger it using the option –l (a letter l) after the ls
command, like this:

pi@raspberrypi ~/ $ ls -l
total 40
-rw-r--r-- 1 pi pi 256 Nov 18 13:53 booknotes.txt
drwxr-xr-x 2 pi pi 4096 Oct 28 22:54 Desktop
drwxrwxr-x 2 pi pi 4096 Nov 17 13:40 python_games
drwxr-xr-x 2 pi pi 4096 Nov 3 17:43 seanwork
-rw-r--r-- 1 pi pi 20855 Nov 12 2010 spacegame.sb

This layout might look a bit eccentric, but it’s easier to follow if you read it
from right to left. Each line relates to one file or directory, with its name on
the right and the time and date it was last modified next to that. For older
files, the date’s year appears in place of the modification time, as you can see
for the file spacegame.sb in the preceding list.

The number in the middle of the line is the size of the file. Three of the
entries (Desktop, python_games, and seanwork) are directories that have
the same file size (4096 bytes), although they have vastly different contents.
That’s because directories are files too, and the number here is telling you
how big the file is that describes the directory, and not how big the direc-
tory’s contents are. The file size is measured in bytes, but you can add the –h
option to give you more meaningful numbers, translating 4096 bytes into 4K,
for example.

The rest of the information concerns permissions, which refer to who is
allowed to use the file and what they are allowed to do with it. Linux was
designed from the start to offer a secure way for multiple users to share the
same system, and so permissions are an essential part of how Linux works.

 Many people find they can use their Raspberry Pi without needing to know
too much about permissions, but permissions tell you a lot about how Linux
works, and you might find the knowledge useful if you want to be a bit more
adventurous.

The permissions on a file are divided into three categories: things the file’s
owner can do (who is usually the person that created the file), things that
group owners can do (people who belong to a group that has permission to use
the file), and things that everyone can do (known as the world permissions).

84 Part II: Getting Started with Linux

In the long listing, you can see the word pi is shown twice for each file.
These two columns represent the owner of the file or directory (the left of
the two columns), and the group that owns the file. These both have the
same name here because Linux creates a group for each user with just that
user in it, and with the same name as the user. In theory, the group could be
called something like students, and include all the students who have user-
names for the computer.

The far left column contains a code that explains what type of file each file
is, and what the permissions are on that file. To make sense of the code, you
need to break it down into four chunks, like Table 5-2, which represents the
code shared by booknotes.txt and spacegame.sb in my long listing.

Table 5-2 Understanding Permissions
File type Owner Group World

- rw- r-- r--

The two main file types you’re likely to come across are regular files and
directories. Regular files have a hyphen (-) for their file type at the start of
their code, and directories have a d. You can see both of these symbols used
in my long directory listing.

Next come the permissions for the owner, group and world. These are the
three different types of permission someone can have:

 ✓ Read permission: The ability to open and look at the contents of a file,
or to list a directory

 ✓ Write permission: The ability to change a file’s contents, or to create or
delete files in a directory

 ✓ Execute permission: The ability to treat a file as a program and run it, or
to enter a directory using the cd command

 That probably seems logical and intuitive, but there are two potential catches:
firstly, you can only read or write in a directory if you also have execute per-
mission for that directory; and, secondly, you can only rename or delete a file
if the permissions of its directory allow you to do so, even if you have write
permission for the file.

The permissions are expressed using the letters r (for read), w (for write),
and x (for execute), and these make up a three-letter code in that order.
Where permission has not been granted, the letter is replaced with a hyphen.
So in Table 5-2, you can see that the owner can read and write the file, but the
group owner and world (everyone else) can only read it.

85 Chapter 5: Using the Linux Shell

The code for the Desktop folder in my long listing is drwxr-xr-x. The first
letter tells us it’s a directory. The next three letters (rwx) tell us that the
owner can read, write to it, and execute it, which means they have freedom
to list its contents (read), add or delete files (write), and enter the directory
in the first place to carry out those actions (execute). The next three charac-
ters (r-x) tell us group owners may enter the directory (execute) and list its
contents (read), but may not create or delete files. The final three characters
(r-x) tell us everyone else (the world) has been granted those same read-
only permissions.

Several commands are used to change the permissions of a file (including
chmod to change the permissions, chown to change a file’s owner, and chgrp
to change the file’s group owner). We don’t have space to go into detail here,
but see “Learning More About Linux Commands” in this chapter for guidance
on how to get help with them. The easiest way to change permissions, in any
case, is through the desktop environment. Right-click a file in the File Manager
(see Chapter 4) and open its properties. The Permissions tab of the File
Properties window, shown in Figure 5-3, enables you to change all the
permissions associated with a file.

Figure 5-3:
Changing

file per-
missions

using File
Manager.

 LXDE Foundation e.V.

Slowing Down the Listing and Reading
Files with the Less Command

The problem with ls is that it can deluge you with information that flies
past your eyes faster than you can see it. If you use the LX Terminal from the
desktop environment, you can use a scrollbar to review information that has
scrolled off the screen.

The more usual solution, however, is to use a command called less, which
takes your listing and enables you to page through it, one screen at a time.

86 Part II: Getting Started with Linux

To send the listing to the less command, you use a pipe character after your
listing command, like this:

ls | less

When you’re using less, you can move through the listing one line at a time
using the up and down cursor keys, or one page at a time using the Page Up
(or b) and Page Down (or space) keys. You can search by pressing / and
then typing what you’d like to search for and pressing Enter. When you’ve
finished, press the Q key (upper- or lowercase) to quit.

 You can cancel a Linux command, including an overwhelming listing, by
pressing Ctrl+C.

You can also use less to view the contents of a text file by giving it the filename
as an argument, like this:

less /boot/config.txt

This is a great way to read files you find as you explore Linux. The less
command warns you if the file you want to read might be a binary file, which
means it’s computer code and likely to be unintelligible, so you can try using
the less command on anything and bow out gracefully if you get the warn-
ing. Displaying binary code on screen can result in some strange results,
including distorting the character set in the shell.

 If you want to see the first 10 lines of a file, perhaps just to check what version
it is, you can use the command head followed by the filename.

Now you have all the tools you need to explore your Linux operating system!

Speeding Up Entering Commands
Now you’ve learned a few basic commands, we can teach you a few tricks to
speed up your use of the shell.

First of all, the shell keeps a record of the commands you enter called your
history, so you can save retyping if you want to reuse a command. If you
want to reuse the last command, just type in two exclamation marks and
press Enter. If you want to use an earlier command, tapping the up arrow
brings back your previous commands in order (most recent first) and puts
them after your prompt. The down arrow moves through your history in the
other direction if you overshoot the command you want. You can edit the
command before pressing Enter to issue it.

87 Chapter 5: Using the Linux Shell

The shell also tries to guess what you want to type and automatically com-
pletes it for you if you tap the Tab key. You can use it for commands and
files. For example, type

cd /bo

and then press the Tab key, and the path is completed as /boot/.

This technique is particularly helpful if you’re dealing with long and compli-
cated filenames. If it doesn’t work, you haven’t given the shell enough of a
hint, so you need to give it some more letters to be sure what you mean.

Using Redirection to
Create Files in Linux

Before we look at how you delete files and copy them, we should prepare
some files to play with.

It’s possible to send the results from a command to a file instead of the
screen; in other words, to redirect them. You could keep some listing results
in a file, for example, so you have a permanent record of them or so you can
analyze them using a text editor. You turn screen output into a file by using a
greater-than sign and the filename you’d like to send the output to, like this:

ls > listing.txt

 You don’t need to have the file extension of .txt for it to work in Linux, but it’s
a useful reminder for yourself, and it helps if you ever copy the file back to a
Windows machine.

 Try using this command twice to list two different directories and then look-
ing at the contents of listing.txt with the less command. You’ll see just how
unforgiving Linux is. The first time you run the command, the file listing.txt is
created. The second time you do it, it’s replaced without warning. Linux trusts
you to know what you’re doing, so you need to be careful not to overwrite files.

If you want a bit of variety, you can use some other commands to display
content on screen:

 ✓ echo: This displays whatever you write after it on screen. You can use
it to solve mathematics problems if you put them between two pairs of
brackets and put a dollar sign in front, for example:
 echo $((5*5))

88 Part II: Getting Started with Linux

 ✓ date: This shows the current time and date.

 ✓ cal: This shows the current month’s calendar, with today highlighted.
You can see the whole year’s calendar using the option –y.

If you want to add something to the end of an existing file, you use two
greater-than signs, as you can see in this example:

pi@raspberrypi ~ $ echo I made this file on > testfile.txt
pi@raspberrypi ~ $ date >> testfile.txt
pi@raspberrypi ~ $ cal >> testfile.txt
pi@raspberrypi ~ $ echo $((6+31+31+28+31+7)) Days until my

birthday! >> testfile.txt
pi@raspberrypi ~ $ less testfile.txt
I made this file on
Sat Nov 24 14:40:43 GMT 2012
 November 2012
Su Mo Tu We Th Fr Sa
 1 2 3
 4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30

134 Days until my birthday!

You can use redirection like this to create some files you can practice copying
and deleting. If you don’t want to spend time creating the file contents, you
can make some empty files by redirecting nothing, like this:

> testfile1.txt

Top Tips for Naming Your Files in Linux
If you plan to use the shell, you can follow a few guidelines when creating
files that will make your Linux life much easier. These tips apply even if
you’re creating files using the desktop environment, but it only really matters
when you start working with files in the shell.

Here’s our advice:

 ✓ Only use lowercase so you don’t have to remember where the capital
letters are in a filename.

 ✓ Don’t use filenames with spaces. They have to be treated differently in
the shell (put inside single or double quote marks); otherwise, Linux
thinks each of the words in the filename is a different file. An underscore
is a good substitute.

89 Chapter 5: Using the Linux Shell

 ✓ Don’t use filenames that start with a hyphen. They’re liable to get
confused with command options.

 ✓ Don’t use the / character anywhere in a filename.

 ✓ Avoid using an apostrophe (‘), question mark (?), asterisk (*), quotation
(speech) marks (“), slash (\), square brackets ([]), or curved braces ({}).
If they appear in a filename in the shell, you’ll need to either put a \
character before each one or put the whole filename in speech marks
(assuming it doesn’t already have any).

Creating Directories
As you may know from other computers you’ve used, it’s a lot easier to
manage the files on your computer if they’re organized into directories (or
folders). You can easily create a directory in your home directory using the
command mkdir:

mkdir work

To save time, use one command to create several directories, like this:

pi@raspberrypi ~ $ mkdir work college games
pi@raspberrypi ~ $ ls
college games work

 The mkdir command’s ability to make several directories at the same time
isn’t unusual: Many other commands can also take several arguments and
process them in order. You can see the listing of two different directories like
this, for example:

ls ~ /boot

 The mkdir command doesn’t give you a lot of insight into what it’s doing by
default, but you can add the -v option (short for verbose), which gives you a
running commentary as each directory is created. You can see what it looks
like in the next code snippet.

If you want to make some directories with subdirectories inside them, it
would be a nuisance to have to create a directory, go inside it, create another
directory, go inside that, and so on. Instead, use the -p option, like this:

pi@raspberrypi ~ $ mkdir –vp work/writing/books
mkdir : created directory ‘work’
mkdir : created directory ‘work/writing’
mkdir : created directory ‘work/writing/books’

90 Part II: Getting Started with Linux

Deleting Files in Linux
After experimenting with creating files and directories, you probably have
odd bits of file and meaningless directories all over the place, so it’s time to
tidy up.

 To delete files in Linux, you use the rm command, short for remove. Use it very
carefully. There’s no trash can or recycle bin to recover your file from again,
so when it’s gone, it’s gone. Actually, expert Linux users might be able to get it
back using specialized software and huge amounts of time and patience, so it’s
not a secure deletion. But for an average user without access to such software
and expertise, when you tell Linux to remove a file, it acts fast and decisively.

The rm command has this format:

rm options filename

As with mkdir, the command doesn’t tell you what it’s doing unless you use
the verbose option (-v). As an example, you could remove a file called letter.
txt using

pi@raspberrypi ~ $ rm –v letter.txt
removed ‘letter.txt’

Like mkdir, running the rm command can take several arguments, which means
it can remove several files at once if you list all their names, for example:

pi@raspberrypi ~ $ rm –v letter.txt letter2.txt
removed ‘letter.txt’
removed ‘letter2.txt’

This is where you need to be extremely careful. Imagine you have two files
called old index.html and index.html. The latter is your new website home-
page, which you’ve toiled over all weekend (you can see where this is going,
can’t you?). You want to clear out the old development file, so you issue this
command:

pi@raspberrypi ~ $ rm –v old index.html
rm : cannot remove ‘old’: No such file or directory
removed ‘index.html’

 Arrrggh! Because of that space in the old index.html filename, the rm command
thinks that you wanted to remove two files, one called old and the other called
index.html. It tells you it can’t find the file called old, but goes right ahead and
wipes out index.html. Nasty!

To pin up a safety net, use the -i option (for interactive), which tells you
which file(s) will be deleted, and prompts you to confirm each deletion. Using
that would have avoided this mistake, as shown here:

91 Chapter 5: Using the Linux Shell

pi@raspberrypi ~ $ rm -vi old index.html
rm : cannot remove ‘old’: No such file or directory
rm : remove regular file ‘index.html’?

No, no, no! When prompted, you enter Y to confirm the deletion or N to keep
the file and move on to the next one (if any).

 The risk of deleting the wrong file is one reason why you should avoid files
with spaces in their names. For the record, the correct way to remove a file
whose name contains a space would be to enclose it in quotes:

pi@raspberrypi ~ $ rm –vi ‘old index.html’

Using Wildcards to Select
Multiple Files in Linux

Often, a directory contains lots of files that have similar filenames. Sean’s
digital camera, for example, creates files with names like these:

img_8474.jpg
img_8475.jpg
img_8476.jpg
img_8477.jpg
img_8478.jpg

If you want to delete a group of them, or to copy them or do anything else
with them, you don’t want to repeat the command typing out each file name
in turn. Computers are good at repetition, so it’s better to leave the donkey
work to the shell.

Wildcards enable you to do that. Instead of giving a specific filename to a
command, you can give it a pattern to match, such as all the files that begin
with img, or all the files that have the extension .jpg. The asterisk wildcard
replaces any number of any character, so *.jpg returns any filenames that
end with .jpg, no matter how long they are, and no matter how many of them
there are. The question mark asterisk replaces just one character, so img?.
jpg would select img1.jpg, img2.jpg, and imgb.jpg, but ignore img11.jpg or any
other longer filenames.

If you want to choose files that begin with a particular letter, you can use the
square brackets wildcard. To choose any files beginning with the letters a, b,
or c, you would use [abc]*. To narrow that down to just those that end with
.jpg, you would use [abc]*.jpg.

92 Part II: Getting Started with Linux

Table 5-3 provides a quick reference to the wildcards you can use, with some
examples.

Table 5-3 Raspberry Pi Wildcards
Wildcard What It Means Example

Usage
What the Example Selects

? Any single
character

photo?.jpg Any files that start with
photo and have exactly one
character after it before the
.jpg extension. For example
photo1.jpg or photox.jpg, but
not photo10.jpg.

* Any number
of characters
(including no
characters)

photo Any files that have the word
photo in their filenames.

[…] Matches any
one of the
characters in
brackets

[abc]* All files that start with a letter
a, b, or c.

[^…] Matches any
single char-
acter that isn’t
between the
brackets

[^abc]* Any files that do not start with
a letter a, b or c.

[a-z] Matches any
single character
in the range
specified

[a-c]*.jpg Any files that start with a letter
a, b, or c and end with the .jpg
extension.

[0-9] Matches any
single character
in the range
specified

photo[2-5].
jpg

Matches photo2.jpg,
photo3.jpg, photo 4.jpg,
and photo5.jpg.

You can use wildcards anywhere you would usually use a filename. For exam-
ple, you can delete all your files starting with the letters img, like this:

rm –vi img*

To delete all the files ending with the extension .txt, use

rm –vi *.txt

93 Chapter 5: Using the Linux Shell

 Be especially careful about where you put your spaces when you’re using
wildcards. Imagine you add a sneaky space in the previous example, like this:

rm –vi * .txt

Doh! The shell thinks you want it to delete *, which is a wildcard for every
file, and then to delete a file called .txt. Luckily, you’ve used the -i option,
so you’ll be prompted before deleting each file, but people often omit that
when they’re deleting a lot of files because otherwise they spend a long time
confirming each deletion, which is almost as tedious as not using wildcards
in the first place.

 One way you can test which files match a wildcard is to use the file command
with it before you delete using it. For example

file *.txt | less

Take care that you don’t introduce any spaces between testing with file
and removing with rm!

 Another thing to be careful about is using wildcards with hidden files. Hidden
files begin with a full stop, so you might think that .* would match all the
hidden files. It does, but it also matches the current directory (.) and its
parent directory (..), so .* matches everything in the current directory and
the directory above it.

Removing Directories
You can use two commands for removing directories. The first one, rmdir,
is the safer of the two, because it refuses to remove directories that still have
files or directories inside them. Use it with the name of the directory you
want to remove, for example books, like this:

rmdir books

If you want to prune a whole branch of your directory tree, you can use the
rm command to remove a directory and delete anything inside it and its sub-
directories. Used with the recursive option (-R), it works its way down the
directory tree, and with the force option (-f), it deletes any files in its way.
It’s a rampaging beast of a command. Here’s an example:

rm –Rf books

It acts silently and swiftly, deleting the books directory and anything in it.

94 Part II: Getting Started with Linux

You can add the interactive option to cut the risk, which prompts you for
confirmation of each deletion, as you can see in this example where we’ve left
a file in the folder work/writing/books:

pi@raspberrypi ~ $ rm –Rfi work
rm: descend into directory ‘work’? Y
rm: descend into directory ‘work/writing’? Y
rm: descend into directory ‘work/writing/books’? Y
rm: remove regular file ‘work/writing/books/rapidplan.

txt’? Y
rm: remove directory ‘work/writing/books’? Y
rm: remove directory ‘work/writing’? Y
rm: remove directory ‘work’? Y

 You can use wildcards when removing directories, but take special care with
them, and make sure you don’t introduce any unwanted spaces that result
in you removing * (everything). If you use rm –Rf .* to try to remove
hidden directories, you also match the current directory (.) and the parent
directory (..). That means it deletes every file in the current directory
(hidden or not), all its subdirectories and their contents (hidden or not),
and everything in the parent directory including its subdirectories (again,
whether or not they are hidden).

 My own experience of the Linux community has been that it’s friendly and
supportive, and people welcome newcomers who want to join. But occasion-
ally, you might come across some joker online advising inexperienced users
that the solution to their problems is to issue the command rm -Rf /* as
root, which attempts to delete everything, starting at the root.

Copying and Renaming Files
One of the fundamental things you’ll want to do with your files is copy them,
so take a look at how to do that. The command you need to use is cp, and it
takes this form:

cp [options] copy_from copy_to

Replace copy_from with the file you want to copy, and copy_to for where
you want to copy it to.

For example, if you wanted to copy the file config.txt from the /boot directory
to your home directory (~) so you can safely play with it, you would use

cp /boot/config.txt ~

95 Chapter 5: Using the Linux Shell

If you wanted to copy the file into your current working directory, wherever
that is, you could use

cp /boot/config.txt .

You can also specify a path to an existing folder to send the file to

cp /boot/config.txt ~/files/

Your original file and the copy don’t have to have the same name. If you
specify a different filename, the copy takes that name. For example:

cp /boot/config.txt ~/oldconfig.txt

That copies config.txt from the /boot directory to your home directory and
renames it as oldconfig.txt. This same technique enables you to keep a safe
copy of a file you’re working on, in case you want to revert to an old version
later. The paths are optional, so if you were in your home directory, you
could create a backup copy of the file timeplan.txt there using

cp timeplan.txt timeplan.bak

You can use several options with cp, some of them familiar from the rm
command. The cp command overwrites any files in its way without asking you,
so use the -i option to force it to ask you before it overwrites any existing
files with the new copies. The -v option gives you an insight into what the
command has done, the same as it does with rm.

You can use wildcards, so you can quickly copy all your files, or all your files
that match a particular pattern. If you want it to copy subdirectories too,
however, you need to use the recursive option, like this:

cp -R ~/Scratch/* ~/homebak

That command copies everything in your Scratch directory (including any sub-
directories) into a folder called homebak in your home directory. The homebak
directory must exist before you run the command for it to work. For advice on
using the shell to copy to external storage devices, see Appendix A.

If you don’t want to make a copy of a file, but instead want to move it from
one place to another, use the mv command. For example, if you misfiled one
of your images and wanted to move it from the australia directory to the
japan one, both in your home directory, you would use

mv ~/australia/itinerary.txt ~/japan

That works as long as the destination directory exists. If it doesn’t, the com-
mand assumes you want the file to have the new filename of japan, and so
the file stops being itinerary.txt in the australia directory, and becomes a file
called japan in the home directory. It’s confusing if you do it by mistake, but

96 Part II: Getting Started with Linux

this quirk is how you rename files in Linux. You move them from being the
old name, into being the new name, usually in the same folder, like this:

mv oldname newname

 There’s no recursive option with the mv command because it moves directo-
ries as easily as it moves files by default.

Installing and Managing Software
on Your Raspberry Pi

After you’ve got the hang of it, the Raspberry Pi makes it incredibly easy to
discover, download, and install new software. Linux distributions come with
thousands of packages, which are software programs that are ready to down-
load from the Internet and install on your computer.

Some packages require other packages to work successfully, but luckily
a program called a package manager untangles all these dependencies
and takes responsibility for downloading and installing the software you
want, together with any other software it needs to work correctly. On the
Raspberry Pi, the package manager is called apt.

Installing software requires the authority of the root user or superuser of
the computer. The Raspberry Pi doesn’t come with a root account enabled,
in common with some other Linux distributions. One school of thought says
that a root account is a security threat because people are inclined to use it
all the time rather than log in and out of it when they need it. That leaves the
whole system and its files vulnerable, including to any malicious software
that might get in. Instead of using a root account, you use the word sudo
before a command on the Raspberry Pi to indicate that you want to carry it
out with the authority of the root user. You can’t use it before all commands,
but it’s essential for installing software.

 If you ever get an error message that tells you something can only be done
with the authority of the root, try repeating the command but putting sudo in
front of it.

Updating the cache
The first step in installing software is to update the repository, which is the
list of packages the package manager knows about. You do that by entering
the following command:

sudo apt-get update

97 Chapter 5: Using the Linux Shell

 You need to have a working Internet connection for this to work, and it’s likely
to take some time. Consider leaving the Raspberry Pi to get on with it while
you have a cup of tea, or a slice of raspberry pie, perhaps.

Finding the package name
The apt cache contains an index of all the software packages available, and
you can search it to find the software you want. For example, you can find all
the games by using

sudo apt-cache search game

The list is huge, so you might want to use less to browse it, like this:

sudo apt-cache search game | less

The screen output looks like this:

pi@raspberrypi ~ $ sudo apt-cache search game
0ad-data - Real-time strategy game of ancient warfare

(data)
3dchess - Play chess across 3 boards!
4digits - guess-the-number game, aka Bulls and Cows
7kaa-data - Seven Kingdoms Ancient Adversaries - game data
a7xpg - chase action game
a7xpg-data - chase action game - game data
abe - Side-scrolling game named “Abe’s Amazing Adventure”
abe-data - Side-scrolling game named “Abe’s Amazing

Adventure”
[list continues…]

The bit before the hyphen tells you the name of the package, which is what
you need to be able to install it. That might not be the same as the game’s
title or its popular name. For example, there are lots of Solitaire card games
you can install, but none of them have the package name solitaire. To find
the package name for a solitaire game, you would use

sudo apt-cache search solitaire

This search returns 20 results, and the first one is

ace-of-penguins - penguin-themed solitaire games

Installing software
If you know the name of the package you would like to install, the following
command downloads it from the Internet and installs it, together with any
other packages it needs to work correctly (known as dependencies):

98 Part II: Getting Started with Linux

sudo apt-get install ace-of-penguins

The last bit is the name of the package we found by searching the cache.

 Note that when you’re searching the cache, you use apt-cache in the com-
mand and when you’re installing software you use apt-get. It’s easy to get
these mixed up, so if it doesn’t work, double-check you’re using the right one.

Running software
Some programs can be run directly from the command line by just typing in
their names, such as

penguinspuzzle

which runs the Penguins Puzzle game (see Chapter 18).

Most end-user applications require the X server, which means you need to be
in the desktop environment to run them. After installing them, you can find
them in your Programs menu.

Upgrading the software
on your Raspberry Pi
The package manager’s responsibility doesn’t end once it has installed soft-
ware. It can also be used to keep that software up to date, installing the latest
enhancements and security improvements. You can issue a single command
to update all the software on your Raspberry Pi:

sudo apt-get upgrade

It’s a good idea to update the cache first to make sure apt installs the latest
updates to your installed packages. You can combine both commands into a
single line like this:

sudo apt-get update && sudo apt-get upgrade

The && means that the second command should be carried out only if the
first one succeeds. If the update to the cache doesn’t work, it won’t attempt
to upgrade all the software.

 The upgrading process ties up your Raspberry Pi for some time.

99 Chapter 5: Using the Linux Shell

If you want to update just one application, you do that by issuing its install
command again. Imagine you’ve already installed Ace of Penguins and you
enter

sudo apt-get install ace-of-penguins

That prompts apt to check for any updates to that package and install them.
If there are none, it tells you that you’re already running the latest version.

Removing software and freeing up space
The package manager can also be used to remove software from your
Raspberry Pi. For example:

sudo apt-get remove ace-of-penguins

This leaves traces of the applications, which might include user files and any
files of settings. If you’re sure you won’t need any of this information, you can
completely remove and clean up after an application using

sudo apt-get purge ace-of-penguins

You can do two other things to free up some precious space on your SD card
and clean up your system. First, you can automatically remove packages that
are no longer required. When a package is installed, other packages it requires
are usually installed alongside it. These packages can remain after the original
program has been removed, so there’s a command to automatically remove
packages that are no longer required. It is

sudo apt-get autoremove

It lists the packages that will be removed and tells you how much space it will
free up before prompting you to enter a Y to confirm you want to continue.

When you install a package, the first step is to download its installation file
to your Raspberry Pi. After the package has been installed, its installation file
remains in the directory /var/cache/apt/archives. Over time, as you try out
more and more packages, this can amount to quite a lot of space on your SD
card. Take a look in that directory to see what’s built up there. These files
aren’t doing much. If you reinstall a program, you can always download the
installation file again.

The second thing you can do to clean up your SD card is remove these files
using

sudo apt-get clean

100 Part II: Getting Started with Linux

Finding out what’s installed
on your Raspberry Pi
To find out what software is installed on your Raspberry Pi, you can use

dpkg --list

This command doesn’t need root authority to run, so it doesn’t require you
to put sudo at the start.

If you want to find out whether a specific package is installed, use

dpkg --status packagename

For applications that are installed, this also provides a longer description
than the short apt cache description, which might include a web link for fur-
ther documentation.

 The Raspberry Pi includes many packages that come with the Linux operating
system and are required for its operation. If you didn’t deliberately install a
package, exercise caution before removing it.

Managing User Accounts
on Your Raspberry Pi

If you want to share the Raspberry Pi with different family members, you
could create a user account for each one, so they all have their own home
directory. The robust permissions in Linux help to ensure that people can’t
accidentally delete each other’s files too.

When we looked at the long listing format, we discussed permissions. You
might remember that users can be members of groups. On the Raspberry
Pi, groups control access to resources like the audio and video hardware,
so before you can create a new user account, you need to understand which
groups that user should belong to. To find out, use the groups command to
see which groups the default pi user is a member of:

pi@raspberrypi ~ $ groups pi
pi : pi adm dialout cdrom sudo audio video plugdev games

users netdev input

 When you create a new user, you want to make them a member of most of
these groups, except for the group pi (which is the group for the user pi). Be
warned that if you give a user membership of the sudo group, they will be able
to install software, change passwords, and do pretty much anything on the

101 Chapter 5: Using the Linux Shell

machine (if they know how). In a home or family setting, that should be fine,
however. The permissions system still protects users from accidentally delet-
ing data they shouldn’t, as long as they steer clear of the sudo command.

To add a user, you use the useradd command with the -m option to create a
home directory for them and the -G option to list the groups the user should
be a member of, like this:

sudo useradd –m –G [list of groups] [username]

For example:

sudo useradd –m –G adm,dialout,cdrom,sudo,audio,video,plug
dev,games,users,netdev,input karen

 Make sure the list of groups is separated with a comma and there are no
spaces in there.

You can do a quick check to confirm that a new home directory has been
created with the user’s name in the directory /home, alongside the home
directory for the pi user:

ls /home

You also need to set a password for the account, like this:

sudo passwd [username]

For example,

sudo passwd karen

You are prompted to enter the password twice, to make sure you don’t
mistype it, and you can use this command to change the password for any
user.

You can test whether it’s worked and log in as the new user without restarting
your Pi by logging out from your current user account:

logout

 If you use the passwd command to set a password for the username root,
you will be able to log on as the superuser, who has the power to do anything
on the machine. As a last resort, this might enable you to get some types of
software working, but we advise you against using it. It’s safer to take on the
mantle of the superuser only when you need it, by using sudo.

102 Part II: Getting Started with Linux

 Don’t forget how cheap SD cards are. If you want to share the Raspberry Pi
with different family members, you could just give each user their own SD
card to insert when they’re using the machine, and let them log on with the pi
username and password.

Learning More About Linux Commands
Lots of information about Linux is available on the Internet, but plenty of
documentation is also hidden inside the operating system itself. If you want
to dig further into what Linux can do, this documentation can point you in
the right direction, although some of it is phrased in quite a technical way.

Commands in Linux can take several different forms. They might be built in
to the shell itself, they might be separate programs in the /bin directory, or
they could be aliases (which are explained in the next section). If you want
to look up the documentation for a command, first find out what kind of com-
mand it is, using the type command, like this:

pi@raspberrypi ~ $ type cd
cd is a shell builtin
pi@raspberrypi ~ $ type mkdir
mkdir is /bin/mkdir
pi@raspberrypi ~ $ type ls
ls is aliased to ‘ls --color=auto’

If you want to find out where a particular program in installed, use the which
command together with the program name:

which mkdir

To get documentation for shell built-ins, you can use the shell’s help facility.
Just enter help followed by the filename you’re looking for help with:

help cd

 The help command’s documentation uses square brackets for different options
(which you may omit), and uses a pipe (|) character between items that are
mutually exclusive, such as options that mean the opposite to each other.

For commands that are programs, such as mkdir, you can try using the
command with --help after it. Many programs are designed to accept this
and display help information when it’s used. Example usage is

mkdir --help

 When we used this approach on apt-get, the help page told me that “APT
has Super Cow Powers.” Try apt-get moo to see what it means!

103 Chapter 5: Using the Linux Shell

There is also a more comprehensive manual (or man page) for most programs,
including program-based Linux commands and some applications such as
Libreoffice (see Chapter 6). To view the manual for a program, use

man program_name

For example,

man ls

The manual is displayed using less, so you can use the controls you’re
familiar with to page through it. This documentation can have a technical
bent, so it’s not as approachable to beginners as the help pages.

If you don’t know which command you need to use, you can search across all
the manual pages using the apropos command, like this:

pi@raspberrypi ~ $ apropos delete
argz_delete (3) - functions to handle an argz list
delete_module (2) - delete a loadable module entry
dphys-swapfile (8) - set up, mount/unmount, and delete

an swap file
groupdel (8) - delete a group
rmdir (2) - delete a directory
shred (1) - overwrite a file to hide its

contents, and optionally delete it
tdelete (3) - manage a binary tree
timer_delete (2) - delete a POSIX per-process timer
tr (1) - translate or delete characters
unlink (2) - delete a name and possibly the file

it refers to
userdel (8) - delete a user account and related

files

You can then investigate any of these programs further by looking at their man
pages, or checking whether they can accept a --help request. The number
in brackets tells you which section of the man page contains the word you
searched for.

For a one-line summary of a program, taken from its man page, use whatis:

pi@raspberrypi ~ $ whatis ls
ls (1) - list directory contents

If you’re not yet drowning in documentation, there’s an alternative to the man
page, which is the info page. Info pages are structured a bit like a website,
with a directory of all the pages at the top, and links between the various
pages. You use info like this:

info ls

104 Part II: Getting Started with Linux

The controls used to move around an info document are a bit different to
those in a man page. To call up the list of keys, tap ? (pressing the Shift key)
when the info page opens.

Customizing Your Shell with
Your Own Linux Commands

If you want to stamp your identity on your Raspberry Pi, you can make up
your own Linux commands for it. You can have fun inventing a command that
shows a special message if someone enters your name (use the echo command
for this), but it’s genuinely useful for making more memorable shortcuts so
you don’t have to remember all the different options you might want to use.
We show you how to make a command for deleting files that uses the recom-
mended options to confirm each file that will be deleted, and to report on
what’s been removed. We’ll call it pidel, a mashup of Pi and delete.

The first step is to test whether your preferred command name is already in
use. If the type command tells you anything other than not found, you need
to think up another command name, or risk upsetting an existing command.
Here’s my test:

pi@raspberrypi ~ $ type pidel
-bash: type: pidel: not found

Now that you know that the command pidel is not yet taken, you can create
your command. To do that, make an alias, like this:

alias pidel=’rm –vi’

Between the quote marks, put the Linux command you want to execute when
you enter the pidel command. As you can see from this alias instruction,
when you use pidel, it behaves like rm -vi, but you won’t have to remember
the letters for those options any more. For example:

pi@raspberrypi ~ $ pidel *.txt
rm: remove regular file ‘fm.txt’? y
removed ‘fm.txt’
rm: remove regular file ‘toc.txt’? n
pi@raspberrypi ~ $

You can combine lists of commands in your alias definition by separating
them with semicolons, for example:

alias pidel=’clear;echo This command removes files with
the interactive and verbose options on.;rm –vi’

105 Chapter 5: Using the Linux Shell

Your alias only lasts until the computer is rebooted, but you can make it
permanent by putting the alias instruction into the file .bashrc in your home
directory. To edit that file, use

nano ~/.bashrc

Nano is a simple text editor that is covered in more detail in Appendix A, but
in brief, you can edit your file, use Ctrl+O to save, and Ctrl+X to exit.

Your alias can go anywhere in the .bashrc file. For convenience, and to avoid
the risk of disturbing important information there, we suggest you add your
aliases at the top. Each one should be on its own line.

If you want to test that your new command has been added correctly, you
can reboot your Raspberry Pi without disconnecting and reconnecting the
power, like this:

sudo reboot

 Sometimes you might want to replace an existing command with an alias, so
that your chosen options are enforced whenever you use it. If you look at the
type for ls, for example, it’s aliased so it always uses the color option to
classify files.

106 Part II: Getting Started with Linux

Part III
Using the Raspberry Pi for

Both Work and Play

 Visit www.dummies.com/extras/raspberrypi for great Dummies content
online.

http://www.dummies.com/extras/raspberrypi

In this part . . .
 ✓ Use LibreOffice to write letters, manage your budget in a

spreadsheet, create presentations, and design a party
invitation.

 ✓ Use GIMP to edit your photos, including rotating and resizing
them, retouching imperfections, and cropping out unnecessary
detail.

 ✓ Learn how to build your own website using HTML and CSS, and
how to publish it to a server with FileZilla.

 ✓ Watch high-definition movies and play music on your
Raspberry Pi using Raspbmc, which turns your Raspberry Pi
into a media center.

Chapter 6

Being Productive with
the Raspberry Pi

In This Chapter
▶ Installing LibreOffice on your Raspberry Pi
▶ Writing letters in LibreOffice Writer
▶ Managing your budget in LibreOffice Calc
▶ Creating presentations in LibreOffice Impress
▶ Creating a party invitation with LibreOffice Draw

T
here comes a time in everyone’s life when they have to get down to work,
and when you do, the Raspberry Pi can help. Whether you need to do

your homework or work from home, you can use LibreOffice, a fully featured
office suite compatible with the Raspberry Pi.

If you haven’t heard of LibreOffice, you might have heard of its more famous
ancestor, OpenOffice. A team of developers took OpenOffice as a starting
point and developed LibreOffice using its source code.

There are a lot of similarities between LibreOffice and Microsoft Office for
Windows, so LibreOffice will probably feel familiar to you. You can copy files
between the two programs too, although you might lose some of the layout
features when you do that.

In this chapter, I’ll show you how to use four of the programs in LibreOffice
for common household activities. You’ll learn how to write a letter, how to
use a spreadsheet to plan a budget, how to create a presentation, and how to
design a simple party invitation.

LibreOffice doesn’t cost anything and is free to download and distribute. If
you’re feeling generous, the charitable foundation that drives its develop-
ment, The Document Foundation, invites donations through its website at
www.libreoffice.org.

http://www.libreoffice.org

110 Part III: Using the Raspberry Pi for Both Work and Play

Installing LibreOffice on
Your Raspberry Pi

To download and install LibreOffice, issue the following two commands in the
Linux shell:

sudo apt-get update
sudo apt-get install libreoffice

For further guidance on installing software, and an explanation of how these
commands work, see Chapter 5.

Starting LibreOffice on the Raspberry Pi
When you enter the desktop environment using startx (see Chapter 4),
you should find LibreOffice in your Programs menu, in the Office category.
There are separate entries for LibreOffice Base (databases), LibreOffice Calc
(spreadsheets), LibreOffice Draw (page layouts and drawings), LibreOffice
Impress (presentations), and LibreOffice Writer (word processing).

Another option simply says LibreOffice. This opens a menu (shown in Figure
6-1) from which you can choose to create a text document, spreadsheet,
presentation, drawing, database, or formula. If you can’t remember which
LibreOffice application you need, use this menu. Otherwise, it’s probably
quicker to go straight to the appropriate application.

 You can start a new LibreOffice file of any type from the File menu, irrespective
of which application you’re using. For example, you can create a new spread-
sheet from the word processor’s File menu. When you do this, the correct
application opens (Calc, in this case) with a blank file ready for you to use.

In this chapter, we show you how to get started with Writer, Calc, Impress,
and Draw.

You can also start LibreOffice and open a file in it by double-clicking a
LibreOffice or Microsoft Office file in the desktop environment.

 If you’re a student or academic and have to write scientific or mathematical
formulae, the suite also includes LibreOffice Math, which is used to lay out
them out (but won’t generate the answers for you, I’m afraid). To use it, go to
the LibreOffice menu and choose Formula.

111 Chapter 6: Being Productive with the Raspberry Pi

Figure 6-1:
The

LibreOffice
menu.

Saving Your Work
In all the LibreOffice applications, you save your work through the File menu.
You have a choice of formats. The ODF formats are the default, and can be
read by other applications, including Microsoft Office. You can also save in
the normal file formats of Microsoft Office.

 The applications save automatically from time to time and have some capabili-
ties built in to recover files if the computer crashes, but it’s better to catch the
trapeze than to test the safety net. Save frequently.

Writing Letters in LibreOffice Writer
LibreOffice Writer is a word processor, similar to Microsoft Word on
Windows, which makes it the perfect application to use to write a letter.

It can open Microsoft Word files, in fact, and its default file format, the ODF
Text Document (a .odt file), can be opened and saved by Word too. For any-
thing but the most basic files, you’re likely to experience some corruption of

112 Part III: Using the Raspberry Pi for Both Work and Play

the document’s appearance when you open a Word document in LibreOffice,
however. You probably won’t have the same fonts on your Raspberry Pi, for
example, and more advanced layouts tend to get distorted.

Figure 6-2 shows LibreOffice Writer in action. If you’ve used other word pro-
cessing packages, it won’t take you long to find your feet here. The icons are
similar to those used in Microsoft Office, and if you hover over an icon, a
tooltip appears to tell you what it does.

Figure 6-2:
Writing a

letter with
LibreOffice.

You can change the text appearance and the style using the icons and
options in the menu bars above your document, and then type onto the page
using your chosen formatting in the document. Alternatively, you can click
and drag to highlight text in your document and then click the menu bar to
apply different formatting to your selected text.

The pull-down menus at the top of the screen provide access to all of
LibreOffice Writer’s features. Browsing them is a good way to see what the
application is capable of.

The Insert menu enables you to add special characters, manual breaks
(including page breaks and line breaks), formatting marks (including non-
breaking hyphens), document headers and footers, footnotes, bookmarks
(they don’t appear onscreen, but can help you to navigate the document),

113 Chapter 6: Being Productive with the Raspberry Pi

comments (useful if you are collaborating on documents), frames (boxes for
text that you can arrange where you want on the page), and tables.

The Format menu includes options for character formatting (which includes
font and font effects, underlining, superscript, rotation, links, and back-
ground colors), paragraph formatting (which includes indents and spacing,
alignment, text flow, and borders), bullets and numbering, page formatting
(including paper size, background colors and images, headers, and footers),
columns (for multicolumn layouts), and alignment.

Using those two menus, you can achieve most of what you need. The most
common options are also replicated with icons on the menu bars at the top
of the screen.

 If you use styles to structure your document (using Heading 1 for the most
important headings, and Heading 2 for subheadings, for example), you can use
the Navigator to jump to different parts of your document easily. Tap F5 to
open it. It also enables you to jump to tables, links, and bookmarks.

 Using the File menu, you can save your document as a PDF (.pdf) format file
(or export it). The great thing about this is that it preserves the formatting of
the file, so you can share your document with people who might not have the
same fonts or software as you, and guarantee they will see exactly what you
see. Most people have software for reading PDF files, but the drawback is that
very few people have software for editing them. For that reason, this format is
really only suitable for circulating final copies of documents you want people
to read but not edit.

Managing Your Budget
in LibreOffice Calc

LibreOffice Calc is a spreadsheet application, similar to Microsoft Excel. A good
way to try it out is to open one of your Excel spreadsheets using it. Your for-
mulae should work fine and the cell formats should carry over. The interface
is similar to LibreOffice Word, with icons you can roll the mouse pointer over
to find out what they do. Figure 6-3 shows Sean’s holiday budget in LibreOffice
Calc. We’ve used the slider at the bottom of the screen to magnify the content
so it’s easy for you to read.

We don’t have room to provide an in-depth guide to spreadsheets here, but
we can show you how to work out a simple holiday budget.

A spreadsheet is basically a grid of information, but it’s powerful because
you can use it to perform calculations using that information. The boxes on
the spreadsheet are called cells. To enter information into a cell, you just

114 Part III: Using the Raspberry Pi for Both Work and Play

click it and then type what you want to enter. Alternatively, you can click a
cell and then type into (or edit the contents of) the formula bar at the top of
the screen, which is indicated in Figure 6-3.

Each cell has a grid reference, taken from the letter at the top of its column
and the number on the left of its row. The top-left cell is A1, and the next cell
to the right is B1, and the one below that is B2, as you can see in Figure 6-3.

To start with, enter a list of the different expenses you’ll incur, working your
way down the screen in column A. Beside each item, in column B, enter how
much it costs. In column C, enter how many of that item you will need. For
example, one row of our example shows the name of the hotel in column A,
how much it costs per night (in column B on the same row), and then a 6 for
the number of nights Sean will stay there in column C on that row. In Figure 6-3,
you can see we’ve also written titles in the cells at the top of the columns of
data so we can easily see what is in each column.

 You can make a column wider so you can more easily enter the descriptions
of your budget items. Click and drag the line between the letter at the top of
the column and the letter at the top of the column to its right.

Figure 6-3:
How much?!

Planning
a holiday
budget in

LibreOffice
Calc.

Formula bar

115 Chapter 6: Being Productive with the Raspberry Pi

 To show a currency sign in a cell, click the Format menu, choose Cells, and
then change the category to Currency and the format to the layout and cur-
rency symbol you would like to use. You can select a group of cells and format
them at the same time by clicking and dragging the cells before you go into
the Format menu.

You can enter formulae (or calculations) into cells, and the answers will appear
in the spreadsheet. If you want to enter a formula into a cell, you type the equals
sign (=), followed by the formula. You use an asterisk (*) for multiplication
and a slash (/) for division. For example, click any empty cell and enter

=7*5

 The result (35) appears in the cell on the spreadsheet where you entered the
formula. You can view or edit the formula itself by clicking the cell and then
clicking the formula bar above the spreadsheet, or by double-clicking the cell.

The magic happens when you start using the numbers in one cell to work out
what should go in another one. You do that by using the grid reference of a
cell in your formula. For the holiday budget, we want to multiply the cost of
an item (such as a night in a hotel) by how many of them we buy (six nights’
worth). The first of those values is stored in column B, and the second one
is beside it in column C, both on the same row. After the titles and spacing at
the top of the spreadsheet, my first expense is on row 5. In column D5, I enter

=B5*C5

This multiples the values in cell B5 (the price) and cell C5 (the quantity) and
puts the result (the total amount spent on that particular item) into cell D5.
You can click cell D5, and then copy its contents and paste them into the
cells below. There are options for copying and pasting in the Edit menu, but
LibreOffice also supports Windows shortcuts, including Ctrl+C to copy and
Ctrl+V to paste.

You might think the same number would go into those cells, but it actually
copies the formula and not the result, and it updates it for the correct row
number as it goes. If you copy the formula from cell D5 into cell D6 and then
click D6 and look in the formula bar, you’ll see it says

=B6*C6

After you’ve copied the formula down the column, you will have a column
of results that shows the total cost of each expense item. The final step is to
calculate the grand total, totting up the values in those cells. To do that, you
use a special type of formula, called SUM, which adds up the values in a set of
cells. To use that, follow these steps:

 1. Click a cell at the bottom of the cost column and type =sum(. Don’t
press Enter when you’ve finished.

116 Part III: Using the Raspberry Pi for Both Work and Play

 2. Click the top cell in your column of expenses (D5) and hold down the
mouse button.

 3. Drag the mouse down the screen until the red box encloses all your
cost entries.

 4. Type a closing bracket) (parenthesis) and press Enter.

The grand total appears in that cell, and your budget is complete. A spread-
sheet is more than a glorified calculator because you can use it for planning
and asking “What if?” For example, you can see what happens if you use a
more expensive hotel. Just change the price of the hotel per night, and all the
other cells calculated from that update automatically, including your total
cost at the bottom. Similarly, you can double the length of your stay at the
hotel by changing the number of nights in column B to see how that affects
your budget total.

Creating Presentations in
LibreOffice Impress

If you’re called upon to deliver a presentation, or if you want to force your
holiday photos slide show on your friends, you can use LibreOffice Impress
to create your slides and play them back. You’re probably realizing that most
LibreOffice programs have a counterpart in the Microsoft Office suite, and
Impress is a bit like Microsoft PowerPoint. You can open PowerPoint presen-
tations using it, and although some of the nifty slide transitions are missing,
we found that quite sophisticated layouts can be carried across without a
problem. Each picture has some placeholder text on it, however, which is
hidden by the pictures in PowerPoint but appears onscreen in Impress.

Figure 6-4 shows Sean’s holiday photo slide show in Impress. To create a
presentation, simply follow these steps:

 1. Start Impress, or choose to create a new presentation through the File
menu in any of the LibreOffice applications.

 2. In the Tasks panel on the right, click the Layouts heading.

 This opens a panel that gives you 12 different slide layouts to choose
from.

 3. Click the slide layout you would like to use.

 4. Click in the title box and type the title you’d like to use for the slide.

 5. Your slide has up to six boxes for content. Click one of these and start
typing to add text in the box.

117 Chapter 6: Being Productive with the Raspberry Pi

 Alternatively, in the center of the content box are four buttons you
can click to add different types of content, including a table, a chart,
an image, or a video. If you want to add a picture, click the bottom-left
button and then choose the picture you’d like to use. Note that if you
click a different slide layout on the right, it is applied to the slide you’re
already working on.

 6. To add a new slide, click the Slide button on the menu bar (indicated
in Figure 6-4), or use the Insert menu.

 Repeat steps 3 to 5 to fill in the slide.

 7. To edit a previous slide, click it in the Slides panel on the left.

You change the formatting of a title, piece of text, or picture by clicking it in
the main slide area and then clicking the options on the menu bar at the top
of the screen. The menu bar changes depending on whether the content is an
image or text.

 For best results, avoid using image files that are much bigger than you need:
They slow down the computer and can crash the software if you use too
many. See Chapter 7 for guidance on resizing your digital photos and other
images.

Figure 6-4:
Creating a

photo slide
show using
LibreOffice

Impress.

Slide

118 Part III: Using the Raspberry Pi for Both Work and Play

When you put your mouse pointer over one of the slides in the panel on the
left, three buttons appear that you can click to start the slide show, hide
the slide (which stops it showing in the slide show, but doesn’t delete it), or
duplicate the slide. You can also start the slide show from the Slide Show
menu at the top of the screen or by pressing F5. To start from the first slide,
click it in the Slides panel before you begin the slide show.

When the slide show is playing, you can use the left and right cursor keys to
advance through the slide show and the Escape key to exit.

Impress has lots of additional features to explore, including colorful templates
(click Master Pages in the Tasks panel on the right), transitions that animate
the display of a slide (also found in the Tasks panel), and tools (similar to
those in LibreOffice Draw) for making shapes, including speech bubbles and
stars (see the menu at the bottom of the screen).

Creating a Party Invitation
with LibreOffice Draw

LibreOffice Draw is used for designing simple page layouts and illustrations
and can be used for making posters and invitations. Despite the applica-
tion’s arty name, the drawing tools are basic and are best suited to creating
flowcharts and simple business graphics, although children might enjoy the
ease with which they can add stars, smiley faces, and speech bubbles to their
pictures.

Refer to Figure 6-5 as you work through this quick guide to making an invita-
tion using LibreOffice Draw:

 1. Start Draw or choose to create a new drawing through the File menu
in any of the LibreOffice applications.

 2. Use the toolbar at the bottom of the screen to select your drawing
tool. As you move your cursor over the buttons, a short description
appears.

 Click the smiley face in the symbol shapes to select it.

 3. Move your mouse cursor to the page. Click the mouse button and hold
it as you drag the mouse down and to the right.

 As you move the mouse, you see the face fill the space you’re making
between where you clicked the button and where your cursor is. When
you release the mouse button, the face is dropped in place. You might
find it easier to just place the face anywhere on screen and then reposi-
tion and resize it afterwards.

119 Chapter 6: Being Productive with the Raspberry Pi

Figure 6-5:
Making a

party invita-
tion using

LibreOffice
Draw.

 4. After you have placed the face onscreen, you can reposition it by
clicking and dragging it. To resize it, click it and then click and drag
one of the blue boxes that appears on its edges.

 5. Use a similar process to add a speech bubble from the group of items
called Callouts on the menu bar. (Click the bubble in the menu to
select it, and then click and drag the page to place it.)

 When it’s on the page, you can resize and reposition the speech bubble
in the same way you arranged the face. To move the tail of the speech
bubble, click and drag the yellow point at the end of it. Arrange it so it
points to the smiley face.

 6. Click your speech bubble and type your text.

 The text spills out of the bubble if there is too much of it, so press the
Enter key to start a new line when necessary, and resize the bubble
to fit.

 7. Some of the buttons have pop-up menus you can open by clicking
the small down arrow to the right of the icon. Click the pop-up menu
beside the Stars button to find the Vertical Scroll and position it on
the page. Add text to it in the same way you added text to the speech
bubble.

120 Part III: Using the Raspberry Pi for Both Work and Play

 8. To change the color of your scroll, face, or bubble, click it on the page
and then change the colors in the style menu bar at the top of the
screen.

 Two colors are shown. The one on the left is the color of the outline,
and the one on the right is the color of the background. Click the menu
item that says Color in it and you can select a gradient, hatching pattern,
or bitmap (colored pattern) instead of a solid color.

 9. To change the color of the text in your speech bubble or scroll, click
it, press Ctrl+A to select it all, and then use the Font Color option on
the far right of the style menu bar at the top of the screen.

 10. You can also change the font and size of the text using the style
menu bar.

As you might expect, you can do lots more with Draw. The Text option (the
T icon on the menu bar at the bottom of the screen) enables you to place
text boxes anywhere, so you can create poster-like layouts. The Curve option
enables you to draw freehand by clicking and dragging on the page, and it
smoothes your lines for you. The Fontwork Gallery gives you a choice of dif-
ferent bulging, curved, bent, and circular text styles to choose from. After
you’ve placed the Fontwork item, click its default Fontwork text and type your
words to have them inserted in the eccentric style of your choice. If you want
to use your own pictures or photos, the From File button on the menu at the
bottom enables you to choose your image file. When it loads, you can resize
and reposition it to fit your design.

Chapter 7

Editing Photos on the
Raspberry Pi with GIMP

In This Chapter
▶ Installing GIMP
▶ Understanding the GIMP screen layout
▶ Resizing, cropping, rotating, and flipping your photos
▶ Adjusting the colors and fixing imperfections
▶ Converting images between different formats

W
e live in probably the best documented era in our history. Not only
do we write about our daily lives in blogs and Facebook, but many

people also carry a camera everywhere they go, built in to their phone or
tablet device. More serious photographers might have a dedicated digital
camera. Whatever you use, and whatever you do with your day, photography
is a great way to record your life and express yourself creatively.

The Raspberry Pi can play a part in this hobby, enabling you to edit your
photos to improve the composition and quality. The photos generated by
digital cameras are quite large files, however, so a Raspberry Pi with just
256MB of memory struggles to process them, and routinely crashed when we
tried it. The 512MB edition of the Pi, which you have if you bought a Model B
after 15 October, 2012, delivers much better performance, although you still
need to be patient at times.

In this chapter, we introduce you to GIMP, one of the most popular image
editing packages and give you some tips for editing your photos with it. You
learn how to resize, crop, rotate, and flip your photos. We also tell you how
to change colors and fix any imperfections, such as dust or unwanted details,
in your shots.

Some of the skills here are valuable for other projects in this book. In par-
ticular, resizing images so they’re smaller cuts the amount of memory
they require and makes it easier to use them in other programs (including
LibreOffice, see Chapter 6). Resizing is also essential if you want to include
digital photos in your web pages (see Chapter 8).

122 Part III: Using the Raspberry Pi for Both Work and Play

Installing and Starting GIMP
The program we’re going to use is the GNU Image Manipulation Program,
known as GIMP for short. It’s a highly sophisticated tool, and it’s available for
free download not just on Linux, but for Windows and Mac computers as well.

To install GIMP on your Raspberry Pi, enter the following at the shell:

sudo apt-get install gimp

If you experience any difficulties, consult Chapter 5 for advice on installing
software.

After installation is complete, you can start GIMP from the Graphics category
in your Programs menu in the desktop environment (see Chapter 4).

Understanding the GIMP Screen Layout
Figure 7-1 shows the screen layout of GIMP. When it first opens, the large
area in the middle is empty, with a picture of Wilber, the GIMP mascot, in the
background. We’ve used the File menu in the top left to open a photo for edit-
ing, which you can see in the center pane.

 GIMP can be used in such a way that each pane of tools or content is a sepa-
rate window onscreen, but we find it easier to arrange everything in a single
window, especially when we’re using a smaller screen. If your layout looks
different from the one shown in Figure 7-1, click to open the Windows menu at
the top of the screen and select Single Window Mode.

Across the top of the screen is a bar with menus for File, Edit, Select, View,
Image, Layer, Colours, Tools, Filters, Windows, and Help. You can browse
these menus to get an idea of what the program can do, and to find options
quickly if you don’t know what icons they use on the toolbar.

On the left is a pane that contains icons for the different tools at the top and
the tool options at the bottom. When you roll the cursor over a tool’s icon, a
tooltip pops up to tell you what it does. When you click a tool to select it, the
options at the bottom of the pane change depending on the tool you’re using.
For example, if you’re using the paintbrush, the options cover properties
such as opacity and the brush type.

The pane on the right is also divided into two halves. The top half has tabs
for Layers, Channels, Paths, and History. Of these, the Layers and History
tabs (indicated in Figure 7-1) are most important for new users because they
enable you to edit your photos safely.

123 Chapter 7: Editing Photos on the Raspberry Pi with GIMP

Figure 7-1:
GIMP

enables you
to edit

photos
on your

Raspberry
Pi.

Layers pane
History pane

New layer
 ©1995-2012 Spencer Kimball, Peter Mattis, and the GIMP Development Team

The History tab enables you to retrace your steps if you make changes you
don’t like.

Layers are used for adding new elements to an image without disturbing what-
ever is underneath. For example, if you wanted to add text to an image, you
would do that in a new layer on top of the old one. If you change your mind,
you can just remove the layer and the picture underneath is unchanged. The
text tool (which has an A as its icon) automatically adds text in a new layer
when you use it. If you intend to use the drawing tools, add a layer for each
part of the drawing by clicking the New Layer button under this pane (indi-
cated in Figure 7-1). New layers appear on top of older layers, but you can
change the order of layers by dragging them in the pane on the right. Those
near the top of the screen in this pane appear nearer the foreground in the
image. To hide a layer temporarily, click the eye next to it in the pane.

The bottom half of the right pane is for brushes, patterns, and gradients. The
brushes are used when you’re drawing or painting on the image. The patterns
and gradients are used for the Fill tool, which fills in a part of the image with

124 Part III: Using the Raspberry Pi for Both Work and Play

a particular color or pattern. In this chapter, we won’t cover the drawing
tools because there’s a significant lag when using them on the Raspberry Pi,
which makes it hard to draw intuitively or precisely.

You can change the width of the left and right panes, as we have in Figure 7-1,
to make it easier to see all the tabs. Put your mouse cursor at the edge of the
pane adjoining the central image area. When the cursor turns into a two-
headed arrow, click and drag left or right to resize the pane.

Resizing an Image in GIMP
One of the most useful things you can learn to do on your Raspberry Pi is to
resize an image. All computer images are made up of pixels, which are tiny
colored dots. My camera produces images that are 4272 pixels wide and 2848
pixels high. High-quality images like that are great for printing photos, but if
you just want to use pictures onscreen, quality comes at a price. That level of
detail requires a large file size, and big files can significantly slow down your
Raspberry Pi. Often, you can use a lower quality image without noticeably
affecting the end result, assuming your finished result will only be displayed
on screen.

Here’s how you can resize an image using GIMP:

 1. Click to open the Image menu at the top of the screen and click Scale
Image.

 A window like Figure 7-2 opens.

 2. In the Width box, enter the width you would like your final image to
be in pixels. Press Enter when you’ve finished entering your width.

 If you wanted to put a holiday snap on your website (see Chapter 8), you
probably wouldn’t want it to be more than 500 pixels wide. Anything
larger than that can be hard to fit into a web page design and might take
a long time for visitors to download. If your screen only displayed 1024
pixels across, you probably wouldn’t want to use an image much larger
than 800 pixels wide.

 When you enter a new value for the Width, the Height is updated auto-
matically, so the image stays in proportion and doesn’t become stretched.
You can also enter a value for the Height and have the Width calculated
automatically. If you want to be able to adjust the Width and Height inde-
pendently, click the chain to the right of their boxes to break it.

 3. Alternatively, instead of using absolute values for the width and
height, you can resize your image to a certain percentage. Click the
Units drop-down list box (it says px) and choose Percent.

125 Chapter 7: Editing Photos on the Raspberry Pi with GIMP

 The values in the Width and Height box will then be percentages. For
example, you would enter 50% to shrink the image by half. The size of
the image in pixels is shown under the Height box.

 4. When you’ve set your size, click the Scale button.

 At the bottom of the screen, underneath the image pane, you can see some
information about the file, including the current zoom level, which is how
much the image has been magnified or reduced for you to view it. If you set
this to 100%, you can get an idea of how much detail is in the image now, and
it’s easier to edit too.

Figure 7-2:
The scale
options in

GIMP.

©1995-2012 Spencer Kimball, Peter Mattis, and the GIMP Development Team

 Resizing an image reduces its quality. This would be noticeable if you tried to
create a high-quality print of it later. Don’t overwrite your existing image with
a resized version. Instead, save your resized image by choosing Save As from
the File menu at the top of the screen and giving it a different filename.

Cropping Your Photo
If your photo has excessive space around an edge, or you’d like to change the
composition of the picture, you can cut off the sides, or crop it. To do that,
follow these steps:

 1. Click the icon that looks like an art knife or press Shift+C to choose
the crop tool.

 2. Click your image in the top left of the area you’d like to keep, hold
down the mouse button, and drag your mouse down and to the right.

 When you release the mouse button, a box appears on the image, as you
can see in Figure 7-3.

126 Part III: Using the Raspberry Pi for Both Work and Play

 The inside of the box shows which bits of your image will be kept.
Anything outside the box is cut off when you crop the image. You don’t
have to get the position or size of the box right first time because it’s
easy to adjust.

 3. Click one of the corners and drag the mouse to change the size and
shape of the box. You can also click and drag along one of the edges
inside the box to adjust the width or height.

 4. To reposition the box, click and drag in its center.

 5. To crop the image, click inside the box or press the Enter key.

 If you make a mistake, you can use Ctrl+Z to undo, or use the History pane
(see Figure 7-1) to go back to a previous version of the image.

Figure 7-3:
Cropping

a photo in
GIMP.

©1995-2012 Spencer Kimball, Peter Mattis, and the GIMP Development Team

Rotating and Flipping Your Photo
If you rotate your camera sideways to take a picture, you might need to
rotate the resulting image too. The easiest way to do this is to click the Image
menu, and then use the rotation options in the Transform submenu there.
You can rotate clockwise or anticlockwise by 90 degrees, rotate the image by
180 degrees, and flip it horizontally or vertically.

 For a simple rotation like this, it’s quicker to rotate a photo using the LXDE
Image Viewer (see Chapter 4).

If you have a photo that’s slightly wonky, you can manually adjust it in GIMP.
Click the Rotate tool (or use Shift+R) and you can enter an angle for rotation, or
click and drag the image to rotate it. To change the pivot point about which
the picture rotates, click the circle in the middle of the image and drag it.

127 Chapter 7: Editing Photos on the Raspberry Pi with GIMP

Adjusting the Colors
In common with other image editing programs, GIMP has options for adjusting
the colors in a photo. You can find all these options in the Colours menu at the
top of the screen. If your picture has a tint of color you don’t want, or if you
would like to add a tint, use the Colour Balance settings to alter the amount
of red, green, and blue in the image. The Brightness and Contrast settings can
help to bring out detail in shadows, or to give the image more impact.

There are also options in this menu (further down, under Auto) to automati-
cally adjust the colors using six different methods. These can give strange
and undesirable results, but you can always undo them with Ctrl+Z if you
don’t like them. The Normalize option can be a quick fix for images that look
a bit wishy-washy, and the White Balance option can fix pictures that don’t
already have strong black and white areas.

Fixing Imperfections
On Sean’s holiday to Australia, he found a beautiful unspoiled beach in
Darwin. He took a picture of it: a lone tree in the foreground, the shimmering
sea, and wisps of cloud in a light blue sky. When he got home, he noticed that
some idiot had left a crushed beer can in the foreground.

Thankfully, in GIMP, you can use a handy tool called the Clone tool to make
little details like this vanish. It enables you to use part of the image as a pat-
tern that you spray over another part of the image. In Sean’s case, he can use
a clean piece of beach as the pattern and spray it on top of the litter. Hey,
presto! The rubbish vanishes.

Here’s how you use the Clone tool:

 1. Zoom in to your image using the menu underneath it. Use the scroll-
bars at the side of the image pane to position your image so you have
a clear view of the imperfection.

 2. Click the Clone tool, which looks like a rubber stamp, or press the C key.

 3. Move your cursor to an unspoiled part of the image you would like
to use as the pattern, or clone source. This needs to be somewhere
as plain as possible, more of a texture than a shape, with no obvious
prominent details or lines. Sky, grass, or sand are perfect. Hold down
the Ctrl key and click the mouse button.

 A crosshair icon appears on your image at that spot.

 4. In the tool options, at the bottom of the left pane, check the brush
that is being used. Click the shape (a circle by default) if you want to
change it.

128 Part III: Using the Raspberry Pi for Both Work and Play

 For best results, use a brush with a fading edge, rather than a solid edge.
You can change the size of the brush in this pane too by clicking the Size
box and typing your preferred value. The bigger the brush you use, the
bigger your pattern will be.

 5. Move your cursor to the imperfection in the image and click the
mouse button. This copies an area the size of your brush from your
clone source to the place where you clicked.

 If you’ve done it right, the imperfection should appear to vanish. If you
see unwanted picture details included in the pattern, either reduce the
size of your brush, or move your clone source. Repeat this step until the
imperfection is gone.

 6. Adjust the magnification at the bottom of the image pane to view your
image at 100%.

 Check whether you can see any evidence of your handiwork. If so, you
might need to try another clone source or brush size. Otherwise, it’s
worked!

Converting Images Between
Different Formats

There are several different file formats that can be used for images, but not
all programs can open all files. If you want to put pictures on your website,
for example, you need to use .jpg files, which usually deliver the best quality
for photos, or .gif files, which are optimal for illustrations.

The default format used by GIMP is .xcf, which stores additional informa-
tion about your editing session along with your picture, but this format isn’t
widely used in other programs.

You can use GIMP to save your picture in a more widely used format, or
to convert a picture between different file formats. First, open the image
through the File menu, and then use the File menu to Export. The Export
window looks similar to the Save window, but you can click Select File Type
(By Extension) at the bottom and choose the file format you’d like to convert
the image into.

 The conversion is quite memory-intensive, so you might need to resize
(shrink) a digital photo before you can convert it.

129 Chapter 7: Editing Photos on the Raspberry Pi with GIMP

Finding Out More about GIMP
There’s much more you can do with GIMP, and you can find detailed documen-
tation on its website. To access it, click Help at the top of the screen, open
the GIMP Online menu and click User Manual Web Site. Alternatively, in any
browser, go to http://docs.gimp.org/2.8/en/.

http://docs.gimp.org/2.8/en/

130 Part III: Using the Raspberry Pi for Both Work and Play

Chapter 8

Building Your First Website
with the Raspberry Pi

In This Chapter
▶ Organizing your website files
▶ Creating your first web page
▶ Formatting your HTML content
▶ Validating your HTML
▶ Using CSS to change your page’s appearance
▶ Publishing your web page on the Internet

S
ome of the most popular software in the world today runs on the web.
Many of us use Facebook more than e-mail to keep in touch with friends;

Google is our faithful advisor; and Amazon is our butler, bringing us whatever
we need. Without a doubt, knowing how to build websites is a valuable skill
in today’s economy.

In this project, we talk you through building a simple website. Your personal
website can be as individual as you are, reflecting your interests, beliefs, and
creativity. Whether you’re a keen photographer, writer, or painter, you can
put your work online. If you collect things, you can showcase your haul for
other hobbyists to admire. You can campaign, teach, or sell. Whatever you
want to say, someone on the Internet wants to hear it.

Building and publishing a website is a great creative project for the
Raspberry Pi. You can build a website in lots of different ways, but in this
chapter, we show you how the professionals do it: by writing their own code
in HTML (HyperText Markup Language), the language of the web (information
written in a computer language is often called code). For many people,
HTML is the first computer language they learn. As well as enabling you to
build websites, it gives you an introduction to using a computer language
to structure information, which can be useful when you start to learn
programming later.

132 Part III: Using the Raspberry Pi for Both Work and Play

Remember: You can download the code examples for this chapter from the
book’s website so you can edit them and try them out. For more on how to
access the code online, see this book’s Introduction.

Understanding What a Website Is
 You should understand a few terms and phrases before you begin to design

your website.

A web page is a document available on the Internet that you can view in
your browser. It can include pictures, videos, animations, and interactive
elements, and if it’s too long to fit in the screen, you can scroll it in your
browser.

You can move between web pages by clicking links, which create a path from
one web page to another. On a screen, a link might be just a few words or it
might be a picture. A web page can include a link to any other web page on
the Internet, irrespective of who owns it.

A website is a collection of related web pages, usually owned by the same
person and usually having a consistent design.

To make a website available over the Internet, all its pages, images, and other
content must be stored (or hosted) on a server, a computer that makes files
available for others to download over the Internet. You can develop and
test your website on your Raspberry Pi without a server — you only need
the server when you are ready to share your website with the world on the
Internet.

Discovering How to Write a Web Page
A web page is made up of a set of text files that describe the page to the
computer. These text files are written using three different computer
languages:

 ✓ HTML: Short for HyperText Markup Language, HTML is used to describe
the structure of the page and its content. It explains, for example,
which words make up the headline and where the images go. Every
web page has its own HTML file. There have been lots of versions of
HTML over the years. The newest version, HTML5, is becoming popular
now, but lots of people still use web browsers that don’t understand all
its features, so you might need to include some instructions to make
sure those browsers can display your page correctly too. Much of the

133 Chapter 8: Building Your First Website with the Raspberry Pi

complexity in HTML arises from the need to cater for lots of different
browsers, but in this project, you’re only going to use HTML that works
in every browser. In the early days of the web, HTML was also used to
describe the visual appearance of the page, but you should avoid doing
that now.

 ✓ CSS: Short for Cascading Style Sheets, CSS describes what the design of
the web page should look like. It describes where different boxes of
content should be placed, which colors should be used for different
pieces of text and the backgrounds, and what the borders around
pictures should look like, for example. Most websites use CSS to add
flesh to the bare bones of the HTML. All the web pages on your website
can share the same CSS file, so they all have the same design and visual
identity.

 ✓ JavaScript: JavaScript is used to make web pages interactive. It enables
the web page to do things like show and hide content, change aspects
of the design, or detect where the user moves the mouse. We don’t have
room to cover JavaScript in this short project.

When your browser receives a web page from the server, it uses the HTML,
CSS, and JavaScript information to work out what the page should look like,
and then shows it to you. Because browsers work in slightly different ways,
and support different features of HTML and CSS, the same website can look
quite different on different browsers. You can test this for yourself by visiting
a website you know well in both Dillo and Midori on your Raspberry Pi (see
Chapter 4).

Organizing Your Files
To stop your website files from getting mixed up with your other files, we
recommend you create a folder called website in your pi folder to keep them
in. You can do this using the File Manager in LXDE (see Chapter 4). Inside the
website folder, creating another folder called images for the images on your
website is a good idea.

Creating Your First Web Page
Now you’re ready to make your first web page! This website is going to be
about Sean’s hobby of photography, including a few tips and two of his
favorite shots. As you work through this project, you’ll see how to build up
the site, starting with content (which will appear onscreen) and then adding
the HTML and CSS code to it.

134 Part III: Using the Raspberry Pi for Both Work and Play

Because web pages are made up of text files, you can create them using the
Leafpad text editor you met in Chapter 4. More specialized tools are available
(see “Taking It Further” at the end of this chapter), but you can get started
immediately with Leafpad, and you can switch to any web design program
later on, taking your work with you.

People can visit web pages in any order and might arrive at any page of your
site through a search engine. There still needs to be a page that acts as an
introduction to the site, explaining its purpose and giving people guidance on
exploring it further, however. This called the home page. Each web page has
its own address (for example, www.example.com/biography.html) but if
someone doesn’t specify a particular page (by entering just www.example.
com), they’re shown the website’s home page. People know that if they get
confused using your website, they can visit the home page to get their
bearings again. (By the way, www.example.com is a website that’s set aside
by the Internet authorities purely for use in examples just like this.)

Start building your website by creating the HTML file for the home page.
Open Leafpad and use the File menu to save a file called index.html inside
your website folder. We chose that name because most servers recognize
that a filename called index.html is the home page, so they send visitors
there if they don’t specify a particular page on your site.

Your first HTML code snippet
As a starting point for your HTML file, you use the text that will appear
onscreen. You then add special HTML code called tags, which help computers
to understand the structure of that content. They explain, for example, where
headlines and paragraphs start and finish. For that reason, two tags often
work in pairs: one at the start and one at the end of a piece of content, often
called the opening and closing tags. The process of adding tags to content is
called marking up, and the resulting code is often called markup.

It’s easiest to understand if you look at an example chunk of HTML. Figure 8-1
shows some HTML code in Leafpad for a heading and two paragraphs of text.
You can easily read the text here, but computers can understand the structure
of the content too. Each tag is enclosed in pointed brackets, so computers
can tell which bits are tags, and which bits are content to display on the web
page. The pointed brackets are found on the comma and period (full stop)
keys.

The <h1> and </h1> tags surround the heading (or headline) and are used
to indicate the most important heading in that web page or article. The <p>
and </p> tags are used to indicate where a paragraph begins and ends.

http://www.example.com/biography.html
http://www.example.com
http://www.example.com
http://www.example.com

135 Chapter 8: Building Your First Website with the Raspberry Pi

Figure 8-1:
Some

simple
HTML code
for a head-

ing and two
paragraphs.

Leafpad written by Tarot Osuji with artwork by Lapo Calamandrei

In each case, the closing tag is the same as the opening tag, except that it has
a slash in it so the browser knows it’s a closing tag and not a new opening
tag. You open a paragraph with <p> and close it with </p>, for example, and
this is a concept that’s widely used in HTML.

Type this code into your index.html file in Leafpad and then save the file.
Now go into your website folder in LXDE and right-click the index.html file to
choose to open it with Midori. You should see something similar to
Figure 8-2. The heading appears in large text and spacing is added between
the paragraphs.

Figure 8-2:
Some

simple
HTML code
for a head-

ing and two
paragraphs.

 The Midori browser is written by Christian Dywan with artwork by Nancy Runge

 A couple of points to note: First, don’t confuse the appearance of a web page
with its structure. You can’t just use big text in place of a proper heading, and
the <h1> tag shouldn’t be used just to make text bigger, either. It means much
more than that. Search engines use the heading tag to help them understand
what a web page is about in order to send the right people there, for example.
Some visually impaired people use screen readers, devices that read web
pages aloud, and these devices rely on well marked-up headings to help users
jump to the most useful bits of a web page. Most browsers make a <h1>
heading bigger on screen by default, but that’s just their interpretation of how
to indicate an important heading to you. It’s not what a heading is for.

136 Part III: Using the Raspberry Pi for Both Work and Play

The second key lesson here is that you can’t have absolute control over how
your web page looks. Try resizing your browser window, and you’ll see the
text reflows, so the heading and paragraphs take up more lines (see Figure
8-3). People have different sizes of monitors and might not want to use their
browser at full screen size anyway. The art of good web design is not to
impose a single layout on everyone, but to create something that adapts
easily and accept that people will have a different experience of your website
depending on their computer setup.

Figure 8-3:
The page

layout
changes

when you
resize the

browser
window.

 The Midori browser is written by Christian Dywan with artwork by Nancy Runge

 You can see the HTML behind any web page on the Internet. Visit a page in
Midori, and then right-click the page and choose View Source from the menu.
The HTML code opens in a new browser tab. Some pages can be extremely
hard to understand, but you should be able to find the text content of the web
page, and recognize some tags from this chapter sprinkled in there.

Structuring an HTML document
The previous code snippet was a good way to see how HTML tags work and
how your browser interprets them, but you need to include a lot more
information and markup before you can create a truly valid web page.

Figure 8-4 shows the HTML for a complete web page. An HTML document has
two main parts: the header (between the <head> and </head> tags), and the
body (between the <body> and </body> tags). The header is mainly used
for information about the web page, whereas the body contains the actual
content of the page.

137 Chapter 8: Building Your First Website with the Raspberry Pi

There are some new tags in Figure 8-4, but they all work in the same way as
the tags you’ve already seen, with one tag opening and another closing. As
you can see, it’s okay to have some tags inside some other tags. In this
document, all the other tags except the first one are inside the <html>
opening and closing tags.

You don’t need to memorize all these new tags, lucky for you, because
Figure 8-4 is a framework you can reuse and lightly modify for each new web
page you create. You need to change just two bits for each web page you
create:

 ✓ <title> and </title>: Between these tags is the page title, which
appears in bookmarks, search engine results, and in the title bar at the
top of the browser (or the page’s tab, if you’re using tabs) when you’re
visiting the page.

 ✓ <body> and </body>: Between these tags is where you put all your web
page content, so this section tends to be quite long when you’re working
with a real web page. In this example, you can see that the HTML snippet
we used previously is between the body tags.

 For those who want to understand it all, here’s a breakdown of the rest of the
document:

 ✓ <!DOCTYPE html>: This tells the browser which version of HTML
you’re using. Figure 8-4 uses the DOCTYPE for HTML5, which is simply
the word html. Older versions of HTML had long and complicated
document types, and you’ll still come across these from time to time.

 ✓ <html lang=”en”> and </html>: These tags are used to mark the
start and end of the HTML document. The opening tag also specifies the
language of the document, in this case, English.

 ✓ <head> and </head>: These tags mark the start and end of the header.
The only thing inside our header is the page title, but as you learn more
about HTML, you’ll come across more tags that belong here.

 ✓ <meta charset=”utf-8” />: This tag defines the character set that is
being used in the document, so that people using languages with different
alphabets can say which one should be used to interpret the page. For
this project, we use a character set called utf-8. You might notice that
there’s a slash inside the closing bracket on this tag. That’s because the
tag doesn’t surround anything, so it doesn’t have a separate closing tag.
In a previous version of HTML called XHTML, every tag had to be closed,
so when there was no separate closing tag, a slash was put inside the
closing bracket of the tag instead. Many people still consider this best
practice, but it’s optional.

138 Part III: Using the Raspberry Pi for Both Work and Play

Figure 8-4:
The

complete
code for
your first
website.

 Leafpad written by Tarot Osuji with artwork by Lapo Calamandrei

 We’ve used spaces to indent the lines inside the header and the body and
we’ve put blank lines around both those sections, so you can more easily see
where the header and the body start and end. People often do this: It makes
the HTML easier to read and edit. HTML ignores blank space, so it doesn’t
matter how much you use, or where you put it.

 It doesn’t matter technically whether your tags are in uppercase or lowercase,
but it looks tidier when it’s consistent and convention dictates lowercase for
all the tags except for the DOCTYPE.

When you open that page in your browser, it looks the same as our previous
code snippet did in the browser, except that you’ll see a title in the bar at the
top of the browser, and it’s a valid web page now. You could publish this on
the Internet if you wanted to, and it would work perfectly.

Because it looks just the same, you might wonder why we bothered with all
those other tags, then. The answer is that most browsers are quite forgiving
and will try to work around your mistakes and omissions, but you can’t rely
on that. You don’t know which browser a visitor might use to view your
website, so you need to provide all the correct markup, even if a page works
well on your Raspberry Pi. Other browsers or devices might not be able to
cope with an invalid HTML document as well as Midori can.

Formatting Your HTML Content
After you have the framework in place to build your web page, it’s time to
consider how to format the text and images there.

 In each case, the content and its formatting should be put between the
<body> and </body> tags of your web page.

139 Chapter 8: Building Your First Website with the Raspberry Pi

Adding additional headings
We used <h1> and </h1> to mark up the most important heading on the
page, but we can have subheadings on the page too, marked up with <h2>
and </h2>.

Our web page has two subheadings, for a section about Sean’s latest trip and
for a section of travel photography tips. You can mark these up like this:

<h2>My latest trip</h2>
<p>Paragraph for the latest trip section goes here</p>
<p>Second paragraph in latest trip section</p>

<h2>My top tips for travel photography</h2>
<p>Top tips go here</p>

You can add more subheadings too. If you want to subdivide the latest trip
section or the top tips section with headings, use <h3> tags to mark up the
headings inside it. If you have a particularly complex document, you can use
heading levels all the way down to <h6>, but it’s probably smarter to look at
reorganizing that information so the web page isn’t so long.

Adding images to your web page
Pictures are a great way to liven up a web page and help you to get your
message across. We’re going to use two pictures on this page: a wide panoramic
shot as a banner across the top to give the site a visual identity, and a photo
taken on Sean’s latest trip, which will go in the part of the page devoted to
his travels.

To add an image to your web page, insert a tag in your HTML document that
tells the browser where to find the image and what its filename is. You also
need to tell it how big it is and provide a short description of it. Here’s the
image tag for the banner picture:

<img src=”images/banner.jpg” width=”800” height=”127”
alt=”panoramic photo overlooking a valley in
Spain” />

This tag looks a bit more complicated than the others you’ve used so far
because it contains additional information, but it’s not that complex when
you break it down. The extra information is formatted with a short word that
explains what kind of information it is, an equal sign, and then the information
itself between double quotes. Additional pieces of information like this in a
HTML tag are known as attributes. The attributes in the image tag are

140 Part III: Using the Raspberry Pi for Both Work and Play

 ✓ src: This is short for source and tells the browser which image to use,
and where it can find it, in our example the image called banner.jpg in
the folder called images. If the image had been in the same folder as the
HTML file, we could have put the filename only here, and if it had been
in a folder above the current folder, we would have used the source ../
banner.jpg. (For more guidance on using paths and filenames, see
Chapter 5.) We can also put a link to an image on the web if we include
its full website address, starting with http://; for example, http://
www.example.com/testimage.jpg. You should avoid using images
from others’ websites without permission, however, because it steals
their bandwidth (they might have to pay extra to serve the image to
your visitors) and it’s an infringement of copyright.

 ✓ width: This tells the browser how wide the image should be shown on
screen, measured in pixels. A pixel is the smallest dot the screen can
display, and you’ll develop an instinct for the right size to use images
as you build sites. My screen resolution is 1024×768, which means there
are 1024 pixels horizontally and 768 pixels vertically. If the image file is
wider or thinner than the size specified in the tag, the browser
resizes the image. You should avoid using image files that are larger
than their display size, however, because the browser still has to
download the whole image and that can slow down your website. Take
particular care with photos from your digital camera, which can be huge.

 ✓ height: This tells the browser how tall the image should be on screen,
measured in pixels. Again, it is resized by the browser if necessary.

 ✓ alt: This is short for alternative text and it provides a short description
of the image that is used if the image can’t be shown or seen for any
reason. It helps visually impaired web users to understand visual
content, helps search engines to understand what images contain,
and also helps people with slower computers, like the Raspberry Pi.
Someone using the Dillo browser (see Chapter 4), for example, might
switch off images to speed up their browsing. They just see the alternative
text you’ve provided for each one instead. Writing good alt text is an
art form in itself, but the key thing is not to try to describe the image,
but to try to convey its meaning instead. For example, it’s okay to say
“Google logo” without having to describe what it looks like. The alternative
text is only shown when images aren’t available, so it shouldn’t contain
any additional information not in the image. Keep your alt text short:
Remember that in some cases it’s going to be read aloud by a screen
reader, and images are rarely the most important content on the page.

 Images can be slow to download, so make sure you use them sparingly. It’s
better to use a few well-chosen pictures that help you to tell your story,
than to splash decorative eye candy everywhere. Pictures that load almost
instantly from your SD card on your Raspberry Pi might take a long time to
download over the Internet when your website goes live. Only .jpg and .gif
format images work reliably across all browsers. See Chapter 7 for advice on
changing an image’s format and resizing it so it’s a suitable size for use on
your web page.

141 Chapter 8: Building Your First Website with the Raspberry Pi

 If you need to use the same image on different web pages, reuse the src part
of your image tag. If you reuse exactly the same copy of an image, the visitor’s
browser downloads the image the first time, and then reuses it without
downloading it again the second time. That can make your website much
faster, especially if you have logos or other design features that appear on
every page. It also saves space on the server if you’re only storing one copy of
each image.

Adding links in your web content
To enable your visitors to find your other web pages, you need to add in links
to them. To add a text link to your web page, you write your text and then
surround it with so-called anchor tags (abbreviated to just ‘a’ in HTML) like
this:

See my photos

This HTML snippet shows the words See my photos onscreen, and when you
click them, you are taken to the web page photos.html, which is stored in the
same folder as the current web page. The link is usually shown as underlined
text by default, but you can change its appearance using CSS, as you’ll see
later in this chapter (see “Formatting your text”).

Search engines use the text in links to understand what a web page you link
to is about, and visually impaired web users sometimes summarize a page by
just listening to the text of all the links on the page to hear what they can do.
For those reasons, your link text must be meaningful and descriptive and not
just say Click Here or something similar that makes no sense in isolation.

You can put the address of any web page or website in the href attribute, so
you can create a link to the Google website like this:

Visit Google

You can link to a specific page on a specific website too, like this:

Visit the
gallery

 You can visit a page in your browser and then copy the address from the
address bar (using Ctrl+C) to paste it into your HTML code (with Ctrl+V).

Don’t forget the http:// at the start: you don’t usually need it when you
visit a page in your browser, but your links won’t work without it.

Sometimes you might want to use an image instead of text as a link. You can
do that by wrapping your link tag around your image tag, like this example

142 Part III: Using the Raspberry Pi for Both Work and Play

that turns the Amazon logo (stored in your website’s images folder) into a
link to the Amazon website:

<img src=”images/
amazonlogo.gif” width=”150” height=”75”
alt=”Visit Amazon” />

 If you want to invite people to send you their thoughts, you can create a
link to open someone’s e-mail program with a blank message that’s already
addressed to you. Use code like this:

Email me!

Just replace the fake e-mail address of sean@example.com with your own
address. Note, though, that e-mail addresses on websites attract a lot of
spam, so you are generally better off not sharing your main personal e-mail
address.

Formatting lists
Lists are used more than you might think to communicate information, so
there’s a standard way of formatting them using HTML.

There are two different types of list: an ordered list and an unordered list.
An ordered list is used for items that must be in a particular order, such as
step-by-step instructions for putting up a shelf. An unordered list is used for
items that could be in any order, such as a checklist of things to pack for a
holiday. Ordered lists are shown onscreen with a number beside each item,
and unordered lists appear with a bullet point beside them, although you
can use CSS to change the presentation of lists, as you will see later in this
chapter (see “Styling lists”). You can use links or any other HTML in each list
item.

This web page has two lists on it. The list of photography tips would be an
unordered list because the tips make sense in any order. Its HTML looks like
this:

<h2>My top tips for travel photography</h2>

 Always have a camera with you, even if it’s a small

pocket one.
 Whenever possible carry a spare fully-charged

battery.
 Label your SD cards so you can tell them apart.

143 Chapter 8: Building Your First Website with the Raspberry Pi

You use the and tags to mark the start and end of the unordered
list, and the and tags to mark the start and end of each list item.
When you put this HTML in your web page and view it in your browser, the
tips have bullets beside them, as you can see in Figure 8-5.

Figure 8-5:
An unor-

dered list in
the Midori

browser.

 The Midori browser is written by Christian Dywan with artwork by Nancy Runge

The other list on this web page is less obvious. Most websites have a
navigation bar (or navbar) on every page, a standardized set of links that
enable you to move around all the pages on the site. From the point of view
of HTML, that’s just a list of links. So to make a navigation bar, create a list to
the different web pages the site will have, like this:

 Home
 Galleries
 Photography tips
 Contact

The first link is a link to the page they’re already on, which might seem
illogical, but it’s less confusing to have exactly the same set of links on every
page, than it is to have links appearing or disappearing in the navigation bar
from page to page.

For now, that will look like a bulleted list at the top of the web page, but you
can transform it into a proper navigation bar using CSS later.

 If you want to create ordered lists, just change the and tags for
 and ones. When you look at an ordered list in your browser,
you’ll see the bullets are replaced with numbers. You can test that by editing
your unordered list temporarily to make it an ordered list, saving it and
viewing the page in your browser.

144 Part III: Using the Raspberry Pi for Both Work and Play

Additional formatting tags you can use
Some additional simple tags you might find useful to format your page
content are

 ✓
 is used to start a new line, for example in a poem. You should
use the <p> tag to start a new paragraph, and should only use

when you need to start a new line within a paragraph, such as in a poem
or song lyric. If you’re using this tag properly, you’ll use it rarely.

 ✓ <hr /> is short for a horizontal rule and can be used when there’s a
change of theme between paragraphs. Conceptually, it’s a bit like those
flowery dividing lines you sometimes see between the scenes within a
chapter in a novel.

 ✓ and surround text you would like to emphasize. This text
usually shows up as italics, but remember the key thing is the emphasis
and not its onscreen appearance.

 ✓ and surround text that you want to mark as
important. In the browser, this usually shows up as bold text, but you
can make any text bold, so the important thing is that you want to
convey importance.

 ✓ Lots of tags are used together to format tables of information, such as
timetables, calendars, accounts, or any other information you might lay
out in a grid or put in a spreadsheet. We don’t have space to cover them
here, but you can search online for information about the <table>,
<caption>, <tr>, <th>, and <td> tags.

 ✓ Tags exist for creating onscreen forms, which enable you to accept
input from your visitors. There are tags for creating text boxes people
can type their names or search queries into; menus for choosing one or
more items; square check boxes; and round radio buttons, which enable
just one item from a group to be chosen. Search online for <form>,
<label>, <input>, <textarea>, <select>, and <option> tags for
more information. Note, though, that these won’t actually do much
unless you set up a special program on your server to receive the
information, which is a complex process.

 ✓ You can add comments to your web page that won’t be shown on screen
but can help you to remember what the different bits of the page are for.
Put your comments between <!-- and -->, like this:
<!-- Links to friends’ blogs here -->

 HTML has been around a long time, so when you’re researching it online,
make sure what you’re reading is current. In particular, a lot of tags that were
used in the early days for controlling the appearance of a web page are now
deprecated, which means they’ve been declared obsolete and shouldn’t be
used any more. Instead, use CSS to manage the appearance of your page.

145 Chapter 8: Building Your First Website with the Raspberry Pi

Validating Your HTML
You can test your web page in your browser, of course, but just because a
web page works in your browser it is no guarantee it will work in someone
else’s. The best way to be sure that it will work is to try your code in a
validator, which checks for any HTML errors.

The W3C (World Wide Web Consortium), which is responsible for updates
to web standards, including HTML, has a validator at http://validator.
w3.org. You can find an independent validator at http://validator.nu.
Both check your code and let you know where you’ve made any errors in a
matter of milliseconds. You might sometimes see warnings that you don’t
need to worry about, but these tools are a great way of finding tags that are
misspelled or misplaced.

Using CSS to Change Your
Page’s Appearance

So far, then, we’ve built a HTML page that includes marked-up text with
headings, links, images, and lists. The problem is that it looks rather dull and
it’s hard to read. Figure 8-6 shows the example web page so far, and it has to
be said, it’s a bit of a mess. But that’s okay. That’s what CSS is for. As we’ll
show you, you can use it to add a splash of color, change the fonts, and
generally tidy up your layout.

 If you want to try this, but haven’t made your own HTML yet, you can use the
example file from the book’s website. For more on the book’s companion web-
site, see the Introduction.

Adding a style sheet to your web page
Our style instructions are stored in a style sheet, which is a separate text file
to the HTML file. We need to tell the browser which CSS file goes with our
HTML file, so in your HTML file, between the <head> and </head> tags, add
the following:

<link rel=”stylesheet” href=”main.css”>

http://validator.w3.org
http://validator.w3.org
http://validator.nu

146 Part III: Using the Raspberry Pi for Both Work and Play

Figure 8-6:
Some well

marked-
up HTML

without any
CSS.

 The Midori browser is written by Christian Dywan with artwork by Nancy Runge

Your HTML header might look something like this now:

<head>
 <meta charset=”utf-8” />
 <title>Raspberry Photography: Travel photography site
 </title>
 <link rel=”stylesheet” href=”main.css”>
</head>

Save your HTML file and use the File menu in Leafpad to create a new file.
Save it into your website folder with the filename main.css. This is where we
will put our style instructions.

The beauty of this is that you can use the same style sheet for different HTML
pages, and it only needs to download for the first page. The second page
reuses the copy of the CSS file in the browser’s cache, which is where your
browser stores your recently viewed web pages. That means your web page
is faster than it would be if you had to download the design with every page,
and you can easily redesign your site too. Just modify the style instructions
in main.css, and the new look will ripple across all the pages that use it,
without you having to touch a single HTML file.

147 Chapter 8: Building Your First Website with the Raspberry Pi

Adding a touch of color
The quickest way to see how CSS works is to try an example. In your main.css
file, type this line and then save it:

h1 { color: red; }

When you reload your web page (press F5 in Midori if it’s already open
there), the text of your h1 heading is now red.

That simple example embodies how CSS works. You start off by telling the
browser which tags you want to apply a style to (the h1 tag in this case), and
then in curly brackets, you list the style instructions. Each instruction starts
by saying what aspect of the style should be changed (known as the property,
and in this case, it’s the color). Next is a colon, and then what the style
should be changed to (known as the value, which is red in this example).
Finally, each instruction must end with a semicolon.

 Take care with how you punctuate your CSS. Even in that short example, a
couple of things could go wrong. It won’t work if you use normal curved
brackets (parentheses), or the pointy angle brackets you use in HTML, so
make sure you use the curly brackets. Pay attention to the colon and the
semicolon too. You need to get the right ones in the right places for it to work.
If something’s not working right, a missing semicolon is often the culprit!

We can add a background color, too, like this:

h1 { color: red;
 background-color: yellow; }

 Even if you’re a Brit (like us), you need to spell color the American way in
your CSS!

As in HTML, it doesn’t matter how you space out your CSS, but you can do
yourself a favor and make it easier to read by including some white space and
starting a new line for each instruction, as we have here.

There are a number of colors that you can reference by name (including
black, white, red, green, blue, gray, purple, and yellow), but other than black
and white, they’re too bright and cartoonish for use in most cases. The best
way to specify colors is by giving a color number, instead of a color name.
That enables you to use a more subtle color palette and gives you access
to colors for which there probably aren’t even names (unless you work at a
particularly comprehensive paint factory, perhaps). Here are some example
color numbers:

148 Part III: Using the Raspberry Pi for Both Work and Play

 ✓ #FFFFFF: White

 ✓ #000000: Black

 ✓ #FF0000: Red

 ✓ #0000FF: Blue

 ✓ #FFFF00: Yellow

 ✓ #008000: Green

You might be surprised to see letters mixed up in the color numbers, but
that’s because the colors are expressed using a number system called
hexadecimal that goes beyond the numbers 0 to 9 and uses the letters A, B, C,
D, E, and F too. When you count in hexadecimal, you go: 1, 2, 3, 4, 5, 6, 7, 8, 9,
A, B, C, D, E, F, 10. The 10 represents 16 in our normal counting system,
and 11 represents 17. Here are the three things you need to know about
hexadecimal:

 ✓ As in the normal counting system, numbers to the left are bigger. For
example, using our normal counting system, in the number 39, the 3 has
a higher value than the 9 because it’s in the tens column (it represents
three tens, which is 30). In hexadecimal, it’s the same. In the hexadecimal
number 7F, the 7 is worth more than the F because the 7 is in the 16s
column (it represents seven times 16, which is 112).

 ✓ The highest two-digit hexadecimal number is FF.

 ✓ If you’re using any letters other than A through F, you’ve made a
mistake.

The six-digit color number is actually made up of three small numbers
squashed together, each one being two digits. Those three numbers represent
the amount of red, green, and blue that should be in the color, taken from left
to right. So black is #000000 because there is no red, green, or blue. Blue is
#0000FF because there’s no red or green, but there’s the maximum amount
of blue. Yellow is #FFFF00 because yellow is made when you mix the
maximum amount of red and green, without any blue.

You can mix up your own colors. For navy blue, just use a bit less blue than
pure blue and try #000080. For vivid lime green, take the number for green
(#008000) and pump up the amount of green to maximum, giving the color
number #00FF00. You can use any valid numbers. #767676 is okay (and a
sort of silver), and so is #543ABC (a fetching shade of purple).

You don’t have to experiment too much. Lots of resources are available
online to help you find colors you can use, including www.colorpicker.
com, which works well on the Raspberry Pi and can generate a whole color
scheme from your chosen color. The color code for your chosen color is
shown at the top of the screen.

http://www.colorpicker.com
http://www.colorpicker.com

149 Chapter 8: Building Your First Website with the Raspberry Pi

You use your color codes in place of the color names in your CSS, like this:

h1 { color: #FF0000;
 background-color: #FFFF00; }

Formatting your text
You can change a few properties to alter how your text looks on the screen.
They are

 ✓ font-family: The font used to display a web page depends on what
fonts the visitor’s computer has installed. You use this property to
specify a list of fonts you’d prefer to use for the text, starting with your
first preference, and working your way down to last resort if your
earlier choices aren’t available. You don’t know what fonts someone has
on his or her computer to view your web page, and the fonts on your
Raspberry Pi won’t be on most computers. It’s good then that you can
also specify a generic type of font to be used, such as serif (which means
there are little ticks on the ends of the lines in letters to make them
easier to read), sans-serif (smoother letters, without those details), or
monospace (where every letter has the same width).

 ✓ font-size: Use this property to change your text size. Users should be
in ultimate control of how big the text is, using their browser settings,
but you can specify how big you want a piece of text to be, relative to
what it would otherwise have been. There are a couple of different ways
to specify this, but the simplest is to use a percentage (such as 150%).

 ✓ font-style: Set this to italic to make text italic. If you have italic
text that you want to make non-italic, set the font-style to normal.

 ✓ font-weight: Set this to bold to make text bold. If you have text that
is bold that you want to make unbold, set the font-style to normal.

 ✓ text-decoration: Set this to underline to underline text, and to
none if you don’t want text to be underlined. Because website visitors
expect underlined text to be a link, it’s rarely a good idea to underline
any other text.

 ✓ text-align: Give this property a value of left, right, center, or justify to
specify how text is aligned.

 ✓ text-indent: Use this to set an indent for the first line of text. A value
of 1em indents the first line by the width of a letter m. You can use other
numbers too, such as 0.5em, 1.5em, or 2em.

You can format text lots of different ways using these. For example, if you
wanted to make all the text on your page serif, you would use

body { font-family: serif; }

150 Part III: Using the Raspberry Pi for Both Work and Play

If you wanted to specify that your page should be displayed ideally with the
font Liberation Serif (which you might have on your Raspberry Pi if you use
Libre Office, see Chapter 6), but with any other serif font if that one is not
available, use

body { font-family: “Liberation Serif”, serif; }

Note that because the font name has more than one word in it, we use
quotation (speech) marks around it. Between the different font names or
types, we use a comma.

To make your paragraphs all justified (so that left and right edges are both
straight), but with an indent in the first line, use

p { text-align: justify;
 text-indent: 0.5em; }

To turn off the underlining on links and make them bold instead, use

a { font-weight: bold;
 text-decoration: none; }

Styling lists
You can change the format of the bullets or the numbers that are used in
front of list items, which is a nice way to give a web page a bit more character.
Here’s how:

ul { list-style-type: circle; }

That turns the bullets next to the photography tips into hollow circles. The
other values that you can use with list-style-type are

 ✓ disc: A filled-in circle

 ✓ circle: A hollow circle

 ✓ square: A square bullet

 ✓ decimal: 1, 2, 3, and so on

 ✓ lower-roman: i, ii, iii, and so on

 ✓ upper-roman: I, II, III, and so on

 ✓ lower-alpha: a, b, c, and so on

 ✓ upper-alpha: A, B, C, and so on

 ✓ url(imagename.gif): An image of your choice as the bullet

To change the look of an ordered list, change the ul to ol in the CSS code.

151 Chapter 8: Building Your First Website with the Raspberry Pi

Adding borders to your content
You can put a border around different parts of your web page, which is a
good way to mark out where the parts begin and end, and to draw attention
to the most important elements. The eight different styles of border you can
use are shown in Figure 8-7.

Figure 8-7:
The borders

in Midori.

 The Midori browser is written by Christian Dywan with artwork by Nancy Runge

Here are the three properties of the border that you can control:

 ✓ border-width: This specifies the size of the border in pixels. For a
thin line, use 1px. For something chunkier, use 4px. Higher values are
possible, but rarely look good.

 ✓ border-style: This defines what the border will look like. Most of
the time, you will want to use solid, and that’s assumed by default.
The other options are dotted, dashed, double, groove, ridge, inset, and
outset, shown in Figure 8-7.

 ✓ border-color: You can specify a color name or color number for
border (see the section “Adding a touch of color” earlier in this
chapter).

Try adding a thin black border around the h1 and h2 headings. You can style
them both at the same time by listing them together, separated by a comma,
before the curly brackets, like this:

h1, h2 { border-width: 1px;
 border-style: solid;
 border-color: black; }

You can use a shorthand form for styling the border, too, which replaces
those three instructions with a single one like this:

h1, h2 { border: 1px black solid; }

152 Part III: Using the Raspberry Pi for Both Work and Play

 If you don’t want a border on all sides, you can specify which side you want it
(top, bottom, left, or right), like this, which creates a nice horizontal line under
your heading:

h1, h2 { border-bottom: 1px black solid; }

Adding spacing around and
between page elements
What if the border is a bit too close to the text? You can fix that. There are
two different types of spacing you can control and every element on your
web page has them both. They are

 ✓ padding: This specifies how much space there is between a piece of
content and its border. To put some air between the heading text and
the border, setting the padding to 4px is about right. The padding is the
same color as the background color for whatever you’re styling.

 ✓ margin: This controls how much space there is between something’s
border and whatever else is near it on the page. If text is running too
close to a picture, for example, just increase the picture’s margin, and
that adds some empty space around it.

As with the border, you can specify different margins and padding values for
the left, right, top, and bottom of whatever you’re applying the style to. To
add a margin of 8px to the left of a picture and a space of 4px between the
picture and its border, for example, you would use

img { margin-left: 8px;
 padding: 4px; }

Using what you know about color, text, lists, borders, and spacing, you can
now create a unique look for your content, but there are still some unan-
swered questions. How do you create the navigation bar, for example, and
how can you make the page easier to read? The next sections build on what
you’ve just learned about CSS and HTML to show you.

Applying Styles to More Specific
Parts of the Page

To give you an idea of the web page design we’re aiming to create, take a look
at Figure 8-8, which shows our finished web page.

153 Chapter 8: Building Your First Website with the Raspberry Pi

What you’ve learned about CSS so far is fine if you want all your paragraphs,
headings, and images to be styled the same. Often you do, because inconsis-
tency is distracting and looks untidy. But in the case of our example, we’ve
got two very different images on the page: one that is used as a banner across
the top of the page, and a smaller one in the section about Sean’s latest trip.
We’ve got two quite different lists too: one that will act as a navigation bar,
and one that’s a collection of top tips. How can we give each of these pieces
of content its own style instructions?

When you’re doing anything creative on a computer, there are often several
solutions, and this situation is no exception. Consider styling the image in
the middle of the page first. We want it to sit on the right of the page, with
the text flowing around it on the left (as you can see in Figure 8-8). You can
use a CSS property called float to achieve that, and using a left margin to
put some empty space between the text and the picture is also a good idea.
Here’s the CSS for the tag:

img { float: right;
 margin-left: 8px; }

Figure 8-8:
Our finished

website
design.

 The Midori browser is written by Christian Dywan with artwork by Nancy Runge

154 Part III: Using the Raspberry Pi for Both Work and Play

But you don’t want the banner image at the top of the page to float or have
that margin. One solution is that you can create some style instructions and
give them a name of your own choice. This is called creating a class, and a
class name starts with a period (full stop) in your CSS, like this:

.rightpic { float:right;
 margin-left: 8px;}

Now, go back to your HTML and edit the tag for the picture to add in
class=”rightpic” (with no full stop this time), so the tag looks like this:

<img src=”images/tramsign.jpg” width=”350” height=”233”
alt=”Illuminated tram sign saying ‘Pleasure
Beach’” class=”rightpic” />

Those style instructions will only apply to that one image (tramsign.jpg).
The drawback of this approach is that if you have lots of images you want to
follow those style rules, you’ll have to go back and edit your HTML a lot to
add in the class names. A better solution is to indicate in the HTML where
different parts of the page begin and end, and then to target your style
instructions to only the images (or headings, or paragraphs) in a particular
section. You can indicate where part of the page begins and ends using
<div> tags, like this:

<div class=”article”>
… your article content, including headings and images goes

here …
</div>

In your CSS, you can then direct style instructions only at images that are
between those <div> tags, like this:

.article img { float: right;
 margin-left: 8px; }

When we list classes or tags like this with a space between them, it means the
style rules should only apply when the classes or tags occur in that
combination in the HTML, so in this case, when an is inside the article
class. The rules won’t apply to anything else inside the article class, or to any
images that are outside it.

You can include as many images as you want between those <div> tags,
and they will all float on the right, without you having to edit a class into the
 tags in the HTML. The banner image at the top of the page sits outside
the <div> tags, so it doesn’t pick up those style instructions.

 Pay attention to the punctuation! If you separate the tags or classes with a
comma, it means you want it to apply to either of them. For example, using

.article, img { float: right; }

155 Chapter 8: Building Your First Website with the Raspberry Pi

would make the article <div> and all the images on the page float on the
right. Not what you intend here, at all!

Creating a Navigation Bar from a List
At the top of our web page is a list of links. We want to turn them into a
navigation bar, a set of horizontal buttons. But we only want to make this list
a navbar: We don’t want to affect other links or lists on the page. The first
step is to add <div> tags to the HTML file to mark where the navbar starts
and ends, like this:

<div class=”nav”>

 Home
 Galleries
 Photography tips
 Contact

</div>

We’ve used the class name nav for the navbar, so in the CSS file, add the
following line, which makes the list items appear side by side, instead of
starting a new line for each one:

.nav ul li { display:inline; }

Now you can style the links inside the nav class so they look like buttons.
That just means turning off the underlining on the link text, making the text
bold, using a light color on a dark background (we’ve chosen white on blue),
and adding some padding to make the link appear bigger, like a button.
Here’s the CSS code you need:

.nav a { text-decoration: none;
 font-weight: bold;
 color: white;
 padding: 8px;
 background-color: blue;
 border: 1px blue solid;
 border-radius: 16px; }

The last line makes the corners of the buttons rounded. It doesn’t work on
some other browsers (including Netsurf on your Raspberry Pi), but browsers
that don’t understand it just ignore it and show normal square corners
instead, so it’s safe to include it. Online, you can find workarounds you can
use to make rounded corners work on more browsers.

You now have a working navigation bar created from a list, which you can
see in Figure 8-8. You might notice, however, that it’s not lined up with the

156 Part III: Using the Raspberry Pi for Both Work and Play

rest of your content, and it’s slightly indented. That’s because a list has some
padding on it usually, so you need to remove that. Here’s how:

.nav ul { padding: 0px; }

Adding the Finishing Touches
If you’ve been following throughout the chapter, you now have a HTML page,
where you can style the headings with borders, float the image in the content
on the right, and turn the list at the top into a navigation bar, with big blue
buttons to help people get around the site.

There are a few finishing touches to add to the web page. With computer
monitors being so large today, it’s a good idea to limit the width of the page
so that visitors can read it without losing their place. Immediately inside the
<body> and </body> tags in the page’s HTML file, we’ve added a <div>
called wrapper:

<body>
<div class=”wrapper”>
… all web page content here …
</div>
</body>

This has the effect of putting a box around all the web page content that we
can style. In the CSS, we set its width to 800 pixels, and added a border so it
looks like a box onscreen too. We also set the left and right margins to
automatic, which has the effect of centering the content on the page. Here’s
the CSS code:

.wrapper { margin-left: auto;
 margin-right: auto;
 width: 800px;
 padding: 16px;
 border: 1px black solid;
 background: white;}

When the <body> background is set to gray and the wrapper <div> has a
white background, it makes the web content stand out on the screen, as you
can see in Figure 8-8.

157 Chapter 8: Building Your First Website with the Raspberry Pi

Publishing Your Web
Page on the Internet

Congratulations! You’ve built your first web page, and you can use it as a
template to build the rest of your site. You can create the other HTML files
you need, using your index.html file as a starting point so you can reuse the
banner and navigation bar, and any other content that you want to put on
every page.

As we said at the start of this chapter, if you want people to view your
website over the Internet, it needs to be hosted on a server. Most people rent
web hosting services from companies like Go Daddy (www.godaddy.com),
1 and 1 (www.1and1.com), or Fasthosts (www.fasthosts.co.uk). They
will sell you your own domain name (such as yourname.com or yourname.
co.uk), which people use to visit your site and link to it. You need to
re-register the domain name every few years.

After you have set up your hosting account, you need to copy your website’s
files from your Raspberry Pi to the server. You can use the FileZilla program
to do this, which you can install from the command line (see Chapter 5) by
using

sudo apt-get install filezilla

Figure 8-9 shows FileZilla in action. Where it says host at the top of the
screen, enter your host name. In the next boxes, enter your username and
password. Your hosting company can give you all of these.

The panels on the left show your Raspberry Pi, and the panels on the right
show your server. You use the boxes in the top half of the screen to find the
folders where your website is stored on your Raspberry Pi, and the folder
where you want the files to be stored on your server (again, your host can
advise you on this). The lower half of the screen shows the files in those
folders. To copy from your Raspberry Pi to your server, just select files on
the left and drag them into the right panel, or right-click filenames in the left
panel and click Upload in the menu that appears.

http://www.godaddy.com
http://www.1and1.com
http://www.fasthosts.co.uk

158 Part III: Using the Raspberry Pi for Both Work and Play

Figure 8-9:
Using

FileZilla to
copy your
website to

your server.

 © Tim Kosse

Taking It Further
We hope this chapter has inspired you to look further into web design. It’s
taken you from your first HTML tag, through to marking up your web page,
styling your document (including a navbar and floating images), and finally
publishing your site, all using free software on your Raspberry Pi.

This was a necessarily short introduction. HTML has forms, tables, and new
structural tags in HTML5 to save you from needing quite so many <div>
tags. CSS can do much more too, including background images, multicolumn
layouts, and buttons that light up when the mouse rolls over them. Finally,
there’s JavaScript, which enables you to make web pages change over time
and respond to what the visitor does.

As you dig deeper into web design, you might want to use more specialist
tools that make you more productive. Bluefish is a free HTML editor that
enables you to enter tags using simple buttons or menus and helps you to
complete the tags you’re typing. You can install it (see Chapter 5) using

sudo apt-get install bluefish

Chapter 9

Playing Audio and Video
on the Raspberry Pi

In This Chapter
▶ Using Raspbmc to turn your Pi into a media center
▶ Playing music and video stored on USB devices or networked devices
▶ Using add-ons to play streaming media
▶ Viewing photos using Raspbmc

I
f you’re tired from all that writing, image editing, and website designing,
why not kick off your shoes and relax with a movie? In this chapter, we

show you how you can turn your Raspberry Pi into a media center, capable
of playing high definition video files.

To do that, we use dedicated media player software called Raspbmc. You
can use it to play music and video you have on storage devices connected to
your Raspberry Pi, or to play back media from other devices on your home
network. You can also use it to play back streaming TV shows and radio
stations from the Internet.

Because Raspbmc is a Linux distribution and not a package, it replaces
everything else on the SD card. I recommend you keep an SD card with a
standard Linux distribution you can use for programming and other creative
pursuits, and set up a separate SD card to use with Raspbmc.

At the end of this chapter, we’ll also show you how to play music on your
Raspberry Pi in the desktop environment.

 The audio drivers have a bug at the moment, which means you might hear a
pop or crackle at the start and end of audio playback (in the desktop
environment or Raspbmc). This problem doesn’t affect the Raspbmc video
playback, however.

160 Part III: Using the Raspberry Pi for Both Work and Play

Setting Up Raspbmc
The Raspberry Pi can play back full HD 1080p video, which makes it ideal as
the heart of a cheap and low-powered media center. Raspbmc is a Linux
distribution that turns your Raspberry Pi into a media center, using a version
of the XBMC software that powers some set-top boxes and smart TVs. The
distribution has been created by Sam Nazarko and is open-source.

 You can install Raspbmc two different ways. You can download a complete
image from the Raspbmc website and flash the SD card with it, using a similar
approach to the one covered in Chapter 2. You should only do this if you don’t
have a network connection on your Raspberry Pi because you might not get
the latest updates to the software this way.

If you do have a network connection on your Raspberry Pi, we recommend
that you flash a small installer program onto the SD card. When you insert
the SD card in the Raspberry Pi and switch it on, this program downloads
and installs the latest version of Raspbmc. As a result, this method ensures
you have the latest bug fixes and improvements.

A friendly installation program available for Windows, Mac OS, and Linux
automates the work of copying the installer program to the SD card. The
Mac OS and Linux programs are scripts you run from the shell prompt, and
the Windows program uses a simple menu, as you can see in Figure 9-1. On
Windows, you just download the program from the Raspbmc website, insert
your SD card, and run the program. You can find installation instructions and
the downloads you need at www.raspbmc.com.

 Make sure you’re writing to the correct storage device because anything else
on that storage device will be wiped out. As a precaution, disconnect any
removable media that you might otherwise confuse with your SD card before
you begin the installation process.

After you’ve set up the SD card, insert it in your Raspberry Pi and switch
on the power (see Chapter 3). Raspbmc detects your network connection
and then downloads and installs its software. During this process, it reboots
several times, so don’t panic when the screen blacks out. The process took
about 15 minutes on Sean’s network connection, but might take up to
25 minutes.

http://www.raspbmc.com/

161 Chapter 9: Playing Audio and Video on the Raspberry Pi

Figure 9-1:
The

Raspbmc
installation

program
running on
Windows.

 Sam Nazarko

Navigating Raspbmc
After the installation is complete, your Raspberry Pi boots up into the Home
screen, shown in Figure 9-2. Raspbmc has inherited XBMC’s simple interface,
which is designed to work with only a remote control. In this chapter, we
assume you’re using a mouse, but we give you some pointers on using
remote controls in the section “Using a Remote Control” later in this chapter.

The menu bar across the middle of the screen scrolls left and right as you roll
your cursor over it. It has the following options: Weather, Pictures, Videos,
Music, Programs, and Settings. When you hover your mouse pointer over one
of these items, a submenu of related shortcuts appears underneath the main
menu bar. The Music submenu, for example, enables you to jump straight to
artists, albums, or songs. To select an item in the main menu or the submenu,
simply click it.

Figure 9-3 shows the Weather screen, which displays temperature, humidity,
and wind information, as well as satellite images and weather alerts.
Although you may not consider this to be a traditional function of a media
center, it’s nicely done.

162 Part III: Using the Raspberry Pi for Both Work and Play

Figure 9-2:
The Home

screen
and menu

options.

 Sam Nazarko

Halfway down the screen on the left is a tab, a visual hint that there’s a menu
offscreen. When you move your mouse pointer to the left of the screen (not
necessarily over the tab), the View Options menu slides out. In the Weather
report, you can use this menu to choose the source of your weather forecasts
and the type of forecast that’s displayed (10-day, 36-hour, hourly, or weekend).
You can also set up to three locations, which is great for keeping track of the
weather in your holiday destination. To hide the View Options menu again,
roll your mouse cursor off of it.

At the bottom right of the screen is a button to take you back to the Home
screen, with a picture of a house on it, and a Back button to return to the
previous screen. If there’s too much information for Raspbmc to display on
a single screen, you’ll also see the page number in this corner. In Figure 9-3,
we’re looking at page one of three. To scroll down, click and drag the
charcoal-colored scrollbar in the forecast pane on the right.

You navigate the other sections of Raspbmc in the same way you do the
weather. You’ll get used to the Home and Back buttons being in the bottom
right, but don’t forget about the View Options menu too.

 If a button isn’t working, check that you don’t have an unclosed window open
onscreen somewhere. You have to close any windows that pop-up before you
can use the Home button, for example.

163 Chapter 9: Playing Audio and Video on the Raspberry Pi

Figure 9-3:
My weather

forecast.
Hope it’s
brighter

where
you are!

 Home
Back

 Sam Nazarko

Adding Media
Before you can play music or video on your Raspberry Pi, or even look at
photos, you need to connect some content to your Pi. You can do this in
three different ways: plug a USB storage device into the Raspberry Pi;
connect to a storage device on your home network, or connect to a streaming
media source over the Internet.

Adding a USB device
If your media files are on a USB device, plug it into a spare slot on the
Raspberry Pi’s powered USB hub. A message appears in the bottom-right,
confirming that the USB device is being mounted, which just means it’s being
prepared so you can use it. After it’s been mounted, you can find the device
in the Music, Video, and Pictures menus.

164 Part III: Using the Raspberry Pi for Both Work and Play

Adding networked media
If you have a media server on your home network, you can also connect your
Raspberry Pi to that. For example, you might have a computer running media
server software to make its music files accessible to other devices over the
network, or you might have a router with a built-in media server so it can
share any files on USB devices you connect to it. These networked devices
most likely use the UPnP (Universal Plug and Play) standard.

You need to add the connected media device separately in each of Music,
Videos, and Photos, assuming you wish to use all three content types with it.
However, you only have to do this once for each content type, as Raspbmc
then remembers the device’s location, even after the Raspberry Pi reboots.

To add a new connected media source for music, click Music on the Home
screen, and then click Add Source, click Browse, choose the type of device,
and then select your connected device. Pictures are added in the same way.

To add a connected media source for video, it’s a bit different. Click Videos
on the Home screen, click Files, click Add Videos, and then click Browse and
choose your device type and then your device.

Using streaming media
You can also connect Raspbmc to streaming media sources, which means
the content flows into your Raspberry Pi over the Internet as you watch it
or listen to it. As a result, they only work when you have a good Internet
connection.

To do this, you use add-ons, which are third-party applications that access
sources of content online. The video add-ons, for example, include YouTube,
CBS News, and PBS. Music add-ons enable you to listen to Internet radio
stations and access additional functionality; — for example, a module that
provides new tools for creating playlists. You can use Picture add-ons to
directly access Internet picture libraries on your Raspberry Pi from the
Picasa and Flickr photo websites.

Some add-ons come pre-installed in Raspbmc, whereas others need to be
installed. Like all software, the availability of add-ons varies over time as new
services come online and older services disappear.

There are different add-ons available for Music, Videos, and Pictures, but
you install them in a similar way. From the Home screen, hover over Music,
Videos, or Pictures and then click Add-Ons in the shortcuts menu. Click Get

165 Chapter 9: Playing Audio and Video on the Raspberry Pi

More and you can scroll through a list of those available. Click one for more
information about it and to find the Install button. When you’re browsing the
list of add-ons, any already installed on your Pi will have Installed or Enabled
written next to them. Steer clear of add-ons that say Broken. These have been
flagged as not working and need to be fixed by their authors.

Playing Music
To get started with playing music, click Music on the Home screen. You can
use the panel on your left to browse your various music sources, and you can
then find individual songs by working through the directory structure, or by
browsing by album, artist, or genre where this is supported. As in Linux, the
two dots represent a folder’s parent folder, which moves you up a level in the
directory structure. You can see the two dots at the top of the panel on the
left except when you’re already at the root.

Figure 9-4 shows the music player in action. When music is playing, click the
Play button in the bottom left to open options to pause, rewind, fast forward,
skip track, shuffle, or repeat.

Figure 9-4:
Playing

music in
Raspbmc.

 Sam Nazarko

166 Part III: Using the Raspberry Pi for Both Work and Play

You can continue to browse your music while it is playing, and queue songs
or albums to play next by right-clicking them and choosing Queue Item.

 If you leave the player for a while, it switches into full screen mode. To return
to the Home screen, click the close button in the top right of the screen.

For more advanced features, including the ability to create playlists, you
can enable Library mode in the View Options menu on the left. This works a
bit like iTunes on the PC and Mac and stores information about your music
separately from the music itself. In Raspbmc, you can use the library to make
smart playlists, which are automatically generated from information about
the music, such as a playlist containing all your pop songs from the 1960s.

Library features, including the smart playlists, only work on music that has
been added to the library. To add a song, album, artist, or entire storage
device to the library, right-click it and then choose Scan Item to Library. Note
that this doesn’t actually copy the music itself into the library, just some
information about it. To turn off Library mode, so you can browse music that
isn’t in it yet, use the View Options menu again.

You’ll need to add an entry in the library before you can activate Library
mode for the first time.

 When you’re in library mode, you can only browse and play music that’s been
added to the library.

To create static playlists (of specific songs or albums), go into your music
device or library, click Playlists in the pane on the left, and then New Playlist.
The playlist window opens so you can browse to the songs you want, and
right click to add them. When you’re finished, click Save Playlist and follow
the instructions to name it and save it. To close the playlist window, right-
click when the mouse pointer is not over a file.

 Smart playlists can only contain songs that have been added to the music
library, but standard playlists can contain songs from any of your connected
media devices.

Playing Videos
Use the Videos option to view movies and other video media. Raspbmc
supports the H.264 video format to 1080p, which means you’ll be able to
watch most mp4, .m4v, and .avi files in high definition.

167 Chapter 9: Playing Audio and Video on the Raspberry Pi

 If you want to watch other formats, you might be able to buy a license from
the official Raspberry Pi website at www.raspberrypi.org. Licenses to
watch MPEG2 and VC1 format videos are available now and cost a couple of
pounds or dollars each. Each license is valid for one Raspberry Pi. To enter
your license number, go to the Home screen, click Programs, double-click
Raspbmc settings, click System Configuration, and scroll down to find the
option for the license key you’ve bought.

To play videos, click Files to display USB or other connected devices, browse
through the folders and find the video you want. Right-click the video’s name
for options like Resume Play, or to add to a queue or a favorites list. Click the
video name to start playing it. While the video is playing, it fills the screen, so
move the mouse to bring up the playback controls.

From the View Options menu, you can search for a specific file, or hide
videos you’ve already watched.

Viewing Photos
Click Pictures on the Home screen and you’ll see a simple file browser that you
can use to access your pictures. Raspbmc supports standard image formats,
including JPEG, bitmap, and TIFF, and generates thumbnails of your photos
and folders. Raspbmc also uses some of the tags from your photos to create
smart filters, so you can browse by folder, or by date or by camera used.

When you’re in a folder, open the View Options menu to choose the sort
order and to filter which files are displayed. You can also run a slideshow
from here, but if you want to remove the zany animation, you’ll need to go
to the Home screen, click System, click Settings, click Pictures, and click
Slideshow. Here you can switch off the pan and zoom effect, which is a very
good idea.

Changing the Settings in Raspbmc
On the Home screen are two options that enable you to change the settings
for Raspbmc: Programs and System.

These two options enable you to manage hardware and software settings,
change the look and feel of the media player, and configure additional media
player options. It’s not always clear whether you’ll find what you’re looking

http://www.raspberrypi.org

168 Part III: Using the Raspberry Pi for Both Work and Play

for in Programs or System, but a good rule of thumb is that standard media
player options (like volume levels) are found in System, whereas additional
external software is in Programs. Only the Wi-Fi connection manager and the
Raspbmc Settings extension are in Programs at first, but you can discover,
install, and manage additional programs here, such as artwork organizers or
lyrics engines.

In the System menu, you can find configuration options related to the XMBC
media player, like playback options for the different media. It’s worth taking a
moment to look through the options so you’re aware of the possibilities.

 By default, the sound is set to pass through your HDMI cable. If you want to
use your Raspberry Pi’s audio output (and speakers) but you’re using HDMI
for your screen, you’ll need to change the audio setting from HDMI to Analog.
You’ll find this option in the System menu. When you’re in the settings menu,
click the System tab on the left and click Audio Output.

Using a Remote Control
With all of the functionality we’ve covered in this chapter, you’re not that far
away from running a low-power home media center. To complete it, you can
use a remote control.

There are many ways to remotely control Raspbmc. You can use a USB
device, a cheap infrared remote, a keyboard remote, or even your Xbox
controller, if you have one. Or you can use the existing XBMC remote app
(available for iOS and Android operating systems) to talk to your Raspberry
Pi over your home network via Wi-Fi.

The Raspbmc page at www.raspbmc.com/wiki/user/ includes a list of
compatible remote controls.

 You can find the remote control settings in the System menu, the System tab,
and then under Input devices.

If you have a television that supports the HDMI CEC (Consumer Electronics
Council) standard, a neat option is to enable your existing television remote
to control your Raspbmc Pi. To do this, connect your networked Pi to your
television’s HDMI socket. XMBC appears as a new input. Use the TV’s remote
control to change to this input, and your Raspbmc Home screen appears on
the television. You can find a demonstration video, together with a link to
some Raspberry Pi media center software that has been modified to support
CEC, at www.youtube.com/watch?v=XPyOyJsnB1o.

http://www.raspbmc.com/wiki/user/
http://www.youtube.com/watch?v=XPyOyJsnB1o&feature=player_embedded

169 Chapter 9: Playing Audio and Video on the Raspberry Pi

Playing Music in the
Desktop Environment

VLC Media Player is a music and video player that is provided with the
standard Linux distribution. To use it, switch off your Raspberry Pi, swap out
your Raspbmc SD card and replace it with your standard Raspbian Wheezy
Linux distribution, and then restart the computer. Go into the desktop
environment (see Chapter 4). You can find VLC in the Sound and Video
category of your Programs menu, and click its name there to start it.

In the Media menu of VLC, there are options to open a file or a directory.
Usually, you’ll want to open a directory, so you can play a whole album. By
default, VLC shows you the album artwork (where available) but you can
open the View menu and click Playlist to see a list of songs so you can pick
another to play (as shown in Figure 9-5). In the box on the left, you can pick a
device to play from, including several Internet services for streaming music.
Click Playlist in the View menu again to revert to the full-window artwork.

Figure 9-5:
Playing

music in
VLC Media

Player.

 Written by Hong Jen Yee and Juergen Hoetzel. Icon by Arnaud Didry

The playback controls to pause, play, skip, shuffle, and repeat songs are at
the bottom left of the window. The volume control is at the bottom right.

For an alternative to VLC, see LXMusic in Chapter 18. We found it performed
better than VLC and was easier to use.

170 Part III: Using the Raspberry Pi for Both Work and Play

Part IV
Programming the

Raspberry Pi

 Visit www.dummies.com/extras/raspberrypi for great Dummies content
online.

http://www.dummies.com/extras/raspberrypi

In this part . . .
 ✓ Get familiar with the Scratch interface, and how you can use it

to create your own simple animations or games programs.

 ✓ Use Scratch to build an arcade game, which you can customize
with your own artwork.

 ✓ Learn how to use Python to create a times table calculator and
Chatbot, a program that simulates basic artificial intelligence.

 ✓ Use Pygame with Python to create an arcade game that you
can customize with your own level of designs and artwork.

Chapter 10

Introducing Programming
with Scratch

In This Chapter
▶ Starting Scratch
▶ Understanding the Scratch screen layout
▶ Positioning and resizing your sprite
▶ Making your sprite move
▶ Changing your sprite’s appearance
▶ Adding sounds and music

T
he Raspberry Pi was created partly to inspire the next generation of
programmers, and Scratch is the perfect place to start. With it, you can

make your own cartoons and games and discover some of the concepts that
professional programmers use every day.

Scratch is designed to be approachable for people of all ages. The visual
interface makes it easy to see what you can do at any time without having
to remember any strange codes, and you can rapidly achieve great results.
Scratch comes with a library of images and sounds, so it only takes a few
minutes to write your first Scratch program.

In this chapter, we introduce you to Scratch so you can start to experiment
with it. In Chapter 11, we show you how to use Scratch to make a simple
arcade game.

174 Part IV: Programming the Raspberry Pi

Understanding What Programming Is
 Before we dip into Scratch, we should clear up some of the jargon surrounding

it. A program is a repeatable set of instructions to make a computer do
something, such as play a game. Those instructions can be extremely
complicated because they have to describe what the computer should do in
detail. Even a simple bouncing-ball game requires instructions for drawing the
ball, moving it in different directions, detecting when it hits something, and
then changing its direction to make it bounce.

Programming is the art and science of creating programs. You can create
programs in lots of different ways, and Scratch is just one of them. In Chapter
12, you’ll learn about Python, another one.

Scratch and Python are both programming languages, different ways of writing
instructions for the computer. Different programming languages are best
suited for different tasks. Scratch is ideal for making games, for example,
but it’s not much use if you want to create a word processor or do some
sophisticated mathematics. Using Python to create games takes longer, but it
is more powerful than Scratch and gives you much more flexibility in the type
of things you can get the computer to do.

Starting Scratch
You access Scratch from the desktop environment, so switch on your
Raspberry Pi and then use startx to access it (see Chapter 4 for a guide to
using the desktop environment).

To start Scratch, either double-click its icon on the desktop (which shows
the head of a smiley orange cat), or select it from your Programs menu in the
bottom left of the screen. You can find Scratch in the Programming folder.

Understanding the Scratch
Screen Layout

Scratch divides the screen into four main areas, as you can see in Figure 10-1.
In the top right is the Stage, where you can see your game or animation take
shape. There’s a cat on it already, so you can get started straight away by
making him do things, as you’ll see in a minute.

175 Chapter 10: Introducing Programming with Scratch

Figure 10-1:
The screen

layout
when you
first start
Scratch.

Enlarge Sprite
Shrink Sprite Small Stage

Full Stage
Maximize window

Scripts AreaBlocks Palette Sprite List Stage
 Scratch is developed by the Lifelong Kindergarten Group at the MIT Media Lab. See http://scratch.mit.edu.

The bottom right area is your Sprite List. You can think of sprites as the
characters in your game. They’re images that you can make do things, such
as move around or change their appearance. For now, there’s just the cat,
which has the name Sprite1.

You create a Scratch program by snapping together blocks, which are short
instructions. On the left, you can see the Blocks Palette, which currently
shows the Motion blocks, which include instructions to move 10 steps,
rotate, go to a particular grid reference, and point in a particular direction.

The tall middle panel is the Scripts Area. This is where the magic happens!
You assemble your program in this space, by dragging blocks into it from the
left.

176 Part IV: Programming the Raspberry Pi

You can use two buttons in the top right (indicated in Figure 10-1) to toggle
the size of the Stage between full and small. When the Stage is small, the
Scripts Area is bigger, so you might find that useful when you’re writing
scripts later in this chapter.

 You’ll find it easier to use Scratch if you maximize it so it fills the screen. Click
the button in the top right of its window, as indicated on Figure 10-1.

Positioning and Resizing Your Sprite
You can drag and drop your sprite (the cat) around the Stage to position it
where you would like it to be at the start of your program.

You can also resize it. Two buttons above the Stage (indicated in Figure 10-1)
are used to enlarge or shrink a sprite. Click one of them, and your mouse
pointer changes to arrows pointing outwards (for enlarging) or inwards (for
shrinking). Click your sprite on the Stage repeatedly to change its size to
what you want.

When you’ve finished resizing, click something that isn’t a sprite to return
the mouse pointer to normal and stop resizing.

Making Your Sprite Move
Experimenting with Scratch is easy. To try out different blocks, just click
them in the Blocks Palette. For example, try clicking the block to move 10
steps, and you should see your cat move to the right. You can also turn her
15 degrees in either direction by clicking the appropriate blocks.

 If your cat goes somewhere you don’t want it to (don’t they always?), you can
click it on the Stage and drag it back to where you want it. You can fix rotation
too by clicking the tiny cat at the top of the Scripts Area, holding down the
mouse button, and rolling your mouse in a circle pattern on the desk.

 Not all of the blocks will work at the moment. Some of them need to be
combined with other blocks, or only make sense at certain times. There’s no
harm in experimenting, however. If you click something that doesn’t work, you
might get an error message, but you won’t cause any harm to Scratch or your
Raspberry Pi.

Next, we talk you through the different Motion blocks you can use.

177 Chapter 10: Introducing Programming with Scratch

Using directions to move your sprite
You can use two different methods to position and move your sprites. The
first is to make your sprite “walk,” and to change its direction when you want
it to walk the other way.

Here are the five blocks you use to move your sprite in this way (see Figure 10-2):

Figure 10-2:
The

directional
movement

blocks.

 Scratch is developed by the Lifelong Kindergarten Group at the MIT Media Lab. See http://scratch.mit.edu.

 ✓ Move 10 Steps: This makes your sprite walk in the direction it is facing.
If your sprite has been rotated, the steps taken could move your sprite
in a diagonal line across the Stage. You can click the number in this
block and then type another number to increase or decrease the number
of steps taken, but bigger numbers spoil the illusion of movement.

 ✓ Turn Right or Left 15 Degrees: This block rotates your sprite. As with
the number of steps, you can edit the number to change the degree
by which your sprite is rotated. Your sprite walks in the direction it is
facing when you use the Move 10 Steps block.

 ✓ Point in Direction 90: Whatever direction your sprite is facing, this
block points it in the direction you want it to face. Use this block as-is to
reset your sprite to face right. You can change the number in this block
to change the direction you want your sprite to face and the numbers
are measured in degrees from the position of facing up (see Figure 10-3).
It helps to think of it like the hands of a clock: When the hand is pointing
right, it’s 90 degrees from the 12 o’clock position; when it’s pointing
down, it’s 180 degrees from the top. To point left, you use –90. When
you click the arrow in the right of the number box, it gives you a menu
from which you can select the four main directions, but you can enter
any number. You might be wondering whether you can enter 270 to
point left, and the answer is that it works, but it can cause errors in your
programs. If you turn your cat to direction 270 and then ask Scratch
which way your cat is facing, it tells you –90. To avoid any inconsistencies
like this, keep your direction numbers in the range –179 to 180.

178 Part IV: Programming the Raspberry Pi

Figure 10-3:
The number

of degrees
used to face

in different
directions.

 180

0

90–90

–135

–45

135

45

 ✓ Point Towards: You can also tell the sprite to point towards the mouse
pointer or another sprite. Use the menu in this block to choose what you
would like your sprite to point towards.

 If you’re changing the number value in a block, you still need to click the block
to run it.

Using grid coordinates to move
and position your sprite
You can also move and position your sprite using grid coordinates. That
makes it easy to position your sprite at an exact place on the screen,
irrespective of where it currently is.

Every point on the Stage has two coordinates, an X position (for where it is
horizontally) and a Y position (indicating where it is vertically). The X positions
are numbered from -240 at the far left, to 240 at the far right. The Y positions
are numbered from -180 at the bottom edge of the Stage, to 180 at the top
edge. That means the Stage is a total of 480 units wide and 360 units tall. The
center point of the screen, where your cat begins his day, is where X equals 0
and Y equals 0. Figure 10-4 provides a quick visual reference of how the
coordinates work.

179 Chapter 10: Introducing Programming with Scratch

Figure 10-4:
The grid

coordinates
on the
Stage.

100

100

–100

–100

(X:0, Y:–180)

(X:0, Y:180)Y

X
(X:0, Y:0)(X:–240, Y:0) (X:240, Y:0)

 Scratch is developed by the Lifelong Kindergarten Group at
 the MIT Media Lab. See http://scratch.mit.edu.

When you move your mouse over the Stage, the grid reference of your mouse
pointer is shown just underneath the Stage on the right.

Six Motion blocks use the X and Y coordinates (see Figure 10-5):

 ✓ Go to x:0 y:0: You can use this block to position your sprite at a specific
point on the Stage. By default, it returns a sprite to the center of the
screen (x=0, y=0). Edit the numbers for X and Y to position your sprite
somewhere else.

 ✓ Go to: Use this block to move your sprite to the mouse pointer’s
location, or to the location of another sprite if you have more than one.

 ✓ Glide 1 secs to x:0 y:0: When you use the Go To block, your sprite just
jumps to its new position. The Glide block makes your sprite float there
smoothly instead. You can change the number of seconds the glide
takes, including using decimals for part of a second (for example, 0.5
for half a second).

 ✓ Change X by 10: This moves your sprite 10 units right. You can change
the number of units and use a negative number if you want to move left
instead. Note that this doesn’t affect your sprite’s vertical position and
is independent of which way around your sprite is facing.

 ✓ Set X to 0: This changes the horizontal position of your sprite on the
Stage, without affecting its vertical position. The value 0 returns it to
the center of the screen horizontally, and you can edit the number to
position it left or right of that. Use a negative number for the left half of
the screen and a positive number for the right half.

180 Part IV: Programming the Raspberry Pi

 ✓ Change Y by 10: This moves your sprite 10 units up the Stage, without
affecting its horizontal position, and irrespective of which direction it is
facing. You can change the number of units and use a negative number
to move the sprite down the screen instead.

 ✓ Set Y to 0: This changes the vertical position of your sprite on the Stage
without affecting its horizontal position, and without regard to which
way it faces. Use a positive value for the top half of the Stage and a
negative value for the lower half.

Figure 10-5:
The blocks

used for
moving
sprites

using grid
coordinates.

Scratch is developed by the Lifelong Kindergarten Group at the MIT Media Lab. See http://scratch.mit.edu.

 Don’t forget that you need to run a block to actually see its effect on your
sprite. Do this by clicking it.

Showing sprite information on the Stage
 It can be hard to keep track of where your sprite has got to and which direction

it’s facing, but you can show the values for its X position, Y position, and
direction on the Stage. Select the boxes at the bottom of the Blocks Palette to
do this (see Figure 10-6). They slow your program down, and they clutter up
the screen a bit, but they can be essential tools for testing when you’re
creating a game.

Figure 10-6:
The blocks

used to
show sprite

informa-
tion on the

Stage.
 Scratch is developed by the Lifelong Kindergarten Group at the MIT Media Lab. See http://scratch.mit.edu.

181 Chapter 10: Introducing Programming with Scratch

Changing Your Sprite’s Appearance
As well as moving your sprite around the screen, you can change what it
looks like.

Using costumes
One way to think of sprites is like the characters in a game (although they
can be used for lots of other objects too, such as obstacles). Each sprite can
have a number of costumes, which are different pictures of it. If the
costumes look fairly similar, you can create the illusion of animation by
switching between them. Your cat sprite comes with two costumes, and
when you switch between them, it looks like the cat is running.

You can see the costumes for your sprite by clicking the Costumes tab at
the top of the Scripts Area, as shown in Figure 10-7. If you want to modify the
cat’s appearance, you can click the button to edit one of the costumes, or
if you want to create a new animation frame, you can click the Copy button
beside a costume and then edit the bits you want to change.

Figure 10-7:
You can
change

a sprite’s
appearance
by giving it a

new
costume.

Costumes tab
Costume name

 Scratch is developed by the
 Lifelong Kindergarten Group
 at the MIT Media Lab. See
 http://scratch.mit.edu.

 It doesn’t matter so much when you’re experimenting with sprites, but when
you make your own games and animations, you can save yourself a lot of brain
ache by giving your sprites meaningful names. It’s much easier to remember
that the costume with the name gameover should be shown when the player
is defeated than it is to remember it’s called costume7. To rename a costume,
click the Costumes tab to show the costumes, and then click the costume’s
current name (see Figure 10-7) and type its new name.

182 Part IV: Programming the Raspberry Pi

In the Blocks Palette, there are two blocks you can use to switch between
costumes (see Figure 10-8):

 ✓ Switch to Costume: If you want to switch to a particular costume,
choose its name from the menu in this block and then click the block.

 ✓ Next Costume: Each time you use this block, the sprite changes to its
next costume. When it runs out, it goes back to the first one again.

 You can show a sprite’s costume number on the Stage too so it’s easier for
you to work out what’s going on. Just check the box next to Costume # in the
Blocks Palette.

Using speech and thought bubbles
To see the blocks that affect a sprite’s appearance, click the Looks button
above the Blocks Palette (indicated in Figure 10-8).

Figure 10-8:
Some of

the Looks
blocks you

can use
to change

your sprite’s
appearance.

Looks button

 Scratch is developed by the Lifelong
 Kindergarten Group at the MIT Media
 Lab. See http://scratch.mit.edu.

Scratch includes four blocks you can use to show a speech bubble or a
thought bubble on screen, as you can see in Figure 10-8. These are great for
giving a message to the player or viewer. You can edit the word in the block
(Hello or Hmm…) to change the text in the bubble. Figure 10-9 shows the
speech bubbles (top row) and thought bubbles (bottom row) in action.

If you use one of the options with a length of time in it, the sprite pauses for
that length of time and the bubble disappears when it’s elapsed.

183 Chapter 10: Introducing Programming with Scratch

If you use a block without a length of time, you can make the bubble disappear
again by using the Say or Think block again, but editing the text so the text
box in the block is empty.

Using graphic effects
You can apply several graphic effects to your sprite using Looks blocks. In
Figure 10-9, I’ve used eight sprites to demonstrate them on the Stage. The
Color effect changes the sprite’s color palette, turning orange to green in the
case of the cat. The Fisheye effect works like a fisheye lens, making the
central parts of the sprite appear bigger. Whirl distorts the sprite by twisting
its features around its middle. Pixelate makes the sprite blocky. Mosaic
shrinks the sprite and repeats it within the space it usually occupies. The
Brightness and Ghost effects can sometimes look similar, but the Brightness
effect increases the intensity of the colors (turning the cat’s black outline
silver while softening the orange) and the Ghost effect fades all the colors out
evenly.

Figure 10-9:
The differ-

ent graphic
effects you

can apply to
your sprite.

 Scratch is developed by the Lifelong Kindergarten Group at
 the MIT Media Lab. See http://scratch.mit.edu.

Here are the three blocks you use to control graphic effects:

 ✓ Change Color Effect by 25: You can select which effect you want to
change (by default, it’s the color effect), and enter the amount of it you
want to apply, as a percentage (by default, 25 percent). You can use
negative numbers to reduce the extent to which the effect is applied to
your sprite.

 ✓ Set Color Effect to 0: Use this block to set a chosen effect to a specific
percentage. Choosing 0 turns the effect off again. You can use any of the
seven effects with this block.

 ✓ Clear Graphic Effects: This block removes all the graphic effects you’ve
applied to a particular sprite, so it looks normal again.

184 Part IV: Programming the Raspberry Pi

 The graphic effects look great, but they are quite slow. They’re best used in
moderation for special moments in your animation or game; otherwise, they
make it appear unresponsive.

Resizing your sprite
Earlier in this chapter, we showed you how to change the starting size of your
sprite on the Stage. You can use blocks to issue instructions to change its size
too, so you could make it get larger as the game progresses, for example.

There are two blocks you can use to resize your sprite:

 ✓ Change Size by 10: This block enables you to change the size of your
sprite by a certain number of units, relative to its current size. As usual,
you can edit the number. If you want to decrease the sprite’s size, use a
negative number.

 ✓ Set Size to 100%: This block sets your size to a percentage of its original
size, so with the default value of 100 percent, it effectively resets any
resizing you’ve done.

 You can also select the check box beside the Size block to show the sprite’s
size on the Stage, in the same way you displayed other sprite information (see
“Showing sprite information on the Stage” earlier in this chapter) there. This
can be useful for testing purposes.

Changing your sprite’s visibility
Sometimes you might not want your sprite to be seen on the Stage. If a space
ship is blown up in your game, for example, you want it to disappear from
view. These two blocks give you control over whether a sprite is visible:

 ✓ Hide: Use this block to make your sprite invisible on the Stage. If a
sprite is hidden, Scratch won’t detect when it touches other sprites, but
you can still move a hidden sprite’s position on the Stage, so it’s in a
different place when you show it again.

 ✓ Show: By default, your sprite is visible, but you can use this block to
reveal it again after you have hidden it.

 Sometimes sprites might get on top of each other. You can use the Go to Front
block to make a sprite appear on top of all the others. To push a sprite backwards
and allow others to appear on top of it, use the Go Back 1 Layers block.

185 Chapter 10: Introducing Programming with Scratch

Adding Sounds and Music
As well as changing a sprite’s appearance, you can give it some sound effects.
Scratch comes with sounds including slurps, sneezes, and screams; ducks,
geese, and owls; and pops, whoops, and zoops. There are effects there for
most occasions, and many of them are a natural partner for one of the sprites
that Scratch provides.

 At the time of writing, some of the sounds provided are in MP3 format, but
Scratch can only play those that are in WAV format. If you get a message
saying a sound is in an unrecognized format, try another sound.

Here are the two steps to using sounds in your Scratch project:

 1. Import the sound to your sprite. To do this, click the Sounds tab above
the Scripts Area, as shown in Figure 10-10, and then click the Import
button. Browse the provided sounds. You can click a file once to hear
a preview of it, and click it twice to bring it into your sprite.

 After you’ve imported a sound, click the speaker beside it to preview
it, or click the X button to delete it from your project. If you a delete a
sound in this way, it remains on your SD card so you can import it again
later.

 2. Use one of the blocks to play a sound. To see the Sound blocks, click
the Sound button at the top of the Blocks Palette first.

 The Play Sound block enables you to choose which sound you’d like to
play from those you have imported. The Play Sound Until Done block
stops any movement or other blocks on the same sprite until the sound
has finished playing.

 In Chapter 11, we cover how to use multiple sprites in a project. The sound is
imported to a particular sprite, so if you can’t see it as one of the choices in
the Play Sound block, be sure you’ve imported it to the correct sprite.

There are also blocks you can use to create music using Scratch, using drums
and pitched instruments. Notes are numbered, with C being 60, C# being
61, D being 62 and so on. There’s a block called Play Note 60 For 0.5 Beats
that plays a note with a particular number for a certain duration. When you
click the menu in this block to specify which note to play, a piano opens
that you can use to select the note. If you’re new to music, you can generally
get a good result by starting with C, sticking to the white notes and making
sure no two consecutive notes are too far apart on the piano. There is also a
block called Set Instrument to 1 which you can use to change the instrument,
although at the time of writing, this doesn’t work on the Raspberry Pi.

186 Part IV: Programming the Raspberry Pi

Figure 10-10:
Adding
sound

effects to
your sprite.

 Scratch is developed by the Lifelong Kindergarten Group at
 the MIT Media Lab. See http://scratch.mit.edu.

Creating Scripts
Clicking blocks in the Blocks Palette is one way to issue commands to
Scratch, but you’re not really programming. If you have to click each block
every time you want to run it, you’re doing all the hard work of remembering
the instructions and the computer can only work as fast as you can click the
blocks.

A program is a reusable set of instructions that can be carried out (or run)
whenever you want. To start to create a program, you drag blocks from the
Blocks Palette and drop them in the Scripts Area in the middle of the screen.
Most blocks mentioned so far have a notch on the top of them and a lug on
the bottom of them, so they fit together like jigsaw pieces. You don’t have
to align them perfectly: Scratch snaps them together for you if they’re close
enough when you release the mouse button.

You put your blocks in the order you want Scratch to run them, starting at
the top and working your way down. It’s a bit like making a to-do list for the
computer.

A group of blocks in the Scripts Area is called a script, and you can run it by
clicking anywhere on it. Its border flashes white, and you’ll see the cat move
around the Stage as you’ve instructed it to.

You can have multiple different scripts in the Scripts Area, so you could have
one to make the cat walk left and another to make it walk right, for example.
When you add multiple sprites (see Chapter 11), each sprite has its own
Scripts Area and scripts there to control it.

 If you want to tidy up the Scripts Area, you can move a script by dragging its
top block. If you drag a block lower down in the script, it is separated from the
blocks above it and carries all the blocks below it with it. If you want to delete
a block or set of blocks, drag it back to the Blocks Palette on the left.

187 Chapter 10: Introducing Programming with Scratch

The moonwalk is the dance popularized by Michael Jackson where the
dancer looks like he’s walking forwards, but actually moves backwards.
Figure 10-11 shows an example script to make our cat moonwalk across
the Stage. The first two lines in the script reset the cat to the middle of the
screen, facing right. She tells us she loves to moonwalk and then lets out a
little whoop like Michael Jackson, which she keeps up for the duration of
the dance. The costume switch changes the position of the cat’s legs, and it
then glides 150 units to the left. We close the speech bubble by using the Say
block with nothing in it, and then switch back to the other costume, which
makes the cat’s legs move back to their default position. Give it a go!

Figure 10-11:
This is how
you make a

cat moon-
walk. Ow!

 Scratch is developed by the Lifelong
 Kindergarten Group at the MIT Media
 Lab. See http://scratch.mit.edu.

Using the Wait Block to
Slow Down Your Sprite

As you put your script together, you might find that some of the movements
happen so fast you can hardly see what’s going on.

If you click the Control button at the top of the Blocks Palette, you can find a
set of yellow blocks that are used to govern when particular things happen.
You’ll learn more about these in Chapter 11, but for now, it’s worth knowing
that there is a block here that enables you to wait for a certain number of
seconds. Drag this into your script where necessary to introduce a delay so
you can see each of your blocks in action. The length of the delay is 1 second
by default, but you can change it to whatever you want, including parts of a
second (for example, 0.5 for half a second).

 The Say Hello! for 2 Secs block can be also be used to force the sprite to pause
before running any more blocks.

188 Part IV: Programming the Raspberry Pi

Saving Your Work
 Remember to save your work so you can come back to it again later. You can

find the option to save in the File menu at the top of the screen, or you can
click the floppy disc icon in the top left.

When the Save dialog box opens (see Figure 10-12), you’ll see buttons on the
left to choose from various places you could save your file, although you might
not have permission to use all of them (see Chapter 5 for more on permissions).
I recommend you use the Scratch folder inside your Pi directory.

On the right, you can add your name and some project notes to remind you
what the project was about later. You can see and edit the project notes
associated with a file by going through the File menu when you’re working on
a program.

Figure 10-12:
Saving your
work so you

can come
back to it

later.

 Scratch is developed by the Lifelong Kindergarten Group at the MIT Media Lab. See
 http://scratch.mit.edu.

Chapter 11

Programming an Arcade Game
Using Scratch

In This Chapter
▶ Adding sprites to your game
▶ Drawing and naming sprites
▶ Controlling when scripts are run
▶ Using random numbers
▶ Detecting when a sprite hits another sprite
▶ Introducing variables
▶ Making sprites move automatically
▶ Adding scripts to the Stage

I
n this chapter, we show you how to use Scratch to create and play an
arcade game. You can customize the game with your own graphics, but

more importantly, you learn how to put a game project together so you can
invent your own games.

In this sample game, you control a flying saucer as it defends its planet from
invasion. Grumpy-looking aliens zoom in from above, but you can stop them
by hurling fireballs at them. If they get to you, it’s game-over. Not just for you,
but for your entire planet. . .

This chapter explains the Control blocks that enable you to coordinate the
actions of different sprites with each other and with the player. It assumes a
basic understanding of the Scratch interface and how you use blocks to build
a script, so refer back to Chapter 10 for a refresher if you need it.

 You can download the Scratch file for this game from this book’s companion
website. (See the Introduction for more on how to access the book’s online
content.) You might find it helpful to look at the color-coded script onscreen
while you read this chapter. You can use the File menu at the top of the
Scratch window to open the project when you download it, or you can double-
click the file’s icon.

190 Part IV: Programming the Raspberry Pi

Starting a New Scratch Project
and Deleting Sprites

If you’ve been playing with Scratch and have blocks and scripts scattered all
over the screen, you can start a new project by clicking File on the menu at
the top of the screen and then choosing New.

All projects start with the Cat sprite in them, so the first thing you need to do
is delete it. Here are the three ways you can delete a sprite:

 ✓ Right-click the sprite on the Stage, and then choose Delete from the
menu.

 ✓ Right-click the sprite in the Sprite List in the bottom-right of the screen,
and then choose Delete from the menu you can see in Figure 11-1.

 ✓ Click the scissors icon above the Stage and then click the sprite on the
Stage or in the Sprite List.

Figure 11-1:
The Sprite

List, with the
right-click

menu open
on the cat

sprite.

Paint New Sprite
Choose New Sprite from File

Get Surprise Sprite

Stage
 Scratch is developed by the Lifelong Kindergarten Group at the
 MIT Media Lab. See http://scratch.mit.edu.

 Take care with the scissors icon: In most art packages, it means Cut, and you
can use Paste to replace what you’ve removed. In Scratch, it means Delete, so
you lose your sprite completely. If you delete a sprite accidentally, go straight
to the Edit menu at the top of the Scratch window and use Undelete to bring it
back.

191 Chapter 11: Programming an Arcade Game Using Scratch

Deleting a sprite is not the same as hiding it. If you hide a sprite, it’s still part
of your project, but it’s not visible. You can bring it back later by showing
it. If you delete a sprite, its scripts, costumes, and sounds are removed from
your project altogether.

Changing the Background
So far, we’ve been working with a plain white Stage, but you can change the
background to something more inspiring. The Sprite List contains an entry
for the Stage (see Figure 11-1). The Stage can have scripts and different images,
just like a sprite can. The Stage’s images are called backgrounds rather
than costumes. Click the Stage’s icon in the Sprite List, and then click the
Backgrounds tab at the top of the Scripts Area.

You can choose to paint a new background, using the built-in art package (see
the section “Drawing Sprites in Scratch,” later in this chapter). Alternatively,
you can use an existing image file (or import it in Scratch-speak). Scratch
comes with a number of backgrounds you can choose from, or you can use
your own photo. Scratch can open images in .jpg, .gif, or .png format.

For this background, we’ve used a photo Sean took of Lanzarote’s barren
landscape, which looks almost like it could have been beamed back from
Mars.

Adding Sprites to Your Game
There wouldn’t be much demand for a programming language that could only
be used to create games about cats. (Actually, given the popularity of cat
videos online, maybe there would.) In any case, Scratch gives you three ways
to bring new sprites in to your game. You can find the buttons for all three at
the top of the Sprite List, indicated in Figure 11-1.

 ✓ Paint New Sprite: This opens the Paint Editor so you can draw your
sprite in Scratch.

 ✓ Choose New Sprite from File: You can use this button to bring one of
the preset sprites into your project or to bring in a graphic you’ve
created using a different art package. Scratch comes with a wide range
of sprites, including dancing people, flying hippos, and fire-breathing
dragons (my kind of party!).

192 Part IV: Programming the Raspberry Pi

 ✓ Get Surprise Sprite: Looking for some inspiration? This button fires up
your creativity by bringing in a randomly chosen sprite from those that
Scratch comes with. It’s also a quick way to get started if you want to
experiment with scripting. If you don’t like the sprite you get, you can
always delete it and try another surprise.

Drawing Sprites in Scratch
One of the most distinctive ways to put your fingerprint on your game is to
draw your own sprites for it. Even if it plays the same as a well-known game,
it’ll look unique if you hand-craft your images. Figure 11-2 shows the Paint
Editor in Scratch.

Figure 11-2:
The Paint

Editor in
Scratch.

Undo Drawing and editing tools

Color Palette Options area

 Scratch is developed by the Lifelong Kindergarten Group at the MIT Media Lab. See http://scratch.mit.edu.

The checkered area on the right is the Canvas. The checkered pattern has a
special meaning and is used to indicate parts of the image that are transparent,
where the background will show through. Usually, you want everything
outside the outline of your sprite to be transparent and everything inside
it to be another color. Choose the color you want to use, or the checkered
transparent “ink,” by using the Color Palette at the bottom-left of the Paint
Editor (indicated in Figure 11-2).

193 Chapter 11: Programming an Arcade Game Using Scratch

Above the Color Palette, you can see your drawing and editing tools. Click
one to select it, and you can then use it on the Canvas. The icon for your
chosen tool is tinted blue so you can easily see which tool you are using.
Underneath the tool icons is the Options area (indicated in Figure 11-2). This
is where you can choose how to use a particular tool. The main tools are
(from left to right, top row first):

 ✓ Paintbrush: Hold down the mouse button as you move over the Canvas
to leave a line. In the Options area, you can select how big your brush is.

 ✓ Eraser: Click the mouse button to delete part of your image. You can
hold down the button and move the mouse if you want to delete large
parts of the image, or want to delete small sections but have a steady
hand. In the Options area, you can choose how big the eraser is.

 ✓ Fill: Click inside a shape on your image to fill it with your chosen color.
In the Options area, you can choose a graduated pattern to use with
your chosen color. To choose a different color to fade into, right-click
the Color Palette.

 ✓ Rectangle: Click and hold the mouse button to mark one corner of the
rectangle and then drag your mouse to the opposite corner and release
the button. In the Options area, choose whether you want a filled rectangle
or an empty one.

 ✓ Ellipse: This is similar to the rectangle tool. Click to indicate the point
where lines from the top and left of the ellipse would meet, and then
drag the mouse to the opposite side before releasing the button. Again,
you have options to draw a filled or empty shape. You can create a
perfect curved line by drawing an ellipse and then deleting some of it.

 ✓ Line: Click and hold the mouse button at the start of the line, move the
mouse to the end of the line and then release the mouse button. Your
options let you choose the brush size, or line thickness.

 ✓ Text: You can’t control where text is placed (although you can start a
new line by pressing Enter), but you can choose different fonts and sizes
in the options.

 ✓ Select: Use this to select a rectangular area of your image you would
like to modify or remove. Click and hold the mouse button in one corner
and drag to the opposite corner and then release the mouse button. You
can drag your selected area to move it to a different part of the image or
use the buttons at the top of the Paint Editor to enlarge or shrink, rotate
anti-clockwise or clockwise, flip horizontally or flip vertically. You can
also press Delete on your keyboard to delete the selected area.

 ✓ Stamp: Use this tool to copy and paste part of your image. Click and
hold the mouse button to mark one corner of the area and then drag
your mouse to the opposite corner and release the button. A copy of

194 Part IV: Programming the Raspberry Pi

that area follows your mouse cursor. Click the mouse button to stamp it
(or paste it) at that position on the Canvas.

 ✓ Eyedropper: Use this tool to choose a color that’s already on your
Canvas. If you want to amend part of your sprite and need to use the
same ink you used earlier, this tool saves you from having to remember
which ink that was.

 The Clear button clears the Canvas (except for text), irrespective of what
you’ve selected. If you make a mistake, click Undo, shown in Figure 11-2.

When you’ve finished drawing your image, click Set Costume Center at the
bottom left of your Paint Editor and then click in the middle of your image.
This is important because it controls the point around which your sprite
rotates if you use rotation in your game.

 Don’t forget to save your game frequently. It’s a good idea to save a new copy
of your game with a new filename as you reach each significant point in its
development. It means you can go back if you introduce an unexpected error,
and also protects you against losing too much of your work if a file gets
corrupted (as happened to me once while creating this game!).

 If you want to edit your picture later, click your sprite’s Costumes tab (see
Figure 11-3) and then click Edit beside the costume you want to change. If you
want to create additional costumes for a sprite, you can also do that in your
sprite’s Costumes tab.

Figure 11-3:
Changing

the names
of sprites

and
costumes.

Sprite name
Costumes tab

Costume name
 Scratch is developed by the
 Lifelong Kindergarten Group
 at the MIT Media Lab. See
 http://scratch.mit.edu.

195 Chapter 11: Programming an Arcade Game Using Scratch

Naming Your Sprites
Whenever you’re programming, you should give things meaningful names
so that you (and others) can easily understand what your program does.
Scratch gives your sprites names like Sprite1 and Sprite2, but you can rename
them. To rename a sprite, click its name above the Scripts Area (see Figure 11-3)
and then type its new name. Your sprite’s costumes are called costume1,
costume2, and so on. If you’ve created different costumes for your sprite, you
should also give them sensible names so you can easily tell which is which.
Go to your sprite’s Costumes tab, click the name beside a costume (see
Figure 11-3), and type the new name.

For the space game, you need to create a flying saucer sprite named ship
and a sprite named fireball to represent the ship’s weapon. The baddie is a
sprite called alien, and should have two costumes: alienok, which shows him
looking menacing, and alienhit, which shows him after he’s been hit by the
fireball.

To make it easier to see what you’re doing, we recommend you drag your
ship to the bottom of the screen, the alien to the top, and put the fireball
somewhere in the middle. That roughly reflects where they will be in the
finished game.

Controlling When Scripts Run
In Chapter 10, we showed you how to start scripts by clicking them in the
Scripts Area. Most of the time, you’ll want your scripts to run automatically
when certain things happen, such as a player pressing the Fire key.

This is where the Control blocks come in: They allow you to trigger scripts to
run when a particular event happens, such as a sprite hitting another sprite
or a key being pressed. You use the Control blocks to craft the rules and
instructions that govern how your game works.

Using the green flag to start scripts
One of the Control blocks is particularly useful for starting your game and
synchronizing your scripts across all your sprites. Above the Stage are two
buttons: a green flag and a red stop button. The green flag is used to start
scripts running, and you can use a Control block to detect when it’s clicked.
This Control block has a curved top on it because no other block can go

196 Part IV: Programming the Raspberry Pi

above it, but it has a notch underneath so you can join motion, looks, sound,
or other blocks to it. You can put scripts that are triggered by the green flag
being clicked into all your sprites, so clicking the flag makes it easy to start
scripts on different sprites at the same time.

At the end of a game, aliens and ships could be anywhere, so at the start of
the game, you need to reset each sprite to its starting position. For the
player’s ship, you need to reset the X position to the center of the screen, set
the Y position near the bottom of the screen, reset the ship’s direction, and
bring the ship to the front, so that any other sprites will be behind it. Later
on, this makes the fireball come from behind the ship, so it looks like it’s
being fired from inside, rather than just appearing on top of it.

Figure 11-4 shows the script you should assemble to reset your ship when
the green flag is clicked. If you’re making your own graphics, your Y position
might need to be higher up, depending on the size of your sprite.

 When you have multiple sprites to your project, make sure you’re adding
blocks to the right one (the ship, in this case). Each sprite has its own Scripts
Area. To choose a sprite, click it in the bottom right.

Figure 11-4:
Using a

green flag
Control

block to
reset your

sprite.
 Scratch is developed by the Lifelong

 Kindergarten at the MIT Media Lab.
 See http://scratch.mit.edu.

Using the Forever Control block
Computers are great at repetitive tasks, and a game program often requires
the computer to do the same things over and over again until the game is
finished.

 Repeated bits of program like this are called loops.

You can use two main Control blocks to make the computer repeat a set of
blocks. The Repeat block enables you to specify how many times you want
a block or set of blocks to be run. The Forever block runs a block or set of
blocks repeatedly until the program is stopped.

197 Chapter 11: Programming an Arcade Game Using Scratch

Both of them are shaped like a bracket, so they can enclose the blocks you
want to repeat inside them. The Forever block doesn’t have a notch on the
bottom because it doesn’t make sense to put any other blocks after it: They
would never be run because forever never comes to an end.

For the ship in this space game, you need to make sure you keep checking for
key presses until the game is finished. Without the Forever loop, the script
would check once for a key press, and then finish.

You can find the Forever block by clicking the Control button at the top of
the Blocks Palette. Drag it into the script for your ship at the end of your
green flag script. The first time you use it, we recommend you test it how it
works by dragging a Motion block into its bracket. Figure 11-5 shows a script
that makes the ship sprite rotate for as long as the program runs. Click the
green flag to start it, but don’t forget to take that rotation block out again
when you’ve finished testing.

Figure 11-5:
The Forever
block used

to make the
ship rotate
all the time

the program
runs.

 Scratch is developed by the Lifelong
 Kindergarten Group at the MIT Media
 Lab. See http://scratch.mit.edu.

Enabling keyboard control of a sprite
For our space game, the player needs to be able to move the ship sprite
left and right using the arrow keys. In plain English, we need to use a set of
blocks that says “If the player presses the left arrow key, move the ship left.”
And we need to put those blocks inside a Forever block, so Scratch keeps
checking and moving the sprite all the way through the game. We need a
similar set of blocks that move the sprite right too.

The If block is a Control block that enables a set of blocks to be run only
under certain conditions. For that reason, it’s often called a conditional
statement in programming. Like the Forever block, it’s shaped like a bracket,
so you can put other blocks inside it. In the case of the If block, the blocks

198 Part IV: Programming the Raspberry Pi

inside are ones you want to run only in certain circumstances. Drag your If
block into the Scripts Area.

Scratch is designed like a jigsaw puzzle, so it gives you visual hints about
what blocks can go where if the program is to make sense. The If block has a
diamond-shaped hole in it, which is where you describe the circumstances
under which you want its blocks to run. There are diamond-shaped Operator
and Sensing blocks as well, and we use both in this program.

The block we need for keyboard control is a Sensing block called Key Space
Pressed?. It detects a tap on the spacebar. If you want it to detect the pressing
of a key other than the spacebar, use its menu to set that. In this case, we
want it to detect the left arrow key. You can drag and drop this Sensing block
into the diamond-shaped hole in the If block in the Scripts Area.

Figure 11-6 shows the piece of script you need to move the ship left. I’ve used
a Motion block to change its X position by -10 units, and I’ve also adjusted
its direction, which makes it tilt towards the direction it’s moving. You could
change its costume so it looks different when it’s moving left or right, or add
any other visual effects or sounds here.

Figure 11-6:
The If block

is used
to enable
keyboard

movement
of the sprite.

 Scratch is developed
 by the Lifelong
 Kindergarten Group at the
 MIT Media Lab. See
 http://scratch.mit.edu.

Enabling a sprite to control another sprite
In programming, you can often choose between several ways to achieve the
same effect. The game’s firing mechanism is one such example. We could
sense the spacebar (our Fire key) being pressed using a script on the fireball,
for example, and use that to trigger the fireball’s ascent.

We’re going to use the firing mechanism as an opportunity to show you how
you can make one sprite control another sprite, however. You can’t actually
make the ship move the fireball, but you can send a message from the ship to
tell the fireball you want it to move itself.

199 Chapter 11: Programming an Arcade Game Using Scratch

There are two parts to this. The first is that you need to use the Broadcast
block on the ship to send a message to all the other sprites. You only want
to do this when the spacebar (the Fire button in our game) is pressed, so
you need to drag an If block to the Scripts Area of your ship, add a diamond
Sensing block to check whether the spacebar is pressed, and finally put the
Broadcast block inside the If block’s bracket.

The Broadcast block is one of the Control blocks and it has a menu built into
it. Click the menu and click New to create a new message. We’ve called our
message fire.

This approach has a couple of advantages. Firstly, you can keep all your
game control scripts on one sprite (the ship), which makes the program
easier to manage. Secondly, it’s an efficient way to coordinate multiple
sprites. We could, for example, make our alien look terrified when the Fire
button is pressed by just changing its costume, and that only requires two
blocks: a Control block for when the message fire is received, and the block
to change to a new costume where it looks scared. It’s much more efficient
than having to look out for the Fire button on the alien too.

Figure 11-7 shows the script for the ship. When the green flag is clicked, it
resets the ship’s position and then enters a loop where it moves the ship left
if the left arrow key is pressed, moves the ship right if the right arrow key is
pressed, sends the fire message if the spacebar is pressed, and then keeps
checking for those keys forever. You can run this script to test that the ship
moves as expected.

 If your script doesn’t behave as expected, check your brackets. You’re
allowed to put an If block inside another If block, but that doesn’t make sense
for us here, and it will stop the game’s controls from working properly. If you
put the bracket for detecting the Fire key inside the bracket for detecting the
right arrow key, the game will only check for the Fire key when the right-arrow
key is pressed.

Click the fireball sprite in the Sprite List. You can now add scripts to that
sprite. A Control block called When I Receive fire is used to trigger a script
when the fire message is broadcast. This script is quite simple: We move
the fireball sprite to where the ship is, show the fireball sprite (although it
will be behind our ship), play a suitably sci-fi sound from the effects included
with Scratch, glide the sprite to the top of the screen, and then hide it again.

In the Glide block, we can drop a block called X Position in place of entering
a number for the X position. That means we can keep the X position the same
as it already is, while changing the Y position with a gliding movement. The
result is that the fireball moves vertically.

200 Part IV: Programming the Raspberry Pi

Figure 11-7:
The script

for resetting
and then

controlling
the ship.

 Scratch is developed by the Lifelong
 Kindergarten Group at the MIT Media Lab.
 See http://scratch.mit.edu.

The other script we need on the Fireball is one to hide it when the green flag
is clicked, just in case it’s onscreen from the previous game when a new one
starts.

 Remember to make sure you’re adding scripts to the correct sprite. Figure 11-8
shows the scripts for the fireball sprite.

Figure 11-8:
The scripts
for the fire-
ball sprite.

 Scratch is developed by the Lifelong
 Kindergarten Group at the MIT Media Lab.
 See http://scratch.mit.edu.

201 Chapter 11: Programming an Arcade Game Using Scratch

Using Random Numbers
Games wouldn’t be much fun if they were always exactly the same, so Scratch
enables you to use random numbers in your scripts. To keep players on their
toes, we can make the alien appear at a random X position at the top of the
screen.

Click your alien in the Sprite List, and then drag in the Green Flag Control
block. As with the other sprites, we need to create a script that resets the
alien to its starting position. In the case of the alien, the sprite switches to a
different costume when it’s hit, so we should make sure it is using its normal
costume at the start of a new game and that it is visible onscreen.

For its screen position, the alien needs to have a Y coordinate of 150, which
is near the top of the screen. We don’t want to use the full width of the Stage
because it looks odd when half the alien is off the edge of the Stage. From
experimentation, I found that the ideal starting X position for my alien is
between -180 and 180, but yours might vary depending on its size.

Drag in the Motion block you used previously to go to a particular X and Y
position. If you click Operators at the top of the Blocks Palette, you can find
a block to pick a random number from 1 to 10. Drag this block into the hole
where you would normally type the X position, and then change the numbers
in the random number block to -180 and 180.

Figure 11-9 shows your initial script for the alien. You can use the green flag
to test whether it works and positions the alien at a random point at the top
of the screen each time.

Figure 11-9:
The script

to reset the
alien at the
start of the

game.
 Scratch is developed by the Lifelong

 Kindergarten Group at the MIT Media Lab.
 See http://scratch.mit.edu.

Detecting When a Sprite
Hits Another Sprite

There’s no point throwing flaming fireballs at an alien if it’s not even going to
raise an eyebrow. To make this game fun, we need to make the alien sprite

202 Part IV: Programming the Raspberry Pi

react when it’s hit. Most games involve sprites hitting each other (bats and
balls, targets and weapons, chasing and catching), so collision detection, as it
is often called, is a staple of game design.

 You can detect whether the fireball is touching the alien sprite from the
fireball, but it is the alien that must react, so that’s where we need to put our
script.

You can use a Sensing block to check whether a sprite is touching another
sprite, and we combine that with an If block to trigger a reaction when the
alien and fireball touch each other.

Like the key press detection for the ship, we want to keep checking for the
alien being hit throughout the game, so we put the If block inside a Forever
block (see Figure 11-10). Inside the first If block are the instructions for what
to do when the alien is touching the fireball: Change the alien’s costume to
what it looks like when it’s been hit, make it say “Arggh!” in a speech bubble,
play a sound effect, and then hide the alien. After a random delay of a few
seconds, the alien is repositioned at the top of the screen, switched back
to its normal costume and shown, so the horrible cycle of invasion and
destruction can begin again.

Figure 11-10:
Setting
up the

alien and
detecting

when it’s hit.

 Scratch is developed by the Lifelong Kindergarten
 Group at the MIT Media Lab. See http://scratch.mit.edu.

203 Chapter 11: Programming an Arcade Game Using Scratch

Introducing Variables
Variables are a way of storing information in a program so you can refer back
to it later or reuse it. You give that piece of information a name, and then
you can refer to it by that name in your script. For example, we want to keep
a running tally of the score, and we use a variable to do that. They’re called
variables because their value can change over time. The score is zero at the
start of the game, for example, but it goes up each time the player zaps an
alien out of the sky.

We can tell our script to reset the score to zero, increase it when an alien is
hit, and display the score at the end. Each time, we just refer to it as score,
and the program works out what number that refers to.

To create a variable, click the Variables button above the Blocks Palette. In
the Blocks Palette itself is a button called Make a Variable. Click that, and you
will be asked for the variable’s name, which is score in this case.

 You’re also asked whether this variable should be for all sprites or just for the
sprite you’re working on now. It’s important to get this right. For our score,
we want to make a variable that all our sprites can see. If you have a variable
that’s only used by one sprite, it’s better to create a variable that’s only for
that sprite because it stops other sprites from being able to interfere with it.
When you duplicate a sprite, all its scripts and variables are duplicated with
it too, so you might find you have sprites that use variables that share the
same name, but that you want to use independently of each other. We see an
example of this later in this chapter when we add extra aliens.

When you create a variable, new blocks appear in the Blocks Palette that you
can use to change the variable’s value and show or hide it on the Stage. We
want the score to go up by 50 each time the alien is hit (be generous — it’s
not an easy game!), so drag the Change score by 1 block into your script and
edit the number in it to 50. This block needs to go inside the If bracket that
detects whether the alien touches the fireball, as you can see in Figure 11-10.

 In Chapter 10, you saw how you can display a sprite’s position and direction
on the Stage. By default, the values of variables are shown on the Stage too.
They appear in the top left, but you can drag them wherever you want them.
This can be useful for tracing and fixing problems, but it really slows things
down. We recommend you deselect the check box beside your new score
variable in the Blocks Palette to remove it from the Stage again.

In the finished game, the alien comes down the screen towards the ship, and
the game ends when the alien catches the player’s flying saucer. At this point,
we want to show the score variable on the Stage and use a special Control
block that stops all scripts so the program comes to an end. Figure 11-10 also
includes the blocks that do this, which use a similar pattern to the blocks
used for detecting when the alien is hit.

204 Part IV: Programming the Raspberry Pi

Making Sprites Move Automatically
If you’re wondering why we left the alien’s movement to the end, it’s because
it makes it easier to test the game. We’ve now got a spaceship that the player
can move, a working firing mechanism, and an alien that dies and then
regenerates when shot. We can test all that at our leisure and fix any problems
without worrying about having to keep up with the alien.

Our alien moves from left to right and then from right to left, and then back
again. Each time it changes direction, it moves down the screen a little bit.
This is quite sophisticated behavior, but you can create most of it using the
blocks you’ve already used this chapter. The art of programming is partly
about working out how you use the different blocks or commands at your
disposal to achieve what you want to.

To start, we need to make a new variable, which we’ll call leapsize. Each
time Scratch goes around the alien’s Forever loop, it moves the sprite and
then checks whether it’s touching a fireball or the spaceship. The leapsize
variable is used to store how much the alien’s X position should change by
each time. If the alien is going right, the leapsize variable is 20, and if it’s
going left, it’s -20.

 When you create the leapsize variable, you are asked whether this variable
should apply to all sprites or to this sprite only (the alien). Make sure you
click the button to make it apply only to this sprite. If you don’t, you’ll have
problems when you duplicate the sprite later because the aliens will use the
same leapsize variable. The leapsize variable is personal to each sprite
and its correct value depends partly on where a sprite is on the screen. If you
have sprites stuck at the edge of the screen, they are probably interfering with
each other’s variables.

When the alien reaches the edge of the screen, the leapsize variable is
changed so that the alien goes back in the other direction, and the alien is
moved down the screen by 20 units.

Figure 11-11 shows the movement script you need to insert into your alien’s
Forever loop as its first blocks.

The green Operators blocks enable you to build more sophisticated
instructions. They include the ability to do sums, check how one value
compares to another value, and combine different conditions in an If block.
They can be hard to understand because you can often put other blocks
inside them.

205 Chapter 11: Programming an Arcade Game Using Scratch

Figure 11-11:
The alien’s
movement

script.

 Scratch is developed by the
 Lifelong Kindergarten Group
 at the MIT Media Lab. See
 http://scratch.mit.edu.

The If blocks in our alien’s movement script use Operator blocks to compare
the X position with a number so that they can detect when the alien reaches
the edge of the screen. We found that -200 and 200 represented the minimum
and maximum desirable X positions if you want to avoid the alien slipping
partly off the Stage. The comparison blocks are diamond-shaped, so they slot
into the hole in the If block. You can use one to check whether the X position
is more than (>) 200 and another to check whether it is less than (<) -200.
(We shouldn’t check for an exact match with 200 or -200 because the alien
starts at a random position, and its steps increase by 20 units. If it started at
X position 170, for example, it would go to 190 and 210 but never 200.)

You also need to insert a block to set the starting value of leapsize to 20;
otherwise, it will be zero and your alien won’t move. In the Blocks Palette,
drag the block for setting a variable’s value to the start of your script, and
edit it to set leapsize to 20. This block must go inside your alien’s green
flag script but outside your Forever loop.

Fixing the Final Bug
In many commercial software development projects, most of the time and
money is spent testing programs to make sure they work as expected, and then
fixing them when they don’t. Errors in programs are often called bugs, and even
in our simple game here, we have one that would enable the player to cheat.

If the fireball is moving up the screen and the player presses the Fire key
again, the firing sequence starts over. That means the fireball that was
travelling through the air disappears, and a new one is sent up from the

206 Part IV: Programming the Raspberry Pi

ship. That doesn’t make any logical sense, and it means players suffer no
consequences if they misfire: They can just fire again and it’s as if the
misfired shot never happened.

We can use a variable to keep note of when the fireball is moving up the
screen so that we can stop the ship from allowing a fireball to be fired again
at that time. Variables like this, which are just used to keep track of whether
something is happening, are called flags. Our firing flag needs to be able to
say whether the fireball is in play or not, so it has two values. While the
fireball is on screen, we give the firing flag a value of 1. When it isn’t, the
firing flag has a value of 0.

Click the Variables button at the top of the Blocks Palette, and click the
option to make a variable. Give it the name firingflag and make sure the
button is selected so it is available for all sprites.

After you’ve created the variable, you can drag a block in from the Variables
section of the Blocks Palette to set its value to 1 at the start of the fireball’s
firing sequence, and to 0 at the end again. You should also update the fireball’s
green flag script so that it resets the firing flag to 0 at the start of a game in
case a game ended while the fireball was on screen. Figure 11-12 shows the
final scripts for the fireball.

Figure 11-12:
The final

scripts for
the fireball,

including
the firing

flag.

 Scratch is developed by the Lifelong
 Kindergarten Group at the MIT Media Lab.
 See http://scratch.mit.edu.

We also need to modify the script for the ship so that it only fires if the
firingflag variable is 0 at the time the spacebar is pressed. This is a little

207 Chapter 11: Programming an Arcade Game Using Scratch

bit complicated because we’ll need to lock together lots of different blocks to
express this idea.

Go back to the ship’s script. You’ll need to modify the If block that checks
whether the spacebar is pressed. Figure 11-13, read from top to bottom,
shows how you build up your blocks. For simplicity’s sake, I’ve emptied the
instructions from inside the If block and I’ve separated it out from the rest of
the script.

Start by dragging the Sensing block for the spacebar out of the If block’s
diamond-shaped hole. In its place, drag the And operator block. This means
the blocks inside the If block’s bracket are run only if two things are true.
The first is that the spacebar must be pressed, so drag your Sensing block for
the spacebar into the diamond-shaped hole inside the And statement. The
second is that we need to make sure the firingflag is 0. Drag the ‘=0’
Operator block into the And operator block on the right, and then drag the
firingflag variable into the other side of the And operator.

That should ensure the ship can only fire one fireball at a time. They might
be aliens, but they still deserve a fair fight!

Figure 11-13:
How to build

the If block
that checks
whether the
ship should

fire.

 Scratch is developed by the Lifelong Kindergarten Group at
 the MIT Media Lab. See http://scratch.mit.edu.

208 Part IV: Programming the Raspberry Pi

Adding Scripts to the Stage
As well as sprites, you can add scripts to the Stage. Click the Stage in the
Sprite List, and you’ll find it has its own Scripts Area. It’s a real pain to have
to hunt through your sprites to find where you put a particular block so you
can change it, so this is a good place to put scripts that affect the whole game
and that aren’t associated with a particular sprite.

For this game, we should add a block to the Stage to set the score to 0 when
the green flag is clicked. Otherwise, the score will rise ever higher with each
successive game and will never be set back to zero when a new game starts.

Duplicating Sprites
Because of the way we’ve created our alien, with the leapsize variable only
applying to that one sprite, we can add more aliens by simply duplicating the
first one. Right-click it in the Sprite List and choose Duplicate. Having two
aliens makes the game more nail-biting.

Playing Your Game
To play your game without the distraction of your scripts and other clutter
on the screen, click the Easel icon near the top right of the screen that says
Switch to Presentation Mode when you hover over it. The Stage enlarges to
fill the screen. You can use the green flag to play as usual. To close the full
screen view again, click the arrow in the top left. Figure 11-14 shows our final
game, but yours might look quite different with your own art in it.

Figure 11-14:
Got him!
The final

game.

209 Chapter 11: Programming an Arcade Game Using Scratch

Adapting the Game’s Speed
 This game runs at a challenging but playable speed on my Raspberry Pi, but

Raspberry Pi co-founder Eben Upton has said that one of his priorities will be
to make Scratch faster. If the game is unplayable on your Raspberry Pi with
the latest software, you can slow down the aliens by reducing the magnitude
of the leapsize variable (including after the alien changes direction), or
changing the amount by which the alien’s Y position decreases when the
sprite changes direction. You can also put a small wait into the alien’s loop,
although that might mean the collision detection is less accurate.

Taking It Further with Scratch
In this chapter, we’ve covered many fundamental concepts that are used in
programming, including loops, operators, and variables. You’ve seen how
you can use Scratch to design your own games, where sprites interact with
each other and respond to the player’s control. You can do lots of things to
customize this game. Draw your own sprites. Change the speed of the aliens
each time they’re shot, or the way they move. But your next real adventure
is to use Scratch and the skills learned in this chapter, perhaps with some of
the other blocks we haven’t had room for, to make your very own game.

To find out more about Scratch, and find games and animations others have
made, visit the website at http://scratch.mit.edu. You can also share
your own work there and get feedback from other Scratch fans.

http://scratch.mit.edu

210 Part IV: Programming the Raspberry Pi

Chapter 12

Writing Programs in Python
In This Chapter
▶ Accepting user input and printing to the screen
▶ Using variables, strings, lists, and dictionaries
▶ Using for and while loops
▶ Using conditional statements for decision-making
▶ Creating and using your own functions

I
n this chapter, we’re going to introduce you to Python, a powerful
programming language that’s widely used commercially.

One of the best ways to learn programming is to study other people’s
programs, so in this chapter, we talk you through two different programs.
One is a simple calculator for multiplication tables. The other is an artificial
intelligence simulation that enables you to chat with your Raspberry Pi.

You’ll probably find it easiest to learn if you try creating the examples
with us, but you can also download the finished programs from the book’s
website. For more information on accessing this book’s website, see the
Introduction.

In a book of this size, it’s not possible to cover everything you can do with
Python, but this chapter gets you started with your first programs. As you
work through these examples, you’ll learn about some of the fundamental
principles in Python and programming generally, and you’ll gain an
understanding of how Python programs are put together.

 Some lines of code are too wide for the page. We use a turn arrow (Æ) at the
end of a line to indicate a line continues. When you see one, just carry
on typing and ignore the indent on the next line!

212 Part IV: Programming the Raspberry Pi

Starting Python
The Raspberry Pi has two versions of Python installed on it: Python 2.7 and
Python 3. Usually when software or programming languages are updated,
the new version is compatible with the old version. Python 3 was intentionally
designed not to be compatible, however, so programs written for Python
2.7 might not work with Python 3, and vice versa. In this book, we’re going
to use Python 2.7, because it makes it easier to install some of the software
required for the projects in Part V of the book. You can find out more about
what’s different about Python 3 at http://docs.python.org/3.0/
whatsnew/3.0.html.

Programmers often use something called an integrated development
environment (IDE), which is a set of tools for creating and testing programs.
The Python IDE is called IDLE, and there are two versions of it on your
desktop: IDLE (which is for Python 2.7) and IDLE 3 (which is for Python 3).
Double-click the IDLE icon to get started.

Entering Your First Python Commands
When you start IDLE, a window opens with text at the top that looks
something like Figure 12-1.

This is the Python shell, and the three arrows are your prompt, which means
Python is ready for you to enter a command. You can test this by entering the
license() command, which shows you a history of Python before displaying
the terms and conditions of using it. If you don’t want to get bogged down in
legalese, abort by pressing q and then pressing Enter when prompted.

One of the most basic commands in any programming language is the one
that tells the computer to put some text on the screen. In Python (and some
other languages too), this command is print, and you use it like this:

>>> print “hello”
hello
>>>

Whatever you type in the quotes after the print command is “printed” on
the screen, and Python then returns you to the prompt so you can enter
another command.

http://docs.python.org/3.0/whatsnew/3.0.html
http://docs.python.org/3.0/whatsnew/3.0.html

213 Chapter 12: Writing Programs in Python

Figure 12-1:
The Python

shell, just
after it
opens.

 Copyright © 2001-2012 Python Software Foundation; All Rights Reserved

 Like the Linux shell, Python is case-sensitive, which means it won’t work if you
use capital letters where you shouldn’t. The command print must be entered
in lowercase; otherwise, Python tells you you’ve made a syntax error, which
means you’re using a command incorrectly. You can mess around with the
word in quotes as much as you like, however: This is the text that you want to
appear onscreen. Take a look at these examples:

>>> PRINT “Hello Karen!”
SyntaxError: invalid syntax
>>> Print “Hello Karen!”
SyntaxError: invalid syntax
>>> print “Hello Karen!”
Hello Karen!

214 Part IV: Programming the Raspberry Pi

Using the Shell to Calculate Sums
You can also use the shell to carry out simple calculations. Table 12-1 shows
you the different mathematical operators you can use in your sums. Just put
the sum after the print command, like this:

>>> print 5+5
10
>>> print 9-4
5
>>> print 7*7
49
>>> print 10/2
5

 Note that you don’t use quotes around the sum in your print command.
What would happen if you did? Python would put on the screen literally what
you asked it to, like this:

>>> print “5+5”
5+5

There are a few surprises in how division is carried out in Python. If you
cast your mind back to your mathematics lessons, you might remember that
whole numbers, which have no decimal portion, are called integers. In Python
2.7, if you divide an integer by an integer, you get an integer as a result,
which means the answer can be less accurate than you might expect from a
computer. For example, what’s 7 divided by 2?

>>> print 7/2
3

Close, but not close enough. To force Python to give you an answer that
would pass a teacher’s scrutiny, add a decimal portion to one of the values in
your sum, like this:

>>> print 7/2.0
3.5
>>> print 7.0/2
3.5

If you want to force the rounding effect to remove any decimal portion from
your answer, you can use the // (floor division) operator, like this:

>>> print 10.0/3
3.33333333333
>>> print 10.0//3
3.0

215 Chapter 12: Writing Programs in Python

An operator you might not have come across before is modulo. It uses the %
sign and tells you the remainder after a division. Here are some examples:

>>> print 10%3
1
>>> print 10%2
0

You can use that operator to tell whether one number is divisible by another
(the modulo is 0 if so).

Table 12-1 Mathematical Operators in Python
Operator Description

+ Addition

– Subtraction

* Multiplication

/ Division

// Division, discarding any decimal portion

% Modulo, which shows the remainder after a division

These sums are quite basic, but you can enter more advanced sums by
stringing together numbers and operators. As in algebra, you use parentheses
to surround the bits of the sum that belong together and should be carried
out first. For example:

>>> print (10.0/3)*2
6.66666666667
>>> print 10.0/(3*2)
1.66666666667

 You can also do mathematics in the shell by just entering the sums without a
print command, but it’s essential to use it when you’re creating programs, as
you’ll see shortly.

Creating the Times Tables Program
Now we’re going to show you how to make a program that generates
multiplication tables. For example, if the user requests a multiplication table
for the number 7, it outputs the sequence 7, 14, 21, and so on. The program
is only a few lines long, but it teaches you how to create programs, how to
use variables to store numbers, how to ask the user for information, and how

216 Part IV: Programming the Raspberry Pi

to create sections of program that repeat (loops). You’ll build on your
understanding of the print command to do all this, and if you’ve read
Chapters 10 and 11 on Scratch, some of the ideas should be familiar to you.

Creating and running your
first Python program
The problem with entering instructions in the shell is that you have to
enter them each time you want to use them. The commands are carried out
straight away, too, which limits the sophistication of the kinds of things
you can do. You can solve these problems by creating a program, a set of
repeatable instructions that you can save as a file and use again.

To create a program, you use script mode, which is a blank window when
you open it, but otherwise looks like Figure 12-2. To open the script mode
window, click the File menu at the top of the Python shell, and then click New
Window.

When you enter commands in script mode, they’re not carried out straight
away. The window acts like a simple text editor, and enables you to enter
your list of commands (or program), and gives you control over when those
commands are carried out.

Enter the following commands in the script mode:

simple times table program
print “This program calculates times tables”
print “It is from Raspberry Pi For Dummies”

The window should look like Figure 12-2. The two print commands should
look familiar to you, but the first line is new. In Python, anything after a #
(hash mark) is ignored by the computer. The hash mark indicates a comment,
used to add notes to programs so you can understand them later. The very
best programs are written in such a way that you can understand them easily
anyway, but it’s a good idea to leave little messages to your future self (or
other people) so you can quickly understand important aspects of the
program. We’ve put a one-line summary at the start of the program here, so if
we open it later, we can immediately see what it does.

To save your program, click the File menu at the top of the script mode
window and choose Save. You use this same menu to reopen previously
saved programs too.

217 Chapter 12: Writing Programs in Python

Figure 12-2:
The script

mode
window.

 Copyright © 2001-2012 Python Software Foundation; All Rights Reserved

The term used for starting a program is running it, so click the Run menu and
then click Run Module to see your program in action. Alternatively, the
keyboard shortcut to run the program is F5. When you run the program,
Python switches back to the shell and you see those two lines of text printed
out on the screen.

Congratulations! You’ve just written your first Python program!

 Before you can run your program, you must save it. If you made changes since
the last time it was saved, you are prompted to save the program when you
try to run it. This overwrites the previous version of the program. On the File
menu of the script mode window is an option to save a copy of the program or
to save it using a different filename (Save As), which can be useful if you might
want to revert to an earlier version.

218 Part IV: Programming the Raspberry Pi

Using variables
The next step in our program is to ask the user which multiplication table
they would like us to generate. We’ll store this number in a variable. As you
learned when you were using Scratch, a variable is a way of storing a number
or a piece of text so you can refer back to it later.

For example, you might have a variable that stores your bank balance. It
might go up (ker-ching!) or it might go down (sadly, more often), but you
can always refer to it as your bank balance. Variables are one of the basic
building blocks of programming, and not just in Python.

Taking the example of a bank balance, you can create a variable in Python for
your bank balance called balance by just giving it a value, like this:

balance=500

You can vary the value later (which is why it’s called a variable), by just
giving it a new value:

balance=250

More often, you’ll want to do sums with the balance, such as taking some
money off the total when money is withdrawn, or adding money to it when a
deposit is received. To do that, you change the variable’s value to a number
that’s calculated from its current value. Here’s an example:

balance=balance–250

That takes the value of the balance variable, knocks 250 off it, and then puts
the answer back into the variable balance. You can display the value of a
variable onscreen using the print command with the variable name:

print balance

 Programmers often use a shorthand form when they’re adding numbers to or
subtracting them from a variable. The shorthand is += for addition and –= for
subtraction. Here’s an example:

balance=500
balance+=20
print balance

If you run that tiny program, it prints 520 on the screen.

balance=500
balance–=70
print balance

219 Chapter 12: Writing Programs in Python

That program subtracts 70 from the initial balance of 500, so it shows 430
onscreen. This shorthand is an elegant way and concise way to express the
idea of changing a variable’s value, and you’ll see it used widely in Python.

Accepting user input
Before we go any further, we should clarify one piece of jargon: function. A
function is a set of commands that do a particular job, and there are lots of
them built in to Python. Later on, you’ll learn how to make your own too (see
“Creating your own functions”). To use a function, enter its name, followed
by parentheses. If you want to send it any information to work with, you put
that inside the parentheses.

When our program runs, we want to ask the user which multiplication table
they would like to generate, and then store that number in a variable which
we’ll call tablenum. To do that, we set up the tablenum variable using a
built-in function called input(), which asks the question, waits for the user
to type something in, and then puts whatever is typed in into the variable.

Here’s how the input() function works:

tablenum=input(“Which multiplication table shall I Æ
generate for you? ”)

 We’ve put a space after the question mark and before the quote mark closes
the question because otherwise the cursor appears right next to the question
mark. It looks much clearer and more professional with a space between the
question and the user’s answer.

Add that line into your program and run it, and you’ll see that the program
displays the question and then gives you a cursor and waits for you to enter
your number. Enter any number to try it out. The program won’t do anything
else yet, however, because we haven’t told it to do anything with the number
you enter.

Printing words, variables,
and numbers together
Start by printing a title for the multiplication table the user has requested.
This requires something we haven’t had before: the ability to print text and
variables in the same line of text. The print command can be used to print
more than one thing in a line, if they’re separated by commas, so we can
combine text and our variable tablenum like this:

print “\nHere is your”, tablenum, ”times table:”

220 Part IV: Programming the Raspberry Pi

The first two characters here, \n, have a special meaning. They’re known as
an escape code, and they’re used to start a new line. Here they create a bit of
space between the question asking for input and the resulting heading.

 Don’t forget that anything between the quotes is actually printed onscreen.
If you put the variable name tablenum between quotes, you’ll see the word
“tablenum” onscreen, instead of the number the user typed in.

Now you need to print a line for each entry in the times table, from 1 to 12.
As you know, you can use variables in sums, and you can print sums, so you
could display the times table like this:

print “1 times”, tablenum, “is”, tablenum
print “2 times”, tablenum, “is”, tablenum*2
print “3 times”, tablenum, “is”, tablenum*3
print “4 times”, tablenum, “is”, tablenum*4

It works, as you can see in Figure 12-3. But it’s not really a good solution. For
each line of output, we’re entering a new line in the program and adding a
new sum at the end of it. Even using the copy and paste in the script mode
(in the Edit menu), we ran out of patience at line four. What if we wanted to
create a times table that goes up to 50? Or 500? Or 5,000? Clearly, we need a
more scalable solution.

Figure 12-3:
The times

table
program, in

development.

 Copyright © 2001-2012 Python Software Foundation; All Rights Reserved

221 Chapter 12: Writing Programs in Python

Using for loops to repeat
To save the slog of entering all those print commands, and to make our
program more flexible, we can use a for loop. This enables you to repeat
a section of program a set number of times, and to increase a variable each
time the code repeats. That’s exactly what we need for our times table
program: We want to display one line for each number from 1 to 12, showing
the result of multiplying that number by the figure the user entered.

Here’s how the code looks that makes that happen:

for i in range(1,13):
 print i, “times”, tablenum, “is”, i*tablenum

This tiny program snippet introduces several new programming concepts.
First, take a look at the range() function. This is used to create a list of
numbers, and you give it a number to start at (1) and the end point (13). The
end point is never included in the list, so we had to use a 13 to make our
multiplication tables go up to 12.

You can use range() outside a for command too. Try the following in the
shell:

>>> print range(5,15)
[5, 6, 7, 8, 9, 10, 11, 12, 13, 14]

If you add a third number between the brackets, it’s used to specify how big
you want the gap to be between the numbers. We don’t need that here, but
for completeness, this is how it works:

>>> print range(5,15,2)
[5, 7, 9, 11, 13]

Our range() function, then, creates a list of numbers from 1 to 12. The rest
of the line it’s on sets up the start of the bit we want to repeat, and says that
we should give the variable i the next value from our number list each time
we repeat. The first time around, i has a value of 1, the first number in our
list. The second time around, i has a value of 2, which is the second number
in our list. This goes all the way up to the last repetition, when i has a value
of 12.

We tell Python which commands should be repeated by indenting them. The
print command we’ve used has four spaces before it, and in Python, these
spaces are meaningful. Many languages let you space your programs out
however you want, but in Python, the spacing is part of how the computer
understands your intentions. By enforcing the use of indentations like this,
Python makes it easier to read programs because you can see which bits
belong together at a glance. They’re all indented to the same depth.

222 Part IV: Programming the Raspberry Pi

We can repeat multiple commands by just indenting them all:

for i in range(1,13):
 print i, “times”, tablenum, “is”, i*tablenum
 print “------------------”
print “Hope you found that useful!”

 If you can’t get your loop to work, make sure you have remembered the colon
at the end of the for line.

The previous snippet works its way through numbers 1 to 12 and prints the
times table line for each one, followed by a line of dashes to space it out.
When it’s finished all 12 lines, it prints “Hope you found it useful!” just once
because that command isn’t indented with the others in the loop.

Pulling it all together, the final program looks like this:

simple times table program

print “This program calculates times tables”
print “It is from Raspberry Pi For Dummies”

tablenum=input(“\nWhich multiplication table shall I Æ
generate for you? ”)

print “\nHere is your”, tablenum, ”times table:\n”

for i in range(1,13):
 print i, “times”, tablenum, “is”, i*tablenum
 print “------------------”

print “\nHope you found that useful!”

 Although indentations at the start of lines have special meaning, you can use
blank lines to help lay out your program however you want. I’ve used some
blank lines here to make it easier to see which bits of program go together.
We’ve also added in some extra \n escape codes in the print and input
commands to put blank lines into the screen output.

Many people find they learn best from actually typing in programs, but you
can download this program from the book’s website if you can’t get it
working, or want to save time.

Figure 12-4 shows what the screen looks like when the program runs. If you
want to experiment with the program, there are a few things you can try.
How about making it go up to 20, or making it show only the odd lines in the
times table (1, 3, 5)? You can make both those changes by playing with the
range() function used in the loop. You can customize the screen output too,
to provide more in-depth instructions, or to strip them out entirely. Perhaps
you can use keyboard characters such as dashes and bars to put your
multiplication table into a box.

223 Chapter 12: Writing Programs in Python

Figure 12-4:
The finished

multiplica-
tion table.

Now, what
was 7 times

8 again?

 Copyright © 2001-2012 Python Software Foundation; All Rights Reserved

Creating the Chatbot Program
Do you ever find yourself talking to your computer? Wouldn’t it be great if it
could chat back? The next program enables you to have a conversation with
your computer onscreen. Using a few tricks, we’ll make the program appear
to be intelligent, and able to learn from what you type in. It’s not actual
artificial intelligence, of course: That discipline of computer science is highly
evolved, and this is a simple demo program. Chatbot can throw up some
surprises, however, and you can expand its vocabulary to make it smarter.
For a sneak preview of what it can do, see Figure 12-5 at the end of the chapter.

As you build this program, you’ll deepen your understanding of Python. In
particular, you’ll learn about conditional statements, lists, dictionaries, and
random choices.

The program works like this:

 1. It introduces itself and then invites the player to respond.

 2. The player types something in.

 3. If the player types in bye, the computer replies with a message to say
thanks for chatting, and then finishes the program.

224 Part IV: Programming the Raspberry Pi

 4. The program has stock responses for certain words, so it checks
whether it recognizes any of the words that the player has entered. If it
does, it uses one of the appropriate stock responses. If more than one
stock response applies, the computer chooses one at random.

 5. If none of the words are recognized, the program chooses a random
phrase and replies with that. To stop the random phrases repeating, it
replaces the phrase used with what the player typed in. Over time, the
program learns from the player and starts to talk like him or her.

 6. The program keeps on chatting with the player until the player types in
bye.

Now that you know the final goal, take your first steps towards it by setting
up the random responses.

You can download the finished program from this book’s website. See the
Introduction for more on accessing the website.

Introducing lists
There are several different ways you can organize information in Python, and
one of the most fundamental is called a list. You came across a list already
when we used the range() function to create a list of numbers for our for
loop. You can also create your own lists.

The following code shows you how to create a list that has the name
shoppinglist. You can enter this in the shell, or create a program so you
can more easily edit and refine it. If you create a program, make sure you run
it, so that the shopping list is set up.

shoppinglist=[“eggs”,
 “bacon”,
 “tomatoes”,
 “bread”,
 “tin of beans”,
 “milk”]

It’s similar to the way you create a variable. After the list name comes an
equals sign, and then we have square brackets that contain the list. Each
item in the list is separated by a comma. Because each item is a piece of
text (known as a string in programming circles), we put quotes around it, so
Python knows where it starts and ends. That becomes important when you
have more sophisticated strings, especially those that include commas (such
as “cheese, cheddar”), which might otherwise be interpreted as several
different items.

225 Chapter 12: Writing Programs in Python

 Python doesn’t mind whether you use double quotes or single quotes around
the strings in your list, but we recommend you use double quotes. That’s
because strings often include apostrophes. If you’re using a single quote mark
(the same symbol as an apostrophe) to close the string, Python thinks it’s
reached the end of the string when it hits the apostrophe. If you do need to
use an apostrophe inside a string that’s marked at each end with a single
quote, put a \ (slash) before the apostrophe (for example, ‘Mum\’s custard’).
It’s easier to just use double quotes for your strings.

You can put all your list items on one line, but it’s easier to read if you put
each item on a new line. Using IDLE, if you press Return at the end of a list
item, it starts the next line indented to the same depth as the item above, so
your list looks neat, as in my previous example. When you’re using IDLE, your
program is color-coded too, so the black commas stand out against the green
list items.

 When you’re entering lists, pay particular attention to the commas. There
should be one after every list item, except for the last one. This is another
reason it’s a good idea to put list items on separate lines: It makes it easier to
see at a glance if a comma is missing.

You can print a list to screen in the same way you print a variable to the
screen. Try this in the shell:

>>> print shoppinglist
[‘eggs’, ‘bacon’, ‘tomatoes’, ‘bread’, ‘tin of beans’, Æ

‘milk’]

Python uses single quotes around the strings in your list, irrespective of what
kind of quotes you used to set it up. To find out how many items are in a list,
use the len() function, like this:

>>> print len(shoppinglist)
6

What if you’ve forgotten something? You can easily add items to the end of
the list using the append() function. Here’s an example:

>>> print shoppinglist
[‘eggs’, ‘bacon’, ‘tomatoes’, ‘bread’, ‘tin of beans’, Æ

‘milk’]
>>> shoppinglist.append(“fish”)
>>> print shoppinglist
[‘eggs’, ‘bacon’, ‘tomatoes’, ‘bread’, ‘tin of beans’, Æ

‘milk’, ‘fish’]

226 Part IV: Programming the Raspberry Pi

Each item in the list has a number, starting at zero, which means the second
item is number 1 and the third item is number 2 and so on. You can refer to
a particular item by putting the item number (known as the item’s index) in
square brackets:

>>> print shoppinglist[3]
bread

That gives us the fourth item in the list, remember, because the first item
has the index 0. You can also change items in the list by using their index
number. For example, if we wanted to change the fourth item from bread to a
baguette, we would use

>>> shoppinglist[3]=“baguette”

For Chatbot, that’s everything we need to know about lists, but they’re an
incredibly flexible way of organizing information and there’s much more you
can do with them. Table 12-2 provides a cheat sheet to some of the other
functions, if you want to experiment.

Table 12-2 Additional List Operations
Action Code to Use Notes

Sorting a list shoppinglist.Æ
sort()

Sorts alphabetically,
or from low to high in
number lists.

Sorting a list in
reverse order

shoppinglist.Æ
sort(reverse=True)

Sorts in reverse
alphabetical order,
or from high to low in
number lists.

Deleting a list item del shoppinglist[2] Deletes the list item
with the index number
specified. List items
after it move up the
list, so no gap is left.

Removing an item
from the list

If “eggs” in Æ
shoppinglist:

Deletes the list item
that matches the item
given. Results in an
error if the item isn’t in
the list, so use the if
command to avoid this.

 shoppinglist.Æ
remove(“eggs”)

 For other projects you work on, it’s worth knowing that lists can include
numbers as well as strings, and can even include a combination. For example,
here’s a list of answers to quiz questions:

227 Chapter 12: Writing Programs in Python

myquizanswers=[“Isambard Kingdom Brunel”, 1945, 2012, Æ
“Suffragettes”, 7500, “Danny Boyle”]

A list can have any items in any order. Python doesn’t understand what the
list contents mean or how they’re organized. To make sense of it, you need to
write a program that interprets the list.

Using lists to make a
random chat program
After you’ve mastered the list structure, you can create a simple chat program.
For this first version, you’ll take some input from the player, display a
random response, and then replace that random response with whatever the
player types in.

Here’s the complete program that does that. It introduces a few new ideas,
but we’ll talk you through them all shortly:

Chatbot – random-only version
Example program from Raspberry Pi For Dummies

import random

randomreplies=[“Oh really?”,
 “Are you sure about that?”,
 “Hmmmmm.”,
 “Interesting...”,
 “I’m not sure I agree with that...”,
 “Definitely!”,
 “Maybe!”,
 “So what are you saying, exactly?”,
 “Meaning what?”,
 “You’re probably right.”,
 “Rubbish! Absolute nonsense!”,
 “Anyway, what are your plans for tomorrow?”,
 “I was just thinking exactly the same.”,
 “That seems to be a popular viewpoint.”,
 “A lot of people have been telling me that.”,
 “Wonderful!”,
 “That could be a bit embarrassing!”,
 “Do you really think so?”,
 “Indeed...”,
 “My point exactly!”,
 “Perhaps...”]

print “What’s on your mind?”
playersays=raw_input(“Talk to me: “)
replychosen=random.randint(1, len(randomreplies))-1
print randomreplies[replychosen]
randomreplies[replychosen]=playersays

228 Part IV: Programming the Raspberry Pi

The first two lines are comments, a quick reminder of what the program
does.

Python has been designed to be easily extended, and so the next line,
import random, tells Python you want to use the extension for generating
random numbers. Extensions like this one are called modules, and you’ll use
several different modules as you play with the projects in this book. The
modules provide pre-written functions you can reuse in your programs, so
they simplify and accelerate your own programming. The random module
includes functions for generating random numbers, and will be essential
when we want to pick a random response for the computer to display.

The next part of the program creates a list called randomreplies, which
contains statements the computer can say in response to whatever the
player enters. You can personalize this by changing the responses, or adding
more in. The more there are, the more effective the illusion of intelligence is,
but for this demo, we’ve kept the list fairly short. It doesn’t matter what order
the responses are in, but keep an eye on those commas at the end of each
line.

After printing a short line that invites the player to share what’s on their
mind with the computer, we request input from them. Instead of using the
input() function, we use a function called raw_input(). That’s because
we are asking the player to enter a string and not a number this time. In
Python 2.7, you have to use raw_input() for strings. Whatever the player
enters is stored in a variable called playersays.

The next line picks an index number for the random response. In order to
understand how this works, it helps to break it down. First, you need to know
how to generate random numbers. You give the random.randint() function
two integer numbers to work with (or arguments). The two numbers specify
how big you want your random number to be, with the first figure being
the lowest possible value and the second figure being the highest possible
number. For example, if you wanted to display a random number between 1
and 10, you would use

print random.randint(1,10)

You can try this multiple times to check whether it works. Sometimes the
numbers repeat, but that’s the nature of random numbers. It’s like rolling the
dice in Monopoly. Sometimes you’re stuck in jail, but sometimes you throw
doubles.

The range of numbers we want to use for our random number is the size of
our randomreplies list. As you know, we can use the len() function to
check what this is, so you can add things to your list or remove them without
having to worry about updating this part of your program. In our random
statement, we replace the second number with the length of the list:

229 Chapter 12: Writing Programs in Python

print random.randint(1, len(randomreplies))

We don’t want to just print the result onscreen, however, so we store the
number chosen in a variable called replychosen. There’s one final twist:
Because list indexes start counting at 0, we need to subtract one from the
random number. Otherwise, the program would never choose our first list
item, and would try to choose one at the end of the list that isn’t there. Here’s
the final command we use:

replychosen=random.randint(1, len(randomreplies))-1

The final two lines print the randomly selected list item, and then replace
that list item with whatever the player entered:

print randomreplies[replychosen]
randomreplies[replychosen]=playersays

You can run the program to test it, but there’s one thing missing. At the
moment, it just gives you one turn before finishing. To fix that, we need to
learn about the while loop.

Adding a while loop
Previously, we used the for loop to repeat a piece of code a set number of
times. For this program, we want to keep the conversation going until the
player types in bye, so we need to use something called a while loop.

The section we want to repeat begins with the line that requests the player’s
input, and finishes where the program currently ends, with the player’s entry
going into the list of random replies.

To repeat this section, we add two lines at the top of it, and then indent the
section, so that Python knows which commands we want to repeat:

playersays=””
while playersays!=”bye”:
 playersays=raw_input(“Talk to me: “)
 replychosen=random.randint(0, len(randomreplies))-1
 print randomreplies[replychosen]
 randomreplies[replychosen]=playersays

 IDLE makes it easy to indent an existing chunk of your program: Click and drag
the mouse to highlight it, and then click to open the Format menu at the top
of the script mode window and click Indent Region. You can use the Dedent
Region option to take indentation out of a highlighted section.

230 Part IV: Programming the Raspberry Pi

The while command tells Python to repeat the indented block below as
long as the second half of the while command is true. The != operator
means not equal to. In our program, the second half of the while command is
playersays!=”bye”, which means the block below should keep repeating
as long as the contents of the variable playersays are not equal to bye.

In order to use the playersays variable in the while command, we have
to set it up first because it triggers an error if you try to use a variable that
doesn’t exist yet in a while command. Immediately before the while
command, we create the variable and give it a blank value, just to get the
program past the while command and into the loop. Almost immediately it
changes when the player types something in, but that doesn’t matter.

If you run the program now, you should find the conversation rambles on
until you type in bye. Remember you can improve the quality of the experience
by adding more random sayings in the program’s random replies list.

Using a loop to force a
reply from the player
Another trick we can perform with the while loop is to make sure that the
player doesn’t just press Enter without typing anything in, either accidentally
or deliberately. That protects the extremely high quality of our random
replies list (ahem!) by preventing empty entries from going into it. In more
complex programs, a quality control check like this can be essential for
preventing errors.

You can put loops inside loops, which is called nesting them. In this case,
we’ll have a small loop that keeps asking for input until it gets it, running
inside the bigger loop that repeats the whole process of the conversation
until the player enters bye.

 To check whether something is equal to something else, we use two equal
signs (=) together. This can be confusing to new programmers, but a single
equal sign is only used to assign a value to something, such as when you’re
putting a value into a variable. When you want to compare the value of two
things to see if they’re the same, you use two equal signs together. In English,
we use the same word, but they’re completely different ideas when you think
about it, and Python certainly considers them as being separate and unique
concepts.

231 Chapter 12: Writing Programs in Python

The code below puts a while loop around the input, so that it repeats as
long as the playersays variable is empty. If the player doesn’t type
anything in and just presses Enter, they are prompted to enter something
again. And again, and again if necessary.

playersays=””
while playersays!=”bye”:

 playersays=””
 while playersays==””
 playersays=raw_input(“Talk to me: “)

 replychosen=random.randint(1, len(randomreplies))-1
 print randomreplies[replychosen]
 randomreplies[replychosen]=playersays

Notice how we indented the input command, so that Python knows what
should be repeated while the playersays string is empty.

 You might read this and wonder why we’ve set up playersays as an empty
variable twice. The first time is necessary because the while command can’t
reference a variable that doesn’t exist yet. The second time is a special case: If
we don’t reset the value to nothing, the second time around the loop, play
ersays still contains what the player typed in first time. The way a while
loop works means that the block underneath, the input() function, isn’t
run because playersays already has something in it. That code only runs if
playersays is empty. This is a nice example of a logic error. The program
works in that Python doesn’t complain or crash. The program chatters away
to itself, however, not letting you get a word in, so it doesn’t work as intended.

Using dictionaries
Besides lists, there is another data structure that we’re going to use in our
program, called a dictionary. To access an item in a list, you use an index
number, which represents its position in the list. Dictionaries are different
because to access an item, you use its key, which is a string or a number that
uniquely identifies it. The idea is used a lot in computing. Your bank account
number, for example, belongs to you and only you, so it’s a unique key for
your data. Unlike with a list, you don’t need to know where that item is in the
dictionary to be able to use it — you just need to know the key that identifies it.

232 Part IV: Programming the Raspberry Pi

Dictionaries use curly braces, and contain pairs of items, which are the keys
and the values for those keys. If that sounds confusing, here’s an example
that won’t seem too different from the paper dictionary on your bookshelf:

chatdictry={“happy”:”I’m happy today too!”,
 “sad”:”Cheer up, mate!”,
 “raspberry”:”Oh yum! I love raspberries!”,
 “computer”:”Computers will take over the Æ

world! You’re already talking to one”,
 “music”:”Have you heard the new Lana Del Rey Æ

album?”,
 “art”:”But what is art really, anyway?”,
 “joke”:”I only know this joke: How do you Æ

kill a circus? Go for the juggler.”,
 “python”:”I hate snakes!”,
 “stupid”:”Who are you calling stupid, jelly Æ

brain?”,
 “weather”:”I wonder if the sun will shine on Æ

Saturday?”,
 “you”:”Leave me out of this!”,
 “certain”:”How can you be so confident?”,
 “talk”:”You’re all talk! Do something!”,
 “think”:”You can overthink these things, Æ

though.”,
 “hello”:”Why, hello to you too, buddy!”,
 “wearing”:”I don’t wear clothes. I don’t Æ

even come with a case.”}

 In this example, we’ve given the dictionary the name chatdictry, but you can
call it anything. You can have more than one dictionary in your program too, if
you give them different names.

In this dictionary, we look up a word to see what the reply to it should be. For
example, if someone uses the word happy, the computer should reply “I’m
happy too.” If we look up the word hello, we can see the computer’s response
should be “Why, hello to you too, buddy!” Each dictionary entry is made up
of the key and its value, separated by a colon, for example, the key happy
and its value, which is the computer’s response to that word. The entries are
separated from each other with a comma.

 The punctuation here is quite fiddly, so take care. The strings have quotes
around them, but the colon between the keys and their values must be outside
the quotes. Each pair needs to end with a comma except the last one, and
we’re using curly braces (usually found on the same key as the square brackets).

 Dictionaries only work if every key is unique. You can’t have two entries in
there for the word happy, for example; otherwise, Python wouldn’t know
which one to choose.

233 Chapter 12: Writing Programs in Python

 Dictionaries only work one way around: You can’t use the value to look up the
key. One way to remember this is to think of a real paper dictionary. It would
be almost impossible to trace a particular definition back to a word because
you wouldn’t know what page you could find the definition on. Finding
definitions from the words is simple, though.

Here’s how you print a value from the dictionary:

>>> print chatdictry[“hello”]
Why, hello to you too, buddy!
>>> print chatdictry[“weather”]
I wonder if the sun will shine on Saturday?

 If you try to use a key that doesn’t exist in the dictionary, you trigger an error.
Later in this chapter (see “Creating the dictionary look-up function”), we show
you how to test whether a key is in the dictionary.

In the real program, we’ve extended the vocabulary to cover some other
words too, and this is where you can stamp your identity on the program
most clearly. The words you put into the vocabulary, and the responses you
give to go with them, are what really gives the chat character its intelligence
and personality, so after you’ve got the demo working, it’s worth spending
time refining the language here. When you try playing with the finished
program, take a note of the kinds of words you type in, and the kinds of
things you want to chat about, and use that understanding to shape your
Chatbot’s vocabulary.

 You can use the responses you give here to steer the conversation. We’ve
included a joke for when players ask the computer to tell them one (as they
inevitably do). My full definition list also recognizes the word funny because
that is reasonably likely to come up in the player’s response to the joke.
(Possibly in the context of “not very,” but heigh-ho!)

Creating your own functions
One of the things you can do in Python, and many other programming
languages, is parcel up a set of instructions into a function. A function can
receive some information from the rest of the program (one or more arguments),
work on it, and then send back a result. In our Chatbot program, we’ll use
a function to look up whether any words entered are in the dictionary of
known words and responses.

Before we can use a function, we have to define it, which we do using a def
statement. To tell Python which instructions belong in the function, we
indent them underneath the def statement. Here’s an example program to
familiarize you with the idea of functions, and how we’ll be using it:

234 Part IV: Programming the Raspberry Pi

Example of functions

def dictionarycheck(message):
 print “I will look in the dictionary for”, message
 return “hello”

dictionarycheck(“test message”)

result=dictionarycheck(“test message2”)
print “Reply is:”, result

We’ll talk you through that program in a moment, but here’s a glimpse of
what is shown onscreen when you run it:

I will look in the dictionary for test message
I will look in the dictionary for test message2
Reply is: hello

This is a short but powerful program because it tells you nearly everything
you need to know about functions. As you can see, we defined our function at
the start of the program, with this line:

def dictionarycheck(message):

This sets up a function with the name dictionarycheck(), but also sets it
up to receive a piece of information from the rest of the program and to put it
into the variable we’ve called message. The next line prints out a statement
saying “I will look in the dictionary for” followed by the contents of the variable
message. That means it prints out whatever information is sent to the
function. The next line starting with return exits the function and sends a
message back, which in our example is hello.

 Functions are self-contained units so the variable message can’t be used by
the rest of the program (it’s what’s known as a local variable). When you’re
writing your own functions, you should give them a job to do, and then use
return to send the result back to the rest of the program.

Functions aren’t run until you specifically tell the program to run them, so
when Python sees the function definition, it just remembers it for when it
needs it later. That time comes shortly afterwards, when we issue the
command:

dictionarycheck(“test message”)

This runs our dictionarycheck() function, and sends it the text “test
message” to work with. When the function starts, Python puts “test
message” into the function’s variable called message, and then prints the
text onscreen that contains it. The text “hello” is sent back by the function,
but we don’t have a way to pick up that message.

235 Chapter 12: Writing Programs in Python

The next code snippet shows you how you can pick up information coming
back from a function. Instead of just running the function, you set a variable
to be equal to its output, like this:

result=dictionarycheck(“test message2”)
print “Reply is:”, result

When the text “hello” is sent back by the function, it goes into the variable
result, and the main program can then print it on the screen.

This simple example illustrates a few reasons why functions are a brilliant
idea, and have become fundamental building blocks in many programming
languages:

 ✓ Functions enable you to reuse parts of your program. For example,
we’ve used our function to display two different messages here, just
by sending the function a different argument each time. When you use
more sophisticated programs, being able to reuse parts of your program
makes your program shorter, simpler, and faster to write.

 ✓ Functions make understanding the program easier because they give a
name and a structure to a set of instructions. Whenever someone sees
dictionarycheck() in our program, they can make a good guess at
what’s going on. So far, our programs haven’t been particularly complex,
but as you work on bigger projects, you’ll find readability becomes
increasingly important.

 ✓ It makes it easier to maintain and update your program. You can easily
find which bits of the program to change, and all the changes you need
to make will be in the same part of the program. If we think of a better
way to do a dictionary look-up later, we can just modify the function,
without disturbing the rest of the program.

 ✓ Functions make prototyping easier. That’s what we’ve done here: We’ve
built an experimental program that takes some text and sends back a
message. That’s what our finished dictionarycheck() function will
do, except that this one just sends the same message back every time
and the finished one will send different messages back depending on
what the player said. We could build the rest of the program around this
prototype to check it works, and then go back and finish the dictionary
check() function.

Creating the dictionary look-up function
Now we know how to create a function, we’re going to build a function that
takes the player’s text and checks for any relevant responses. To do this,
we’ll use what we’ve learned so far about dictionaries and functions, and we’ll
add in some new ideas relating to loops, strings, and decision-making.

236 Part IV: Programming the Raspberry Pi

The function is only 12 lines long, but it’s quite sophisticated. It needs to
take what the player entered, and check each word in it to see whether the
dictionary has a response for that word. The player might use more than
one word that’s in the dictionary. For example, if the player says “I love pop
music,” the words love and music might both be in the dictionary. We’ll deal
with that eventuality by showing one of the possible responses, chosen at
random. Alternatively, the player might use no words the program recognizes,
so we need to design our function to cope with that situation too.

Before we start to break it down, here’s the function in its entirety, so you
can see how all the bits fit together:

def dictionarycheck(message):
 message=message.lower()
 playerwords=message.split()
 smartreplies=[]
 for eachword in playerwords:
 if eachword in chatdictry:
 answer=chatdictry[eachword]
 smartreplies.append(answer)
 if smartreplies:
 replychosen=random.randint(1,len(smartreplies))-1
 return smartreplies[replychosen]
 else:
 return “”

The function definition is the same as we used in our example function
previously. When we use it, we send it what the player has typed in, so this
goes into the variable called message.

The next two lines introduce something new: string methods. These are like
built-in functions that are attached to a string and transform it in some way.
The lower() method converts a string into lowercase. This is important
because if a player uses capital letters or mixed case, they won’t match the
lowercase words we’ve used in our dictionary keys. As far as the program is
concerned, hello and Hello aren’t the same thing. The split() method
takes a string and splits it into a list of its constituent words. The first two
lines in our function, then, turn the contents of the message variable into a
lowercase version of itself, and then create a new list of the words the player
entered, called playerwords.

We’re going to store possible replies to the player in a list called smart
replies, so we create that as an empty list.

The next step is to set up a loop that goes through the list of words that the
player entered in turn. When we used a for loop previously, we worked our
way through a sequence of numbers. This time, we’re going to work our way
through a list of words. Each time around the loop, the variable eachword
contains the next item from the list of words the player entered.

237 Chapter 12: Writing Programs in Python

The next line introduces a new idea, the conditional statement, which starts
with if. A conditional statement is used to enable the computer to make a
decision about whether it should carry out certain instructions, and you’ll
come across it in almost every program you write. Here, it’s being used to
avoid the program stopping and reporting an error if we try to use a key that
isn’t in the dictionary:

 if eachword in chatdictry:
 answer=chatdictry[eachword]
 smartreplies.append(answer)

The eachword variable contains one of the words the player entered, so the
if statement checks whether that word is in the dictionary and only carries
out the next two instructions if they are. Notice how indenting is used here to
show which commands belong together — in this case, which commands are
controlled by the if statement. If the word is in the dictionary, the program
looks it up and adds the resulting response to the smartreplies list, using
append().

This process is repeated for every word the player entered, but that’s all that
happens in the loop. The next line is not indented below the for statement,
so it’s not controlled by it.

When we come out of the loop, we check whether the list smartreplies has
anything in it, by using simply

 if smartreplies:

In English, this means “if smartreplies has content in it.” The commands
indented underneath that are carried out only if some entries were added to
the smartreplies list, which only happens if one or more of the words the
player entered were found in our dictionary. In that event, we want to return
one of the items in the smartreplies list to the main program, so we pick
one at random from the list and use return to send it back to the main
program and exit the function.

After that, we use the else command. In plain English, this means otherwise,
and it’s joined to the if command. So if smartreplies has content in it,
the commands are carried out to send back an appropriate reply, chosen at
random. When none of the player’s words were found in the dictionary and
so smartreplies is empty, the instructions indented underneath the else
command are carried out instead. The function sends an empty message (“”)
back to the main program and exits the function.

Creating the main conversation loop
We previously created a version of Chatbot that could only provide random
responses. Now we need to change the main conversation loop so it checks

238 Part IV: Programming the Raspberry Pi

for words in the dictionary and shows an intelligent response if they’re
found, and if not, shows a random response and replaces it with what the
player entered. This final version brings together all the ideas we’ve explored
as we’ve built this program.

After the command that accepts the player’s input, we put the following:

 smartresponse=dictionarycheck(playersays)
 if smartresponse:
 print smartresponse
 else:
 replychosen=random.randint(1, Æ

len(randomreplies))-1
 print randomreplies[replychosen]
 randomreplies[replychosen]=playersays

This starts by using the dictionarycheck() function (or calling it, to use
the jargon), sending it whatever the player typed in, and putting the response
from the function into the variable smartresponse.

The next line checks whether smartresponse has any content in it (or is
not empty), and if so, it prints it onscreen. After that, we use the else
command. If smartresponse has content in it (or is not empty), it is printed
onscreen. Otherwise, the instructions under the else command are used to
show a random response from our list of random replies, and to replace it
with what the player entered.

Final thoughts on Chatbot
That completes the Chatbot program. Along the way, you’ve learned how to
use variables, lists, loops, random choices, dictionaries, conditional statements
(if and else), and functions. You’ve learned how to take input from the user
and print responses onscreen, and you’ve created the skeleton of a chat
program you can flesh out with your own personality.

Figure 12-5 shows a sample run of the program. There are a few bits where
the computer clearly hasn’t understood, but this can be improved by
extending the vocabulary. As you expand the vocabulary in the dictionary
and include more random replies in the list, you’ll find the program can
often surprise you with its apparent intelligence. You’re never alone with a
Raspberry Pi!

239 Chapter 12: Writing Programs in Python

Figure 12-5:
Having a

conversa-
tion with
Chatbot.

 Copyright © 2001-2012 Python Software Foundation; All Rights Reserved

The final Chatbot program
For your reference, here’s a complete listing of the Chatbot program.

Chatbot
Example program from Raspberry Pi For Dummies
import random

Following list is heavily abbreviated
to save space in the book. Should be 20+ entries.
randomreplies=[“Oh really?”,
 “Are you sure about that?”,
 “Perhaps...”]

Following dictionary is also heavily abbreviated
chatdictry={“happy”:”I’m happy today too!”,
 “sad”:”Cheer up, mate!”,

240 Part IV: Programming the Raspberry Pi

 “computer”:”Computers will take over the Æ
world! You’re already talking to one”}

def dictionarycheck(message):
 message=message.lower()
 playerwords=message.split()
 smartreplies=[]
 for eachword in playerwords:
 if eachword in chatdictry:
 answer=chatdictry[eachword]
 smartreplies.append(answer)
 if smartreplies:
 replychosen=random.randint(1,len(smartreplies))-1
 return smartreplies[replychosen]
 else:
 return “”

print “What would you like to talk about today?”

playersays=””
while playersays!=”bye”:
 playersays=””
 while playersays==””:
 playersays=raw_input(“Talk to me: “)

 smartresponse=dictionarycheck(playersays)
 if smartresponse:
 print smartresponse
 else:
 replychosen=random.randint(1, Æ

len(randomreplies))-1
 print randomreplies[replychosen]
 randomreplies[replychosen]=playersays

print “Goodbye. Thanks for chatting today. Drop in again Æ
soon!”

Chapter 13

Creating a Game with
Python and Pygame

In This Chapter
▶ Getting started with Pygame
▶ Drawing rectangles and circles
▶ Using nested lists to store a game map
▶ Enabling keyboard control of an image
▶ Displaying fancy text messages
▶ Creating game logic, including a bouncing ball

I
n this chapter, you will build on your Python skills to create a simple
arcade game called PiBuster (see Figure 13-1). It’s a variation on the

classic format where you have to keep a ball in play using your bat, and your
goal is to knock out all the blocks.

Our version has a fruity twist: The wall of bricks is replaced with a giant
Raspberry for you to chip away at. The program is written in such a way that
you can easily design your own levels. We talk you through how the game
works and show you how to build it up step by step.

To help you to create games like this, we introduce you to Pygame, a free
library of Python modules that makes it easier to create graphics and other
game features. You’ll learn how to draw colorful text, circles, and rectangles
with it.

In this chapter, you also learn how to store a simple two-dimensional map of
the screen using a list, and how to enable an onscreen character to be moved
using the cursor keys.

This program is too long to print here in full, so we talk you through it chunk
by chunk. You can download it from the book’s website if you have any
difficulties putting it together. For more on accessing the book’s website, see
the Introduction.

242 Part IV: Programming the Raspberry Pi

Figure 13-1:
The

PiBuster
game at the

start.

 Copyright © 2001-2012 Python Software
 Foundation; All Rights Reserved

Installing and Updating Pygame
Pygame should be installed in your Linux distribution already, but if it isn’t,
or if you want to make sure you’re using the latest version, enter the following
command at the shell (see Chapter 5):

sudo apt-get install python-pygame

Importing Pygame
Before you can use Pygame, you need to import it, in the same way you
imported the random module in Chapter 12. We’ll also be using the sys, time,
and random modules for this game, so we need to import them too.

One of the modules in Pygame is called locals, and we’ll use its rect function
for drawing rectangles, as well as some of its other features. So we don’t have
to tell Python each time that the functionality we need is inside the locals
module, we can import it in the second line of our program. It’ll save us time
typing and make the program easier to read.

Here are the first two lines of our program:

PiBuster from Raspberry Pi for Dummies
import pygame, sys, time, random
from pygame.locals import *

243 Chapter 13: Creating a Game with Python and Pygame

Setting Up the Game Window
Before you can use Pygame in a program, you need to set it up, or initialize it,
by calling the pygame.init() function:

pygame.init()

After you’ve done that, you can use Pygame to open a new window. Here are
the instructions to open a window with a width of 440 pixels and a height of
480 pixels, and with PiBuster in the window’s title bar:

gameSurface=pygame.display.set_mode((440,480))
pygame.display.set_caption(‘PiBuster’)
pygame.mouse.set_visible(0)

 Take care with the number of parentheses in the first line: You need two
opening and closing parentheses around the window width and height.
That’s because they are a tuple — a type of list that you can’t change the
values in — and they’re inside the parentheses for a function. Tuples always
use parentheses and you’ll come across them lots in this chapter. As long as
you get the parentheses in the right place, they won’t cause you any trouble!

 Because you can’t change the items in a tuple, it’s much less flexible than a
list. At times, it’s the ideal solution, however. You might want to ensure data
can’t be changed, and a tuple not only enforces permanence but also helps
to communicate it when someone looks at your program code. To use a tuple
instead of a list, you use parentheses instead of square brackets for it.

The preceding code also gives our canvas the name gameSurface. In
Pygame jargon, a surface object is used to represent an image. We use the
surface object called gameSurface to represent the whole screen.

You can run this program in order to test that it creates an empty black
window. We haven’t told the program how to check whether you have
clicked the Close button, so the window can’t be closed, but we’ll come to
that later. If you run the program again, the previous window closes before
the new one opens.

Using Colors in Pygame
If you did the web design project in Chapter 8, your knowledge of colors
will come in handy here. In Pygame, colors are expressed according to how
much red, green, and blue they have in them, hence the term RGB color code.
You provide three values in parentheses, one for each color (red, green, and
blue), ranging from 0 for none at all, up to 255 for the maximum. Pure red

244 Part IV: Programming the Raspberry Pi

would be (255,0,0), which is the maximum amount of red and no green or
blue. Black is (0,0,0), a complete absence of color.

Using these numbers can get quite clumsy, and it makes the program hard to
understand, so instead, it’s a good idea to create variables to store the color
numbers. Variables that don’t change their values while the program is running
are known as constants, and it’s a good idea to write them with capital letters
so you can immediately see they’re constants, wherever they are in the
program. Here are my color constants:

SHADOW = (192, 192, 192)
WHITE = (255, 255, 255)
LIGHTGREEN = (0, 255, 0)
GREEN = (0, 200, 0)
BLUE = (0, 0, 128)
LIGHTBLUE= (0, 0, 255)
RED= (200, 0, 0)
LIGHTRED= (255, 100, 100)
PURPLE = (102, 0, 102)
LIGHTPURPLE= (153, 0, 153)

We’ve chosen these colors especially for PiBuster, and we’ve spaced them
out to make them easier to understand. The SHADOW color is a light gray,
but we’ve given it a more meaningful name because it will be used to create
the impression of shade.

Drawing with Pygame
Drawing on the screen has two stages. The first is that you draw onto the
canvas (or surface object), and the second is that you update the screen with
those changes. To make the window background white, use

gameSurface.fill(WHITE)
pygame.display.update()

 You don’t need to update the display for every drawing instruction. Your
program runs more quickly (and often looks more professional) if you wait
until you’ve finished all your drawing instructions and then update the screen
just the once.

In our game, we’re going to use two shapes. The first is a rectangle. To draw
a rectangle, you need to specify the surface object you are drawing on, which
will be our canvas gameSurface; the color; the X coordinate of the rectangle’s
top-left corner; the Y coordinate of the rectangle’s top-left corner; and its
width and height. The coordinates are measured from the top-left corner of
the window, so X values get higher as you cross the screen from left to right,
and Y values get higher as you go down the screen.

245 Chapter 13: Creating a Game with Python and Pygame

The command to draw a rectangle looks like this:

pygame.draw.rect(object,color,(x,y,width,height))

Imagine you wanted to draw a green rectangle that was 150 pixels wide by
75 pixels high, and you wanted to put it at the coordinate X=30, Y=90. Here’s
how you’d do that:

pygame.draw.rect(gameSurface,GREEN,(30,90,150,75))

The frame around our game arena (see Figure 13-1) is made of three thin
rectangles, two down each side, and one across the top. Here is the code to
draw first the top one, and then the left side, and then the right side.

pygame.draw.rect(gameSurface,PURPLE,(16,16,406,2))
pygame.draw.rect(gameSurface,PURPLE,(16,16,2,440))
pygame.draw.rect(gameSurface,PURPLE,(422,16,2,440))

We also use rectangles for the bricks in our game, as you will see later (see
“Drawing the Bricks”). The other shape we use in our game is, obviously, a
circle for the ball. We need to tell Pygame to use our canvas gameSurface;
which color we want; the X and Y coordinates of the center of the circle; and
its radius.

The command to draw a circle looks like this:

pygame.draw.circle(object,color,(x,y),radius)

Here’s how to draw a blue circle at X=100 and Y=170 with a radius of 40
pixels:

pygame.draw.circle(gameSurface,BLUE,(100,170),40)

We don’t need the blue circle or the green rectangle for this game, so you can
take them out again if you tried them out.

Creating the Game Map
In Chapter 12, you learned how to use lists to store lists of information. In
this chapter, we’re going to use a list to store a map that shows where the
bricks are. This is quite a bit more complex. The lists we’ve used so far are
just like a single column of information. Each list item was just a number or a
piece of text. A map is two-dimensional, so we’ll use a nested list, or a list in
which each list item is also a list. To put it another way, we’re going to make
a list of rows, and each list item will itself be a list containing the information
for each column in that row.

246 Part IV: Programming the Raspberry Pi

It’s easier to understand if you look at an example, so this is how we create
our map list:

map=[
#-----0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9--
 [0,0,0,0,1,1,0,0,0,0,0,0,0,0,1,1,0,0,0,0],
 [0,0,0,1,1,1,1,0,0,0,0,0,0,1,1,1,1,0,0,0],
 [0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0],
 [0,0,0,0,0,1,1,1,1,0,0,1,1,1,1,0,0,0,0,0],
 [0,0,0,0,0,0,1,1,0,0,0,0,1,1,0,0,0,0,0,0],
 [0,0,0,0,0,0,0,0,0,2,2,0,0,0,0,0,0,0,0,0],
 [0,0,0,0,0,0,2,2,2,2,2,2,2,2,0,0,0,0,0,0],
 [0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,0,0,0,0,0],
 [0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,0,0,0,0,0],
 [0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,0,0,0,0],
 [0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,0,0,0,0],
 [0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,0,0,0,0,0],
 [0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,0,0,0,0,0],
 [0,0,0,0,0,0,2,2,2,2,2,2,2,2,0,0,0,0,0,0],
 [0,0,0,0,0,0,0,0,0,2,2,0,0,0,0,0,0,0,0,0],
 [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
 [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
 [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
 [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
 [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
]

The first line in the list is a comment to number the columns so you can more
easily navigate the map. The map list starts and ends with a square bracket.
Notice how each list item (or row) is surrounded by square brackets too
because it’s also a list.

If you squint, you might be able to make out the shape of a raspberry in
there. A 1 represents a green brick (for the leaves at the top), and a 2
represents a red brick (for the juicy berry). A 0 represents no brick. To
create your own level designs, just edit this list. We recommend keeping
the bottom few rows almost empty; otherwise, the game gets too hard. The
bottom line must always be empty because that’s where the bat lives.

The size of the map is 20 rows of 20 columns. The index of each list starts at
zero, so when we look up a location in the map, we have to subtract 1 from
the X and Y coordinate we want. To find out what’s in the second row and
the fifth column (Y=2, X=5), use

print[1][4]

 Note that we reference the Y coordinate first (the row number), and then the
X coordinate (the column in that row).

Run the program to set up the map and use the shell to try printing different
values from the map. It’s a good way to familiarize yourself with how it works.

247 Chapter 13: Creating a Game with Python and Pygame

Drawing the Bricks
Now we have a map, and we know how to make rectangles, we can draw the
start screen showing the brickwork raspberry.

Our game map is 20 rows of 20 columns, and each position on the map can
have a brick in it, have nothing in it, or have the ball or half of the bat in it
(because the bat occupies two spaces).

To draw a brick on screen, we need to take a brick’s position on the map and
use it to calculate the brick’s position on screen. Each position on the map is
a square with sides of 20 pixels, so a brick’s real coordinate on the screen (in
pixels) is 20 times its coordinate in the game (measured in our map rows and
columns). For example, the brick that’s in the fifth row and the fourth column
of our map is 100 pixels from the left of the window edge, and 80 pixels from
the top. To calculate these pixel positions for Pygame, we’re going to create
two functions called realx() and realy():

def realx(x):
 x=x*20
 return x

def realy(y):
 y=y*20
 return y

 Remember that all your functions need to go at the start of your program, so
Python knows about them before you try to use them.

The next step is to create a function to draw a brick. In the last chapter, you
learned how to pass arguments to a function. In this chapter, we extend the
idea and pass several values at once. Our function drawbrick() receives
the X map coordinate, Y map coordinate, and the color value of the brick to
be drawn (1 for green and 2 for red).

Each brick comprises five rectangles. As well as the square box, there are
two thin lighter-colored rectangles across the top and down the left of the
box, and there are two gray rectangles along the bottom and down the right
edge. This makes the bricks look like they’re 3D, or at least look a bit more
interesting than a flat block of color. On red squares, the highlight color is a
lighter red, and on green ones, it’s a lighter green. The drawbrick() function
first checks the color argument passed to it and then sets the variables
boxcolor and highlightcolor to be the right red or green values.

The function can then draw the brick using those colors and use the
realx() and realy() functions to work out where to place the box on
screen in pixel coordinates.

248 Part IV: Programming the Raspberry Pi

def drawbrick(xcoord,ycoord,col):

 if col==1:
 boxcolor=GREEN
 highlightcolor=LIGHTGREEN
 else:
 boxcolor=RED
 highlightcolor=LIGHTRED
 pygame.draw.rect (gameSurface,boxcolor,(realx(xcoord),Æ

realy(ycoord),20,20))
 pygame.draw.rect (gameSurface,highlightcolor,(realx Æ

(xcoord),realy(ycoord),2,20))
 pygame.draw.rect (gameSurface,highlightcolor,(realx Æ

(xcoord),realy(ycoord),20,2))
 pygame.draw.rect (gameSurface,SHADOW,(realx(xcoord)Æ

+18,realy(ycoord),2,20))
 pygame.draw.rect (gameSurface,SHADOW,(realx(xcoord),Æ

realy(ycoord)+18,20,2))

Now we have those functions in place, we can use nested loops to go through
the rows and columns, check whether there is a brick in the map at each
point, and draw the brick if so. Each time we draw a brick, we add one to the
variable brickcount, so it represents the total number of bricks onscreen.
We use this later to check when the player’s won.

This code goes into the body of your program, after all the functions:

brickcount=0
for x in range(1,21):
 for y in range(1,20):
 if map[y-1][x-1]!=0:
 drawbrick(x,y,map[y-1][x-1])
 brickcount+=1
pygame.display.update()

 Remember that the end point used by range() isn’t in the list, so we have to
go up to 21 in X, for example. We want to stop at row 19 in Y because the bat
is in row 20.

When you run the program, you should see the brick raspberry and frame
onscreen.

Positioning the Bat
The game uses the variable batx to refer to the X coordinate of the bat in the
game map. The player can’t move the bat up and down, so we’ve used a
constant called BATY to represent the bat’s row. The variable batx is
assigned a random value at the start, so the bat starts in a random position.
When setting up the bat, we also set the player’s score to zero:

249 Chapter 13: Creating a Game with Python and Pygame

#initialize bat and score
batx=random.randint(1,19)
BATY=20
drawbat(batx)
score=0

The function drawbat() does exactly what it says on the function name. It
takes the bat’s X position as an argument and draws the bat there. Like the
bricks, we’ve compiled the bat from several rectangles so it looks a bit more
interesting. Here’s the routine to draw the bat:

def drawbat(x):
 pygame.draw.rect (gameSurface,LIGHTPURPLE,(realx(x),Æ

realy(BATY),40,4))
 pygame.draw.rect (gameSurface,PURPLE,(realx(x),realy Æ

(BATY)+4,40,6))
 pygame.draw.rect (gameSurface,SHADOW,(realx(x),realy Æ

(BATY)+10,40,2))
 pygame.draw.rect (gameSurface,SHADOW,(realx(x)+38,Æ

realy(BATY),2,12))

One thing to notice here is that the bat is 40 pixels wide, which means it’s
two bricks wide.

Animation is just an illusion. To make the bat look as though it’s moved, you
delete it and then redraw it nearby. It happens so fast that our eyes think it’s
jumped, but from a programming point of view, it’s important to know what’s
really going on. As well as drawing the bat, you need to be able to clear it
again. We use two functions for that. The blank() function clears a point
onscreen by drawing a white box on top of it. It’s used to make bricks
disappear and to make the ball move too. The clearbat() function removes
the bat. Remember the bat occupies two squares on the map, so we have to
use the blank() function twice.

def blank(x,y):
 pygame.draw.rect (gameSurface,WHITE,(realx(x),realyÆ

(y),20,20))

def clearbat(x):
 blank(x,BATY)
 blank(x+1,BATY)

When you run the program now, it should draw the frame, the raspberry, and
the bat. The bat is in a randomly chosen position each time.

 If something’s missing onscreen, don’t forget you need to update the display
after drawing on the canvas. Add this line at the end:

pygame.display.update()

250 Part IV: Programming the Raspberry Pi

Positioning the Ball
Now, please welcome, the star of our show: the ball! To keep track of it, we
use four variables, as detailed in Table 13-1.

Table 13-1 Variables for the Ball
Variable Meaning

ballx X position (from 1 to 20)

bally Y position (from 1 to 20)

ballxdir Direction of travel horizontally. 1 for right or –1 for left.

ballydir Direction of travel vertically. 1 for down or –1 for up.

The drawball() function accepts two arguments for the ball’s position
and draws the ball there. Because you draw a circle by giving Pygame its
center instead of its top-left corner, we had to add 10 to the pixel coordinates
given by realx() and realy(). To give the ball some depth, we’ve added
a second circle to it in a color and position that looks like a reflected light.
Actually, that might be overselling it, but it does make the ball look less flat.

def drawball(x,y):
 pygame.draw.circle (gameSurface,BLUE,(realx(x)+10,Æ

realy(y)+10),10,0)
 pygame.draw.circle (gameSurface,LIGHTBLUE,(realx(x)Æ

+6,realy(y)+6),2,0)

That function goes with the rest at the top of your program listing. Back
in the main part of the program, when a game begins, we want to position
the ball in a random location in the top seven rows of the screen where we
know there isn’t a brick. To do that, we use a while loop that keeps picking
random coordinates until it finds an empty square. We also check for ballx
being zero to get us over the while statement first time around and pick our
first random numbers. Here are the commands to set up the ball:

#initialize ball
ballx=0
bally=0
while map[bally-1][ballx-1]!=0 or ballx==0
 ballx=random.randint(1,20)
 bally=random.randint(1,7)
ballxdir=1
ballydir=-1
drawball(ballx,bally)

Run the program now, and you should have a frame, a giant raspberry, a bat,
and a ball placed in an empty space near the top of the screen.

251 Chapter 13: Creating a Game with Python and Pygame

Displaying the End Game Messages
Whether the player wins or loses, we need to let him know with a message
onscreen. The showtext() function takes a string as its argument and then
uses Pygame to show it.

 You don’t necessarily need to know this, but this function draws (or renders)
text onto a surface object using your choice of font and font size. It then
creates a rectangle from that surface object, repositions it in the center of the
screen, and copies (or blits) the text onto the rectangle.

You can reuse this function in your own programs. To adapt it, the things you
need to know are that freesansbold.ttf is the name of the font, 64 is the font
size in points, PURPLE is the text color, WHITE is the background color for
the text, and the center of the text is at pixel position X=220 and Y=200.

The values we’ve used position the text across the middle of the giant
raspberry. The text is huge. We have room for only about nine characters in
the game window, but that’s perfect for this game.

def showtext(text):
 fontObj=pygame.font.Font(‘freesansbold.ttf’,64)
 textsurface=fontObj.render(text, True, PURPLE, WHITE)
 textRectObj=textsurface.get_rect()
 textRectObj.center=(220,200)
 gameSurface.blit(textsurface,textRectObj)
 pygame.display.update()

Now you know how to display text, you can create functions called
gameover() for when the player loses and gamewon() for win the player
wins. They look like this:

def gameover():
 showtext(‘GAME OVER’)
 time.sleep(8)
 endgame()

def gamewon():
 showtext(‘GAME WON!’)
 time.sleep(8)
 endgame()

The time.sleep() function pauses the computer for the specified number
of seconds, so there’s an eight-second pause to view the message before the
endgame() function is called. This quits Pygame (freeing up any resources it
was using) and closes the PiBuster window. Here’s what it looks like:

def endgame():
 pygame.quit()
 sys.exit()

252 Part IV: Programming the Raspberry Pi

Checking for a Win
Before we create the main game loop, we need one final function. Each time
the player knocks out a brick, the score variable is increased by 1. When the
score variable is equal to the brickcount variable (which holds the number
of bricks at the start of the game), the player has won. This short function
checks and returns the value True if the player has won, and returns the
value False if not. True and False don’t have quotation marks (or speech
marks) around them because they’re not text strings. They’re special values
you can use in Python.

def havetheywon():
 if score==brickcount:
 return True
 else:
 return False

Setting Up the Timings
Before we go into our main game loop, we need to add some instructions
for timing. We’re going to use the clock in Pygame to control how fast our
game runs. Using this, we can specify the maximum speed we want the game
to run at, measured in frames per second. We store that value in a constant
called FPS. For a reasonably challenging game of PiBuster, 20 is a good value.
Higher values are faster and lower values are slower. During testing, we set it
as low as 4 so we could closely watch how the ball was bouncing, and set it
as high as 50 to speed up the computer playing itself when we were confirming
that gamewon() worked.

By default, keys on the keyboard are set to not repeat, which means if you
hold down a key, it only triggers one movement in the game. That’s really
annoying because you would have to hammer a key for each step you want
to move the bat. We set the keys to repeat so that if you hold down the key,
the bat glides for as long as you hold the key down. The two numbers in the
pygame.key.set_repeat() command specify the delay before the key
starts repeating, and then how often it repeats, so 1,1 is the fastest setting.
(If you use 0,0, it turns off the repeat.)

Add these instructions at the end of your program so far:

FPS=20
fpsClock=pygame.time.Clock()
pygame.key.set_repeat(1,1)

253 Chapter 13: Creating a Game with Python and Pygame

Before we enter the game loop, we should make sure we have updated the
screen with everything we’ve drawn on it, and give the player a short time to
see where the bat and ball are before the game starts:

#update screen and short pause
pygame.display.update()
time.sleep(2.5)

Making the Bat Move
Now we have all our functions in place, our starting screen drawn, and all
our variables set up. It’s time to make the game loop, which repeats until the
game is won, lost, or abandoned by the player closing the window.

Each run through the loop checks for keypresses, moves the bat if required,
moves the ball (including changing its direction if it should bounce), knocks
out bricks if necessary, updates the screen, checks if the player has won, and
then pauses briefly to match your desired game speed.

Here’s the shell of the main loop, with all the bat controls included, but with
a gap left for the ball movement instructions to be added later:

#main game loop
while True:
 for event in pygame.event.get():
 oldbat=batx
 if event.type == QUIT:
 endgame()
 if event.type==KEYDOWN:
 if event.key==K_RIGHT:
 batx=batx+1
 elif event.key==K_LEFT:
 batx=batx-1
 if batx==0 or batx==20:
 batx=oldbat
 clearbat(oldbat)
 drawbat(batx)

ball movement goes here

 pygame.display.update()
 if havetheywon()==True:
 gamewon()
 fpsClock.tick(FPS)

254 Part IV: Programming the Raspberry Pi

The instruction while True sets the loop up to run forever and is a
construct that’s often used for loops you want to repeat indefinitely. The first
thing that happens inside the while loop is that there is a for loop that
works through Pygame’s list of events, which are things that happened like
key presses or clicks on the window’s Close button. Each time around the
for loop, the program checks the next event in the list.

First, we store the position of the bat in a variable called oldbat. This will be
important later.

Then we check whether the event type is QUIT, which means the player
clicked the Close Window button. If it is, we end the game.

If the event type is a key press, we check whether it was the right cursor key
(K_RIGHT) and add 1 to batx if so. If not, we check whether it was the left
cursor key (K_LEFT), and subtract 1 from batx in that case.

We have to stop the player from moving the bat out of the play area, so we
check whether batx is now 0 (too far left) or 20 (too far right, because the
bat is two squares wide). If it is either or those, we reset batx to oldbat, its
value at the start of this loop. That stops the bat from being able to go offscreen.

All we’ve done so far is change the bat’s variables, so now we need to
actually move it on the screen. To update the canvas, we simply call clear
bat() with the old bat position, and then draw the bat in the batx position.
Sometimes, these will be the same, but it doesn’t matter. There won’t be any
flicker because nothing changes visibly until you update the display.

The while loop finishes by doing that update, checks whether the player has
won, and then performs the timing synchronization.

Add that in to your program, and you can move the bat. We’re ready to
introduce the bouncing ball.

Making the Ball Move
The instructions that make the ball move also go inside the while loop, so
they are all indented by four spaces, except where they need to be indented
further. You need to insert them where indicated by a comment in the
previous chunk of code.

We start by storing the current position of the ball in the variables old
ballx and oldbally. Then we check for whether we need to bounce off the
left, right, or top wall. If the ball’s X position is 1, for example, it can’t go any
further left, so we change its horizontal direction to be to the right by giving
ballxdir a value of 1. If the ball is in the top row, its Y direction is changed
to downwards.

255 Chapter 13: Creating a Game with Python and Pygame

 oldballx=ballx
 oldbally=bally
 if ballx==1:
 ballxdir=1
 if ballx==20:
 ballxdir=-1
 if bally==1:
 ballydir=1
 # uncomment below for cheat mode
 # if bally==BATY-1:
 # ballydir=-1

 We’ve included a cheat mode in the preceding code, which stops the ball from
falling out of the bottom of the game. It’s useful for testing purposes. To use
it, uncomment the two extra lines by removing the # (hash mark) at the start,
and make sure they are still indented to line up with the statements above.

The next thing we need to do is check whether the ball has hit the bat, or
fallen out of play. First we check whether the ball is on the row above the
ball, which is BATY-1. If it is, we check whether it’s hit the bat. There are two
ways the ball can hit the bat, shown in Figure 13-2.

Figure 13-2:
Hitting

the bat.

BAT

The most obvious way that the ball can hit the bat is when the ball is directly
above the bat, so it looks like it’s sitting on top of it. Through experimenta-
tion, we’ve found that it also feels natural (and fair to the player) if you can
hit the ball with the corner of the bat. That means the ball bounces off the
bat if the ball is one square to the right of the bat and travelling to the left, or
if the ball is one square to the left of the bat and travelling right.

If you remember, ballxdir stores the direction the ball is moving horizontally,
and it does this by having a value of 1 or –1. If the ball is moving right, the
value is 1; if it’s moving left, it’s –1. Each time around the loop, we just add
the value of ballxdir to the ball’s X position stored in ballx.

To check whether the ball is on a course to hit the corner of the bat, we
check whether the ball’s current position plus the value of ballxdir
matches the position of the left or right half of the bat.

256 Part IV: Programming the Raspberry Pi

If the ball hits the bat in either of those ways, we change the ball’s vertical
direction to 1, so it will move back up the screen.

So far we’ve only tested whether values are the same or not the same. We can
also check whether numbers are greater or smaller than each other. We use
>= to check whether one value is greater than or equal to another value, and
<= to check whether one value is less than or equal to another.

Here’s the code for bouncing the ball off the bat:

 if bally==BATY-1:
 batleft=batx
 batright=batx+1
 if ballx>=batleft and ballx<=batright:
 ballydir=-1
 if ballx+ballxdir>=batleft and Æ

ballx+ballxdir<=batright:
 ballydir=-1
 if bally==BATY:
 gameover()

If the ball reaches the same row as the bat, the player has failed to catch it,
and the gameover() function is called.

So far, we’ve just changed the direction the ball is travelling in, but we
haven’t actually moved it. To move it, we use these commands:

 ballx+=ballxdir
 if map[bally-1][ballx-1]==0:
 bally+=ballydir

First we move the ball horizontally. Then, we check whether the ball has
landed on an empty space. If so, we move the ball vertically. Changing the
X and Y position at the same time makes the ball move diagonally, but we
need to make sure the ball isn’t on a brick before we move it up or down.
Otherwise, it appears to jump over bricks and smash through them diagonally,
which looks wrong.

Next, we need to check whether the ball is on a brick, remembering that its
vertical position might have changed since we checked a moment ago. If it is,
we clear that space, clear that entry in the map, reset the ball to its previous
position, and reverse its Y direction so it bounces back. We reverse the
ballydir variable by making it negative, which involves putting a minus
sign in front of it. This has the effect of turning 1 into –1, and –1 into 1
(because negative –1 equals 1).

To add a random element, we reverse the X direction back again half the
time, but only if the map position would be empty if we did that. We check
that by looking at the map value at the next Y position (bally+ballydir),
and at the next X position if ballxdir were reversed (ballx–ballxdir).

257 Chapter 13: Creating a Game with Python and Pygame

Note that we use a minus sign instead of a plus sign here because we need a
minus sign to reverse the direction variable, and the plus sign is then redundant.
The code ballx–ballxdir means the same as ballx+–ballxdir.

As a final step, we increase the score variable, which is used to check when
the player has hit all the bricks.

 if map[bally-1][ballx-1]!=0:
 blank(ballx,bally)
 map[bally-1][ballx-1]=0
 bally=oldbally
 ballx=oldballx
 ballydir=-ballydir
 if random.randint(1,10)>5 and ↵

map[bally+ballydir-1][ballx-ballxdir-1]==0:
 ballxdir=-ballxdir
 score+=1

So far everything we’ve done has just been changing the ball’s variables, so
we need to finish the ball movements by deleting the old ball and drawing the
ball in its new position.

 blank(oldballx,oldbally)
 drawball(ballx,bally)

Plug those lines in and you should have a fully functioning game!

If you can’t work out where something belongs or if you get your indentations
in a twist, remember you can download the full game at the book’s website.
See this book’s Introduction for more on the website.

Adapting the Game
You can do plenty of things to customize or adapt this game. We’ve kept the
logic simple for demonstration purposes, but you could make the game
randomly decide whether the ball bounces left or right when it hits the bat,
so it feels more chaotic and realistic. You can add in Pygame sound effects,
using pygame.mixer, which is demonstrated in Chapter 16. You can make
your own map, change the colors used, and add in new colored bricks.
Perhaps you could modify it to display the score total during the game, and
to incorporate multiple levels of gameplay. Remixing existing programs like
this is a good way to study how they work, and to generate ideas for your
own original games. If you come up with improvements, we’d love to see
them!

You can find in-depth Pygame documentation (and information about
features we don’t have room for here) at www.pygame.org. You can find
comprehensive documentation for Python online at www.python.org.

http://www.python.org

258 Part IV: Programming the Raspberry Pi

Part V
Exploring Electronics with

the Raspberry Pi

 Visit www.dummies.com/extras/raspberrypi for great Dummies content
online.

http://www.dummies.com/extras/raspberrypi

In this part . . .
 ✓ Discover the fundamentals of electricity, how to calculate

current, and how to solder.

 ✓ Find out how the Raspberry Pi can reach out through its GPIO
pins.

 ✓ Use Python and the Raspberry Pi’s input pins to build a ball
position-sensing maze game.

 ✓ Create the Copycat game by reading inputs and controlling
lights.

 ✓ Build the Raspberry Ripple to allow the Raspberry Pi to read
and write analog values.

 ✓ Use the Raspberry Ripple to make a curve tracer, drawing gen-
erator, music maker, and digital thermometer.

Chapter 14

Understanding Circuits
and Soldering

In This Chapter
▶ Discovering what a circuit is
▶ Getting familiar with GPIO
▶ Coming to grips with a soldering iron
▶ Looking at ready-made add-on boards

P
art V of this book deals with what is known as physical computing,
making your program reach out beyond the confines of keyboard

and screen, and into the physical world. You discover how to can use your
Python programming skills to sense what is happening in the outside world
and to control lights, motors, and in fact anything else that uses electricity.
However, before you can do this safely, without risking damage to you or
your Pi, you need to look at a little bit of background electrical theory, so you
have a foundation to build on.

In this chapter, we show you the relevant concepts that allow you to understand
why the projects look like they do and what you should avoid doing. Next we
introduce you to the concept of GPIO connections, explain what they are, and
look at why they are included in the Raspberry Pi computer. We also discuss
in general how you can use them.

Although you can make the first project in Chapter 15 without soldering,
in order to make most things in electronics, you have to be able to use a
soldering iron. We show you how to go about this and discuss safety concerns.
Finally, although all the projects in this book can be made without them, we
introduce you to the concept of ready-made add-on boards because they can
make building stuff simpler.

262 Part V: Exploring Electronics with the Raspberry Pi

Discovering What a Circuit Is
The first thing you have to understand is that a circuit is something where
electricity can flow; it is a path, or a conduit. It is continuous; that is, it’s a
loop with no dead ends. If you have a dead end, you don’t have a circuit.
Electricity has to be able to flow. So let’s be more specific in what we mean
by electricity. It can be complex stuff and because it’s invisible, we have to
do a bit of imagining to appreciate what is going on. There are two aspects of
electricity: current and voltage.

Current is what actually flows. Voltage is what forces the current round a
circuit. Voltage can’t flow and current doesn’t exist in the absence of a
voltage. However, voltage can exist in the absence of current. You’ve no
doubt felt the effects of static electricity, which is the build-up of voltage that
occurs when insulators (materials that don’t normally conduct electricity)
are rubbed together.

It’s kind of like how rubbing a balloon on wool can make the hairs on the
back of your hand stand up. You can feel it, but only because you feel your
hairs being lifted. You aren’t feeling the electricity itself. You only feel static
electricity when it stops being static and a current flows. At a very high
voltage, a little current can hurt a lot. You’ve probably felt the static discharge
shock of touching a metal object after walking over a nylon carpet.

Understanding the nature of electricity
So what is electric current? It is a flow of electrons past a point, just like a
flow of cars past a motorway sign. With electric circuits, we measure current
in amps. One amp of current is about 6.24×1018 electrons per second passing
a point, or 624 followed by 16 zeros. That’s a big number and fortunately
we don’t have to count all of those zeroes. The bigger the voltage, the more
current is forced through a circuit, but circuits have a property that resists
the flow of current. We call this the resistance of a circuit. This resistance
depends on the materials the circuit is made from and is measured in a unit
called ohms. So because we know how to define an amp in terms of electron
flow, we can define these other two properties in terms of an amp:

One volt is the voltage you need to drive one amp through a circuit with a
resistance of one ohm.

You can get a long way in electronics by just knowing that single fact. In fact,
that definition is contained in what is known as Ohm’s law:

Volts=Amps×Ohms

263 Chapter 14: Understanding Circuits and Soldering

However, it would be too easy to just use that as a formula. People would
understand it straight off and that would never do! You have to build up a
mystique. Imagine how you would feel about a doctor if he actually told in
plain English you what was wrong with you? No, it needs to be dressed up so
not everyone can understand it. Ohm’s law becomes

E=I×R

where E is the electromotive force measured in Volts, I is the current measured
in amps, and R is the resistance measured in ohms.

This is the formula you see in books and all over the Internet, but remember —
it’s just

voltage=current×resistance

Connecting things to the Raspberry Pi involves juggling voltage and current,
and often you need to use a resistor to limit the current a voltage pushes
through a device in a circuit. Using Ohm’s law is the simple way to work out
what you need. Later on, in Chapter 16, we show you how to use this to make
sure you drive light-emitting diodes (LEDs) correctly.

Resistance is not the only thing we can calculate. If we know two of the
quantities in a circuit, we can calculate the other one. We do this by rearranging
this simple formula to find any one of the quantities if we know the other two.
I like the Ohm’s law triangle, which gives the three formulas in one go:

E
I R

E = I x R
I = E / R
R = E / I

When scientists were first discovering electricity, they knew that it flowed
from one terminal to the other. They said the flow was from the positive to

264 Part V: Exploring Electronics with the Raspberry Pi

the negative, but which was which? Experiments with making a current flow
through a solution of water and copper sulphate showed that copper was
dissolved from one wire and deposited on the other. So they quite reasonably
assumed that the metal was flowing with the flow of electricity and named
the dissolving wire an anode or positive and the wire receiving the metal the
cathode or negative. They were wrong: The electrons that constitute the
current actually flow the other way. However, this notion became so
entrenched that today we still use it. We call it conventional current and it
flows from the positive to the negative.

In a way, it doesn’t matter which direction we think of it as flowing. It’s the
fact that it is flowing that is important, and we use the terms positive and
negative so we know what way round it is flowing. Power sources, like
batteries and power supplies, are all marked with a positive and negative
symbol so you can connect it the correct way. This is known as direct current
(DC) because the current only flows in one direction.

The other sort of power supply you can get drives the current round in one
direction for a short length of time and then reverses the direction for a short
time. This is known as alternating current (AC). A favorite trick that electricians
play on their apprentices is to send them to the store to fetch the nonexistent
AC battery.

 Switches are used to make or break circuits, so an early name for a switch was
a breaker.

Putting theory into practice
To see how this works, consider a simple circuit. To make things a bit clearer
and easy to draw, we use symbols to represent components and lines to
represent wires that connect the components together, as shown in Figure 14-1.

Figure 14-1:
Two circuit

symbols
represent-

ing a switch.

Single-throw switch Double-throw switch

Take a switch. Its symbol is simple (shown in Figure 14-1). There are two
types of switches: single throw and double throw. In the single throw, a
connection is made or not made through the switch, depending on the switch

265 Chapter 14: Understanding Circuits and Soldering

position. In the double throw switch, a common connector is connected to
one or the other switch contact, depending on the switches’ position. That
is, when the switch is one way, there is a connection through the switch from
one connection to the common connection. When the switch is the other
way, the connection is between the other connection and the common
connection.

This is called a double-throw switch, or sometimes a changeover switch,
because the switch changes over which terminal is connected to the common
one. The figures in this section help explain this. However, the important
thing to note is that we use the same symbol for a switch, no matter what the
physical switch looks like, Figure 14-2 shows just some of the many physical
forms a switch can take.

Figure 14-3 shows the symbols for a battery, a small flashlight or torch bulb,
and a resistor. Note that there are two symbols for a resistor: one for the U.S
and one for Europe. In the U.K., we used to use the U.S. symbol until the late
1960s. Today, both are understood.

Figure 14-2:
Just a few

of the many
different
physical
forms a

switch can
take.

266 Part V: Exploring Electronics with the Raspberry Pi

Figure 14-3:
Schematic

symbols for
some com-

ponents.

Battery

+

–

6V

Bulb Europe

Resistor

U.S.

The world’s simplest circuit is shown in Figure 14-4. While the switch is open,
there is no complete circuit, and so there is no current flow and no lighting of
the bulb.

Figure 14-4:
A schematic

of a simple
circuit.

Battery

Switch

6V

Bulb

+

–

However, when the switch is closed as in Figure 14-5, a path for the current to
flow along is created and the bulb lights. Note that this diagram has a
different symbol for a closed switch than the one used in Figure 14-4. This is
so you can more easily see what is going on. Normally, you have to imagine
the switch in the open and closed position and visualize the resulting circuit
or break in the circuit. We call this a series circuit because all the circuit
elements are in a line one after the other, and the same current flows through
all elements of the circuit.

267 Chapter 14: Understanding Circuits and Soldering

So for a circuit like this, there is only one value of current. When the switch is
closed, current flows from the positive end of the battery through the switch,
through the bulb lighting it up, and finally back into the batteries’ negative
terminal. Note here the actual electrons are returned to the battery. The
battery loses energy because it has to push them round the circuit. The
positive and negative terminals of a battery show the direction it will
push the current, from the positive to the negative. In this circuit with an
incandescent light bulb, the direction of the current doesn’t matter; however,
this is rare in electronics. In most circuits, the current must be sent round
the circuit in the right direction.

Figure 14-5:
A schematic

of a circuit
with switch

closed.

Battery Current
�ow

Switch

6V

Bulb

Light
+

–

Communicating a circuit to others
You should use circuit symbols in schematics because they’re a universal
language and make it easy to see what is going on. Many people waste their
time using diagrams that show the physical appearance of components,
wires, and their interconnection. Although this might appear at first to be
attractive, especially to a beginner, physical layout diagrams like this are
almost impossible to follow in all but the most trivial circuits. Despite the
initial small hurdle of learning to read the symbols, a schematic is a very
much simpler way of defining a circuit. Physical layout diagrams are a
dead-end for anything more than a trivial circuit and should be avoided.

Some time ago, I was visiting Russia and bought my son an electronic
construction set. Even though the words were in Russian and incomprehensible
to us both, the diagrams were in the language of schematic and perfectly
understandable.

 To show the units of resistance, we can use various symbols. We can say 18
ohms, 18 Ω, or, as we shall use in this book, 18 R.

268 Part V: Exploring Electronics with the Raspberry Pi

 Although the units for calculation are volts, amps, and ohms, in practice, 1
amp (A) is a lot of current and it’s more common to talk of milliamps or mA.
There are 1,000 mA in 1A. Similarly, 1000 R is one kilohm or 1 K.

Calculating circuit values
Although the circuit shown in Figure 14-5 is all very well because it describes
what’s actually wired up, it’s not useful for calculating anything using Ohm’s
law because it shows no resistances. However, each real component has,
associated with it a resistance. We say it has an equivalent circuit. These are
shown in Figure 14-6. All components, even the wires, have some series
resistance. In other words, it behaves like it has a resistor in line with the
component. Sometimes this is important, and sometimes it is not. The trick is
in knowing when to ignore them.

Figure 14-6:
A circuit
with the

effective
series

resistance
values

shown.

Battery

Switch

6V

0.1R 18R

0.005R

Bulb

+

–

When resistors are placed in series, or in line with each other, you can find
the resistance simply by adding up all the individual resistance values.
Figure 14-6 shows our circuit with the series resistance values shown. If we
add up all the values around the circuit, you get 18R105 (that’s 18.105 ohms).
Note that virtually all of the resistance in the circuit comes from the bulb.
The series resistance of the switch is negligible, as is the series resistance
of the battery. This is not always the case, as you shall see in Chapter 16. So
with 18R resistance and 6V, we can calculate that the current through the
circuit should be

I=E/R-->
Current=6/18=0.333 Amps or 333mA

269 Chapter 14: Understanding Circuits and Soldering

Determining how a component
needs to be treated
So how do we know the series resistance of a component? Well, it is normally
in that component’s data sheet, the document that the manufacturers of all
components produce to exactly define the component and its properties.
However, it’s not always given as a straightforward value. Take a bulb, for
instance. This is normally “rated” as a voltage and a current; that is, we
would say that the bulb is 6V at 0.33 amps. If we need to know the equivalent
resistance, we use Ohm’s law. Other bulbs, especially big ones, are given a
power rating in watts. Current multiplied by voltage is equal to the power in
watts.

The other point is that a bulb doesn’t have a constant resistance. We say it’s
a nonlinear device; that is, the resistance changes depending on what current
is going through it. This is because a bulb is just a coil of wire. As current
passes through it, the wire heats up. This causes the resistance to increase,
thus limiting the current. An equilibrium point is reached where the temperature
reaches a point where the resistance is such that the current is limited to the
design value at the design voltage. We use this concept of a nonlinear
resistance in Chapter 16 when we come to calculate what resistor we need to
use with an LED.

 When dealing with units like volts and ohms that include a decimal point,
often the point is missed out and the letter of the unit is substituted, so 3.3
volts becomes 3V3, or 4.7K becomes 4K7. This is done to make it clear there is
a decimal point that otherwise might be lost in small print.

The series resistance of a battery, or any power supply for that matter, is an
important concept in that it limits the current that the battery can deliver.
This is all wrapped up in the chemistry of the battery, but its effects can be
summed up by a theoretical series resistance. A battery that can deliver a lot
of current has a low series resistance. This is sometimes known as the output
impedance of the battery.

Now these concepts may seem like they are nothing to do with the Raspberry
Pi, but as you shall see in later chapters, these concepts are the ones you
need to get the Pi to interact to the world outside the keyboard and screen.

Testing circuits with simulators
Nowadays there are circuit simulators that allow you to test a circuit before
you build it. This is a great idea to make sure you are not doing anything silly.
However, some simulators have a steep learning curve and others use ideal

270 Part V: Exploring Electronics with the Raspberry Pi

components instead of real ones. This can give some misleading results with
simple circuits, but on the whole they are a very good idea. One simulator
written especially for the Raspberry Pi is free. Find out more at www.
raspberrypi.org/archives/1917.

Getting Familiar with the GPIO
The Raspberry Pi was made from a BCM2835 system on a chip. Unlike
traditional microprocessors, these are designed to be used in an embedded
system. An embedded system has a computer inside it, but you don’t use it as
a computer — things like mobile phones, media players, and set top boxes.
These chips have a number of connections to them in order for the software
in them to control things like push buttons, displays, and getting sound in
and out. The BCM2835 has 54 such signals. They are called General Purpose
Input/Output pins (GPIO) and they can be controlled by software. Some of
these signals are used to build and control the peripheral devices that turn
the BCM2835 into a computer, like the SD card reader, the USB, and the
Ethernet. The rest are free — that is, not needed to make the Pi — so they are
surplus to requirements.

Rather than just ignore them, the designers of the Raspberry Pi have routed
some of these surplus GPIO lines out of the chip and to the connector called
P1 on the board for us to play with. It’s a bonus. This sets the Pi apart from
mainstream computers in this respect. However, they have not routed all
the spare pins out to this connector. Some go to other connectors like the
camera socket and some are not even connected to anything at all. This is
because the BCM2835 is in a ball grid array (BGA) package with connections
less than a millimeter apart. So close are they that you can only have enough
room for one trace (PCB wire) between the connectors.

This means that to get some of the inner connections out to other components,
you have to use a printed circuit board (PCB) that has a number of extra
layers of wiring inside the board. You might think the Pi’s board has just a
top side and underside, but in fact it is made from several boards
sandwiched together to give six layers of wiring.

Even with this many layers, there is not enough room to route out all 54 GPIO
signals. Adding more layers would significantly increase the price of the PCB
and make our bonus cost something instead of being free. You are no doubt
aware that the price point of the Pi is one of its major features. However,
17 of these pins are available to use on the P1 connector, and this might
increase on future board revisions. In fact, two revisions of the board have
already given a different mixture of GPIO pins on each. On issue 2 boards,
a second smaller connector has been added, giving access to another four
GPIO pins. You see exactly where these are physically in the next chapter.

http://www.raspberrypi.org/archives/1917
http://www.raspberrypi.org/archives/1917

271 Chapter 14: Understanding Circuits and Soldering

Putting the general purpose in GPIO
GPIO pins are called general purpose because we can use them for anything
we want under the control of a program. They’re called input/output pins
because the software can configure them to be either an input or an output.
When a pin is an input, the program can read whether this has a high
voltage or a low voltage put on the pin. When the pin is an output, the
program can control whether a high voltage or low voltage appears on that
pin. In addition, many pins have one or more superpowers, or alternative
functions as a secret identity, like so many comic book heroes. These powers
are not shared by all pins, but are specialist functions able to do things
without software intervention. They are ways to tap directly deep into the
computer’s inner workings. When we switch to these functions, they stop
being general-purpose pins and do a specific job. For example, one pin can be
used to output a continuous stream of high and low voltage levels, that, after
they get going, continue without any further intervention from the program.
So if you connect that pin to a speaker or amplifier, you can generate a tone
that keeps on sounding until you command it to stop.

However, for the moment, just take a look at the GPIO function of these pins.

Understanding what GPIOs do
GPIOs are the gateway to interaction with the outside world and in essence
are quite simple.

Figure 14-7 shows the equivalent circuit of a Raspberry Pi GPIO pin when it is
configured as an output. You can see it is simply a double throw switch that
can be connected between the computer’s power supply of 3V3 or ground
(that’s 0V). This is sometimes called the common point or reference, and is
the basis of all measurements in a circuit. Basically, it’s the other end of the
battery — the negative terminal, if you will. Between this switch and the
output is in effect a series resistor, one that is in line with the voltage coming
from the Pi. It limits the current you can get through the output pin.

Figure 14-7:
A GPIO

when used
as an

output.

3V3
Switch controlled by software

Ground

Drive current resistor

31R default value

GPIO pin

272 Part V: Exploring Electronics with the Raspberry Pi

On the Pi, the value of this resistor can be changed over a limited range. The
default value is 31R, but note that this resistor, by itself, is insufficient to
protect the Pi from giving too much current if you connect it to too low a
resistance load. So an output pin can switch between only two voltages — 0V
and 3V3. These are known as logic levels and they have a number of names:
high and low, true and false, zero and one, and even up and down.

Although the logic voltages levels on the Pi are simple, the current that these
outputs can supply is more complex, with a current limit of about 16mA. This
limit is how much current the Pi should supply into a load, not how much it
can supply or will supply. That depends on the resistance of the load connected
to the pin. Now I say the limit is about 16mA, but this is a bit of a gray area.
This value is considered safe for the Pi to supply, but that is not to say a
value of 17mA would be considered dangerous or excessive.

Putting an output pin to practical use
So what can you do with a switched output? Well, you can drive a small
current through a load, or you can control another device that can control a
bigger current through a load. Put like that, it doesn’t sound exciting, but it’s
what physical computing is all about. The load can be a light, a motor, a
solenoid (an electromagnetic plunger used to prod or strike things), or
anything that uses electricity. As that includes most everything in the
modern world, it is safe to say that if it uses electricity, it can be controlled.

Take a look at controlling a light, not the current-heavy light bulb we looked
at earlier, but a component known as a light-emitting diode (LED). These
can light up from just a tiny bit of current and the 16mA we have available is

Finding a safe value of current
There is a value of current that would instantly
destroy at least the output circuitry of the pin,
if not the whole Pi itself. But, there is also a
value of current that would not instantly kill the
Pi but would damage the circuitry and lead it
to fail prematurely. Lower that current, and
the damage is lowered, until you get to a point
where no damage occurs. However, these
values are not known for the chip used on
the Pi. In fact, they are not known for the vast

majority of chips. It’s best to stick to the “safe”
value or lower.

Beware of people who say that they have a
circuit that takes 30mA or more from a pin and it’s
still working. They tend to be idiots who confuse
whether a pin is dead yet with whether a pin is
safe. It’s just like smoking: You can do it and it
doesn’t kill you immediately, but it does do harm
and eventually it can kill, if nothing else gets you
first. No one would pretend that it’s safe.

273 Chapter 14: Understanding Circuits and Soldering

more than enough. In fact, you’re going to limit the current to less than 10mA
by adding a 330R series resistor. Why this value? Well, you see exactly how to
calculate this value in Chapter 16.

For the moment, just look at the circuit in Figure 14-8. This shows two ways
to wire up an LED, or any other load, directly to a GPIO pin. Here we just
show the GPIO pin and not the equivalent series resistance of the power
source as discussed earlier — in the context of a 330R resistor, 31R is negligible.

The first way to wire it is called current sourcing and is perhaps the way a
beginner might think of as natural. When the GPIO pin is set by the program
to produce a high voltage (that is, set the switch to connect the 3V3 line to
the output pin), current flows from the pin through the LED, through the
resistor and to ground, thus completing the circuit, causing current to flow
and so lighting up the LED. When the GPIO pin is set by the program to produce
a low voltage (that is, set the switch to connect the 0V or ground line to the
output pin), no current flows and the LED is not lit. This method is known as
current sourcing because the source of the current, the positive connection of
the power, is the GPIO pin.

The second way of wiring, also shown in Figure 14-8, is known as current
sinking. When the GPIO pin is set by the program to produce a low voltage,
the current flows through the LED, through the resistor, and to ground,
through the GPIO pin. To turn the LED off, set the output to a high voltage.
There’s no way current can flow round the circuit because both ends of the
load (LED and resistor) are connected to 3V3, so there is no voltage difference
to push the current through the components.

Figure 14-8:
Two ways of

driving
an LED.

Ground

Current Sourcing Current Sinking

330R

LED

GPIO pin

GPIO pin

3V3

330R

LED

274 Part V: Exploring Electronics with the Raspberry Pi

Note in both circuits the position of the resistor and LED can be interchanged —
it makes no difference. You might like to think of these two approaches as
switching the plus and switching the ground. More of this later on when you
do some real projects in Chapters 16 and 17.

Using GPIOs as inputs
The other basic mode of operation for a GPIO pin is as an input. In this case,
you don’t have to worry about the current because when the pin is an input,
it has a very high input impedance, or a high value of series resistance. A
resistance is a special form of impedance, which, as its name implies, impedes
the flow of electricity. There is a bit more to impedance than simple resistance,
but at this stage, you can think of them as the same sort of thing. They are
both measured in ohms.

Resistance is the property of a material, whereas impedance is the property
of a circuit and includes how it behaves with AC as well as DC. So an input
pin has a very high impedance. It hardly allows any current to flow through
it, so much so that we can connect it directly to either 0V or 3V3 directly
without any extra resistors at all. In fact, an input is so high-impedance that
if you just leave it unconnected, it picks up very tiny radio waves and other
forms of interference and gives random values when you try to read it.

In fact, the human body can act as an antenna when close to or touching a
high-impedance input, causing any readings to go wild. This often amazes
beginners, who think that they have discovered something mysterious. They
haven’t. In fact, the tiny amounts of energy in the radio waves that are all
around us are not absorbed by the high-impedance circuits as they would
be by low-impedance circuits. A low impedance would cause current to flow,
but it would easily absorb all the power, leaving minuscule amounts of volt-
age. Just the fact that you have a wire carrying AC power (mains) close by is
enough for that wire to radiate radio wave interference.

To explain why this is, consider that interference of, say, 2V is enough to
override the signal from a chip and cause it to malfunction. With a low
resistance, say 1K, in order to develop 2V across, it needs to have a
current of 2mA (Ohm’s law) flowing through it. This represents a power
(volts×current) of I×V=4mW of interference. However, with a resistance of
1M, you can get 2V across it by only having 2uA flowing through it. This
represents a power of 4uW. So a high resistance is much more sensitive to
interference because it requires less power from the interfering source to
develop the same voltage. Therefore weaker fields produce enough
interfering voltage to disrupt a circuit.

275 Chapter 14: Understanding Circuits and Soldering

This underlines an important thing with inputs: They can’t just be left alone.
They must be driven to one voltage state or the other; that is, either 3V3
known as high, or 0V known as low. If you connect an input to the output
from some other chip, that’s fine, but if you want to detect whether a switch
is made or broken, you have to give the input pin some help. This is normally
done with a resistor connected from the input to either the 3V3 or the
ground.

When a resistor is used in this way, it’s called a pull-up or pull-down resistor,
as shown in Figure 14-9. Of the two arrangements, a pull-up is preferable,
mainly because switches are normally on the end of long runs of wire and
it is safer to have a ground than a 3V3 voltage on a wire. This is because it
tends to cause less damage if you accidentally connected a ground wire to
the wrong place than a power wire. This arrangement of pull-up or pull-down
resistors is so common that the computer processor in the Pi has them
built-in, and there is a software method for connecting or enabling internal
pull-up or pull-down resistors. We show you in Chapter 15 how to control
this from software.

Figure 14-9:
Two ways
of using a

GPIO as in
input.

Ground

Pull-up resistor Pull-down resistor

3K3

GPIO pin

Single-throw switch

3V3

Ground

GPIO pin

330R

Single-throw switch

3V3

276 Part V: Exploring Electronics with the Raspberry Pi

Complying with environmental regulations
There is a further complication nowadays
with the advent of the Reduction of Hazardous
Substances (RoHS), which bans the use of
certain metals and plasticizers in certain
classes of electrical equipment in the E.U., the
most prominent of which is lead. In fact, some
people think RoHS is entirely about being lead-
free, but it’s not. You can get lead-free solders,
but they are expensive because they have a
large amount of silver in them, and they are
difficult to work with, also they tend to produce
a product with a shorter lifetime. They require a
hotter iron and so are potentially more harmful
to the components.

They also don’t wet as well, which means they
don’t flow around the joint as well. Tin whiskers
often grow out of the joints, causing shorts years

later. Home-built electronics are not required
to be lead free in the U.S. or Europe and there
is no measurable health effect in using solder
that contains lead. RoHS was mainly brought in
to stop lead accumulating in landfill sites from
mass consumer electronics and potentially
polluting the water supply, although there is
no evidence that this happens. In Europe, you
are under no legal or health requirements to
use lead-free solder. If you start making stuff to
sell in the E.U., however, you’re legally required
to make sure it’s RoHS-compliant. This is like
home brewing: You can brew as much as you
like, but you can’t sell any. It’s always sensible
to wash your hands after soldering and avoid
putting it in your mouth. The same goes for the
soldering iron when it is on.

Learning which end is hot: Getting
to grips with a soldering iron
Although you can do some interfacing without resorting to the soldering
iron to join components together, to get serious, you’ll have to do some
soldering at some stage or the other. This often induces fear and panic in the
newcomer, but even a child can solder successfully. In fact, Mike had his first
soldering iron at the age of nine and by and large taught himself. Soldering
involves two parts, the solder, which is an alloy of two or more metals, and
the flux, a chemical cleaning agent. If you are soldering something like a gas
pipe, you would apply the flux round the joint, heat the joint up with a blow
torch, and apply the rod of solder to the hot joint. The job of the flux when
it is heated is to clean the surface and make the solder flow. It does this
by breaking down the surface tension on the molten solder. Without it, the
solder would clump together in round globs held by the tight surface tension.

Water has surface tension as well, and to reduce that we use soap, which
allows the water to wet things. You can’t use soap with solder because it
wouldn’t stand the heat, so you need something else. Most fluxes for heavy
jobs are made from nasty chemicals like hydrochloric acid, or phosphoric
acid. These are too corrosive to be used with electronics, so what is normally
used is some sort of rosin flux. Although you can get this in a pot, by far the

http://en.wikipedia.org/wiki/Hydrochloric_acid
http://en.wikipedia.org/wiki/Phosphoric_acid
http://en.wikipedia.org/wiki/Phosphoric_acid

277 Chapter 14: Understanding Circuits and Soldering

best thing is to use Multicore solder, where the flux is built into the solder
wire as five very thin strands. That way, the right amount of flux is always
delivered with whatever amount of solder you use.

We recommend using a good quality 60/40 tin/lead solder alloy, with a
diameter of 0.7mm and a built-in rosin-based flux core. Anything else is
making life difficult for yourself. We’ve found that solder with self-cleaning
fluxes or non-fuming fluxes are harder to work with, as well as being more
expensive. Couple the right kind of solder with a good soldering iron,
preferably a temperature-controlled one with a fine tip.

 It is often said that you can use any old tool to learn on, and then get a good
tool when you get good at using it. This is rubbish. As a beginner, you are
fighting how to do the job, so you don’t want to be fighting your tools as well.
A good iron includes a stand and a place for a sponge. Use a proper soldering
iron sponge, a natural one that won’t melt on contact with the iron. Do not use
a plastic foam sponge because your iron will go straight through it.

Making a soldered joint
The first thing you should do when making a soldered joint is to make a
mechanical joint. For example, if you’re joining two wires together, bend each
end into a hook and squeeze together lightly with your pliers.

Wipe the tip of the iron on a damp sponge and melt just a spot of solder
on the tip. This wets the tip and allows good thermal contact to take place
between the tip and the work. Then apply the iron, solder, and wires all
together. The secret is then to look at the joint and the solder closely and
how it sits. Remove the solder, but keep the iron on the joint until you see
the solder flow around the joint and see it seep into the cracks. Only then is
the joint hot enough for you to withdraw your iron. It is a quick process and
needs a bit of practice.

Many beginners make the mistake of putting too much solder on a joint. Try
to use as little solder as possible. A joint is rarely bad because of too little
solder, but it’s often bad because of too much. When you are done, you see
a small amount of black flux residue around the iron tip. Wipe that away on a
damp sponge before returning the iron to its stand. Do not move the joint as
the solder sets. A good quality iron is ready immediately for the next joint. A
poor iron needs a few seconds to come up to temperature.

Using some sort of fume extractor when soldering is a good idea. A simple
fan works to guide the curl of smoke from the iron away from your face. Air
currents from the warmth of your body tend to attract the flux. Try not to
breathe it in. This is more important as you spend a long time (hours at a
time) with a soldering iron in your hand. The fumes are from the flux in the
solder; they are not lead fumes.

278 Part V: Exploring Electronics with the Raspberry Pi

Although the next chapter, Chapter 15, contains a project that can be made
without the use of a soldering iron, such projects are few and far between.
The last two chapters of this Part contain projects for which you definitely
need to be able to solder.

Looking at Ready-Made Add-On Boards
Many ready-made interface boards are available for the Raspberry Pi. These
are designed to make things easier for you to do by building part of the
circuits for you. They range from simply providing easier access to the GPIO
pins, to including small sub circuits, to giving the Pi more inputs and outputs,
or to performing special functions not available on the Pi directly, like being
able to control the brightness of many LEDs. You can always incorporate
these sub circuits into your projects when you need them, but these boards
provide a shortcut to some projects by building them for you.

However, note that they are not essential and can be an expensive way of
doing a project, mainly because they often contain more capabilities than
you actually need for any one project. If you want to break up your project
after you have finished it, you get value from these boards, but if you want
to keep your projects and plug them in at any time to show others, you’re
better off just building what you need. Dedicating a board to a project is an
expensive way of doing things. All the projects in later chapters of this book
are self-contained and do not require any third-party boards. However, some
offer convenience that might be attractive to some people. New boards are
constantly being developed and produced. In the next sections, we look at
a few.

The Gert board
The Gert board is the granddaddy of expansion boards. It is the closest thing
there is to an official Raspberry Pi interface because it’s designed by Gert van
Loo, one of the Pi’s design team. It is not a Pi Foundation product. It is a
compressive collection of interfaces, including an Arduino-like processor.
The Arduino is a standalone controller very popular with artists and engineers
alike, it is superficially like a Raspberry Pi but is fundamentally a very different
beast. It’s better than the Pi at doing things that require very quick responses
and accurate timing, but it has no display and can only be programmed
in C++. The Pi and the Arduino can work quite well together and so Gert
has included one of these processors on his board. The board is designed
for education, to give a flavor of different types of interfacing techniques.
Basically, it’s a ready-built board you simply plug into the Pi. Its features are

279 Chapter 14: Understanding Circuits and Soldering

 ✓ Twelve I/O ports buffered through 74HC244, each with an LED

 ✓ Three push buttons

 ✓ MCP4802: Two channel 8-bit D/A converter

 ✓ ULN2803A: Six open collector channels up to 50V ~80ma/channel

 ✓ ATmega328P: Atmel®AVR® 8-bit microcontroller (Arduino)

 ✓ L6203: 48V 4A motor controller

 ✓ 780xx 3V3 low drop-out voltage regulator

It also contains the printed circuit board and the headers, jumpers, straps,
flat cable, and sockets to connect to the Pi. It would take a whole book to
describe what all these features are and how to use them.

It’s very improbable that any one project would need all these features and
it’s probably too advanced for the average beginner. But as you begin to
explore this subject beyond what we can cover in this book, you might want
to look at it.

The best thing about the Gert is that the manuals are downloadable, so you
can see in advance what you are letting yourself in for. You can read all
about it and find the manuals’ download links at www.raspberrypi.org/
archives/1734.

Pi Face
The Pi Face board is designed by a team at the School of Computing Science at
the University of Manchester (U.K.) and is aimed at the education market. It is
roughly the same price as the Gert board, but comes ready-assembled. It is
much less ambitious in scope but contains a good mix of things you would
actually need for many simple projects. These include onboard LEDs and push
button switches for simple interaction along with two relays (physical switches
moved by an electromagnet) for switching large currents. There are eight
protected inputs and eight buffered outputs and the whole thing has screw
connection access to connect it to the outside world. You can download a com-
prehensive list of documents and examples from Google Documents (https://
docs.google.com/folder/d/0B-UAZ9CyJCLGQjJ3RDlqa2pqaDg/
edit?pli=1). Follow the story of the board from www.raspberrypi.org/
archives/tag/pi-face. If you’re curious about doing projects using Pi
Face, check out the book Raspberry Pi Projects by Dr. Andrew Robinson (pub-
lished by John Wiley & Sons, Inc.).

http://www.raspberrypi.org/archives/1734
http://www.raspberrypi.org/archives/1734
https://docs.google.com/folder/d/0B-UAZ9CyJCLGQjJ3RDlqa2pqaDg/edit?pli=1
https://docs.google.com/folder/d/0B-UAZ9CyJCLGQjJ3RDlqa2pqaDg/edit?pli=1
https://docs.google.com/folder/d/0B-UAZ9CyJCLGQjJ3RDlqa2pqaDg/edit?pli=1
http://www.raspberrypi.org/archives/tag/pi-face
http://www.raspberrypi.org/archives/tag/pi-face
http://www.raspberrypi.org/archives/tag/pi-face

280 Part V: Exploring Electronics with the Raspberry Pi

Other boards
There are many other boards from small start-up manufacturers as well as
web-based projects for you to build. You can find a good starting point for
information on many of these at http://elinux.org/RPi_Expansion_
Boards.

http://elinux.org/RPi_Expansion_Boards
http://elinux.org/RPi_Expansion_Boards

Chapter 15

Making Your First Project
with the Raspberry Pi

In This Chapter
▶ Discovering how to get at the GPIO pins
▶ Making a breakout board
▶ Figuring out how to read inputs in software
▶ Creating your first physical computing project: the Blastoff game
▶ Customizing your Blastoff game

I
n Chapter 15, we covered the GPIO (General Purpose Input/Output)
signals on the Raspberry Pi and showed you the sorts of things they

could do. In this chapter, we help you use that knowledge to create your own
unique game, all without needing to use a soldering iron. We talk about how
you can define the rules of your game and control exactly how it operates.
Along the way, we show you how to build a solder-less breakout board so
you can access the GPIO pins for the project in this chapter and the others in
this book.

Bringing a project to life through software is an important part of physical
computing. In this chapter, you see how the software and hardware are
intimately connected.

Getting Started with the Blastoff Project
For your first project, we show you how to make a Blastoff game. This is a
marble maze game where you have to visit six locations in the correct order
to blast off the rocket. Each location is one stage in the countdown, and the
Raspberry Pi shouts out the countdown number as you progress. If you do
not visit the locations in the correct order or if you hit the end stops, the
countdown aborts and you have to start again.

282 Part V: Exploring Electronics with the Raspberry Pi

The game is played with a metallic marble or ball bearing in a sealed box, and
you move the marble about by tilting the box. At various locations or traps in
the box, the marble electrically connects two contacts together. This allows
the Raspberry Pi to sense the location of the marble through the GPIO pins
we looked at in the last chapter. It is a game of dexterity and manual skill
with the Raspberry Pi keeping track of the countdown progress.

It is a blend of the old and the new with youngsters, oldsters, and game-savvy
kids all having an equal chance of success.

You need to connect this game to the P1 connector of the Raspberry Pi. For
this first project, we’ve devised a way to do this (and in fact build the whole
game) without a soldering iron. Typical workshop hand tools are required
to build the game and you have plenty of scope for making your own unique
variations, which allows you to produce a one-of-a-kind product.

If you want to flip ahead and see our take on the game, look at Figure 15-26
later in this chapter. We’re sure you will be able to put your own ideas into
this.

Here is a list of the parts you’ll need for the breakout board:

 ✓ 1 26-way 0.05" (1.27mm) pitch IDC (insulation displacement connector)
socket

 ✓ 2 13-way screw terminal blocks

 ✓ 1 4 1/2" (110mm) by 3" (80mm) 1/4" (6mm) plywood

 ✓ 8 6BA (M2.5) – 5/8" (15mm) long countersunk machine screws

 ✓ 8 6BA (M2.5) hexagonal nuts

 ✓ 2' 26-way ribbon cable

Here are the parts you’ll need for the Blastoff game:

 ✓ 1 3/4" or 15mm ball bearing

 ✓ 2' of self-adhesive copper foil

 ✓ 2 8" (200mm) squares 1/4" (6mm) plywood

 ✓ 1 8" (200mm) square 3/16" (4mm) acrylic sheet (Plexiglas or Perspex)

 ✓ 1 8" (200mm) square 3/32" (2mm) black foam plastic sheet

 ✓ 3' (900mm) of 13/32" (10mm) by 3/16" (5mm) strip pine

 ✓ 3' (900mm) of 11/16" (17mm) by 3/16" (5mm) strip pine

 ✓ 4 3/4" (20mm) 4BA (M3) tapped brass hexagonal pillars or spacers

 ✓ 4 3/8" (10mm) 4BA (M3) tapped brass hexagonal pillars or spacers

 ✓ 4 1/2" (6mm) 4BA (M3) studding

283 Chapter 15: Making Your First Project with the Raspberry Pi

 ✓ 22 6BA (M2.5) – 3/4" (20mm) long countersunk machine screws

 ✓ 44 6BA (M2.5) hexagonal nuts

 ✓ 22 6BA (M2.5) washers

 ✓ 2' 26-way ribbon cable

 ✓ 1 packet of space-themed stickers

Getting at the GPIO Pins
GPIO connections are the way for the outside world to get into your
Raspberry Pi. In this chapter, we concentrate on using them for inputs only.
In Chapter 16, we cover using them for outputs as well. Most of the GPIO lines
on the Raspberry Pi power up as floating inputs. That means inputs not
connected to anything else; in other words, they are high-impedance inputs.
The exceptions are GPIO pins 14 and 15. These are used on boot-up for
outputting data to a serial terminal. Notwithstanding this, these pins can
simply be changed back into an input.

The bulk of the free GPIO pins appear on one connector — the double row
connector along the top-left edge of the board (assuming you hold it so the
writing is the right way up). It’s called P1, which stands for plug one. It’s a
plug because it has male connections. Female connections are called sockets
and there are a few of those on the board as well.

Two ways exist of numbering the pins on a component in electronics. One way
is to start at one corner and number the pins in an anti-clockwise direction
all the way round. This is universally done with integrated circuits (ICs). The
other way of numbering pins is to have them alternating from side to side, so
that one side has all the odd number pins and the other all the even numbers.
This is done mainly with plugs and sockets, especially those with two rows.
This is the case with P1 on the Raspberry Pi: It has a row of odd-numbered pins
and row of even-numbered ones. To refer to a physical pin on this plug, you
give it the plug name followed by the number. For example, pin 6 on this plug
would be described as P1-06. (Numbers less than ten have a leading zero.)

Being aware of Raspberry Pi
board revisions
At the time of this writing, there have been two board revisions of the Pi, with
the GPIO signals going to different pins on P1. Only three signals are different
between the two boards, but it’s something we need to be aware of. The GPIO
signals on pins P1-03, P1-05, and P1-13 are different on the two board revisions.
Unless otherwise stated, all the diagrams in this book are labeled as if they

284 Part V: Exploring Electronics with the Raspberry Pi

refer to a revision 2 board. Where there is a difference between the two
revisions, the revision 1 designation is shown in brackets.

Figure 15-1 shows the signals on P1 for a revision 2 board. It shows a 5V and
3V3 power connection, along with a GND or ground connection. The other pins
are labeled with the names of the GPIO signals they are attached to. Figure
15-2 shows the same thing for a revision 1 board. Notice that some of the pins,
for example pin P1-04, are not labeled. These pins are designated as Do Not
Connect because the Raspberry Pi Foundation says that on future revisions
they might carry different signals. At the moment, these are connected to
either a power rail or ground. This has been consistent between the two revi-
sions, so now there is talk of them being permanently assigned to these levels.

Figure 15-1:
Connector

P1 on a
revision 2

board.

5V GND

GPIO 14

GPIO 15 GPIO 23 GPIO 25 GPIO 7

GPIO 18 GPIO 24 GPIO 8

3V3 GPIO 3 GPIO 17 GPIO 22 GPIO 10 GPIO 11

GPIO 2 GPIO 4 GPIO 27 GPIO 9

A word about the cost of parts
Modern consumer electronics and even the
Raspberry Pi itself have left people with an
unrealistic expectation of how much compo-
nents cost. Electronic components and tools
can seem expensive when you buy then in very
small quantities. Manufacturers regard 10,000
units of something as a small quantity, so to
get what you need, you will have to buy stuff
through distributors and small suppliers. The
economies of scale matter. You can buy an iPad

much cheaper than you could buy the individual
parts, for example. When dealing with small
numbers, postage is often a large fraction of the
cost, so when you do buy parts and have them
shipped to you, always get a spare or two and
build up your own stock. Some parts only come
in reels, giving you much more that you would
ever need. Those are great opportunities for
group purchasing, or for entrepreneurs to sell
buyers only the quantity they need.

285 Chapter 15: Making Your First Project with the Raspberry Pi

Figure 15-2:
Connector

P1 on a
revision 1

board.

5V GND

GPIO 14

GPIO 15 GPIO 23 GPIO 25 GPIO 7

GPIO 18 GPIO 24 GPIO 8

3V3 GPIO 3 GPIO 17 GPIO 22 GPIO 10 GPIO 11

GPIO 2 GPIO 4 GPIO 27 GPIO 9

The sharp-eyed amongst you will have spotted a small difference between
the two board revisions on the left hand side of the board. The revision 2
board has eight holes in the board: one with a square outline (pin 1) and
the rest with round outlines. This is a place for an eight-way plug, P6, which
allows you to connect to four extra GPIO pins.

Making the connection
The two main ways of making a connection to P1 is to use either individual
patch wires or a multi-way connector. Patch wires, or jumper wires, come in
two types, male and female. What you want here is a female-to-male wire:
They have a crimped socket on one end, a single plug on the other, and are
covered in heat-shrink sleeving (tubing). If you want to solder them to a
board, get the female-to-female sort and cut them in half, giving you two for
the price of one. However, these are a bit fiddly to get into the right place,
especially if you are using more than four or five connections, so using a
multi-way socket is usually best.

Two types of multi-way sockets fit the sort of connector used in P1 — these
have solder connections or insulation displacement connections (IDC).
Although IDC sockets are slightly more expensive, they are extremely easy to
use and very quick to make up. The trick is that it uses ribbon cable, named
not after the World War I German flying ace Baron von Ribbon Cable, but
after the fact that it is cable and so looks like a ribbon.

286 Part V: Exploring Electronics with the Raspberry Pi

Ribbon cable is a number of wires molded together in a flat strip. It comes in
various widths, and wide ribbon cable is easily split down into the exact size
you need. However, you can get the exact size needed for this project: 26-way
ribbon of 0.05" (1.27mm) pitch. This pitch is the most common type. It comes
in two types, multicolored rainbow or gray. With the multicolored cable, or
hippie cable as it is sometimes called, each strand is one of ten colors
corresponding to the number/color matching of the resistor color code. (We
cover this more in Chapter 16.) The gray is quite a bit cheaper than the
multicolored and has just one wire colored red for reference. The electricity
does not care what color wire it flows down, so we recommend using the gray.

Making a Breakout Board
A breakout board is a device that allows you to easily make connections to
an electrical component. It is necessary because sometimes connections
to modern electronic devices are small or difficult to access. Here we want
to access the GPIO signals of the Raspberry Pi, but the multiway connector
makes this a bit tricky. In order to make connections to it more easily, we are
going to construct a break out board that will allow us to connect circuits
to the Raspberry Pi using just screw connectors, no soldering involved. You
can then use this board to simply attach your projects. The one we show you
how to make now has its connections in exactly the same pattern as the P1
connector. You are going to make a breakout board based on an IDC
connector and some connection block strips.

Connection block, or chock block as it is sometimes called, is normally used
for connecting domestic AC wiring and comes in various sizes. You want the
smallest you can get, which is normally the 3 amp sort. You can buy it in a
thrift shop (or a pound shop in the U.K.) very cheaply. They come in strips of
12 connections, which is a pity because we need two strips of 13. However,
you can easily cut them with a hobby knife. Cut your connection blocks
into two strips of 9 and two strips of 4. This is to ensure you have sufficient
mounting holes to attach it to a board.

Get a piece of plywood 80×110mm (3"×4 1/2") and mark the position of two
mounting holes in each strip so that the strips are approximately 5mm (1/4")
apart. Then drill two 2.5mm (1/8") holes and countersink the back. (If you
want to make a proper job of this, give the board three layers of medium oak
staining varnish and lightly rub it down between coats.)

Now attach a section of 9 and a section of 4 connector blocks in a line on the
board with some 15mm M2.5 countersunk screw and nuts (5/8" 6BA). The
nuts just fit between the soft plastic connections. Next, you need to make the
cable to attach the board to the Raspberry Pi.

287 Chapter 15: Making Your First Project with the Raspberry Pi

Creating the cable
The way insulation displacement ribbon cable works is that sharp forks in
the socket cut through the insulation and make contact with the wire inside.
The connector and cable is held together by clips in the plug. Mounting a
socket on a piece of ribbon cable is a one-time event. It’s not easy to remove
the cable and make the joint again, so you need to make sure you have the
right length of cable and that the socket is the right way around the first time.

On one end of the socket is a small triangular mark, as shown in Figure 15-3.
This shows the location of pin 1 — you usually connect this to the red end
of the wire. Feed the ribbon cable into the socket with the polarizing bump
or key (if any) pointing towards you. Put it in a vise, as shown in Figure 15-4,
but don’t tighten it yet. Make sure the cable is at right angles to the socket,
and then slowly tighten the vise until you can see you are not squashing it
up any more. Then remove it from the vise and fold the cable over the socket
and clip in the strain relief clip to make the cable end look like it is shown in
Figure 15-5.

Figure 15-3:
An IDC con-
nector with

a triangle
marking

pin 1.

Pin 1

288 Part V: Exploring Electronics with the Raspberry Pi

Figure 15-4:
An IDC con-

nector and
ribbon cable

in a vise
ready to be
squeezed.

Figure 15-5:
An IDC con-

nector and
ribbon cable
with a strain

relief clip.

289 Chapter 15: Making Your First Project with the Raspberry Pi

Wiring the cable
The connections you’ve made to P1 are shown in Figure 15-6. Now to prepare
the cable, nick the insulation between the wires with a sharp knife and
separate the strands by pulling them back, as shown in Figure 15-7. Next,
strip the insulation off of the last 10mm (1/2") or so of the wire, and then take
the strands of wire between finger and thumb and twist the strands together,
leaving no free whiskers.

Figure 15-6:
The signals
you get on

the ends of
the ribbon

cable.

Red wire

Edge of Pi board

Issue 1 Board numbers (in brackets)

Symbol on
socket side

Ribbon
socket

Polarizing key

P1

3V3
5V

GPIO 2 (0)

GPIO 3 (1)

GPIO 4
GPIO 14

GPIO 17

3V3

GPIO 18

GPIO 24
GPIO 10

GPIO 9
GPIO 25

GPIO 11
GPIO 8

GPIO 7 GND

GND

GPIO 22
GPIO 23

GPIO 27 (21)
GPIO 15

5V
GND

GND

GND

Bend the exposed wire back on itself about halfway to give the connection
block screw something to bite on. You are going to wire up every other wire
to one of the rows of connecting blocks. Start at the end of the red wire and
connect it to the right connecting block and then proceed connecting every
other wire. At this stage, it should look like Figure 15-8.

Next, you need to connect the second row of connectors. Because there is
only a small gap between the two rows of connection block, you have to do
this before fixing the two blocks to the board. Again, every other wire is to be
connected. Check as you go to make sure there are no mistakes in the first
row. When you’re done, it should look like Figure 15-9. You can now mount
the second row of connection blocks on the base, as shown in Figure 15-10.

290 Part V: Exploring Electronics with the Raspberry Pi

Figure 15-7:
Separating
the strands
of a ribbon

cable.

Figure 15-8:
The first
stage in

wiring the
cable to the
connectors.

291 Chapter 15: Making Your First Project with the Raspberry Pi

Figure 15-9:
Wiring the

second
row of

connectors.

Figure 15-10:
Fixing the

second row
of connec-
tors to the

board.

292 Part V: Exploring Electronics with the Raspberry Pi

Here is the opportunity to use that label maker you bought but never use:
to label each connection block. Alternatively, you can print labels out on
the computer and attach each with double-sided sticky tape or use adhesive
labels and write on them with a good black pen. Figure 15-11 shows you what
the labels should be. You can label yours for just the revision board you have
or you put the changed pin numbers in brackets (parentheses) like we’ve
done. When you’re finished, it should look like Figure 15-12.

Figure 15-11:
Labels for

the breakout
board.

 Issue 1 board numbers in brackets

1

3

5

7

9

11

13

15

17

19

21

23

25

3V3

GPIO 2 (0)

GPIO 3 (1)

GPIO 4

GND

GPIO 17

GPIO 27 (21)

GPIO 22

3V3

GPIO 10

GPIO 9

GPIO 11

GND

2

4

6

8

10

12

14

16

18

20

22

24

26

5V

5V

GND

GPIO 14

GPIO 15

GPIO 18

GND

GPIO 23

GPIO 24

GND

GPIO 25

GPIO 8

GPIO 7

293 Chapter 15: Making Your First Project with the Raspberry Pi

Figure 15-12:
The finished

breakout
board.

Testing the breakout board
Your next step is to test the breakout board. To do this, you need a
multimeter, a device for measuring current, voltage, and resistance. You can
obtain a cheap one from a thrift shop for less than $10. First, select resistance
or continuity on the switch on the front of the meter and make sure that
there are no shorts between adjacent wires in the ribbon cable. You will
know it is a short when the continuity indicator bleeps or the resistance
measurement shows zero or a very low ohm reading (less than 10 ohms).
Next, plug the cable into your Raspberry Pi with the ribbon running away
from the board and the polarizing bump pointing into the board. Do not
power up your Raspberry Pi yet.

Check that you have continuity between the five ground connections. Now
power up your Pi and set your meter to measure voltage. Put the black or
negative meter wire on a ground connector and the red or positive meter
wire on a 5V block. You should see close to 5V. Next measure the voltage
between the ground and the two 3V3 connections in turn. Again, you should
see a value very close to 3V3. If these checks fail, shut down the Raspberry Pi
disconnect the cable and check all your wiring.

294 Part V: Exploring Electronics with the Raspberry Pi

Controlling the GPIO pins
In order to have the Raspberry Pi gain access to the GPIO pins, you must
install a Python module that acts as an interface between the language and
the pins. This allows a program to read in what is happening to the signals
on the GPIO lines. A few different choices exist, but perhaps the easiest to
install is RPi.GPIO. You can find the latest version at http://pypi.python.
org/pypi/RPi.GPIO. Perhaps the easiest way to install it is from a terminal
window with the command

 sudo apt-get install python-rpi.gpio

If you have a previous version of this module, you have to first uninstall the
old one by manually deleting the files. Find them with this command in a
command line window

find /usr | grep python | grep -i gpio

and delete the ones you find.

Mine were in the /usr/local/lib/python2.7/dist-packages folder.

Any Python program that needs to access the GPIO pins must do the following
operations:

 1. Import the module to talk to the pins.

 2. Set up how you want to refer to the pins.

 3. Initialize the GPIO pins you want to use.

 4. Read or write to the pins.

This sequence is neatly encapsulated in the program in Listing 15-1. This simply
sets all the GPIO pins to be inputs and then constantly reads them back into the
Raspberry Pi. It prints out the new state when any of the inputs change.

Listing 15-1: Monitoring the GPIO Pins as Inputs
#!/usr/bin/env python
#GPIO input state monitor on the Raspberry Pi
#GPIO state - show the state of all the GPIO inputs on P1
#non GPIO pins shown as x

import RPi.GPIO as GPIO

print “Display the GPIO input pin states”

http://pypi.python.org/pypi/RPi.GPIO
http://pypi.python.org/pypi/RPi.GPIO

295 Chapter 15: Making Your First Project with the Raspberry Pi

print “Ctrl C to stop”

boardRevision = GPIO.RPI_REVISION
 #define the pins to use
if boardRevision == 1:
 pinout = [-1,-1,0,-1,1,-1,4,14,-1,15,17,18,21,-1,22,23,-1,24,10,-

1,9,25,11,8,-1,7]
if boardRevision == 2:
 pinout = [-1,-1,2,-1,3,-1,4,14,-1,15,17,18,27,-1,22,23,-1,24,10,-

1,9,25,11,8,-1,7]

GPIO.setmode(GPIO.BCM) # use real GPIO numbering
inputState = [5 for temp in range (0,26)] # blank list for input levels

for pin in range(0,26): # set all pins to inputs
 if pinout[pin] != -1:
 GPIO.setup(pinout[pin],GPIO.IN, pull_up_down=GPIO.PUD_UP)
 # replace line above with the line below to see the effect of floating

inputs
 # GPIO.setup(pinout[pin],GPIO.IN, pull_up_down=GPIO.PUD_OFF)

while True: # do forever
 needUpdate = False
 for check in range(0,26): # look at each input in turn
 if pinout[check] != -1:
 if GPIO.input(pinout[check]) :
 latestState = 1
 else:
 latestState = 0
 if(latestState != inputState[check]):
 needUpdate = True
 print “GPIO “,pinout[check], “changed to a logic”, latestState
 inputState[check] = latestState
 if needUpdate: # display all pin states
 print “Current state”
 for row in range(1,-1, -1):
 for show in range(row,26,2) :
 if inputState[show] != 5:
 print inputState[show],
 else:
 print “x”,
 print “ “

 #end of main loop

296 Part V: Exploring Electronics with the Raspberry Pi

Take a look at the code and see what is happening. After importing the RPi.
GPIO module, the code finds the board revision and initializes a list based
on what the board revision is. The list has a value of -1 in the pin positions
where there is no GPIO pin (that is, where there is a power or ground pin).
Otherwise, it has the GPIO number in the corresponding pin position of the
list. Then the code creates a list that holds the input values for each pin.

When we wrote this code, we filled this in with an arbitrary value of 5,
knowing that any real input value will be only a zero or one. Later on, we use
this default value to see how to display each pin. Next, all the pins are set to
be inputs with the internal pull-up resistors enabled. We talked about pull-up
resistors in the previous chapter (see Figure 14-9). That ends the setup
portion of the program.

The rest of the code is a loop that runs forever. It checks each input in turn
by looking at the pinout list and calling the GPIOinput(pin) to return the
value of each input. Then this is compared with the value we got last time.
If it’s different, it prints out the current state of that input along with all the
values of input arranged in the same order as the P1 connector’s pins.

To run the program, open up a terminal window, navigate to the directory
containing the program, and type

sudo python GPIOstate.py

You need the sudo prefix because the operating system restricts access to
the GPIO pins and you need root privileges to be able to use them.

To test this out, simply connect one end of a wire to one of the ground
connections and go around, in turn, connecting the other end of the wire to
each input. All of the inputs initially show as logic ones on the screen and
change to logic zeros when you ground the input.

 Be careful not to connect this ground wire to any of the power outputs: This
will short out your Raspberry Pi’s power. To prevent this, we put a small piece
of plasticine (Play-Doh, modeling clay, or blue tack) in the screw tops of the
power connectors.

Floating GPIO pins
Here’s an interesting experiment to do. Change the line that defines the pins
to be inputs with a pull-up enabled to one with no pull-ups. Remove one hash
and add another so that section of the code now reads

297 Chapter 15: Making Your First Project with the Raspberry Pi

#GPIO.setup(pinout[pin],GPIO.IN, pull_up_down=GPIO.PUD_UP)
 # replace line above with the line below to see the

effect of floating inputs
GPIO.setup(pinout[pin],GPIO.IN, pull_up_down=GPIO.PUD_OFF)

Now when you run the program again, some of the pins that aren’t connected
to anything change all the time. We say they are floating, and they are being
affected by tiny airborne electrical interference signals. As you can see, this
is not a stable situation and should be avoided.

Getting a better display
The output of this program is a bit crude because it depends on printing
to the console. On the website for this book, you can find another program
called GPIOmon.py that displays the state of the input pins in a window
superimposed over an image of the Raspberry Pi’s P1 connector. (See this
book’s Introduction for more on accessing the website.) The logic ones
are shown in red, and the zeros in blue, with the fixed level pins in black. A
screenshot of this program is shown in Figure 15-13. This program can be
closed by pressing Esc or simply by closing down the window.

Figure 15-13:
A screen-

shot of the
GPIOmon.py

program.

298 Part V: Exploring Electronics with the Raspberry Pi

Creating the Blastoff Game
Blastoff is a marble maze/puzzle type game that can sense the presence of
the marble at various parts of the board. The idea is to visit each one of a
series of traps or positions in the correct order without running into the
sides. The best thing is that you know all you need to know about electronics
to make this now.

To build this game, you use a 15mm (3/8") ball bearing in a box, using copper
foil strips to sense the position of the ball. The copper foil strips are connected
to the GPIO inputs and ground and the ball bearing simply shorts two strips
together, thus grounding the pin and allowing the computer to read it. When
each numbered trap is visited, the Raspberry Pi plays a sound file enunciating
that number in the countdown. If the ball bearing touches the side abort
strips or if traps are visited out of order, however, the computer resets the
game and you have to start the countdown again. This is great fun, especially
at a party or with a group of friends.

Making the box
We used metric nuts and bolts to make this game, specifically M2.5 and M3
nuts and bolts. In imperial measure, these correspond to BA sizes, with M2.5
being roughly 6BA and M3 corresponding to 4BA. Fortunately, absolute sizes
do not matter in making this project, so feel free to use whatever system is
available to you.

To start off, you need a playing surface. We built most of this from 6mm
(1/4") plywood finished in varnish, a sheet of acrylic, and some pine wood
strips. The box basically consists of a number of layers shown in Figure 15-14.
This can be any size you like, but we made ours 200mm (8") square. We
started off by cutting out two squares of plywood and one of 4mm (1/4")
acrylic sheet. Then we marked four holes 10mm (3/8") in from each corner
and clamped all the pieces together. Then we drilled one of the holes at 3mm
(1/8"), put an M3 bolt through it, and tightened it up, as shown in Figure
15-15. We then drilled and bolted the other corners in turn. This ensured all
the holes lined up. It’s worthwhile to mark one edge so you can assemble all
the pieces back in the same way when putting it back together.

To make the bottom tray, cut four pieces of 10mm (3/8") strip pine and
chamfer the ends at 45 degrees with a disc sander. Now use a Stanley Bailey
band clamp, or a similar device meant for clamping objects, to secure all four
pieces while you glue them together to form a frame. Finally glue and clamp
the frame to the base. This completes the underside tray.

299 Chapter 15: Making Your First Project with the Raspberry Pi

Figure 15-14:
An exploded

view of the
Blastoff

game’s con-
struction.

Acrylic sheet

Foam gasket

Wood frame

Tapped pillars

Wood playing surface

Wood frame

Base

4mm

17mm

2mm

6mm

10mm
6mm

20mm

10mm

Figure 15-15:
Bolting all

three large
boards

together to
make sure

the holes
line up.

To make the top frame, do exactly the same thing that you did to create the
bottom tray, except using 17mm (11/16") strip pine. When this is set, glue it
into a piece of 2mm (3/32") foam from a hobby or card-making shop or office-
supply store. You can then cut the foam to size on the inside and outside of
the frame using a sharp knife. In that way, you get a neat gasket that looks
good through the acrylic and helps bed things down.

300 Part V: Exploring Electronics with the Raspberry Pi

The playing surface is held between the tray and the acrylic by using two
tapped pillars at each corner. We used those with an M3 thread (4BA) and
had a 20mm (3/4") long one for the top and a 10mm (3/8") long one for the
bottom. We used a small length of M3 studding to fix them both to the board.
If you don’t have any studding, you can just cut the head off an M3 bolt. See
Figure 15-16.

 Making the ball traps
The next step is to enable the ball bearing to make an electrical contact
between two points. This is a bit harder than you might think. The ball is a
sphere and only makes contact with a surface at one point. If you want it to
bridge two conductors, they have to be very close. The solution is to use a
raised wall for one contact and a conducting strip for the other. For this task,
we need self-adhesive copper strip (foil). It is sold by the reel in hobby shops
for making Tiffany-style stained glass and also by electronics suppliers for
radio frequency (RF) screening. You can get it in various widths; we used a
5mm (1/4") wide strip. Figure 15-17 shows how this foil can be used to make a
detector or trap for the ball.

Figure 15-16:
Attaching

the two
pillars to

the playing
surface.

301 Chapter 15: Making Your First Project with the Raspberry Pi

See how the ball is forced against the corner of the wall and at the same time
makes point contact with the foil on the playing surface? On the playing
surface, first drill and countersink a 2.5mm (1/8") hole, and then lay the foil
over the top and smooth it down. You will see the indentation of the counter-
sink hole. Take a sharp pencil and make a hole in the foil. Gradually make it
larger and then put the countersunk bolt into the hole and tighten up a nut
on the other side. This pulls the foil into the countersink and make a good
electrical contact. It’s a good idea to make the countersink slightly deeper
than flush so that the ball can nestle in it. This is shown in Figure 15-18. We
made the wall from 5mm (1/4") square strip pine. The foil only needs to wrap
round the corner and cover only half the countersink hole.

Figure 15-17:
A ball trap

or ball
detector.

5mm

Foil

Foil

15mm

Ball

10mm

Figure 15-18:
Mounting

the foil strip
on the play-
ing surface.

Lay foil over the hole Break a small hole in the foil

and push it into the countersink

Wire

Attach a wire to the
underside of the nut

Figure 15-19 shows how we arranged the ball traps. Down each side is an
abort trap. They are wired together because you don’t need to differentiate
between the two sides. The other six traps, the ones we want to hit, are
distributed on alternate sides of the playing surface. Figure 15-20 illustrates
how this looks.

302 Part V: Exploring Electronics with the Raspberry Pi

Wiring up the Blastoff game
Figure 15-21 shows the schematic of the Blastoff game’s wiring. We’ve used
a push button symbol, the T shape with the two triangles, to represent the
traps. You can see this as a plunger shorting out two contacts, which is very
much the same as what the ball does. You can see the two abort traps wired
together or, as we say, in parallel. One side of all the traps goes to the same
line, the ground. The ground is denoted by the symbol with three diagonal
lines. All points connected to this symbol are always connected together. In
this circuit, there are just two ground points. We could have drawn the
connection in, but this is how you will see it on other schematics. The
important thing to remember is that all grounds must be connected together
on all circuits if they use the same symbol.

Figure 15-19:
The

arrange-
ment of the

ball traps.

 Abort trap

1

3

5

GO

2

4

Abort trap

303 Chapter 15: Making Your First Project with the Raspberry Pi

Figure 15-20:
How the

project
looks so far.

Figure 15-21:
The Blastoff

game
schematic.

GPIO 4

GPIO 17

GPIO 27 (21)

GPIO 22

GPIO 10

GPIO 9 5

4

3

2

1

GO

GPIO 11

Gnd

Abort Left Abort Right

304 Part V: Exploring Electronics with the Raspberry Pi

The schematic is a simple way of showing what needs to be connected to
what. Contrast that with Figure 15-22, which is a physical wiring diagram
of how to connect things up. It’s not terribly clear what’s going on, but this
is still clearer than Figure 15-23, which is a photograph of the real wires.
Learning to read a schematic pays great dividends; it should be your top
learning priority.

You can wire up the traps by just wrapping wire around the bolt, placing a
washer over it, and tightening up another bolt. However, if you don’t mind a
tiny bit of soldering, you can bend the wires round a bolt, remove the bolt,
and just apply a little solder to form an eyelet like the one shown in Figure
15-24. We used a piece of 8-way ribbon cable, stripped down from the 26-way
cable we used to make the breakout board, to wire up the game. We used
a file to cut a recess in the top of the tray to let the wires out, as shown in
Figure 15-25. We used hot melt glue to fix the ribbon cable to the base (refer
back to Figure 15-23). We then connected the other end of the wires to the
break out board.

Figure 15-22:
A physical
wiring dia-

gram of the
ball traps.

GPIO 17

GPIO 4

GPIO 27 (21)

Gnd

GPIO 22

GPIO 10

GPIO 11
GPIO 9

1

GO

3

5

2

4

305 Chapter 15: Making Your First Project with the Raspberry Pi

Figure 15-23:
A photo-

graph of the
wiring of the

ball traps.

Figure 15-24:
A soldered
loop on the
end of the

wire.

306 Part V: Exploring Electronics with the Raspberry Pi

Figure 15-25:
A recess cut

with a file
to allow the

ribbon cable
into the tray.

Finally, in order to dress it up a little, we found some space-themed stickers
in a local toy store along with some number stickers and added just a few to
give it the final finishing touch, as shown in Figure 15-26. Try not to go over-
board on the number of stickers you use: Less is more. They can also affect
the path of the ball and so become subtle obstacles in the game.

Testing the hardware
With the hardware built, it’s time to test it. Fire up one of the two input
monitoring programs mentioned earlier in this chapter and place the ball in
turn on each of the trap positions. You should see a logic zero appear on the
appropriate GPIO pin. Don’t worry if this shows up as a rapidly changing zero
and one on the pin, or if you sometimes touch a trap and nothing appears to
happen. As long as you can make the ball produce a logic zero on the right
pin some of the time, it’s fine. If you’re using old copper foil, you might have
to wipe the surface clean with some solvent to remove any fingerprint oils
and improve the contact. (The same goes for the ball bearing.) In stubborn
cases, you can lightly rub the foil with an ink eraser (an eraser with grit
embedded in it) to get a better surface.

307 Chapter 15: Making Your First Project with the Raspberry Pi

Figure 15-26:
The finished

Blastoff
game with

stickers.

Writing the software
The next step is to write the software that brings the game to life. This is
shown in Listing 15-2. We want to play a sound file and print on the screen
the state of the countdown. You have to go from five to zero (blastoff)
without touching any of the side traps. If you do, the countdown has to start
again.

Listing 15-2: The Blastoff Game
#!/usr/bin/env python
Blastoff marble game - python 2
with sound effects
run with - sudo python BlastOff.py

import RPi.GPIO as GPIO
import pygame
from pygame.locals import *
pygame.init()
pygame.mixer.quit()

(continued)

308 Part V: Exploring Electronics with the Raspberry Pi

Listing 15-2 (continued)
pygame.mixer.init()

def checkContacts(pins):
 made = -1 # number of the contact made
 for test in range (0,7):
 if(GPIO.input(pins[test]) == False): # if contact is made
 made = test
 return made

print “Loading sound files”
effect = [pygame.mixer.Sound(“sounds/”+str(s)+”.ogg”) for s in range(0,6)]
abortSound = pygame.mixer.Sound(“sounds/abort.ogg”)
countWords = [“BLASTOFF”, “ONE”, “TWO”, “THREE”, “FOUR”, “FIVE”]

print “Hi from Python :- Blastoff game”
print “start the count from five”
print “control-C to quit”
GPIO.setmode(GPIO.BCM) # use real GPIO numbering
boardRevision = GPIO.RPI_REVISION
if boardRevision == 1:
 inputs = [9, 10, 22, 21, 17, 4, 11]
if boardRevision == 2:
 inputs = [9, 10, 22, 27, 17, 4, 11]
set up GPIO input pins with pull ups enabled
for pin in inputs:
 GPIO.setup(pin, GPIO.IN, pull_up_down=GPIO.PUD_UP)

nextCount = 5 # the next trigger to hit
while True: # run the game forever
 newState = checkContacts(inputs)
 # check if something is making contact and it is not the last pad
 if newState != -1 and newState != nextCount +1:
 if newState == 6 and nextCount !=5: # the abort bar touched during

countdown
 print “Technical difficulty -- countdown aborted”
 print “Recommence at five”
 abortSound.play()
 nextCount = 5

 if newState == nextCount: # the next pad is reached
 print countWords[nextCount]
 effect[nextCount].play()
 nextCount = nextCount -1
 counting = True
 else:
 if nextCount != 5: # the wrong pad is reached

309 Chapter 15: Making Your First Project with the Raspberry Pi

 print “Count down out of sequence -- countdown aborted”
 print “Start again at 5"
 abortSound.play()
 nextCount = 5
 if nextCount == -1: # successfully finished count down so reset game
 nextCount = 5
 # end of main loop

The program uses the Pygame module that comes preinstalled for Python 2
on the Raspberry Pi. It is a very useful module that allows you to easily create
applications in a desktop window and to easily handle sound files. We used it
in the GPIOmon.py program mentioned earlier in this chapter. The program
starts with the definition of a function for reading in all the input pins to the
game. Ignore that for a moment and take a look at the loading of the sound
files. We want the sounds to be in a list, with their position in the list
corresponding to the count. The files are called 0.ogg, 1.ogg, and so on up
to 5.ogg. This filename is made by turning the loop counter into a string and
adding a string on either side of that to create the filename. These sound
filenames are initialized into a list called effect. The abort sound is initialized
in a more conventional way with the filename in quotes.

Next, the inputs list is initialized depending on what revision of board it is
running on. If you want to change any of the wiring or in fact if you wired it
from back to front, you can correct for this by simply changing the numbers
in this list. This list is used to initialize the GPIO pins as inputs and to turn on
the pull-up resistors. The variable nextCount is initialized to 5. This variable
drives the game, and all the rules about what happens when a trap switch is
closed depend on it.

When the variable is 5, the countdown hasn’t started, so we don’t want
any of the abort strips to trigger anything. If it its value is less than 5, the
countdown is under way, the abort strips are active, and the next trap
triggered must be the value of this variable. If the next trap triggered is not
the correct one, the countdown is aborted because of an out-of-sequence
count. In fact, we still allow a trap to be visited at one less than the next
count variable because that removes any consequences from what we call
contact bounce. Contact bounce is the effect of a contact being made and
broken very rapidly and looking like multiple contacts. However, this is
faster than could be physically made, so sometimes we have to add delays
to stop the computer from seeing multiple triggers. Fortunately in this program,
because of the way we want it to work, we simply sidestep any contact
bounce issue. This is because after we have reached any trap, we are looking
for either the next trap to be triggered, for correct progress, or a trap that
is not the next one or the current one for an error. Therefore, any contact
bounce on the current trap is neatly ignored.

310 Part V: Exploring Electronics with the Raspberry Pi

Finally the checkContacts() function sets a variable called made to be -1.
It then goes through each input in turn and, if it finds a logic zero, makes the
made variable equal to the position in the list of the logic zero input. This is
exactly what we want. For example, if there was a logic zero on GPIO 17, this
is the fourth entry in the list and corresponds to ball trap 4. Note the abort
trap is returned as 6 by the software and if the ball is not bridging anything, a
-1 is returned. Also we only have one ball, so only one contact trap is closed
at any one time.

The game logic
So after reading the inputs, if we have a value not equal to -1 and not equal
to the last number in the countdown, we have a new contact and the game
needs to move on. An if statement tests whether the abort trap was triggered
when the countdown was active; that is, the next count is not equal to 5. If it
is, the abort sound is played, a statement is printed, and the next count is set
to 5, which starts off the game again.

If the new state is the value we are looking for, we play the sound, print out
the count, and reduce the next count by one. Otherwise, we have an out-of-
sequence count, the countdown is aborted, and the game is reset as before.
Finally, if the next count has reached -1, blastoff has occurred and we reset
the game, ready for the next countdown. That’s a lot of logic in a few lines, so
look at the code and read this paragraph again. Make sure you understand it.

In computing terms, the variable nextCount is known as a state variable
and it drives what the program does next. This is a technique often used in
computing.

Creating the sounds
The only thing that remains to do is to create the sound files. You can
download our efforts from the book’s website along with the code, but it’s
even greater fun to make your own countdown samples. (See this book’s
Introduction for more on how to access the website if you prefer.) The sound
files should be put in a directory called sounds in the same directory as the
program. These files should be in the .ogg sound format. Pygame can cope
with .wav formats, but it’s a bit fussy about the specific type of .wav file, so
you are better off sticking to the .ogg format.

311 Chapter 15: Making Your First Project with the Raspberry Pi

Fortunately, a great free application can run on your laptop or desk computer
to record the sound and save it in the .ogg format. It is called Audacity and
can be downloaded from http://audacity.sourceforge.net/. Transfer
the sound files you create to your Raspberry Pi using a memory stick. We
used the GarageBand application, free with all Macs, to record both voice
and an accompanying chord. Save the sample as an MP3 and then use
Audacity to convert it into an .ogg file.

Customizing the Blastoff game
In addition to using your own sound files, you can customize this game in lots
of ways to make it unique. You can have more ball traps required to complete
the sequence. You can have abort strips at the top and bottom of the frame
as well, and you can add strips of wood on the board to act as obstacles. You
can fashion the game like a traditional maze with places to visit and places to
avoid. Going one step further, you can re-theme the game as a treasure hunt,
lock-picking game, or rally game. You could even make the playing surface
out of thin translucent acrylic sheet and have concealed lights, flashing or
guiding you to the next trap, beneath. However, before you do that, you need
to learn how to control lights from the Raspberry Pi, which is the subject of
the next chapter.

http://audacity.sourceforge.net/

312 Part V: Exploring Electronics with the Raspberry Pi

Chapter 16

Putting the Raspberry Pi in Control
In This Chapter
▶ Discovering how to output logic signals
▶ Learning how to drive an LED
▶ Creating the Copycat game
▶ Customizing the Copycat game
▶ Creating the deluxe Copycat game

I
n the last chapter, we covered GPIO signals on the Raspberry Pi and
showed how they could be used as inputs. We used those inputs to sense

the position of a steel ball in our Blastoff game. In this chapter, we show
you how to make these GPIO lines turn things on and off, to exercise control
using the power of your computer and its program.

We do this first by showing you how to light up a light, specifically a light-
emitting diode (LED). Then we show you how to combine this knowledge
with the input techniques you learned in the last chapter to create a Copycat
game. (If you just can’t wait to see what the final game will look like, flip to
Figure 16-15 at the end of this chapter.)

The GPIO lines are limited in the power that they can output, so to control
things that require more power, you must give the tiny signals a boost. The
simplest way of doing this is with a transistor. We show you how to do this
to control much brighter lights, allowing you to make a deluxe version of the
Copycat game. We show you how to handle surface-mount components as
well.

Using GPIO Pins as Outputs
We showed in Chapter 14 how the GPIO lines could be made to act like a
switch between the 3V3 power rail and the ground. Now it’s time to put that

314 Part V: Exploring Electronics with the Raspberry Pi

into action and use that switch to control something. The first thing you
should control is a simple LED. We say they’re simple because they are ubiq-
uitous nowadays, but they still require a little explanation. The letters stand
for light-emitting diode.

You probably understand the first two words, but the last one might need
explaining. A diode is an electrical component that lets current pass in one
direction but not in the other direction, a bit like a non-return valve. The
symbol tells a little story about this because the current arrives on the long
side of the triangle, called an anode, and gets squashed down to a point and
out through the barrier at the other end, the cathode. Current flowing in the
other direction towards the cathode hits the barrier and can’t flow through
the device. In a diode, the current flows from the anode to the cathode, as
shown in the following image.

Anode

Current can �ow in this direction Current can’t �ow in this direction

Cathode

In an LED, the current does exactly the same thing, but as it flows, it also
generates light. In a normal incandescent bulb, light is generated because the
filament gets hot and glows white-hot. In an LED and fluorescent light tube,
the light creation mechanism is different. Light is produced by exciting the
atoms in it and then as these atoms decay to their normal state, they emit a
small packet of light, a photon. The difference is that in a fluorescent light,
this happens in a gas, whereas in an LED, this happens in a solid crystal. The
light’s color depends on the material the crystal is made from and several
alloys can be used to make an LED.

You need a voltage to overcome the initial resistance of the LED, but after
the voltage has been reached, you get a big change in current for a very
small change in voltage. This is a device that does not obey Ohm’s law where
the current is simply proportional to the voltage, as we saw at the start of
Chapter 14. You can think of an LED as having a voltage-dependent resis-
tance. For low voltages, the resistance is high, but for higher voltages, the
resistance drops to a very low value. We say this is a non-linear device. This
means we can’t just simply connect it up to a voltage and expect it to work.
So whenever you use an LED, you always need some form of current-limiting
device, and a resistor is the simplest.

 Beware: On the Internet, many people tell you that you do not need anything
else when driving an LED. They connect an LED directly to a pin. However, an
LED must always have something else attached in the circuit that limits the
current through the LED. The simplest such thing is a resistor. They might
even have fancy-sounding technical descriptions justifying their assertions.

315 Chapter 16: Putting the Raspberry Pi in Control

They may say it is being rapidly turned on and off. This is known as multiplexing,
which stops current from building up. However, they’re wrong, most through
ignorance or misunderstanding, and a few are trying to be funny or malicious.
Listening to such advice can end up damaging your computer.

A resistor is simple to add. You need one resistor per LED. The resistor value
is not too critical. If you can’t be bothered calculating the exact value you
need, take heart: You won’t go wrong with anything between 220 R and 470 R.
That being said, we explain in the next section how to calculate exactly what
you need.

This method is sufficient for all low-powered LEDs; that is, LEDs that require
a current of 100 mA (milliamperes) or less. The most popular form of LED has
a maximum current rating of 20 mA.

Preparing to Build the Copycat Game
The idea behind the game is that four different-colored LEDs come on in a
random sequence. Beside each LED is a small push-button switch. You have
to mimic the sequence by pushing the switches next to the appropriate
LED. If you get it right, an extra light is added to the sequence and you try
to mimic it again. As the sequence becomes longer, the game gets more dif-
ficult. If you want to skip ahead and look at the simple version of the game,
see Figure 16-4. However, we also describe a more sophisticated way of con-
structing the game with illuminated push buttons. This version, shown in
Figure 16-15, looks a lot less like a circuit board and more like a game.

Here are the parts you’ll need to build the simplest version of Copycat:

 ✓ 1 3.3" × 3.3" copper strip prototype board.

 ✓ 4 tack push-button switches.

 ✓ 1 3mm red LED – red diffuse encapsulation.

 ✓ 1 3mm green LED – green diffuse encapsulation.

 ✓ 1 3mm yellow LED – yellow diffuse encapsulation.

 ✓ 1 3mm blue LED – blue diffuse encapsulation or clear if you can’t get
blue. Note, the forward drop should be 3V2 or less.

 ✓ 4 270 R wire-ended resistors.

If you want to build the deluxe version of Copycat, you’ll need these materials:

 ✓ 4 1.6" × 1.6" copper strip prototype board

 ✓ 4 1.6" × 1.6" 3/16" (4mm) acrylic sheet (Plexiglas or Perspex)

 ✓ 2 6" (150mm) square 1/4" (6mm) plywood

316 Part V: Exploring Electronics with the Raspberry Pi

 ✓ 2' (600mm) of 13/32" (10mm) × 3/16" (5mm) strip pine

 ✓ 4 3/8" (10mm) 4BA (M3) countersunk machine screws

 ✓ 4 3/8" (10mm) 4BA (M3) flat-head machine screws

 ✓ 4 3/8" (10mm) 4BA (M3) tapped brass hexagonal pillar or spacer

 ✓ 4 tack push-button switches

 ✓ 2 table tennis balls

 ✓ 1 surface-mount red LED – clear encapsulation

 ✓ 1 3mm green LED – clear encapsulation

 ✓ 1 3mm yellow LED – clear encapsulation

 ✓ 1 3mm blue LED – clear encapsulation

 ✓ 4 4K7 wire-ended resistors

 ✓ 4 BC237BG NPN transistors or any other NPN general-purpose small
signal transistor

 ✓ 3 150R wire-ended resistors

 ✓ 1 82R wire-ended resistor

 ✓ 32 1/4" (6mm) foam pads

Choosing an LED
A totally bewildering number of different types of LEDs are available in all sorts
of shapes and sizes. For this project, you require LEDs with leads known as the
through-hole mounting type. The two main sizes are 5mm or 3mm. The size is
not too important here. LEDs also come in two main types of plastic covering,
colored or clear, and also two surface treatments, diffused or water clear. For
the project you are about to make, you need the colored cover and preferably
the diffused type.

One thing you have to look out for when looking for LEDs to be driven directly
from the Raspberry Pi is the forward voltage. You have only 3V3 coming out of
the GPIO pins, so you want an LED with a forward voltage of no more than 3V.
Some older types of blue LEDs are a bit above this and won’t work.

The other thing to look at is how bright the LED is when a certain amount of
current is flowing through it. This is normally quoted in the data sheets in the
units of candelas or more, usually mille- or microcandela. Knowing the LED’s
brightness is useful here because Copycat gameplay requires the player to
look directly at an LED and you don’t want it to be too bright. However, you
can always cut down on the brightness by reducing the current through the
LED. For this project, go for those of about 1 millecandela (mCd).

317 Chapter 16: Putting the Raspberry Pi in Control

 The websites of big distributors such as Farnell in the U.K., known as Newark in
the U.S., have a selection filter to help you cut down on the overwhelming choices.
From more than three thousand offerings, you can whittle your selection down
at http://uk.farnell.com/jsp/search/browse.jsp?N=2031+204192
&Ntk=gensearch&Ntt=led. The alternative approach is buying a mixed bag
of LEDs from eBay. You don’t know what you are getting, but you can easily
measure the forward voltage drop.

To light up an LED, you put it in series with a resistor and apply some power,
as shown in Figure 16-1. You need to control the current through it by picking
the correct value of resistor. You can’t use Ohm’s law on the LED itself, but you
can use it on the resistor. When the LED is on, it has an almost fixed voltage
across it, independent of the current. The resistor has a voltage across it
that is proportional to the current, which is Ohm’s law. So in order to find
the right value of resistor and so set the current to what you want, you have
to first work out what voltage you want across the resistor. This is easy: It’s
simply the voltage of the power source minus the forward volt drop of the
LED. Then if you know the voltage across a resistor and you want a certain
current, Ohm’s law tells you what resistor value that has to be.

Figure 16-1:
Lighting an

LED.
 Ground

R
I

LED

Current through
resistor and LED

Voltage Across the LED
By and large �xed by the LED color

Voltage Across Resistor
Depends on current and resistor value

+Ve

Suppose we have a red LED with a forward voltage drop of 1V18 and we are
powering it from a GPIO pin giving out 3V3. The voltage across our resistor is
going to be

3.3–1.18=2.12

http://uk.farnell.com/jsp/search/browse.jsp?N=2031+204192&Ntk=gensearch&Ntt=led
http://uk.farnell.com/jsp/search/browse.jsp?N=2031+204192&Ntk=gensearch&Ntt=led

318 Part V: Exploring Electronics with the Raspberry Pi

Now suppose we want to run this at a current of 7mA. In that case, Ohm’s law
gives us a resistor value of

2.12/0.007=302R

However, this is not quite the value to use. Remember in Chapter 14, we saw
there was a drive impedance to a GPIO output of 31R, so you need to subtract
that from the total resistance value to get

302–31=271R

Be aware that you can’t buy that exact value. This is because resistors come in
standard values. The closest one to the value we want is 270R, so that is the one
to go for. You do calculations to get you in the right area, but the exact value is
not normally important. Here, by using a slightly lower value, we are putting
a very tiny bit of extra current through the LED. Because we are operating
nowhere near its maximum value, it doesn’t matter that a tiny bit more current
is flowing. In fact, for everyday applications, you can use a 270R resistor for
lighting up any LED direct from a Raspberry Pi’s GPIO output pin. Armed with
that knowledge, you’re ready to make the next project, Copycat.

Creating the Copycat Game
Copycat is a simple game of remembering a sequence of colors and entering
them in again. The computer plays a sequence of color flashes and you have to
repeat it by pressing buttons. If you are successful, an extra step is added to the
sequence and you try to enter that. If you are not successful, you get to have
another go. However, three failures in a row ends the game and your score is
the length of sequence you managed to get right. You can create a game with
lots of different variations on this theme (as you will see later in this chapter),
some of which make it fiendishly difficult. You can make two versions of this
game, the simple or the deluxe. We’re going to start off with the simple one.

Figure 16-2 shows the schematic of the Copycat game. It’s simply a switch and
LED circuit repeated four times. The only differences in each of the circuits are
the GPIO to which the switch and LED is attached to and the color of the LED.
Notice that the LED resistor is the same value for all the LEDs, as we discussed
in the previous section.

The only component we have not mentioned previously here is the push-but-
ton switch. Switches can be quite expensive, but one small type of switch is
very cheap and is in most sorts of equipment, normally lurking behind plastic
molding. This is called a tack switch. It’s square, but the four pins are not on
a square grid. There is a long side and short side as far as the pin spacing

319 Chapter 16: Putting the Raspberry Pi in Control

goes. The two pins on the long side are electrically joined together. When the
button is pressed, the two long sides are electrically joined. You have to be
careful not to mix up the two sides; otherwise, it will appear that the switch
is permanently being pressed.

Figure 16-2:
The sche-

matic for
the Copycat

game.

GPIO Pin 14

R1

LED1 Red LED

SW1

Red Push Button

Green
Push Button

Yellow
Push Button

Blue
Push Button

270R R2

LED2 Green LED

SW2

270R R3

LED3 Yellow LED

SW3

270R R4

LED4 Blue LED

SW4

270R

GPIO Pin 24

Ground

GPIO Pin 25 GPIO Pin 8 GPIO Pin 7

GPIO Pin 15 GPIO Pin 18 GPIO Pin 23

You are going to make this game on a piece of prototype strip board, sometimes
known by the trade name Veroboard. It’s very useful and flexible for making
small electronic circuits. It has a matrix of holes at a 0.1" (2.54mm) pitch,
which is very common for electronic components. On the underside of the
board run horizontal lines of copper. By soldering components onto the board,
you can make some of the connections with this copper. Sometimes, however,
the copper joins up the components in the wrong way. When this happens,
it’s a simple matter to cut the copper track with a twist drill bit (not attached
to the drill) or a specially made tool called a spot face cutter. Personally, we
prefer to remove the copper from each side of a hole with a sharp knife.

We’ve heard that it’s hard to get strip board in the U.S., but it is stocked by all
the major suppliers under various names such as BusBoard Prototype System,
Vectorbord Circbord, or breadboard. You don’t want any fancy substrate like
fiberglass — just the cheapest saturated resin bonded paper (SPBP). Look
for the circuit pattern type of common bus to make sure you get the strips.
The game is made on a piece of 3.4"×3.4" strip board and the layout is shown
in Figure 16-3. Compare that with the photograph shown in Figure 16-4. In
the layout, the strips of copper on the underside are shown by using dotted
lines. This is a conventional way of showing hidden details on a drawing.

320 Part V: Exploring Electronics with the Raspberry Pi

Figure 16-3:
The physical

layout of
the Copycat

game.

Blue

Red

Yellow

Make two breaks here.

GPIO Pin 8

GPIO Pin 24

GPIO Pin 14

GPIO Pin 15

GPIO Pin 18

GPIO Pin 25

GPIO Pin 7

GPIO Pin 23

GND

Green

The five vertical black lines represent tinned copper links. This is simply
solid copper wire. You can get reels of it or just replace it with regular wires
between the relevant holes. We think the tinned copper looks neater here.
You only need to make two breaks on the back of the board. These are shown
in Figure 16-3 as dotted shading or on the back of the board, Figure 16-5, as
black marks. Either way, the breaks prevent the yellow and green LEDs from
joining together. The track next to it prevents the yellow and green switches
from joining together. All the other connections the strips make are sup-
posed to be made.

321 Chapter 16: Putting the Raspberry Pi in Control

Figure 16-4:
A photo-
graph of

the Copycat
game.

Figure 16-5:
The strip

side of the
Copycat

game.

322 Part V: Exploring Electronics with the Raspberry Pi

Strip board works well here because the grid acts as its own measuring stick.
The board should be 33 holes by 33 holes to match the diagram. Cutting the
strip board to the right size is quite easy. All you need to do is to score heav-
ily down a row of holes with a sharp knife, and then turn the board over and
score the other side of the same row. Then place the scored line along the
edge of a table, hold the board flat to the table with one palm, and snap the
board by using your other palm to bend it. If you are being particularly neat,
you can sand the edges flat with a disc sander or file.

With such a small board, the construction order is not important, but nor-
mally you would start with the lowest height component first, so put the
copper links on. Make sure they are in exactly the right holes, solder them
up, and then trim the surplus wire from the back with side cutters. Then
add the resistors and the LEDs. The LEDs have to be put in the correct way
or they will not work. Many LEDs have a small flat by one wire. This marks
the cathode or negative connection. However, all LEDs have the anode wire
(positive connection) the longer of the two, so make sure the long wire is
opposite the position of the flat on the diagram. Finally, fit and solder the
switches. As mentioned before, make sure you get the rotation correct, with
the long side going along the copper strip.

 If you can’t tell what color your LEDs are when they’re off, apply a small spot
of the appropriate color paint or a sticker to the switch or close to the LED.

Now all you need to do is to wire the circuit board up to the GPIO connec-
tion board you made in Chapter 15. We’ve assigned the pins for this game to
be different from Chapter 15’s Blastoff game, so you can have both of them
wired up at the same time if you want.

 Whenever you do physical computing like this, make sure that the hardware
is working before you try to make it do something complex. That way, you
have confidence that when you look at the inputs or change the outputs, it
will work like you expect it to. To that end, here’s a little program, Listing 16-1,
that tests out the hardware you have made.

Listing 16-1 Copycat Hardware Test Program
#!/usr/bin/python
run by sudo python copyCatTest.py

import RPi.GPIO as GPIO

leds = [14, 15, 18, 23]
buttons = [24, 25, 8, 7]

print”hi from pi - Copycat Hardware test”
print”press the buttons to turn the LEDs off”
GPIO.setmode(GPIO.BCM) # use real GPIO numbering
GPIO.setwarnings(False) # to remove spurious warnings on re running codeÆ
for pin in leds:

323 Chapter 16: Putting the Raspberry Pi in Control

 GPIO.setup(pin, GPIO.OUT)
for pin in buttons:
 GPIO.setup(pin, GPIO.IN, pull_up_down=GPIO.PUD_UP)

while True: # loop forever
 for position in range(0,4): # look at each button in turn
 if GPIO.input(buttons[position]) == 0 : # if button pressed
 GPIO.output(leds[position], 0) # turn off LED
 else:
 GPIO.output(leds[position], 1) # turn on LED

It is quite simple: First, all the LEDs are turned on and the buttons are scanned.
When a button is found to be pressed, it turns off its corresponding LED. Run
this and press each button in turn. The LED next to the button should turn
off. If it doesn’t, there is a wiring mistake somewhere on the board. If you can’t
find it, just check out your breakout connector again by running the test code
in the previous chapter (Listing 15-1).

The way we tackled the program for the game was to first generate a sequence
of random numbers from 0 to 3 in a list, each number representing a color.
Then a variable called far indicates how far in the sequence you have got,
with functions to say the sequence, get a button press, and to check if the
button is the right one. The code is shown in Listing 16-2. Take a look.

Listing 16-2 Copycat Game
#!/usr/bin/python
run by sudo python copyCat.py

import RPi.GPIO as GPIO
from time import sleep
import random
import pygame
from pygame.locals import *

pygame.init()
pygame.mixer.quit()
pygame.mixer.init()

def getPress():
 pressed = False
 while pressed == False:
 for test in range(0,4):
 if GPIO.input(buttons[test]) == False: # button held down
 GPIO.output(leds[test],1)
 effect[test].play()
 pressed = True
 sleep(0.05) # debounce delay
 while GPIO.input(buttons[test]) == False: # hold until button released
 sleep(0.05)
 GPIO.output(leds[test],0)

(continued)

324 Part V: Exploring Electronics with the Raspberry Pi

Listing 16-2 (continued)
 return test

def saySeq(length):
 for number in range(0,length):
 effect[sequence[number]].play()
 GPIO.output(leds[sequence[number]],1) # turn LED on
 sleep(1.2)
 GPIO.output(leds[sequence[number]],0) # turn LED off
 sleep(0.5)

def getSeq(length):
 goSound.play()
 print”Now you try”
 for press in range(0,length):
 attempt = getPress()
 # uncomment next line to show what you are pressing
 #print”key press “, colours[attempt], “looking

for”,colours[sequence[press]]
 #note the game is too easy with the above line
 if attempt != sequence[press]:
 sleep(0.8)
 return -1
 return 1

colours = [“red”, “green”, “yellow”, “blue”]
print “Loading sound files”
effect = [pygame.mixer.Sound(“sounds/”+colours[c]+”.ogg”) for c in range(0,4)]
goSound = pygame.mixer.Sound(“sounds/go.ogg”)
dohSound = pygame.mixer.Sound(“sounds/doh.ogg”)
maxLength = 35
sequence = [random.randint(0,3) for c in range(0,maxLength)]

leds = [14, 15, 18, 23]
buttons = [24, 25, 8, 7]

print”hi from Pi - Copycat, you copy the sequence”
print”Ctrl C to quit”
GPIO.setmode(GPIO.BCM) # use real GPIO numbering
GPIO.setwarnings(False) # to remove spurious warnings on re running code
for pin in leds:
 GPIO.setup(pin, GPIO.OUT)
 GPIO.output(pin, 0) # turn LEDs off
for pin in buttons:
 GPIO.setup(pin, GPIO.IN, pull_up_down=GPIO.PUD_UP)
maxFails = 3

while True: # repeat forever
 fail = 0 # number of fails
 # generate new sequence

325 Chapter 16: Putting the Raspberry Pi in Control

 for c in range(0,maxLength):
 sequence[c] = random.randint(0,3)
 far = 2
 while fail < maxFails: # number of fail attempts before reset
 print”a sequence of”,far
 saySeq(far)
 if getSeq(far) != -1:
 far = far + 1
 print”Yes - now try a longer one”
 fail = 0 # reset number of fails
 else:
 fail = fail +1
 print”Wrong”,fail,”fail”
 if fail < maxFails:
 dohSound.play()
 print”try that one again”
 sleep(1.5)
 if far > maxLength:
 print”Well done Master Mind”
 exit() # suspect a cheat
 dohSound.play()
 print”Game over - Your score is”,far-1
 print”Try again”
 sleep(2.0)

What does this code do? First it imports a new module, random — as you
might guess, this is for generating random numbers. Skip over the function
definitions for the moment and come back to them later. Next the sound
files are loaded in, as well as the files for the colors. There are also two other
sounds: a go sound, which is an invitation for you to enter your guess, and a
sound to indicate an error, which is dohSound.

Next a list of the whole sequence is generated, the length set by the maxLength
variable. This value is more than the human brain can remember. Unless
someone is cheating by writing down the sequence or a non-human is playing,
it should be long enough. The initial sequence length is set to a value of 2.
You can change this if you want to start off with a longer sequence. Finally,
before entering the main loop, the maxFails variable is set to control how
many times you can get it wrong before ending your turn.

The program then sets up the variables to play one round of the game. That
round continues until the number of fails you have on any one turn is equal
to the maximum. A running commentary on the state of the game prints out
on the screen, but you play the game by looking at the buttons and lights.
The sequence is output and then your attempt at copying it is checked by
the getSeq function. This function returns a value of -1 if you make an error
so that the program can either increase the sequence length or increase the
error count, depending on how you got on. Finally, if the sequence length is
equal to the maximum length, the game suspects the player is cheating, so it
prints out an ironic message and quits the program.

326 Part V: Exploring Electronics with the Raspberry Pi

Now take a look at the functions that interact with the hardware. The saySeq
function takes in a length value and produces the sound associated with each
number. It also turns the appropriate LED on and then off. The sleep delays
ensure that the sound has time to finish playing and that you have long
enough to see the LED. The GPIO pin to use for any number/color is stored
in the list called leds. The current number to use is stored in the list called
sequence and the current position in that list is given by the number variable.
So the line

 GPIO.output(leds[sequence[number]],1) # turn LED on

is what is known as a double look-up because the GPIO pin number you want is
looked up from the index of the sequence list, which in turn uses the number
variable to find the right value.

The getPress function returns the number of buttons currently being
pressed. However, the function won’t return until the button is released.
This prevents the program from thinking it’s your next guess. It does this
because compared to human reactions, this program works very fast. So
when a button is detected as being pressed, the appropriate LED is turned
on and then an appropriate sound produced. A small delay known as a de-
bounce delay occurs. This is because buttons sometimes don’t make or break
cleanly, but physically bounce and look like they have been pressed many
times. This delay prevents the program from looking at the button again until
it has settled down. Then a loop repeats a delay until the button is released.
The function then returns the number of the button pressed.

Finally the getSeq function plays the goSound (we used a small bleep here)
and then repeatedly calls the getPress function, checking that the returned
value is correct. It does this until either an error is detected or the end of the
sequence thus far is reached.

If you want to make the game easier, uncomment the print line in the getSeq
and it prints out the sequence as the player goes on. It’s great for testing, but
because it prints out the sequence so far, all you have to remember is the last
color.

The sounds can be produced in exactly the same way you did for the Blastoff
game. Mike recorded himself saying the names of the colors and saved them
as an .ogg file.

Customizing the Game
You can customize this game and make many different variations. We made
a version that substituted the names of the colors for different cat sounds, in
keeping with the name of the game. We got the sound of a domestic cat along
with several big cats like lions and tigers. This made it harder to play because
players didn’t get the reinforcement of hearing the sounds named.

327 Chapter 16: Putting the Raspberry Pi in Control

However, if you want to really blow the minds of your players, change the line

colours = [“red”, “green”, “yellow”, “blue”]

to

colours = [“blue”, “red”, “green”, “yellow”]

This means that the game says the wrong color. The player has to ignore the
sound and go off the color of the LED alone. This makes the game very hard.

You can also remove the line where the fail variable is set back to zero on a
successful guess. That way, the player can only make a total number of failed
guesses in any one round and not on any one guess.

The random number generator can throw up the same numbers several
times in a sequence. Although this is truly random, it sometimes feels like it’s
not. You can change the bit of the program that generated the sequence to
choose another number if it’s the same as the previous number. This tends
to reduce the length of the sequence the player can remember.

One other variation you might like to try is to have another set of sounds
with the announcement of the color preceded by a cat meow. These are the
ones used in the correct sequence. However, keep the original sounds and
throw a few in at random, along with the LED lighting, in the routine that says
the sequence. In other words, these extra colors, if not preceded by a cat
meow, are not part of the sequence and should not be entered.

Making a Better Game
The Copycat game is good, but it doesn’t have a very good user interface.
That is, you just have a bare piece of strip board, which looks very unfin-
ished. You can do something about this, but first you have to learn how to
control something a bit more powerful with the GPIO lines of the Raspberry
Pi. The maximum current from any one GPIO pin is 16mA. Although this is
good enough to light an LED, anything more and it’s just a bit feeble. The
solution is to use the GPIO lines to control something that can switch more
power, and the simplest thing that can achieve that is a transistor.

A transistor is a simple device for switching current. It has three terminals
called the emitter, base, and collector. Their symbol is shown in Figure 16-6.
It works by making a current flow through the base to the emitter: This is
called the base current. When a base current flows, it causes another current
to flow from the collector to the emitter. The trick is that this collector-to-
emitter current you cause to flow in this way is the size of the base current
multiplied by a gain factor, which can be as much as a few hundred times.

328 Part V: Exploring Electronics with the Raspberry Pi

Figure 16-6:
The transis-

tor as a
switch.

Ground

R1

R2

NPN transistor
base collector

emitter

5V

R1

5V

I L

IB
Vbe

Vce

IL = IB Gain
Vsat = Lowest possible Vce

If you have a transistor with a gain of 200, and you put 15mA in the base, are
you going to get a current of 15×200=000mA or 3A flowing? Not normally: The
current you actually get depends on the power supply feeding the collector
and the resistance of the load R1 in the collector. Also, the transistor probably
can’t stand that much current anyway. So what’s the point? The transistor
is said to be fully turned on or saturated, as we say. That is, it’s acting like a
switch and allowing as much current to flow as Ohm’s law says it should, just
from a small current into the base.

Figure 16-7 shows an LED connected to a transistor being driven from a GPIO
pin. Note that there is a resistor in line with the base. This is needed to limit
the current into the base and out of the GPIO pin to the small amount we
need. The transistor’s collector/emitter is sinking current from the power
supply through the resistor and LED, so a small amount of current from the
GPIO controls the large amount of current through the LED.

The voltage of the LED’s power supply can be anything, so you are not
restricted to the 3V3 maximum voltage of the GPIO pin. Using a transistor,
you can control a large current at a large voltage from a small current at a low
voltage. It need not be an LED and resistor in the load — it can be anything,
even a motor, an electromagnet, or another piece of electronic equipment. It’s
like a lever, amplifying the force from your GPIO pin to control anything.

329 Chapter 16: Putting the Raspberry Pi in Control

Figure 16-7:
A transistor

driving an
LED.

 Ground

R1

R2 b c

e
GPIO pin

5V

LED

4K7

To make this game better, you need to make better set of buttons for the
game: buttons that are larger and illuminated, but still use the same tack
switches as before. The idea is to use half a table-tennis ball as the button
cover mounted on the copper side of the board and have the tack switch on
the plane side of the board pointing down.

We’ll place four pieces of 6mm (1/4") thick foam in the corners of the board
to give the button a nice tactile feel. You can always glue several layers of
thinner foam together if you can’t get any that thick. On the copper strip side,
illuminating the half ball, will be an LED of the appropriate color. This means
that the LED needs to be bright so that you can see it shine through skin of
the ball. This means two things: You need to push more current through it
than a GPIO output can supply and you need to use a surface-mount LED to
ensure even illumination.

This involves putting a transistor on the board along with the tack switch.
The schematic is shown in Figure 16-8 and the physical layout for one switch
is shown in Figure 16-9. You need to make this circuit four times. Note that
there is a cut in the copper track between each of the tack switch leads.
This is marked as a shaded area. You can see it more clearly on Figure 16-10,
which is a diagram of the back of the switch board. As to the circuit, it turns
out that you can use the same value of current-limiting resistor for all the
LEDs except the blue one, which needs to be a bit smaller.

330 Part V: Exploring Electronics with the Raspberry Pi

Figure 16-8:
The sche-

matic of
the deluxe

Copycat
game.

Ground

R1

Red

R2 b c

e

GPIO Pin 14

BC237BG

5V

LED

GPIO Pin 24

Push button

150R

4K7

Ground

R1

Green

R2 b c

e

GPIO Pin 15

BC237BG

5V

LED

GPIO Pin 25

Push button

150R

4K7

Ground

R1

Yellow

R2 b c

e

GPIO Pin 18

BC237BG

5V

LED

GPIO Pin 8

Push button

150R

4K7

Ground

R1

Blue

R2 b c

e

GPIO Pin 23

BC237BG

5V

LED

GPIO Pin 7

Push button

82R

4K7

Figure 16-9:
The physical

layout of
one switch
module —

component
side.

R1

Gnd

+5V

GPIO
Output

GPIO
Input

Foam
block

Illuminated push button,
component side

R2

331 Chapter 16: Putting the Raspberry Pi in Control

Figure 16-10:
The physical

layout of
one switch
module —
track side.

Gnd

+5V

GPIO
Output

GPIO
Input

LED

Cut
Track

Illuminated push button, track side

Choosing the LEDs can be tricky because a very wide variety of types is avail-
able. You want one with at least a 20 mA current rating to produce about 500
mCd of illumination. Many different types of surface-mount LED exist, and
the only one not suitable is the type with a bubble lens molded in. This type
won’t evenly illuminate the half ball. You are going to solder the LED between
two tracks of the strip board, so packages like PLCC (plastic leaded chip
carrier) and SMD (surface-mount devices) are fine. Most major electronic
component distributors have a filter function at their websites, so you can
narrow down the choice of parts to just the suitable ones.

The transistor we chose to use was the BC237BG, mainly because of the
price. At less than five cents each, they are good value. You’re looking for a
general-purpose NPN transistor with a modest current rating of 100 mA or so.
Any one of literally thousands of types will do here.

 The NPN in the description describes how the transistor is made up of three
layers of silicon. There are two types of silicon: N type, where the current
is carried by electrons, and P type, where it is carried by holes or lack of
electrons. Don’t worry too much about that: Just don’t get the other type of
transistor, the PNP type. These two types are distinguished in the schematic
symbol by having the arrow on the emitter pointing in a different direction.

The pin out (that is, where the pins are physically located on a transistor)
can be anything. The transistor we used has the pin out (shown in Figure 16-9)
when the flat of the transistor is placed against the board. Notice we’ve marked
these pins c, e, and b, although no such markings appear on the transistor
itself. If you use a different transistor, make sure it either has the same pin
out or adjust the physical layout to suit.

332 Part V: Exploring Electronics with the Raspberry Pi

Putting It All Together
To put the game together, make four of the boards, as shown in Figure 16-11,
solder up the parts, and attach the LED on the copper strip side. You have to
get the LED the right way round. On surface-mount LEDs, the cathode or nega-
tive end is normally marked by a thin green line or has a green arrow on the
underside pointing to the cathode end. The cathode must be connected to the
copper strip that has the current limiting resistor connected to it. You need a
fine pair of tweezers to hold the LED in place when soldering it. Figure 16-12
shows a photograph of the LED soldered in place.

After you have made the board, solder four wires up and test it. Wire the +5V
and ground up to a power supply or the appropriate points on the breakout
board, and then take the control wire (the one connected to the base resistor)
and touch it on the +5V line. The LED should light up. Do not worry if the
LED glows dimly when this wire is not connected to anything. Just make sure
that the LED is off when it is touched to the ground. Check the continuity of
the switch to the ground when pressed either by using a meter or by using the
GPIO port monitor program (Listing 15-1) or the GPIOmon.py on the web site.

Figure 16-11:
Four switch

module
boards.

333 Chapter 16: Putting the Raspberry Pi in Control

Figure 16-12:
The LED on

the track
side of the

board.

Next, make a tray similar to the project in the last chapter, cut two 15mm (6")
squares of plywood, and drill a hole in each corner. Then glue a 10mm frame
of strip pine to the base. Cut four 40mm (1 9/16") holes using a saw drill in the
top. Join the top and base together using pillars in the corner holes. Paint
the four quadrants of the tray in colors to match the LEDs.

In order for the strip board to be flush with the top of the tray, we glued a
50mm (2") square of 4mm (5/32") thick styrene to the foam pads of each push
assembly with impact adhesive. Then we wired the four switch assemblies to
a piece of strip board to act as a distribution point, and then wired a piece of
10-way ribbon cable to this strip. We filed a small recess in the side of the tray
so that the lid will fit on. See Figure 16-13.

Only when the board checks out should you glue the table tennis ball halves
over the LED. You can slice a table tennis ball in half in a number of ways.
Using a scalpel or knife is a bit tricky. Avoid cutting yourself (obviously) and
try to get a smooth edge. If your edge is rough, you can always sand the edge
smooth after. A better method is to use a small bench circular saw and rotate
the ball against the blade.

334 Part V: Exploring Electronics with the Raspberry Pi

However, the best way is to use a hot wire cutter of the type sold in hobby
shops for cutting sheets of expanded polystyrene. Clamp the wire cutter and
move the ball through the wire, avoiding burning your fingers. You can find
many videos on YouTube showing you how to cut a table tennis ball in half.
At this point, mark the component side of the strip board with the color of the
LED so you can fit it in the right place. Use a few spots of impact adhesive —
it doesn’t have to be a continuous line of glue.

Finally, use hot melt glue to fix the switch assemblies in place directly under
each hole in the lid. Do this by fixing the lid on with one screw and aligning
the other holes. Then by holding onto the top of the table tennis ball, remove
the lid without moving the switch so that the switch assembly can be fixed in
place with a fillet of glue (see Figure 16-14). Do this now without moving the
switch. When the glue has cooled, repeat separately for each of the remaining
three switches to ensure that they are all in exactly the right place.

All that remains is to wire up the 10-way ribbon cable to the breakout board and
to run the test software again, as shown in Figure 16-15. The final appearance
and the way it works surpasses our expectations!

Figure 16-13:
The four

switch mod-
ules wired

together.

335 Chapter 16: Putting the Raspberry Pi in Control

Figure 16-14:
The switch

modules
glued in

place.

Figure 16-15:
The final

game.

336 Part V: Exploring Electronics with the Raspberry Pi

Chapter 17

The Raspberry Pi in
an Analog World

In This Chapter
▶ Discovering what analog means
▶ Creating the Raspberry Ripple
▶ Making a Steve Reich machine
▶ Building a light-controlled instrument
▶ Making a thermometer

I
n the previous two chapters, we showed how the Raspberry Pi could sense
logic levels on the GPIO pins when they were configured to be inputs. We

also showed how you could switch LEDs on and off when GPIO pins were
configured to be outputs. We also showed how, by using a transistor, you can
use the Pi to control much larger currents than you can get directly from the
GPIO pins.

In this chapter, we show you how to use the GPIO to talk to other integrated
circuits. There are many ways to do this, called protocols. This chapter con-
centrates on one called the I2C protocol. Many integrated circuits use this
protocol to allow you to do many things. However, one very different sort
of thing is how to input and output, not in the strict on/off way of the digital
world you have seen so far, but in an analog or proportional way.

In this chapter, we show you how to make the Raspberry Ripple, a board to
allow you to input and output analog signals. Then we explore some of the
interesting things that you can do in this new analog world.

338 Part V: Exploring Electronics with the Raspberry Pi

Exploring the Difference:
Analog versus Digital

With a digital signal, everything is either on or off, no half measures. Indeed,
many things work in this manner; for example, your radio is either on or off.
It makes no sense for it to be anything else. However, this is not true of every-
thing. For example, a light can be half on or dimmed. A volume control can be
full on, full off, or somewhere in between. These are proportional controls.

Taking small steps
So how does a computer handle a proportional control? In a program, variables
can take on any value you assign them. You can do the same with a voltage.
However, the voltage is not continuously variable, but split up into small
steps, or quantized. The number of small steps used is given by the resolution
of the circuit. By combining several on/off signals, with each one contributing
an unequal small voltage you can produce very close to whatever voltage you
want. The circuit to do this is called a digital-to-analog (D/A) converter, and
there are several different designs. Figure 17-1 shows one such method using
four digital outputs, or as we say, four bits. Each switch is a digital output
from the computer and can send current through a resistor or not, depending
on whether the switch is open or closed. The important thing is the relative
resistor values, not the absolute values.

Figure 17-1:
Four

switches
and resis-
tors make

a digital-
to-analog

converter.
 Ground

Vout

Vref

Sw 3 R

2R

4R

8R

Sw 2

Sw 1

Sw 0

R

339 Chapter 17: The Raspberry Pi in an Analog World

The resistor R is a value and 2R is twice that value, 4R four times, and 8R
eight times. The voltage that is switched is called a reference voltage or Vref
and is in effect the maximum voltage that will be output. The current from
each of these switched resistor is channeled into a summing resistor, again
with a value of R.

To see how this works, suppose only switch 3 is made. Current flows through
R and Rs, developing a voltage across the summing resistor, shown as Vout
in Figure 17-1, of half the reference voltage. If only switch 2 is made, the
output voltage is a quarter of Vref; similarly, switch 1 produces an eighth and
switch 0 a sixteenth. When more than one switch is made, Vout is the sum of
these voltages.

With four switches, you can have a number of combinations of switches
made and unmade. The total number of combinations is given by two, the
number of states, raised to the power of four, the number of switches. So
we can have sixteen different combinations and so 16 different voltages out
of Vout. Table 17-1 shows each one of these. Note that the voltages are not
“nice” round values and that the maximum voltage is just short of the refer-
ence voltage, or Vref. In fact, it is short by one increment; that is, by one six-
teenth of the reference voltage.

Table 17-1 Output Voltage for All Combinations of Switch States
Sw3 Sw2 Sw1 Sw0 Fraction

of Vref
Voltage if
Vref = 5V

Open Open Open Open 0/16 0

Open Open Open Closed 1/16 0.3125

Open Open Closed Open 2/16 0.625

Open Open Closed Closed 3/16 0.9375

Open Closed Open Open 4/16 1.25

Open Closed Open Closed 5/16 1.5625

Open Closed Closed Open 6/16 1.875

Open Closed Closed Closed 7/16 2.1875

Closed Open Open Open 8/16 2.5

Closed Open Open Closed 9/16 2.8125

Closed Open Closed Open 10/16 3.125

Closed Open Closed Closed 11/16 3.4375

Closed Closed Open Open 12/16 3.75

Closed Closed Open Closed 13/16 4.0625

Closed Closed Closed Open 14/16 4.375

Closed Closed Closed Closed 15/16 4.6875

340 Part V: Exploring Electronics with the Raspberry Pi

As there are four switches, we say that this D/A has a resolution of four bits.
If you replace the open and closed in the switches columns with logic 0 and
1s, the whole thing starts to look like a binary number, which is exactly how a
computer stores an integer variable. Normally four bits is rather coarse, and
a typical D/A converter can normally have anything from 8 to 16 bits, with even
24 bits being possible. With a 16-bit converter and a 5V reference voltage, each
voltage step will be

5V/(216)=5/65536=0.00007629395 V or 76.29395 uV

Those still aren’t nice round numbers, but it’s very fine control indeed. In
fact, this is a much smaller step that any interference or noise likely to be in
a circuit. We covered this interference in Chapter 14. So the step size is small
compared to circuit noise. For all intents and purposes, the voltage output
can be thought of as continuously variable.

Reading small steps
You can see how, by combining lots of outputs, you can make a voltage that is
adjustable in small steps. But what if you want to read how big a voltage is —
that is, perform the opposite task of an analog-to-digital conversion (A/D)?
You have to have a D/A along with a circuit known as a comparator. A com-
parator is simply an amplifier with a very high gain. It has two inputs marked:
+ (plus sign) and − (minus sign). Its output is high if the + input has a higher
voltage on it than the − input. If the − input is higher, however, the output is
low. So a comparator simply produces a signal that tells you which input is
higher. Team that up with a D/A and you have an A/D, as shown in Figure 17-2.

Figure 17-2:
A block

diagram of
an analog-

to-digital
converter.

Ground

Vout

Comparator

High/Low

Unknown Voltage

Vref

8Try

+

–

D/A

341 Chapter 17: The Raspberry Pi in an Analog World

This is a block diagram, which means it only shows how a thing works, not
the wiring you need to make it work. A new symbol here is the thick line
with a slash across it and the number eight above. This means that there are
really eight wires here, each one going into the D/A. Into these go a number,
denoted by a combination of high and low lines, which is a guess as to what
our unknown voltage will be. If the guess is too high, the comparator output
is high; if the guess is too low, the output is low. To find the exact value of
our unknown voltage, you must find a number that results in a low output
of the comparator, yet with only an addition of one to the number results in
that output being high.

This means that in order to get the A/D to function it has to be driven; that
is, something must implement an algorithm of guesses and responses to
the guess. This can be done with dedicated logic circuits or it can be driven
from a computer. The simplest algorithm is called a single ramp. The guess is
incremented by one repeatedly until it reaches the value of the unknown volt-
age. This is simple but not very efficient. A much more efficient way is to use
successive approximation.

Suppose you are asked to guess a number between 0 and 256 and the only
information you could get is whether your guess is too high or too low. The
best strategy is to guess at half the range and keep on halving. So your first
guess should be 128. If that’s too low, your next guess should be between 128
and 256, so halve that and guess 192. It that’s too high, you know the number
is between 128 and 192, so halve the difference and guess 160. Keep repeating
that, and in only eight guesses, you will have honed in on the correct number.

Investigating Converter Chips
Special chips have all the circuitry and can do all of these processes for you.
Your computer can connect to these chips in a wide variety of ways. One of
the simplest ways is called a parallel connection, where each signal in the
circuit has a separate GPIO pin allocated to it. It is the fastest way, but it uses
a lot of GPIO pins. A more efficient way is to send data one bit at a time over
a single wire along with another wire that changes to signify a change in data.
This other wire is called a clock signal. One of the more popular implementa-
tions of this sort of communications is to a protocol called I2C.

This protocol has been around for a long time. It was first produced in 1982 by
Philips to allow its ICs to communicate. The initials stand for Inter-Integrated
Circuit communication. This is sometimes abbreviated to IIC or I2C, otherwise
known as twin wire. It’s pronounced “eye squared cee” and should be written
as I2C, but not all computer systems or languages have the facility for super-
script capability, so it remains I2C in most places.

342 Part V: Exploring Electronics with the Raspberry Pi

The idea is that communication takes place over two wires: One carries the
data and the other the clock. As there is only one line for the data, and that
can only be high or low, transmitting numbers or bytes (a collection of 8 logic
levels defining a number) happens serially; that is, one bit at a time. The
rising edge of the clock line tells the receiver when to sample the data signal,
and each message to and from a device consists of one or more bytes.

In its simplest form, there is one master device, which in our case is the
Raspberry Pi, and up to 128 different slave devices. In practice, there are
very rarely this many, and it is normal just to have one or two. Each slave
device has to have its own unique address, and this is, in the main, built into
the chip you are using. The first thing in any message from the master is the
address of the slave it wants to communicate with. If a slave sees something
that is not its own address, it ignores the message.

Building the Raspberry Ripple
What you are going to make next is the Raspberry Ripple, an analog input/
output board. In electronics, the word ripple is used to denote small, often
rapid, changes in a voltage. This board is going to look at changing voltages,
hence the name. After you’ve made it, you can make a whole range of projects
with analog signals. We show you some examples at the end of the chapter.

Here are the parts you’ll need to build the Raspberry Ripple:

 ✓ 1 2.8"×1.7" copper strip prototype board.

 ✓ 1 16-way DIL IC socket.

 ✓ 1 PCF8591P 8-bit A/D and D/A converter.

 ✓ 1 2N2222 NPN transistor.

 ✓ 1 1N4001 diode (or any other diode).

 ✓ 2 47uF capacitor 6V8 or greater working voltage.

 ✓ 1 1K wire-ended resistors.

 ✓ 5 3-way PCB mounting terminal block with screw connectors.

 ✓ Note the Phoenix contact–PT1,5/6-5.0-V–terminal block, PCB, screw,
5.0mm, 6-way can be split in half by sliding the components apart.

 ✓ 2' 24 SWG (or similar) tinned copper wire

343 Chapter 17: The Raspberry Pi in an Analog World

The chip at the heart of the Ripple
At the heart of the Raspberry Ripple is the PCF8591P chip, a venerable design
that has stood the test of time. It is widely available, but the price can vary
dramatically depending on where you buy it. It contains a four-input, 8-bit A/D
converter and a single output 8-bit D/A converter. In fact, it only has one A/D
converter, and the four inputs are achieved by electronically switching from
one of the four inputs into the A/D converter. It has three external address
lines, which means that part of the address of this chip can be determined by
how these lines are wired up. This means that up to eight of these chips can
coexist on the I2C bus and all have their own unique address. The other 4 bits
of the address are fixed. When you know what bits need to be set, you can find
the address by adding up the value of each bit with a one in it, as shown in
Figure 17-3.

Figure 17-3:
Determining
the address

of a
PCF8591P.

1 0 0

Fixed

Determined by
how the chip is
wired up.

Add2 Add1 Add0

1 0 1 0

64 32 16 8

Address of the PCF8591
in the Raspberry Ripple

Address = 64 + 8 + 2 = 74

4 2 1

Putting the chip into a circuit
The schematic of the Raspberry Ripple is shown in Figure 17-4. There isn’t
much to it apart from the chip. However, one component we have not met
before is the capacitor. There are two here, C1 and C2. Their job is to smooth
out any variations, or noise, on the power supply to the chip and the refer-
ence voltage. The reference voltage needs to be stable, because if it changes,
the voltage reading changes, even if there is no real change in the input voltage.
Adding a resistor and having another capacitor on the voltage reference
pin gives a more stable reference than just connecting it to the supply. The
capacitors have a working voltage associated with them. As long as it’s more
than 5V, it doesn’t matter what it is. However, the higher the voltage, the
bigger the capacitor will be.

344 Part V: Exploring Electronics with the Raspberry Pi

Figure 17-4:
The sche-

matic of the
Raspberry

Ripple.

4V3

+ve

A 0

Vref

1
2

3

4
5

6

10

9

16 14

4V3

7

15

Ground
1312

Add 2

Add 0

Add 1

SCKGPIO 3(1)

GPIO 2(0)

5V
47uF

C1

4V3D1
1N4001

R1
1K

SDA

8

A 1

A 2

PCF8591

A 3

A 0
Gnd

4V3

+ve
A 1
Gnd

4V3

+ve
A 2
Gnd

4V3

+ve
A 3
Gnd5V

cb
2N2222

e

Buff
Out
Gnd

47uF
C2

The diode D1 is there to drop the supply voltage by a tad. Although a diode
is used to restrict current flow in one direction, when current is flowing
through, it drops a constant voltage across it of about 0.7V independent of the
current flow. Strictly speaking, you need this because the Raspberry Pi can
only deliver a 3V3 signal, and the lowest signal the data sheet says can be seen
by this chip as a logic one is 0.7 of the supply voltage. If the supply voltage is
5V, the signal must be 3V5 to be recognized. In practice, we’ve found it works
quite happily without the diode, but going against the information in the data
sheet is a very bad idea because you have no guarantees of anything.

I have wired address line 1 to the supply to make it a logic one, and the other
two address lines to ground or logic zero, to give the address 74. You can
have up to eight of these circuits running at the same time. You just have to
ensure that each circuit has a different combination of logic levels wired to
these address lines.

The four analog inputs are wired to their own three-way screw terminal block
with both a ground and a supply voltage on them. I used Phoenix contact–
PT1,5/6-5.0-V–terminal block, PCB, screw, 5.0mm, six-way. They are in fact
two three-way blocks and it is easy to just slide them apart. It is actually

345 Chapter 17: The Raspberry Pi in an Analog World

cheaper to buy a six-way block and split it than it is to buy three-way blocks.
These screw terminal blocks have a blank area next to the contact that is
ideal for putting a label on. Using a screw block makes wiring up the later
projects to this a lot easier. The analog output of this chip is fed directly to a
screw terminal and through a transistor to act as a current buffer if you need
to get more drive from the output.

Wiring it up
Figure 17-5 shows the layout of the Raspberry Ripple on strip board. Note the
hidden detail showing where the tracks are cut between the adjacent pins of
the IC as well as in four other places. Figure 17-6 shows a photograph of the
same thing. The capacitors must be placed the right way round. The positive
end is marked by a depression in the can and the negative end by a black
line in the type (the marking might be different on other types). The diode
has a line marking the cathode or pointy end of the symbol. All the diodes
we’ve seen are marked like this. Finally, the chip has to be fitted the right way
round as well. It has a small circular indent marking the top.

Figure 17-5:
The wiring

layout of the
Raspberry

Ripple.

Insulated wire

T1 b
c

e

27 strips high, 16 holes wide

GPIO 3 (1)

R1

GPIO 2 (0)

Gnd
5V

+ve
A0

Gnd Gn
d

Ou
t

Bu
f

+ve
A1

Gnd
+ve

A2
Gnd Gn

d
A3

+v
e

PCF8591

D1

C1
+

+
C2

346 Part V: Exploring Electronics with the Raspberry Pi

Figure 17-6:
A photo-

graph of the
Raspberry

Ripple.

Note the link next to the +ve connection on the A1 connection block. Here
two wires go into the same hole, denoted by the gray hole. Put both wires
through before soldering them up. We also used an IC socket for the chip so
it could be replaced in case of accidents. The board is wired up to GPIO pins
2 and 3 (or 0 and 1 if you have an issue 1 board). These two different GPIO
signals are physically on the same pins for the two board issues. Unlike the
other projects in this book, you have no choice in pin assignment because we
are going to use these pin’s special hidden powers to talk to the chip.

Installing the drivers
Before you can use the Raspberry Ripple board, you have to install an I2C
driver to allow the GPIO pins to become a specialist I2C bus driver. This means
that the Raspberry Pi’s hardware will handle the transfer of data along these
two wires. A few drivers are available, but the SMBus driver is by far the easiest
to install and the commands are quite easy to use. In fact, many distributions
already have it installed as standard, but by default it is disabled. To enable
it, you have to change two files. Type the following into the command line:

sudo nano /etc/modprobe.d/raspi-blacklist.conf

347 Chapter 17: The Raspberry Pi in an Analog World

Add a # at the start of the line blacklist i2c-bcm2708 and then press
Ctrl+X. Press Y to save and exit. Next, you need to edit the modules file, so type

sudo nano /etc/modules

Add a new line to this file that says i2c-dev. Again, press Ctrl+X and then
press Y to save and exit. Install a handy little utility for checking what is on
the I2C bus by typing two lines:

sudo apt-get update
sudo apt-get install i2c-tools

Finally, you need to tell the system you can use it. Assuming you still have
the default user name of pi, type

sudo adduser pi i2c

Then reboot the machine with

sudo shutdown -h now

Remove the power, plug in the Raspberry Ripple board, and power it up
again. After you have logged in, type

i2cdetect -y 0

You should see a table with all blank entries except one saying 4a, which is
the address, in hexadecimal, of the Raspberry Ripple board. Remember, this
is the same as the decimal value of 74 you calculated earlier in the chapter.
If you do not see this address, check the wiring again for any errors. One big
advantage of installing the drivers in this way is that you can now run your
Python programs direct from the IDE. You don’t need to run them with root
privileges with a sudo prefix.

Using the Raspberry Ripple
Now we are ready use the Raspberry Ripple board. The first thing you need
to do is to learn how to talk to the board and test it out. The PCF8591P has
one control register: This is a single 8-bit (one byte) memory location in the
chip that controls how it operates. So when you talk to the chip, you first
send it an address, then the control byte, and then the data you want to send.
The control byte is shown in Figure 17-7, and is a simplified version of that
shown in the data sheet. We encourage you to download the data sheet and
read it. It contains far more than you need to know and like any data sheet,
it can be a bit intimidating when you first see it. However, it will describe the
alternative input configuration modes that we’re not using here. You will just
be using the straightforward four channels of analog input in this book.

348 Part V: Exploring Electronics with the Raspberry Pi

Figure 17-7:
The

PCF8591P
control

register.

X0 X X

Always zero

Analog output
enable
1 = Enabled
0 = Disabled

Input Con�guration
00 = Single ended

Analog input channel
select
00 = Channel 0
01 = Channel 1
10 = Channel 2
11 = Channel 3

Channel auto increment �ag
0 = No increment
1 = Auto increment

X X X

64128 32 16 8

Control register of the PCF8591

4 2 1

0

You will see that the control byte has one bit, bit 6, that controls whether the
analog output is enabled. It also has two bits that select what analog channel
to read, and there is also a bit that enables the auto-incrementing of the chan-
nel select. This is useful because it means that you can look at all four input
channels just by doing four successive reads. You don’t need to set up the
channel first.

Just a word of caution — when you read an analog channel, you do two
things. You get back the last reading and you trigger the next one. Sometimes
this is not a problem, but at other times, you have to bear in mind that’s what
is happening.

Testing the analog inputs
If an input channel is not being used, you should wire it to ground; otherwise,
you get wildly fluctuating results from it. Therefore you need to put a wire
between the A1, A2, and A3 input and the respective ground for this first test.
Next you need to wire a variable voltage source to A0. The simplest and best
way of doing this is to use a new component: a potentiometer or pot, sometimes
also called a variable resistor. Basically, it’s a knob. It has three terminals
and is shown in Figure 17-8. They come in a variety of values. You’re better
off using a 10K one for this experiment, but any value between 1K and 47K
will do. If you wire the middle terminal or wiper to A0, wire the bottom end
connections to ground and the top end to +ve. Now you’re ready to run the
program in Listing 17-1. Note that the only thing that will happen if you swap
the top end and the bottom end around is that it will produce the maximum
voltage when it is turned fully anti-clockwise.

349 Chapter 17: The Raspberry Pi in an Analog World

Figure 17-8:
A potenti-

ometer.

Wiper

Physical drawing

A Potentiometer

Wiper
A0

Top end Bottom end
+ve

Top end

Bottom end

Circuit symbol

Gnd

Shaft

Listing 17-1 Analog Input A0 Reading
 # Read a value from analog input 0
in A/D in the PCF8591P @ address 74
from smbus import SMBus

comment out the one that does not apply to your board
bus = SMBus(0) # for revision 1 boards
bus = SMBus(1) # for revision 2 boards
address = 74
Vref = 4.3
convert = Vref / 256

print(“Read the A/D channel 0")
print(“print reading when it changes”)
print(“Ctrl C to stop”)
bus.write_byte(address, 0) # set control register to read channel 0
last_reading =-1

while True: # do forever
 reading = bus.read_byte(address) # read A/D 0
 if(abs(last_reading - reading) > 1): # only print on a change
 print”A/D reading”,reading,”meaning”,round(convert * reading,2),”V”
 last_reading = reading

350 Part V: Exploring Electronics with the Raspberry Pi

This simply reads the voltage value on analog input channel 0 and prints it
out if it has changed. The program prints out two values: The first is the raw
A/D converter reading and the second is what this means in terms of volts.
The values the program prints is restricted to two decimal places because
8 bits resolution does not justify any more significant digits. In calculating
the voltage from the reading, the variable Vref is used to hold the reference
voltage. This is right only if your Raspberry Pi is running off exactly 5V, some-
thing that is a bit unusual. To make this voltage value more accurate, use a
volt meter and measure the voltage across C2; that is, place each of the two
volt meter leads to each end of the capacitor.

If you get a negative reading, swap them. Take the value you measure and put
it in as the value for Vref in the program. This applies to all the listings with
a Vref variable. However, many programs you write using an A/D are not
interested in the actual voltage but just use the raw reading. You can modify
the listing to read any of the input channels by simply changing the value in
the bus.write_byte instruction to change the control register so it selects
another channel.

Testing the analog output
To check out the analog output, you need an LED and resistor wired up as
shown in Figure 17-9. The wire to A1 is for the next experiment, so you can
leave it out for now. Enter and run the program in Listing 17-2.

Figure 17-9:
A test LED

circuit.

+ve

27K
LED

220R

Anode

Cathode

A1
Gnd Gn

d
Ou

t
Bu

f

351 Chapter 17: The Raspberry Pi in an Analog World

Listing 17-2 D/A Output Ramp
Output a count to the D/A in the PCF8591P @ address 74
from smbus import SMBus
from time import sleep

comment out the one that does not apply to your board
bus = SMBus(0) # for revision 1 boards
bus = SMBus(1) # for revision 2 boards
address = 74
control = 1<<6 # enable analog output

print(“Output a ramp on the D/A”)
print(“Ctrl C to stop”)
while True:
 for a in range(0,256):
 bus.write_byte_data(address, control, a) # output to D/A
 sleep(0.01)

You see the LED blink on and off, but on closer inspection, you see it rapidly
fade up and then blink out. What is happening here is that the voltage output
is gradually increasing as the for loop outputs successively bigger voltages.
At some point, the LED comes on and gets brighter as more current flows
through it. Note how it appears to stay the same brightness for a time even
though the current through it is rising. This is due to the logarithmic light
response of the human eye.

Making a Curve Tracer
You are going to make a curve tracer; that is, a device outputs a varying volt-
age, applies it to a simple circuit, and reads back a measurement. When
using the analog output, the analog input A0 is not functional and must be
left unconnected. The analog input A1 has a high-value pull-down resistor to
stabilize the readings when no voltage is applied. This resistor doesn’t affect
the measurements. In Listing 17-3, the voltage across the LED is measured
by analog channel A1 and printed out along with the analog output voltage.
Look at how the voltage “sticks” at close to the LED’s turn-on voltage. When
the LED is on, the voltage across it does not rise by much despite the voltage
applied to the whole thing increasing. This sticking voltage depends on the
LED’s color and type.

352 Part V: Exploring Electronics with the Raspberry Pi

Listing 17-3 LED Curve Tracer
LED_trace1 - Buf --resistor -- A1 -- LED -- Gnd
Print the voltage across an LED a voltage applied to LED and resistor
from smbus import SMBus
from time import sleep

comment out the one that does not apply to your board
bus = SMBus(0) # for revision 1 boards
bus = SMBus(1) # for revision 2 boards
address = 74
control = 1<<6 | 1 # enable analogue output and set to read A1
Vref = 4.44
convert = Vref / 256

print(“Output a ramp on the D/A”)
print(“Ctrl C to stop”)
while(True): # do forever
 for v in range(28,256): # start close to 0.7V
 bus.write_byte_data(address, control, v) # trigger last value to D/A
 bus.write_byte_data(address, control, v) # trigger this value to D/A
 reading = bus.read_byte(address) # read to kick off conversion
 reading = bus.read_byte(address) # read value
 Vbuf = (convert * v) - 0.7 # compensate for 0.7V lost in the buffered

output
 if Vbuf < 0:
 Vbuf = 0
 Vin = convert * reading
 if Vin > Vbuf:
 Vbuf = Vin
 Vout = convert * v # raw output voltage
 print “Out”,round(Vout,2),”V Buffered”,round(Vbuf,2) , “V --> MeasuredÆ

input 1 “, round(Vin,2),”V”
 sleep(0.01)

The circuit is being driven from the buffered output of the Raspberry Ripple.
The normal output of the Raspberry Ripple goes through a transistor in a con-
figuration known as an emitter follower. This transistor allows the Ripple to drive
much more current into a circuit than the PCF8591P alone; however, it does
slightly complicate things. The voltage on the emitter follows the voltage on the
base, with an offset of 0.7V. For example, if you output 2.7V from the D/A, you get
2V on the buffered output. This means that if you are ramping up the voltage to
a circuit, there will be nothing out of the buffer until there is 0.7V going out.

To compensate for this, an offset is subtracted from the output value in the
program. However, if the output value is below 0.7V, subtracting this offset
results in a negative output value, which of course is absurd. Therefore, the
program zeros the calculated buffered output if it’s negative.

353 Chapter 17: The Raspberry Pi in an Analog World

You can get the list of reading produced by this program plotted out as a
graph of applied voltage against voltage across the LED. See if you can write
a program to do this. If not, there is one on the website for this book called
LEDtrace2. (See this book’s Introduction for more on how to access the web-
site.) A more normal sort of curve for an LED is the voltage against current.
You can plot this by just taking the difference between the voltage across the
LED and the voltage being output, giving you, in effect, the voltage across
the LED’s resistor. This voltage is directly proportional to the current and
can be used as a current reading.

In fact, because you have three working analog channels, you can measure
three curves at once. Figure 17-10 shows the circuit to plot the curve from
a variable resistor and two different colors of LED, red and blue. Note the
top end of the pot is not connected to anything. All three are plotted at once
as shown in Figure 17-11. Again, you can find the program to do this on the
website for this book. It’s called LEDtrace4. The resistor is a simple straight
line whose slope is determined by the resistor value. Because there is a pot
acting as a resistor in the A1 input altering the pot’s value changes the slope
of the curve. Any coarseness in the plotted graph is simply the inevitable
noise or dither on the least significant bit you get with any A/D conversion.

Figure 17-10:
Wiring up
two LEDs
and a pot.

Buffer

10K
A1

A2 Red LED

LED1 LED2

Blue LEDA3

R1
270R

R2
270R

R4
27K

R5
27K

R6
27K

R3
270R

Ground

354 Part V: Exploring Electronics with the Raspberry Pi

Figure 17-11:
The results
of plotting

the curves
for two LEDs

and a pot.

Making a Pot-a-Sketch
You are now well on your way to exploring what the Raspberry Ripple board
can do for you. Next up you can make “pot-a-sketch,” or a pot box drawing
tool. This is simply four potentiometers in a box. Figure 17-12 shows the
schematic and Figure 17-13 shows a photograph of the finished product. I
used a small plastic box and push-on knobs with red, green, blue, and yellow
push-on tops. For this program, you have one pot for the X movement and
one for the Y movement, with the other two defining the color in terms of hue
and saturation. The Delete key or spacebar is used to wipe the screen clean.
Figure 17-14 shows a screen dump of it in action. Fire up the program pot-a-
sketch.py and twiddle the knobs to make your drawing. Again, the code to
drive this is on the website. (See this book’s Introduction for more on how to
access the website.)

Figure 17-12:
The sche-

matic of the
pot box.

A Potentiometer Box

+ve

Gnd

A0 A1 A2 A3

All pots any value between 1K and 50K

355 Chapter 17: The Raspberry Pi in an Analog World

Figure 17-13:
The pot box
wired to the

Raspberry
Ripple.

Figure 17-14:
A scribble
produced
by Pot-a-

Sketch.

356 Part V: Exploring Electronics with the Raspberry Pi

Making Real Meters
Do you want to have the readings from the pots displayed like a real meter?
Figure 17-15 shows a program that does this. Basically all that is happening
is that the analog reading is used to set the angle of a line. This is plotted
over the top of an image of a meter we created in Photoshop on a desktop
computer. You can find the program to do this called PotMeter4.py on the
website that accompanies this book and use it as a basic analog input check
or incorporate it into you own program.

Figure 17-15:
Displaying

real meters.

Making a Steve Reich Machine
Without changing the hardware, you can use these four pots to control
your very own Steve Reich machine. Steve Reich is a well-known modern
composer whose signature sound is one of slow development of a repetitive
motif, often played on one or many marimbas. This program has eight sound
samples of a scale played on a marimba, and it plays them back in a sequence
of eight notes. After a number of repetitions, the sequence is mutated by
replacing some of the original notes with new ones. Using the pot box, you
can control the speed of the notes, the number of repeats before mutation
occurs, and the number of notes that are changed in a mutation. You can also
control whether the notes are playing. An interesting effect can be achieved
by disconnecting the A0 input channel — controlling the speed. This then
reads wildly fluctuating values and gives the output a bit of a random rhythm.
The program is called Pot_Reich.py and can be found on the web site that
accompanies this book.

However, the magic of this program literally comes to light when you replace
the pots with light-dependent resistors (LDRs). As the name implies, these
devices change their resistance depending on the strength of light falling
upon them. Although the Raspberry Ripple can’t measure resistance directly,
it’s easy to make the LDR produce a voltage by simply putting it in series with
a resistor, putting a voltage across it, and measuring the voltage across the
LDR with the Raspberry Ripple.

357 Chapter 17: The Raspberry Pi in an Analog World

Figure 17-16 shows how this is wired up for one channel. You can replace as
many pots as you like with your hand control. We used a cheap LED reading
light to shine on the LDRs and then moved our hands over them to change
the readings. The code needs a bit of a tweak to adjust for the reduction in
range the light controls have compared to the pots. The 27K resistor also
affects the range. You might have to change the value of the resistor a little if
you get another type of LDR. A program with these code tweaks called Light_
Reich.py is on the website that accompanies this book.

Another program on the website that accompanies this book is called Light_
Play.py uses four LDR sensors to trigger the notes themselves, like a four-
note instrument played by waving your hands over the sensors.

Figure 17-16:
Wiring up

a light-
dependent

resistor.

Analog input

+ve

27K

LDR
VT935 or other

Gnd

Taking the Temperature
Finally here is a quick way to measure temperature. The LM335 is a cheap
temperature sensor. In its cheapest form, it’s in a plastic package and looks
just like a transistor. However, with the simple addition of a 1K resistor, it
can produce a voltage across it that is proportional to the absolute tempera-
ture in degrees Kelvin. The connection to the Raspberry Ripple is shown in
Figure 17-17. The resistor goes from the +ve to the analog input, along with
the center pin of the LM335, and the right pin goes into the ground. The
LM335 can be clamped to a surface to measure its temperature, or if you seal
the wires with silicone rubber, you can measure the temperature of liquids.

Note that the left pin is not connected to anything. For each degree Kelvin
increase in temperature, the output increases by 10mV or 0.01 of a volt.
Because the Raspberry Ripple can detect a change of about 15mV, we can use
this chip to measure to the nearest two degrees. For a more accurate reading
with this sensor, you need to use an A/D converter that has more resolution;
that is, more bits. To calibrate this temperature measuring system, you need
to take the difference between the reading and the real temperature. A simple
addition or subtraction of a constant is all that you need to do. The code,
called Read_temp.py, is on this book’s website. For more on accessing the
website, see the Introduction to this book.

358 Part V: Exploring Electronics with the Raspberry Pi

Figure 17-17:
Attaching
an LM335

temperature
sensor.

Part VI

 Visit www.dummies.com for great Dummies content online.

http://www.dummies.com/

In this part . . .
 ✓ Download and install ten great software packages for your

Raspberry Pi, including games, art packages, and productivity
tools.

 ✓ Be inspired by ten innovative projects for the Raspberry Pi,
including a weather station, a jukebox, and remote-controlled
cars.

 ✓ Troubleshoot common problems on the Raspberry Pi, change
more advanced settings, and connect external storage devices
using the Linux shell.

 ✓ Consult our table of the GPIO as you connect your own elec-
tronics projects to the Raspberry Pi.

Chapter 18

Ten Great Software Packages
for the Raspberry Pi

In This Chapter
▶ Downloading and playing games
▶ Discovering educational software
▶ Using e-mail, accounts systems, and other productivity tools

O
ne of the best things about the Raspberry Pi is that you can easily
download so many software packages over the Internet and install

them. In this chapter, we give you some pointers to ten software packages to
get you started.

Before you start, issue the following command in the shell to make sure your
software cache is up to date:

sudo apt-get update

The software you run on your computer is as much a matter of taste as the
music you play on your stereo, so we hope you use this list as a starting
point and then make your own software discoveries. For a full explanation of
finding and installing software on your Raspberry Pi, see Chapter 5.

Penguins Puzzle
Penguins Puzzle, shown in Figure 18-1, is a 3D puzzle game where you are
tasked with safely escorting a penguin to the exit without letting him fall off
the iceberg into the freezing water. You use the arrow keys to move around,
press Z to zoom out for a wider angle view, and press R to reset the level. The
game has 50 levels to test your mettle. When you’ve finished playing, press
Escape to exit.

362 Part VI: The Part of Tens

Figure 18-1:
Penguins

Puzzle is a
cute 3D puz-

zle game.

 Peter de Rivaz

To install the game, use

sudo apt-get install penguinspuzzle

You start the game from the shell by typing

penguinspuzzle

The software is charityware, which means you are invited to make a donation
to charity if you enjoy it. For more information on Penguins Puzzle, see the
website at http://penguinspuzzle.appspot.com/.

FocusWriter
Whether you’re writing the next blockbuster from your bedroom, or you just
need to get your work done without distraction, FocusWriter might be the
application for you. It’s a word processor that is designed to be distraction-
free. Most of the time when you’re using it, the only thing onscreen is your
writing.

http://penguinspuzzle.appspot.com/

363 Chapter 18: Ten Great Software Packages for the Raspberry Pi

When you move the mouse to the top of the screen, the menus for chang-
ing the settings and saving your files appear. To keep your motivation up,
you can set a daily goal in the Preferences settings for time spent writing or
(better still) words written per day. When you move the mouse to the bottom
of the screen, you can see the word count and how much progress you have
made towards your daily goal.

To install FocusWriter, use

sudo apt-get install focuswriter

To start FocusWriter, go into your desktop environment and click its entry in
the Office category of your Programs menu.

You can find out more about the application at http://gottcode.org/
focuswriter/.

Chromium
Google Chrome is the most popular web browser, and you can get the open
source version of it on your Raspberry Pi. Chromium is its name, and it’s a
fully featured browser with the same tabbed browsing experience you might
know from your other computers (see Figure 18-2).

To get a taste of what it can do, visit www.chromeexperiments.com, where
people have submitted games and other demonstrations of its capabilities.
Unfortunately, the Raspberry Pi version doesn’t support WebGL, which is a
technology for creating graphics in web pages. You can filter the list of exper-
iments to show only those that do not require WebGL by clicking Tags and
choosing Not WebGL. When you see the list of experiments, click the right
side of the screen to view more.

These demonstrations are a good way to see what the browser is capable of,
but you can of course just use it for your regular web surfing, and you might
experience results that are more consistent with your experience on other
computers when compared with Midori on the Raspberry Pi (see Chapter 4).

To install Chromium, use

sudo apt-get install chromium

After installation, you can find Chromium in the Internet category of your
Programs menu.

http://gottcode.org/focuswriter/
http://gottcode.org/focuswriter/
http://www.chromeexperiments.com/

364 Part VI: The Part of Tens

Figure 18-2:
Try the

demonstra-
tions to see

what the
Chromium

browser
can do.

 ©2006-2012 The Chromium Authors

XInvaders 3D
If you’re a fan of classic arcade cabinets from the 1970s and 1980s, you’ll have
a blast with XInvaders 3D. The game uses line graphics (like the classic game
Asteroids), and puts a fresh spin on Space Invaders. The 3D rendering makes
the aliens move progressively closer to you, and you move in four directions
to line up your shots. It’s good, clean, retro fun. Move using the cursor keys
and fire by pressing the spacebar.

To install XInvaders 3D, use

sudo apt-get install xinv3d

XInvaders 3D installs into the Other category in your Programs menu.

Fraqtive
Fractals are patterns generated using mathematical formulae that are self-
similar. That means that if you zoom in on the Mandlebrot set (shown on
the left in Figure 18-3), for example, you’ll find the same shape repeats in its

365 Chapter 18: Ten Great Software Packages for the Raspberry Pi

nooks and crannies, and you can zoom in again and again and again. Fraqtive
is a program for exploring fractals and generating images. You can save the
images and use them as wallpaper on your Raspberry Pi (see Chapter 4). The
software has a tutorial to get you started.

Figure 18-3:
Generate

colorful
fractal

images
easily using

Fraqtive.

 Michał Męciński

To install Fraqtive, use

sudo apt-get install fraqtive

After installation, you can find Fraqtive in the Education category of your
Programs menu.

For more information on Fraqtive, visit the creator’s website at http://
fraqtive.mimec.org/.

Evolution
Evolution is an e-mail program that works on the Raspberry Pi and that also
incorporates calendar, contacts, tasks, and memo features. The Raspberry Pi

http://fraqtive.mimec.org/
http://fraqtive.mimec.org/

366 Part VI: The Part of Tens

isn’t the ideal machine for this kind of application. Usually, you’d run some-
thing like this in the background while you do other things, but with the Pi’s
limited memory, it can be a bit slow even when it’s focused exclusively on
these activities. E-mail is one of the most popular computer activities today,
however, so if you’d like to try it on the Raspberry Pi, give Evolution a go.
You can install it using

sudo apt-get install evolution

It appears among your Office applications in the Programs menu.

Tux Paint
Tux Paint, shown in Figure 18-4, is a simple drawing program for children,
with tools that help them to quickly create art on the Raspberry Pi. As well as
enabling freehand drawing and the placement of shapes and lines in common
with most art packages, it also has a Magic tool. This can be used to create
effects such as brick walls, flowers, snow balls, rainbows, waves, and various
creative image distortions. The Stamp tool is used to stamp clip art onto the
screen, including animals, penguins, hats, food, and musical instruments.

Tux Paint is named in tribute to Tux, the penguin who is the official mascot
of the Linux kernel. The application has been created with the help of more
than 300 contributors worldwide and has been downloaded tens of millions
of times.

Figure 18-4:
Tux Paint

turns every
child into an

artist. And
me too.

 The Tuxpaint Project (www.tuxpaint.org)

367 Chapter 18: Ten Great Software Packages for the Raspberry Pi

To install Tux Paint, use

sudo apt-get install tuxpaint

After you’ve installed it, you can start Tux Paint from the Education category
of your Programs menu.

The official website for Tux Paint can be found at www.tuxpaint.org.

Grisbi
If you want to manage your home accounts on your Raspberry Pi, Grisbi is a
free application you can use to keep track of your regular and one-off payments.
Although other programs are also available, Grisbi is the easiest one I’ve
tried, both to set up and keep updated. Many banks enable you to download
your bank statement in a format that can be used in Grisbi, so you might be
able to analyze your financial situation without too much rekeying.

To install Grisbi, use

sudo apt-get install grisbi

You can find it in the Office category of your Programs menu.

Beneath a Steel Sky
Beneath a Steel Sky is a game that tells a science fiction story about Robert
Foster, a boy who survived a helicopter crash and was raised by indigenous
Australians in a wasteland called The Gap. Many years later, when Robert has
grown up, armed forces arrive in another helicopter, kidnap him, and fly him
back to the city. He escapes, and you pick up the controls to guide him on his
journey of discovery. Why is he here? Who is in charge?

It’s a point-and-click adventure game, shown in Figure 18-5, which means you
solve puzzles and interact with the environment using your mouse cursor
and clicking objects and people. The left mouse button is used to examine
things and the right mouse button is used to take an action (such as opening
or closing a door, picking up an object, or looking through a window). You
can talk to characters in the game by clicking them and choosing from the
provided phrases. When you move the cursor to the top of the screen, the
inventory of items you are carrying appears so you can use things you are
carrying. To walk through an exit, click it.

http://www.tuxpaint.org

368 Part VI: The Part of Tens

Figure 18-5:
Beneath a
Steel Sky,

an interac-
tive science
fiction story.

 Revolution Software Ltd

The game’s fantastic opening sequence and witty dialogue draw you in, and
the solution is available online if you’d like to experience the full story but
get stuck on one of the puzzles.

This hit game from 1994 was officially released as freeware in 2003, and is
available for you to install on your Raspberry Pi, like this:

sudo apt-get install beneath-a-steel-sky

It installs into the Games category of your Programs menu.

LXMusic
LXMusic (see Figure 18-6) is a minimalist music player you can use to play
music from the desktop environment.

Your music collection is listed as a scrolling list of songs that you can filter
by typing an artist, album, or song name into the filter box at the bottom.
To add music into LXMusic, click the Add button (a green plus sign) in the
bottom left. Double-click a song to play it. When you close LXMusic, it contin-
ues to play in the background, so to stop the music, bring LXMusic back by
clicking its icon on the right of the taskbar.

369 Chapter 18: Ten Great Software Packages for the Raspberry Pi

Figure 18-6:
Playing

music in
LXMusic.

To install or update LXMusic, use the following command:

sudo apt-get install lxmusic

370 Part VI: The Part of Tens

Chapter 19

Ten Inspiring Projects
for the Raspberry Pi

In This Chapter
▶ Finding the inspiration to get started
▶ Creating a simple program
▶ Building more complex systems

I
f you’ve read the rest of the book and worked through the projects, you
now know how to program and how to create your own electronics proj-

ects with the Raspberry Pi. What you learn next, and what you create with
that knowledge, is up to you.

It’s amazing to see what people of all ages are doing with their Raspberry Pis.
In this chapter, we’ve collected some of the most interesting and inspiring
projects we’ve come across. Each one has a link so you can find out more
and perhaps follow instructions to replicate the project, or get some advice
for similar projects of your own.

One-Button Audiobook Player
Michael Clemens has used the Raspberry Pi to create an audiobook player for
his wife’s grandmother, who is visually impaired and finds digital audio players
difficult to use.

This project requires some electronics work, adding transistors, an LED, a
pair of speakers, and a large button into a plastic case and linking the button
and LED to the Raspberry Pi’s GPIO pins.

A Python script enables the button to control the media player software:
Pressing the button pauses or plays the audiobook, and holding it down for
four seconds sends it back one track.

372 Part VI: The Part of Tens

To change the audiobook, you just plug in a USB drive with the new audio-
book on it. It is automatically copied across to the Raspberry Pi, replacing
the old audiobook.

Instructions, Python code, and photos are on Michael’s blog: http://blogs.
fsfe.org/clemens/2012/10/30/the-one-button-audiobook-player/.

Raspberry Pi Synthesizer
Music aficionado Phil Atkin has decided that the best use for the Raspberry
Pi is to create a synthesizer. He has compared his synth to a Moog instru-
ment, which costs £600 and only plays one note at a time. His Pi-based synth,
on the other hand, can play eight notes simultaneously and costs about £30.
He’s working on a MIDI interface so he can connect other instruments to it.

He demonstrated the synth at a Raspberry Jam session in Bristol, U.K., one
of many community events that bring Raspberry Pi fans together worldwide
(see http://raspberryjam.org.uk/).

The Raspberry Synthesizer blog details the complete development of the
synth from its start to present day, together with a discussion of some of the
issues Phil faced with audio-related elements of the Pi. You can also watch
videos of the synth in action. Find out more at http://raspberrypi
synthesizer.blogspot.co.uk.

Bird Feeder Webcam
Lots of people have been hooking up the Raspberry Pi to a webcam, and
Francis Agius was inspired by their stories to create a bird feeder webcam.
What makes his system different to many is that he’s got his Raspberry Pi
running outdoors. The Raspberry Pi is sealed in a plastic food container (for
waterproofing) and connected to a USB hub powered by a car battery. He
also added a standard USB Wi-Fi adaptor to connect it to his home network.

To run the Raspberry Pi, Francis chose Arch Linux, a very lean operating
system that takes less than ten seconds to boot up, and he installed additional
packages (motion and FFmpeg). He connects to the Pi using a secure shell
connection (SSH) and any pictures are captured to the SD card. He then
views the images of birds at the feeder on his Windows PC, using Winscp to
move the captured files over from the Raspberry Pi.

For more information and pictures, see Francis’ guest post on the Raspberry
Pi blog: www.raspberrypi.org/archives/2504.

http://blogs.fsfe.org/clemens/2012/10/30/the-one-button-audiobook-player/
http://blogs.fsfe.org/clemens/2012/10/30/the-one-button-audiobook-player/
http://raspberryjam.org.uk/
http://raspberrypisynthesizer.blogspot.co.uk/
http://raspberrypisynthesizer.blogspot.co.uk/
http://www.raspberrypi.org/archives/2504

373 Chapter 19: Ten Inspiring Projects for the Raspberry Pi

Scratch Games
At seven years old, Philip is the youngest person featured in this chapter. He
uses Scratch to design computer games and already has four under his belt.
One of his games is a simple penalty shootout, with a brightly colored sprite
to protect the goal while another shoots the ball. Philip has also written
instructions and rules, which are displayed before the game starts.

It’s a great example of how creative young people can be with the Raspberry
Pi, while simultaneously having fun and learning valuable programming and
game design skills.

Philip explains and demos all of his games on his father’s YouTube channel
at: www.youtube.com/user/MrUKTechReviews?feature=watch.

Weather Station
When Steve Wardell heard about the development of the Raspberry Pi,
he decided that it could be the ideal computer to connect to his WS2350
weather station, replacing his Windows PC. One of the challenges he had
to overcome was to find an adapter that would enable the weather station,
which has a serial port, to connect to the Raspberry Pi’s USB port. He tried a
couple that didn’t work before finding one with an FT232RL chip that did.

The Raspberry Pi gathers information from the weather station using
Open2300, a package of tools for reading data from the weather station.
Steve’s written a Python script that converts this data into a tweet and posts
it on Twitter, and is now looking at using the Raspberry Pi to post weather
updates on his website.

On Steve’s blog, you can find a couple of articles explaining what he’s done,
and how he overcame some of the technical hurdles of integrating all the
different systems: http://stevewardell.wordpress.com/tag/
raspberrypi/.

Jukebox
A wireless jukebox was the first project that Tarek Ziadé decided to undertake
with his first Raspberry Pi. The idea is that people can add songs to the
jukebox’s queue over the local network. It’s a relatively simple project that
doesn’t require any electrical skills.

http://www.youtube.com/user/MrUKTechReviews?feature=watch
http://stevewardell.wordpress.com/tag/raspberrypi/
http://stevewardell.wordpress.com/tag/raspberrypi/

374 Part VI: The Part of Tens

Tarek’s first steps were to add a USB stick to create more storage for the
music library and to buy a USB battery to power the Raspberry Pi. All of the
components he chose were small, so that the jukebox would be portable.
Tarek used the default Debian image for the Raspberry Pi, and after some
updates to the operating system, including enabling sound (which was at that
time turned off by default), he was ready to start creating the jukebox.

His original plan had been to write his own jukebox program in Python,
but Tarek then found an existing application called Jukebox that met all his
requirements. Jukebox enables anyone to search for a song (by artist, title,
album, year, or genre) in the music library on the USB storage device and
then add it to a queue for playing.

Since completing his Raspberry Pi jukebox, Tarek has added a miniature
speaker, created a Lego case, and made the Raspberry Pi jukebox truly
portable: http://blog.ziade.org/2012/07/01/a-raspberry-pi-
juke-box-how-to/.

Baby Monitor
Jeremy Blythe has a fair number of Raspberry Pi projects under his belt,
including this one, which displays a simple webcam stream on a web page. It
is an ideal setup for a baby or child monitor, and it’s a good starter project
because it uses out-of-the-box components and doesn’t require any hardware
engineering. You’ll need a webcam, though.

The project runs on a headless Raspberry Pi, which means it’s set up to work
without a screen or keyboard, so Jeremy used a secure shell connection
(SSH) to access it. It’s relatively simple to load up the two main applications:
MPlayer (a Linux movie player) and Motion (as a streaming server).

See Jeremy’s blog post for the detailed instructions, and links to other projects:
http://jeremyblythe.blogspot.co.uk/2012/05/raspberry-pi-
webcam.html.

Remote-Controlled Cars
Everyone loves remote-controlled cars, which is the reason one family
thought it would be interesting to use the Raspberry Pi to resurrect some
of their old toys. They’ve hacked the controllers and connected them to the
Raspberry Pi. It’s been a useful introduction to programming for their five-
and six-year-old boys, who now enjoy setting the cars to skid from within

http://blog.ziade.org/2012/07/01/a-raspberry-pi-juke-box-how-to/
http://blog.ziade.org/2012/07/01/a-raspberry-pi-juke-box-how-to/
http://jeremyblythe.blogspot.co.uk/2012/05/raspberry-pi-webcam.html
http://jeremyblythe.blogspot.co.uk/2012/05/raspberry-pi-webcam.html

375 Chapter 19: Ten Inspiring Projects for the Raspberry Pi

Scratch. This project requires some technical skill because the radio control-
ler unit needs to be opened up and connected via a suitable cable to the GPIO
pins on the Pi.

You must take two steps to enable the car to be controlled from Scratch.
Firstly, you need to have a script running on the Raspberry Pi to listen for
Scratch commands and send them on to the GPIO pins. The result is that set-
ting different pins on the Pi exercises different functions on the car.

Secondly, within Scratch, you need to enable remote sensing and create
variables for each action that’s supported by the car’s remote control — for
example, left, right, forward, backwards, turbo boost, and so on — matching
the variable names to those used in the listening script. These variables are
given values of 1 or 0 to turn the GPIO pins on or off.

After this is done, it’s easy to use the Scratch interface to create a sequence
of commands and set them running. You can see more information and videos
about creating a pi-car, as well as racing results, at www.pi-cars.com.

A Talking Boat
Kit Wallace has used the Raspberry Pi to create a system that monitors the
status of his sailing boat and reports out loud, either on request or upon
detection of a problem. Kit enjoys sailing, but with worsening eyesight, he
found it harder to read the dials and screens of the instruments.

His first tasks were to select the software for text-to-speech and work out a
method for the skipper to choose what information he wants to hear (GPS
position, distance from a marker, or any other sort of arbitrary information
from the boat’s systems). He settled on (respectively) eSpeak, which he runs
in a shell from Python, and a Labtec wireless PowerPoint presenter to act as
a very limited keyboard, with four buttons. He uses Python to detect when a
button is pressed.

Four inputs gives enough options for navigating through a tree-based menu,
where, for example, a Weather menu contains items such as Barometer and
Wind Speed. Each item can also ask a specific system for an update and send
the resulting text to eSpeak, which speaks it out loud.

After this is set up, you still need to look at how you integrate your data sources.
Kit covers what he did on his blog: http://kitwallace.posterous.com/
tag/raspberrypi.

http://www.pi-cars.com
http://kitwallace.posterous.com/tag/raspberrypi
http://kitwallace.posterous.com/tag/raspberrypi

376 Part VI: The Part of Tens

Home Automation
One Raspberry Pi programmer, Will Q, has used the Pi to create a web app
for controlling lights, using a wireless remote control and switch set to turn
the lights on and off. The great thing about this project is that you can con-
trol anything that’s plugged into a power socket, not just lights.

The most complicated part is using the Raspberry Pi GPIOs to emulate press-
ing the buttons on the remote control: You’ll have to take apart your remote
control unit and do some additional wiring and soldering. Will uses a ribbon
cable as an interface between the unit and the Pi in his solution.

For software, Will installed a web server called Web2py and a Python GPIO
module to run the outputs on the Raspberry Pi. The finished project enables
you to turn your lights off using any web browser to send a signal to the
Raspberry Pi, so you could use an iPhone or a PC to remotely control your
house.

You can find detailed instructions about how Will achieved this project,
including the home_lights program code, at www.instructables.com/id/
Raspberry-Pi-GPIO-home-automation/.

If this inspires you, look around on the web for more ideas: Home automation
is a growing trend. Projects range from the simple to the incredible. For
example, you could turn your house into a Halloween attraction with a
spooky light and music display, triggered by a PIR (passive infrared) motion
detector: www.instructables.com/id/Raspberry-Pi-Halloween-
Lights-and-Music-Show/.

http://www.instructables.com/id/Raspberry-Pi-GPIO-home-automation/
http://www.instructables.com/id/Raspberry-Pi-GPIO-home-automation/
http://www.instructables.com/id/Raspberry-Pi-Halloween-Lights-and-Music-Show/
http://www.instructables.com/id/Raspberry-Pi-Halloween-Lights-and-Music-Show/

Appendix A

Troubleshooting and Configuring
the Raspberry Pi

In This Chapter
▶ Troubleshooting and fixing common problems
▶ Adjusting the settings on your Raspberry Pi
▶ Mounting external storage devices in the Linux shell
▶ Fixing software installation issues
▶ Troubleshooting your network connection

M
any people find that they can just connect up their Raspberry Pi, and
everything works fine the first time. Fingers crossed, that will hope-

fully apply to you!

Sometimes people experience problems, however, or want to make more
advanced changes to their computer’s settings (also known as configuring it).

In this chapter, we show you how to resolve some common complaints and
how to change some of the settings. Hopefully you won’t need to consult
this chapter much, but it might prove valuable if you experience undesirable
behavior when you first set up the Pi, or if you have an unusual setup.

 Whatever you’re doing on the Raspberry Pi (or any computer, come to that),
it’s a good idea to save your work regularly. If it does crash, you’ll be able to
pick things up from your last saved version, which will hopefully prevent you
from losing too much work.

Troubleshooting the Raspberry Pi
When Sean first started using his Raspberry Pi, he couldn’t connect to the
Internet in the desktop environment, although it was working fine in the Linux
command line. The problem, it turned out, was an incompatible keyboard.
That’s something he never would normally have suspected from the symptom

378 Raspberry Pi For Dummies

he was seeing. For that reason, we recommend you work your way through
this entire 12-point checklist, whatever the problem is and however unlikely
it might seem that the these steps will fix things. Humor us, and you might be
pleasantly surprised!

These steps are listed in a rough order of priority, with the quickest tests and
simplest solutions first. You can try any of these solutions at any time, but
if you respect this order (more or less), you can minimize any expense and
hassle.

 1. Be patient.

 When your Raspberry Pi is busy, it can appear to be unresponsive, so
you might think it’s crashed. Often, if you wait, it recovers when it fin-
ishes its tasks. If it’s not doing anything you particularly care about, you
can always just restart the machine, but that loses any data in memory
and it’s not a good idea to reset during operations like software installa-
tions (if you can avoid it) because it leaves them half-finished. Note that
the Raspberry Pi has a screensaver built in, so you can recover the Pi
from a blank screen by wiggling the mouse (when in the desktop envi-
ronment) or pressing any key (in the command line). You can use the
Shift key, so that nothing appears on screen.

 2. Restart your Raspberry Pi.

 Very occasionally, the machine has crashed in a way that we haven’t
been able to replicate, so a simple reset can sometimes do the trick. To
reset, remove the power, pause a moment, and then reconnect it.

 3. Check your connections.

 Switch off your Raspberry Pi and make sure that all your cables are
firmly fixed in the right sockets. Chapter 3 is a guide to setting up your
Raspberry Pi, including connecting its peripherals and cables.

 4. Check that your SD card is inserted correctly.

 If your Raspberry Pi’s red PWR light comes on, but the green OK light
does not flicker or light, the Raspberry Pi is having difficulty using the
SD card. In the first instance, check that the SD card is correctly inserted
(see Chapter 3).

 5. Disconnect peripherals.

 Try disconnecting the USB hub, keyboard, and mouse and then restart.
Obviously, this won’t help much if the problem you’re experiencing
requires input devices for you to replicate it, but it can help to identify
any device incompatibilities that might stop the Pi starting up correctly.
If you need to use a keyboard to test whether the problem reoccurs, try
connecting it directly to the Raspberry Pi. You could try disconnecting it
again after you’ve entered the password or started whatever programs
you need to test. If the Pi works fine without anything connected, use a
process of elimination (connecting devices one at a time and restarting)
to identify which one is causing problems.

379 Appendix A: Troubleshooting and Configuring the Raspberry Pi

 6. Try new peripherals.

 If possible, try a new keyboard, mouse, and USB hub, ideally
chosen from the list of devices at http://elinux.org/RPi_
VerifiedPeripherals that are known to work. Many of the problems
people experience are the result of using incompatible devices with
the Raspberry Pi, so replacing the keyboard, mouse, and USB hub can
resolve a wide range of apparently different problems (including the
strange experience Sean had with his Internet connection, mentioned
earlier). The previous step can help you to identify which peripherals
might be causing problems.

 7. Try new cables.

 Especially if you’re having problems with the network connection and
audio or visual output, try using new cables to rule out faulty cables as
the cause of the problem.

 8. Try a new screen.

 If you can’t see anything on the screen, but the Raspberry Pi appears to
be powering up (the red light comes on and the green light flickers), try
connecting to a different monitor or TV. See Chapter 3 for advice on this.

 9. Update your software.

 Assuming your Internet connection is working, you can update the oper-
ating system and other software on your Raspberry Pi (without over-
writing any of your work files) using the Linux command
sudo apt-get update && sudo apt-get upgrade

 10. Try a new SD card image.

 If that fails, try downloading a new SD card image and flashing it to an SD
card (see Chapter 2). The Linux distributions are updated from time to
time, and updates may include corrections for known bugs. The date of
the distribution is usually indicated on the Raspberry Pi website, so you
can tell how new it is.

 Note that if you reuse an SD card, anything that’s already on the card
(including any work you saved there) is wiped. To rule out any faults in
the specific SD card you’re using, use a new SD card. You can find a list
of SD cards at http://elinux.org/RPi_VerifiedPeripherals
that have been reported as compatible with the Raspberry Pi.

 11. Try a new power supply.

 We’ve put this near the end because it’s probably hardest to do, although
dodgy power has been reported to cause a wide range of different prob-
lems. If you have a friend with a Raspberry Pi and hers works fine, try
using her power supply to see whether it fixes the issues you’re seeing

http://elinux.org/RPi_VerifiedPeripherals
http://elinux.org/RPi_VerifiedPeripherals
http://elinux.org/RPi_VerifiedPeripherals

380 Raspberry Pi For Dummies

on yours. Alternatively, you might need to buy a new power supply. See
Chapter 1 for advice on that.

 12. Check online for a solution.

 It’s not possible to cover every eventuality here, so if you’re still experi-
encing difficulties, check the rest of this appendix and then see the trou-
bleshooting guide at http://elinux.org/R-Pi_Troubleshooting,
search the forums at www.raspberrypi.org, or search the web with
Google for a solution. You’re highly likely to find that someone else has
already overcome any difficulties you encounter.

Making More Space on the SD Card
If software fails to install or you can’t save files because your SD card runs
out of space, it’s probably because you’re still using an exact image of the
operating system, and you haven’t expanded the file system to use all the
capacity of your SD card. Chapter 3 shows how you can use the expand_
rootfs option in Raspi-config to make use of all the space on your SD card.

Adjusting the Settings
on Your Raspberry Pi

The settings that your Raspberry Pi uses are stored in files on the SD card,
and many of them are in a file called config.txt that’s in the /boot directory.
You can edit this file directly to change your computer’s settings using a
simple text editor called Nano that is pre-installed on your Raspberry Pi.

 You might not need to adjust the settings manually. Try running the Raspi-
config program, which gives you a simple menu for changing some of the most
frequently used options (see Chapter 3). You can run the program at any time
using the following command in the shell:

sudo raspi-config

 The shell is covered in Chapter 5, but in brief it is the first prompt you see
after logging in to your Raspberry Pi. You can also open it by double-clicking
the LX Terminal icon in the desktop environment (see Chapter 5).

Raspi-config can make changes for you without you having to edit any con-
figuration files, so it’s more convenient than editing config.txt yourself, and
there is less risk of error too. If the option you need isn’t covered in the
Raspi-config menu, you need to edit the configuration file manually.

http://elinux.org/R-Pi_Troubleshooting
http://www.raspberrypi.org

381 Appendix A: Troubleshooting and Configuring the Raspberry Pi

 Before you start tampering with the config.txt file, make sure you’ve backed
up any important data on your Raspberry Pi (see “Mounting External Storage
Devices” in this Appendix). There is a risk that you could, for example, render
the screen display unreadable, which would make it difficult to use the
Raspberry Pi to access your files. In that event, you might be able to edit the
config.txt file back again using another computer. If you delete the config.txt
file on the SD card using another computer and then restart the Raspberry Pi
with that card inserted, the default settings are used. This is a useful recovery
plan if the Raspberry Pi is useable with those defaults.

Using Nano to edit config.txt
To open the config.txt file in the Nano editor, enter the following command in
the shell, all in lowercase:

sudo nano /boot/config.txt

The Nano text editor, with config.txt open, looks like Figure A-1.

Figure A-1:
The Nano
text editor

with the
config.txt
file open.

382 Raspberry Pi For Dummies

Use the cursor keys to move around the document. At the bottom of the
window is a menu explaining Nano’s controls, where the upward arrow repre-
sents the Control key. The shortcuts here are different to what you might be
used to, but the main ones you should know about are

 ✓ Ctrl+W: Search for a word or phrase. This option (short for Where Is?)
enables you to jump straight to the configuration option you want to edit.

 ✓ Ctrl+V: Next page. The config.txt file probably fits in a single screenful,
but if you use Nano to edit other files, this can be useful.

 ✓ Ctrl+Y: Previous page.

 ✓ Ctrl+K: Cut the current row of text.

 ✓ Ctrl+U: Uncut text, which means paste the text you previously cut at the
cursor’s location.

 ✓ Ctrl+G: Get help, which provides more detailed instructions.

 ✓ Ctrl+O: Write out, or save, the current file.

 ✓ Ctrl+X: Exit Nano and return to the shell.

The first thing you’ll notice about config.txt is that the # (hash mark) symbol
is used at the start of each line. This symbol has a special meaning to the
computer, which is “ignore the rest of this line.” You might wonder why
anyone would enter information into a computer that they want it to ignore,
but this concept is often used (not often enough, some would say) to help the
human users of a particular program or file. Any line with a # symbol at the
start of it isn’t actually doing anything at all, but it’s there to guide you as you
edit config.txt. Lines like this are called comments.

The first two lines in config.txt say

uncomment if you get no picture on HDMI for a default
“safe” mode

#hdmi_safe=1

The first line is obviously intended for you to read, but the second line shows
the settings you need to use to turn the HDMI safe mode on. This takes the
form that all settings in config.txt do, namely

setting_name=value

383 Appendix A: Troubleshooting and Configuring the Raspberry Pi

Each setting needs a line of its own. If you wanted to turn the HDMI safe
mode on, you would remove the comment symbol (the hash mark) before the
second line, or “uncomment” that line, so that the first two lines now read

uncomment if you get no picture on HDMI for a default
“safe” mode

hdmi_safe=1

 Don’t remove the # symbol from the line of instructions. That remains a com-
ment that’s only intelligible to human readers. You should only remove the #
symbol from lines you want the computer to do something with.

Just taking out that single hash mark makes all the difference! Save the file
(Ctrl+O) and reboot the computer, and the safe mode is activated. You can
reboot the Raspberry Pi with the following command:

sudo reboot

If you need to disable a setting again, you can just put a # symbol in front of it
again to turn its line into a comment that the computer will ignore.

 You can add your own comments too. It’s a good idea to add a line starting
with a # symbol to remind yourself what you changed and when, in case if you
need to change the settings back later.

Troubleshooting screen display issues
The Raspberry Pi can be used with a wide variety of TVs and monitors, but
that wide compatibility means you might need to tinker with the settings
to get your Pi working with your choice of display. The computer should
automatically adjust its output to the screen in use, but there might be times
when you want to fine-tune its settings, override its defaults, or force your
own preference.

If you’re experiencing difficulties getting a consistent and clear image, try
adjusting one or more of the settings in Table A-1.

 You can change multiple settings at the same time, but each setting must
be on its own line. Most of these settings have text you can edit in config.txt
already, but don’t forget to remove the # symbol.

 We’re assuming here that the screen display is plugged in, switched on, and
tuned in correctly. Before changing configuration settings, it’s always a good
idea to double-check that.

384 Raspberry Pi For Dummies

Table A-1 Troubleshooting Screen Display Issues
Symptom or
Issue

Setting to Change Values to Use

Image spills off
left of screen.

overscan_left The overscan settings are all set using
pixels, the smallest dots the display
recognizes. For example, overscan_
left=50

Image spills off
right of screen.

overscan_right The overscan is set using pixels. For
example, overscan_right=50

Image spills off
top of screen.

overscan_top The overscan is set using pixels. For
example, overscan_top=50

Image spills off
bottom of screen.

overscan_bottom The overscan is set using pixels. For
example, overscan_bottom=50

Image has a
black border
around it.

disable_overscan Use a value of 1 to disable overscan,
like this:
disable_overscan=1

Text or other
content is too
small.

framebuffer_width
framebuffer_height

See “Adjusting the screen display” in
this Appendix.

Text or other
content is too
big.

framebuffer_width
framebuffer_height

See “Adjusting the screen display” in
this Appendix.

Picture fails
when using an
analog TV.

sdtv_mode The composite video output is NTSC
by default, which is used in North
America. You may need to change this
setting for use in other regions. Valid
values are 0 for NTSC, 1 for NTSC-J
for Japan, 2 for PAL (used in the UK
and most of Europe), or 3 for PAL-M
(used in Brazil). For example,
sdtv_mode=2

Picture is
stretched or
squashed on
TV. Aspect ratio
looks wrong.

sdtv_aspect The aspect ratio of the image is the
ratio between the width and height
of the image. There are three valid
values for this setting: 1 (for the aspect
ratio 4:3), 2 (for the aspect ratio 14:9),
and 3 (for the aspect ratio of 16:9).
Example usage:
sdtv_aspect=2

385 Appendix A: Troubleshooting and Configuring the Raspberry Pi

Symptom or
Issue

Setting to Change Values to Use

HDMI screen is
blank.

hdmi_force_
hotplug

If the Raspberry Pi can’t detect a HDMI
monitor, you can force it to output
through the HDMI connector anyway
by setting this value to 1, like this:
hdmi_force_hotplug=1

DVI monitor
image is snowy
or blown out.

hdmi_drive This setting adjusts the voltage output
by the HDMI port. If you’re using a
DVI monitor, try a value of 1. If you’re
using a HDMI monitor, try a value of 2.
Example usage:
hdmi_drive=1

No audio
through com-
puter monitor.

hdmi_drive Use a value of 2 to force HDMI mode
and send the audio down the HDMI
cable, like this:
hdmi_drive=2

Picture blanks,
has interference,
or is missing.

config_hdmi_
boost

Valid values range from 1 to 7 and
define how much power is output
through the HDMI port. Try increasing
this value progressively. The HDMI
safe mode uses a value of 4 for this
setting. Example usage:
config_hdmi_boost=4

Any problems
using HDMI
monitor

hdmi_safe If you experience any problems using
an HDMI monitor, try using the safe
mode. This sets hdmi_force_hotplug
to 1 to force output on the HDMI port,
sets config_hdmi_boost to 4 to boost
the power, disables overscan, and
sets the additional hdmi_mode and
hdmi_group settings to a generally
safe combination. Those settings are
used to override the HDMI screen
resolution. For more details on those
settings, see http://elinux.
org/RPi_config.txt. To use
the HDMI safe mode, use hdmi_safe=1

http://elinux.org/RPi_config.txt
http://elinux.org/RPi_config.txt

386 Raspberry Pi For Dummies

Adjusting the screen display
You can adjust the width and height of the screen display, measured in
pixels. When the width and height values are smaller, the onscreen content
appears bigger. The screen display is adjusted using the settings frame
buffer_width and framebuffer_height. To change the screen display
size to 1024×768, for example, use

framebuffer_width=1024
framebuffer_height=768

 There is a comment for these settings in the config.txt file, so you can edit the
lines that are already there. As well as changing the values to your chosen
width and height, don’t forget to remove the # symbol at the start of both
lines to activate these settings.

Exploring more advanced settings
There are many more settings you can control on the Raspberry Pi through
the config.txt file but we don’t have space to document them all here. You
can find a more detailed list at http://elinux.org/RPi_config.txt.

Mounting External Storage Devices
When you plug in an external storage device such as a USB key or flash drive,
the desktop environment recognizes it automatically and opens it in the File
Manager for you. Not so when using the shell. You need to mount the device
yourself, which means you need to connect the device to a folder in the
directory tree where you want to browse its contents.

 If your only goal is to back up your data to an external storage device, it’s
probably easier to use the File Manager in the desktop environment (see
Chapter 4).

To use external storage in the shell, we first need to create a directory that
will be the mount point for the USB key, which means when we look in that
directory, we are actually looking at the contents of the external storage
device. You can reuse this directory, but the first time you mount a device,
you need to create the directory. You can create this directory anywhere
(including inside your home directory), but it’s conventional to mount tem-
porary devices in the /mnt directory:

sudo mkdir /mnt/usbdrive

http://elinux.org/RPi_config.txt

387 Appendix A: Troubleshooting and Configuring the Raspberry Pi

Next, we need to investigate the device we’re connecting. To do that, connect
your storage device and then enter this command:

sudo fdisk -l

The last character of this command is a letter l (lowercase L), and not a
number 1. The output looks like this:

Disk /dev/mmcblk0: 4025 MB, 4025483264 bytes
4 heads, 16 sectors/track, 122848 cylinders, total 7862272 sectors
Units = sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk identifier: 0x000714e9

 Device Boot Start End Blocks Id System
/dev/mmcblk0p1 8192 122879 57344 c W95 FAT32 (LBA)
/dev/mmcblk0p2 122880 7862271 3869696 83 Linux

Disk /dev/sda: 16.0 GB, 16037969920 bytes
32 heads, 63 sectors/track, 15537 cylinders, total 31324160 sectors
Units = sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk identifier: 0x1707001e

 Device Boot Start End Blocks Id System
/dev/sda1 * 63 31322591 15661264+ c W95 FAT32 (LBA)

This lists the different storage devices that are connected to the Pi. In the
preceding example, you can see the first disk (Disk /dev/mmcblk0) is 4025
MB, which is a 4GB SD card, and the second one (Disk /dev/sda) is 16GB,
which is a USB key we’ve connected. The important information we need
from this is the device name and the partition number, which is shown at the
bottom of the output and is sda1.

To mount the drive for the user pi (uid=pi) and the group pi (gid=pi), we
then use

sudo mount -o uid=pi,gid=pi /dev/sda1 /mnt/usbdrive

To view the contents of the USB key, you can then use

ls /mnt/usbdrive

To back up your home directory to the USB key, use

cp –R ~/* /mnt/usbdrive

388 Raspberry Pi For Dummies

Fixing Software Installation Issues
The apt package manager should enable you to cleanly install and remove
software. If software isn’t working, try removing it and then reinstalling it as
described in Chapter 5.

Packages often require other packages (called dependencies) to work. The
package manager looks after these dependencies for you, but in the event
they get broken, you can fix dependencies using

sudo apt-get -f install

Troubleshooting Your Network
Connection

In the desktop environment (see Chapter 4), you can easily test whether your
network is working by using the web browser. In the Linux shell, you can test
whether it’s working with the ping command:

ping –c 5 www.google.com

This makes five attempts to connect with Google and reports on its success.
You should see that five packets were transmitted and five were received if
the network is working perfectly. If this fails, try substituting another web-
site address to rule out the possibility that the problem is on Google’s end.
Firewalls can sometimes interfere with the ping command, but this is rare. If
the command works, it’s a guarantee that the Pi is connected to the Internet.

You can query the network devices on your Raspberry Pi using

ifconfig

This shows you the information for eth0 (your Ethernet connection on a
Model B), and the local loopback, which is how the Raspberry Pi refers to
itself, and which you can safely ignore. If there is an inet addr entry for
eth0, it means your Raspberry Pi has connected to the router and been
assigned an IP address successfully.

The Ethernet connection should be automatically activated, but in the event
it isn’t, you can manually activate it like this:

sudo ifup eth0

389 Appendix A: Troubleshooting and Configuring the Raspberry Pi

You can deactivate the Ethernet connection using

sudo ifdown eth0

Your Raspberry Pi should automatically connect to home routers using
Dynamic Host Configuration Protocol (DHCP), but these tips can help you to
identify where the problem lies if you experience difficulties.

 If you experience network problems, try a new cable to rule out problems with
the physical connection, and make sure your power supply is strong enough
for the Raspberry Pi (see Chapter 1).

390 Raspberry Pi For Dummies

Appendix B

The GPIO on the Raspberry Pi

T
able B-1 is a handy reference to the GPIO. For a detailed explanation
of what this means and for more information on how you can use the

GPIO to connect your Raspberry Pi to your own electronics projects, refer to
Chapters 14 to 17.

Table B-1 A Reference Guide to the GPIO
GPIO Use Description

0 Gen/Cam Revision 1 P1–03
Revision 2 I2C on camera S5

1 Gen/Cam Revision 1 P1–05
Revision 2 I2C on camera S5

2 Cam/Gen Revision 1 I2C on camera S5
Revision 2 P1-03

3 Cam/Gen Revision 1 I2C on camera S5
Revision 2 P1-05

4 General P1-07

5 Cam Camera clock pin 12 on S5

6 System LAN RUN— the reset on the LAN chip

7 General P1-26

8 General P1–24

9 General P1–21

10 General P1–19

11 General P1–23

12 No Not tracked out

13 No Not tracked out

14 General P1–08. Used for TXD0 data out during boot up
(continued)

392 Raspberry Pi For Dummies

Table B-1 (continued)
GPIO Use Description

15 General P1–10. Used for RXD0 data in during boot up

16 System Status LED red (OK LED on Revision 1, ACT on Revision 2

17 General P1–11

18 General P1–12

19 No Not tracked out

20 No Not tracked out

21 Cam/Gen Revision 1 P1–13
Revision 2 camera GPIO–Pin 11 on S5

22 General P1–15

23 General P1–16

24 General P1–18

25 General P1–22

26 No Not tracked out

27 Cam/Gen Revision 1 camera GPIO–Pin 11 on S5
Revision 2 P1–13

28 Sys/Gen Revision 1–Config resistors
Revision 2 P6 general purpose

29 Sys/Gen Revision 1–Config resistors
Revision 2 P6 general purpose

30 Sys/Gen Revision 1–Config resistors
Revision 2 P6 general purpose

31 Sys/Gen Revision 1–Config resistors
Revision 2 P6 general purpose

32–39 No Not tracked out

40 System Right audio to jack socket

41–44 No Not tracked out

45 System Left audio to jack socket

46 System Input from HDMI connector

47–53 System Control lines for the SD card

Index
• Symbols •
+ (addition operator in Python), 215
= (addition shorthand), 219
' (apostrophe), 89, 225
* (asterisk), 89, 91
{} (curly braces/brackets), 147, 151, 232
{} (curved braces), 89
/ (division operator in Python), 215
// (division operator in Python discarding

decimal portion), 215
$ (in login prompt), 72
= (equal sign), 139, 230
\n (escape code) (Python), 220
(hash mark), 216, 255, 382
% (modulo operator in Python), 215
* (multiplication operator in Python), 215
! = operator (not equal to) (Python), 230
<> (pointed brackets/pointy angle

brackets), 134, 147
? (question mark), 89, 91
" (quotation marks/quote marks), 88–89,

225, 252
/ (slash), 80, 89, 115, 137, 225
[] (square brackets), 89, 91, 102, 243, 246
- (subtraction operator in Python), 215
- = (subtraction shorthand), 218
~ (tilde), 72, 74, 78–79
* (wildcard), 92
? (wildcard), 92
[.] (wildcard), 92
[^,,,] (wildcard), 92
[0-9] (wildcard), 92
[a-z] (wildcard), 92

• A •
-a option (Is command), 82
abort strips (Blastoff), 298, 309, 311
absolute paths, 78–80
accessories, 18
Acorn Computers, 21

adapters, 33
Add Tab (shortcut), 54
add-on boards, 278–280
add-ons, 164
Agius, Francis (creator), 372
Akerman, Dave (Raspberry Pi owner), 9
aliases, 102, 104–105
alt (alternative text) tag, 140
alternating current (AC), 264, 274, 286
alternative input configuration modes, 347
alternative text (alt) tag, 140
Amazon, 131
amplifier, 340
amps, 262
analog, compared to digital, 338–341
analog channel, reading, 348
Analog setting, 168
analog-to-digital converter, 340
anchor tags, 141
animation, 12, 167, 183, 249
anode, 264, 314
append () (Python), 237
Applications folder, 53
apropos command, 103
apt (package manager), 96
apt cache, 97
arcade games. See PiBuster (game);

Scratch (programming language)
Arch Linux (operating system), 372
Arch Linux ARM (distribution), 21
Archimedes home computer, 21
Arduino (controller), 278
arguments, 80–81, 228, 233
ARM CPU, 12
arrow keys, 197–198, 361
Atkin, Phil (music aficionado), 372
attributes, 139
Audacity (application), 311
audio, connecting, 35–36
audio cable/socket, 18, 35
audio drivers, bug in, 159
audio jacks, 16
audio output, 168

394 Raspberry Pi For Dummies

audiobook player project, 371–372
automation, home (project), 376
.avt files, 166

• B •
baby monitor project, 374
Back button (Raspbmc), 162
backgrounds, 191
Backgrounds tab (Scratch), 191
backing up, 381, 386
balance variable (Python), 218
ball, in game map (Pygame), 250, 254–257
ball grid array (BGA) package, 270
ballx variable (Pygame), 250, 256–257
ballxdir variable (Pygame),

250, 255–257
bally variable (Pygame), 250, 256
ballydir variable (Pygame), 250, 256
bank balance (Python), 218
base (transistor terminal), 327
base current, 327
Bash (Bourne Again Shell), 71
bat, in game map (Pygame), 248, 253
battery, 265–267, 269
batx variable (Pygame), 248, 254
BATY constant (Pygame), 248
BC237BG (transistor for Copycat), 331
BCM2835 system, 270
Beech, Paul (designer), 17
Beneath a Steel Sky (game), 367–368
bin (binaries) directory, 76
binaries, 76
binary number, 340
bird feeder webcam project, 372
bitmap image format, 167
BitTorrent file, 22
Biz (robotics fan), 41–42
black color number (CSS), 148
blank () function (Pygame), 249
blank lines, use of, 138, 222
Blastoff (game)

creating, 298–311
customizing, 311
finishing with stickers, 307
getting at GPIO pins, 283–286
getting started, 281–283

logic, 310
making ball traps, 300–302
making box, 298–300
parts needed for, 282–283
sounds, 310–311
testing hardware, 306–307
wiring of ball traps, 304–305
wiring up, 301–302

blits, 251
blocks

in Scratch, 175
screw terminal blocks, 344–345

Blocks Palette (Scratch), 175–176, 180, 182,
185–187, 203

blogs, 372–375
blue color number (CSS), 148
Bluefish (HTML editor), 158
Blythe, Jeremy (creator), 374
board revisions, 270, 283–285
boards, add-on, 278–280, 342
boat, talking (project), 375
body (in HTML code), 136
<body> tag, 136–138, 156
bookmarks, 53–54, 62–63
boot (start up), 38
boot directory, 76
boot_behaviour option

(Raspi-config), 40
border-color property (CSS), 151
borders, adding (web pages), 151–152
border-style property (CSS), 151
border-width property (CSS), 151
boxcolor variable (Pygame), 247

 tag, 144
breadboard, 319
breakers, 264
breakout board

defined, 286
making, 286–297
parts for Blastoff game, 282

breakout connector, 323
brickcount variable (Pygame), 248, 252
bricks, drawing in Pygame, 247
Brightness effect (Scratch), 183
Broadcast block (Scratch), 199
Broadcom BCM2835 chip, 12
Broken (add-ons), 165

395395 Index

browser window, resizing, 136
browsers, as forgiving, 137
budgets, 113–116
bugs

in audio driver, 159
fixing in Scratch, 205–206

BusBoard, 319
bus.write_byte instruction (Raspberry

Ripple), 350
bytes, 342, 347

• C •
cables

audio, 18
for breakout board, 287, 289
Ethernet, 18, 36
HDMI, 18, 33–34, 168
hippie, 286
multicolored, 286
RCA, 15, 18, 34
ribbon, 285–291, 304, 306

cache, updating, 96–97
cal command, 88
calling it, 238
Cambridge University, 10
candelas, 316
Canvas (Scratch), 192
capitalization, 27, 73, 213, 244
<caption> tag, 144
cars, remote-controlled (project), 374–375
Cascading Style Sheets (CSS). See CSS
cases, for Raspberry Pi, 11, 17, 41–42
cathode, 264, 314
CBS News, 164
cd command, 73–75, 80, 84
cd ~ command, 78, 80
cd / command, 78
cd ~ Desktop command, 78
cd /home/pi command, 78
cd /home/pi/Desktop command, 78
cells, 113–114
Change Color Effect by 25 block

(Scratch), 183
Change Size by 10 block (Scratch), 184
Change X by 10 (Scratch), 179
Change Y by 10 (Scratch), 180

change_locale option (Raspi-config), 39
change_pass option (Raspi-config), 39
change_timezone option

(Raspi-config), 39
changeover switch, 265
character set, 137
chargers, 16–17
Chatbot (program), creating, 223–240
cheat mode (Pygame), 255
checkContacts () function

(Blastoff), 310
chgrp command, 85
chips

BCM2835 system, 270, 272
converter chips, 341–342
PCF8591P chip (Raspberry Ripple), 343

chmod command, 85
chock block, 286
Choose New Sprite from File button

(Scratch), 191
chown command, 85
Chromium (web browser), 363–364
circle command (Pygame), 244
circle value (CSS), 150
circuits

calculating circuit values, 268
common point (reference), 271
communicating a circuit to others,

267–268
defined, 262
digital-to-analog (D/A) converter, 338
high-impedance, 274
illustration of, 264, 266, 267
low-impedance, 274
resolution of, 338
symbols, use of, 267
testing with simulators, 269–270
values, calculating, 268

Clear button (Scratch), 194
clear command, 82
Clear Graphic Effects block (Scratch), 183
clearbat () function (Pygame), 249, 254
Clemens, Michael (creator), 371–372
clock (Pygame), 252
clock line, 342
clock signal, 341
clone source, 127

396 Raspberry Pi For Dummies

Clone tool (GIMP), 127
closed switch, 266
closing tags, 134
code, defined, 131
code examples used in Raspberry Pi For

Dummies, downloading, 132
code listings

analog input A0 reading, 349
Blastoff, 307–309
Copycat, 323–325
Copycat hardware test program,

322–323
D/A output ramp, 351
LED curve tracer, 352
monitoring GPIO pins as inputs,

294–295
code snippet, your first, 134–136
collector (transistor terminal), 327–328
collision detection, 201
colon, 147
color constants, 244
Color effect (Scratch), 183
color numbers (CSS), 147–148
Color Palette (Scratch), 192
color-coding, in IDLE, 225
colors

adding to website, 147–149
adjusting in photos, 127
in Pygame, 243

command line prompt, 41, 45, 69, 72–75,
78–79

commands
cancelling, 86
creating your own, 104–105
learning more about, 102
limits of, 216
speeding up entering, 86–87

comments, 382
common point (reference), 271
comparator, 340
compatible devices, 18
components

cost of, 284
determining how to treat, 269

composite video, 34

computer languages, 131–132. See also
HTML (HyperText Markup Language)

conditional statement, 197, 237
config.txt file, 381–382, 386
configure_keyboard option

(Raspi-config), 39
configuring, 377
connection blocks, 286, 289
constants, 244
contact bounce, 309
Control blocks (Scratch), 195
Control button (Scratch), 187
conventional current, 264
converter chips, 341–342
Copycat (game)

BC237BG transistor, 331
code, 323–325
creating, 318–326
customizing, 326–327
final game, 335
hardware test program, 322–323
making a better game, 327–331
physical layout, 320–321
preparing to build, 315–316
putting it all together, 332–335
sounds, 325–326
switch module/boards, 330–332, 334–335

cost, of Raspberry Pi, 11
costumes (Scratch), 181–182, 194
Costumes tab (Scratch), 181, 194, 195
cp command, 94
CPU (central processing unit), 12, 39
CPU Usage Monitor, 50
CSS (Cascading Style Sheets)

applying styles, 152–155
creating enhancements, 158
described, 133
using to change page’s appearance,

145–152
current (electrical), 262, 272
current sinking (wiring), 273
current sourcing (wiring), 273
curve tracer, 351–354
Customise Look and Feel (dialog box),

67–68
customizing, shell, Linux, 104

397397 Index

• D •
D1 (diode), 344
The Daily Brick, 42
data sheet (for component), 269
data structure, dictionary, 231–233
date command, 88
Debian (distribution), 20, 47
Debian Reference (icon), 47
debounce delay, 326
decimal value (CSS), 150
Dedent Region option (Python), 229
def statement (Python), 233
default username, 74
Delete (Image Viewer button), 65
dependencies, 97, 388
deprecated, 144
desktop, customizing, 67–69
Desktop directory, 78
desktop environment, 45–46, 169
Desktop folder, 53
desktops, multiple, 48–49
dev directory, 76
devices, compatible/incompatible, 18
DHCP (Dynamic Host Configuration

Protocol), 36, 389
dictionaries, 231
dictionary look-up function, 235–237
dictionarycheck () function (Python),

234–235, 238
digital, compared to analog, 338–341
digital outputs, 338
digital-to-analog (D/A) converter, 338
Dillo (web browser), 59, 133
diode, 314, 344, 345
direct current (DC), 264, 274
direct download, 22
directional movement blocks

(Scratch), 177
directories, 72–73, 89, 93. See also specific

directories
directory tree, 75–77
disc value (CSS), 150
displaying end game messages

(Pygame), 251

distributions (distros), 20–23
<div> tag, 154, 156, 158
Do Not Connect pins, 284
<!DOCTYPE html> tag, 137, 138
documentation

GIMP, 129
Linux commands, 102–103
Pygame, 257
RISC OS, 21
what’s installed on Raspberry Pi, 100

The Document Foundation, 109
dohSound sound (Copycat), 325
domain name, 157
double look-up, 326
double-throw switch, 264–265
downloading

code examples used in Raspberry Pi For
Dummies, 132

direct download, 22
distributions (distros), 21–22
images as slow in, 140

drawball () function (Pygame), 250
drawbat () function (Pygame), 249
drawbrick () function (Pygame), 247
drawing

bricks (Pygame), 247
LibreOffice Draw, 118–120
Pygame, 244–245
Scratch, 193–194
Tux Paint program, 366–367

drive impedance, 318
Duck Duck Go (search engine), 61
DVI, 14, 16, 18, 33, 34
Dynamic Host Configuration Protocol

(DHCP), 36, 389

• E •
eachword variable (Python), 236–237
earphones, 35
Easel icon (Scratch), 208
eBay, 14, 17, 317
echo command, 87
effect list (Blastoff), 309
electricity, understanding nature of,

262–270

398 Raspberry Pi For Dummies

electronic components, cost of, 284
Element 14, 14, 15
Ellipse tool (Scratch), 193
else command (Python), 237, 238
 tag, 144
e-mail program, 365–366
embedded system, 270
emitter follower, 352
emphasis tag, 144
empty message (" "), 237
Enabled (add-ons), 165
end game messages, 251
endgame () function (Pygame), 251
end-user applications, 98
environmental regulations, 276
equivalent circuit, 268
Eraser tool (Scratch), 193
escape code, 220, 222
etc directory, 76
eth0, 388
Ethernet, 11, 18, 36, 388–389
events, defined, 254
Evolution (e-mail program), 365–366
execute permission (x), 84
Exit Image Viewer (Image Viewer

button), 66
expand_rootfs option (Raspi-config), 38
expansion boards, 278, 280
experimental supercomputer, 9–10
export PDF, 113
external hard drive, 16
Eyedropper tool (Scratch), 194
EyesPi, 9

• F •
// (floor division) operator (Python), 214
-F option (Is command), 82
Facebook, 131
fail variable (Copycat), 327
False value (Pygame), 252
Farnell (distributor), 317
Fasthosts, 157
feedback, from Scratch fans, 208
female-to-female sort, 285
female-to-male wire, 285
FFmpeg (package), 372
file command, 73–75, 77, 79
file formats, 111

File Manager, 48, 51–59, 69, 85, 386
File Properties window, 85
file types, 73–74
files/folders. See also directories; specific

folders
changing display of, 57
copying and moving, 55
copying and renaming, 94–96
corruption of, 76
creating, 56
deleting, 90–91
directories, 84
images folder, 133, 140
index.html, 134
listing, 72–73
naming, 88–89
opening as root or in the terminal, 58
overwriting, 87
reading of with less command, 85–86
regular, 84
selecting multiple, 55–56, 91–93
use of in LXDE, 52–53
using redirection to create, 87–88
website folder, 133

FileZilla, 157–158
Fill tool (Scratch), 193
firing mechanism (Scratch), 198
Fisheye effect (Scratch), 183
FishPi project, 9
Fit Image to Window (Image Viewer), 64
flags, 206
Flash, 59
flash, 23
flash drives, 16, 51
Flickr, 164
Flip Horizontally (Image Viewer button), 65
Flip Vertically (Image Viewer button), 65
float property (CSS), 153
floating inputs, 283
floating pins, 296–297
flowcharts, 118
flux, 276–277
FocusWriter (application), 362–363
Folder History (shortcut), 54
font-family property (CSS), 149
fonts, 112, 149
font-size property (CSS), 149
font-style property (CSS), 149
font-weight property (CSS), 149

399399 Index

Fontwork Gallery, 120
for loops, 221–222, 229, 236, 254, 351
for statement (Python), 237
Forever Control block (Scratch), 196–197
<form> tag, 144
Format menu (Writer), 113
formatting

headings, 151
in HTML, 138–144
lists, 142

formatting tags, 144
formulae, 110, 113, 115
Four in a Row (game), 47
FPS constant (Pygame), 252
fractals, 364
Fraqtive (program), 364
The Free Dictionary, 61
free software, 20
FT232RL chip, 373
Full Screen (Image Viewer button), 64
fume extractor, 277
functions

Copycat, 326
creating dictionary look-up function,

235–237
creating your own in Python, 233–235
defined, 219, 233
as fundamental buildings blocks, 235
at the start of your program, 247

• G •
-G option, 101
game map, creating, 244
gameover () function (Pygame), 251, 256
games

adapting in Pygame, 257–258
adapting speed of, 208
Beneath a Steel Sky, 367–368
Blastoff. See Blastoff (game)
checking for win in Pygame, 252
collision detection as staple of, 201
Copycat. See Copycat (game)
creating in Scratch compared to

Python, 174
displaying end game messages

(Pygame), 251
making main game loop (Pygame),

253–254

Pi Store, 47
PiBuster. See PiBuster (game)
playing your game, 208
Raspberry Pi as tool for playing, 12
setting up game window (Pygame), 243
sprites as characters in, 181
XInvaders 3D, 364

gameSurface surface object, 243–244
gamewon () function (Pygame), 251
GarageBand (application), 311
General Purpose Input/Output (GPIO).

See GPIO
Gert board, 278–279
Get Surprise Sprite (Scratch), 192
getPress function (Copycat), 326
getSeq function (Copycat), 325, 326
getting started

Blastoff, 281–283
cost of, with Raspberry Pi, 18

Ghost effect (Scratch), 183
.gif format, 128, 191
GIMP (GNU Image Manipulation Program)

adjusting colors on photos, 127
converting images between different

formats, 128
cropping photos, 125–126
documentation, 129
fixing imperfections on photos, 127–128
installing and starting, 122
resizing photos, 124–125
rotating and flipping photos, 126
understanding screen layout, 122–124

Glide 1 secs to x:0 y:0 (Scratch), 179
Glide block (Scratch), 199
GND (ground connection), 284
GNU Image Manipulation Program (GIMP).

See GIMP
GNU Project, 20
GNU/Linux (Linux), 19–20
Go Back 1 Layers block (Scratch), 184
Go Daddy, 157
go sound (Copycat), 325
Go to (Scratch), 179
Go to Front block (Scratch), 184
Go to Original Size (Image Viewer

button), 64
Go to x:0 y:0 (Scratch), 179
Google, 12, 61, 131
Google Chrome (web browser), 363

400 Raspberry Pi For Dummies

GPIO (General Purpose Input/Output)
connections, 283
getting familiar with, 270
as output, 271
pins, 14 and 15, 283
pins, access to in case, 17
pins, as outputs, 313–315
pins, controlling of in breakout board, 294
pins, described, 270
pins, floating, 296–297
port, 13
port monitor program, 332
putting output pin to practical use,

272–273
reference guide to, 391–392
signals, 270
using as inputs, 274–275

GPIOinput (pin), 296
GPIOmon.py (program), 297, 309, 332
GPU (graphics processing unit), 12, 39
graphic effects, in Scratch, 183
graphics capabilities, of Raspberry Pi, 13
Green, Peter (developer), 20
green color number (CSS), 148
green flag button (Scratch), 195, 199, 207
Green Flag Control block (Scratch), 201
grid coordinates (Scratch), 178–179
Grisbi (application), 367
group owners permissions, 83–84
groups command, 100

• H •
--help request, 103
-h option (Is command), 82
<h1>… <h6> tag, 134–135
H.264 video format, 166–167
hard disk, 15
HD (high definition), 160, 166
HD 1080p video, 160
HDMI (high definition multimedia

interface), 14, 16, 33
HDMI adapter, 18
HDMI cable, 18, 33–34, 168
HDMI CEC (Consumer Electronics Council)

standard, 168
HDMI connector, 33
HDMI socket, 34

<head> tag, 136, 137, 145
header tag, 136–137
heading tag, 134, 139
headings, formatting, 151
headless Raspberry Pi, 374
headline (in HTML code), 134
headphones, 16, 36
height tag, 140
help command, 102
hexadecimal number system, 148
Hide (Scratch), 184
hide block (Scratch), 184
high and low logic level, 272
high definition (HD), 160, 166
high definition multimedia interface

(HDMI). See HDMI
high-impedance circuits, 274
highlightcolor variable (Pygame), 247
hippie cable, 286
history (of web pages), 60–61
home (parent directory), 74–75
Home (shortcut), 55
home automation project, 376
Home button (Raspbmc), 162
home directory, 72, 74–76, 78–80, 89, 94–95,

100–101
home page, 134
Home screen (Raspbmc), 161–162
home_lights program code, 376
homework, Raspberry Pi as perfect tool

for, 12
horizontal rule tag, 144
hosted, 132
hosting services, 157
hot melt glue, 304, 334
hot wire cutter, 334
<hr> tag, 144
<html>, 137
HTML (HyperText Markup Language)

formatting, 138–144
structuring document in, 136–138
as tool for writing code, 131–133
validating, 145
View Source, 136

HTML editor, 158
<html lang=”en”> tag, 137
HTML5, 132

401401 Index

• I •
I (current measured in amps), 263
-i option (interactive), 90–91, 94, 95
I2C driver, 346–347
I2C protocol, 337, 341
icons

on desktop, 46
in LibreOffice Writer, 112
used in book, 5

ICs (integrated circuits), 283, 341
IDC (insulation displacement connection/

connector), 285–286, 288
IDE (integrated development

environment), 212
IDLE, 47, 212, 225, 229
IDLE 3, 47, 212
If block (Scratch), 197, 199, 205, 206–207
if command (Python), 237, 238
if statement, 310
illustrations, 118
image files, sizes of, 140
Image Viewer, 64–66
Image Writer, 23
images/photos

adding to web page, 139–141
adjusting colors, 127
converting between different formats, 128
cropping, 125–126
editing, 124
fixing imperfections, 127–128
permissions to use, 140
resizing, 124–125
rotating and flipping, 126
as slow in downloading, 140
using Image Viewer, 64
viewing, 167

 tag, 140, 154
impedance, 274, 318
import, 191
in parallel (wiring), 302
incandescent bulb, compared to LED, 314
incompatible devices, 18
Indent Region option (Python), 229
indentations (Python), 221–222, 229
index numbers, 231
Industrial Light & Magic, 12
info option (Raspi-config), 38

info page, 103–104
infrared remote, 168
initialize, 243
input channel, 348
input command (Python), 231
input () function (Python), 219, 228
input monitoring programs, 306
<input> tag, 144
input/output pins, 271
inputs

monitoring the GPIO pins as, 294–295
using GPIOs as, 274–275

Insert menu (Writer), 112
Installed (add-ons), 165
installing

Beneath a Steel Sky, 368
Chromium, 363
drivers on Raspberry Ripple, 346–347
Evolution, 366
FocusWriter, 363
Fraqtive, 365
GIMP (GNU Image Manipulation

Program), 122
Grisbi, 367
LibreOffice, 110
LXMusic, 369
Pygame, 242
software, 96–100
XInvaders 3D, 364

insulation displacement connection/
connector (IDC), 285–286, 288

insulation displacement ribbon cable, 287
insulators, 262
integers, 214
integrated circuits (ICs), 283, 341
integrated development environment

(IDE), 212
interface boards, 278–279
interference (electrical), 274
Inter-Integrated Circuit communication (IIC

or I2C), 341
Internet radio stations, 164
invitations, 118–120
iOS, 19
iPad, 284
issue 2 boards, 270
iTunes, 166

402 Raspberry Pi For Dummies

• J •
Jackson, Michael, 187
JavaScript, 59, 133, 158
jokers in Linux community, 94
.jpg/JPEG format, 128, 167, 191
Jukebox (application), 374
jukebox project, 373–374
jumper wires, 285

• K •
kernel, 20, 76–77, 366
Key Space Pressed? block (Scratch), 198
keyboard remote, 168
keyboards, 15, 18, 35, 67
keys, 231–233
Kill command, 50

• L •
-l option (Is command), 82
<label> tag, 144
labels, for breakout board, 292
LDRs (light-dependent resistors), 356–357
lead-free solders, 276
Leafpad (text editor), 66–67, 134
leapsize variable, 204, 208
LEDs (light-emitting diodes). See light-

emitting diodes
leds list (Copycat), 326
LEDtrace2 (program), 353
LEDtrace4 (program), 353
Legos (for case), 41–42
len () function (Python), 228
less command, 85–86
less / var/log/messages command, 77
lib directory, 76
Library mode (View Options Raspbmc), 166
LibreOffice programs, 109–118
license () command, 212
licenses (for video formats), 167
Lifelong Kindergarten Group, 179
light-dependent resistors (LDRs), 356–357
light-emitting diodes (LEDs)

choosing for Copycat, 316–318
compared to other light sources, 314
described, 313–316

in physical layout of switch module, 331
results of plotting curves of two and a

pot, 354
in schematic for Copycat, 319
in schematic of deluxe Copycat, 330
in schematic of transistor driving, 328–329
telling colors of, 322
test circuit (Raspberry Ripple), 350
on track side of board, 333
wiring up, 272–274, 353

Light_Play.py (program), 357
Lightweight X11 Desktop Environment

(LXDE), 45–46, 48, 51, 56, 69
limitations, of Raspberry Pi, 13
Line tool (Scratch), 193
links, 132
Linux

as case-sensitive, 73
flashing an SD card, 27–29
free software, 12
introduction to, 19–20
Raspbmc, 160
as unforgiving, 87, 90

Linux Foundation, 20
listing

files and directories, 72–73
more advanced options, 80–82
slowing down of, 85–86

lists
compared to tuples, 243
creating in Python, 236
formatting, 142
introducing in Python, 224–227
to store a map in Pygame, 245–246
using to make random chat program in

Python, 227–229
LM335 temperature sensor, 357
local variable, 234
locals (module) (Pygame), 242
logging in, 41
logging out, 69
logic levels, 272
London Zoo, 9
long listing format, 83
Looks blocks (Scratch), 183
Looks button (Scratch), 182
loops. See also for loops; while loops

creating main conversation loop, 237–238
defined, 196, 216

403403 Index

main game loop in Pygame, 253–254
nesting, 230, 248
use of to repeat in Python, 221–222
using to force player’s reply, 230–231

lost+found directory, 76
lower () method (Python), 236
lower-alpha value (CSS), 150
lowercase, 27, 88, 138, 213
lower-roman value (CSS), 150
low-impedance circuits, 274
ls command, 75, 82–83, 85
LXDE (Lightweight X11 Desktop

Environment), 45–46, 48, 51, 56, 69
LXDE graphical desktop software, 20
LXMusic (music player), 368–369
LXTerminal (icon), 47, 69

• M •
-m option (Is command), 82, 101
mA (milliamps), 268, 272
Mac

flashing an SD card, 24–27
GarageBand, 311
GIMP, 122
Zip files, 22

Mac OS, 12, 19–20, 45, 160
made variable (Blastoff), 310
main loop (Pygame), 253–254
Make a Variable button (Scratch), 203
man page, 103
Mandlebrot set, 364–365
manual (man page), program, 103
margin spacing type (CSS), 152
marking up/markup, 134
mathematical operators (Python), 214–215
maxFails variable (Copycat), 325
Maximize button, 49
maxLength variable (Copycat), 325
mechanical joint, making of, 277
media, adding, 163–165
media center, 160, 168
media directory, 76
media players, 167–169
media server, 164
memory, 11, 13
memory sticks, 16

memory_split option (Raspi-config),
39–40

menu bar
File Manager, 54, 56
Raspbmc, 161

<meta charset+”utf-8” /> tag, 137
Micro USB connector, 16
Micro USB power socket, 37
microcandela, 316
Microsoft Excel, 113
Microsoft Office, 109, 111, 116
Microsoft PowerPoint, 116
Microsoft Windows, 19
Microsoft Word, 111
Midori web browser, 20, 47–48, 59–61, 133,

143, 363
millecandela, 316
milliamps (mA), 268, 272
Minimize button, 49
mirror, 22
MIT Media Lab, 179
mkdir command, 89
.m4v files, 166
mnt directory, 76
Model A, 11, 36
Model B, 11, 36, 121
modules (Python), 228
monitors, 14, 16, 33
monospace font, 149
moonwalk, 187
Mosaic effect (Scratch), 183
Motion (application), 374
motion (package), 372
Motion blocks (Scratch), 175–180
motion detector, 376
mouse/mice, 15, 18, 35, 67
Move 10 Steps (Scratch), 177
MP3 format, 185, 311
mp4 files, 166
MPEG2 format videos, 167
MPlayer (movie player application), 374
multicolored cable, 286
Multicore solder, 277
multimeter, 293
multiple desktops, 48–49
multiplexing, 315
multiplication tables, generating, 215–216

404 Raspberry Pi For Dummies

music
adding, 185–186
playing, 12, 165–166, 169

Music (Raspbmc option), 161, 164–165
music add-ons, 164
music library, 166
music player, 368–369
musical instruments, 185

• N •
N type silicon, 331
nano ~/.bashrcNano (text editor), 105
Nano text editor, 381–383
nav class name, 155
navigation bar (navbar), 143, 155–156
Nazarko, Sam (creator), 160
negative (electrical flow), 264
nesting, 230, 245–246, 248
Netsurf (web browser), 59
network connection, troubleshooting, 388
New Playlist, 166
Newark (distributor), 317
Next (Image Viewer button), 64
Next Costume (Scratch), 182
Next Folder (shortcut), 54
nextCount variable (Blastoff), 309–310
n\n (escape code) (Python), 222
nonlinear device, 269, 314
normal file format, 111
NPN transistor, 331
number variable (Copycat), 326
Nut Pi (SD card), 21

• O •
-1 option (Is command), 82
ODF format, 111
.ogg sound format, 309–311
ohms, 262, 269
Ohm’s law, 262–263, 274, 314, 317–318, 328
 tag, 143, 150
oldballx variable (Pygame), 254
oldbally variable (Pygame), 254
oldbat variable (Pygame), 254
1 and 1, 157
one-button audiobook player project,

371–372

1K resistor, 357
on/off signals/switches, 37, 338
Open File (Image Viewer button), 65
open source, 12
Open With option, 53
Open2300 (package), 373
Openbox Configuration Manager, 67
opening tags, 134
OpenOffice, 109
operating systems, 18, 21. See also iOS;

Mac OS
Operator blocks (Scratch), 198, 205
operators, 214–215
opt directory, 77
option F (Is command), 81–82
option R (Is command), 81–82
<option> tag, 144
option X (Is command), 81–82
options, Is command, 82
Options area (Scratch), 193
ordered list, 142
organizing files in website building, 133
output impedance, 269
output pins, 272–273
output voltage, 339
overclock option (Raspi-config), 40
overclocking, 40
overscan option (Raspi-config), 38
overwriting files, 87
owner permissions, 83–84

• P •
|(pipe character), 102
<p> tag, 134–135
P type silicon, 331
P1 connector, 270, 282–285
P1-03 … P1-05, 283–284
package manager, 96, 98–99
package name, 97
packages (software), 96, 99
padding spacing type (CSS), 152
page layouts, 118
Paint Editor (Scratch), 191, 192
Paint New Sprite button (Scratch), 191
Paintbrush tool (Scratch), 193
Panel Preferences (setting), 68
paragraph tag, 134
parallel connection, 341

405405 Index

parent directory, 74–75
parent folder, 54
parts, cost of, 284
passive infrared (PIR) motion detector, 376
passwd command, 101
password, 41, 45, 101
patch wires, 285
Path (shortcut), 55
paths, relative and absolute, 78–80
PBS, 164
PC speakers, 36
PCB wire, 270
PCF8591P chip, 343, 347
PCF8591P control register, 348
PDF format, 113
Penguins Puzzle (game), 98, 361–362
Pentium 2 PC, 13
peripherals, 14–18
permissions, 83
permissions structure, 58, 72, 83–85, 100
Philip (creator), 373
Philips (manufacturer), 341
photo editing, 12
photon, 314
photos. See images/photos
Photoshop, 356
physical computing, 261, 272, 281, 322
pi (default username), 74
pi (in login prompt), 72
pi directory, 74, 78–79
Pi Face board, 279
pi folder, 53
Pi Store (icon), 47
pi username, 41
pi@raspberrypi ~ $ prompt, 41, 45,

69, 72–75, 79–81, 83, 88–91, 94, 97,
100, 102–104

Pi-13, 283
Pibow (case), 17
PiBuster (game), 241, 243, 251, 252
pi-car, 375
Picasa, 164
Picture add-ons, 164
Pictures/Photos (Raspbmc), 161, 164, 167
ping command, 388
pinout list, 296
pins, 271–273, 284. See also GPIO (General

Purpose Input/Output)
PIR (passive infrared) motion detector, 376

Pixelate effect (Scratch), 183
pixels, 124, 140
plastic leaded chip carrier (PLCC), 331
Play Note 60 for 0.5 Beats block

(Scratch), 185
Play Sound block (Scratch), 185
Play Sound Until Done block (Scratch), 185
playersays variable (Python),

228, 230, 231
playlists, 166
plug one (P1), 283
.png format, 191
PNP transistor, 331
Point in Direction 90 (Scratch), 177
Point Towards (Scratch), 178
ports, diagram of, 32
positive (electrical flow), 264
posters, 118
pot box drawing tool (pot-a-sketch),

354–355
potentiometer (pot), 348, 349
PotMeter4.py (program), 356
Pot-Reich.py (program), 356
power, connecting to, 37
power supply, 16–17, 34, 264, 269, 328
Preferences (Image Viewer button), 65–66
Preferred Applications (setting), 68
Premier Farnell, 14
presentations, 110, 116–118
Previous (Image Viewer button), 64
Previous Folder (shortcut), 54
print command, 212–216, 219, 221
printed circuit board (PCB), 270
privacy protection, 63
proc directory, 77
productivity, 109–120
program, defined, 174, 186, 216
program manual (man page), 103
program windows, resizing and closing,

49–50
programming

defined, 9, 174
shorthand form, 218–219
understanding what it is, 174

Programming folder, 174
programming languages, 174. See also

Python; Scratch (programming
language)

Programs (Raspbmc option), 161, 167–168

406 Raspberry Pi For Dummies

programs, errors in/testing of, 205
Programs menu, 47–48
projects to inspire, 371–376
prompt (at log in), 72. See also pi@

raspberrypi ~ $ prompt
property (of style), 147
proportional controls, 338
protocols, 337
Prototype System, 319
PS/2 connectors, 15
pull-down resistor, 275
pull-up resistor, 275
punctuation. See also specific punctuation

in applying styles (CSS), 154–155
in CSS, 147
in using dictionaries (Python), 232

Punnet, 41
push-button switch, 318
pwd command, 78–79
Pygame

adapting game, 257–258
checking for win, 252
creating game map, 244
defined, 241
displaying end game messages, 251
documentation, 257
drawing with, 244–245
importing, 242
installing and updating, 242
making ball move, 254–257
making bat move, 253
positioning the ball, 250
positioning the bat, 248–249
setting up game window, 243
setting up timings, 252–253
using colors, 243

pygame, init () function (Pygame), 243
Pygame module, for Blastoff, 309, 310
pygame.key.set_repeat () command

(Pygame), 252
pygame.mixer, 257
Python (programming language)

accepting user input, 219
calculating sums, 214
as case-sensitive, 213
creating Chatbot program, 223, 227–240
creating main conversation loop, 237–238
creating times tables program, 215–222
entering your first commands, 212

extensions, 228
for loops, 221–222
IDLE and IDLE 3 programs, 47
indentations, 221
introducing lists, 224–227
mathematical operators, 215
modules, 228
saving your work, 217
spaces as meaningful, 221
starting, 212
use of, 174
use of quotation marks, 225
using dictionaries, 231–233
using lists to make random chat program,

227–229
while loops, 229–231

Python 2, 309
Python 2.7, 212, 228
Python 3, 212
Python games (icon), 47, 53
Python module, 294
Python shell, 212–213, 216

• Q •
Q, Will (creator), 376
quantized (voltage), 338
Queue Item (Raspbmc), 166
QUIT event type (Pygame), 254

• R •
R (resistance measured in ohms), 263
-R option (recursive) (Is command), 82
-r option (reverse) (Is command), 82
random element, adding in Pygame, 256
random module (Copycat), 325
random module (Python), 228
random numbers, 200
random.randint () function

(Python), 228
randomreplies list (Python), 228, 230
range () function (Python), 221–222, 248
Rasbian Wheezy (distribution), 20–21
Raspberry Jam, 372
raspberry password, 41
Raspberry Pi. See also specific topics

blog, 372
cases for, 11, 17, 41–42

407407 Index

compared to mainstream computer, 270
cost of, 11
documentation for what’s installed

on, 100
headless, 374
limitations of, 13
origins of, 9–11
price point as major feature, 270
sales of, 13–14
turning on, 37
uses for, 12
website, 5, 42

Raspberry Pi Foundation, 13–14, 22
Raspberry Pi Projects (Robinson), 279
Raspberry Pi synthesizer project, 372
Raspberry Ripple (board)

analog input A0 reading code, 349
building, 342–351
D/A output ramp code, 351
described, 337
installing drivers, 346–347
LED curve tracer code, 352
making a pot-a-sketch, 354–355
making a Steve Reich machine, 356–357
making curve tracer, 351–354
making real meters, 356
taking temperature, 357–358
testing analog inputs, 348–351
using, 347–348
wiring it up, 345–346

raspberrypi (in login prompt), 72
Raspbian Wheezy (distribution),

40, 41, 45, 169
Raspbmc (distribution)

adding media, 163–165
adding USB device, 163
changing settings, 167–168
navigating, 161–162
playing music, 165–166, 169
playing videos, 166–167
setting up, 160–161
using remote control, 168
viewing photos, 167

Raspi-config (program), 37–41, 380
RasPiWrite, 24–25
raw_input () function (Python), 228
RCA cable, 15, 18, 34
read permission (r), 84

Read_temp.py (code), 357
real meters, making, 356
realx () function (Pygame), 247, 250
realy () function (Pygame), 247, 250
rect function (Pygame), 242
rectangle command (Pygame), 244
Rectangle tool (Scratch), 193
recursive option (Is command), 82
red color number (CSS), 148
red stop button (Scratch), 195
redirection, 87–88
Reduction of Hazardous Materials

(RoSH), 276
reference (common point), 271
reference voltage (Vref), 339, 343
Reich, Steve (composer), 356
relative paths, 78–80
remote control, 168
remote-controlled cars project, 374–375
renders, 251
replychosen variable (Python), 229
resistance (of circuit), 262–263, 268,

274, 293
Reversi (game), 47
revision 1 and 2 boards, 284, 285
RGB color code, 243
ribbon cable, 285–291, 304, 306
ripple, 342
RISC OS Open Limited, 21
rm (remove) command, 90, 93–94
rmdir command, 93
Robinson, Andrew (author)

Raspberry Pi Projects, 279
root account, 96
root directory, 75, 77–78
root user, 58
Rotate Left (Image Viewer button), 64
Rotate Right (Image Viewer button), 65
rounding effect (Python), 214
router, 36, 164
RPi.GPIO (Python module), 294, 296
RS Components, 14, 15
Rubbish Bin, 53
run, defined, 186
run directory, 77
Run Module (Python), 217
running, defined, 217

408 Raspberry Pi For Dummies

• S •
-S option (Is command), 82
sales, of Raspberry Pi, 13–14
sans-serif font, 149
saturated (transistor), 328
saturated resin bonded paper (SPBP), 319
Save dialog box, 188
Save File (Image Viewer button), 65
Save File As (Image Viewer button), 65
Save Playlist, 166
Say block (Scratch), 182
Say Hello! for 2 Secs block (Scratch), 187
saySeq function (Copycat), 326
sbin directory, 77
schematics

Blastoff, 301–304
circuits, 266–267
Copycat, 318–319
deluxe Copycat, 330
pot box, 354
Raspberry Ripple, 343–344
transistor driving LED, 328–329

scissors (icon), cautions with, 190
score variable, 203
Scratch (icon), 47, 48, 53
Scratch (programming language)

adding sounds and music, 185–186
creating scripts, 186
as designed like jigsaw puzzle, 198
remote-controlled cars project, 374–375
saving work, 188, 194
sprites. See sprites (Scratch)
starting, 174
starting new project, 190–191
understanding screen layout, 174–176
website, 208

Scratch games project, 373
screen, when switching on, 37
screen display

adjusting sensitivity of, 386
troubleshooting, 383–385

screen output, turning of into file, 87
screen readers, 135
screw connectors, 286

screw terminal blocks, 344–345
script mode, 216–217
scripts, 186, 195–200, 207–208
Scripts Area (Scratch), 175, 176, 181, 185,

186, 195, 207
scrollbar, 85
SD card

flashing of, 19, 22–29
freeing up space on, 99
for individual users, 102
inserting, 32–33
list of, 379
making more space on, 380
preloaded, 16, 19

SD card writer, 15
search engines, 61, 135
secure shell connection (SSH), 372, 374
Security-Enhanced Linux, 77
<select> tag, 144
Select tool (Scratch), 193
selecting multiple files, 55–56, 91–93
selinux directory, 77
semicolon, 147
Sensing block (Scratch), 198, 202, 206–207
sequence list (Copycat), 326
series circuit, 266
series resistance, 268, 269
serif font, 149
server, 132
Set Color Effect to 0 block (Scratch), 183
Set Costume Center (Scratch), 194
Set Instrument to 1 block (Scratch), 185
Set Size to 100% block (Scratch), 184
Set X to 0 (Scratch), 179
Set Y to 0 (Scratch), 180
settings

adjusting, 380
changing in Raspbmc, 167–168
with Raspi-config, 37–41

Settings (Raspbmc option), 161
shell, Linux, 71, 86, 104, 380
shell prompt, 160
shortcuts, 54–56, 80, 217, 382
shorthand form (of programming), 218–219
Show (Scratch), 184
show block (Scratch), 184

409409 Index

showtext () function (Pygame), 251
silicon (in transistors), 331
Simon Cox (professor), 9
simulators, testing circuits with, 269–270
single quotes, use in Python, 225
single ramp (simplest algorithm), 341
single-throw switch, 264
16mA (current limit of Pi output), 272, 327
six-way block, 345
Size block (Scratch), 184
slave devices, 342
slides/slideshow, 116–118, 167
smart filters (for photos), 167
smart playlists, 166
smartreplies list, 236–237
smartresponse variable (Python), 238
SMBus driver, 346–347
software. See also specific software

finding out what’s installed, 100
fixing installation issues, 388
free, 20
installing and managing, 96–100
making sure is up to date, 361
writing of in Blastoff, 307–310

solder, 276–277
soldering, 261, 277, 285, 304–305, 319, 322,

331, 332
soldering iron, 276–277
Sound blocks (Scratch), 185
Sound button (Scratch), 185
sound effects (Pygame), 257
sound effects (Scratch), 185–186
sound filenames (Blastoff), 309
sound files (Blastoff), 310
sounds

in Blastoff, 310–311
in Copycat, 325–326
in Scratch, 185–186

Sounds tab (Scratch), 185
source code, 12
source (src) tag, 140, 141
space, freeing up/making more, 99, 380
spaces, as meaningful in Python, 221
spacing, adding (web pages), 152
SPBP (saturated resin bonded paper), 319
speakers, 16, 168

speech (Scratch), 182
speech bubbles (Scratch), 182
speed, of game, adapting, 208
Speed Dial, 62
split () method (Python), 236
spot face cutter, 319
spreadsheets, 12, 110, 113–116
Sprite List (Scratch), 175, 190
sprites (Scratch)

adding multiple, 186
adding to game, 191–192
changing appearance, 181–182, 194
changing visibility of, 184
coordinating multiple sprites, 199
deleting, 190–191
detecting when one hits another, 201–202
drawing, 192–193
duplicating, 208
enabling control of another, 198–200
enabling keyboard control of, 197–198
hiding, 191
making them move, 176–180, 203
naming, 195
positioning, 176
resizing, 176, 184
showing information on Stage, 180
using graphic effects on, 183

square value (CSS), 150
Squeak (programming language), 48
src (source) tag, 140–141
srv directory, 77
SSH (secure shell connection), 372, 374
ssh option (SSH) (Raspi-config), 40
Stage (Scratch), 176, 178, 180, 183, 191,

207–208
Stallman, Richard (creator), 20
Stamp tool (Scratch), 193–194
Start Slideshow (Image Viewer button), 64
starting

desktop environment, 45
GIMP, 122
LibreOffice, 110–111
new Scratch project, 190–191
Python, 212
Scratch, 174

startx command, 45, 71, 110, 174

410 Raspberry Pi For Dummies

state variable, 310
static electricity, 262
static playlists, 166
Steve Reich machine, making, 356–357
storage devices, 51, 76, 166, 386–387
strain relief clip, 288
string, 224
string methods, 236
strip board, 319
 tag, 144
style sheet, adding, 145–146
styles, applying (web pages), 152–155
styling lists (CSS), 150
subdirectories, 75, 81
subheadings (in HTML code), 139
sudo command, 77, 96, 101
sudo dd command, 29
sudo prefix, 296, 347
summing resistor, 339
Super User, 58
surface object (Pygame), 243
surface-mount devices (SMD), 331
Sweigart, Al, 47
switch assemblies (Copycat), 333–334
switch module (Copycat), 330–331
switch module boards (Copycat), 332,

334–335
Switch to Costume (Scratch), 182
Switch to Presentation Mode (Scratch), 208
switches (electrical)

to make digital-to-analog converter,
338–339

push-button switch, 318
tack switch, 318
transistor as, 328
types of, 264–265

synthesizer project, 372
sys directory, 77
System (Raspbmc option), 167–168

• T •
-t option (Is command), 82
tabbed browsing, 61–62
<table> tag, 144

tablenum variable (Python), 219
tack switch, 318
tag, 139
tags. See also specific tags

adding formatting tags, 144
closing tags, 134
defined, 134
opening tags, 134
for photos, 167
uppercase and lowercase, 138

talking boat project, 375
task bar, 46, 68
Task Manager, 49–51
<td> tag, 144
temperature, taking, 357–358
Term command, 50
testing

analog inputs, 348–351
breakout board, 293
circuits with simulators, 269–270
hardware in Blastoff, 306–307
programs, 205

text editor, 66–67, 105, 216
text prompt, 12
Text tool (Scratch), 193
text-align property (CSS), 149
<textarea> tag, 144
text-decoration property (CSS), 149
text-indent property (CSS), 149
<th> tag, 144
Think block (Scratch), 182
Thompson, Mike (developer), 20
thought bubbles (Scratch), 182
three-way blocks, 344
through-hole mounting type (leads), 316
thumbnails, of photos, 167
TIFF image format, 167
times tables program, 215–216
time.sleep () function (Pygame), 251
timings, setting up in Pygame, 252–253
title bars, 67
<title> tag, 137
tmp directory, 77
Torvalds, Linus, 20
<tr> tag, 144

411411 Index

transistor, 327–329, 331
troubleshooting

networking connection, 388–389
Raspberry Pi, 377–380

true and false logic level, 272
True value (Pygame), 252
tuple, 243
Turn Right or Left 15 Degrees

(Scratch), 177
turning on, Raspberry Pi, 37
Tux Paint (drawing program), 366–367
TV, 14–15, 33–34
twin wire, 341
270R (resistor value), 318
.txt (file extension), 87
type command, 102, 104

• U •
Ubuntu (distribution), 27
 tag, 143, 150
University of Manchester, 279
University of Southampton, 9
unordered list, 142
Up a Level (shortcut), 54–55
up and down logic level, 272
update option (Raspi-config), 40
UPnP (Universal Plug and Play)

standard, 164
upper-alpha value (CSS), 150
uppercase, 27, 138, 213, 244
upper-roman value (CSS), 150
Upton, Eben (creator), 10, 208
url (imagename.gift) value

(CSS), 150
USB devices, 163, 168
USB hub, 15, 18, 34–35, 163
USB keyboard, 15
USB keys, 16, 51
USB mouse, 15
USB sockets, 11, 15, 34–35
USB storage devices, 51
user accounts, managing, 100–102
user input (Python), 219
useradd command, 100

username, 41, 74
username root, 101
usr directory, 77
utf-8 (character), 137

• V •
-v option (verbose), 89, 95
validating HTML, 145
value (of style), 147
van Loo, Gert (designer), 278
var directory, 77
variable resistor, 348
variables

constants as, 244
defined, 202, 218
introducing, 202–203
local variable, 234
state variable, 310

Variables button (Scratch), 203
VC1 format videos, 167
Vectorbord Circbord, 319
verbose (-v option), 89, 95
Veroboard, 319
VGA (video graphics array) monitors, 14
Video In socket, 34
Videocore 4 GPU, 12
Videos (Raspbmc option), 161, 164
videos, playing, 12, 166–167
View Options menu (Raspbmc), 162
VLC Media Player, 48, 169
vocabulary (Python), 233
voltage, 262, 269, 339
Vref variable (Raspberry Ripple), 350

• W •
W3C (World Wide Web Consortium), 145
Wait block (Scratch), 187
Wallace, Kit (creator), 375
wallpaper, 68–69
Wardell, Steve (creator), 373
WAV/.wav format/file, 185, 310
Weather (Raspbmc option), 161, 163
weather station project, 373

412 Raspberry Pi For Dummies

web browsers/web browsing, 59–63, 363
web design programs, 134
web page building, 133–135
web pages

defined, 132
searching for and within, 61

web standards, 145
Web2py (web server), 376
webcam, bird feeder (project), 372
WebGL, 363
website, defined, 132
website building, 153–158
websites

Raspberry Pi For Dummies, 5
troubleshooting guide, 380

When I Receive fire block (Scratch), 199
which command, 102
while command, 230
while loops, 229–231, 250, 254
while statements, 250
while True instruction (Pygame), 254
Whirl effect (Scratch), 183
white color number (CSS), 148
width tag, 140
Wi-Fi Config (icon), 47
Wi-Fi connection manager, 168
Wi-Fi dongle, 47
Wikipedia, 61
wildcards, 91–95
Windows, 45, 48, 56, 122, 160
Winscp, 372
wiper (middle terminal), 348

wires, for Copycat, 320
word processing, 12, 110, 111, 362
world permissions, 83–84
write permission (w), 84
WS2350 weather station, 373

• X •
X button, 49
-X option (Is command), 81–82
X server, 98
Xarchiver, 48
XBMC (software), 160
Xbox, 13, 168
XHTML, 137
XInvaders 3D (game), 364
XMBC, 168
.xcf format, 128

• Y •
Yahoo, 61
yellow color number (CSS), 148
YouTube, 12, 164, 334, 373

• Z •
zero and one logic level, 272
Ziadé, Tarek (creator), 373–374
Zip file, 22
Zoom In/Zoom Out (Image Viewer

button), 64

http://www.dummies.com/go/mobile
http://www.dummies.com/go/iphone/apps

	Raspberry Pi® For Dummies®
	Contents at a Glance
	Table of Contents
	Introduction
	About Raspberry Pi For Dummies
	Why You Need This Book
	Foolish Assumptions
	How This Book Is Organized
	Icons Used in This Book
	Visit the Book’s Website

	Part I: Getting Started with the Raspberry Pi
	Chapter 1: Introducing the Raspberry Pi
	Getting Familiar with the Raspberry Pi
	Figuring Out What You Can Do with a Raspberry Pi
	Determining Its Limitations
	Getting Your Hands on a Raspberry Pi
	Deciding What Else You Need

	Chapter 2: Downloading the Operating System
	Introducing Linux
	Determining Which Distribution to Use
	Using RISC OS on the Raspberry Pi
	Downloading a Linux Distribution
	Unzipping Your Linux Distribution
	Flashing Your SD Card

	Chapter 3: Connecting Your Raspberry Pi
	Inserting the SD Card
	Connecting a Monitor or TV
	Connecting a USB Hub
	Connecting a Keyboard and Mouse
	Connecting Audio
	Connecting to Your Router
	Connecting the Power and Turning on the Raspberry Pi
	Using Raspi-config to Set Up Your Raspberry Pi
	Logging In
	Creating a Protective Case for Your Raspberry Pi

	Part II: Getting Started with Linux
	Chapter 4: Using the Desktop Environment
	Starting the Desktop Environment
	Navigating the Desktop Environment
	Using the Task Manager
	Using External Storage Devices in the Desktop Environment
	Using the File Manager
	Browsing the Web
	Using the Image Viewer
	Using the Leafpad Text Editor
	Customizing Your Desktop
	Logging Out from LXDE

	Chapter 5: Using the Linux Shell
	Understanding the Prompt
	Exploring Your Linux System
	Understanding the Long Listing Format and Permissions
	Slowing Down the Listing and Reading Files with the Less Command
	Speeding Up Entering Commands
	Using Redirection to Create Files in Linux
	Top Tips for Naming Your Files in Linux
	Creating Directories
	Deleting Files in Linux
	Using Wildcards to Select Multiple Files in Linux
	Removing Directories
	Copying and Renaming Files
	Installing and Managing Software on Your Raspberry Pi
	Managing User Accounts on Your Raspberry Pi
	Learning More About Linux Commands
	Customizing Your Shell with Your Own Linux Commands

	Part III: Using the Raspberry Pi for Both Work and Play
	Chapter 6: Being Productive with the Raspberry Pi
	Installing LibreOffice on Your Raspberry Pi
	Starting LibreOffice on the Raspberry Pi
	Saving Your Work
	Writing Letters in LibreOffice Writer
	Managing Your Budget in LibreOffice Calc
	Creating Presentations in LibreOffice Impress
	Creating a Party Invitation with LibreOffice Draw

	Chapter 7: Editing Photos on the Raspberry Pi with GIMP
	Installing and Starting GIMP
	Understanding the GIMP Screen Layout
	Resizing an Image in GIMP
	Cropping Your Photo
	Rotating and Flipping Your Photo
	Adjusting the Colors
	Fixing Imperfections
	Converting Images Between Different Formats
	Finding Out More about GIMP

	Chapter 8: Building Your First Website with the Raspberry Pi
	Understanding What a Website Is
	Discovering How to Write a Web Page
	Organizing Your Files
	Creating Your First Web Page
	Formatting Your HTML Content
	Validating Your HTML
	Using CSS to Change Your Page’s Appearance
	Applying Styles to More Specific Parts of the Page
	Creating a Navigation Bar from a List
	Adding the Finishing Touches
	Publishing Your Web Page on the Internet
	Taking It Further

	Chapter 9: Playing Audio and Video on the Raspberry Pi
	Setting Up Raspbmc
	Navigating Raspbmc
	Adding Media
	Playing Music
	Playing Videos
	Viewing Photos
	Changing the Settings in Raspbmc
	Using a Remote Control
	Playing Music in the Desktop Environment

	Part IV: Programming the Raspberry Pi
	Chapter 10: Introducing Programming with Scratch
	Understanding What Programming Is
	Starting Scratch
	Understanding the Scratch Screen Layout
	Positioning and Resizing Your Sprite
	Making Your Sprite Move
	Changing Your Sprite’s Appearance
	Adding Sounds and Music
	Creating Scripts
	Using the Wait Block to Slow Down Your Sprite
	Saving Your Work

	Chapter 11: Programming an Arcade Game Using Scratch
	Starting a New Scratch Project and Deleting Sprites
	Changing the Background
	Adding Sprites to Your Game
	Drawing Sprites in Scratch
	Naming Your Sprites
	Controlling When Scripts Run
	Using Random Numbers
	Detecting When a Sprite Hits Another Sprite
	Introducing Variables
	Making Sprites Move Automatically
	Fixing the Final Bug
	Adding Scripts to the Stage
	Duplicating Sprites
	Playing Your Game
	Adapting the Game’s Speed
	Taking It Further with Scratch

	Chapter 12: Writing Programs in Python
	Starting Python
	Entering Your First Python Commands
	Using the Shell to Calculate Sums
	Creating the Times Tables Program
	Creating the Chatbot Program

	Chapter 13: Creating a Game with Python and Pygame
	Installing and Updating Pygame
	Importing Pygame
	Setting Up the Game Window
	Using Colors in Pygame
	Drawing with Pygame
	Creating the Game Map
	Drawing the Bricks
	Positioning the Bat
	Positioning the Ball
	Displaying the End Game Messages
	Checking for a Win
	Setting Up the Timings
	Making the Bat Move
	Making the Ball Move
	Adapting the Game

	Part V: Exploring Electronics with the Raspberry Pi
	Chapter 14: Understanding Circuits and Soldering
	Discovering What a Circuit Is
	Getting Familiar with the GPIO
	Looking at Ready-Made Add-On Boards

	Chapter 15: Making Your First Project with the Raspberry Pi
	Getting Started with the Blastoff Project
	Getting at the GPIO Pins
	Making a Breakout Board
	Creating the Blastoff Game
	Customizing the Blastoff game

	Chapter 16: Putting the Raspberry Pi in Control
	Using GPIO Pins as Outputs
	Preparing to Build the Copycat Game
	Choosing an LED
	Creating the Copycat Game
	Customizing the Game
	Making a Better Game
	Putting It All Together

	Chapter 17: The Raspberry Pi in an Analog World
	Exploring the Difference: Analog versus Digital
	Investigating Converter Chips
	Building the Raspberry Ripple
	Making a Curve Tracer
	Making a Pot-a-Sketch
	Making Real Meters
	Making a Steve Reich Machine
	Taking the Temperature

	Chapter 18: Ten Great Software Packages for the Raspberry Pi
	Penguins Puzzle
	FocusWriter
	Chromium
	XInvaders 3D
	Fraqtive
	Evolution
	Tux Paint
	Grisbi
	Beneath a Steel Sky
	LXMusic

	Chapter 19: Ten Inspiring Projects for the Raspberry Pi
	One-Button Audiobook Player
	Raspberry Pi Synthesizer
	Bird Feeder Webcam
	Scratch Games
	Weather Station
	Jukebox
	Baby Monitor
	Remote-Controlled Cars
	A Talking Boat
	Home Automation

	Appendix A: Troubleshooting and Configuring the Raspberry Pi
	Troubleshooting the Raspberry Pi
	Making More Space on the SD Card
	Adjusting the Settings on Your Raspberry Pi
	Mounting External Storage Devices
	Fixing Software Installation Issues
	Troubleshooting Your Network Connection

	Appendix B: The GPIO on the Raspberry Pi
	Index

Raspberry Pi

