

Teaching realtime processing

The standard academic approach

The standard academic approach

The internet cafe approach

The internet cafe approach

The students get:

simulated data

run a simulation

and write a report

...for the bin!

ZZZZZZZZZZ

What's the alternative?

The Raspberry Pl approach

Build a sensor...

..process the data with the Raspberry PI...

..and make a YouTube video about the result.

The Task:

Measure a physical quantity and plot it in realtime on the screen.

The students have to build/design/ hack an analogue to digital PCB to be able to measure analogue signals.

Figure 1: Raspberry Pi Sigma Delta Converter (Bernd Porr, 2015)

Problem #2

How to get the data into the raspberry PI?

Solution: Learning how to use /dev/spi under Linux and C

```
while (1) {
 // let's wait for data for max one second
  ret = gpio_poll(sysfs_fd,1000);
  if (ret<1) {
   fprintf(stderr, "Poll error %d\n", ret);
  }
  // tell the AD7705 to read the data register (16 bits)
  writeReg(fd, 0x38);
  // read the data register by performing two 8 bit reads
  int value = readData(fd)-0x8000;
       fprintf(stderr, "data = %d \r".value);
        // if stdout is redirected to a file or pipe, output the data
        if( no_tty )
                printf("%d\n", value);
                fflush(stdout):
}
```

Problem #3

How to plot the data?

Solution:

Learn how to use the QT library (in C++) and the scientific plotting library QWT.

```
void Window::timerEvent( QTimerEvent * )
\{
        double inVal = gain * sin( M_PI * count/50.0 );
        ++count:
        // add the new input to the plot
        memmove( yData, yData+1, (plotDataSize-1) * sizeof(double) );
        yData[plotDataSize-1] = inVal;
        curve->setSamples(xData, yData, plotDataSize);
        plot->replot():
        // set the thermometer value
        thermo->setValue( inVal + 10 ):
```

Problem #4

How to record data at a high speed and plot it at a lower speed?

high speed acquisition

low refresh rate

Solution: multithreaded programming (different threads for data acquisition and plotting using a ringbuffer)

Problem based learning needs support

Example code on GITHUB for the project

Problem based learning needs support

Example hardware design for data acquisition

Figure 1: Raspberry Pi Sigma Delta Converter (Bernd Porr, 2015)

Problem based learning needs support

12 raspberry PI setups with monitor, power supply and local network (via NAT) and electronics lab

Dissemination

WIKI

YOUTUBE

Example videos

Conclusion

Real data
Realtime processing
C/C++ programming relevant for the future career
Dissemination via YouTube (to share with their friends)
Loads of fun

Bernd Porr

www.berndporr.me.uk

bernd.porr@glasgow.ac.uk

https://github.com/berndporr

http://web.eng.gla.ac.uk/rpi/